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Abstract

The theme of this thesis is the estimation of model parameters of a radio channel snapshot.
The main focus was the development of a general data model for the measured radio channel,
suitable for both high resolution channel parameter estimation on the one hand, and the devel-
opment of a robust parameter estimator for the parameters of the designed parametric radio
channel model, in line with this logical work flow is this thesis.

In the first part of this work an algebraic representation of observed propagation paths
is developed using a ray-optical model known from literature. The algebraic framework is
suitable for the description of SISO (single-input-single-output) radio transmission systems. A
SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx).
The derived expression for the propagation paths is also suitable to describe SIMO (single-
input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-
multiple-output) radio channel measurements. In contrast to other models used for high reso-
lution channel parameter estimation the derived model makes no restriction regarding the
structure of the antenna array used throughout the measurement. This is important since the
ultimate goal in radio channel sounding is the complete description of the spatial (angular)
structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite
for the optimisation of the antenna array structure with respect to the measurement task. Such
an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical
arrangement of antenna elements. This antenna array configuration is well suited for the
measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-
scenarios. Furthermore, a new component of the radio channel model is introduced in the first
part of this work. It describes the contribution of distributed (diffuse) scattering to the radio
transmission. The new component is key for the development of a robust radio channel pa-
rameter estimator, which is derived in the main part of this work. The ignorance of the contri-
bution of distributed scattering to radio propagation is one of the main reasons why high-
resolution radio channel parameter estimators fail in practice. Since the underlying data model
is wrong the estimators produce erroneous results. The improved model describes the so
called dominant propagation paths by a deterministic mapping of the propagation path pa-
rameters to the channel observation. The contribution of the distributed scattering is modelled
as a zero-mean circular Gaussian process. The parameters of the distributed scattering process
determine the structure of the covariance matrix of this process. Based on this data model
current concepts for radio channel sounding devices are discussed.

In the second part of this work expressions for the accuracy achievable by a radio
channel sounder are derived. To this end the lower bound on the variance of the measure-
ments i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the
Cramér-Rao lower bound is employed. On the way to the Cramér-Rao lower bound for all
channel model parameters, important issues for the development of an appropriate parameter
estimator are discussed. Among other things the coupling of model parameters is also dis-
cussed.



In the third part of this thesis, an estimator, for the propagation path parameters is de-
rived. For the estimator the ‘maximum-likelihood’ approach is employed. After a short over-
view of existing high-resolution channel parameter estimators the estimation problem is clas-
sified. It is shown, that the estimation of the parameters of the propagation paths can be un-
derstood as a nonlinear weighted least squares problem, provided the parameters of the dis-
tributed scattering process are known. Based on this observation a general algorithm for the
estimation of raw parameters for the observed propagation paths is developed. The algorithm
uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to
reduce the numerical complexity of the estimation problem. A robust estimator for the precise
estimation of the propagation path parameters is derived. The estimator is based on concepts
well known from nonlinear local optimisation theory. In the last part of this chapter the appli-
cation of subspace based parameter estimation algorithms for path parameter estimation is
discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary
ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace
based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal
subspace estimation (economy size SVD, singular value decomposition) are not suitable since
they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT
(Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can
also be employed for parameter estimation from data having hidden rotation invariance struc-
ture. As an example an ESPRIT algorithm for angle estimation using circular uniform beam
arrays (circular multi-beam antennas) is derived.

In the final part of this work a maximum likelihood estimator for the new component
of the channel model is developed. Starting with the concept of iterative maximum likelihood
estimation, an algorithm is developed having a low computational complexity. The low com-
plexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance ma-
trix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propaga-
tion paths and the parametric estimator for the covariance matrix of the process describing the
distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX).
The estimator is a ‘maximum likelihood’ estimator and uses the genuine SAGE concept to
reduce the computational complexity. The estimator provides additional information about the
reliability of the estimated channel parameters. This reliability information is used to deter-
mine an appropriate model for the observation. Furthermore, the reliability information i.e.
the estimate of the covariance matrix of all parameter estimates is also an important parameter
estimation result. This information is a prerequisite for further processing and evaluation of
the measured channel parameters.
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Kurzfassung

Diese Dissertation behandelt die Schitzung der Modellparameter einer Momentanaufnahme
des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines
generischen Datenmodells fiir den gemessenen Funkkanal, welches fiir die hochauflosende
Parameterschitzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung
eines robusten Parameterschitzers filir die Bestimmung der Parameter des entworfenen Mo-
dells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau
dieser Arbeit.

Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenopti-
schen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbrei-
tungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (sin-
gle-input-single-output)-Ubertragungssystemen, also von Systemen mit einer Sendeantenne
und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren
Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO-
(single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme
(multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthélt
das entwickelte Modell keine Restriktionen beziiglich der modellierbaren Antennenarrayar-
chitekturen. Dies ist besonders wichtig in Hinblick auf die mdglichst vollstandige Erfassung
der rdumlichen Struktur des Funkkanals. Die Flexibilitit des Modells ist eine Grundvoraus-
setzung fiir die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche
angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Anten-
nenelementen. Sie ist gut geeignet fiir die Erfassung der raumlichen Struktur des Funkkanals
(Azimut und Elevation) in so genannten Outdoor-Funkszenarien. Weiterhin wird im ersten
Teil eine neue Komponente des Funkkanaldatenmodells eingefiihrt, welche den Beitrag ver-
teilter (diffuser) Streuungen zur Funkiibertragung beschreibt. Die neue Modellkomponente
spielt eine Schliisselrolle bei der Entwicklung eines robusten Parameterschitzers im Hauptteil
dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen
fiir die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflo-
senden Funkkanalparameterschétzern, die in der Literatur etabliert sind. Das neue Datenmo-
dell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische
Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten
Streuungen wird mit Hilfe eines zirkularen mittelwertfreien GauBBschen Prozesses beschrie-
ben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix
dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz iiber
aktuelle Konzepte fiir Funkkanalmessgerite, so genannte Channel-Sounder, diskutiert.

Im zweiten Teil dieser Arbeit werden in erster Linie Ausdriicke zur Bestimmung der
erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die
untere Schranke fiir die Varianz der geschitzten Modellparameter, das heillit der Messwerte,
bestimmt. Als Grundlage fiir die Varianzabschétzung wird das aus der Parameterschétztheorie
bekannte Konzept der Cramér-Rao-Schranke angewandt. Im Rahmen der Ableitung der Cra-
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mér-Rao-Schranke werden aullerdem wichtige Gesichtspunkte flir die Entwicklung eines effi-
zienten Parameterschétzers diskutiert.

Im dritten Teil der Arbeit wird ein Schétzer fiir die Bestimmung der Ausbreitungs-
pfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Uber-
sicht iiber existierende Konzepte zur hochauflésenden Funkkanalparameterschitzung wird die
vorliegende Schitzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Vor-
aussetzung, dass die Parameter der verteilten Streuungen bekannt sind, ldsst sich zeigen, daf3
sich die Schitzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes
kleinstes Fehlerquadratproblem auffassen ldsst. Basierend auf dieser Erkenntnis wird ein ge-
nerischer Algorithmus zur Bestimmung einer globalen Startlosung fiir die Parameter eines
Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-
Squares (SLS)-Probleme Gebrauch gemacht, um die Komplexitit des Schétzproblems zu re-
duzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten
robusten numerischen Algorithmen ein Schitzer zur genauen Bestimmung der Ausbreitungs-
pfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraum-
basierter Schitzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein
speichereffizienter Algorithmus zur Signalraumschitzung entwickelt. Dieser Algorithmus ist
eine Grundvoraussetzung fiir die Anwendung von mehrdimensionalen Parameterschétzern
wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-
Funkkanalmessungen. Traditionelle Verfahren zur Signalraumschétzung sind hier im Allge-
meinen nicht anwendbar, da sie einen zu groflen Speicheraufwand erfordern. Aullerdem wird
in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur Parameterschitzung von Daten
mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden konnen. Als Bei-
spiel wird ein ESPRIT-basierter Algorithmus zur Richtungsschidtzung in Verbindung mit mul-
tibeam-Antennenarrays (CUBA) abgeleitet.

Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-Schétzer fiir die neue
Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausge-
hend vom Konzept des iterativen Maximum-Likelihood-Schitzers wird ein Algorithmus ent-
wickelt, der hinreichend geringe numerische Komplexitdt besitzt, so dass er praktisch an-
wendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schitzenden Kovari-
anzmatrix Gebrauch gemacht. Aufbauend auf dem Schétzer fiir die Parameter der Ausbrei-
tungspfade und dem Schiétzer fiir die Parameter der verteilten Streuungen wird ein Maximum-
Likelihood-Schétzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Mo-
dells der Funkanalmessung im Verbund schétzt. Neben den geschitzten Parametern des Da-
tenmodells liefert der Schétzer zusitzlich Zuverldssigkeitsinformationen. Diese werden unter
anderem zur Bestimmung der Modellordnung, das heif3t zur Bestimmung der Anzahl der do-
minanten Ausbreitungspfade, herangezogen. Aullerdem stellen die Zuverldssigkeitsinformati-
onen aber auch ein wichtiges Schitzergebnis dar. Die Zuverldssigkeitsinformationen machen
die weitere Verarbeitung und Wertung der Messergebnisse moglich.
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1 Introduction

As high-speed data services for multimedia Internet access are brought to focus, huge date
rates per user are anticipated for future 3G and 4G mobile radio systems. The most likely
method of increasing capacity for wireless transmission is to exploit smart antennas. Space-
time processing using multiple antennas is supposed to enhance the performance in terms of
coverage, capacity and quality of service (QoS) considerably. The signal processing methods
widely discussed are beam forming, joint space-time equalisation, multi-user detection, inter-
ference cancellation, and spatial diversity. Link adaptation methods are applied to control the
modulation and coding according to the available radio link performance in order to meet the
required QoS. Highest link capacity is expected if multiple antennas are used at both the re-
ceiver and the transmitter site. In this case, the radio propagation channel as accessed by the
antennas constitutes a multiple-input-multiple-output (MIMO) system. Profound knowledge
of the multipath propagation channel impulse response (CIR) is a prerequisite for system
planning, algorithm design, and link level simulation of advanced radio systems using adap-
tive multiple antenna modems. A lot of spatial channel models and propagation simulation
tools have been developed (see [1] for an overview). In order to keep the simulation tractable,
these models must extremely simplify the complicated electromagnetic transmission proc-
esses of reflection, scattering, diffraction, shadowing etc. In labyrinthine radio environments
such as densely built-up areas, indoor and especially industrial areas and factory halls, car-to-
car links in heavy traffic, these models cannot reproduce the reality of wave propagation. To
complicate matters further, random user mobility and possible movement of parts of the envi-
ronment have to be considered. Consequently, the MIMO radio channel has to be treated as a
time-variant system. Moreover, adjacent-channel and co-channel interference from other sub-
scribers or even from coexisting systems have to be considered. Therefore, advanced meas-
urement systems are required, which deliver CIR data for realistic link level simulation and
even for system level performance assessment. These data can also be used to deduce meas-
urement based channel models.

1.1 Background

The design of future mobile radio networks (beyond 3G) requires research towards new air
interfaces which are characterized by highest bandwidth efficiency and unprecedented flexi-
bility. It is commonly understood that radio systems equipped with multiple antennas at both
the mobile station (MS) and the base station (BS) have a huge potential to increase the avail-
able capacity for high bit rate wireless links, which results from a simultaneous transmission
of multiple data streams from different antenna elements [2]. This multi-antenna transmission
technique is called MIMO transmission. It can optimally exploit the spatial diversity of multi-
ple propagation paths existing in a rich scattering environment. Conceptually, the multipath
propagation of the radio channel gives rise to different spatio-temporal signatures for the dif-
ferent transmit data streams, which permits a receiver equipped with multiple antennas to
separate those data streams from the received signal mixture, that are otherwise not orthogo-
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nal in any of the conventional communication signal dimensions, i.e., by time, frequency, or
code. With this information, it is not surprising that the performance of a MIMO system
strongly depend on the radio channel conditions. A key question for a system design and im-
plementation is therefore, do we find practically feasible schemes that are sufficiently robust
for this task? On the other hand, somewhat related, what specific features are required for a
practical MIMO system to work reliably under a wealth of various propagation conditions?
To give an example, the upcoming IEEE 802.11n standard applies the MIMO transmission
concept to increase the data rate of WLAN-systems (Wireless Local Area Networks). Fur-
thermore, the new systems will use a bandwidth of up to 40MHz. The aim is to reach a
throughput of at least 100Mbps.

Figure 1-1: Double directional (direction of departure and direction of arrival) structure of a
multipath channel.

A thorough investigation of the multidimensional wave propagation mechanisms is a
prerequisite for understanding the spatial and temporal structure of the channel transfer ma-
trix, and thus, for optimum design and realistic performance evaluation of multiple antenna
systems. There are many attempts to simulate the input-output behaviour of the channel. One
approach is physically motivated, it is based on electromagnetic wave propagation analysis
and uses a ray optical model. In case of ray tracing or ray launching, a detailed database de-
scribing the propagation environment is required. Other models, although ray based as well,
use statistical assumptions on the distribution of reflectors (e.g. COST 259 [3], COST273
[4]). There are also models trying to reproduce the input/output behaviour in a statistical sense
by formal assumptions of correlation coefficients and distributions resulting at transmit and
receive antenna ports disregarding the geometrical distribution of the reflectors. A drawback
of non-geometric models is that they are inherently specific for a certain antenna characteris-
tic. For antenna independent modelling (which allows antenna de-embedding and embed-
ding), it seems that geometry-based models are necessary [5], [6].

As the complexity of wave reflection, scattering, diffraction, etc. in real propagation
environments can never be completely reproduced by electromagnetic simulation and because
of the strong simplifications of the statistical approaches, all models have to be verified and
parameterised by propagation measurements. Moreover, channel models can be directly de-
duced from measurements in real propagation environments by estimating the geometric path
parameters from the recorded data [7]. Given a ray-optical path model, the parameters of a
suitably defined propagation path model are DoA (Direction of Arrival) at the receiver array,
DoD (Direction of Departure) at the transmitter array, TDoA (Time Delay of Arrival), Dop-
pler shift, and the complex, polarimetric path weight matrix.

A multidimensional channel sounder is a measuring device, which allows the observa-
tion of the time-varying multipath channel impulse response in its relevant multiple dimen-
sions. These dimensions may be temporal and spatial in nature and must contain information
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on all model parameters described above. To this end, we need a broadband excitation signal
to "sound" the channel in the frequency range of interest and antenna arrays, which sense the
wave field in a properly defined spatial aperture. A sounder system typically consists of a
mobile transmitter (Tx) which plays the role of the MS (mobile station) and a fixed receiver
(Rx) acting as the BS (base station). Since the channel is reciprocal, it makes no difference if
the results are interpreted as uplink or as downlink. The receiver may also be moving if we
consider a peer-to-peer communication between two mobile platforms. Both excitation and
recording must be repetitive with a period short enough to make the temporal variation statis-
tics according to Doppler shift and fast fading visible. Moreover, the data recording must be
continuous along a precisely defined trajectory to reproduce slow channel parameter varia-
tion. This all is called real-time MIMO channel sounding and makes the measured data usable
for simulating the MIMO transceiver performance including link- and system-level aspects.
Figure 1-1 highlights the double directional structure of the multipath channel. Specifically,
double directional measurement, which includes joint DoA/DoD estimation, allows the influ-
ence of the measurement antennas to be separated from the channel measurements. This is a
prerequisite of antenna independent channel characterisation.

The antenna array arrangement is of crucial importance to represent a certain system
scenario. This applies to the typical BS or access point (AP) location in a cellular or WLAN
specific deployment scenario. The MS antenna array location should resemble the characteris-
tic user roaming behaviour. This may include almost stationary user terminals but also high
mobility user platforms such as cars, aircrafts, or trains. For ad-hoc and multi-hop network-
ing, the situation changes completely since there is no dedicated BS. Instead, both sides of the
link have to represent the terminal morphology and mobility. This influences the antenna ar-
ray architecture, which consists of the array size, shape and of the number, orientation and
characteristics of the individual antenna elements. Both BS and AP, e.g., may have a limited
viewing sector. The MS, acting as the user, should have a full angular coverage in order to
represent arbitrary user antenna orientation. Moreover, advanced network specific scenarios
such as multiple users including known and unknown interference, cooperative downlinks
from multiple BS or APs, multi-hop networking and relaying, etc. have to be emulated by the
measurement setup. It is only if the measurement scenario is properly defined that the re-
corded CIR data can be used for realistic link- and system level simulation. The advantages of
this measurement based off-line approach in comparison with the prototype hardware demon-
stration are higher flexibility, lower costs, and an improved perception of the transceiver's
operation. The latter is primarily due to more effective analysis techniques, which allow the
observed transceiver performance to be traced back to the actual time variant space-time
structure and physical propagation phenomena.

Even more specific design roles for antenna arrays apply if we have in mind high-
resolution estimation of the ray-optical multipath model. The channel response can, in gen-
eral, be observed only within a limited aperture volume which is somewhat related to the ar-
ray size, frequency bandwidth and temporal observation window. This strictly limits the
achievable parameter resolution and accuracy when classical nonparametric estimation algo-
rithms are applied. Therefore, high-resolution parameter estimation algorithms have to be
envisaged to enhance the resolution by fitting an appropriate data model to the measured data.
In this case, the resolution is only limited by the signal to noise ratio (SNR), antenna and de-
vice imperfections, calibration quality, and the limited validity of the data model. The resolu-
tion performance mainly depends on the antenna array architecture and its manufacturing
quality, which includes low electromagnetic coupling, high electrical and mechanical stability
and precise calibration. In the context of high-resolution channel parameter estimation, also
the definition of the data model is crucial for parameter estimation. It has to represent the real-
ity of wave propagation and the influence of the measurement device. A proper choice can
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dramatically reduce the algorithmic complexity and enhance the accuracy and resolution as
well as the reliability of the results. Moreover, a sufficient accurate continuous device data
model is required, which includes the precise knowledge of the complex polarimetric antenna
array response.

1.2 Overview and Contributions

Chapter 2 - Radio Channel and System Model describes the viewpoint of the mobile radio
channel used throughout this work. A model for concentrated (specular alike) propagation
paths is derived, which can be expressed entirely by means of linear algebra. The model is a
continuous function of the propagation path parameters. Furthermore, the data model com-
monly used in high-resolution channel parameter estimation, which describes the radio chan-
nel observation (measurement) by a finite sum of concentrated propagation paths and meas-
urement noise, is extended. A third component of the channel model is introduced to account
for so-called dense multipath, which is caused by distributed diffuse scattering.

Chapter 3 - Radio Channel Measurement gives a short overview of radio channel
sounding measurement devices. Furthermore, general issues in radio propagation measure-
ments related to channel parameter estimation are discussed.

In Chapter 4 - Limits on Channel Parameter Estimation, closed form expressions
for the Cramér-Rao lower bound on the variance of any channel parameter estimator are de-
rived. At first, expressions for the Cramér-Rao lower bound on the parameters of the propaga-
tion paths are established. The structure of the Fisher information matrix and its influence on
path identifiability as well as parameter estimator structure is discussed. In the second part, a
closed form expressions for the Cramér-Rao lower bound on the parameters of the stochastic
part of radio channel observation (dense multipath) is derived. Finally, an expression for the
joint Cramér-Rao lower bound of all channel model parameters is given.

In Chapter 5 - Estimation of Path Parameters, the general structure of the path pa-
rameter estimation problem is discussed. A maximum likelihood estimator based on a global
search strategy to determine raw initial path parameter estimates, and a subsequent local
maximization algorithm is proposed in this chapter. In both algorithms, the new channel
model component (dense multipath) is taken into account. Furthermore, it is discussed how
the variance of the estimated path parameters can be estimated, and how the parameter esti-
mates are approximately distributed. Using the variance estimates, a new algorithm to deter-
mine the model order, i.e., the number of assessable propagation paths is proposed.

In the second part of this chapter some algorithms, which are important if subspace
based algorithms are applied to path parameter estimation are summarized. An algorithm for
economy size signal subspace estimation is described. In the new algorithm for signal sub-
space estimation, multidimensional smoothing is carried out implicitly thus significantly re-
ducing the memory requirements. Furthermore, the algorithm for economy size signal sub-
space estimation is extended to account also for the contribution of dense multipath compo-
nents, i.e., to handle coloured noise.

In Chapter 6 - Estimation of DMC Parameters, an approach to maximum likelihood
estimation of the DMC (Dense Multipath Components) parameters is described. An algorithm
based on iterative maximum likelihood is developed. Furthermore, it is shown that the direct
implementation of the iterative ‘maximum likelihood’ estimator leads to an algorithm, which
is computationally expensive. To resolve this problem an estimator is proposed, which em-
beds the parametric covariance matrix to estimate in a circulant matrix leading to a significant
reduction in computational complexity. Finally, the RIMAX algorithm for joint estimation of
all channel parameters is outlined.
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In Chapter 7 - Antenna Array Calibration, an algorithm for the estimation of cali-
bration matrices for uniform linear, rectangular, and circular arrays as well as circular uniform
beam arrays is described. The algorithm is a significant improvement in terms of computa-
tional complexity compared with existing algorithms.

In Chapter 8 — Summary and Conclusion, the key issues of this thesis are summa-
rised and its main conclusions are repeated. Finally, an overview of open issues related to
mobile radio channel parameter estimation, which are of further research interest, are dis-
cussed.

The parameter estimation algorithm developed within this work has been implemented
at Technische Universitit [lmenau at the Electronic Measurement Lab. It is also available as a
commercial product from MEDAV GmbH. The name of the parameter estimator “RIMAX”
has been proposed by MEDAV GmbH.

1.3 Notation

A capital boldfaced letter denotes a matrix, and a small boldfaced letter a vector. Furthermore,
A(b) denotes a matrix-valued function of the variable b, and a(b) denotes a vector valued
function of b . Unless otherwise noted, are all vectors column vectors. A boldfaced 1 denotes
a column vector with 1-elements. The superscripts (-)', (-)", and (-)" denotes transposition,
complex conjugate (Hermitian) transposition and element-wise complex conjugate, respec-
tively. The element i,k of a matrix is called with {A}, . The small letter j denotes the square
root of —1, i.e, j=+v—1. The operators R{-}, 3{}, and E{} denotes real part, imaginary
part, and the expectation operator, respectively. The symbol ” over a variable denotes its es-
timate. Additionally, important equations are marked with the symbol m. Appendix A, B, and
C contains frequently used symbols, acronyms, and often used relations. The symbol *_ de-
notes convolution over the variable (domain) x.



2 Radio Channel and System Model

The term “radio channel” does not have a clearly defined notion. It rather depends on the spe-
cific scientific area such as communications, wave propagation, Radar and so on what will be
describe using the term “radio channel”. Since the radio channel is a distributed system, a
critical issue is the definition of the input and the output ports of the system. In this work the
term “radio channel” will be used to describe the physical wave propagation between two
points in space. In other words, the antennas or antenna arrays do not belong to the radio
channel. This is mainly motivated by the fact that we can generally choose the antenna array
within certain limits, but not the radio channel. This is true for radio channel measurements
but also applies to mobile communications.

The focus of this chapter is the derivation of a mathematical framework to describe an
observation of the radio channel. The algebraic data model will be the basis for all radio chan-
nel parameter estimators derived throughout this work. There are two contradicting design
criteria for the data model. On one hand, it is desirable to make the data model as precise as
possible since we want to investigate the radio channel. On the other hand, every measure-
ment contains finite information. That means we have to choose a channel model that can be
estimated from the radio channel measurements. The amount of information contained in a
radio channel observation must be sufficient to determine the number of unknowns in the
model. This is a significant difference to radio channel modelling in general. If we have to
generate a realisation of the radio channel, e.g., for simulations, we can make the data model
arbitrarily precise.

A generally accepted model for the radio channel describes the channel as a superpo-
sition of a finite number of rays. This model has been used for a long time for ray-tracing
based radio channel simulations, but with the growing interest in the spatial structure of the
radio channel, it has been also applied to channel modelling and channel measurement. The
model is applicable for the synthesis of radio channel realisations. The only drawback is its
high complexity if wideband radio channels have to be synthesized. As we shall see later, this
model is not applicable as a data model for parameter estimation since it violates the afore-
mentioned requirement on model complexity. In [8] has been shown that the radio channel
contains concentrated propagation paths and so-called dense multipath components caused by
distributed diffuse scattering. The ray model is appropriate to model the contribution of the
concentrated (dominant) propagation paths. However, it is not suitable to model the contribu-
tion of the dense multipath components. In the next sections, we will derive an algebraic
model for the concentrated propagation paths based on the ray-model. We extend this model
with a new component describing the dense multipath components later on in this chapter.

2.1 Definition of a Ray

The smallest entity we will use to describe the radio channel is a ray. From ray-optical model-
ling it is well known that even complicated wave propagation phenomena in a continuum of
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reflecting, diffracting, and scattering objects can be approximately modelled by a superposi-
tion of discrete waves.

Figure 2-1: Definition of a ray

The method is based on geometric optics and the number of rays used determines the accu-
racy. The five parameters ¢,, 4., 7, ¢,, and 9, of a ray have the following meaning. If we
generate a spherical wave at the transmitter position, only the part of the wave moving in the
direction determined by the angle pair ¢,,%, will reach the receiver along this ray. We call
these two angles the transmit-azimuth and -elevation. Due to the geometrical length of the ray
and the propagation speeds within the mediums along the ray, the transmitted wave needs a
certain time to reach the receiver over this ray. The total travelling time is called the time-
delay of arrival (TDoA) z . Finally, the angles ¢,, 8, determine the azimuth and elevation of
the approaching wave reaching the receiver along this ray.

Observe that the angles at the transmitter and at the receiver are defined in the local
coordinate systems. There exist various advantages and disadvantages for the definition of the
angles in the local coordinate systems and a global coordinate system. From a radio channel
measurement point of view, the definition in the local Tx- and Rx-coordinate systems is pref-
erable. This is mainly due to the fact, that the angle information is gathered by the /local an-
tenna arrays at Tx and Rx. Consequently, the angles of the rays are related to the local coordi-
nate system. Furthermore, the ray parameters can always be projected into the global coordi-
nate system if the absolute positions of Tx and Rx are known. A discussion about coordinate
system definitions in radio channel modelling can be found in [5].

Z7 Zg|

Figure 2-2: Polarisation vectors on the transmit (left) and the receive site (right)
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Using the transmit- and receive-angle pairs we define the Pointing-vectors at the
transmitter and the receiver position, k,, and k,. Due to the energy transport, the Pointing-
vector points away from the transmitter and towards the receiver. Using the definitions of the
azimuth and elevation angles, as well as the Pointing-vectors, we define the two linear polar-
ised components e, ,e, and e, ,e, of the wave leaving the transmitter and of the wave
reaching the receiver, respectively. Figure 2-2 illustrates the definition of the linear polarised
wave components. The ray projects the two transmitted linear polarised components onto the
received linear polarised components.

2.2 Definition of a Propagation Path

The ray model derived in the previous section is suitable for the generation of a realisation of
the stochastic process radio channel in simulations. It is also useful to understand wave
propagation mechanisms. However, the ray model is not suitable to interpret the parameter
estimation results of a channel parameter estimator. This is due to the limited resolution of
any radio channel measurement system. We have to accept that the resolution of rays, which
are close together, is always limited. The reason is as already stated before that we gather only
finite information about the underlying physical phenomena while observing a system. There-
fore, we introduce the propagation path. A propagation path is a superposition of multiple
rays, which are close together, i.e., they from a cluster. Observe that we introduce the cluster
concept in the context of channel parameter estimation, as a concept to interpret the estima-
tion result. The parameterisation of a ray and a propagation path is identical. However, the ray
model cannot be used to explain the observed time variance of the path weight (ray weight) if
the structure of a cluster is changing. The time variance of the path weight of a propagation
path can reveal, whether it is a superposition of multiple rays (cf. [9]).

Cluster —
(group of scatterer)

A
Z7

Tx

Rx

S _——-

Figure 2-3: Definition of a propagation path

The parameters of a propagation path are the mean values of the parameters of the rays com-
bined in the propagation path. As discussed in the previous section, the radio channel can be
approximated by the superposition of multipath components. Let us suppose we transmit a
narrowband signal with the baseband representation x(7) over a single propagation path with
an electrical length of /, at a carrier frequency f,, using a transmitter with the impulse re-

sponse g, (1), and a receiver having a impulse response of g,(¢). Then'

' The symbol *, denotes convolution in the time domain.
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AW
W) =7, - gx(0)%, g, ()%, x(t-22)-¢”

is a baseband representation of the received signal y(¢), where ¢, denotes the velocity of
light and y, describes all effects which can be treated as frequency independent such as free
space loss, complex antenna gains, loss on scattering or reflection points, and so on. One
should note that the term narrowband refers to a system with a small relative bandwidth. A
radio system with a bandwidth of B, =100 MHz operating at a carrier frequency of
/. =5GHzis a narrowband system, and a radio system with a bandwidth of 1 GHz at a car-
rier frequency of 60 GHz is a narrowband system too. The equivalent frequency-domain rep-
resentation of the received signal y(t) is given by

Y(f)=X(f)7, Gy (f)-Gy, (f)-€ 5 P,

where 7 =~ denotes the time a signal needs for the transmission over the propagation path
)22 From a system theoretic point of view the term

!
2nf. L

H(f)=7," Gy, (f) Gy (f)-e 7 ee 0
i1s a frequency domain representation of a time invariant single-input single-output (SISO)
system.

If we assume that at least one, the transmitter, the receiver, a reflector or scatterer re-
lated to this propagation path is moving, the SISO system becomes time-variant. We assume
the effective speed v, of the moving objects related to the propagation path including trans-
mitter and receiver is constant within a short observation interval. Consequently, the time-
variant frequency response can be expressed for a small change in the electrical length /, by

71275(” “p)

H(f,0)=7, G (/)G (f)-e e : 2.1)

where 4, = f denotes the wavelength of the carrier-frequency. This model is an approxima-
tion 1ns0far as it neglects any change in the parameter 7, and assumes a constant complex
path-weight y . Hence, it is only valid as long as v -7 << ;_i’ where B, denotes the observa-
tion bandwidth of the measurement system We can derive a more common expression for

(2.1) if we introduce the Doppler-shift «, f; v, and merge the phase shift at time 7=0
into the complex path weight

! —j2nﬁ[£
Vp =V € )
yielding for (2.1) the form
H(f, t) — }/;) . GTf (f) GRf (f) e*j27r-f_1p . efj27r-ap.t . (22)

So far, we have derived a radio channel model for a SISO system with omni-
directional antennas at both the transmitter and the receiver site, now we extend this model to
directional antennas at both sides. To this end we introduce the complex beam pattern of the
transmit antenna

br(¢ra37af):[bTH(¢T’9Taf) bn((”r"%af)] eC™

and the receive antenna
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bR((DRa‘gRaf):[bRH((DRa‘gRaf) bRV((DR"gR’f)] eC",

where b, (97,9, 1), by (@, f) and by (9.9, f), by (@4, . f) are the complex fre-
quency dependent beam pattern for horizontal and vertical polarisation, respectively. Assum-
ing that the signal bandwidth is equal or smaller as the antenna bandwidth at f,, we can write
for the complex beam pattern of the transmit and the receive antenna

b, (0r,9)=b. (0,9, f.) and b, (@, 3 )=b(0z. . 1.).

Using these definitions the single-path SISO model (2.2) can be extended to directional an-
tennas at both link ends

H(f 0,9, 05, %,t)= Gy, (f)-b(0g. 9, ) r, b,(p,,9.) -G, (f).eszn.f.rp.e—jzn.ap.t . (23)

where the path weight matrix I', contains the four polarimetric transmission coefficients

F :|:7/HH,p yVH’p:|€CZX2.

P
Yavp Ywp

Since the single-path SISO model is a linear model, it can be easily extended to the multipath
SISO model using the superposition principle. For P propagation paths the multipath SISO
radio channel model is given by

H(f,l‘) = GR_/. (f)'Gr, (f).z_:{bR(goR,p’lgR,p). Fp 'bT((DT,p,,QT’p )T _e*j2n-f_z—p ) e*jz"'ap't } (2.4)

If we employ multiple antennas at both sides of the radio link, and use a multi-channel trans-
mitter as well as a multi-channel receiver, to feed the transmit antennas and to receive multi-
ple signals, we yield a MIMO communication system. We will denote the number of transmit
antenna array ports of such a MIMO system with M, and the number of the receive array
ports with M . The MIMO channel is the entirety of all M, x M, SISO channels. The exten-
sion of the SISO radio channel model to the MIMO radio channel model is straightforward.
To this end, let us introduce the matrix-valued functions

bT,l(@TﬂgT)
B, (¢, 9)= , R*CYr2, (2.5)
b, (@, 9;)
and
bR,l((/’RalgR)
B, (0, %)= : , R*> CMw2, (2.6)

bR,MR ((pR e )

B,(¢;,9. ), and B,(¢,,3,) describe the far field beam pattern of all antenna array ports at
the transmit array and the receive array, respectively. Using the definitions (2.5) and (2.6) in
the model for the SISO channel (2.4) yields an expression for the MIMO radio channel
H(f,t)e CYe¥r (2.7).

z T -i2n-f-r —2may-t
H(f’t)=GR,~(f)'GT/»(f)'Z{BR((DR,p’lgR,p).rp'BT((DT,p’lgT,p) e e ’ } 2.7

p=1
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There exist two additional systems namely the SIMO radio system (single-input multiple-
output = SIMO) and the MISO radio system (multiple-input single-output = MISO). From a
systematic point of view the SISO, the SIMO, and the MISO radio system are only special
MIMO systems. For example, one can always reduce the channel model for the MIMO sys-
tem (2.7) to the channel model hg,,, ( f, t) e C"*! of a SIMO system yielding

P

hSIMO(f’t): GR, (f)'GT, (f).Z{BR(gDR,p’SR,p).Fp 'br(¢r,p’gr,p)T 'eijzn.f.rp'eijzmp't}

p=l

or equivalently to the model h(f,z)e C"™" of a MISO system

P o |
hM]SO(f,t): Z {bR((/)R P’ R p) Fp 'BT((DT,p"gT,p)T ‘C_JZMT”-C_szpht}.

p=l

23 Frequency and Temporal Domain Sampling

To use the MIMO radio channel model, derived in Section 2.2, as a model for radio channel
parameter estimation or as a channel model for digital communications, we have to sample
the continuous model (2.4) in the temporal as well as in the frequency domain. To this end,
we introduce the sampling interval in the frequency domain f;, and in the temporal do-
main ¢,. Equidistant frequency domain sampling of (2 7) at M, frequency points ylelds a set
of M, matrices H(m, - f,,t)e C"*" where m, = -4~

s
broadband MIMO radio channel model can be expressed in matrlx form as follows

H-22 o - 0

H,(f)= 0 0 g CMMaM 1), 2.8)

0 0 H(+ 22 7 1)

In the same way temporal domain sampling of Hf(t) at M, time instances yields a set of
matrices |

H, (m,-t))e ¢ Wt Mtz ),

It should be observed that (2.8) covers a bandwidth of B, = f;-M ,, and also that the set of
M, matrices H, (mt -to) represent the radio channel within the time interval 7, =M, -¢, .

2.3.1 Expressions for the MIMO-Channel

In the previous section, we have shown that the sampled radio channel model can be ex-
pressed at one time instance using a block diagonal matrix (2.8). To derive a more explicit
expression let us introduce some matrices containing basic elements of the radio channel
model. First we define the parameter vectors containing the model parameters summarised in
Table 2-1.

Using those parameter vectors we define four matrix valued functions,
bT,,,l( T,1° ‘9T,1) bT,,,l( T.P> lgr,P)
B, (¢,9,)= : : , RP2 s M (2.9)
bT,, M, ((/’T,l 5 ‘9T,1) e bT,, My ((/’T,P’ ’9T,P)
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Table 2-1: Definition of Propagation Path Parameter Vectors

Angles at the transmitter site: . "
¢y = [§0T,1 ¢T,P] , 9, = [‘9T,1 ST,P]
Angles at the receiver site: . N
Qr = [(/)R,l e (DR,P] > 9R = [‘9R,1 e l9}3,1)]
Time delays: .
t=[r, 7]
Doppler-shifts: T
a=la, - @]
Complex path weights: .
Yun = [7HH,1 e 7HH,P]
Yoy = [7/HV,1 7/HV,P]T
You = [7VH,1 7/VH,P]T
Yoy = [7VV,1 7VV,P]T
| bTV )1 ((pr,l ) I9T,1 ) o bTV 1 ((pT,Pa ‘9T,P)
B, (¢,.9;)= : : , RP2 s M (2.10)
_bTV My ((pr,l > ‘9T,1 ) o bTV My (¢T,Pa ‘97,13)
I bR,,,] (¢R,1a l9}3,1) o bR,,,l((pR,Pa ‘9R,P) |
B, (0:.9;)= : : . RP s CMeP L (21)
_bR,, M, (¢’R,1 > '9R,1) e bR,, My (¢’R,Ps Sep )_
and
I bRV ,1((0R,1s l91?,1) bRV ,1(¢R,Pa '9R,P) |
B, (¢;.9;)= : : , RP2 s CMeP (2.12)
bRV M, (¢R,1 5 l91%,1) e bRV M, (¢’R,P e p )_

to describe the mapping of the parameter vectors ¢@,, 9, to the transmit array responses as
well as the mapping of the parameter vectors ¢@,, 3, to the receive array responses for verti-
cal and horizontal polarisation. Using (2.9) - (2.12) in representation (2.7) yields for f =0

and =0

(2.13)
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For notational convenience let us drop the dependency of the matrices B from the respective
parameters @, 9 . To express the frequency dependence of (2.7) we define another fundamen-
tal matrlx valued function A ( ) mapping the time delays 7 to the related complex exponen-
tials ¢ ™" in the frequency domain

eszn(—@}fa»n

eszn(fw}fa-rp

A (1)= 5 : e (2.14)

e—jzn(+$)-fb-n e—jln(+@}fm

Again, we drop the dependence of A_(t) on T and use the abbreviation A . Furthermore, let
us introduce two diagonal matrices

G, = diag{[GTf (—# fo) Gy (+$ fo)} e CMr (2.15)

and

GR/:diag{[GR/(—M_l ) GRf_(+$fo):} e CMrMy (2.16)

containing the sampled frequency responses of the transmitter and the receiver respectively.
Using the definitions (2.14) - (2.16) in the broadband MIMO radio channel model (2.8) yields
for time ¢ =0 the expression

H,(0)= (G ®B,

H
(G ®B, ))I®dlag{7HV d1ag{veC{AI .(GT ®BTH)T+ (2.17)

)
(G ®B, | (I®diagly,,})- dlag{vec{Af }}-(GT/ ®B, )T +

For the time being let us ignore the time dependence of H , (¢). As already discussed H FREE:!
sparse matrix. Since only the non-zero elements of H, are of interest, we choose a different
representation. We sort the elements of the M, block matrices H(mf - fo)e CYeMr into a
vector

= | e crtmitr 2.18
SRl RIS FVIRTY TPSVRIN FVRPSr ARVORI JVRNVEIRTY AR VEPRINS AVRNVAN IN= , (2.18)

2= [0(5)5), - mlefe)n), ]

is a vector containing all frequency domain samples for one transmit port - receive port com-
bination of the MIMO system. Using the elementary functions A, B, ,B; , and B, .B:
the vector defined in (2.18) can be calculated from the model parameters as follows>

where

* Observe the following properties of the VeC{O} operator, the Schur o and the Khatri-Rao ¢ product:
vec{B-diag{c}- AT}= (A()B)-c , (DOBOa ) c= (DOB)-(aoc), B-dlag{aoc}- = B-dlag{ }-dlag{ }-DT
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=(B,, 0B, 9G; A.,)) v, + (B, 0B, 0(Gy -A, )7, +
(B, 0B, 0(G; A, ) v, +(B, 0B, 9(G, -A )y, ,

where Gy s, = =G, -G % is a diagonal matrix and ¢ denotes the Khatri-Rao product (column
wise Kronecker product) Equation (2.19) can be rewritten to

(2.19)

§= (I®GSf- ) {( ,OBR,,OA ) ¥ uu +(BT,,<>BR,,<>AT)"YHV +
(BT,, <>BR,, OAr)' Yyu t (BT,, OBRVOAT). Yy }

One should observe, that the ordering of the elements in s is arbitrary, we can as well define a

vector
T
T
;- Fl.

VCC{ (

which may be written as

) el (e

B ((Gsf' A )OBT”OBR" )'y”” +((G5f A, )OBT,OBR )'YHV + (2.20)
(G -A.)oB, 0B, )v,, +(G; -A, 0B, 0B, )1, . '

This result can actually be generalised, a reordering of the basis functions A, B, ,B; , and
B, B, lead to a permutation of the elements in s only. Equations (2.19), (2.20) motivate
the definition of another basis function

B, (1)=Gy, A (7). (2.21)

Again, we drop the dependency of B, (t) on the parameter vector T, writing only B ;- Using
the definition (2.21) in equation (2.19) yields

s=(B, 0B, 0B,)-v,, +(B, 0B, 0B )-y,, +(B, 0B, OB,)-y,, +(B, 0B, OB, )-y,, .

(2.22)
To complete the MIMO system model, we introduce the matrix valued function
e—j2n(—M{])t0~al . e—j2n(—#)t0~ap
A, (a)= : : e CM P, (2.23)
ol e | el e

mapping the Doppler-shifts a to the phase-shifts of the path weights at each time instance
m, t,,¥m, ===+ For the sake of completeness, we furthermore introduce the re-

lated matrix valued function
B,(0)=G, A (a). (2.24)
One should note that if the transmitter as well as the receiver is a time invariant system what

is usually the case, the matrix G, is an 1dent1ty matrixG, =1 e R"*" | From (2.7) we can

deduce that for time m, -¢,,Vm, = —M +— the expression for the MIMO system
0 p y

S(mt 'to) = (BTH <>BRH OB/‘)' (Z(mt )oY 1y )+ (BTH <>BR,, <>Bf ) (Z(mt)o 'YHV)+
(BTV <>BR,, OBf)' (z(m,)oy,y) + (BTV <>BRV OBf)' (z(m,)oy,, ),
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with
j2 t j2 t T Px1
Z(Wl[): [ e—J Tm,tya |, e—J Tm, o'aP] eC o
holds. Observing, that A, and all vectors z(m,), m, =—"2=,... .+ are related in the fol-
lowing way

(- 57)

z(-41)
we extend the MIMO system model (2.22) to
s=(B, 0B, OB 0B,)-y,, +(B, 0B, OB 0B, )-y,, + .
(BTVOBR,,OBfOBz)"YVH +(BT,,<>BR,,<>B1'<>Bz)"YVV . .

If the antenna arrays at both link ends can only radiate and receive waves with horizontal po-
larisation, the MIMO system model (2.25) reduces to

Sun =B OB, OB OB, -y, . (2.26)

If the transmit antenna array radiates vertical polarised waves only, we have to reduce the
MIMO system model (2.25) to

S,x =B, OB, OB 0B, -y, +B, OB, 0B OB,-y,,, Xe[H V]. (2.27)

Noticing that equation (2.25) describes essentially the mapping of the parameter vectors T,
Ors 30 Opy S5y O, Yoys Yirs Yoy and v, to s, we define the parameter vector

T
Bsp = [aT T’ 40; ‘91? (013 ‘913 ER{’Y}JH} S{YIIH} ER{'YLV} S{YIIV} ER{Y;H} S{Y;H} iR{Y;V} S{Y;V }]
(2.28)

and use hereinafter the notation
S((') ): (BTH OB, 9B OB, ) Vi T (BTH OB, OB 0B, ) Yy +

(B, 0B, OB, 0B,)-v,, +(B, 0B, 0B 0B )y,

sp

(2.29)

to state explicitly the dependence of s on the model parameters 0,,. The data model for the
concentrated propagation paths can also be expressed as

Y un

50,)=[B, 0B, OB,0B, B, OB, 0B,0B, B, 0B, OB,0B, B, 0B, OB,0B | "

7

0 47%
(2.30)

without loss of generality. We can conclude that the structure of the data model has always
the same structure. I.e. the expressions (2.25), (2.26), (2.27), (2.29) fit into the same model

? Observe the following properties of the Schur o and the Khatri-Rao ¢ product: (DOBOaT)- c=(DOB)-(acc)
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s(0,,)=B(n)-7. (2.31)
with B(p) e C*"**" and y e C*™

The matrix valued function B(p) is a description of the structure of the radio channel.
Hence, we denote the nonlinear parameters p also as structural parameters. The coefficients
v are linear weights in the model. We will refer to them also as linear parameters. In the fol-
lowing, we use expression (2.31) as a representative for all models of the concentrated propa-
gation paths if possible.

24 Data Models for Antenna Arrays

The structure of the data model expressing the beam pattern of the elements of an antenna
array restricts the applicable parameter estimation algorithms. In the following section, gen-
eral concepts to model the beam patterns of antenna arrays as a function of the angle (azimuth
and elevation) of incoming waves are summarised. Unless noted otherwise, we assume plane
waves. In principle, incoming waves can be treated as plane waves if the approximation error
of the antenna array model, due to the wave curvature, is smaller than other errors and uncer-
tainties of the channel model as a whole.

From a parameter estimation point of view, a data model for antenna arrays should
have a low computational complexity. The data model should provide valid results for the
complete angular domain, 1.e., it should express the beam pattern as a continuous function of
azimuth and elevation. Finally, the data model should be continuously differentiable. This is a
prerequisite for the computation of the Cramér-Rao lower bound of channel model parame-
ters, or for the application of gradient-based parameter estimation algorithms.

One physical antenna element may have two ports to measure both horizontal and ver-
tical polarisations. We will use the term array element for the physical antenna element and
the term antenna element port for the electrical antenna element. The array response is a two
dimensional function B((o, 9) of the variables ¢ -azimuth and 9 -elevation. Furthermore, if
we excite an antenna array port we generate two field components in the far field, namely a
horizontal e, and vertical e, polarised component. Since an antenna array is a passive sys-
tem, we can use the same function to describe the array response to a far field source with a
horizontal as well as a vertical polarised component. There exist three different approaches to
describe the relationship between the array response (beam pattern, array manifold) and a far
field point source.

2.4.1 Stored Beam-Pattern

A straightforward way to model an antenna array response to a far field source is to measure
the directional characteristics of the antenna array in an anechoic chamber and to store the
data. This model has two advantages, is its simple and it can be used to describe all available
antenna arrays. However, this model has also some drawbacks. The function B(¢,9) is con-
tinuous in the parameters ¢, and 4, but we can only store a sampled version of B(¢,$). The
storage of the sampled array responses requires a large amount of memory and if we need an
array response for an angle pair that has not been measured, we have to interpolate it using
some interpolation algorithm on the stored data. Furthermore, since the array response is not
expressed in an algebraic form the derivatives with respect to the parameters ¢ and 9

ZB(p,9),and 5B(9,9),
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necessary for some parameter estimation algorithms (see Section 5.2) and for the calculation
of the Cramér-Rao lower bound (cf. Section 4.1), cannot be calculated directly from the stored
data.

2.4.2  Array Response Factorisation

The second class of antenna array models decompose the array beam pattern b, (¢, 9) into
an element beam pattern shared by all elements and a phase vector a_,, (¢, 3) relating the
position of the individual elements within the array to the phases of the array response. The
model describes the complete array response of an ideal antenna array by

bideal ((0, l9) = astruct ((0, 19) ’ bcam ((0, 19) . (232)

Since real antenna arrays are subjected to errors such as mutual antenna element coupling, we
introduce a square matrix K and approximate the real antenna array response with

breal ((0, l9) = K ’ astruct ((0, '9) ’ bcam ((0, 9) * (233)

The most prominent representative belonging to this class of array models is the uni-
form linear array (ULA) model. The phase vector for an ULA row, having element spacing
d.,1s given by

arow(ﬂ(l)): aULA (ILI(I)) = [eﬂ-(@)ﬂ(l) te eij(%)ﬂm ]T . (234)

The spatial frequency ") is defined as 4" = 21% cos(¢)sin(9). The phase vector for a ULA
column having element spacing d, can be expressed equivalently with

T
awl(ﬂ<2>)=aULA(ﬂ<z>):[eﬂ(‘”%“)ﬂ‘” e—j(@)u‘”] , (2.35)

where 4® = 2n%sin(l9) is again the related spatial frequency. Since a uniform rectangular
array (URA), can be understood as a set of uniform linear arrays in a row or a column the
related phase vector can be easily derived from (2.34) and (2.35) yielding

a,, (1", u?)=a,,(u)®a,, (). (2.36)

Using (2.36) in (2.33) we yield an approximation of the real array response for an uniform
rectangular array as

bum ((0, 19) = K ’ aura ((0, '9) ’ bcom ((0, l9) *

Table 2-1 gives an overview of antenna arrays whose array responses can be approximated
using the factorisation approach (2.33) and the related expressions.



18

Radio Channel and System Model

Table 2-2: Planar and circular antenna architectures

Uniform Linear Array (ULA)

ULA — Row: w1V =2n% cos(p)sin(H)

M-l M-1 u
o )| 0]

ULA-Column: ¢ =2rn%sin(9)

((Mp-1) (2) [(Mp-1) (2) i
acol (lu(Z) ) = [eﬂ(T)ﬂ o eiJ(T)ﬂ ]

breal ((0, l9) = K ’ astruct ((0, '9) ’ bcam ((0, '9)

w1 =215 cos(p)sin(P), 4 =2n%sin(9)

]

()= e

[t Lt ]
a,, (1", u?)=a,,(u?)®a,,(u")
bum ((0, 19) = K ' aura ((0, l9) : bcom ((0, l9)

)
acol (ILI(Z)
)

Circular Uniform Beam Array (CUBA)

0, =V,
a,(o,)= [1 e ... eij(N*l)q’”]T
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2.4.3  Effective Aperture Distribution Function

The third model is related to the first model. In general we restrict the azimuth angle to the
interval [—-m,+7) and the elevation angle to the interval [0,x]. Although redundant we can,
without loss of generality, extend the beam pattern of an arbitrary antenna to cover the inter-
val [-m,+7) in azimuth and elevation. One has simply to map the function from the elevation
range [0,7], to the range (—m,0). Consequently, we yield a 2-dimensional function that is
under mild restrictions periodic in ¢ and 9 with period 27 in both dimensions. Hence, the
beam pattern can be expressed by a 2-dimensional complex Fourier-series expansion. We will
refer to this 2-dimensional Fourier series as the effective aperture distribution function
(EADF).

The expression, relating the EADF and the beam pattern of an antenna array port for
horizontal polarisation is

bH ((oalg)z a(¢)T .GHZD -a(,g) (2.37)

with the phase vectors
a(p)= [efj'(ﬂ%)(p eﬂ%”’r eCM, (2.38)
a(9)= [efj'(ﬁ%)g efj'(%)gr e CM, (2.39)

Here, G,,,, € C"*" denotes the EADF for horizontal polarisation. Since expression (2.37) is
only appropriate to describe a single array port, we apply the vector operator yielding

by, ((P, ‘9) = Vec{a(go)T ‘Gyape a(‘g)}
= (a(9)" ®alp)' ) vec(Gn} (2.40)
=vec{G | -(a(9)®a(p))
Now collecting the EADFs of all antenna array ports for horizontal polarisation in the matrix
V€C{GH2D’1 }T
G, = : e CMMM (2.41)

T
Vec{ GHZD,M}

the vector valued function mapping the azimuth and elevation angles to the antenna array re-
sponse for horizontal polarisation is given by

b,(0,9)=G, -(a($)®a(p), R’ C". (2.42)

The mapping of the azimuth and the elevation angle to the antenna array response for vertical
polarisation can be expressed in the same fashion using

b, (¢.9)=G, -(a(9)®a(p)), R*>C" (2.43)

where the matrix

Vec{GVZD,1 }T
G, =| i |ecrw (2.44)
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contains all EADFs of the antenna array ports for vertical polarisation. One should observe
that the redundancy caused by the extension of the elevation angle range from [0,7] to
[-7,+7) can be exploited to reduce the operations in numerical implementations.

2.4.4  Separating Radio Channel Model and Antenna Array Model

It is often discussed whether or not the influence of the antenna arrays used throughout chan-
nel sounding measurements can be separated from the observed radio channel. In this section
we will investigate whether or not this can be accomplished for the data model derived so far.
To this end, we introduce four matrices containing the EADFs (2.41), (2.44) of the transmit
antenna array and the receive antenna array for horizontal and vertical polarisation:

GTH c CMTXNI,TNZ,T , GT, c CMTXNI,TNZ,T , (245)
and
G, eC"" " and G, e CMoMater, (2.46)

Furthermore, we define four matrix valued functions to express the mapping of all angles @,
9,,and @,, 9, toall P vectors a((pT’p), a(&T ) and a(goRp) a(SR’p):

Awr (PT [a( Tl) ) a((pr,P)]ECNLTXP’ Asr( [a( Tl) - a(‘gr,P)]ECNZ‘TXPa (2.47)

and

A(pR ((PR ) = [a(§”R,1) a((”R,P )] e M’ 5 ASR (SR ) = [a('gR,l) a(lgR,P )] e Ch, (2.48)

Now we can represent the mapping of the angles ¢,, 9, of all P propagation paths at the
transmitter site to the transmit antenna array responses using the EADF with

BTH ((Pra S, ) = GTH ' (Asr (ST ) OAq;T ((PT )l R”% s CY7 (2.49)

B, (0,-9,)=G, -(&, (8,)0A, (g,)) R (2.50)

The mapping of the angles ¢,, 8, of all P propagation paths at the receiver site to the re-
ceive antenna array responses can be expressed in the same way as

BRH ((PR’SR): GRH '(ASR (SR)OAgoR ((PR )) R7% s CHMe (2.51)

B, (0:,9:)=G, -(A, (8,)0A, (9,)} R™ > Y. (2.52)

Again, let us use the abbreviations A, , A, for the functions defined in (2.47), and A
A, for the functions defined in (2. 48) Us1ng the relations (2.49) to (2.52) in the general ex-
press1on for the MIMO system model (2.29) yields

(0,,)=(Gy, (4,04, )0lGy, -(a,,00
(G, (8,08, )ole,, -(a,0a,,
((GTV'(A9T<>A¢T ))0( Gy, ( 0A,,
(6, (a0, oG, -(a,,0n, ))<>(G AJoA

Now we are finally able to decompose the MIMO system model into a radio channel model
and a transmission or measurement system model, respectively

(2.53)
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s0,)=  Gu (A, 0A, 0A, 0A, OA OA, )y, +
G, (A, 0A, 0A, 0A, OA OA, )y, +
G, (A, 0A, 0A, 0A, OA OA,) -y, + (2.54)
Gy, (A, 0A, 0A, OA, OA OA,)-7,,
measurment system model radio channel model

using the following definitions for the radio channel measurement system:

Gy =G, ®G, ®G, ®L, G, =G, ®G, ®G ®I,

and

Gy =Gy, OG,, ®Gs,/ ®L, Gy =Gy, QG,, ®GS/ ®r.

Similarly, we can decompose expression (2.17) into a radio channel model and a MIMO
transmission system model. To this end, we define two system matrices describing the MIMO
transmission system separately at both link ends. For the transmitter we define the system
matrices

G,, =G, ®G, ). G, =(G, ®G, ) (2.55)

T

using (2.15), (2.45). In addition, we express the system matrices for the receiver
G,, =G, ®G, ). G, =[G, ®G, ). (2.56)

using (2.16), (2.46). All four matrices (2.55), (2.56) together describe the narrow band MIMO
transmission system entirely. Using them in the MIMO system model (2.17) yield the repre-
sentation for horizontal polarisation

HHHS = GR,,, ‘Hyy - G;,,, >

Receiver Channel Transmitter

where
H,, =([[®(4,0A, )-(I®diagly,,}) diaglvec{AT}}-(1® (A, 04, )J (2.57)
W frequency independent time-delay W

path weights

denotes the related radio channel matrix for horizontal-horizontal polarisation. The other three
channel matrices for the remaining polarisation combinations can be easily derived by replac-
ing the path weights as well as the system matrices G Ry and GT,,, . Combining the transmit-
ter system matrices (2.55) to ' ”

G, = [Grm GT/V ]e C(Mf'MT Ko
and the receiver system matrices (2.56) to
GR =[GR,H GRW]GC(Mf'MRMZ'N/’XNR)

yields an representation for the complete polarimetric MIMO system model

H(,)=G,-H@,)G] (2.58)
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where

HHH HVH
H(0)= {H H } (2.59)

denotes the polarimetric narrow band radio channel model. Using representation (2.58) one
can evaluate the influence of the antenna arrays, applied at the transmitter and the receiver, as
well as the influence of the radio channel onto the performance of an arbitrary MIMO trans-
mission system independently from each other.

Both, expression s(ﬂsp) (2.54) and expression H(GSP) (2.59), are valid representations
of the parametric radio channel. In the context of parameter estimation, the measured radio
channel is an observation of the system “radio channel” and the propagation path parameters
0, are hidden variables. It primarily depends on the application whether equation (2.59) or
equation (2.54) is the better choice to formulate a problem. The input-output representation
(2.59) is mainly useful for the analysis of communication systems, whereas (2.54), i.e., the

mapping of the parameters 0, to the vector s
0>s,

is the best choice for the formulation of radio channel parameter estimation problems. One
obvious advantage of equation (2.54) from a parameter estimation point of view is its regular
structure. To conclude, the algebraic model for the observed concentrated propagation paths
can be separated into a component describing the radio channel and a component describing
the system used to observe the channel. However, this decomposition requires that the ob-
served radio channel can be approximated using concentrated propagation paths only. This
does not hold in practice since the radio propagation is partially carried by distributed diffuse
scattering as mentioned before. Consequently, the antenna influence can only be removed
from channel sounding measurements with respect to the concentrated propagation paths.

2.4.5 Definition of Data- and Parameter-Dimensions

Beside the two algebraic forms discussed above, which express the radio channel as a vector-
or matrix-valued function of the propagation path parameters, there exist another instructive
representation. We express the sampled radio channel by means of a 4-dimensional data array.
Here, the Khatri-Rao product in equation (2.25) motivates the four dimensions. The vector-
valued function s(GSP) and the 4-dimensional data array are related in the following way":
1. Reshape the M, -M, -M,-M, vector s(ﬂsp) into a matrix S](HSP) of size
M, xM,-M,-M,
2. Reshape the matrix S](HSP) into a three-dimensional data array SZ(GSP) having size
M, xM xM,-M;,
3. Reshape the matrix Sz(ﬂsp) into a four-dimensional data array S3(95p) having size
M, xM  xMxM;.
Every data dimension of S3(95p) corresponds to a domain where the entity transmit antenna
array, radio channel, and receive antenna array has been sampled. The four domains are time,
frequency, receive antenna array port, and transmit antenna array port. The representation
Sfﬂsp) is only a different way to understand the sampled radio channel s(ﬂsp). It is reason-
able to say, that the observation of the radio channel s(GSP) has four data dimensions. Ob-
serve, that the term data dimensions refers clearly not to the algebraic dimensionality of

s(Gsp ), which is one as it is a vector.

* In MatLab® or Octave the mapping of s to S; is carried out by means of: S3=reshape(s,[Mt Mf MR MT]) and
the mapping of S; to s can be done by means of s=S3(:).
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In many practical cases, one observes the radio channel with a measurement system,
which is only able to measure some of the four data dimensions. Hence, we introduce the
variable R, to count the measured data dimensions. Sometimes the ports of an antenna array
can be further separated into two independent data dimensions. An example is the ideal URA.
We can separate the antenna array ports of the ideal URA into a column- and row-element
domain. Consequently the maximum number of data domains is R, =6. The range of data
domains is

1<R, <6.

Closely related to the number of data domains is the dimensionality of the parameter
domains. From a signal-processing point of view, the number of free parameters determines
the dimensionality of the parameter estimation problem. That means the length of the parame-
ter vector 0, (2.28) gives the dimensionality of the parameter estimation problem. However,
in the context of radio-channel parameter estimation the term multi-dimensional is often used
in a different way. Here, the dimensionality of the problem determines the number of free
structural (nonlinear) parameters of a single propagation path. The structural parameters are
time-delay, Doppler-shift, receive-azimuth and -elevation, and transmit-azimuth and -
elevation. To be precise, the dimensionality of the parameter estimation problem in the con-
text of channel parameter estimation refers to the number of structural parameter domains.
Hence, the estimation of all structural parameters is referred to as a 6-dimensional parameter
estimation problem. Since the number of parameter dimensions can vary, we introduce the
model parameter R, describing the number of structural parameters of a single propagation
path, which can be determined from a given channel sounding measurement.

The structure of the radio channel model (2.25) implies that the data dimensions (data-
domains) and the parameter dimensions (domains of structural parameter) are closely related.
The frequency-domain contains the information about the time-delay, the time-domain carries
the information about the Doppler-shifts, and the transmit- and receive-port domains contain
the information about the transmit- and receive-angles (azimuth and elevation), respectively.
Therefore, the following relation between the number of data dimensions and the number of
parameter dimensions

R, <R,

holds. The valid range of the parameter dimensions is the same as the range of data dimen-
sions, i.e., the range is

<R, <6.

2.5 Dense Multipath Components

On every crossing between two propagation media, where the relative electric or magnetic
permeability changes, a propagating wave is subdivided into parts. A part of the waves travels
into the other medium, and another part is reflected or scattered. The probability that a scat-
tered wave reaches the receiver is generally higher than the probability that a reflected wave
reaches it. This is because a reflection requires a sufficiently large object with a reflecting
surface, and if the reflection occurs it can only reach the receiver if the angles of incidence
and the angle of reflection are appropriate to reach the next reflector or the receive antenna.
Altogether the amount of specular (discrete/concentrated) propagation paths in a scenario is
relatively small but their contribution to the total power transferred from the transmit antenna
to the receive antenna is usually dominating the transmission. Although the contribution to the
received power of a single scattered wave is small compared to the contribution of a reflected
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wave, the contribution of all scattered waves together reaching the receiver is significant due
to their large number. There exist scenarios where the dense multipath components dominate
the transmission. One example is the industry scenario. Hence, we cannot ignore the contribu-
tion of the distributed scattering to the radio transmission, if we want to model the radio
channel and estimate the model parameters from channel observations. This section is devoted
to the parametric modelling of the dense multipath components (DMC) of the observed radio
channel in the time-delay domain.

2.5.1 Model for Dense Multipath Components in the Time Delay Domain

Due to the finite measurement apertures used to observe the radio channel, it is not possible to
resolve the large amount of scattered waves reaching the receiver. We can only resolve them
within the Rayleigh-resolution determined by the apertures used during the measurements.
The waves caused by distributed diffuse scattering reaching the receiver within a time inter-
val, which is the reciprocal of the measurement bandwidth cannot be resolved. The power of
the individual components reaching the receiver within this time interval is largely determined
by the free space attenuation, which is approximately constant over this interval. Therefore,
we can assume that one complex delay-bin of the impulse response representing an observed
time interval of ﬁ contains the superposition of some “propagation paths” caused by dis-
tributed scattering having approximately the same power. However, the phase of this “propa-
gation paths” is due to the large difference in terms of the wavelength between their path
lengths, approximately uniformly distributed within the interval. To clarify this, let us discuss
an example. We assume the radio channel is observed with a bandwidth of 120MHz at a car-
rier frequency of 5.2GHz. Then a single delay-bin in the impulse-response represents the su-
perposition of all propagation paths with an electrical length difference of approximately
2.5m. Since the wavelength at 5.2GHz is approximately 5.77cm, this interval represents
propagation paths with an electrical length difference of up to 43 wavelengths.

Based on the central limit theorem we can assume that one complex delay-bin in the
impulse response can be modelled as a complex circular normal distribution with zero mean,
provided the relative bandwidth of the measurements is small B, << f,. Here (complex) cir-
cular Normal (Gaussian) distributed means that the real and imaginary parts of a complex
random variable are Normal distributed. The real part and the imaginary part are realizations
of two independent processes and have the same variance. What we need furthermore, is a
parametric model for the statistics of all delay-bins of the observed impulse response. To this
end let us discuss a continuous model, which has been used to describe the power delay pro-
file of the radio channel by various researchers [10], [11], [12]. The model is based on the
observation that the power delay profile has an exponential decay over the time-delay and a
base delay which is of course related to the distance between the transmit and the receive an-
tenna. Except for the infinite bandwidth assumed, the proposed model (2.60) describes the
power delay profile or more precisely the variance as a function of the time-delay of the dense
multipath components reasonably well. The bandwidth B, is related to the coherence band-
width of the dense multipath components according to B, = %B ., and o, denotes the maxi-
mum variance (power).

0 T<7,
\yh(r):E{|h(r)|2}: o+ =1 (2.60)
a,-e P s

The related power spectrum density, i.e., the Fourier-transform of (2.60) is
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a .
Y, (Af)= e P 2.61
W)= @.61)
where [, = g—: = Mf_? 7 1s the normalized coherence bandwidth of the DMC.

Table 2-3: Parameter Definitions for the Dense Multipath Components

B, - coherence bandwidth of the diffuse components

) - base TDoA of the diffuse components

B, =t B - coherence bandwidth of the diffuse components normalised to the
B Mk measurement bandwidth

M, - number of frequency points measured within the measurement band-

width

r, =% - base TDoA of the diffuse components normalised to the total length
" of the observed impulse-response

a, - power of the diffuse components at 7 =7,

B, = V3 B, - 3dB coherence bandwidth of the diffuse components

The model (2.60) for the dense multipath components in the delay domain is incomplete inso-
far as it neglects the covariance between components at different time-delays. Let us assume
the Fourier-transform of the channel impulse response 4(7), i.e., channel transfer function,
existand is H(f)

h(z)o—e H(f),

where the symbol o—e denotes the Fourier integral transformation. Then assuming that
E{h(z,)h(z,)} =0, Vr,#7, the covariance function of the channel impulse response
w,,(7,,7,) and the covariance function of the channel transfer function ¥, (f;, f,) for infi-
nite bandwidth are related in the following way

Viu(@.7,)  =v,(5,)-8(z, —7,) =E{h(z,)-h(z,)'}

Y

L
VoS i) =W (fi- ) =E{H(S)-H(A).

Hence, the function ¥, (/) (2.61) describes a spectral correlation between components of the
channel transfer function having a distance of f, — f,. In other words, the process 4(7) is sta-
tionary in the frequency domain and we can use the WSSUS concept outlined in [13] in this
particular domain.

=y, (z,)-e (2.62)

Since we observe the radio channel usually with a limited bandwidth B, we introduce
the frequency response of the measurement system as G( f ) and the related impulse response

g(7).
Using the frequency response G( f ) in (2.62) yields
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¥ e (1 12) =¥ (fi= 1) G(£)-G(fy) =E{H()G()-H(£,) G(f,)'}

5!
,‘1%72 = (y,(5,)- € 7. G(f)*.. g(r,)’
V(72 =y (5)-0(n — )% g%, g(e) =E{hr)h(5) 5. gr)x. g(n.)
(2.63)

where *_and *_ denotes convolution over 7, and 7, , respectively. If we measure the chan-
nel using a measurement system with a bandwidth of B, and a rectangular frequency re-
sponse the covariance function of the observed channel impulse response becomes’

\thgg (Tl > TZ) = \lex (Tl T ) *r, Si(n BmTI ) *12 Si(n BmTZ ) . (264)

One should observe that the convolution with the sinc-function in equation (2.64) guaranties
that our assumption of a circular complex normal distribution of a single delay-bin is valid.

Equation (2.63) reveals that the often-used time domain representation (2.60) is not a
valid representation for the distribution of the dense multipath components for real measure-
ments, since it ignores the effect of bandwidth limitations of real systems. The frequency do-
main representation (2.61) in conjunction with (2.63) is a better representation for the second
order statistics of the DMC.

Figure 2-4 shows the PDP (Power Delay Profile) of the dense multipath components
and measurement noise, i.e., the elements of the variance-covariance function v, (z,,7,) for
7 =1, =1, and the related model parameters. Here «, represents the noise variance of i.i.d.
(independent identical distributed) Gaussian measurement noise. The effect of bandwidth
limitation is clearly visible around 7, in the example. In channel parameter estimation, we
deal usually with sampled versions of the channel transfer function or the channel impulse
response. Therefore, a parametric model for the covariance matrix of the DMC is derived in
the next section. Recall that the covariance matrix is effectively a sampled version of the con-
tinuous variance-covariance function (2.63).

sin(x)

> The si-function is defined as si(x)=
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Figure 2-4: Dense multipath distribution model in the time delay domain y__(z,7).

2.5.2 Data Model for Parameter Estimation

Based on the model for the dense multipath components (DMC) (2.63) we will now derive a
statistic for a sampled version of the observed channel transfer function containing dense mul-
tipath components only. Let us assume that we measure the channel transfer function x at
M , frequency points equidistantly over the measurement bandwidth B, . With this assump-
tion and recalling the discussion about the nature of the band limited channel observations in
the previous section, we model the distribution of x as a multivariate circular normal distribu-
tion

1 "R, (0,,0) " x

Tch det(Rf (edmc ))

p(x0,,.)= , (2.65)

) is effectively a sampled version of

dme

having zero mean. Here, the covariance matrix R (0
the variance-covariance function (2.63), i.e.,

\PH (0) \PH (_fo) e \PH ((Mf _l)fo )—
¥, (/o) v, (0)
: ¥y (= /o)
WM, -0)0) o Wa(h) Pa(0)
Since an observation contains usually multiple realisations of this process x,,...,X, , taken
over time (sequence of observed transfer functions) or space (space sampling using an an-

tenna array) we collect multiple observations in the matrix X =[x,,...,x, ] and write for the
distribution of the N independent realisations

L ey
X 0,.)= . h -
p( f| dmc) ﬂ:MfN det(Rf (Bdmc ))N ) ( )
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Equation (2.62) implies that the covariance matrix of x has a Toeplitz structure (in the fre-
quency domain). Hence, assuming the measurement system used to observe the channel has a
flat transfer function within the measurement bandwidth, we express the covariance matrix as

Rf (Bdmc ) = toep(K(edmc )’ K(edmc )H )a (267)

where (0, )eC""™ is a sampled version of the power spectrum density ¥, (f), and
toep( ) is the Toeplitz-operator (see Appendix C). Since the measurement noise can also be
modelled as a multivariate circular normal distribution, we include it in our model, assuming
it 1s independent identical distributed (i.i.d.) and has a covariance matrix of ¢, . Conse-
quently k(0 ) is given by

dan

T

1 —jmr, -j2a(M 1)z,
K(edan):i X © . © M. —1 +a0eog (268)
M,| B, ﬂd+J2nM%/ B+ 2

where ¢, is the variance of the circular (1.1.d.) Normal distributed measurement noise, and
e, =[10-- O]T 1s a unit vector. Here, 0, is the parameter vector describing the distribution
of the DMC and the measurement noise. The vector valued function k(0 ) is the sampled
auto-correlation function of the channel transfer function without the contribution of concen-
trated propagation paths.

The PDF (probability density function) of the DMC in the time-delay domain can be
derived from (2.66) using the discrete Fourier-transform (DFT). With the DFT-matrix

w® w’ w’ w’
M-1
WO W1 1/1/’2 w
1 0 2 4 2(M-1) _ ot
F= W w w w w , W=¢ 5
0 M-1 2(M-1 M-1)
WO M 20 W |

the relation between the covariance matrix of the DMC in the time-delay domain and the fre-
quency domain can be expressed by

Rr(e ):FH.Rf(Odan).F'

dan
The relation between the observed channel impulse responses X, and the observed channel
transfer functions X, is given by X = F".X ;- Therefore, the PDF of the DMC in the time-
delay domain is

1 —tr(X%FFU R (0, ) F-FT X, )
PX,[0.,)= o X R 0 PR,
f| d an.N det(FH'Rf(ﬂdan)-F)N
U
p(X.[0,,.)= 1 o (X R 04X,

an’N det(Rr (Gdan ))N

since det(F )= 1. One should observe that the covariance matrix in the time domain is diago-
nal dominant. Nevertheless, it is not a diagonal matrix due to the convolution with the %‘”
functions (2.64) and the periodicity of the DFT. Hence, from a signal processing point of view

a representation of the observed radio channel in the frequency domain is preferable. In the
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frequency domain, the Toeplitz structure of the covariance matrix R, (0,,,) can be exploited
to reduce the computational complexity of channel parameter estimation algorithms.

Figure 2-5 and Figure 2-6 illustrates the relationship between the channel impulse re-
sponse, the channel transfer function, and the respective covariance matrices. The channel
impulse responses as well as the channel transfer functions are derived from channel sounding
measurements. The radio channel was measured with an 8-element uniform linear array four
times in a street micro cell scenario. The concentrated propagations paths have been removed
from the measurements. Therefore, the channel transfer functions and the related impulse re-
sponses shown in Figure 2-5 contain only contributions from distributed diffuse scattering and
measurement noise. Observe the complex structure of the covariance matrix in the time-
domain. In contrast, the structure of the covariance matrix is very simple in the frequency
domain due to the Toeplitz structure. One should note that the Toeplitz structure is only valid
for narrow band systems. That means, the model has to be refined if ultra wideband channels
are investigated. The same applies also to the model of the concentrated propagation paths
derived in this chapter.

ki
i ':"%;'#\ﬂ‘!ﬁ*' i \(\\
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Figure 2-5: PDP of 32 measured impulse responses after removing the contributions of the
concentrated propagation paths (left) and the magnitude of the related channel transfer func-
tions (right).

T

2

Figure 2-6: Structure of the covariance matrix of the DMC R_(0, ) in the time delay do-
main (left) and the structure of the covariance matrix of the DMC R, (0,,.) in the frequency
domain (right).

dmc
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2,53 Modeling the DMC in the Spatial and the Time Domain

The covariance function derived in section 2.5.1 describing the DMC is restricted to the fre-
quency domain and time-delay domain, respectively. In general, we have to represent the sec-
ond order statistics of the dense multipath components with a 12-dimensional function, i.e.,

W(fl oS Pr s br, G 15 2Ok 1> Pras Frts Srastisly )

Provided the WSSUS assumption [13] can be applied in the temporal and angular domains as
well, the correlation function can be expressed by distances in the respective domains. This
leads to a 6-dimensional correlation function

WA, Mg, A Apy, Ay, At).

The full covariance matrix R(®,,_ ) of the dense multipath components is of size
MM M M, xMM M M,. Since the available measurement apertures in the time (Dop-
pler) domain as well as the spatial (angular) domain are relatively small, no satisfactory para-
metric models for the complete covariance matrix could be developed so far. Hence, we as-
sume that the DMC are 1.i.d. in the remaining domains. Nevertheless, let us outline some im-
portant points, which should be considered if refinement is attempted.

From a signal processing point of view it is desirable to factorize the full covariance
matrix, to keep the numerical complexity of the signal processing algorithms low. A promis-
ing approach, although not explicitly proposed for the DMC, is the so-called Kronecker
model for narrow band MIMO channels [14]. Here, the idea is to factorize the full covariance
matrix into Kronecker products. To this end, we introduce the covariance matrices
R,(0,, )cC"*" and R,(0,, )e C""" describing the angular distribution of the dense
multipath components at the transmitter and the receiver position, respectively. In addition,
we define the covariance matrix R,(0,, ) to model the correlation of the DMC for a short
time interval. Now, a straightforward extension of the Kronecker model yields the following
approximation for the covariance matrix

R(0,,)=R,(,,)®R (6, )OR (8, )OR,(8,,).

dme dmc dme dme

In the Chapter 4 and 5, it is shown how the Kronecker model can be exploited to reduce the
computational complexity of parameter estimation algorithms. Here the Kronecker model is
effectively based on the assumption of uncorrelated scattering between the transmit angle,
time delay, Doppler shift, and receive angle domains of the DMC. Consequently, the covari-
ance matrix of the DMC-process has the structure

R(Bdmc):IMR®IMT®Rf(B )®1,, . (2.69)

dme

One should observe that the assumption of a Kronecker model for the DMC does not imply
that the whole MIMO channel can be expressed by a Kronecker model. Strictly speaking, the
assumption of a Kronecker model for a wideband channel is unlikely to hold due to the de-
terministic components in the channel, i.e., due to the existence of well-separated dominant
propagation paths. For a discussion of the validity of the Kronecker-Model in general, see
[14].

2.5.4  Examples for DMC and Discussion

Figure 2-7 and Figure 2-8 show power delay profiles of radio channels measured in a street
micro-cell scenario. The measurements have been carried out with an omni-directional trans-
mit antenna and an 8-element uniform linear receive array at a carrier frequency of 5.2GHz.
The measurement bandwidth used to observe the channel was 100MHz.
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tennas (left) and the same impulse response after removing the concentrated propagation

paths (right).
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Figure 2-8: PDP of a SIMO-impulse response (NLOS) averaged over all receive antennas
(left) and the same impulse response after removing the concentrated propagation paths

(right).

The first example is a line of sight (LOS) scenario, whereas the second example is a non-line
of sight (NLOS) scenario. Both figures show the power delay profile (PDP) averaged over the
SIMO channels on the left hand side. The right hand side of the figures shows the PDP after
removing the concentrated propagation paths from the channel observations. In both cases,
the remainder resembles the PDP described in (2.60). Furthermore, it is important to realise
that this PDP contains by no means dominant propagation paths anymore. Instead, it resem-
bles a dense stochastic process. Therefore, the contribution of the distributed diffuse scatter-
ing to the channel impulse response is denoted as dense multipath.

Since the DMC process is a strongly correlated process in the frequency domain, every
parameter estimator ignoring its contribution to the observed channel impulse response will
inevitably fail. The contributions of the distributed diffuse scattering to the radio transmission
is also the reason why model order selection methods fail if the underlying data model take
only white noise and concentrated propagation paths into account. Therefore, having discov-
ered the influence of the DMC to the radio channel observations it is understandable why the
author of [15] encountered problems with the application of the Minimum Description Length
(MDL) method [16], [17]. Strictly speaking, if time-delay information has to be estimated
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from channel sounding measurements, the application of model order selection criteria is only
reasonable if the contribution by distributed diffuse scattering to wave propagation is taken
into account. Otherwise, model order selection criteria will fail since the set of models we are
choosing from will not fit to the observation. This issue is more deeply discussed in Section
5.2.7. However, this fact is not restricted to channel parameter estimation. It applies to all
parameter estimation problems.

So far, we have only discussed the importance of the DMC for channel parameter es-
timation. However, the contribution of the DMC to the radio transmission must also be con-
sidered in radio channel modelling. Figure 2-9 shows a measured PDP in a LOS scenario and
the PDP reconstructed using the parameter estimates of 62 concentrated propagation paths.
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Figure 2-9: A measured PDP (dotted line) and the PDP (straight line) reconstructed using 62
concentrated propagation paths estimated from the measurement. The left hand side shows the
PDPs for an observation bandwidth of 100MHz and the right hand side the same PDPs after
reducing the bandwidth to SMHz. The parameters of the propagation paths have been esti-
mated from the measurement having 100MHz bandwidth.

The graph on the left hand side of Figure 2-9 shows the power delay profile reconstructed
with a bandwidth of 100MHz whereas the right hand side shows the same channel with a re-
construction bandwidth of 5SMHz. The approximation of the channel having a bandwidth of
100MHz with 62 propagation paths is not acceptable. On the other hand, the approximation of
the channel having bandwidth SMHz with 62 propagation paths is acceptable. To achieve the
same approximation of the radio channel at 100MHz probably more than 500 concentrated
propagation paths are necessary. However, the additional propagation paths are only neces-
sary to approximate the DMC since the concentrated propagation paths are already described
by the 62 propagation paths in the example. Hence, the complexity of the radio channel gen-
erator can be significantly decreased if the same model for the DMC proposed for channel
parameter estimation is used. That means one has to generate some propagation paths, to de-
scribe the contribution of the concentrated propagation paths to the transmission and a realisa-
tion of a coloured circular normal distributed process to describe the contribution of the DMC.
A numerically efficient generator for such a process is described in Section 6.1.11.

In Section 2.5.1 it is assumed that the DMC can be modelled as a circular Gaussian
process. This assumption is based on physical considerations. To support this assumption the
estimated distribution, i.e., the relative frequency of the DMC samples in a LOS scenario after
whitening, and a Normal distribution with variance )/; are shown in Figure 2-10. For the
computation of the histogram only the delay bins between 250ns and 2000ns has been used.
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The SIMO observation was taken from the same measurement campaign described in the be-
ginning of this section. The parameters of the distribution of the DMC and the parameters of
the specular propagation paths have been jointly estimated with the maximum-likelihood es-
timator described in Section 6.2.1. The contribution of the specular propagation paths has
been removed from the observation using their estimated parameters. For the whitening of the
DMC the estimated covariance matrix R ,(0,,. ) has been employed. The total number of real
valued samples used to compute the histogram was 2816 and the number of classes shown is
81. The second example (Figure 2-11) shows the relative frequency of the DMC samples in a
non line of sight scenario after whitening. The PDP on the left hand side shows again the PDP
of the observed DMC after removing the estimates of the specular propagation paths. In this
example the delay bins between 950ns and 2300ns has been used to compute the histogram
shown on the right hand side. The total number of real valued samples used, to compute this
histogram, was 2176 and the number of classes in the histogram was again 81. The Normal
distribution is in both cases a reasonable hypothesis for the observed distribution of the DMC.
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Figure 2-10: PDP of DMC in a line of sight scenario (left hand side) and the distribution of
the real and imaginary parts of the delay bins between (250ns-2000ns) after whitening of the
impulse response (right hand side).
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Figure 2-11: PDP of DMC in a non line of sight scenario (left hand side) and the distribution
of the real and imaginary parts of the delay bins between (950ns-2300ns) after whitening of
the impulse response (right hand side).
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Note that the contribution of dense multipath components can also be found in ultra-
wideband (UWB) radio channel measurements [18]. Hence, the outlined concept to model the
radio channel for channel parameter estimation can also be adopted to describe upcoming
UWB channel sounding measurements. Finally, the modelling of diffuse scattering is also
discussed in the literature dealing with ray-tracing channel simulations. For example, the au-
thors of [19] describe how to improve ray-tracing simulation accuracy by including diffuse
scattering in the radio propagation model.

2.6 Complete Radio Channel Model

The complete model for the sampled radio channel h e C**', taking concentrated propagation
paths as well as dense multipath components into account, is given by the superposition of the
contribution of the concentrated propagation paths s(ﬂsp)e C** and the contribution of the
dense multipath components d, = as

dme

h=s(0,)+d (2.70)

dmce *

The realisation d,,, € C** of the stochastic process describing the dense multipath ®(0,, )
is distributed according to

ddmc ~ @(9 ) = WC (0’ R(edmc )) € CMX] »

dme

where &,.(m,R) is a complex circular symmetric Gaussian process with mean m € C**! and
covariance matrix R. A numerically efficient way to generate a realisation of the process
®(0,, ) for covariance matrices R(0,, ) having Toeplitz-structure (cf. equation (2.67)) is
described in Section 6.1.11. Equation (2.70) suggest that the sampled radio channel can be
understood as a realisation of the process

h~.(s(0,, . R(0,,))e C"", @.71)

so s(0, ) can be interpreted as the mean of h.

dme

One should keep in mind that all parameters of the sampled radio channel

0
9chn :|: v :|
0dmc

are stochastic by nature. The distribution of 0, depends on the radio scenario type, e.g.,
Macro-, Micro-, Pico-cell, whereas their (time) variance depends on the movement of the ob-
jects in the scenario. The same applies also to the realisation d_,, as long as no object having
influence on the channel is moving the realisation d . is time invariant. If an object is mov-
ing, some or all parameters become time variant. The structural parameters such as time-
delays of arrival, angles, Doppler-shifts, coherence bandwidth, and base-delay are typically
slow time variant stochastic processes. The linear parameters y,,,, Y., ¥y, and v, are
typically fast time variant processes.

2.7 On Radio Channel Statistics

The data model for the concentrated propagation paths is a deterministic model mapping the
propagation path parameters to the channel observation. The propagation path parameters
itself are stochastic by nature. The complete statistic of the radio channel can be written as

p(h’ 9chn ) = p(h|90hn ) ’ p(echn ) .
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The data model (2.71) corresponds to the conditional probability density functlon p(ho,,,).
The focus of this work is to solve the inverse problem 0, . = f(h,) given the i i'"™ observation
of the instantaneous impulse response h, taken at time 7, . The radio channel parameter esti-
mator 0, = f(h,) will provide samples of the function 0,,,(¢). The time variance of the
process 0, (¢) depends on the motion speed of the objects contributing to the radio propaga-
tion. Consequently, the processes 0,,,(z) and h(¢) might not be time variant at all, if no ob-
jects in the observed radio propagation scenario are moving. To summarise, the vari-
able 0, (1)e R”" has to be described by a conditional probability density function
p(0,,,(1)V.,), where v, describes the position and movement of the objects in the observed
radio scenario. A main goal of channel sounding and subsequent channel parameter estima-
tion is to provide sufficient data for the modelling of p(@,,,(*)v.,,), and p(v,,,)-
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From a historical perspective, the first sounding experiments were carried out by using single
tone CW (continuous wave) signals. This was sufficient as long as only the narrow-band
channel behavior was of interest. Single tone CW sounding, however, gives us no information
to resolve path time delays. To resolve propagation paths regarding their time delay, we need
a frequency domain bandwidth, which is roughly the inverse of the desired delay resolution.
Sequential sounding at a number of different frequencies is the easiest approach to achieve
time-delay resolution. The achievable resolution may be very high since standard vector net-
work analyser can be applied. The drawback is the huge measurement time needed to sample
the whole frequency response. This inhibits measurement of mobile radio channels. The only
solution is to keep the environment fixed during one series of frequency sampling measure-
ments. Frequency domain sampling has its equivalent in sequential sampling of the antenna
array geometry. It may be considered as the synthetic antenna aperture approach, applied in
the frequency domain. Sustained measurement along some longer trajectory is clearly prohibi-
tive.

3.1 Broadband Radio Channel Sounding Techniques

Short duration repetitive pulses, together with envelope detectors, have been used in
early broadband real-time sounding experiments. The main drawback of this method is the
high peak-to-mean power ratio at the transmitter and only power delay profiles can be meas-
ured. To achieve the maximum signal-to-noise ratio at the receiver, excitation signals are re-
quired having a minimum crest factor. The crest factor is given by the ratio of the peak value
of the signal to its root mean square (r.m.s.) amplitude. Minimum crest factor signals are dis-
tinguished by a constant envelope in the time domain. At the same time, they must have a
constant spectrum, which leads to a short autocorrelation function. This pulse compression
approach is well known from spread spectrum technology. It makes these signals very useful
for real-time identification of time delay systems since all frequencies are instantaneously
excited and a considerable SNR processing gain is achieved in the time domain by correlation
processing.

Pulse compression requires noise-like structured signals. Periodic pseudo-random ex-
citation signals are of special importance as they can be processed in integer periods. The
time-period must be at least as long as the maximum path excess time-delay z,,, to avoid
TDoA ambiguities. With a maximum delay-Doppler spreading factor S = znax Bmax 0f a typi-
cal mobile radio channel well below 0.01, the period of the received time-variant channel re-
sponse signal is still almost the same as of the excitation signal. This presumes that the mini-
mum signal time period is chosen. Then the channel output can be transformed to the fre-
quency domain by DFT/FFT (discrete Fourier transform, fast Fourier transform) processing
without any significant leakage variance.

36
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Probably the best-known examples of those excitation signals are periodic pseudo-
random binary signals (PRBS). PRBS can be very easily generated by a shift register since
only digital circuits are required. This makes it possible to generate broadband excitation sig-
nals, even suitable for ultra-wideband sounding [20]. Another advantage of PRBS is that they
can be repeated in the receiver with a slightly slower clock rate. This is applied in the classical
swept time-delay cross-correlation sounder implementation as originally proposed by Cox
[21]. This “sliding correlation” sounder requires only slow AD converters (Analogue to Digi-
tal converter). The disadvantage of this principle, working sequentially in delay, is again the
long measurement time, which prohibits real-time operation.

The power spectrum of PRBS has the typical sinc-shape. For system identification
purposes it can only be used up to a frequency of about 0.4f., where f. is the clock rate [22].
Nevertheless, since the spectrum decays only slowly, a very high sampling rate or a suitable
anti-aliasing filter at the receiver is required to avoid aliasing. In addition, the system under
test is excited in a frequency band, which is not used. This effectively throws away transmit
power. Moreover, most experimental transmit spectrum permissions given by regulation au-
thorities will require strictly band-limited spectra. Then the signal must be filtered at the
transmitter to stay within a finite bandwidth. Any filtering and phase slope modification,
however, will increase the crest factor of the PRBS, which is supposed to be unity in the ideal
case.

A much more flexible excitation signal concept is known as the “periodic multi-sine
signal”. This approach is well known from frequency domain system identification in meas-
urement engineering [22]. In communication engineering terms, this signal may be refereed to
as a multi-carrier spread spectrum signal (MCSSS). The MCSSS 1is defined by its complex
discrete Fourier coefficients X (u f;) :

N-1

x(nty) = X (u £, ) (3.1)

u=0

with t,=Nty=1/fo. Once designed in the frequency domain, the corresponding time domain
waveform x(nto) is stored in an arbitrary waveform generator memory and periodically re-
peated at the Tx. It possesses all the advantages which are discussed above for periodic sig-
nals. Unlike the case of PRBS, the phases and magnitudes of X (,u fo) can be arbitrarily cho-
sen in order to optimize the system performance. As an example of this signal design flexibil-
ity, in Figure 3-1 a MCSSS excitation signal with uniform power spectrum is shown. The
phases of the Fourier coefficients are chosen to minimize the crest factor of the signal wave-
form. Although a quadratic phase slope typically results in a crest factor below 2, numerical
optimisation can even further reduce the crest factor to about 1.4. Eventually analogue hard-
ware phase distortion (e.g. from the filters) and even nonlinear distortion (from the power
amplifier) can be mitigated. This means that a predefined ideal transmit signal is iteratively
pre-distorted throughout a calibration procedure where the real output signal is measured and
optimized.

Regarding the overall spectral shape, the main advantage of MCSSS is its “brick wall”
shape, which allows concentrating the signal energy exactly to the band of interest. This can
even be multiple bands when spectral magnitudes are set to zero. One example application is
FDD (frequency division duplex) sounding which means that the sounder simultaneously ex-
cites both the up- and the down-link band. To meet the UTRA FDD specifications, we need a
total bandwidth of more than 200 MHz. Note that the desired full flexibility of the excitation
signal requires quadrature up-conversion at the transmitter.

At the receiver side the signal is filtered, down converted, and demodulated by a quad-
rature demodulator. An efficient architecture is based on low IF (intermediate frequency) ana-
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logue down conversion, IF sampling and final digital down conversion. A measurement-
bandwidth of 240 MHz, requires an IF frequency of 160 MHz and an ADC (analogue to digi-
tal converter) sampling rate of 640 MHz. For real-time processing Nyquist sampling at the
receiver is necessary in most cases. One integer period of the received time-variant channel
response y(t, nto) signal is sampled and transformed to the frequency domain by FFT proc-
essing. The final quadrature down-conversion is accomplished by cyclic FFT-shifting of the
result, which finally gives the baseband representation Y (¢,  f;) of the received signal. Fre-
quency selective fading as shown in Figure 3-1, shapes the power spectrum of the received
signal. (bottom row, right).
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Figure 3-1: Broadband multi-carrier spread spectrum signal (MCSSS) in the time and mag-

nitude frequency domain (top row) and estimated CIR and received signal spectrum (bottom
row).
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An estimate of the time-variant channel frequency response is calculated from input-output
cross correlation as

Y(t, 1 f)X (e fy) _ Yt 1 fy) (3.2)
X(uf)F X))

The uniform shape of the excitation signal spectrum and its low crest factor at the
transmitter maximizes the SNR. With integer period data acquisition, there is no additional
estimation variance resulting from leakage noise [22]. Therefore, the required data acquisition
time is minimal and the estimation variance is as small as possible. With Nyquist sampling at
the receiver, the highest possible measurement repetition rate for a channel with a maximum

H(t,u fy)=
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excess time-delay 7,,, can be achieved, which is 1/7,,,. The lower limit is given by the Dop-
pler bandwidth B,,,,. It results from the Nyquist sampling criterion of the fast fading channel
response. However, since the delay-Doppler spreading factor S = Zyax “‘Bmax Of a typical mo-
bile radio channels is well below 0.01, there are large gaps allowed between successive meas-
ured channel response functions without sacrificing the Nyquist criterion. Normally, there is
no need to measure any more quickly since additional CIRs (which may be required for link
level simulation) can always be calculated by band-limited interpolation. Nevertheless, faster
measurement speed may be desirable if further noise reduction by synchronous averaging of a
temporal sequence y(t, nto) 1s aimed at. Only if the averaging window approaches or exceeds
1/B.qx this would act as a Doppler low-pass filter and potentially suppress fast fading.

Figure 3-1 also shows the impulse response which would result from the inverse Fou-
rier transform of H (t, y7, fo). Calculating the impulse response in this way requires a tapering
window function in the frequency domain, which effectively throws away measured data and,
hence, reduces SNR and limits the resolution. A better choice is to use H(z,z f;) as an ob-
servation vector in the frequency domain for high-resolution TDoA parameter estimation de-
scribed in Chapters 5 and 6.

3.2 MIMO Channel Sounding

A MIMO channel sounder measures the channel response matrix between all M7 an-
tenna ports at the transmit side and all My antenna ports at the receiver side. This could be
carried out by applying a transmitter and a receiver having multiple transmit and receive
chains, respectively. However, true parallel systems are not only extremely expensive, they
are also inflexible (when considering changing the number of antenna channels) and suscepti-
ble to phase drift errors. Also parallel operation of the transmitter channels would cause prob-
lems since the M7 transmitted signals have to be separated at the receiver. Therefore, orthogo-
nal transmit signals must be used. Since the time/frequency domains are the only domain
available to make the transmit signals orthogonal, the only gain of a parallel transmitter is the
gain in total transmit power. There is no gain in measurement time. A much more suitable
sounder architecture is based on switched antenna access [23], [24], [25], [26], [27]. A
switched antenna sounder contains only one physical transmitter and one receiver channel.
Only the antennas and the switching channels are parallel. This reduces the sensitivity to
channel imbalance.

Figure 3-2 shows the switching time frame of a sequential MIMO sounder using an-
tenna arrays at both sides of the link [28]. Any rectangular block in the figure represents one
period of the transmit/receive signal. Synchronous switching at the Rx and Tx is required in
order to clearly assign the received signal periods to any input-output combination of the
channel matrix. Timing and switching frame synchronization is established during an initial
synchronization process prior to measurement data recording and must be maintained over the
complete measurement time even in the case of remote operation of Tx and Rx. This is ac-
complished by rubidium reference oscillators (atomic clock) at both Rx and Tx. The total
snapshot time length is now given by ¢, = 2 50x M7 Mg, where M7 and My are the number of
antenna array ports at the Tx and the Rx site, respectively. The factor of two comes from the
one blank period, which is inserted at the receiver after every period acting as a guard interval
to avoid switching transients. Similar to OFDM (orthogonal frequency division multiplexing),
this CIR estimation principle relies on a periodic signal model for excitation and reception.
Therefore, the guard interval has to cope with the channel and the device response. For some
signal processing operations, based upon the recorded data, it may be a disadvantage that the
antenna channels are not sampled at the same instant. If the maximum Doppler bandwidth for
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real-time sounding is less than 1/¢;, the antenna channels can be individually interpolated re-
sulting in MIMO channel responses with aligned sampling time for all channels.

Further considerations concerning the hardware operation of the sounder system refer
to the Tx/Rx synchronization in the remote operation mode, to the calibration, to the transmit
power, and to link budget issues. Only a short overview to the more important topics will be
given here.
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Figure 3-2: MIMO sounder switching time frame.

Remote operation means that there is no synchronization link applied between Tx and
Rx. Initial synchronization is accomplished by a back-to back calibration procedure. Hereby
the overall device frequency response G s, 1s measured and stored for equalisation purposes.
In addition, the frequency references are synchronized. The synchronization has to be main-
tained throughout the whole measurement cycle. Separate Rubidium reference sources at both
Tx and Rx are required and the local oscillator (LO) signals have to be generated at both
sides. This makes a sounder fundamentally different to a standard network analyser and asks
for specific considerations. For DoA/DoD estimation full coherent operation is necessary dur-
ing the snapshot period #. If Doppler estimation is required, or if a sequence of snapshots is to
be averaged for SNR enhancement, the coherent operation period must extent to multiples of
t;. This sets the limits for phase noise parts having a coherence time below this time interval.
However, the time-period between two calibration measurements may easily take some hours
if field measurements are considered. In this case, some drift of the references cannot be
avoided even if Rubidium sources are used. This can normally be accepted as long as the ref-
erence offset is markedly smaller than the specified Doppler bandwidth. A small reference
frequency offset would be measured as a respective Doppler shift. Note that in the case of
synthetic antenna aperture measurements and for antenna array calibration a much longer co-
herent operation period will be necessary, which may require a direct Tx/Rx synchronization
by cable.

Calibration has to include the absolute device power gain as well. This is also
achieved throughout the back-to-back calibration when operating the transmitter with its
nominal output power to a reference attenuator. Nevertheless, antenna independent path loss
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estimation is only possible if the antennas are calibrated in absolute gain and if the
DoA/DoDs of the polarimetric wave components at the antennas are known. This means that
both the DoA and DoD have to be estimated. Otherwise, the antenna influence cannot be
separated from the measurements and the path attenuation can only be given including the
influence of the specific antennas used throughout the measurement.

Further issues are related to automatic gain control (AGC). AGC at the receiver has to
ensure maximum signal level throughout the receiver chain from the antenna to the ADC in-
put. At the same time, it has to avoid overloading. The receiver should have a switched AGC
in well-defined calibrated steps, which should cover at least a range between 50 and 60dB.
The AGC setting has to be implemented on basis of instantaneous peak value estimation. To
avoid uncontrolled transients, the AGC timing control must be synchronized to the MIMO
switching time frame described in Figure 3-2. For very accurate angle-of-arrival estimation,
the same AGC setting should be used for all antennas of the arrays. The best results are
achieved if the complex frequency responses of all AGC steps are individually calibrated (in-
cluding the complex frequency response, which may vary because of changing electrical
length).

Regarding the arrangement of antenna switches and amplifiers there is always a trade-
off in sensitivity and phase stability. Individual low noise amplifiers (LNA) at Rx antennas
and/or individual power amplifiers (PA) at the Tx are mostly inadequate because of the in-
crease in phase drift between antenna channels. However, if there is only a single PA at the
Tx, the corresponding antenna switch has to handle the full output power which may exceed
10 W for broadband bad urban measurements. At the Rx the switch just adds its attenuation to
the receiver noise figure.

Future steps in real-time MIMO sounding will include the usage of multiple sounding
transmitters and/or receivers to emulate system specific scenarios and interference situations.
Two transmitters and one receiver, €.g., can be operated in a coordinated way where the trans-
mitters are switched on/off in a staggered temporal sequence. This allows quasi simultaneous
measurement of two spatially distributed links. These links can represent a multiuser scenario
as seen from a base station. Also two base stations can be emulated to represent soft handover
scenarios and cooperative downlink operation from spatially distributed access points. More-
over, a dual-hop link as a part of a multi-hop or ad-hoc network or just a relay extension can
be investigated. A future sounder interface will be able to handle dual-band up- and down-
converters to emulate tandem air interfaces which will operate in completely different fre-
quency bands. For ultra-wideband operation, sounders will be developed having a real-time
bandwidth of some GHz, e.g., from 3 to 11 GHz. The requirements on the hardware of these
sounders will be extremely demanding and will require integrated SiGe-technology [20]. This
relates also to very broadband sounding at mm-Wave frequencies, e.g., at 60 GHz. To achieve
enough spatial resolution of indoor propagation environments, the bandwidth has to be en-
hanced up to several GHz. The very high frequency will set extreme demands to phase noise
if DoA/DoD has to be estimated. UWB operation, however, will shift the angle resolution
paradigm from phase difference estimation to time delay estimation allowing wider antenna
distances and, thus, compensates loss in accuracy.

33 Antenna Array Architectures for Channel Sounding Applications

The spatial dimension of the channel response is accessed by antenna arrays. This mainly re-
lates to “true” arrays but can also include synthetic aperture arrays. Those arrays consist of a
sequentially sampled spatial aperture where only one antenna (or a subset) of the respective
array is physically deployed. The angular resolution capability of any array depends on the
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effective aperture size as seen from the respective wave direction. So the spatial arrangement
of the antenna elements has a major influence.

Sophisticated antenna architecture design is required to achieve high DoD/DoA reso-
lution. This has to be developed with mechanically and electrically stable construction and
precise calibration. Since there is always a tradeoff between various specifications including
resolution, measurement time, availability and costs, there is a wide variety of useful antenna
array architectures. In the following, we summarise some design considerations:

e Planar antenna arrays such as uniform linear arrays or uniform rectangular arrays always
have a limited viewing angle and suffer from inherent forward/backward ambiguity. They
are useful to represent a base station’s view to the channel. Moreover, there is a nonlinear
transformation from the geometrical DoA/DoD to the respective normalised structural pa-
rameters ,u,@. Consequently, the effective array aperture depends on the DoA/DoD and the
resolution capability is not uniform. Circular antennas, on the other hand, have a full field
of view. They can be used to represent the mobile station. Their angular resolution capabil-
ity is uniform since the effective aperture does not change with azimuth angle.

e Double directional estimation requires arrays at both sides of the link and MIMO operation
of the sounder. For cellular system consideration, a combination of planar and circular ar-
rays is adequate, whereas for ad-hoc peer-to-peer networks identical circular arrays are
most preferable.

e Mainly for micro- and pico-cell scenarios, estimation of the elevation is aspired in addition
to the azimuth. This requires application of uniform rectangular, cylindrical, or spherical
arrays. But three dimensional wave analysis (azimuth and elevation) is not only necessary
to deduce three dimensional propagation models. It is also required for removal of the in-
fluence of the measurement antennas from the data if there are incoming waves with non-
zero elevation. Moreover, this must also include polarisation resolution.

e Spherical antenna arrays may be applied for full azimuth and elevation coverage. However,
there exists no geometric solution to arrange more than 20 patch antenna elements on a
spherical surface with identical inter-element distances. Therefore, non-uniform inter-
element distances and various relative polarisation orientations of adjacent elements will
complicate the design of spherical arrays. Moreover, optimisation of the inter-element dis-
tance for circular and spherical arrays (or of the diameter in case of a fixed number of an-
tenna elements, respectively) is required to minimize the side-lobes of the angular correla-
tion function to reduce the probability of outliers in iterative parameters search. This typi-
cally leads to inter-element distances something smaller as half of the wavelength.

e Full polarimetric analysis of the radio channel requires not only polarimetric reception but
also polarimetric excitation of the channel. This is even true for omni-directional excitation
where we need a two-port antenna, which launches both orthogonal polarised waves with
omni-directional characteristics and, thus, doubles the required sounder output ports.

e High and reliable resolution in terms of separation capability of closely spaced paths and
low probability of outliers requires an antenna architecture, which offers a minimum of an-
tenna array aperture size in the respective spatial dimension, including a minimum number
of antenna elements, low antenna element coupling, and precise calibration. This has also
to include the antenna switches and feeder cables. An instructive discussion of real antenna
array architectures developed for radio channel sounding and the occurrence of outliers
(virtual paths) can be found in [29], [30]. The problem of virtual paths is also discussed in
connection with channel model (order) selection in Section 5.2.7.

e The characteristics of the antenna elements depend on the basic element design (dipoles,
patches, slots, etc.). It has a strong influence to high-resolution performance, estimation
ambiguities, probability of outliers and polarisation resolution capability, gain, bandwidth
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etc. E.g., the directivity of the antenna elements is a means to mitigate the inherent for-
ward/backward ambiguity of ULA and URA.

e For later relation of recorded data to the respective propagation scenario video cameras
should be included into the antenna module. The optical viewing field of the cameras
should correspond to the electromagnetic viewing field of the antennas. Also GPS (global
positioning system) position recording, electronic compass, and inclination sensors helps to
precisely document the measurement setup. Furthermore, a laser pointer should be con-
tained in the antenna array to support angular adjustment.

The following figures show examples of high-resolution antennas. The URA in Figure
3-3 comprises 8x8 vertical polarised patch elements. Three peripheral dummy rows and col-
umns are included to mitigate the fringing field effect, which distorts the beam patterns. The
module also includes a 64x1 multiplexer, LNA, and filter. It can be used for joint azimuth and
elevation estimation within the bore side viewing sector of 120 deg. and 60 deg., respectively.
The UCA (uniform circular array) in Figure 3-4 (left) consists of 32 sleeve antennas, which
do not require a ground plane. Here, a 2W power switch is included to support the application
as a transmit antenna. The usage is essentially restricted to azimuth estimation only since
there is no vertical aperture available for low elevation paths (which are most important for
mobile radio application). The SPUCPA (stacked polarimetric uniform circular patch array) in
Figure 3-4 (right) is the currently (2004) most sophisticated array available world wide. It
comprises 4 stacked rings of 24 polarimetric patches yielding 192 output ports in total. The
RF-multiplexer is arranged inside of the cylindrical body of the array. The cylindrical archi-
tecture gives a maximum resolution in azimuth for low elevation paths and good resolution of
elevation within £30 deg.

Figure 3-3: Uniform rectangular patch array (URA8x8) [31], [32].

Figure 3-4: Circular dipole array (UCA32), left, and stacked polarimetric uniform circular
patch array (SPUCPA4x24), right [31], [32].
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34 On the Choice of Reference Scenarios

The performance evaluation of channel-sounding systems requires appropriate test scenarios.
The channel parameter estimator can be considered to be part of the channel sounder. Conse-
quently, the measurement results are the estimated channel parameters. Hence, we need ap-
propriate scenarios to determine the accuracy of the individual parameter estimates, for exam-
ple the systematic and the random error of the estimated time delay related to a single propa-
gation path. In addition, appropriate scenarios are needed to evaluate the resolution capability
of the channel sounding system.

Furthermore, the test conditions must be reproducible by someone else with a reason-
able effort. From our experience [33], [34], [35], [36], [37], and [38], this can only be guaran-
teed if the measurements for the performance evaluation are carried out in an anechoic cham-
ber. Measurements in application scenarios are generally not reproducible by third parties and
are therefore not suited to evaluate the performance of a channel sounding system.

We propose to use two scenarios in an anechoic chamber for the performance evalua-
tion of channel sounding systems. To determine the measurement accuracy, a single path sce-
nario is the best choice. The setup of such a scenario in an anechoic chamber is simple, since
the LOS path is, within the limits of the wave absorbing material, the only path. The parame-
ters of this propagation path can be varied by means of a positioner, which changes the posi-
tion of the transmitter antenna or of the receive antenna array.

For the evaluation of the path resolution capabilities, we have to create two propaga-
tion paths in the anechoic chamber, where the parameters of one propagation path must be
adjustable. One may try to use a reflector, for example a metallic plate or a metallic sphere, to
create a second propagation path in addition to the direct path. However, it turns out that the
parameters of these two propagation paths cannot be adjusted independently of each other. A
change of the transmitter position or the transmit power will change the parameters of both
paths. In addition, a variation of the reflector position will simultaneously change some and
not only one of the parameters belonging to the reflected path. A better approach to create a
two-path scenario is based on the observation that a receiver cannot distinguish between a
scenario with a real and a virtual signal source and a scenario with two real signal sources as
long as the same signal is broadcasted by them. Hence, a two path scenario can be created if
we broadcast the transmit signal with two independent transmit antennas. Since every trans-
mit antenna is related to only one propagation path in an anechoic chamber, the propagation
path parameters can be adjusted independently. This setup also allows independent adjust-
ment of the individual parameters of one propagation path.

The described test scenarios have been used to evaluate the performance of various an-
tenna arrays [33], [34], [35], [36], [37], and [38]. It is understood, that especially the second
test case with two propagation paths, i.e., two sources, is an important benchmark for the per-
formance evaluation of any channel parameter estimation algorithm, see also [39]. Further-
more, both test scenarios should be considered while choosing an antenna array structure for
radio channel measurements. An antenna array that provides sufficient information to esti-
mate the parameters of a single propagation path may not provide sufficient information to
resolve two propagation paths even if they are substantially separate. An example for such an
array structure is a cross array.

3.5 A Cross Array is Not Suitable for Radio Channel Sounding

A question, often asked is. “Why is a cross array not suitable for channel sounding?” It is well
known, that azimuth and elevation of a single source can be estimated if a cross array is used
to receive the signal of the source. Hence, the cross array can be applied to estimate the
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propagation path parameters of test case one (a single propagation path). However, the re-
ceived signal contains replicas of the same signal in real world scenarios due to multipath
propagation. Hence, the second test case (two propagation paths) must be considered too. If
the two propagation paths have approximately the same time delay at the receive site but a
phase difference of m, they will suppress each other if the magnitude of the path weights are
equal. This is effectively a case of space selective fading. The standing wave field of such a
scenario is shown in Figure 3-5. In the case shown on the right hand side, the vertical ULA
does not receive any signal from the two sources. Consequently, the channel observations
measured with a cross array in such a scenario contains no information about the elevation of
the two sources. The same problem will also arise, of course, if the two sources are separated
only in elevation, i.e., if they have the same azimuth angle.
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Figure 3-5: Standing wave field and a cross array.

It will depend on the phase difference between the two propagation paths in such a scenario,
whether information about their elevation angles is available in the measurement data or not.
Consequently, the parameter estimator will be unable to solve the estimation problem in cer-
tain cases. An analytical way to determine, whether sufficient information are available to
solve an estimation problem or not, is provided by the Fisher information matrix and the
Cramér-Rao lower bound [40]. Therefore, Chapter 4 is entirely devoted to the application of
this performance measures to radio channel parameter estimation.
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It is important to note, that the cross array provides sufficient information for the esti-
mation of azimuth and elevation of multiple signal sources which are uncorrelated or only
partially coherent, or if they are coherent but well separated in another parameter domain,
e.g., in the time delay or Doppler domain.

3.6 Parameter Normalization

All basis functions B,,B, ,B,,B; ,B;, and B, of the channel model (2.29) have basi-
cally the same structure. The prototype for all functions B is

B=G-A, (3.3)

where G € C"*" is a matrix describing the measurement system, and A € C"” is a matrix of
complex exponentials related to the radio channel parameters T, ¢,,% ,9;,%,, or a [see
(2.14), (2.23), (2.34), (2.35), (2.38), and (2.39)]. For a signal processing, the physical meaning
of the parameters is not important. Moreover, the different range of values of the physical
parameters can be even disadvantageous. Therefore, we introduce the normalised parameter
) and the related vector valued functions

n
efj(*L{‘)ﬂf” e*j(f%)ﬂ(p”
n? eR™ - Ap?)= : : e CM P, (3.4)
R SR TR € D2
and
(ll(i) e R™ ¢ RPXI)H A(u(z‘),u(m): A(u("))OA(u("))e CNNeP (3.5)

The definition of the complex exponentials in (3.4) is unusual, a much more common defini-
tion is
1 1
n eR™ s A'n?)=| L lec™?, (3.6)

O R (T

There are mainly two reasons, why we should favor definition (3.4) over definition (3.6).
Firstly, the reference point for the complex path weight is exactly in the center of the observed
aperture, i.e., in the middle of the observed frequency band, and in the center of the antenna
arrays. Secondly, the matrix A(u(i)) 1s conjugate-symmetric along the columns, i.e.,

Alp”)=1A"(u").

This symmetry can be exploited in implementations to reduce the computational complexity.
In Table 3-1 the basis functions introduced in Sections 2.2 - 2.4, the related normalised pa-
rameters, and the new basis functions based on the normalised parameters are summarised.

3.7 Incorporation of Sequential Spatial Sampling into the Data Model

The data model for the observed propagation paths developed in Chapter 2 is based on the
assumption that the complete MIMO — channel is measured at one time. However, this is not
true if the SISO-channels between the transmit- and receive-antenna array ports have been
measured sequentially. Since the structural parameters p of the radio channel are slow time
variant processes, we can treat them as constant within the time needed to take one channel
snapshot. In contrast, the path weights may be fast time variant. Here the term fast time vari-
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ant relates to the time necessary to measure all SISO-channels, i.e., to acquire a complete
snapshot of the MIMO channel. If we assume only the phase of the path weights y is chang-
ing within the observation time, the influence of sequential MIMO-channel measurement
principle can be incorporated into the data model easily. The phase shift is determined by the
Doppler-shift ,u;“) =2na t, of the concentrated propagations paths.

Table 3-1: Definition of Propagation Path Parameter Vectors

Basis Function Normalisation Denormalisation | Basis Function with
Normalised Parameters
B, =G, A(1) ©7 =2m for oY B, =G, -Aln")
2mf,
B, =G, 'Aa((l) :U(a) =2nto o= /J(a) B, =G, ‘A(ll(a))
2nt,,
B, =G, -(A97 OAw) 1 =g 0=y B, =G, ,A(u(w)’u(sﬁ)
BTl/ :GT;/ .(ABTOA(PT) BTV =GTV -A(u((pT)’u(LgT))
B,, =G, -(A,0A,) [0 _g 9= 1 B, =G, -A(™ p)
B, =G, (A, 0A,) B, =G, -A{* u®)
B =b 0 () _ 2nd, © B =b -
ura com ,Ll l Sln(g) l9 — arcsin(/’l ﬂ’j ura com ‘
K, (Au“)oA@")) 2nd. )| K, AR”,n)
Bulacol = bcom<> Bulacol = bcom<>
() 1" =2 cos(p)- 1"d ©)
Kulacol ’ A(ll ) .A (0 = arccos, TC Kulacol ’ A(ll )
-sin(:9) pud,

Given the path weight y, at time ¢, the path weight at time ¢, can be calculated according to

_J:(‘zt;ll )M/(Da)

7/P,f2 :7/17’[1 €

This follows directly from (2.2). Furthermore, suppose the antenna array outputs are sampled
with a uniform sequence. Here uniform means that the time offset, when the SISO channel
transfer function between the antenna ports m, (0<m, <M,), m, (0<m, <M,) is meas-
ured, can be expressed in the form #,, =¢,, -m;, +1,,-m, . This holds for example if the
switching sequence shown in Figure 3-2 is used. The sampling interval is
tor =2M gz, =Mty , at Tx and ¢, , =27, at Rx. The sampling of the MIMO channel is
uniform if the antenna switching sequence at the Rx site is the same for every active Tx an-
tenna element. This is important since in modern MIMO channel sounding devices the
switching sequence can be chosen arbitrarily [32]. The data model cannot be expressed any-
more using the Khatri-Rao product, if a non-regular switching sequence has been chosen
throughout channel sounding measurements. This will in turn lead to an increase in computa-
tional complexity of the channel parameter estimator since some simplifications used in Sec-
tion 4.1 as well as in Chapter 5 will not apply anymore.

Let us suppose the receive array output ports have been sampled at the time off-
Sets fy 5.,z ,,, Within the receiver switching frame, and the transmit array ports have been
activated at times ¢, ,...,Z; ,, Within the transmitter switching period, see also Figure 3-2. To
incorporate the spatial sampling into the data model we introduce the following matrices
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Using the (3.7) and (3.8) the model for the concentrated propagation paths (H-H component)
Sy =B, OB, OB OB, v,

can be extended to account also for the influence of sequential MIMO channel sounding
measurements yielding

Sur s = (BRH © At,R)O(BTH © At,T)OBfOBt R E (3.9)

The influence of sequential MIMO channel sounding measurements can be incorporated into
the other components of the path model s, ,s,,, , and s, in a similar fashion. The sequential
MIMO measurement principle has no influence on the model of the DMC, since the contribu-
tions of the DMC to the individual SISO channels are modelled as i.i.d. realisations (cf. Sec-
tion 2.5.3).

It is important to note, that the matrices (3.7) and (3.8) can only be applied to refine
the data model for channel parameter estimation if sufficient information for Doppler-shift
estimation is available. However, radio channel sounders available so far are not able to
measure the radio channel continuously. That means the time needed to measure as single
MIMO-channel snapshot has to be significantly smaller than the time between two consecu-
tive MIMO-channel snapshots (;-=0.05,...,0.1). Consequently, the influence of the sequential
measurement principle can be néglected. However, upcoming channel sounders will be able
to measure the radio channel without gaps between consecutive MIMO-channel snapshots
[32]. To exploit their capabilities fully the refined data model (3.9) should be applied. The
influence of sequential spatial sampling on ESPRIT based parameter estimation algorithms
has been studied for example in [41].

The algorithms derived in this work are all based on the assumption that the influence
of the sequential MIMO measurement principle can be neglected. I.e., the acquisition time for
a single MIMO channel snapshot ¢ is much smaller than the sampling interval between con-
secutive MIMO snapshots ¢, .

3.8  Measurements with Missing Apertures

If radio channel measurements have been carried out with a measurement system, which is
unable to acquire the information necessary to determine the parameters of the complete
channel model (2.70), we have to reduce it. If we neglect the effect of sequential spatial sam-
pling the six structural parameters 7, ¢,, 9., @,, %, and « relate to a specific aperture,
1.e., data dimension. There are four data domains in total. These are the frequency domain,
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which carries the information about the time delay 7z, the time domain carrying the informa-
tion about the Doppler-shift «, and the spatial domains, i.e., antenna ports at the Tx- and the
Rx-site carrying the information about the transmit angle pair ¢,, 4, and receive angle pair
@r, 3, respectively. Furthermore, the antenna arrays used for the measurements also deter-
mine which of the four polarimetric path weights can be estimated from the channel observa-
tions. In the following, we discuss some cases of measurements with missing apertures.

Case I: If only a single channel observation is available, the data model (2.70) reduces to
S(esp ) = (BT,, <>BR,, <>B1 ) Yun T (BT,, <>BR,, OBT ) Yuy
(BTVOBRHOBr ) Yy + (BT,,, 0B, OB, ) Y >

as a result the Doppler-shifts of the propagation paths are not assessable. Additionally, the
resolution of the propagation paths is reduced. However, the loss in resolution compared with
other domains is comparatively small since the aperture in the time domain, i.e., the number
of consecutive channel observations, must be kept small anyway to assure validity of the
channel model. As discussed earlier, it is assumed that a movement of the objects in the radio
scenario cause only phase shifts of the path weights. Missing information about the Doppler-
shift does not lead to systematic errors in the estimates of the remaining parameters, as long as
the influence of sequential spatial sampling can be neglected.

Case II: The radio channel is only measured at one frequency. Hence, the data model (2.29)
reduces to

S(esp ) = (BT,, <>BR,, 0B, ) Yun + (BT,, <>BRV 0B, ) Yur
(BTVOBRHOBa ) Yoo + (BT,,, <>BR,, OBa ) Yov -

Consequently, the time delays of the propagation paths cannot be estimated and the resolution
of the propagation paths is strongly reduced. As a rule of thumb, the frequency domain is the
domain with the largest resolution capability. Missing information about the time delays of
the propagation paths does not lead to systematic errors in the remaining parameters esti-
mated.

Case III: The radio channel is measured with reduced apertures in the spatial domain at the
Tx-site or at the Rx-site. Since the influence of a reduced aperture is equivalent at the Tx-site
and the Rx-site, we will discuss the influence at the Tx-site only. There exists a variety of
possible measurement setups, since we can choose from a large amount of different antenna
array structures.

The antenna array may not provide enough information about azimuth and elevation.
This applies to many array structures, such as URA, UCA, ULA, and CUBA. Consequently,
the azimuth and/or the elevation will contain ambiguities. The antenna array does not provide
enough information to estimate both angles, this is typical for antenna arrays having line aper-
tures, e.g., uniform linear arrays. In contrast to the previous cases, assumptions about the
missing information must be made. l.e., we have to choose a prior, the most likely value for
the unobserved parameters. This often leads to systematic errors, since the prior is wrong. For
example, if the radio channel is measured using a uniform linear array we only have informa-
tion about one angle, e.g., the elevation if a ULA-column is used. However, the beam pattern
of the array elements is also a function of the unobserved angle, i.e., the azimuth in our exam-
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ple. Consequently, the estimates of the path weights will be scaled versions of the true path
weights, except we know the true azimuth angles of the observed propagation paths.

Finally, the antenna array may not measure the field components e, and e, com-
pletely. This applies if the antenna elements have only one port either for “horizontal” or
“vertical” polarisation. Therefore, only two of the four polarimetric path weights can be de-
termined. If the transmit antenna array generates only field components in e, , ie.,
B, =0 V¢,,3, the data model (2.29) reduces to

S(Gsp ) = (BT,,. <>BRH 0B,OB, ) Yvu + (BTV OBRV 0B 0B, ) Yvy-

If the receive array receives only field components in e, , ie., B, =0 Vg,,9, the data
model reduces further to

S(Bsp ) = (BTV <>BR,, 0B, 0B, ) 7R

For measurements, channel sounding with incomplete apertures is not optimal. As already
discussed in Section 3.3, we acquire incomplete information about the propagation paths. Fur-
thermore, we reduce with every missing aperture, i.e., parameter domain the ability to resolve
the propagation paths in the scenario.

To summarise, for a signal processing, the variety of measurement setups is not a
problem insofar as the basic data model structure is not altered if an aperture is missing. Hav-
ing a parameter estimator for the model (2.29), we are from an algorithmic point of view able
to cover also cases with missing apertures. However, it is important to realise that the estima-
tor will only yield reliable results if the assumptions about the unobserved information are
accurate. This is especially important if information about polarisation and/or angles are miss-
ing, since the signal at the output port of an antenna element depends on two angles and the
strength of the two electromagnetic field components in e, and e, . In contrast, the frequency
and the time domain only carry information about a single parameter the time delay of arrival
and the Doppler-shift, respectively.
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It is often criticized that high-resolution channel parameter estimators are not robust [14]. As
an example, a robustness issue encountered regularly is the splitting of a propagation path into
two. This leads to unusable parameter estimation results, since the path weights of these two
paths have often a phase difference of ~ n and consequently very large absolute path weights.
Strictly speaking, the stated “low robustness” is often not a result of incapability of the pa-
rameter estimator, but rather due to the wrong underlying model. Namely, a wrong number of
propagation paths or the negligence of the dense multipath components leads to completely
wrong estimates.

Furthermore, since one of the main goals of radio channel sounding in general is the
derivation of channel parameter statistics, i.e., the modelling of the distribution p(@), it is
important to know the limits on resolution and accuracy of 0. In this context, accuracy means
primarily the variance of the channel parameter estimates. If the variance of the estimates is
ignored the derived distribution functions may partly model the statistics of the estimator pl0
instead of the statistics p(0) of the true channel parameters.

Additionally, for measurement system design the reachable performance of a channel
sounding system, i.e., of the entity channel sounder and parameter estimator is of interest. For
example, the reachable accuracy of the estimates of the structural parameters compared with
the Rayleigh resolution limit [40] is of interest. The Rayleigh resolution limit is a function of
the aperture used to observe a system. For the normalised channel parameters x; the Rayleigh
resolution is oc 2%, i.e., it is not a function of the signal to noise ratio. The Rayleigh resolution
determines roughly the resolution of beamforming and DFT methods without further process-
ing.

A uniform bound on the variance of any parameter estimator 0 for the parameters of a
given model is provided by the Cramér-Rao lower bound [42]. It determines the variance of
an unbiased estimator, which is minimum variance unbiased (MVUB). An unbiased estimator
0 c R" for the parameters of a given model 8 € R*" satisfies the following equation

E{0-0/=0,

i.e. the estimation error has zero mean. Then the Cramér-Rao lower bound CRLB states that
for the covariance matrix C; € R** of any unbiased estimator the following inequality holds.

c, =E{(6-6)-(0-0)"|>CRB, .
Observe, that the inequality sign between the matrices means that the difference C; —CRB;

is positive definite.

Before we start with the derivation of the Cramér-Rao lower bound let us recall the pa-
rametric channel model developed in Chapter 2. It describes the sampled radio channel h as a
circular Gaussian distributed process

51
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h ~ WC (S(Bsp )’ R(Bdmc )) < CMXI :

with mean s(GSP) and covariance R(0,, ). The stochastic part of the sampled radio channel,
1.e., the contribution of the dense multipath is distributed according to

ddmc ~ @(ﬂdmc ) ~ WC (0’ R(ﬂ )) € CMX] .

dme

As described in Chapter 3, every channel sounding measurement is disturbed by measurement
noise. We will assume in the following that the measurement noise is i.i.d. circular Gaussian
distributed according to

w~N.(0,0,]) e C".

Since both, d . and w are circular Gaussian distributed processes and independent, we can
merge them into one process

n, ~N.0,R@0, )+al)eC". 4.1)

dmc

For a signal processing, it is unimportant that both originate from different sources, i.e., d .
is part of the radio channel, and w models the measurement noise and is therefore part of the
measurement system model. The covariance matrix of the joint process n,,, =w+d,, . is

dme
Rnn = aOI + R(dec) . (42)
Altogether, the observed sampled radio channel x can be expressed with
x=s(0,)+n,, . (4.3)

Consequently, the probability density function of a radio channel observation is a multivariate
normal distribution
p(x|0, Rnn ) = det(lR,m(e)) e’(X*S(Q))H R, (0)™(x-s(0)) ) (44)
The data model, i.e., the model of the observation x (4.3), is a deterministic function
of the parameters 0,,. Therefore the maximum likelihood estimation of 0, is a so-called de-
terministic maximum likelihood (DML) problem. In contrast, the maximum likelihood esti-
mation of the parameters of the stochastic process n constitutes a stochastic maximum likeli-
hood (SML) problem. Here, we estimate the parameters of a covariance matrix (4.2). Clearly,
the joint Cramér-Rao lower bound (CRLB) of all parameters has to be derived. However, for
the sake of clarity we split the joint estimation problem into the DML and SML parts, and
derive the CRLBs for both problems independently in Section 4.1 and Section 4.3. In Section
4.4 the results for the DML and SML problem are generalised to the joint maximum likeli-
hood parameter estimation task, i.e., the joint Cramér-Rao lower bound for all model parame-
ters 0, is derived.

Before we start with the derivation of the Cramér-Rao Lower Bound, let us summarise
some important general algebraic properties of the data model for the sampled radio channel.

Cond. 1: The data model is continuous within the parameter space ©®
0 and 0
sp

Cond. 2: The parameter space of ®
interior point.

of the parameters

chn

dmc *

is compact and the true parameter vector 0, is an

chn

Cond. 3: The stochastic process n has zero mean and its covariance matrix R, is positive
definite.
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4.1 Cramér-Rao Lower Bound for the Deterministic Parameters

Similar to the derivations in [43], [44], [45], [46], [47] we derive in this section the Cramér-
Rao lower bound of the deterministic parameters of the data model describing the channel
observation x. We assume for the time being, that the covariance matrix R, (cf. (4.2)) is
known. Hence the parameters of the vector valued function s(GSP) are the only model parame-
ter we have to estimate. For notational convenience we drop for the time being the subscript
, Of the parameter vector 0 ,. Furthermore, we state an additional property of the channel
model in particular of the vector valued function S(BSP )

Cond. 4: The vector valued function s(ﬂ Sp) is continuous and has bounded continuous first
and second order partial derivatives in @, .

In addition, the vector valued function s(0) has to fulfil the following condition:

Cond. 5: For any pair of parameter vectors 0, €@, 0, €@, with 0, #0,, the following
inequality must hold

s'(6,) s(0,)
Vs"(0,)5(0,) /5" (6, )s(6,)

2

i.e., the mapping 6 € R*" - s(8)C**! must be unique forall 6@, .

Observe that condition 5 is a fundamental design criterion for a radio channel measurement
device. See also Chapter 3 for a discussion of design criteria for channel sounders.

4.1.1 Fisher Information Matrix for the DML Problem

In order to derive the Cramér-Rao lower bound we have to derive the Fisher information ma-
trix (FIM) [40] of the parameters 0 .

Taking the logarithm of (4.4) yields the log-likelihood function as
L(x0.R,,)=In(p(x8.R,,)) = =M -In(n) - In(det(R,,)) - (x~5(8))"'R, (x~5(8)).  (4.5)

nn

The first order partial derivative with respect to the parameters 0 of the log-likelihood func-
tion (4.5) is the so-called score-function [40]

T
0 0 0 9
m q(x|0,R,, )= £L(X|B, R, )= {% L(xo,R ... %L(ij R, )} e CH. (4.6)

1 L
The score-function is effectively the first gradient of the log-likelihood function at @ given

the observation x. The partial derivative of the log-likelihood function (4.5) with respect to
the parameter 6, is

0 0 u 4 —_ i
A LR )= 20 R RW[@@ s(g)j
0 qu L o o
-3¢ (0) R,,s(6)—s (e)R,m(a 7 s(ﬁ)j @7
=+ 6%s“(ﬂ) R;L(X—5(9))+(x—s(ﬂ))HR;(%s(g)}

Since a+a” =2-R{a} equation (4.7) can be simplified to

%ﬁ(xw,Rnn): 2-5}{{££SH(9))R;(X—S(B))}. 4.8)

1 1
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To achieve a compact expression for the score function we define the matrix valued function
containing the first order partial derivatives of the data model s(8) with respect to the parame-
ter vector @ as

. D)= 2 0)= Ka%s(e)j (%s(ﬂ)ﬂ cCM, (4.9)

Observe that (4.9) is effectively the Jacobian of s(8). Using the definition (4.9) in (4.6) yields
the following compact form of the score-function

- q(x,R,,)=2-R{D" ()R, (x—5(0))}. (4.10)

Now we recall that the observation x is only one realisation of a stochastic process. Conse-
quently, the log-likelithood and the score-function become random variables too. The negative
covariance matrix of the score-function is the Fisher information matrix, and is defined as
follows

. y<e,R,m>=—E{ R, ) 2 et R,,,»jT} @)

A single element of the Fisher information matrix is given by the relation

0 0 o’
(0,R )=—E!-L r(x8,R,)-2 £(xo,R )=—E L(O,R L. (@412
0RO LOR, )OO R =BT ORI

Hence, the Fisher information matrix can be understood as the negative expected value of the
second gradient of the log-likelihood function [40]. The second partial derivative of the log-
likelihood function with respect to the parameters 6,, and 6, , i.e., the first partial derivative of
the score function with respect to the parameter 6, is

2
£(x|0,R,, )=+ s"(0) R, x+x"R; s(0)
0000, aeae aeae

(aeae ° (G)J w8(0)= ( (9)j [%S(B)j
~s"(0)R nn(aeag s(a)j ( (e)j (%S(e)}

Again using the relation a+a* =2-R{a} we get the expression

ol ol
£(x|,R, )=2-R "0) 'R, -(x—s(0
s 0 =29 O )| R x50

—(w )R e o))

Now we define a matrix-valued function containing the second order partial derivatives of
s(0) as

(4.13)

" 0° 0° 0? 0?
D'(0) = oo 5(0) = [69]69] S(0) 5 550) o s(0) 89 5 s(a)} 4.14)
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With this definition the stochastic Fisher-Matrix [40] 7 € R*", sometimes also called o0b-
served Fisher Information [48] can be written in the following compact form (cf. Appendix C
regarding the definition of the mat{e} operator)

(xjo.R,,)=2-%{D"(6)-R,, -D(0)}-2-R{mat{D""(0)- R, -(x~s(0))}}. (415

nn

The expected value of the stochastic Fisher-Matrix is the Fisher information matrix
-7(97 Rnn ) = E{j(x|e’ Rnn )} *

Since we assume an unbiased estimator © and due to the model property Cond. 3, the term in
equation (4.15) containing the second gradient of s(0) goes to zero since

E{x—s(8)! =0.

Consequently, the Fisher information matrix of the parameter vector 0, assuming the covari-
ance matrix (4.2) is known, can be calculated as follows

. 9(6,R,,)=2-R{D"(0)R,, D(6)}. (4.16)

If the stochastic process n is i.i.d. circular Gaussian with covariance matrix R, =1 the
expression for the Fisher information matrix can be further simplified to

50.0,1)==-%{(D(6))" -D(®) (4.17)

0

Observe, that the Fisher information matrix is a symmetric matrix, i.e.,
](9’ Rnn ) = ]T (9’ Rnn ) :

The main diagonal elements of the Fisher information matrix indicate how informative
the measurement data are with regard to the model parameters 0 . The off-diagonal elements
indicate the amount of mutual information between two parameters 6, and 6, . If the off-
diagonal elements {7(8,R,, )}, ={7(6,R )}, are zero, the two related model parameters 6,
and @, are asymptotically uncoupled. In general a data model is optimally parameterised if
the Fisher information matrix is diagonal. This is an important criterion if we have to choose
between two equivalent models.

Furthermore, if the Fisher information matrix is singular the information contained in
an observation x is not sufficient to estimate all model parameters 0, i.e., the data are not
sufficiently detailed enough. Consequently, there is no unique solution to the parameter esti-
mation problem at hand. Theoretically, there exist two ways to resolve this problem. We can
try to gather more information about the parameters, or we reduce the complexity of the
model, i.e., we decrease the number of free parameters. Practically, the first solution requires
generally a change of the measurement setup, e.g. a modification of the channel sounder. For
a given measurement, this is clearly not a valid option. Hence, the only solution is the reduc-
tion of the models complexity.

Altogether we can state the following necessary condition for the unique solvability of
a given parameter estimation problem 0(x):

Cond. 6: For the parameter set @ € @ of the models(0) e C"*', the Fisher information ma-
trix must have full rank, i.e., rank(7(0,R,,))=L.

The necessary condition 6 directly implies the common requirement L < 2M , i.e., the number
of measurements must be equal to or larger than the number of unknowns.
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If we have to reduce the number of parameters, to get a parameter estimation problem
having a unique solution, we have at first to detect the parameters which are strongly coupled.
To this end, we introduce the normalised Fisher information matrix®

= JO,R,)=(J(0,R,,)o1,) " - 7(0,R,, ) (J(O,R,, )1, ). (4.18)

Clearly, the normalised Fisher information matrix only exists if the following inequality for
all main diagonal elements of the Fisher information matrix holds

{7(6,R)}. 0. (4.19)

If the main diagonal element related to the parameter 6, is {7(8,R)}, =0, the parameter 6, is
not a parameter of the model, i.e., the observation contains no information about it. Conse-
quently, we can state that (4.18) exist for all reasonable parameter sets 0 .

The normalised Fisher information matrix contains the correlation coefficients be-
tween two parameters ¢, and 6, . That means the main diagonal elements of (4.18) are

{j(e’ Rnn )}jj = 1 Vj s
and the off-diagonal elements are within the closed interval

-1<{3(0,R,,)}, <1 j#k, V), Vk.

If the absolute value of an off-diagonal element is |{j(9)},k| =1 the related parameter pair
6,,6, carries identical information. Therefore, (4.18) is a first diagnosis tool to detect poten-
tial problems in the parameterisation of the model to be estimated. If two parameters 6,0,
carry identical information, but are parameters of different propagation paths the parameter
estimation problem can be solved if one of the propagation paths is dropped, i.e., removed
from the model. However, in practice the parameter estimation problem is already ill-posed if
one or several off-diagonal elements of (4.18) are close to 1 in magnitude.

As a rule of thumb, the smaller the magnitude of the off diagonal elements of the nor-
malised Fisher information matrix (NFIM), the better the parameter estimation problem con-
ditioned is.

4.1.2 Cramér-Rao Lower Bound for the DML Problem

The asymptotic Cramér-Rao lower bound on the covariance matrix of every unbiased estima-
tor @ for the deterministic parameters @ from the observation x is determined by the follow-
ing inequality’

C, = E{(é ~0)-(6-0) }z 77(0,R,,)=CRB,. (4.20)
Using the result for the Fisher information matrix (4.16) in (4.20) yields the following explicit
expression for the CRLB

- CRB, :%-(ER{DH(B)RI D(0))) . (4.21)

nn

It is often questioned whether or not this lower bound on the covariance matrix C; is
practically relevant. In [49] Viberg et al. have shown, that the DML estimator 0 is consistent

% Observe that the main diagonal elements of the Fisher information matrix are positive, since it is a covariance
matrix.
7 Here, the inequality of two matrices A >B means, that the difference A —B is positive semi-definite.
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under the Gaussian noise assumption. Since the stochastic part of the radio channel observa-
tion x is Gaussian distributed, the DML estimator for the propagation path parameters is as-
ymptotically efficient (for large M), i.e., the covariance matrix C; of the parameter estimates
coincides with CRB, . This result has been verified for radio channel sounding measure-
ments, using the ML (Maximum Likelihood) channel parameter estimation algorithm outlined
in Chapter 5, by Landmann et al. in [36] (see also [37] and [38]).

Observe, if the Fisher information matrix of the model parameters is diagonal, i.e., the
parameters are asymptotically uncoupled then the CRLB matrix is also diagonal.

Var{f)} > diag{(](ﬂ, R, ))" } (4.22)

Now suppose all but one of the parameters of the model are known. Then the Cramér-Rao
lower bound on the variance of this parameter 6, is given by the reciprocal of the respective
main diagonal entry of the Fisher information matrix {J(0,R,,)}.. This implies that the
Cramér-Rao lower bound of the individual parameters in the uncoupled case is asymptotically
the same as the Cramér-Rao lower bound if only a single parameter is unknown. This is an
important result for the development of a channel parameter estimator, implying that propaga-
tion paths with uncoupled parameters can be estimated separately.

4.1.3 Cramér-Rao Lower Bound of Physical Path Parameters

As we are usually interested in the lower bound of the variance of the estimated physical pa-
rameters, it may be tempting to use the channel model parameterised by the physical parame-
ters as described in Chapter 2 to derive the respective CRLBs. However, this may be a time-
consuming task since the model contains non-linear functions for mapping the physical pa-
rameters to the normalised parameters (see, e.g., Table 3-1). A better way to calculate the
Cramér-Rao lower bound of the physical parameters is the invariance property of the Cramér-
Rao lower bound under reparametrisation [40] (pp. 229), [50]. It is a chain rule for the Fisher
information matrix and consequently also for the Cramér-Rao lower bound.

Suppose the vector valued function = p(0) is a nonsingular mapping of the normal-
ised parameters @ € R to the physical parameters ne R*", e.g., as outlined in Table 3-1. If
the first order partial derivatives of p(0) exist, the Fisher information matrix of the physical
parameters is related to the Fisher information matrix of the normalised parameters as follows

j(eﬂ Rnn ) = Pr|0 7(']5 Rnn )Pr|T0 > (423)
with
op"(0) .. o{p(®
o =—"6é )erb, P} _ o0}, a(e.)}k . (4.24)

1

Hence, the CRLB of the physical parameters is related to the CRLB of the normalised pa-
rameters as follows

u CRBf] = -7-1(11’ Rnn ) = Pi;rﬂj-l(e’ Rnn )Pne : (425)

Observe, that under the stated condition of a nonsingular mapping 1= p(0) also the following
relation holds

CRB, =7'(n,R,,)=P,7'(8,R,, )P, (4.26)

with
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_ 5‘6’1'_(:‘) eR¥, 9=p,(), 4.27)
m

on

since

PP =1.

o noé

In general, it is favourable to calculate the CRLB of the physical parameters via the CRLB of
the normalised parameters. Observe also that the projection matrices (4.24) and (4.27) are
sparse matrices, since one physical parameter is at most a function of two normalised parame-
ters and vice versa.

4.14 Deterministic Cramér-Rao Lower Bounds for several canonical Models

Although the expression for the CRLB (4.22) is explicit it is somewhat unwieldy; to get more
insight, let us discuss some examples.

Example 4-1: One dimensional single path case, i.i.d. circular Gaussian noise, exponential
model, single path weight (magnitude and phase).

Let us start with the simplest model. The observed radio channel consists of one propagation
path only, i.e., P=1. The stochastic process n € C** is i.i.d. circular Gaussian with standard
deviationo . In addition, the basis function has only one data dimension with structure (1-D
complex exponential model)

H M-1 - 1T
B a(a) < ) T

see also Section 3.6, Table 3-1 for a list of normalised parameters and the related basis func-
tions B(p). Furthermore, there is only one path weight (e.g. non-polarimetric measurement)
y =re' . Consequently, the general data model (4.3) reduces to

x=5(0)+n=B(p)-y=a(u) re’+n.

This data model applies for example if the radio channel has been observed (i) using a ULA
( u - normalised angle), or (ii) using a SISO channel sounder having a flat transfer function
(- normalised TDoA). The function mapping the parameter vector 0 =[u r ¢]' e R* to
the observed channel is

s(0)=a(u)-re”. (4.28)

At first, we have to determine the Jacobian matrix of (4.28) being

D(G)=%s(9)=[—rej“’~jE-a(,u) e’ a(u) jorea(u) | (4.29)

where E is a diagonal matrix

== SR (4.30)
0 M-l

2

Using the Jacobian matrix (4.29) in (4.17) yields the Fisher information matrix for Example
4-1 as
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rt-al(u)-E-a(y) 0 0
9(0,0%)= s 0 a"(u)-a(u) 0
0 0 r*-a'(u)-a(u)

This shows that the Fisher information matrix is diagonal, meaning there is no coupling be-
tween parameters. Consequently, the Cramér-Rao lower bound on the variance of any unbi-
ased estimator for 0 is a diagonal matrix and the main diagonal elements are

0'_2 1 12 o’ 6

CRB, = == : 431
oM (MR -1) r M-(MP-1) (430)
0_2
CRB; ="5— ., (4.32)
and
(72
CRB, = ——. (4.33)
oM

Observe, the term ()’ in the expressions for the CRLB of /i, and . It is the inverse signal
to noise ratio of the propagation path. Furthermore, the term 5}~ corresponds to the averaging
gain over the 2M real valued measured data samples. That means the estimates of structural
parameter x and the phase of the path weight ¢ gain equally in accuracy if the SNR is in-
creased. But whereas the variance of the parameters of the path weight decreases proportional
to M , the bound on the variance decreases with M>. The term M (M 2 —1) in equation
(4.31) can be interpreted in the following way: The term (M 2 1) corresponds to the Rayleigh
resolution, and M to the averaging gain, i.e., the noise reduction. The effective noise contri-
bution to all parameter estimates is % .

Observe that the matrix (4.30) is an expression for the gain in accuracy with increasing
aperture. The larger the apertures the larger are the outer elements in (4.30).

Example 4-2: One dimensional single-path case, i.i.d. circular Gaussian noise, exponential
model, single path weight (real and imaginary components)

In the previous example the path weight was expressed by means of magnitude and phase.
Since the phase is a nonlinear model parameter it is, from a signal processing point of view,
better to express the weight by its real and imaginary part. Hence, we change the parameters
of the model in Example 4-1 as follows

x=s(0)+n=B(n)-y=a(u) (y, +jy,)+n.
The new parameter vector is 0 =[x y, 7,] "eR*, and the related channel model
s(0)=a(u)-(7, +i7,).-
The Jacobian matrix of s(0) is
DO)=—CsO)=[-7-jSalw) aw)  jale) 1 4349

Again using the Jacobian matrix (4.34) in (4.17) yields the Fisher information matrix as
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[ a"(u)-E-a(u) 0 0
9(0,6%)= = 0 a(u)-a(u) 0
0 0 a'(u)a(y)

Since the Fisher information matrix is again diagonal, the CRLB matrix is also diagonal hav-
ing entries on the main diagonal as follows

o’ 1 12
CRB,=—5— : 4.35
“ P 2m (M -1) (4.33)
0_2
CRB;, =CRB, = e (4.36)

It is apparent from (4.36) that the Cramér-Rao lower bounds on the linear weight parameters
(real and imaginary part of the complex path weight) are equal. This means that if the ob-
served radio channel contains only one propagation path, the estimates of the real and imagi-
nary parts of the complex path weight have asymptotically the same variance.

Suppose the normalised parameter u relates to the physical parameter 9 via

9= arcsin[ A j, (4.37)

2nd

c

i.e., the radio channel has been measured with an column-ULA (cf. Table 2-2 and Table 3-1).
Applying the invariance theorem of the CRLB (4.26) yields

2 2
CRB,=—%—.CRB, = GO —
(el e (2nd, )’ sin(9) [ M(M*-1)

(4.38)

The CRLB of the parameters » and ¢ is unchanged, since the parameters are not part of the
transformation (4.37). The complete projection matrix P, is

om0 0
P,=| 0 1 0
0 0 1

The term (sin($)) ' describes the influence of the effective ULA aperture as a function of the
DoA or DoD on the variance of the estimate 4.

In the next example, we extend the one-dimensional data model to a two-dimensional
problem.

Example 4-3: Two-dimensional single path case, i.i.d. circular Gaussian noise, exponential
model, single path weight (real and imaginary parts).

The extension of the one-dimensional single-path model in Example 4-2 is straight forward.
The observation x € C**' has basically the same structure, i.e.,

x=5(0)+n=B(n)-y=a,,(n)-(7, +jr,)+n.

The function mapping the parameter vector 0 = [y“) u? y }/I.Ir e R* to the observed chan-
nel is
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s(0)=y-a,,(0)=(r. +jr,) a1, (4.39)
where the basis function B(p) is given by (2-D complex exponential model)
B(p)=a,,(n)=a(x”)0a(x"). (4.40)

The two basis functions a(u™)e C*™! and a(u®)e C*>*' are given by
a(u®)= e 05 e )] o (4.41)

The partial derivative of the data model (4.39) with respect to the parameters 0 is

D(0)= iTS((')) = [;/a(y(z))o (_ jEla(ﬂ(l))) (_ j7aza(ﬂ(2))) 0 a(:u(l)) a,,(n)  ja,, (u)]
00

(4.42)
with
0

The Fisher information matrix is diagonal again

M 0 0 0

2 0 M 0 0
0,06°)=— 2 , 4.43
0 0 S

ie,, the lower bound on the covariance between the parameter estimates é,ék 1s
E @Hk}:O i #k,Vi,Vk . Consequently, the matrix CRB; is diagonal too having main di-
agonal entries

o 6
CRB , =2 , 4.44
VR (e (4.44)
CRB , =% O 4.45

and

2
(o}

CRB; =CRB; = EYVa (4.46)

The results for the lower bound on the variance of the normalised structural parame-
ters ") support the observation that the term (M 2 1) corresponds to the Rayleigh resolution
limit. Furthermore, it is intriguing to see that an increase of the array aperture in one dimen-
sion reduces the CRLB in the other dimension linearly. This is reasonable since we effectively
increase the number of independent observations. The interesting fact is that the structure,
e.g., the complex exponential model, of one dimension has no influence on the Cramér-Rao
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lower bound of the other dimension. In the next example we generalize the result from the
2-D data model to the R -D data model.

Example 4-4: R -dimensional single path case, i.i.d. circular Gaussian noise, exponential
model, single path weight (real and imaginary part).

The observation x € C**' has the same general structure as in the previous examples, i.e.,

x=s(0)+n=B(u)-y=2ayn) (7, +j7)+n.
The function mapping the parameter vector 0 =[x" - u® y . [ eR®? o the

observed channel is

$(0)=y-az(n)=(7, +i7:) 2z @), (4.47)

here the basis function B(p) is given by (R -D complex exponential model)

g, (n)= a(ﬂ(R))O- 0 a(ﬂ(l))a

and the vector valued function mapping the parameters x'” to the related complex exponen-
tial is defined as in equation (4.41). The total number of samples is determined by the number
of samples of the individual data domains, i.e.,

Rd
M:E[M,.

The Jacobian matrix and the Fisher information matrix of (4.47) have the same structure as in
(4.42) and (4.43), respectively. Consequently the CRLB for the normalised structural parame-

A

ters 4" is

2

CRB,, = ETWH) (4.48)
And the lower bound on the variance of any estimator for R{7} and J{7} is given by
CRB, —CRB, =2 (4.49)
o 2M

Naturally, the results of Example 4-2 and Example 4-3 are special cases of (4.48), and (4.49).

So far, we have not discussed the validity range of the bounds (4.48), and (4.49). In
channel sounding measurements, we encounter some propagation paths with a high SNR, and
many propagation paths with a low SNR. As already discussed in Section 4.1.2 the bounds
(4.48) and (4.49) are reasonable in the high SNR case, i.¢c.,

2
% —>>1 .
o” 2M
However, suppose the path weight has an absolute value of

o

I¥l= N7 (4.50)

then (4.48) becomes



4.1 Cramér-Rao Lower Bound for the Deterministic Parameters 63

6
CRB[I(,) :Wrz—_l)j (451)

and the CRLB on the relative variance of the magnitude estimate is due to (4.33)

CRB 1
I71
var, {yf}=——73"==.
bl* 2
In other words, the estimate of the path magnitude has an SNR of 3dB. This is the lowest limit
for equations (4.48) and (4.49) to be reasonable. Moreover, let us compare (4.51) with the
Rayleigh limit on resolution +*. For the minimum aperture M, =2 the ratio between the
Cramér-Rao lower bound and the Rayleigh limit on resolution of the structural parameter is
given by

CRB, 2

o
——-=—~045 M =2,|y|=—F7—.
CIE =7
As M, goes to infinity this ratio becomes
CRB ., 6 M. 6 o
lim |——— = lim |—— —X=—=0.39, =—.
v\ (2= wo=\M2-1 2n 2m 7 M

Hence, the CRLB on the variance of the structural parameter ") is roughly % of the
Rayleigh limit on resolution provided the magnitude of the path weight is %ﬁ . Furthermore
observe that for detection a SNR of 3dB is a low threshold. That means there is a high prob-
ability (13.5%) that the detected path is part of the stochastic process and should therefore not
be classified as a concentrated propagation path. Altogether we can state that the equations for
the Cramér-Rao lower bound derived in Example 4-1 to Example 4-5 of the deterministic
parameters provides reasonable results for propagation paths having a path weight of at least
ly| > %+ - That means they have a significant power and can be classified as dominant propa-
gation paths.

Up to now we have only discussed cases with a single propagation path. In the next
example we extend the data model to the more general multipath case.

Example 4-5: Two-dimensional multipath case, i.i.d. circular Gaussian noise, exponential
model with one path weight (real and imaginary parts) for every propagation
path.

The basic structure of the channel observation is unchanged, being
x=s(0)+n.
The function describing the contribution of the P observed concentrated propagation paths is
5(0)=B(w)-v = A(w)-(v, +Jv,), (4.52)

where A(n)= A(u(z)) 0 A(p(l)) is a matrix containing the Khatri-Rao product of the basis ma-
trices A(u(l)) and A(u(z)) (see (3.4) for a definition ) and

T X
0=[n" n®y, v,] =[uy, v,] er*™
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is the related parameter vector. Observe that the structural parameters pn and p® are
merged into one vector p=[u" p@] e R? .

Now we define the matrix containing the first order partial derivatives of the matrix-
valued function A(u(")) with respect to the related parameters p'"” as

D" = { a(r) a(u"”)... a(y("))} =iz, A(n"). (4.53)
oty

The Jacobian matrix of (4.52) can be expressed using the definitions (4.30), (4.53), and the
diagonal matrix T = diag{y} in a compact form by

ouy

DO)= s =[AGPNET SR AW AW (4.54)

To gain further insight into the structure of the Jacobian (4.54) we factorize it using the Kha-
tri-Rao product of the following matrices

DO =[y" 4" 1" j17], (4.55)
D, =[D" A(?) A(u™) Au®)], (4.56)

and
D, =[A(n?) D? A(u®) A(u®)). (4.57)

Observe that the matrices (4.56) and (4.57) are both block matrices with a regular structure.
The Jacobian matrix is given by the simple expression

D(0)=D,0D 0D, . (4.58)

This expression can be easily extended to the multidimensional case due to its regular
structure. This is especially important in numerical implementations, since it provides a sim-
ple means to scale the dimensionality of the model.

Since for the Gram matrix of the Khatri-Rao product (4.58) the following identity® (cf.
Appendix C) (EOF)"(EOF)=(E"E)o(F"F) holds, the Fisher information matrix (FIM) for
the parameter estimation problem at hand is

2
](9, o’ ) = o ER{(Dg 'Do)o (DF ‘D, )° (D2H ‘D, )} (4.59)
The main diagonal entries of (4.59) are the same as in the single source case, i.¢e., the elements
of (4.43) are closed form expressions for the related elements in diag{j(9,0'2 )} Furthermore,
the off-diagonal elements of the FIM belonging to the same propagation path are all zero due
to (4.43), i.e., the parameters are asymptotically uncoupled.

The remaining elements describe the coupling of parameters of different propagation
paths. As already discussed in Section 4.1.1 a model having a diagonal FIM is a good model
since all parameters are orthogonal, whereas a model having strong off-diagonal elements in
its FIM is a bad model since it contains strongly coupled parameters, i.e., they are not or-
thogonal. To understand, which parameter combinations lead to a bad parameterised and con-
sequently ill-posed problem we have to analyze the off-diagonal elements belonging to differ-
ent propagation paths further. First observe, that the Gram matrices of (4.56) and (4.57) are
both real matrices, i.c., D|'D, e R*”*" and DD, e R*”*". This is due to the fact, that the

¥ The symbol o denotes the Hadamard or Schur product (element-wise product).
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sub-matrices A(n"”), A(u?), D, and D are all conjugate symmetric along the columns
(cf. Appendix C). Hence (4.59) becomes

90,0%)=2;- %D}, )} (0} )o (DY D) (4.60)
Now supposing that the path weights of two propagation paths are orthogonal, that means
their phase difference is 90° or -90°. Then all elements of the Gram matrix R{D!'D, }e R*"*"
contributing to the coupling of the structural parameters are zero. Hence, we can state that a
two propagation path model with orthogonal path weights constitute the best case in terms of
the path weights. This effect has been observed in measurements carried out for channel
sounder performance evaluation [36], [37].

Flnally, let us 1nvest1gate the dependency of the elements of the four basic block ma-
trices AH(p ) A(u ), AH(u ) D", (D(’ ) A(p(’ ), and ( ) DY on the structural pa-
rameters u(' Observe that the correlation, in the algebraic sense, of two arbitrary vectors

(,UI' ), ( ) does not depend on the absolute value of 4 and £, but rather on their
distance A,u ) _ ). The same applies to the inner product of the vectors d(,u, ),
a(z”) and d ,u1 ) , d(,u2 ) , Wwhere d(,u ) is according to (4.53) defined as
d(")=-jz,a(u"

Figure 4-1 and F1gure 4-2 show the dependency of the three inner products on the parameter
distance Au . The correlation function on the left hand side of Figure 4-1 is due to the expo-
nential data model a periodic sinc-function %sin(% ). Observe, that no parameter distance
Au exist where all vectors are orthogonal The vectors a(,u1 ), (,u( ) ) are orthogonal for a
parameter distance of A" = 4" ,u =k2= for all Vk| € N with |k|#i-M VieN ,
whereas the related inner products d( | ), ( i ) and d(,u] , d( 5 ) are not equal to zero at
the same points. Nevertheless, all correlatlons are decaying with increasing parameter dis-
tance.

In general, we can state that usually some of the parameters of several propagation
paths in a given scenario are strongly coupled and some propagation paths are only slightly
coupled. Thereby, the Fisher information matrix or more precisely the normalised Fisher in-
formation matrix (cf. Section 4.1.1) determines which paths can be treated as uncoupled.
Strictly speaking, the structure of the FIM already determines the structure of the parameter
estimator for a given estimation task, i.e., whether parameters can be estimated separately or
have to be processed jointly.

Equation (4.59) shows in the same context mathematically that an additionally meas-
ured parameter dimension improves the resolution of the channel sounding system, i.e., the
resolution capabilities of the entity channel sounder and parameter estimator. This is due to
the fact, that the off diagonal elements of the Gram matrices D;'D, € R***" are always
smaller or equal to the related main diagonal elements. Observe, that the main diagonal ele-
ments of D}'D, e R***" are positive real values.

Furthermore, if we can measure an additional dimension, i.e., add a new aperture di-
mension, and have to choose between two parameter dimensions, we should choose the pa-
rameter dimension with the largest parameter spread since it provides the highest increase in
resolution. The higher the parameter spread, the higher the probability that some basis vectors
in B(p) are nearly orthogonal.

Hence, for parameter estimation, the optimal parameter distribution is the uniform dis-
tribution. This statement implies that the channel sounder maps the physical parameters line-
arly to the normalised parameters.
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Figure 4-1: Correlation between two vectors a(z;), a(x,) (left hand side), and a(y,),
d(x,) (right hand side) as a function of the parameter distance Au = i, —

correlation of d(y,) and d(u,)

distance Ap

Figure 4-2: Correlation between the vectors d(z,) and d(,) as a function of the parameter
distance Ay = u, —

This first requires that the effective aperture is not a function of the parameter itself; conse-
quently a ULA or URA is a suboptimal antenna array structure, provided the DoAs and DoDs
are uniformly distributed. Using the same argument we can state that a UCA, CUBA, or
SUCPA (stacked uniform circular patch array) is a much more suitable array structure for
channel sounding applications. Nevertheless, those are only general rules. As an example, a
SUCPA is a better choice for outdoor applications than a spherical array. It is unlikely that we
encounter a uniform angular distribution in elevation in outdoor scenarios. However, the re-
verse is true for indoor measurements.

4.1.5 Inherent Limits on the Variance of the Deterministic Parameters

In view of the expressions for the Cramér-Rao lower bound of the deterministic parameters in
Example 4-1, Example 4-2, Example 4-3, and Example 4-5 one may be tempted to assume
that the variance of the parameter estimates can be made arbitrarily small, just by reducing the
measurement noise. However, this is not true since the stochastic part nof the observation x
contains not only measurement noise but also the contribution of the dense multipath compo-
nents. The limit of (4.2) for o, — 0 is

Rnn = R(edmc) .
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Consequently, the variance of any parameter estimator for the deterministic channel parame-
ters in the high SNR case is inherently limited by the radio channel itself and the apertures of
the measurement device. Hence, the only way to improve the accuracy and resolution of the
parameter estimates is to increase the number of samples, i.e., increasing the aperture in
space, frequency, or time. Notice in the same context that an extension of the measurement
apertures would inevitably lead to a more complex data model. This is because simplifica-
tions, such as frequency independents of the antenna array beam patterns will not hold any-
more. Consequently, the data model has to be refined leading to a more complex model and
therefore to a more complex estimation algorithm.

4.2 Expression for the Jacobian and the Fisher Information Matrix

In the previous section only the general form of the FIM and the Cramér-Rao lower bound has
been derived. In this section we summarise the expressions for the Jacobian matrix and the
FIM for the complete data-model derived in Chapter 2., i.e.,

s(0)=B,, 0B, OB 0B, -y, +B, 0B, 0B OB, -y, +

(4.61)
+BR,, OBTVOB]"OB; Vv + BRVOBTVOB]"OB; Yoy -

Since the variety of possible measurement setups is enormous, we put the focus on the modu-
larity of the expressions. The expressions are structured in such a way that all possible mod-
els, i.e., measurement configurations, are covered.

First, recall that each structural parameter is, as already discussed in Section 2.4.5, di-
rectly related to a specific data dimension. Table 4-1 summarises the associations between the
data dimensions, the physical parameters and the normalised parameters.

Table 4-1: Relationship between data dimensions and parameters

Aperture / Parameters
Data Domain Physical Normalised

Temporal samples Time ¢ Doppler-shift & u'
Frequency samples | Frequency f Time delay of arrival ut?
Azimuth of Departure ¢, 147

Tx antenna ports Space at Tx ,
Elevation of Departure 3, i
Rx ant " S (R Azimuth of Arrival ¢, 10
* afientia ports pace at =X Elevation of Arrival 9, 1%

All matrices B, e C"”” have as shown in Section 3.6 re[f,t,T,,T,,R,,R,] the
same basic structure, i.e.,

B, =G, -A(p") (4.62)

if the data domain » contains information about one parameter. If the data domain contains
information about two parameters, e.g., azimuth and elevation the structure of B, is
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B, =G, (A(u®)oA(u”)). (4.63)

Since each parameter is related to one column of A(p), and thus also to one column of B,
the first order partial derivatives with respect to the structural parameters p can be expressed
in compact form as

n D, =—jG,E A(u") (4.64)
for (4.62), and as
. D, =-jG,(A(n")oZA(")). D, =~G, (ZAR*)oA(")) (4.65)

for (4.63) with i,k €[a,7,0,,% 04,3 ]. The matrix E, e C"*" is a diagonal weighting ma-
trix having the same definition as (4.30).

4.2.1 Full Polarimetric Model

Let us start with derivation of expressions for the Jacobian matrix and the Fisher information
matrix for the full polarimetric model (4.61). Observe that this model is only applicable if the
radio channel measurements provide sufficient information about the horizontal and vertical
polarisation at both link ends. First, define the following matrices,

B, = BRHOYJI;H + BR,,»OYZV ) (4.66)
B, = BR,,OY;H + BRVOY;V
and the related partial derivatives using (4.64), (4.65) as
D(,;R,H = DR,,,(,;RO'YZH + DRV,¢R<>YIT-[V > DSR,H = DR,,,SRO’YZH +DRV ,9R<>YIT-[V > (4.67)

T T T T
D 14 = DR//KPROYVH +DRV;(/7R<>’YVV > and DSR,V = DR//,9R<>YVH +DRV3‘9R<>’YVV ’

?,

With these definitions, we are prepared to form component matrices of the Jacobian matrix
for (4.61). Table 4-2 summarises the elementary matrices.

Table 4-2: Component matrices of the Jacobian matrix for the complete data model.

0— a v @ 9 DPr 9y EyHH,r Vi Vave Yavi Yvey YVvag Yvvr Vv

D[ = [ D(Z BI B[ B[ BI t ;BI B[ B[ BI BI BI BI BI ]
Df = [Bf D, Bf Bf Bf Bf Bf Bf Bf Bf Bf Bf Bf Bf ]
DTH = [BTH BTH D(/JT,H DST,H BTH BTH ;BTH BTH BTH BTH BT,, BT,, BT,, BT,, ]
D,=[B,B D ,D,,B, B, 0 0 0 0 0 0 0 0 |
DRH = [BH B, B, B, DgoR,H DS’R,H EBRH BRH BR,, BR,, BRH BRH BR,, BR,, ]
DRV = [BV B, B, B, DgDR,V DSR,V 0 0 0 0 0 0 0 0 ]
Dg _ [IT 17 17 17 17 17 ElT lTj 17 lTj 17 lTj 17 lTj ]

With the definitions of the matrices D,, D ;D Dy, D, Dy and D < the Jaco-
bian matrix can be represented in compact form as

0 D=(D, oD, +D, 0D, JOD 0D 0D,. (4.68)

Assuming the covariance matrix of the stochastic process n is R, = oI the Fisher informa-

nn

tion matrix of the normalised deterministic parameters of the radio channel is given by
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9(0,6%)= %‘R{D?Dt oD"D, oD'D, o

(DI D, oD} D, +D]' D, oD} D, +Di!D, oD} D, +D} D, oD} D, )
(4.69)

Observe, that (4.69) follows from (4.17), (4.68), and (EOF)" (EOF) = (E"E)o (F"F). Likewise,
the Fisher information matrix involving the covariance matrix R, € C"*" having structure
R, =I®I®R, ®I (cf. Section 2.5.3), is given by

H Hp -1 H
J(0,R,,)=2-R{D!'D, - DR,'D, -DID o
O(D;{IDTII OD;IIIDRII +D;IIIDTV ODII;IIIDRV +D;:/DDI ODII;IV])RII +D]]::/DTV OD;IVDRV )}.
(4.70)

The structure of (4.70) results directly from the Kronecker structure of the covariance matrix
R, . Recall, that the covariance matrix R, describes the contribution of the dense multipath
components plus measurement noise to the observation.

The computation of the FIM using (4.69) is significantly cheaper in terms of computa-
tional complexity than the computation using the direct approach (4.16), i.e., via the full Jaco-
bian matrix (4.68). This is especially true in view of the strong redundancies of the component
matrices D shown in Table 4-2. It is not necessary to compute the products D!'D,
relt, f,T,,T,,R,,R,] explicitly, since all products are block matrices with redundant
blocks. For example all block matrices related to the Fisher information matrix for the fre-
quency domain only 7, =DYD ., are given by

B! B'R'B, B'R'D
75 {DE} [R/B, ®/'D.] D'R/B, D'R,'D, “.71)

Furthermore, since we face increasing numbers of large scale problems due to ad-
vances in channel sounder technology, computations involving the full Jacobian matrix are
not reasonable. Channel observations with a large number of samples M and a large number
of assessable propagation paths P leads to a large Jacobian matrix. Today, measurements
with more than 400 000 real valued samples and more than 50 assessable paths are not un-
common. Altogether, it is in view of memory requirements favourable to avoid computations
with the full matrix D, instead the component matrices from Table 4-2 should be used di-
rectly.

If the covariance matrix R, contains no redundancies one has to use the expression
(4.16) to compute the Fisher information matrix and the Cramér-Rao lower bound of the de-
terministic parameters.

Observe that equations (4.68) and (4.70) cover also cases with missing apertures in the
time- and/or frequency-domain. One has to delete the matrices D, or D, from the equations
(4.68) and (4.70), and the columns in Table 4-2 belonging to the related parameters a and T,
to get the reduced expressions. Similarly, if an antenna array has been applied at one link end,
which is only able to gather information about one angle the column for the other parameter
must be removed from all entries in Table 4-2.

4.2.2 Polarimetric Model for one Link End

If channel sounding measurements have been carried out using only one antenna array able to
gather sufficient information about the horizontal and vertical field strength, the channel
model (4.61) has to be reduced. For polarimetric measurements at the Rx-site we get
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s(0)=B, OB, OB OB, -v,, +B, 0B, OB OB, -v,,, (4.72)

and for polarimetric measurements at the Tx-site we have for example the model
s(0)=B, OB, OB OB, -v,, +B, 0B, OB OB, -y,,.

Since, all four possible cases out of (4.61) (H—-HV, V->HV, HV—H, and HV—V) have the
same structure, we restrict ourselves to the derivation of the equations for the Jacobian matrix
and the Fisher information matrix for (4.72) only. Using the definitions (4.68) and (4.69) the
component matrices of the Jacobian matrices are given by Table 4-3.

Table 4-3: Component matrices of the Jacobian matrix for polarimetric measurements
at one link end.

0— a T ?r G Pr S EyHH,r Yuui Yuve Vavi

pD=-[D, B, B, B B B B B B B ]
p-(B D B B B B B B B B ]
DTH = [BTH BTH D¢T,H DST,H BTH BTH EBTH BTH BTH BTH ]
DRH = [BH B, B, B, D(/JR,H DSR,H EBRH BRH BRV BRV ]
p,=[1" 1 1 1" 1 1" 1" 175 1" 17 ]

Using these definitions, the Jacobian matrix for the model (4.72) can be expressed as
n D=D, 0D, 0D_0D OD,. (4.73)

Assuming the covariance matrix of the stochastic process n is R, = oI the Fisher informa-
tion matrix of the normalised deterministic parameters is given by

2

7(0.0%)= ;iR{DtHDt oDD,oD!'D, oD} D, oD} D, |, (4.74)
and for the structured covariance matrix R,, =I®I®R , ®1 we yield
. J(,R,,)=2-%{D/D,-DR/D,oD!'D, oD} D, D} D, }. (4.75)
4.2.3 Model for Non-polarimetric Measurements

If only one field component has been excited at the transmitter and only one field component
can be received, the radio channel model reduces to

s(G)=BR”<>BT”<>Bf<>B, N - (4.76)

Again, using the definitions (4.68) and (4.69) the component matrices of the Jacobian matri-
ces in Table 4-4 are given. Using these definitions, the Jacobian matrix for the (non-
polarimetric) model (4.76) can be expressed as follows

» D=D, 0D, 0D,0D,D,. (4.77)

Assuming the covariance matrix of the stochastic process n is R, =I®I®R, ®I the
Fisher information matrix of the normalised deterministic parameters is given by

n J(O,R,,)=2-%{D!D,-D'R;'D,oD'D oD} D, -Di D, }. (4.78)

nn
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Table 4-4: Component matrices of the Jacobian matrix for non-polarimetric measure-

ments.

0> o 7 Pr 4 Dr S 7 HH, VHH.

D, =[D, B, B, B B B B B ]
D,=[B, D, B, B, B, B, B, B, |
DTH = [BTH BTH DgoT,H DST,H BTH BTH ;BTH BTH ]
DRH = [BRH BRH BRH BRH D(/JR,H DS’R,H EBRH BRH ]
D, = (Vi Yiu Yiu Yiw T Vi U 1§ ]

Observe that the elementary blocks in Table 4-2, Table 4-3, and Table 4-4 have a triangular
structure. This can be exploited to significantly reduce the computational complexity in im-
plementations. See also the discussion regarding the numerically efficient computation of the
Khatri-Rao product d =(AOB)" -¢ outlined in Section 5.2.9 (cf. [51]). Table 4-5 summarises
the computation steps for the Fisher information matrix and the Cramér-Rao lower bound of
the deterministic model parameters, i.e., the deterministic maximum likelihood problem.

Table 4-5: Calculation steps for the Fisher information matrix and the Cramér-Rao
lower bound on the variance of any unbiased estimator for 6 , (DML)

Input: Parameter vector 0, R, (R(8,,,.)+a,l)

1) Compute all matrices B, re[f,t,T,,,T,,R,,R,,H,V] using equations
(4.62), (4.63), and (4.66) (Basis functions of the channel model)

2) Compute all matrices D, i €[a,7,¢,,%.,9,,9; ] using equations (4.64),
(4.65), and (4.67)

3) Compute the FIM (4.70) ]( 0,.R )

4) Compute the Cramer-Rao lower bound CRB, = 7" (BSP,R )

Optional Step:

5) Compute the Cramér-Rao lower bound of the physical parameters from the
Cramér-Rao lower bound of the normalised parameters using the chain rule
(4.25).

4.3 Cramér-Rao lower bound for the Stochastic Model Parameters

The derivation of the Cramér-Rao lower bound for the variance of any unbiased estimator
0,,. for the parameters 0, of the covariance-matrix R(8,,. ) is straightforward. Since this
section is solely dedicated to the lower bound on the variance of 0, , we will for the time
being drop the subscript ,,. from the parameter vector 0, and write 0 .

dme

For simplicity, we assume that the observed channel contains dense multipath compo-
nents only

_ Mx1
x=n,, €C"".

Furthermore, we generalize the model and assume that some independent observations of the
stochastic process n,,,6 are available. We collect all observations in the matrix
X =[x, --- x,,]e C*"*". The log-likelihood function of (2.66) is
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£(X]0) = —MN -In(m)— N In(det(R(6))) - tr(X" - R7'(8)- X). (4.79)

Observe that the derivation of explicit expressions for the Cramér-Rao lower bound requires
the differentiation of complex-valued matrices. There exist various ways to get closed form
expressions for complex matrix derivatives. An elegant way to accomplish that is described in
[52]. The author uses the generalised complex derivative (cf. [53]) and provides results for
typical expressions.

The score-function, i.e., the first gradient of the log-likelihood function [40] is

J(R(ﬂ))( R(B)D+t{XH 1(9)( R(B)j I(B)Xj.
(4.80)

Since det(R(8))" -adj(R(8)) is just the inverse R™'(@) of the covariance matrix R(8) [53],
we can simplify expression (4.80) to

0
ag “XO)= N ( (R(©)"

££(X|9)—tr(x R_l(e)(aa R(B)j -‘(e)xj—Ntr( “(0)( R(G)D (4.81)

1

Using the relationship between the inner and outer product of two vectors x'"y = tr(y XH) and
the property of the trace operator tr(ABCD) = tr(BCDA) [53] we rewrite (4.81) to

%L(Xm):Nt{RI(B)(%R(B)j 1(9)( XX - R(O)D. (4.82)

i

We now note that the term 1/N-X-X" in (4.82) can be understood as an estimate of the co-
variance matrix R and introduce the non-parametric estimate of the covariance matrix as

R=Lxx". (4.83)
N

Using (4.83) in (4.82) yields for the score function

%ﬁ(xm):m{ -1(9)( R(O)J “(0)(ﬁ—R(9))J (4.84)

i

or equivalently

% £(X[0) = Ntr[R‘l (9)[£R(G)j (R(O)R- 1)] . (4.85)

i i

The stochastic Fisher matrix is the second gradient of the log-likelihood function [40], hence
we take the second partial derivative with respect to the parameter 6, and obtain

89‘?;@ ﬁ(x|9)=Ntr[—R-l(e)[%R(e)j -‘(e)( R(B)}( RI(O)R 1)+
+R (e)[a;;gk R(B)j (R @)R-1)+ (4.86)
—R“(B)[ QR(B)) -‘m{%mm}n-lmn&}

Now assuming an unbiased estimator for the covariance matrix
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E{R(0)-R(8)}=0,and E{R"'(6)R(0)}=

we yield for the elements of the Fisher Information Matrix the equation

]ikz—E{aéf;Qk L(X|0)}=Ntr{ 1(9)( R(B)] 1(9){%1«(9))}. (4.87)

The sum of the main diagonal elements (trace) of the product between a square Hermitian
matrix A =A" and an arbitrary square matrix B can be expressed using the vector operator
Vec{O} as

N
tr(A-B)=tr(A" -B)=>"a"b, = vec{A}" vec{B}.
n=1

Consequently, using the decomposition R(8)=L(0)-L"(8), a single element of the Fisher
information matrix can be expressed as

5 :—E{ ik L(x|e)}:N.VeC{L—l(e)(%n(e)jL—H(e)}H Vec{L‘](B)(%R(B)jL‘H(B)}.

00,00, ]

i

Employing the vector operator Vec{O}, the matrix containing the partial derivatives with re-
spect to all L elements of the parameter vector 0 can be defined as

. D(B):{Vec{Ll(ﬂ)(%R(ﬂ)JLH(ﬂ)} V@C{Ll(e)[aa R(e)jLH(e)H. (4.58)

1 L

Using the matrix D(B) the Fisher Information matrix J(B) of the parameters @ can be ex-
pressed in a compact form by

62
20,00,

7(0)= —E{ L(X|B)} =N-D"(0)-D(0). (4.89)

Now we can easily derive the asymptotic Cramér-Rao lower bound [40] on the variance of
any unbiased estimator @ for the parameters 0 as

- CRB, = 7"(0)=— (DH(B)D(B)) <E{(9 0)6- 9)} (4.90)

Furthermore, using the matrix D(O) in the expression for the score function (4.84) yields the
compact form by

9 £(X,0)= N-D"(0)-vec{L(O)R L (0)-1. 4.91)

[ | q(X, 9) =
So far, we have derived a general expressions for the score function, the Fisher information
matrix, and the Cramér-Rao lower bound of the parameters 0.

Since toep(O) is a linear operator the first order partial derivatives of (2.67) with re-
spect to the parameters 0,,,. are given by

0

0 0
u %R( DMC) toep[@ﬁ (DMC)’a_HiKH(eDMC)j‘ (4-92)

1
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Hence, we have only to calculate the first order partial derivatives of (2.68) with respect to the
four parameters in the parameter vector 0, =[a, @, S 7,]' to derive the related Fisher In-
formation matrix. The four partial derivatives are

aik(ﬂ)=eo, (4.93)
en
—jomz, —jan(M-Dz, T
ik(g)zi{i & S L M‘} , (4.94)
o, M\ B, B,+i2ny; B, +2n G
0 a| 1 g 2 I
—K(B):——1|: 3 - 2 ﬁ , (495)
op M (B,) (B, +32myp) (B, +j2m g
and
_ 3 L a—i2nrg s _1). a—i2n(M-1)z, T
ﬂx(e)=ﬁ{o Sime (M) } | w6
07, M By +32m5y B+ 2m i

Using equations (4.92) - (4.96) in (4.90) one can now easily calculate the Cramér-Rao lower
bound of any unbiased estimator 0,,. for the parameters 0,,,. of the covariance matrix
R(0,,,). Table 4-6 summarises the processing steps for the calculation of the Cramér-Rao
lower bound on 0, .

Table 4-6: Summary of calculation steps for the Cramér-Rao lower bound on any unbi-
ased estimator for 0 ,,,. (SML)

Input: Parameter vector 0,,,., Number of independent realisations N

1) Compute the first order derivatives (equation (4.92) - (4.96))

2) Compute the matrix D(O) using equation (4.88) (section 6.1.12 describes an
computationally efficient algorithm for the multiplication with the inverse
Toeplitz matrix R™(0,,,.)).

3) Compute the Cramér-Rao lower bound CRB,, = %(DH(B)- D(B))f1

4.4 Joint DML and SML Problem

So far, we have derived explicit expressions for the DML problem and the SML problem in-
dependently. However, for channel parameter estimation from channel sounding measure-
ments all parameters of the model must be estimated jointly. Therefore, we derive in the fol-
lowing the Fisher information matrix and the Cramér-Rao lower bound for the joint estima-
tion problem.

The general structure of the Fisher information matrix of any estimator for the parame-
ters of a multivariate normal distribution

1 H -1
x|0,(0)) = o ~(x=3(8))7-R(6)"(x-s(8))

is due to [40], [43], [54], and [55] given by
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(7. =2. i}{{%sH(B)] R (e)(%s(e)j} ¥ tr{Rl (9)(6% R(B)] R (e)(% R(B)]} (4.97)

i k

Since the parameters 0,, of the deterministic components, i.e., of the concentrated paths
s(ﬂsp) are not parameters of the distribution of the dense multipath components d,., 1.e., of
the covariance matrix R(G) and vice versa, the Fisher information matrix is a block diagonal
matrix

(4.98)

76,) 0 }
0 j(edmn ) '
Consequently, the Cramér-Rao lower bound is a block diagonal matrix too with one block for

the parameters of the deterministic components and one block for the parameters of the dense
multipath components

m 7(0) {

(4.99)

o | CRB,, 0
u CRB()C;", = j(echn) = v

0 CRB,

zzzzzz

This has two consequences. First of all the expressions for the Cramér-Rao lower bounds
(4.21), (4.70), (4.75), (4.78), and (4.90) are also valid for the joint estimation problem. Sec-
ondly the disjoint parameter subsets 0, and 0,,,. are asymptotically uncoupled. The latter
statement has important consequences for the structure of the parameter estimator to develop.
We will make use of this model property in the subsequent chapters.

4.5 Conclusion on the CRLB of the Deterministic Parameters

For the model developed in Chapter 2 explicit expressions for the Fisher information matrix
and the Cramér-Rao lower bound can be given. The equations are structured in such a way,
that almost all possible channel-sounding setups are covered.

The Cramér-Rao lower bound provides an effective means to decide, whether a propa-
gation path should be classified as a concentrated propagation path or not. If it is too weak, it
should be added to the stochastic process describing the dense multipath components or to the
measurement noise. Here the term too weak refers to the lower bound on the relative variance
of the propagation path.

Furthermore, it has been shown that the FIM is not only a matrix on the way to the
Cramér-Rao lower bound of the model parameters. It provides insight in the properties of the
parameter estimation problem. In general, it is a powerful tool for diagnostic purposes. In ad-
dition, the FIM plays an important role in the parameter estimators described in the following
chapters.

We can split the joint estimation problem for all propagation paths often into decoup-
led sub-problems. Each sub-problem contains a smaller amount of propagation paths. This
can be exploited to reduce the complexity of the parameter estimator. The probability that a
given problem can be separated grows with M, and with the amount of parameter dimen-
sions R,, available to resolve the propagation paths. Nevertheless, the structure of the FIM
shows also that we should not split the entire problem into P sub problems a priori, since
some of the P propagation paths might be coupled. As we shall see later, this observation is
of crucial importance for the choice of the parameter estimator, e.g., whether the Expectation
Maximization algorithm is a good choice or not.

The Cramér-Rao lower bound of closely spaced, i.e., coupled propagation paths de-
pends on the parameters of all propagation paths in a path group.
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It is important to recognize that the data model is the crucial point in parameter esti-
mation. The real art is the selection of a model, which is accurate enough. In the same context
we have to state that an excessive accurate model is unsuitable as well. This is due to the fact
that all radio channel observations contain finite information about the underlying noise-free
radio channel. Observe that for the concentrated propagation paths the term “noise-free” im-
plies that the observed channel contains no dense multipath components.

The bound on the relative variance of the weight parameters provides a means to con-
trol the model complexity, as stated in Example 4-4. That means for every propagation path
the following inequality must be fulfilled

CRB,
2
[vl

Equation (4.100) is an effective way to determine the number of assessable propagation paths
in an observation. The estimate of the relative variance, i.e., the individual SNR of a propaga-
tion path is used in Section 5.2.7 for model order selection. That means it is used to determine
the number of specular propagation paths in a radio channel observation. Furthermore, rea-
sonable values for 6‘;‘ are given therein. As already discussed in Example 4-4, the expressions
for the Cramér-Rao bound will not provide reasonable estimates of the variance of the path
weight if the SNR of a propagation path is close to 0dB or negative. However, this is a weak
restriction since only propagation paths with a positive SNR (dominant paths) are of interest.
For further discussion on the validity of the Cramér-Rao bound see, e.g., [49], [56]. In [57] it
has been shown that the maximum likelihood estimator developed within this work reaches

the Cramér-Rao lower bound for the propagation path parameters derived in this chapter, pro-
vided the radio channel sounder including the antenna arrays is well calibrated.

<gy <l. (4.100)



5 Estimation of Path Parameters

In recent years, high-resolution channel parameter estimation from channel sounding meas-
urements has attracted a great deal of interest. Initial research work was focused on the esti-
mation of direction of arrival (DoA) of the propagation paths at the base station and was
shortly after, extended to the joint estimation of time-delay and DoA [58], [59]. The pioneer-
ing work of Steinbauer et al. [60] on the measurement of the double directional radio channel
roused the interest in the joint estimation of direction of departure, time-delay, and direction
of arrival [61], [1], [6] from channel sounding measurements.

As already discussed in Chapter 2, the radio channel observation x is a realisation of a
stochastic process, and the parameters 0 are stochastic too. The aim of radio channel meas-
urements in combination with channel parameter estimation is the determination of the distri-
bution p(). We assume that no prior distribution p(8) of the unknown parameters is avail-
able. In other words, we choose the uniform distribution as a prior for 0 . Hence the maximum
likelihood estimate

6 =argmax(p(x,0))
is given by

)
since

p(x.0)=p(x[0)p(6)

and p(0)= const . Nevertheless, one should observe that if reliable probability densities of the
parameters 0 are available, the parameter estimator developed within this work, can be im-
proved further by taking them into account. This will lead to better parameter estimates, i.e.,
to parameter estimates with a lower variance.

For the estimation of propagation path parameters from channel sounding measure-
ments, two classes of parameter estimators have been deployed so far. Namely, various algo-
rithms belonging to the so-called subspace based class of algorithms and algorithms based on
the SAGE (space alternating generalised expectation maximization) procedure [62]. Since the
authors of [63], [64], and [11] did not assign a name to their SAGE based channel parameter
estimation algorithm we will refer to it in the following as SAGECPE1. Subspace based
channel parameter estimation algorithms reportedly used to estimated propagation path pa-
rameters are Unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques) [65], [44], [15], MUSIC (MUltiple Slgnal Classification), and RARE (Rank Re-
duction) [66], [67]

77
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All algorithms published so far have widely ignored the contribution of the dense mul-
tipath components to the radio-channel observation. The models used to develop the parame-
ter estimators are usually based on the assumption that the channel observation contains only
concentrated propagation paths and white receiver noise. The first and obvious drawback is
the lack of information about the distribution of the dense multipath components in the pa-
rameter estimation results. Omitting the dense multipath components in the channel parameter
estimator’s data model causes also significant problems while estimating the parameters of
the concentrated propagation paths. Mainly two problems arise if we assume that the covari-
ance matrix is a scaled version of the identity matrix. The first problem observed, is that
highly sophisticated model order selection criteria based on stochastic complexity arguments
such as AIC (Akaike information criterion) or MDL (minimum description length) fail to de-
tect a useable number of assessable propagation paths, since the data model is wrong. Often
the estimated model order is completely wrong, leading to unacceptable estimation results of
the parameter estimator. Secondly, the estimator approximates the distribution of the dense
multipath components with concentrated propagation paths what will fail since the observed
information is not sufficient to accomplish that. It is important to note, that both errors de-
scribed are not caused by any inability of the estimators or the used estimation framework, but
rather by the incompleteness of the data model. In general, the robustness of parameter esti-
mators depends heavily on the completeness of the data model used to derive the estimator.

The objective of the subsequent sections is to develop an algorithm framework for
high-resolution parameter estimation from measurements. The parameter estimator should
compute parameter estimates for every observation and provide reliability information about
the parameter estimates. In general, we expect the estimator to process data without user in-
teraction. The derivation of sufficient statistics for radio channel parameters p(ﬂ) requires the
processing of large amounts of data, i.e., thousands of observations. The main challenge of the
parameter estimation problem is the complexity. If the number of observable propagation
paths is 100 and all model parameters can be estimated, the total number of real-valued propa-
gation path parameters is 1400. Consequently, we can classify the problem as a mid- or large-
scale problem. Additionally, no algorithm for the joint estimation of propagation path parame-
ters and DMC parameters exists.

5.1 Global Maximization Algorithms

Given a channel observation x, the maximization problem to solve is

b

0 1 (ool ) R0, (x50,
P = P lan sp
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or equivalently
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The methods to solve (5.1) described in the following are implicit in nature. The parameter
estimates are defined as the maximizing or minimizing arguments of some nonlinear objective
function. In practice, finding the solution of (5.1) is far from trivial, especially since the num-
ber of nonlinear parameters (i.e. structural parameters) is large. In the following, we propose a
computationally attractive and reasonably reliable procedure to solve such a problem. The
procedure is based on numerical nonlinear local optimisation techniques, such as Gaul3-
Newton, Levenberg-Marquardt [68], or iterative maximum likelihood [40]. The initial values
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for the local optimisation algorithms are estimated with suitable global search algorithms or
are handed down from the previous observation.

Usually a long sequence of channel observations, taken over time, has to be processed.
Since the structural parameters (time-delay, angles, Doppler-shift) of the radio channel change
slowly over time, the parameter estimates of the actual observation can be used as the initial
values for the nonlinear parameters of the subsequent observation. This reduces the computa-
tional complexity of the global search procedure significantly, because only initial values for
propagation paths, emerged in the actual observation, have to be found. Candidate algorithms
for the determination of the initial values are based on the Expectation-Maximization ap-
proach [69]. In some cases also subspace based algorithms such as multidimensional Unitary
ESPRIT, or RARE [66], [67] can be applied to find initial values. The applicability of the
subspace-based algorithm depends primarily on the structure of the measurement system ma-
trix G (cf. Section 5.3.11).

The joint maximization of the log-likelihood function (5.1) with a multidimensional
exhaustive search is not feasible in practice. A way to find a solution is to separate the prob-
lem into smaller sub-problems. Due to [62] we can solve the joint maximization problem if
we choose parameter subsets and maximize the objective function in an alternating manner
with respect to the subsets. An obvious choice for two parameter subsets are the parameters
sets 0, and 0, . So we suppose for the time being the covariance matrix R, of the stochas-
tic process n is known, i.e., we know the parameters 0, . Consequently, the maximization
problem (5.1) reduces to

dan *

] 0 =arg mein(x -s(0))" R, -(x—s(0)). (5.2)

The term (x—s(0))" -R'-(x—s(8)) in equation (5.2) is the so-called Mahalanobis norm or
Mahalanobis distance [70], [71].

Because the objective function (5.2) is a nonlinear function in the structural parame-
ters p and since we minimize a weighted error (Mahalanobis norm) the maximum likelihood
estimation problem can also be classified as a nonlinear weighted least squares problem
NWLS. To be precise, the problem to solve is an optimally weighted least squares problem,
since we do not use an arbitrary weighting matrix. Optimally weighted refers to the fact, that
the inverse noise covariance matrix R is used as the weighting matrix.

It is a well-known fact from estimation theory [40] that the maximum likelihood esti-
mation of data corrupted by additive normal distributed noise is equivalent to the solution of a
(weighted) least squares problem. Surprisingly, this is rarely discussed in publications dedi-
cated to maximum likelihood radio channel parameter estimation. Nevertheless, it is an im-
portant observation since a large amount of numerical optimisation algorithms exist for this
class of estimation problems since a long time.

If the stochastic part of the observation n is a zero-mean circular Gaussian 1.i.d. proc-
ess with covariance R, =c’I, the minimization problem reduces to a classical nonlinear
least squares problem NLS. We search for the value @ minimizing the error x—s(0), i.e., we
minimize the Euclidian norm or Frobenius norm

0 = argminfx—s(0)..

The general structure of the model describing the contribution of the concentrated propagation
paths to the channel is due to (3.3) given by

s(0)=B(n)-y, s(0)eC"" (5.3)
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with B(p)e C""*" | the structural parameters pe R*", and the weights ye C"*"". The
scalar N, € [1 2 4] denotes the number of path weights per path, i.e., how many weights
from the complete set ¥, , uy» Vv » Vv are contained in the model. Using (5.3) in (5.2)
yields

| areminGe B0 R B ). 54)

Since the parameters y are linear parameters, the minimization problem (5.4) can be solved
directly for ¥ given a parameter set i . For any i the “best linear unbiased estimate”
(BLUE)’ is determined by

" 7=(B"(R)-R; -B(R)) -B"(1)-R; -x. (5.5)

The value ¥ is the maximum likelihood estimate of y. The estimate is consistent and the
estimator (5.5) is statistically efficient [22]. Replacing y in equation (5.4) by its estimate ¥
yields

. . _ _ - -1 _
fi=arg mum((XH Ry} x)- (xR, B (0)-(B" ()R, -B) (B (0)-R,. X)), (5.6)
Hence, the maximum likelihood estimate fi,, is the value minimizing the function

iy (xj) = ("R, -x)-(x"-R;! -B(n))-(B"(n)-R;.-B(n)) -(B"(n) R -x). (5.7

Observe that the cost function £}, (x|n) is not a function of the linear parameters, i.e., the path
weights, any more. Function (5.7) is in fact the negative compressed log-likelihood function
[40] for the structural parameters p. Dropping the constant term in (5.7) yields the general
correlation function

- - -1 .
. c(u.x)=(x"-R;}-B(n))-(B"(n)-R,, -B(n)) -(B"(n)-R,,-x). (5.8)
The reduced nonlinear optimisation problem to solve is now

jt = argmin(£;, (x]n)) = arg max(C(p, x)) .

Since the joint optimisation problem with respect to ¥ and fi can be separated into a optimi-
sation problem of [i only, the estimation problem constitutes a separable least squares prob-
lem (SLS) [72], [73]. Once we have estimated ft we can calculate the best linear unbiased
estimate ¥ directly using the estimator (5.5).

Without additional knowledge about the structure of B(p) the nonlinear maximization
problem can only be solved by an exhaustive multidimensional search over all parameters of
the parameter vector p. Such a global search algorithm has exponential complexity in the
number of structural parameters p and is therefore only applicable if L, is small. In the con-
text of channel parameter estimation L, can be considered as small only if L, € [12].

Let us, for the time being, assume the observation contains a single propagation path.
In the subsequent examples, we will discuss some typical cases of (5.8). Depending on the
structure of the basis function B(p) and the covariance matrix R, , the expression for the
correlation function can be simplified.

nn 2

? Observe that the estimate (5.5) is also known as the weighted least squares or GauB-Markov estimate [135].
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Example 5-1: i.i.d. circular complex Gaussian process

First, let us assume the noise covariance matrix has structure R = o1

C(n,x) = L(XH B(w))-(B"(n)-B(p)) - (B"(n)-x). (5.9)

0_2
Using the QR decomposition to factorize the matrix-valued function B(p) yields

- B(p)=Q(n) T(p) (5.10)
with

QH("’) : Q("’) = I B and T(l‘l’) c @NPOIXNWI .
The matrix valued function Q,(n) can be interpreted as a unitary parametric subspace. Using

(5.10) in (5.9) yields

1 _1
Cn%)=— (x" QM) T(w))- (T" () Q" (1) Q) T(w)) -(T*(w)- Q" (w) x). ~ (5.11)
This expression for the cost function can be simplified using the definition

m z(n)=Q"(n)x (5.12)

to

1 3) =" QW) Q" (W) x =52, ()} (5.13)

We can interpret Q(p) as a set of matched filters, and the objective is to find the matched
filter and the related parameter set i that maximizes the correlation function (5.13). Having
estimated i we can calculate the best linear unbiased estimate of the linear model parameters
using

7=T" (1) Q"(h) x. (5.14)

The estimated data can be reconstructed using one of the following equations
s(0)=B(h)-7
— O TRY. THAY. OH(R).
=Q(1)-Q" () x
= Q()-z(jr).

N(Qt)e that the estimate ¥ is not necessarily required to reconstruct the complete estimated data
s|0).

Example 5-2: i.i.d. circular complex Gaussian process with covariance matrix R

To simplify the expression for the correlation function

c(n,x)=x"-R™-B(p)-(B"(n)- R -B(n)) -B"(n) R x (5.16)

we decompose the covariance matrix into

R=LL". (5.17)
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This decomposition can be accomplished by using the Cholesky decomposition. Using (5.17)
in (5.16) yields

Clux)=x"-(LL")" - B(w)- (B (0)-(LL") - B(w)) B (w)-(LL")

what can be rewritten to

c(pn,x)=x"L"L'B(p)- ((L"B(p))H -L’IB(p))fl (L'B(n))" - L'x. (5.18)

Now we introduce the observation with applied pre-whitening x' = L''x, and the matrix val-
ued function with pre-whitening B'(n)=L"'B(n). Using these definitions, the expression for
the cost function can be simplified to

C(mx)=(x" - B'())- (B" () B'(w)) - (B () x'). (5.19)

It is instructive to observe, that the new cost function (5.19) is equivalent to (5.9), that is rea-
sonable since the coloured noise in the observation x has been transformed into i.i.d. normal
distributed noise by the pre-whitening matrix L™ . Using, the QR-decomposition of the trans-
formed matrix valued function B'(n)=Q'(n)-T'(n) yields z'(n)=Q"™" (n)x'. Therefore, the
cost function can simply be calculated as

n C(p,x)=x"-Q)(n)- Q™ (n)-x' =z, () -

Example 5-3: i.i.d. circular complex Gaussian process, complex exponential model, one
parameter (< [— n,+7t).

In this example, we investigate the estimation of the scalar parameter y of the complex ex-
ponential model

- B(u)=Q(u)=a()= \/_ e e*J’H%)-#]T' (5.20)

Since the basis-function a(x) has unit norm the cost function can be calculated by

Cax) =5 x" alan)-a" () x =5 " ) (521)

Now let us suppose, we sample the parameter domain of x equidistantly on N points yield-

ing the set p, =2m-[-1,~1+L.. ,%——] Furthermore, we assume that the number of sam-
ples of the parameter domain is equal to the number of samples in the observation x. Conse-
quently, the cost function sampled at the points p, can be efficiently computed using the FFT,

i.e., by

. C(,.x) == (F'x)o (F'x) e R, (5.22)
o

Here, the matrix F denotes the DFT-matrix. Furthermore, if the number of samples of the

parameter domain is larger than the number of samples in the observation N > M the cost
function can be computed using the FFT by using zero padding, i.e., by computing

_ st HyH HyH_ )
m C(p,,x)= Ve (F J x)o(F J x)
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using the selection matrix J =[I 0]e R**"*. One should note that the FFT is fast if the num-
ber of samples N can be factorized into a product of small prime numbers.

Furthermore, one should observe that the cost function is a representation of the im-
pulse response if we assume that the observation x contains samples of the channel transfer
function. If the observation contains data measured with a uniform linear array the cost func-
tion is effectively a beam-space representation of the data. Finally, if we assume that the ob-
servation contains samples of the radio channel taken over time at the same frequency, and
between the same Tx-, Rx-antenna pair, than the cost function is simply a representation of

the Doppler-spectrum. The estimated data are reconstructed without explicit estimation of 7
by

s(0)=a(a) 7 =a(i)-a" (1) x. (5.23)

Example 5-4: circular complex Gaussian process with Toeplitz-structured covariance
matrix R, complex exponential model, one parameter u < [— n,+n).

In this example, we investigate the estimation of the scalar parameter y of the complex ex-
ponential model

R L e’J(*%)-ﬂ]T

1
(1) =Q(p)=a(u) M
in coloured noise. The cost function can be expressed as

_ |xH R a(,u)|2
a(u)"Ra(u)

At first, we calculate the solution a’(x)=R ™" a(x). Using this solution in the expression for
the cost function yields

C(u,x)

x'a'(u) | x"al(w)

|
a(u)"a'(u)  |a(u)"a'(n)

C(u,x) =

So, we introduce the vector valued function

a'(u) (5.24)

- (1)=———,
O B a )

and compute the cost function using the expression

C(u,x)=|x"q(p)[ -

Here, it is important to note, that the computation of N solutions to a system of equations
involving a Toeplitz matrix can be computed in O(NM log(M )) operations. Such an algo-
rithm is described in Section 6.1.12. The application of the pre-whitening approach leads to an
algorithm for the computation of the cost function with a higher computational complexity.
This is due to the fact, that the decomposition of the covariance matrix used in the pre-
whitening approach leads to a matrix L. without Toeplitz structure.
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5.1.1 Basis Functions with Kronecker Structure

The radio channel model for a single propagation path can be expressed as a weighted sum of
the Kronecker product of four basis functions

s0,)=(B,®B,®B,®B,)ycC"",

M ;x1

with BT =BT(/U(¢T),/U(8T))E CMrXZ , BR ZBR(,U((PR),,U(&R))E CMRXZ , Bf =Bf(Z')E cMr ,
B,(a)eC" " y=[Vu Yur Vwu 7w ] > and the parameter vector describing the single path

entirely

(%)

a T T 9 R T
0 p =L”( ) /U( ) :U(gg ) /U( ) #(4; ) H YVeamy YVaai Yave YVavi YVvar Yvei YVvvr 7VV,i] .

(5.25)

This follows directly from the data model (2.29). We exploit in the following the Kronecker-
structured of basis functions to get more insight into the structure of the correlation function
(5.8). Since all matrices B;, B, B, B, have the same structure, we drop in the following
the index (T, R, f, t) and use the general form B, (p ) First, we decompose the matrix valued
function B(p) using the matrices B,(n")e CcM2 B (' ))e C"? into

B(n)=B,(n”)® B, (u"). (5.26)
And we factorize the covariance matrix R, using R, e C**' /R, e C">** into
R, =R, ®R,. (5.27)

Using (5.26) and (5.27) in expression (5.8) for the correlation function yields

cu)=x"((R;"-B,(1®): (B (+@)-R;'-B, ()" - B (u®)-R;')®
(R, -B,(1")-(B! (n")- R, B, (1)) B (u")- R x.

Observe that the cost function retains the same structure. The two-dimensional case can be
easily extended to the R, -dimensional case due to its regular structure. Here, R, -
dimensional refers to the number of data dimensions and not to the number of parameter di-
mensions R, (cf. Section 2.4.5). The decomposition of the matrix valued function in the R, -
dimensional case becomes

(5.28)

B(p)=B, (n*)®...@B,[ "), (5.29)
and the decomposition of the covariance matrix yields
R, =R, ®..Q®R,. (5.30)
Using the expressions (5.26) and (5.27) to express the correlation function leads to

C(ll) =x ((RR,) BRD (H(Rl) ) ) (BI;D (”(Rl))) Rl_el,) BRD (H(Rl)) ))71 . BI;D (u(RI) ) ) R;ID )@
: (5.31)

O (R, B, ") (B(") R B, () B )R

It is instructive to see that the correlation function keeps its structure in the individual data
domains. However, expression (5.31) is somewhat unwieldy. Therefore, we apply the same
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pre-whitening approach as in Example 5-2, equations (5.16) - (5.19) . To this end, we define
the transformed matrices

B.(n")=LB,(u") Vr,r=1,...R,, (5.32)

using the decompositions R, =L, L. The QR-decomposition of the R, matrix-valued func-
tions (5.32) is given by

B, (n")=Q, (") T,(n") Vrr=1...R,. (5.33)

The pre-whitening of the observation can be expressed as
n X =(L} ®--®L)x. (5.34)
Using some simple math yields the expression for the correlation function
(%) =x"((Qp, (0")- Qi ™ ))®...® Q] (n")- Q" (u")))-x
that is equivalent to
c(n.x)=x"(Q, (1*)®...0 Q")) (@} (1*)®...0 Q" (n"))-x.

This expression is useful. We define the vector valued function

. 2(1,x)=(Q (p)®..®Q;" (u"))-x (5.35)
and express the correlation function simply by
C(wx) =[x (5.36)

The advantage of expression (5.35) is that every data dimension can be processed individu-
ally. This is a natural result, if we consider how we would transform channel transfer func-
tions measured with a ULA into the time-delay and the beam-space domain. We apply a 2-D
DFT to accomplish that. However, we can also first transform the data into the time-delay
domain with a 1-D DFT and in the next step the beam-space using another 1-D DFT. Fur-
thermore, the order of the two transformations can be chosen arbitrarily.

The derived expression for the correlation function (5.35), (5.36) allows the processing
of polarimetric channel sounding measurements, as well as the incorporation of the covari-
ance matrix of the dense multipath components. The expression is a prerequisite for a number
of parameter estimation algorithms, as we shall see in the next sections. It leads furthermore
to a general form of the multidimensional power profile also covering the polarimetric case.

5.1.2  Efficient Computation of the Correlation Function

The straightforward implementation of expression (5.35) leads to an algorithm, which is inef-
ficient especially in terms of memory usage, but also in terms of computational effort. The
main drawback of the direct implementation is the computation of the Kronecker product.
This leads to large matrices and requires therefore a large amount of memory. Observe that
the storage of the Kronecker product of all matrices Q, =Q, (p(r)) requires more memory in
the polarimetric case as the storage of the observation itself. The relationship between the
number of samples in the observation xe C" and the column-size of the matrices
Q, e C"*" is given by

Rl)

M=]]M,.
i=1
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The relation between the length of the vector z e C"' and the row-size of the matrices Q, is
given by

Rl)

N=]]N..
i=1

Instead of computing the Kronecker products, one can as well multiply the individual data
dimensions r of the observed data with the related matrices Q, . For the first dimension, we
yield the expression

Rl) T
[ | X, = VCC{(QIH ~mat{x,M1,HM,}j } (5.37)
i=2
For the penultimate dimension we get
g-1 Rp T
n X, = vec [QI; -mat{qu,Mq,HNi : HM,}] : (5.38)
i=1 i=q+1

and in the last step we compute the result

Rp-1 T
] z= Vec{[Q;‘D ~mat{xRD1,MRD T }j } : (5.39)
i=1

Observe that the order of the data dimensions can be chosen arbitrarily, since the data dimen-
sions are independent from each other. Observe that the pre-whitening step is not necessary
for the data model developed in Chapter 2. Furthermore, the expressions for the matrices Q,
have been derived in the previous section. Table 5-1 gives an overview of the parameter do-
mains and the related expressions.

Table 5-1: List of parameter domains and related expressions for the construction of the
matrices Q, required for correlation function computations.

Data domain Parameter domain Example and Expression
Antenna ports Tx Tx azimuth, Tx elevation Example 5-1, (5.10)
Antenna ports Rx Rx azimuth, Rx elevation Example 5-1, (5.10)
Frequency domain Time delay of arrival Example 5-4, (5.24)
Time domain Doppler-shift Example 5-3, (5.20)

Suppose we want to calculate some samples of the correlation function with respect to
one data-, or parameter-domain. For example, we want to calculate the PDP for a specific
Doppler-shift z'*), Tx-angle p'” =[,u(“”) ') ], and Rx- angle p® =[,u(‘/”‘) ,u(g’*)]. To this
end, we compute two matrices representing two beam formers Q(u(”), Q(u(R)). In addition,
we compute a vector q(,u(“)), which plays the role of a Doppler-filter. Applying the three ma-
trices to the respective data dimensions yields a reduced observation containing channel trans-
fer functions X', € Mo, Using this matrix the PDP can be calculated in an arbitrary reso-
lution by correlation with vectors constructed according to (5.24). Using this approach the
computational effort is significantly reduced, if some samples of the correlation function in
the same parameter domain have to be computed. Furthermore, the memory requirements for
the calculation of a section of the cost function are lower in comparison with the straightfor-
ward implementation based on (5.35).
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5.1.3  Relation between Correlation function and Multidimensional Power Spectra

Observe also that the correlation function (5.8) has a direct physical interpretation. If we cal-
culate a set of samples of this correlation function in all six parameter domains, we transform
the observed data into the time-delay-, Doppler- and angular-domain. One can understand the
correlation function as correlation values in a six-dimensional hypercube. Every dimension
represents one of the physical parameter dimensions (TDoA, Tx azimuth and elevation, Rx
azimuth and elevation, and the Doppler-shift). The large magnitudes of this correlation func-
tion correspond to the observable propagation paths. Due to the weighting with the covariance
matrix of the stochastic part of the measured channel, the magnitudes of the peaks of this cor-
relation function corresponds directly to the total signal-to-noise-ratio of the individual propa-
gation paths, in terms of channel parameter estimation. The appropriate weighting with the
covariance matrix R, as well as the handling of the polarisation is the main difference to the
usual representation of a radio channel in the joint time-delay- (impulse response), Doppler-
(Doppler spectra) and angular-domains (angular power spectra). This is a by-product of the
development of the maximum likelihood estimator. Nonetheless, it is a powerful tool provid-
ing insight into the characteristics of the radio channel. Furthermore, it is useful for diagnos-
tics purposes, €.g., it can be valuable while implementing a high-resolution parameter estima-
tion algorithm.

Replacing the covariance matrix R, ~with the identity matrix I yields a representation
of the observed radio channel x as a power profile even for polarimetric channel measure-
ments. Here, the magnitudes of the peaks correspond to the total power transfer factor of the
individual propagation paths.

5.1.4  Iterative ML Estimation using Parameter Subset Update Techniques

Suppose the number of observable propagation paths is P. Then the radio channel observa-
tion can be expressed as

X= \/a_ow + ddmc + is(ew’p ) ’
=

For the clarity we combine the vector /o ;w describing the measurement noise and the con-
tribution of the DMC to the observation in one vector n,,, =d,, . ++/c,w and express the
radio channel observation as

dme

P
x=n,,+>s0,,) (5.40)
p=1

Since the contribution of the concentrated propagation paths can be expressed by the superpo-
sition of individual paths, we can maximize the correlation function sequentially in respect to
the parameters 6, of theirs. In other words, we minimize the objective function in (5.2)
sequentially with respect to parameter subsets.

Let us suppose we have estimates éi;} , for all propagation paths in the i optimisation
step. If we want to improve the estimates of the parameters describing path p, we partially
remove the contributions of the other paths by

P

n X, =X— Zs(ﬁsp’k). (5.41)

k=Lk#p

This approach reduces the parameter estimation problem to the estimation of the propagation
path parameters of path p only, i.e.,
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{i+1} {i} U p-l. (¢l

BS;p =arg m1n( s(ﬂsp,p )) ‘R, -(xp —s(ﬂsp’p ))

This iteration can be understood as an application of the expectation maximization algorithm
(EM) [69]. Since the parameter estimation problem constitutes a separable least squares prob-
lem [72], [73], the non-linear parameters p, and the linear parameters y, can be improved
sequentially. At first, we update the non-linear parameters by using the maximization step

AU = arg max(C(u, x!! ). (5.42)

In the second step we solve for the linear parameters using a closed from solution, e.g.,

U = (B (™) R, -B@l™)) B ()R, X

Together, the linear and the non-linear parameters yield the updated parameter vector éi’;ﬁ
Since we update the parameters sequentially for every path, and sequentially for the non-
linear and linear parameters, the resulting algorithm can be understood as an application of the
SAGE method for maximum-likelihood estimation [62].

Having noticed, that every data-dimension of the path model can be processed sepa-
rately, when computing the correlation function C(p,x), we reduce the size of the jointly up-
dated parameter subspaces further Since We have four independent data dimensions, the ad-
missible subsets are ,up , ,u o) ,u;‘”R , ,u , ,u(’) , and ,u(“’ Observe, that the subsets
,u;‘”T , ,u; and ,u(‘”R e ) should not be divided any further. "This is due to the fact that, the
response of an antenna array cannot be decomposed into a product of two independent array
responses, €.g., into an azimuth- and an elevation-response. However, there exist some spe-
cially array structures where this decomposition is possible. Namely, the array response of an
ULA or an URA can be factorized in this way as discussed in Section 2.4.

The outlined algorithm is very simple and regular in its structure and therefore very at-
tractive. Unfortunately, the estimator has a serious drawback. The fundamental problem lies
in the very first simplification, i.e., to optimize the parameter sets for every propagation path
independently. This approach will result in a fast converging algorithm only if the modes of
the individual paths are almost orthogonal. Otherwise, we have to accept that, due to the cou-
pling between the modes, the convergence speed is significantly reduced. This issue of pa-
rameter coupling has already been addressed in Section 4.1.4. The solution to iterative maxi-
mum likelihood estimation and further discussions regarding their convergence speed can be
found in Section 5.2.3 and the following.

One should note that the outlined maximization strategy is similar to the alternating
projection algorithm [74] developed by Ziskind et al. and the RELAX algorithm proposed by
Liet al. in [75], [76], [44]. Although they have not been designed for the same data model, the
underlying estimator concept is clearly the same. Furthermore, the SAGECPEI1 [63], [64],
[11] is based on the same estimation strategy, but ignores the contribution of the dense multi-
path components. The algorithm is based on the assumption that a channel observation con-
tains only concentrated propagation paths and i.i.d. circular Gaussian noise.

5.1.5 Path Parameter Initialization for Iterative Maximum Likelihood Algorithms

A critical part in all iterative optimisation algorithms is the choice of a good initial value. An
exhaustive search over all possible parameter combinations is not feasible considering the
high computational complexity. In radio channel parameter estimation, often sequences of
some hundreds even several thousands of channel observations, taken over time, have to be
processed. Since the structural parameters are slow time variant, it is not necessary to deter-
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mine initial parameters for all propagation paths. Instead, we use the estimates of the struc-
tural parameters of the previous observation as initial values for the actual observation. Hav-
ing estimates for the structural parameters, we can always calculate initial values for the linear
model parameters, i.e., the path weights using a closed form solution such as (5.5). This ap-
proach to parameter initialization inherently provides a means to track propagation paths over
a long time. We will only loose track of an individual path, if it coincides with a second path,
if it is shadowed for some time, or if the estimator jumps to another path. The tracking of
propagation paths is out of the focus of this work. A first attempt to improve the tracking per-
formance of the channel parameter estimator developed in this work has been made by Al-
geier et al., the approach and first results are presented in [48] and [77].

Since some propagation paths become suddenly visible if a time variant radio channel
1s measured, we are still left with the task to estimate initial parameters of “newborn” propa-
gation paths. To accomplish this we remove at first the contributions of the tracked propaga-
tion paths from the actual observation. This can be carried out using

=x-Ys, ). (5.43)

p=l

In the remainder x,, we search for new propagation paths and their parameters. If the number
of parameter-domains is small, R,<3 asa rule of thumb, we can calculate the correlation
function of the remainder x, sampled sufficiently densely in all parameter domains. The po-
sition of the maximum of the correlation function determines the initial structural parame-
ters p,,, for the new propagation path. Using these parameters the linear parameters can be
estimated from x, by the close form solution (5.5). However, if the number of parameter do-
mains is large the effort for the computation of the correlation function, which is dense sam-
pled in all parameter dimensions, is very high. If we accept an approach being statistically less
efficient, we can reduce the computational cost. The basic idea is to exploit the independence
of the data domains, while respecting the covariance matrix R,, of the stochastic part of the
observation.

Let us suppose for the beginning that the covariance matrix R, has the struc-
ture R, =1 . Applying expression (5.37) to x, yields the matrix

RD
X, = mat{xr M, ,HMI} : (5.44)
i=2

Now motivated by the Kronecker-structure of the data model we interpret the columns of X,
as realisations of the same process. Using a matrix Ql( ) we calculate a set of H M
correlation values by

Z,u")=QMp")-X,,. (5.45)

Ignoring the interrelationship between the columns of Z (p ) we calculate an incoherent
averaged correlation function by

cn®.X,,)=|z, (") (5.46)
Solving the reduced maximization problem

n" =arg max C(p(l), X,~,1) (5.47)
n

we yield an estimate of the parameter(s) i for a new candidate propagation path. One
should observe that the oversampling of the correlation function by a factor of 4 is sufficient
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in most cases. This is because we search for a raw initial estimate of the parameters only. In
the next step, we use the estimated parameter i to reduce the dimensionality of the estima-
tion problem by computing

X,,= Vec{(Qlﬂ(ﬁ(l)).mat{xr,Ml,ﬁMi}j }, (5.48)

i=2

i.e. we apply the same idea as in Section 5.1.2. In the next step, we determine raw estimates
for p® by replacing x_ with X, , in equation (5.44) and the following. Having estimates ji
of all nonlinear parameters the estimates of the path weights can be calculated using the
closed form expression (5.5). Together the estimates fi,,, and ¥,,, yield an estimate 0,,, of
the parameters of a new propagation path. Since some propagation paths are removed from
the entirety of observed concentrated propagation paths after some channel observations, and
new propagation paths are added from time to time it is important to assign every new propa-
gation path a unique identifier. This is crucial important for further processing of estimated
radio channel parameters, e.g., to track the parameters of individual propagation paths over
their lifetime.

To clarify the global search strategy let us discuss an example. Suppose the channel
transfer function has been measured using a 10-element ULA at one link end. At first, we
calculate the 10 related individual channel impulse responses, treat them as independent reali-
sations of the same process, and maximize the log-likelihood function with respect to the time
delay of arrival. Here, a non-coherent combining procedure avoids any assumption on un-
known DoA, or DoD in this step. In the next step, we keep the estimated time delay fixed and
maximize for the DoA or DoD. This reduces the maximization problem to two concatenated
one-dimensional problems. Any arbitrary assumption of the DoA or DoD angles in the exam-
ple would implicitly realise coherent combining, which potentially disregards paths impinging
from other angles by beam forming. This kind of non-coherent handling of data dimensions
related to unknown parameters (e.g. DoA, DoD, Doppler-shift) gives us a higher probability
to detect the relevant parameters, which is the time delay of arrival in the example.

The drawback of the outlined procedure is the loss of correlation gain, since we proc-
ess some of the data domains incoherently. The loss of correlation gain is highest in the first
step. This is the reason why the data domain with the largest amount of samples M, should
be processed first. The outlined procedure is a trade-off between computational complexity
and robustness. A similar procedure is used in the SAGECPE1 [63], [64] and the RELAX
[44] algorithms.

The outlined algorithm is not yet applicable to determine raw initial estimates for new
propagation paths, since we have ignored the contribution of the DMC to the channel observa-
tion. In general, we have to work with the pre-whitened data (5.34). However, we can avoid
the pre-whitening step, since the stochastic process n,,, is only correlated in the frequency or
time delay domain. To this end, we start the global search for an initial solution always in the
frequency domain, i.e., we search for a raw estimate of the time delay of arrival 7, . The re-
spective correlation vectors, taking the colouring of the stochastic process n,,, into account,
are defined in (5.24). The necessary condition for this approach is that the full covariance ma-
trix allows the factorisation

R=R, ®..0R,®R,.

The prewhitening step is necessary in general to guarantee maximum ratio combining of the
correlation values in (5.46).
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Having estimated raw parameters of the new propagation path, the outlined procedure
can be repeated to find additional paths by removing the contribution of the new path
from x, . Le. we increase the number of propagation paths P =P +1 and add the new parame-
ters 0,,, to the complete parameter set 0 . The algorithm for the estimation of raw parameters
0., is outlined in Table 5-2. For further discussions on global optimisation techniques, see
also Chapter 4 in [78]. Observe that the explicit estimation of the linear parameters y is not
necessarily required throughout the algorithm since the estimated data s(@,,, ) can often be
reconstructed without computation of the estimate ¥, e.g., using equation (5.15) or (5.23).

One should note that the outlined procedure might not determine a valid initial esti-
mate for the parameters of new propagation paths if multiple propagation paths arise at the
same time in a measured scenario having the same power. This issue is for example addressed
in [29], [30]. The authors show that the antenna array design has a significant influence on the
probability of false detection. The probability of false detection depends clearly on the or-
thogonality between the basis-vectors of the new propagation paths in a scenario see also
Cond. 5, Section 4.1. If the antenna arrays used for channel sounding are properly designed,
and parameter tracking is applied the probability of “ghost path” detection can be kept to a
minimum.

Table 5-2: Computation of initial path parameter estimates for a new propagation path.

Input:
Data vector x, parameters of the known propagation paths ésp .

Preprocessing:
Sample all parameter domains sufficiently dense (oversampling) yielding
p(s") . Compute all matrices Q, (u(’)) related to the samples p'” .

P
1) Compute the remainder x,,,, =X— z s(ﬂsp’ » )
p=1

i=2

RD
2) Form the data matrix X, , = mat{xrem,Ml ,HMI}.

3) Compute all correlation values C(p(l),Xrem’]) for the set pﬁ’) using

2

C(u'(])ﬂxrem,l): HZI(N“(])]‘F and Zl(u(l)): Q?(u(l))' X1

4) Determine the raw estimate i'") = arg max C(u(l), X, o1 )
n

5) Compute the reduced remainder

X,, = Vec{(QlH(ﬁ(l))-mat{x,,Ml,l_D[Ml}j }

i=2

6) Repeat steps 2 - 5 for the remaining data-dimensions.

5.2 Local Maximization

The algorithms described in the previous section are all based on grid search procedures.
There are basically two drawbacks of the estimation procedure outlined so far. At first the
grid search strategies are in general inefficient in terms of computational complexity, since we
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calculate some function values to improve only one estimate. Secondly, a full search over all
parameter dimensions is not feasible. Therefore, we have to break down the full multidimen-
sional search into one- or two-dimensional search steps. Consequently, we will inevitably
ignore the coupling between parameters. This leads in turn to a considerable reduction in con-
vergence speed if two parameters of the estimated data model are coupled.

Hence we make a step back to the formula (5.4). Basically we have to find the mini-
mum of the function

(x=B(n)-v)" R, -(x=B(n)-7). (5.49)

Now we recall an important property of the data model. The model has continuous first and
second order partial derivatives, which can be calculated algebraically. Namely, the score
function (4.10) is the first gradient of (5.49). The calculation of the score function requires
only the computation of s(8) and of the related Jacobian matrix D(0)=-%-5(0) at 0. In Sec-
tion (4.2) we have already derived the expressions for D(0), see equations (4.68), (4.73), and
(4.77). Furthermore, the second gradient at point 0 of the function to minimize (5.49) is the
stochastic Fisher matrix as defined in (4.15). Hence, we reformulate the parameter estimation
problem as follows

q(x8)=0. (5.50)

Since the Mahalanobis norm is not a convex function of the structural parameters p multiple
solutions to (5.50) exist. No closed form solution is available for this optimisation problem.
Therefore, we have to use an iterative procedure to find 0.

Candidate algorithms for the iterative minimization of (5.2) are the steepest descend
[79], [80], the Newton-Raphson [22], the GauB-Newton [22], [81], and the Levenberg-
Marquardt algorithm [82], [68]. All methods update the actual estimate 0" along some de-
scend direction A@' . The general parameter update expression for all gradient-based methods
is

61 = 0 + ADY
If the new parameter 0" reduces the Mahalanobis norm

(x - s(é{”l} ))H ‘R (x —~ s(é{”l} ))< (x —~ s(é{i} ))H ‘R (x —~ s(é{i} )) (5.51)

it is accepted. If the norm is not reduced, a new trial step A8 has to be calculated. In the
following, a short overview of the algorithms is given.

5.2.1  Steepest Descent Method
The steepest descend method updates the parameter vector i along the gradient at o'
Aéiﬁ} =c- q(x‘é“}, R,, )

Where A has to be chosen such that (5.51) is satisfied. The update equation of the steepest
descend algorithm is

01" =8 +5-q(xf0" R,,). (5.52)

Expression (5.52) can be understood in terms of the EM algorithm as a one-dimensional
search over the parameter ¢. In infinite precision arithmetic the steepest descend algorithm
will converge to the next local minima or saddle point. The advantage of the algorithm in
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general is the low computational cost of a single iteration. The disadvantage is the suboptimal
search direction [22].

5.2.2 Newton-Raphson Method

The Newton or Newton-Raphson procedure is a means to find zeros of a smooth function. It
is based on the assumption that the objective function is quadratic between the actual point
0 and the solution 6.

The Taylor series expansion of the log-likelihood function around 0, up to the quad-
ratic term yields

0RO, R )+ (00, 5 L0, R)+50-0,) [ L0030, R, 0-0,).

Using the definition of the score function (4.6) and the stochastic Fisher matrix (4.15) in the
Taylor series expansion yields

T 1 T ~
L(X|9’ Rnn): L(X|BO’Rnn)+(9 _90) q(X|BO’Rnn)_E(9 _90) ](X|907 Rnn )(9_90) . (553)

Consequently, the Taylor series for the score function at point 0, is

q(x|e’ Rnn ) = q(x|90j Rnn )_ j(x|90 H Rnn )(9 - 90 ) . (554)

Using (5.50) in (5.54) yields the Newton-Raphson step for iterative maximum likelihood es-
timation as

6% =8 + 7" (0", R,, Ja(x0" R, ). (5.55)

Observe, that the expression for the stochastic Fisher matrix is equivalent to the exact Hessian
of the objective function at 0,

The Newton-Raphson method converges only to a solution of (5.50) if the higher order
terms neglected in the Taylor series expansion are small compared to the absolute value of the
function approximation. For nonlinear least squares problems this condition is not always
satisfied. Therefore, condition (5.51) may not be fulfilled by the provisional step 0. One
can reduce the step length to improve global convergence leading to the form

0 =9 + gi'l(x‘é{i},Rnn )q(x‘é“},R

However, the reduction of the step size does not assure strict convergence of the Newton-
Raphson method. The crucial point is the selection of the exact Hessian, i.e., of the stochastic
Fisher matrix as a projector for the gradient. The authors of [22] show that the exact Hessian
is not necessarily positive definite. Consequently, the sign of the projected gradient may
change and the method will not converge to the maximum of the likelihood function or to the
minimum of the negative log-likelihood function. Hence the Newton-Raphson method is not
globally convergent. Nevertheless, if the method converges to a solution it will need signifi-
cantly less iterations than the steepest descent algorithm.

5.2.3 Gaul}-Newton Method

The GauB-Newton method can be understood as a derivative of the Newton-Raphson method.
The main advantage is the improved global convergence. As stated above the main drawback
of the Newton-Raphson method is the choice of the exact Hessian to project the gradient. In
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the GauB3-Newton method the Hessian is replaced by the first order approximation of the exact
Hessian

2-%(D"(6" ), D).

Interestingly, this approximation of the Hessian is equivalent to the expression for the Fisher
information matrix defined in (4.11). Since the Fisher information matrix is a covariance ma-
trix it is always positive semi definite. The iteration for the GauB-Newton algorithm is

0" =0 1y ( )q(x‘é“},Rnn).

Again, the step length ¢ has to be chosen such that (5.51) holds. The global convergence of
the Gauf3-Newton method is better than the global convergence of the Newton-Raphson
method due to the choice of the approximated Hessian [22]. Nevertheless, also the conver-
gence speed of the GauB-Newton algorithm is not always sufficient. The inverse of
96" is subjected to numerlcal errors if the problem is bad conditioned at . Further-
more, the projected gradient J° (G )q(x‘ﬂ{’ - may not point to the solution if the
function to maximize or minimize is not quadratlc close to 0

Close to the solution, the convergence speed of the GauBB-Newton algorithm is signifi-
cantly higher than the convergence speed of the steepest-descend algorithm. In the early itera-
tions, it cannot be expected that the modified-Newton method will converge quickly to a solu-
tion. However, locally a Gaull-Newton algorithm has at least super-linear convergence and
quadratic convergence for zero residual problems (see, e.g., [83]).

The application of the Gaul3-Newton algorithm for high resolution propagation path
parameter estimation has been described in [84], [85].

5.2.4  Levenberg-Marquardt Method

The Levenberg method was introduced first in [82] and 19 years later derived in a different
framework by D. Marquardt in [68]. For many nonlinear optimisation tasks, the Levenberg-
Marquardt algorithm is the method of choice (cf. [81], [86], and [87]). It belongs to the class
of trust-region algorithms. The Gaufl-Newton and the Newton- Raphson method are based on
the assumption that the objective function is quadratlc near 0. For nonlinear functions, this
assumption holds only for a small region around 0. Consequently, both algorithms do not
converge if the step size AB"' is too large. The basic idea of the trust region algorithms is to
constrain the step size such that the assumption of a quadratic objective function holds. The
Taylor series for the residual r(0)=L"(x—s(0)) at 0, produces the following linear model

r(0)~L"(x—s(0,)-D(6,)(0-96,)),

where L denotes the decomposition of the covariance matrix R, =L"-L. Hence the pre-

nn

dicted Mahalanobis norm of the residual, assuming a quadratic objective function in A"
[r@ ) ~ L (x~s(6")-D(6")- a0™ ).

The idea behind the trust-region algorithms is to choose a step size A®'' such that

(X_S(B{M}))HRM(X S(B{M}))—(X—S(ﬂ{i}))HR,m(x s(e{ }))_ (i)
(307) 70" R,,)20" —2-0[x—s(0")] R D67 )a0" ) © (5.56)

nn

The numerator in (5.56) is referred to as the actual change and the denominator is called the
predicted change. If the ratio p'"' is close to one, the actual change of the objective function is
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similar to the predicted change of the objective function that means we can trust in the
step A@"! . In other words, the assumption of a quadratic function holds. If the ratio is close to
zero or negative, the trust region must be shrunk. The trust region radius A" determines the
trust region where HAB“}HSA{”. Levenberg proposed in [82] to modify the GauB3-Newton
method as follows

0/ =0 +(s(0" R, )+c1)" q(x‘é{i},Rnn). (5.57)

J. Nocedal and S. Wright have show in [88] that a ¢! exist such that ||A9{’ || = A, They pro-
posed the following 1terat1ve procedure to determine its value. Given an initial value go ‘and a
trust region radius A", compute the Cholesky factorisation in every iteration /

707 R, )+ 1=(U") U (5.58)
Using the decomposition solve (U') U . A0 =q(x‘9{i},Rnn) and (U") 2/ =A0" . Fi-
nally, update ¢! as
a0 Jaoft-a
AT

st 1+1

s =gl (5.59)

The iteration is terminated if the ratio is close to one, i.e., if the update is below some tol-
erance. Observe that for positive gf the Cholesky decompos1t10n (5.58) exist s1nce
](9" Rnn)+ s 'T is positive semi definite. Using the solution ¢'! the update step AQ"
computed. Finally, the trust region has to be adjusted based on the ratio between the actual
change and the predicted change of the objective function p'!, e.g., by

uo] <
A =Imin(2A%, A ) p >3 (5.60)
A otherwise

where A, is the largest admissible trust region radius. Provided the initial trust region radius
A" is small enough, this solution for ¢! assures that the Levenberg algorithm converges to
the closest maximum or minimum of the objective function. The drawback of this approach is
the computational complexity of the iteration (5.59). For problems with some hundred un-
knowns the Cholesky factorisation (5.58) and the computation of the solutions Aﬂl‘i},z}i} is
too expensive.

Hence, a different suboptimal approach is often used for large-scale problems [89]. If

the objective function is improved for a given ¢"! the weight is decreased by a certain factor,
e.g., ¢l ]Og . If the objective function is not improved the weight is increased, e.g.,
¢ =10¢" . In terms of maximum likelihood estimation improved means that the likelihood
of the new parameter vector 8" is larger than the likelihood of 8! For the estimation of
the propagation path parameters (DML), this is also equivalent to a decrease of the Maha-

lanobis norm (5.49).

The resulting algorithm is computationally less expensive than an algorithm based on
the approach of Nocedal and Wright. However, in a strict sense the simplified algorithm is not
a trust region algorithm anymore, since we do not verify whether the assumption of a quad-
ratic objective function was valid or not. The simplified algorithm is sufficient for path pa-
rameter estimation if it is initialized with a parameter vector, which is close to the solution.
The global search algorithm described in the previous section using a sufficiently dense
search grid can ensure this.
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It is instructive to analyze extreme values of the weight ¢\ If the weight ¢ is sig-
nificantly smaller than the smallest eigenvalue A, of 7 9{’},R 1e., ¢ << A,Vi the Leven-
berg step becomes a Gaul3-Newton step

nn ) >

ol — gl +.771(6{i}5Rnn )q(x‘é{i},RM).

If the weight is larger than the maximum eigenvalue ¢ >> 4., Vi, the Levenberg step becomes
a Steepest Descent step

5 =6 4 La(x6® R ).
0 =6 +gq(x‘9 R,)

As already mentioned the method described by D. Marquardt in [68] is similar to the
Levenberg method. The main drawback of the Levenberg algorithm is that we ignore the met-
ric of the individual parameters. D. Marquardt observed that the main diagonal elements
of ](é{i},R,m) are related to the metric of the parameters. He proposed to scale the main di-
agonal elements of ](é{i},Rnn) by 1+¢ yielding

61267 +(50%. R, Jre1-76%,R..) o R..) o
If the factor ¢ is much smaller than one, the step becomes a GauB-Newton step, i.c.,
é{m} _ 6{1’} n ]—1 (X‘é{i}j Rm1 )q(x‘é{i} , Rnn ) )

Moreover, if the weight ¢! is significantly larger than 1.0 it becomes a Steepest Descent
method with matched metric, i.e.,

. ol — gt +(gI°](X‘é{i},Rnn ))—1 q(x‘é{i},RM).

Therefore, the weight ¢ is a relative value in (5.61) and an absolute value in (5.57). Hence,
if we apply the Marquardt method, we can make sure that the algorithm starts with small steps
by choosing a value, which is significantly larger than one.

Since the algorithms developed by K. Levenberg and D. Marquardt are similar they
are usually called Levenberg-Marquardt methods in the literature. The complete algorithm is
outlined in Table 5-3.
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Table 5-3: Iterative optimisation of the parameters 0, using the Levenberg-Marquardt
algorithm.

Input: observation x, initial solution 6{0}, covariance matrix R, , ¢.

1) Compute the component matrices of the Jacobian matrix Table 4-2 - Table
4-4.
2) Compute the score function
q(x0".R,,)=2- D" (0" )R, (x~s(6""))}.

3) Compute the approximation of the Hessian using equations (4.70), (4.75), or
(4.78)
70".R,,).
4) Compute the parameter update
01" =0+ (70" R, J+s1o 50" R,,))" alx

0'*)> ﬁ(x‘ﬂ{i}); yes: set ¢ =% go to 6. , no:

0" R,,).

5) Check strict maximization ﬁ(x
set ¢ =8¢ go to 4.

6) Check convergence; not converged: set i =i+1 and go to 1.

Observe that in contrast to other large-scale problems the computation of the Hessian is com-
putationally inexpensive. For the computation of the gradient and the Mahalanobis norm the
same approach as in (5.37) - (5.39) can be applied to avoid the computation of the full Jaco-
bian matrix and of the full matrix B(p).

The following examples demonstrate the performance of the Gaul3-Newton based al-
gorithm compared with the SAGECPEI or AP algorithm. The simulation results in Figure 5-1
and Figure 5-2 compare the convergence behaviour of the gradient-based ML search to the
parameter wise search of the SAGECPEI in a noise free, closely spaced coherent path sce-
nario. In this case, the paths differ only in DoA and are separated by 5 deg. in angle of arrival
which is closer than the Rayleigh resolution of the array. The path magnitudes are equal and
the phase difference is zero in Figure 5-1 and 180 deg. in Figure 5-2. Although these constel-
lations maybe considered as worst-case situations, they frequently occur in a practical propa-
gation scenario since path length difference has to change only by 2.5 cm to move from one
worst-case situation to the other. The antenna array was a 24-element circular patch array.
Only matched vertical polarisation was considered. The two figures depict the iteration steps,
which are plotted on the cost function surface. Note that both constellations cause completely
different cost function surfaces, which are characterized by shaped, narrow valleys. The pa-
rameter wise search of the SAGECPE] forces very small zigzag steps in the direction of the
individual parameters, which can be seen most clearly in Figure 5-2. In both cases, final con-
vergence requires more than 2000 iterations of the SAGECPE!1 procedure whereas the gradi-
ent search needs only 26 and 13 steps, respectively, to reach the solution. Figure 5-2 (right)
also indicates the initial SAGE steps before starting the final gradient steps. The example also
shows that quantization of the data model would be detrimental since very small steps are
required by the SAGECPEL in order to achieve some progress. The example also shows that
the data model quantization is not directly related to the desired parameter quantization. Actu-
ally much finer steps are required. Figure 5-3 further compares coordinate wise (alternating)
and gradient based optimisation in terms of the number of iteration vs. the angular separation
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of two coherent paths. It becomes clear that especially for paths which are closely spaced than
Rayleigh resolution the number of the required iterations becomes prohibitively large.

55 -5.5

45 -4.5

source angle 2 [°]
=
source angle 2 [°]

-3.5 -3.5

25 25
-2 0 2 4 6 8 -2 0 2 4 6 8
source angle 1[°] source angle 1[°]

Figure 5-1: Convergence behaviour of the SAGECPEI1 algorithm (right) compared to the
gradient based algorithm (left) in case of two strong coupled paths with an angular separation
of 5° and a phase difference of 0°. The solution (minimum) is (0°,-5°).
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-9

source angle 2 [°]

source angle 2 [°]

-1 0 1 2 3 4 5 6 78 A 0 1 2 3 4 5 6 7 8
source angle 1 [°] source angle 1[°]

Figure 5-2: Convergence behaviour of the SAGECPEI1 algorithm (right) compared to the
gradient based algorithm (left) in case of two strong coupled paths with 5° angular separation
and 180° phase difference. The solution (minimum) is (0°,-5°).
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| —e— SAGECPE1
1 —— Gradlent Based (Gauss-Newton)
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Iterations

Angular Separation A¢g [°]

Figure 5-3: Convergence speed of SAGECPEI] and the Gauss-Newton based algorithm as a
function of path separation.

5.2.5 Optimisation of Parameter Subsets

Now we recall the discussion about the Fisher information matrix and parameter coupling.
We have discussed in Section 4.1.4 that some model parameters are strongly coupled and
some are nearly uncoupled. This can be exploited to reduce the computational complexity of
the gradient-based algorithms. We divide the complete parameter space into non-overlapping
parameter subspaces, and optimize the subspaces individually. This approach can be under-
stood as an application of the SAGE [62] method to the parameter estimation problem (5.1).
However, in contrast to other channel parameter estimation implementations we choose the
parameter subspaces based on parameter coupling. The issue of parameter coupling has al-
ready been discussed in Section 4.1.4. The influence of parameter coupling is also clearly
visible in Figure 5-3. If the coupling between the parameters is weak, i.e., the parameters are
well separated in the parameter domain, the convergence speed of the SAGECPE1 / AP algo-
rithm is sufficient.

Suppose the second partial derivative of the log-likelihood function with respect to the
two parameters 6;, 6, is zero. This implies that a change of the parameter estimate 6, has no
direct influence on the parameter 6, and vice versa. Therefore, we can at first minimize
(5.49) with respect to 6, and than with respect to &, . Now consider the special case where all
parameters are uncoupled, i.e.,

62
06,00,

£(x|0)=0 Vi, Vk,i#k.

Consequently, the Hessian is a diagonal matrix and we can use the steepest descent method or
the AP algorithm to maximize the log-likelihood function without sacrificing the convergence
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speed of the parameter estimator. The parameter update step of the steepest descent algorithm
respecting the metric of the individual parameters is

0 =07 + {1070 R, ) ol R,,).

It is important to observe that the inversion of the diagonal matrix Io ](é{i},Rnn) requires
O(L) operations only. Now recall that only some model parameters are typically strongly
coupled as already discussed in Section 4.1.4. Consequently, the complete parameter space @
can be divided into 1< K < L non-overlapping subspaces ®, . In other words, we can break
the parameter vector 0 into smaller parameter vectors 0, , and assume that

62
26.00"

L(X8)=0 Vi Vk,izk. (5.62)

If we reorder the parameters in the parameter vector 0, keeping the parameter-groups 0, to-
gether the approximation of the Hessian becomes, due to (5.62), a block-diagonal matrix. As a
first result of this approximation, the computational complexity of the Levenberg-Marquardt
algorithm is reduced. However, this approximation can be further exploited if we generalize
the AP algorithm. In the alternating projection algorithm, all parameters are updated sequen-
tially. Since we do not want to sacrifice the overall convergence speed, we apply this strategy
to the parameter groups, i.e., we update the parameter groups sequentially. However, within a
parameter group we apply the Levenberg-Marquardt method.

The computational complexity can be reduced further if we assign all parameters of a
propagation path to one parameter group. That means we form groups of coupled propagation
paths instead of coupled parameters. Using this approach, we are able to optimize the parame-
ters of the propagation path groups individually. As a side effect, the computational effort is
often reduced further since the parameters of some path groups converge faster than others.
Among other things, the complete algorithm can be understood as an application of the SAGE
framework, described by Hero and Fessler [62], to the maximum likelihood estimation prob-
lem (5.2), where the parameter subspaces ®, are chosen such that the overall convergence
speed is not impaired.

5.2.6 Estimation of the Covariance Matrix of the Parameter Estimates

A by-product of the Gau-Newton based algorithms is an estimate of the Fisher information
matrix J\0,R ). Hence, the estimator does not only provide an estimate of the path parame-
ters O, but also an estimate of the covariance matrix of the estimation error. It is well known
from estimation theory [40] that the maximum likelihood parameter estimates are asymptoti-
cally Normal distributed, if the data model is continuous differentiable in @ with finite differ-
entials. Since the data model is expressed as a linear projection of complex exponentials, this
condition is fulfilled. That means we can interpret the parameter estimate 0 as a vector draw
from a multivariate normal distribution, i.e.,

A as.d. |

6~ ~0,9'(O,R,,)).
Here as.d. stands for asymptotic in distribution. Since we have no access to the real parameter
vector O we replace it by its ML-estimate (maximum likelihood) 0 leading to

A as.d.

0 ~ (6,7 (0.R,,)). (5.63)

Since the amount of independent samples is significantly larger than the number of model
parameters in channel sounding measurements, this approximation of the distribution of the
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estimates fits very well to the real distribution due to the central limit theorem. Further discus-
sions about and examples for the distribution of channel parameter estimates can be found in
[90] and [36]. It is important to note that the approximation (5.63) is only valid if the number
of measurements is sufficiently large in respect to the complexity (number of parameters) of
the DML problem. A discussion about the efficiency of DML estimators for large M can be
found in [49].

The knowledge of the approximate distribution (5.63) of the parameter estimates in-
creases their value as a radio channel measurement result significantly. Furthermore, it is the
prerequisite for further processing of the parameters. In principle the estimated channel pa-
rameters can be treated again as observations having the form

é:9+n9,

where the stochastic process n, is distributed according to N (0,:]‘1 (ﬁ,RM )) This is of crucial
importance if someone wants to use the parameter estimation results to develop a radio chan-
nel model or derive the related probability density functions for the channel parameters. If the
error distribution of the parameter estimates is ignored the derived probability density func-
tions may partially represent the error of the parameter estimator and not only of the channel
parameters 0. A discussion of this problem can be found in [90].

For the parameter estimation problem, the information about the variance of the pa-
rameter estimates is the basis for a new approach to model selection in high-resolution chan-
nel parameter estimation as shown in the next section.

5.2.7 Model Order Selection for Gau3-Newton based Algorithms

The estimate of the parameter variance given in Section 5.2.6 formula (5.63) together with the
discussion about the relative variance of the path weights in Section 4.5 equation (4.100)
gives rise to a new approach for model selection. In particular, since we have to choose the
number of components contained in the model describing the concentrated propagation paths,
the problem to solve is a model order selection problem. The term model order selection re-
fers to the fact that we have to choose the number of propagation paths, but not to pick the
type of the model for the individual paths. The fundamental idea is to use the condition
(4.100) as a criterion for model order selection, i.e., we introduce the following constraint for
the path weights

var{ly|}
vl

That means we require that the certainty of the estimated path magnitude must be larger than
its uncertainty. We require that the relative variance of the measured path magnitude is
smaller than g‘i‘. Observe, that the constraint (5.64) can be directly interpreted as a rule to
decide, whether the estimated propagation path belongs to the circular normal distributed
dense multipath components or not. If we choose g‘i‘ =0.3695 there is probability of 10%
that we select a propagation path, which belongs to the noise or DMC process. If we choose
5‘  =0.0924 there is a probability of 1% that we choose a propagation path Wthh belongs to
the noise or DMC process. See also Section 4.5 for a discussion of the bound g‘ - This ap-
proach is a means to avoid so-called path splitting. A typical sign of path splitting are ex-
tremely large path magnitude estimates of two propagation paths having almost the same
structural parameters, i.e., similar angles, time delay of arrival, and Doppler shift. Typically
the phase difference between the two estimated closely spaced paths is close to £ . That
means the superposition of the two estimated paths approximate the observed propagation
path very well, however the parameter estimates itself does not represent the physical reality.

<gy<l. (5.64)
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This effect is not restricted to maximum likelihood estimation. For example, it can also be
observed if the ESPRIT algorithm is applied to channel parameter estimation. This is the main
reason why the often proposed strategy for model order selection in channel parameter esti-
mation, to use a “large enough number of propagation paths such that all dominant impinging
waves can be estimated” [63], [91], [92] does not work in practice.

Figure 5-5 shows an example of a measured channel impulse response and the related

parameter estimates in the time delay domain. For every estimated path a dot is plotted repre-
senting the parameter pair | 77p|, 7, . Furthermore, the estimated variance of the estimated path
weight is also shown as a dot. The dots related to a single propagation path are connected by a
line. Since the power-delay-profile PDP is shown in a logarithmic scale, the lines represent
directly the signal to noise ratio of the estimated path magnitudes. In this example path split-
ting has occurred twice. There is a pair of closely spaced paths at 3050ns and another pair at
3370ns. The SNR of the first pair is negative, i.e., the estimation error of the path magnitudes
is larger than the power of the paths. The estimated path weights are approximately 10dB lar-
ger than the magnitude of the observed propagation path, nevertheless it is important to note
that the approximation of the path by the two propagation paths is reasonably good. This is an
important observation. The goodness of fit, i.e., the approximation of the impulse response is
by no means a measure for the goodness of the parameter estimates. In the same context we
have to stress the fact that an overestimation of the model order will promise a good approxi-
mation of the channel observation, but may lead to incorrect parameter results. Nevertheless,
the overestimation of the model order is a good approach to model order selection if it is com-
bined with the condition (5.64). As already discussed the overestimation of the model order is
leading to path splitting. Furthermore, it leads to the estimation of propagation paths with low
power. In both cases the relative variance of the estimated path weights will be too large.
Consequently, we can estimate the model order in the following way. First, we overestimate
the number of concentrated propagation paths. In a subsequent step we remove the estimated
paths having a small or negative SNR, starting with the worst estimate. If all estimated propa-
gation paths meet the condition (5.64), we have an estimate of the model order and a reliable
set of parameter estimates.
The advantage of the outlined approach to model order selection is that the model order is
chosen such that the parameter estimates are reliable. The disadvantage is that we have to
overestimate the model order and consequently increase the computational effort. However,
this drawback is acceptable if we consider that all existing algorithms for model order selec-
tion, such as the Akaike information criterion [44] or the Minimum Description Length [65],
[28], [44] requires the computation of the log-likelihood values of the candidate models as
well and have therefore the same or even a higher computational complexity.

It is instructive to observe, that the SNR of an estimated propagation path, which is
well separated from the others, is determined by the path magnitude and power of the dense
multipath components only having the same time delay of arrival, provided of course that the
measurement noise is small enough. This is an example for the inherent limitation of the
reachable path parameter variance through the radio channel itself (cf. Section 4.1.5). Fur-
thermore, the estimated propagation paths close to the direct path (line of sight) show a sig-
nificant increase in the variance of the estimated path weights. This is a result of the parame-
ter coupling of the closely spaced paths as discussed in Section 4.1.4. In simple terms a short
distance between two propagation paths in the parameter space leads to noise enhancement.

Figure 5-7 shows an example for a reliable parameter set, i.e., all paths have a positive
SNR.
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Figure 5-4: An example for a measured CIR and the related parameter estimates (four paths
unreliable). The dashed line shows the PDP of the specular propagation paths reconstructed
with the measurement bandwidth and the dotted line represents the PDP of the measured
DMC and noise. The straight line shows the estimated PDP of the DMC and the measurement
noise. The blue and red dots denote the magnitude of the estimated path weights and the esti-

mated variance of the path weights, respectively. The length of the lines connecting the dots
represents the SNR of the propagation path.
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Figure 5-5: Magnified view of Figure 5-4, an example for a measured CIR and the related

parameter estimates (four paths unreliable).
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Figure 5-6: An example for a measured CIR and the related parameter estimates (all parame-
ters reliable). The dashed line shows the PDP of the specular propagation paths reconstructed
with the measurement bandwidth and the dotted line represents the PDP of the measured
DMC and noise. The straight line shows the estimated PDP of the DMC and the measurement
noise. The blue and red dots denote the magnitude of the estimated path weights and the esti-
mated variance of the path weights, respectively. The length of the lines connecting the dots
represents the SNR of the propagation path.
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Figure 5-7: Magnified view of Figure 5-6, an example for a measured CIR and the related
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Another way to select an appropriate model for a given observation are so called
model selection criteria. A criterion often proposed for model order selection is the minimum
description length (MDL) criterion [16], [17], [93]. The objective function of the MDL crite-
rion is

iy (P)==In(p(x8"))+ p(P) = —c(xfp” )+ @ : (5.65)

where p(P) is a penalty term describing the complexity of the model P. The minimum of
the criterion function d(P) gives an estimate of the model order by

P = argmin(d(P)).

Another criterion also proposed for model selection is the Akaike Information Criterion (AIC)
[44], [93]. The related criterion function is

d 4e(P)=~In(p(x0" )+ p(P) = ~£(x}")+ p(P). (5.66)

The main drawback of both information theoretic criteria is the expensive computation of the
first term ﬁ(X‘B(P)). We have to estimate the solutions 8 for all possible models that are not
feasible in general. An exemption are subspace based algorithms such as ESPRIT, MUSIC,
and RARE. Here, the estimation of the model order is carried out during the subspace estima-
tion step, namely when signal and noise subspace are separated. However, it should be noted
that the model order determined from the singular values or eigenvalues as proposed in [28],
[65] is not necessarily the best choice for the parameter estimation algorithm used in the sub-
sequent steps to compute the actual parameter estimation results. The model order selection
criteria (5.65) and (5.66) require that the parameter estimator employed 1s a maximum likeli-
hood estimator for the model parameters. If the parameter estimator is statistically less effi-
cient the assumptions made during the derivation of MDL and AIC are not fulfilled. Never-
theless, the solution described in [28], [65] provides at least a raw estimate of the model order.
Therefore, the model order selection criteria outlined above are the methods of choice if the
multidimensional Unitary ESPRIT is applied to channel parameter estimation.

Finally, it should be noted that the proposed algorithm for model order selection as
well as the AIC and MDL criterion would inevitably fail, if the underlying candidate models
do not fit to the observation. That means for the problem at hand, the number of the concen-
trated propagation paths can only be estimated if the contribution of the dense multipath com-
ponents to the channel observation is taken into account. The advantage of the proposed crite-
ria to determine the number of concentrated propagation paths is that we evaluate the chosen
model order and get information on how the model must be changed to improve the result.
The drawback is we have to overestimate the model order at the beginning. However, this is
acceptable since the number of propagation paths changes slowly over time. To conclude the
outlined strategy for model order selection is a feasible way to determine the number of
dominant propagation paths in a radio channel observation.

5.2.8  Problem Conditioning

A crucial point of the gradient-based algorithms is the condition of the Hessian or its ap-
proximation. The approximation of the Hessian used in the Gaul3-Newton (Section 5.2.3) and
the Levenberg-Marquardt (Section 5.2.4) algorithm is given by the expressions for the Fisher
information matrix derived in Section 4.2. Observe that the second order derivatives with re-
spect to the nonlinear model parameters are functions of the path weights, whereas the second
order derivatives with respect to the linear parameters are not. That means they can improve
the condition of the approximated Hessian by scaling the observation and the path weights
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appropriately. Let J(pu,R,, ) be the block matrix of J(0,R, ) describing the Fisher informa-
tion of the nonlinear parameters only and J(y,R,,) the block matrix describing the Fisher
information of the linear parameters only. An appropriate scaling factor for the channel ob-
servation is given by the maximum and minimum values of the main diagonal elements of the
two block matrices

_ 4 max(diag{7(y,R,,)}) min(diag{7(y,R,,)})
mima "~ 4\/max(dliag{J(u,Rm,)}) min(diag{7(n.R,,)}) * (5.67)

One should observe, that ¢ . is not the optimum solution to the minimization problem

mima

t,,, =argmin(cond(7(8,R,,,7))).

However, it provides a reasonable trade off between computational complexity and condition
improvement. The determination of the optimum value ¢,, is computationally much more
expensive, than the search for the maximum and minimum values of the main diagonal ele-
ments of the two block matrices 7(u,R,,) and J(y.R,,).

If the matrix 7(0,R,,) is badly conditioned and the observation has been scaled by
t,... » then the observed information is not sufficient to determine all parameters of the actual
model. Recalling the discussion in Section 5.2.7 about the relative variance of the path
weights and model order selection this problem can be solved by determining the path having
a path weight with a relative variance close to or larger than 1.0. If the problem is badly con-
ditioned, we have one or more very small eigenvalues in 7(8,R,, ). That means some parame-
ters have a very large variance in a transformed parameter space. Consequently, one or more
propagation paths have to be removed from the data model since they cannot be estimated
reliably.

To summarise, badly conditioned problems can be avoided by appropriate scaling of
the channel observations using (5.67) and by application of the proposed model order selec-
tion criteria outlined in Section 5.2.7.

5.2.9 Implementation Issues

For the iterative maximum likelihood estimation of the parameters 0 , using a Gaufl-Newton
based algorithm, three basic function blocks have to be implemented. Namely the gradient,
the approximation of the Hessian, and the negative log-likelihood function, i.e., the Maha-
lanobis norm have to be computed. Furthermore, for the estimation of ¥ given the structural
parameters fi the computation of (5.5) (BLUE) is required. To study the general structure of
the four function blocks we introduce abstract versions of the data model s(ﬂsp) and the Jaco-
bian matrix (4.68), (4.73), and (4.77). The data model has the general structure

s(ﬂsp ) = (B3<>B2<>B1 )Y >
and the Jacobian matrix can be expressed as
D =D,0D,0D, .

The related component matrices have sizes B, € C**" and D, e C***, where L denotes the
number of real valued parameters in 0, € R, Furthermore, we define the covariance matrix
of the stochastic process n using the covariance matrices related to the three dimensions
R, e CY™" as

R, =R,®R,®R,.
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The expressions for the BLUE, the Hessian, the gradient, and the Mahalanobis norm are
summarised in expressions (5.68) to (5.71).

BLUE:

7=(B"R"'B) 'B"R'x

= (B?R;Ba ° B?R;Bz ° BFRI_]BI )_] ((R;IBa )O(R;]Bz )Q(RI_IBI ))X’ (5-68)
Term Type I Term Type Il
Approximation of the Hessian (Fisher information matrix):
J(e’ Rl’lﬂ ) = 2 ’ iR{DHR;;D }
Hpp -1 Hpp -1 Hp -1 (5.69)
=2-R{D;R;D, oD, R;D,D'R; D, ¢,
Term Type I

Gradient:

q(xlp.R,,)=2-R{D"(O)R ) (x—5(6))]

5.70
= 2-%{(RJD&R;DZORHDI)Hx—(D?RJBa °DJR,'B, oDFRHBl)v}, G710

Term Typell Term Typel

Mahalanobis norm (negative log-likelihood function):

£}, (xJ) = (x—5(0))" R, (x —5(8))
=x"R'x +

nn

- 29%{7“(R31B3<>R2‘B2<>R1‘B1 ) x} +7"(BYR;'B, - BYR;'B, - B'R;'B, )y.

Term Type 11 Term Type I

(5.71)

Observe, that all expressions above requires the computation of a term of Type I having struc-
ture

Bi/R;'B,-BJR.'B,-B/'R,'B,.

The computational complexity of an algorithm implementing this basic block is, depending
on the structure of the covariance matrices R, (see also Section 6.1.12),

3 3 3
O(PZZM,) <O(Term TypeI) < O[PZZM,. + PZij for (5.68) and (5.71),

i-1 i=1 i=1

3 3 3
O(PZZM,) < O(Term Typel) < O(PL M, + PZM?) for (5.70),

i=l1 i=l1 i=l1

and
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3 3 3
O(PZZMij < O(Term TypeI) < O[LZZMI. +LY' Mf] for (5.69).

i=1 i=1 i=1

Hence, the computational complexity is roughly proportional to the square of the propagation
paths and the sum of the samples taken in the individual data domains R, Z "M, . In con-
trast, it is easy to see that the computatlon of a term of Type II requires an algorlthm having
computational complexity P H "M, . That means the computation of terms of Type II is
typically by far more expensive than the computation of terms of Type L.

As a first result, we can conclude that the computation of the Hessian is, in contrast to
other mid- or large-scale problems, feasible since it contains only a term of Type I. This is
especially true if we exploit the redundancies in the Jacobian matrices (4.68), (4.73), or
(4.77). Furthermore, the computational complexity of one iteration of any gradient based al-
gorithm for 9 is proportional to the number of propagation paths and to the number of sam-
ples in one rad10 channel snapshot x € C***. This estimate of the computational complexity
holds as long as M >> I, or the parameter subset update strategy outlined in Section 5.2.5 is
employed. Otherwise, the computation of the update step A8 (cf. expressions (5.57) and
(5.61)) will determine the computational complexity of the parameter update step since the
solution to a system of L equations has to be found.

Since the computation of terms having structure of Type II determine the computation
time of the whole algorithm, we discuss in the following a way to implement the product

y=(B, 0...0B, J'x. (5.72)

A straightforward way to compute y is to form B=B, ¢...0B, and to compute y = B'x.
The drawback of this approach is that we need a large amount of memory to store the full
matrix B. An algorithm, which avoids the explicit computation of B is outlined in Table 5-4.
In addition to the reduced memory requirements, the outlined algorithm is significantly faster
than the direct approach since the first processing step is formulated as a matrix-matrix multi-
plication. In today’s layered memory architectures the time needed to compute the product of
two matrices is mainly determined by the number of floating point operations the FPU is able
to carry out in a given time, especially if the matrices involved are large. In contrast, the com-
putation of a matrix—vector product is mainly determined by the memory-bandwidth of the
system if the involved matrix is large. The algorithm outlined in Table 5-4 is still suboptimal
in terms of the required data transfers between FPU and memory. An optimal implementation
of (5.72) is described in [51]. Furthermore, the aforementioned redundancies of the Jacobian
matrix can easily be exploited if the outlined algorithm is used. In addition, the computation
of the full Jacobian matrix D is not feasible for example if parameters from broadband
MIMO-channel measurements have to be estimated.
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Table 5-4: Memory efficient Computation of the Product y = (B &, 0+ OB, )Hx

1) Compute the matrix Z, = B;' mat{x}
2) for k=1,...,Pdo
3.1) z,={Z},
3.2) forr=2,...,R,
Compute the vector matrix product z! = {B, }; mat{z, ,}.
end

33) Vi =1y,

To summarize, a parameter update step of the algorithm outlined in Table 5-3 has ap-
proximately linear computational complexity in the number of concentrated propagation paths
P, and in the number of data samples M . The iterative maximum likelihood estimator can be
implemented without forming the full matrices D, and B explicitly.

5.3 Subspace Based Algorithms

Another class of estimators, which can be applied to channel parameter estimation, is the class
of so-called subspace based algorithms. The most prominent representative of this class of
parameter estimators is the ESPRIT algorithm. It has been applied to radio channel parameter
estimation for 10 years [94], [58], [59], [15], [1], [61], [95], [28], [96], [97], [98], and [99].
However, also the RARE and MUSIC algorithm have been applied to high-resolution channel
parameter estimation from radio channel sounding measurements [100], [101], [102] and
[103]. The general model [44] used in all subspace-based algorithms models M, observations
X:[xl XMU]E CM Mo by

X=[x, ... x, |=B(n)S+N. (5.73)

Here, the matrix S € C”"* represents samples of signals received from P signal sources and
the matrix N e C"*" (the measurement noise). In general it is assumed, that the signal co-
variance matrix

Ry =E{Lss"}

has full rank rank(Ry )= P and that the number of observations is large M, >>1. The sec-
ond assumption guarantees that the estimate of the data correlation matrix

Ry =5 XX" (5.74)

has at least rank P. Furthermore, the algorithms are constructed on the assumption that the
correlation matrix has the structure

Ryx = B(") RSSBH(")"' Ry

where Ry = E{#NNH} is the noise covariance matrix. In the context of high-resolution
parameter estimation it is crucially important to realise that only one observation of the radio
channel is available as discussed in Chapter 2. Consequently, the data correlation matrix can-
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not be estimated using (5.74). A solution to this problem is the so-called subarray-smoothing
technique [104], [105].

If an observed radio scenario contains highly correlated or even coherent sources, the
signal correlation matrix Rg will have a rank, which is smaller than the number of
sources P. Consequently, a signal subspace having rank P could not be estimated from the
estimated data correlation matrix (5.74) as shown for example in [104].

The subarray smoothing techniques has been developed for uniform linear arrays to
overcome this problem. The idea is to decompose the uniform linear array into smaller over-
lapping subarrays. Using this approach the number of independent measurements can be in-
creased, where the array aperture is decreased to the size of the subarrays. Using these ap-
proach subspace-based algorithms can be used for parameter estimation even in scenarios
with coherent sources. The subarray smoothing can also be applied to increase the number of
independent observations in radio channel parameter estimation.

In radio channel parameter estimation, the generalised form of subarray smoothing the
multidimensional smoothing technique [65], [44] has to be applied. It is important to keep in
mind that the availability of only one observation is the reason why the application of multi-
dimensional smoothing is necessary. Although, subarray smoothing is often discussed in
combination with ESPRIT it is a signal processing technique on its own. To be precise, it is a
signal processing technique for signal-subspace estimation and does not imply the subsequent
application of the ESPRIT [106], [44], [107], the Unitary ESPRIT [65], [44], or the multidi-
mensional Unitary ESPRIT [65], [44]. For example, the multidimensional smoothing tech-
nique is also a prerequisite for the application of the RARE algorithm [66], [67], [65] to radio
channel parameter estimation.

An implicit result of the discussion about multidimensional smoothing for signal sub-
space estimation for subspace based channel parameter estimation is that the signal model
must correspond directly or by a linear transformation to the model

s(0)=B(n)-v, (5.75)
where the signal modes B(p) must have the structure
B(p) = A(u*)0...0A (™). (5.76)

If the measured channel sounding data can be transformed into the data model (5.76) by a
linear projection, we say the observed data exhibits a hidden rotational invariance structure.
The processing of data having hidden rotational invariance structure is discussed in section
5.3.11. Observe that equation (5.76) implies that the number of data-dimensions is equal to
the number of parameter dimensions R, = R,,. See also Section 2.4.5 for a discussion of data-
and parameter dimensions.

To summarise, the availability of only a single observation (single snapshot case) is
the reason why multidimensional smoothing must be applied in channel parameter estimation
from channel sounding measurements. Consequently, the applicability of subspace based
high-resolution parameter estimators is restricted to a subset of the available antenna array
structure. The observed channel sounding data have rotational invariance structure if uniform
linear arrays or uniform rectangular arrays are used throughout the measurements. Further-
more, the measured data exhibits a hidden rotational invariance structure if a circular uniform
beam array (CUBA) is used at the Tx- and/or the Rx-site to observe the radio channel. The
CUBA-ESPRIT algorithm was first published first in [108]. The algorithm is outlined in Sec-
tion 5.3.12. Finally, it should be noted that uniform circular arrays have approximately hidden
rotational invariance structure. Consequently, subarray smoothing is also applicable if a UCA
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has been used to measure the radio channel. However, the parameter estimates determined by
a signal subspace based parameter estimator will be biased since the UCA data model only
approximately exhibits the rotational invariance structure. Additionally, the elevation angles
of the propagation paths at the UCA must be the same for all propagation paths and known a
priori, otherwise, the projector for the transformation of the UCA output data to data having
approximately rotational invariance structure cannot be constructed. Altogether, if a UCA is
used to measure the radio channel it is preferable to use the maximum likelihood estimator
outlined in the previous sections.

In the next sections, the signal subspace estimation from channel sounding measure-
ments is discussed. We will mainly focus on memory efficient techniques for signal subspace
estimation. Especially the naive implementation of multidimensional smoothing and of the
subsequent signal subspace estimation step using the EVD (eigenvalue decomposition) or
SVD (singular value decomposition) will lead to very large matrices. This is all the more true
if we want to estimate channel parameters from MIMO channel sounding measurements.

5.3.1 Signal Subspace Estimation for Polarimetric Measurements

Subspace based algorithms can also be used for DoA or DoD estimation if polarimetric uni-
form linear or rectangular arrays (PULA, PURA) has been used while measuring the radio
channel. Each antenna element of a PULA/PURA has two output ports, one port for horizon-
tal (e (p) and one for vertical (e,) polarisation. We can interpret the output signal of such an
antenna array as the output signals of two independent uniform linear or rectangular arrays,
respectively. In both cases the observed data show the same rotational invariance structure.
An efficient direction and polarisation estimation algorithm for a special kind of antenna ar-
rays, so called COLD arrays (co-centred orthogonal loop and dipole), has been proposed in
[109]. However, this algorithm is not applicable to channel parameter estimation since differ-
ent antenna arrays are used. Therefore, we outline in the following an alternative approach to
signal subspace based direction of departure and/or direction of arrival estimation for po-
larimetric antenna arrays.

Let us introduce the common complex gain of the antenna array elements (cf. Section
2.4.2) for horizontal and vertical polarisation at the Tx-site

bcom,TH (Q(pT) ) > bcom,TV (Q(T)) (577)

p

and at the Rx-site

bcom,RH (Q;R))’ bcom,RV (Q(pR))’ (578)

where Q) = ['gor,p 9, ,]" represents the DoD and Q¥ =[p, 9., the DoA of path p.
Now we combine the common complex gain of the antenna array elements with the respective

path weights v, .Y » Yy » Yy, yielding

’Y’HH = [bcom,TH (QgT) )bcom,RH (QgR))?/HH,] e bcom,TH (QSDT) )bcom,RH (Q(PR))yHH,P]T ’

T

’Y:‘IV = [bcom,TH (QgT) )bcom,RV(QgR))yHV,l ce bcom,TH (QSDT) )bcom,RV(Q(PR))yHV,P] >

'Y;/H = [bcom,TV (QgT) )bcom,RH (QER) )7/VH,1 cee bcom,TV (QSDT) )bcom,RH (ng) )7/VH,P ]T H

and,

'Y;/V = [bcom,TV (QET) )bcom,RV (QgR) )7/VV,1 te bcom,TV (QSDT) )bcam,RV (ng) )7/VV,P ]T .



112 Estimation of Path Parameters

If polarimetric uniform linear or rectangular arrays have been applied at both link ends, we
get four measurements of the radio channel sharing the same rotational invariance structure
A(p) = A(p(R))O. ..OA(p(l)). We combine the measurements in one matrix X , having struc-
ture

Xpol =[XHH X Xyn XVV]:[A(H)"Y'HH A(H)'Y'HV A(H)"Y;/H A(”)'Y;/V]+N

' ' ' p (5.79)
Xpol =A(u)'[7m{ Var Vvu 'YVV]"'N'

The structure of the data matrix X, allows multidimensional smoothing as a pre-processing
step. All subspace-based algorithms developed for non-polarimetric antenna arrays are as well
applicable for parameter estimation from measurements carried out with polarimetric antenna
arrays. Furthermore, one should note that the data model (5.79) is general insofar as it also
covers measurements with a polarimetric antenna array at one link end or with non-
polarimetric antenna arrays at both link ends.

Equation (5.79) shows that polarimetric measurements are also a means to increase the
resolvability of concentrated propagation paths, since the data matrix X, has already a
maximum rank of 4 without forward-backward and subarray smoothing.

5.3.2  On the Choice of Subarray Sizes for Multidimensional Smoothing

An issue not discussed so far is how to choose the subarray sizes for the subarray smoothing
technique. For the one-dimensional case the optimum subarray size has been found in [104] to
be!?

M, =[3M,]+1. (5.80)

This subarray size is optimal insofar that it allows the estimation of the largest number of
sources. To understand this result, consider the following example. Suppose the channel is
observed by a 9-element uniform linear array. The data model of the channel observation is

x=(A(n)-y+n)eC™. (5.81)

The optimum subarray size due to (5.80) is M, =7 . Using a subarray size of M, =7 three
overlapping subarrays can be selected out of the 9-element uniform linear array. Using for-
ward-backward smoothing [104], [105] a total number of six independent measurements can
be generated from the observation (5.81). The smoothed data matrix is

% % ]

X, X, Xy X; Xg X,

_ x k% 7x6
X =|x, x5 x5 x, x5 x, |€C™. (5.82)

X7 Xg Xg X Xy Xj |

It has been shown in [104] that this matrix has full column rank except for special angle and
path weight constellations. Consequently, the maximum rank of the signal subspace estimated
from this data matrix is

' Here [*] means rounding to the next integer value greater or equal to ® .
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mglx(rank(E $))= m(?x(rank(X «))=6.

This is sufficient to estimate the angles of six propagation paths (sources) from the observed
data using for example ESPRIT. For the six propagation paths six complex path weights have
to be estimated. Therefore, the number of real-valued unknowns in the six-path model is 18
and the number of independent real valued measurements is also 18. That means the maxi-
mum number of propagation paths (sources) that can be resolved with a 9-element ULA
is P=6. However, one should note that the subarray size given in (5.80) is not necessarily
optimal in terms of statistical performance. If the observed scenario contains only a single
propagation path, the reduction of the array size from a 9-element ULA to a 7-element ULA
will lead to an increase of the estimator variance. The authors of [39] researched the optimal
subarray size for the case of two equiv.-powered closely spaced coherent sources (propagation
paths) and found a solution, which is only slightly different from (5.80), namely

M =0.6(M, +1). (5.83)

sub, ,opt,

For a small number of samples M, the difference between (5.80) and (5.83) is negligible. For
large M, the ratio between the two solutions tends to

M, 10
Mg, opy 9

In general, the solution (5.80) is preferable for channel sounding application since it leads to a
signal subspace estimate having the highest rank possible. Consequently, it allows the estima-
tion of the largest number of propagation paths.

In Figure 5-8, the multidimensional smoothing technique is visualized for R, =R, =3
parameter-dimensions. One can understand the measured data as a three-dimensional cuboid.
If we apply multidimensional smoothing to this cuboid, we decompose it into a large number
of overlapping smaller cuboids. It is straightforward to interpret the general case of multidi-
mensional smoothing in a similar way. In cases with a higher dimensionality, we interpret the
measured data as hyper-cuboids.

AN

N\
®0 00

M

Figure 5-8: Visualization of the multidimensional smoothing technique for R, =3
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It is important to realise that the smoothed data matrix has a row size of

Rp

Mrow =Hr%Mr—|+l

r=l1

and a column size of

Rp

M, =[], =[3M,]+1).

r=1

The complete data matrix X, € CY»¥< may become very large if the number of data di-
mensions, e.g., parameter dimensions is large since the row- and column size is a product of
the individual sizes of the data dimensions. This is the reason why the explicit implementation
of the multidimensional smoothing step is not feasible in practice. In this context, it is impor-
tant to observe that the multidimensional smoothing operation can also be understood as an
indexing operation (data addressing) on the data vector x. In Section 5.3.4 it is shown how
this indexing approach can be used to carry out multidimensional smoothing implicitly, i.e.,
without forming the data matrix X, during the signal subspace estimation step.

5.3.3  Signal Subspace Estimation for Conjugate Centro-Symmetric Data

In [65] it 1s shown that, using an appropriate transformation, the ESPRIT algorithm can be
implemented using real-valued arithmetic only. The resulting algorithm is the Unitary ES-
PRIT. However, a prerequisite for the application of Unitary ESPRIT is that the matrices
A(u(r)) are conjugate centro-symmetric matrices, i.e.,

A(?)=HA"(")A (5.84)

must hold, where A is an arbitrary diagonal matrix. Since the same structure is also required
for multidimensional smoothing as discussed in the previous sections this requirement is al-
ready fulfilled if smoothing is applicable. Consequently, the Unitary ESPRIT algorithm can
be applied to estimate the structural parameters p from channel sounding measurements if the
channel observation can be expressed using (5.76). The transformation of the complex-valued
data into real-valued data can be carried out by the sparse unitary matrices

(S)_L{ I, +jlI,
I, —-ja,

q

v = } M, =2q (5.85)

if M 1s even or

. I, 0 +jI,
Q. =5 0" V2 0" |
m, o -jm,

q

M =2g+1 (5.86)

if M, is odd. For multidimensional data, the transformation matrices have to be applied to
every data dimensions. For the multidimensional smoothed data, the following transformation
matrix may be used

Q,, =Q\/ ®Q) ©..8Q} . (5.87)

The transformation from the complex-valued correlation matrix to the real valued correlation
matrix is carried out by

=, =%{Q} R.Q, | (5.88)
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Equivalently the complex-valued smoothed data matrix X, can be transformed into a real-
valued data matrix by

Xor = [m{QH 'XSS} S{QH Xy }]

One should note that taking the real- and imaginary-part of the transformed data matrix is
equivalent to forward-backward smoothing. Therefore, it is sufficient to create only the for-
ward-smoothed data matrix from the observed data x.

In has been shown in both [1] and [44] that the straight-forward application of multi-
dimensional smoothing to MIMO channel sounding measurements may lead to very large
data matrices. To overcome that problem an algorithm for economy size signal subspace es-
timation has been developed (Section 5.3.6). The algorithm calculates only the signal sub-
space and not the noise subspace of the measured data. Furthermore, the multidimensional
smoothing step is carried out implicitly. This avoids the explicit generation of a possibly large
matrix containing the smoothed data.

5.3.4  Economy Size Signal Subspace Estimation

In this subsection, we discuss an efficient implementation of the first step of R-D Unitary ES-
PRIT with smoothing, i.e., the signal subspace estimation step Throughout the derivation of
the algorithm, it is assumed that the left Il -real matrices Q ., as defined in equation (5.85)
and (5.86) are used to transform the complex valued data to real valued data. For simplicity,
we assume at the beginning that there is only additive white noise.

Note that only the P left singular vectors that correspond to the P largest singular val-
ues of

[RiQ"- X} 3{Q"-XJ] =U-x-VT (5.89)

have to be computed to estimate the structural parameters of P propagation paths. In the case
of channel parameter estimation from multi-dimensional channel sounding measurements, the
dimension of the signal subspace may be small compared to the dimension of the noise sub-
space. Therefore, the standard economy size SVD algorithm based on Householder and modi-
fied QR-decompositions, is for the application at hand, not computational efficient as it com-
putes all singular vectors and singular values. Let us discuss an example.

Suppose we have an observation of a 5-dimensional (R, =5 ) harmonic retrieval prob-
lem with the following dimensions M, =97, M, =8, M, =8, M,=4, M, =5 and we want
to estimate the parameters of P =20 dominant multipath components. Using a subarray size
of approximately M, =2-M, for subarray smoothing leads to a data matrix of size
(65-6-6-3-4)x2-(33-3-3-2-2)=28080x 2376 . The matrix of the left singular vectors U has
a size of 28080x2376. Altogether, we need approximately memory for 140-10° values or, in
other words, approximately 556 megabytes if we use single precision arithmetic or 1.1 giga-
bytes of memory if we use double precision arithmetic, only to store X, and the results U
and V. But for R-D Unitary ESPRIT, only the P =20 left singular vectors spanning the signal
subspace have to be computed. Therefore, we now derive an algorithm to estimate only the

signal subspace.

5.3.5 Economy Size Signal Subspace Estimation for Data in White Noise

For notational convenience, let us introduce the smoothing operator

X=1T, {X} Qo
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describing the R-dimensional forward smoothing operation introduced in Section 5.3.2. Here
the vector x e C" contains only a single snapshot, i.e., N =1. Note that a product involving a
matrix X =F,{x} can be computed without forming the matrix X itself. This is because
the R-dimensional smoothing operation defines only indexing operations on x. This property
has the advantages that no additional memory is needed to store the full matrix X . This is
also advantageous in layered memory architectures, where memory bandwidth is limited.

A computationally efficient algorithm to calculate some eigenvalues and the related
eigenvectors of a matrix is based on Arnoldi-iterations [110], [111]. Let

T= [ER{QHXSS} S{QHXSS }]T .[iR{QHXSS} S{QHXSS }] (5.90)

be the correlation matrix of the R-D smoothed data x. The eigenvalue decomposition of T is
equal to

T-V=V-A,

where the diagonal matrix A = X° contains the eigenvalues of T. Expanding the equation for
the correlation matrix (5.90) yields

T T,
T-V= V=V-A, (5.91)
T2| T22

where the block matrices T,,,T,,, T,,, T,, are given by

[Tn le}_{m{xgs }'ER{QHXSS} ER{X?S }'S{QHXSS}j|
T21 Tzz - S{X?S }'ER{QHXSS} S{X?S }'S{QHXSS} '

Observe that the products R{Q}-R{Q"}, 3{Q}-3{Q"}, ®{Q}-3{Q"}, and I{Q}-R{Q"}
yield the following simple sparse matrices

W Q}R(Q" )= (1+ 1) =2,

1
S(Q)-3{Q= (1=,
Or even a zero matrix
#{Q}-3{Q"}=3{Q}- n{Q"}=0.

Using these properties, we can express the four block matrices T, T,,, T,,,T,, as

T, = iR{XgS}-Zl Y XSS}_S{XES}'ZZ R{ X5}
iR{XgS}'Zl S{ XSS}+S{XES}' zZ, S{ Xss}
S{XES}'ZI 'm{XSS}+ER{X§S}'Z2 'ER{XSS}
S{X§S}'Z1 S{ XSS}_iR{ng}' zZ, 'S{ Xss}'

T,
T21
T22

Note that the computation of a product that involves Z, or Z, requires no multiplication (ex-
cept for the scaling by 1), but only real-valued additions and subtractions are necessary.
Moreover, the product of Z, and an arbitrary vector w yields the even part of w and the prod-
uct Z, -w is the odd part.
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In one Arnoldi iteration, the product between T and a vector provided by the Arnoldi
core algorithm, e.g., v, has to be calculated.

W, T, T,||v
w=T-v= = . (5.92)
W, T, T,||V,

Exploiting the redundancies in the expressions for the block matrices T,,,T,,T,,,T,, and
omitting the scaling by 4 in Z, and Z, leads to the following steps for the calculation of
w=T-v

X, =s‘R{XSS}'V1
X, :S{XSS}'VZ
Y, =Z,-(x, +x,)

Y.=%2, '(Xl _Xz)
W, = ER{ng } yi- S{ng } AL
W, = ‘.R{X;S } y, + S{XES}'%-
By taking into account that the matrix X can be expressed via the R-D smoothing operator
that is applied to x, we compute the product w =T - v in the following fashion
X = T;{m{x}}'vl
X, = F{3{x}}-v,
Yi=Z,-(x,+Xx,)
Y, =Z,-(x,-x,)
~ T
w, =F { SR{X}}T Y _Ts{ \S{X}} Y2
W, = TS{ER{X}}T ¥, +F{ S{X}}T Y-
Using this scheme in conjunction with an eigenvalue decomposition based on implicitly re-
started Arnoldi-iterations (reference netlib ARPACK (Arnoldi Package, functions dsaupd and
dseupd)), we get a computationally efficient and also memory efficient algorithm for the cal-
culation of some right singular vectors V, of X ;. ARPACK uses a so called reverse com-
munication interfaces. One has to allocate the necessary space for the eigenvectors, eigenval-
ues and some temporary work memory. The main computation steps are carried out by the
core functions, e.g., dsaupd. An iteration step is carried out by calling at first the core func-

tion. Depending on the return value one has either to compute the product w=T-v, where v
is provided by the core function, or stop the iteration since the algorithm has converged.

Finally, the signal subspace estimate for R-D Unitary ESPRIT can be calculated from
V, using the following relationship:

E; = I}‘R{QHXSS} S{QHXSS }]VS =UsX;. (5.93)

The left singular vectors of X that correspond to the calculated right singular vectors V;
are obtained from E¢ by taking into account that

E'E,=X'UTUZ, =XI%,. (5.94)

In other words, the singular values diag{X} are just the vector-norms of the columns of E .
Nevertheless, one should note that the normalization of the columns of E; is not necessary
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for R-D Unitary ESPRIT. Therefore, a computationally and memory efficient way to calculate
the signal subspace E; from V; is given by

Es = I}‘R{QHXSS} S{QHXSS }] Vs (5.95)

The computational complexity of the proposed algorithm for the computation of all
singular vectors is approximately twice the effort of the classical SVD using Householder-
and modified QR-transformations. However, since the number of concentrated propagation
paths is typically significantly smaller than the number of columns of the smoothed data ma-
trix X the outlined algorithm reduces the computational effort for the estimation of the sig-
nal subspace. One should note that the accuracy of the described algorithm is similar to the
accuracy of classical SVD algorithms.

In view of the memory requirements, the signal subspace estimation algorithm is a
prerequisite for the application of the multidimensional Unitary ESPRIT to large scale prob-
lems, such as channel parameter estimation from MIMO channel sounding measurements.
The ESSSE (economy size signal subspace estimation) algorithm is summarised in Table 5-5.

Table 5-5: Summary of economy size signal subspace estimation in white noise.

1) Call the Arnoldi-iteration function (e.g. dsaupd) yielding an estimated eigen-
vector v.

2) Check convergence: yes - go to step 4; no - continue iteration with step 3.
. L [w T, T, i .
3) Compute the product w =T v =[ ]}=[ ! 12} V‘(A , where v'"' has
W, T, T, V;’}
been provided by the core function dsaupd via
x, = F { R{x}}- v}’
X, = F{ Sixj}- vy
Y, =Z,-(x, +x,)
Y. =7, (x,-x,)
wil =g { R -y, - {3}y,
Wil = (R -y, +E (S
Form the result w'! and return it to the core function dsaupd. Go to step 1.
4) Compute the signal subspace estimate using the computed right singular vec-

tors as
E; = [m{QHT; {X}} S{QHTs {X}}]Vs

5.3.6 Economy Size Signal Subspace Estimation for Data in Coloured Noise

If we want to use R-D Unitary ESPRIT or RARE for the estimation of the parameters of the
specular propagation paths, we have to consider the contribution of the dense multipath com-
ponents to the observation. In the context of signal subspace estimation, the contributions of
the DMC can be understood as contributions from an additive coloured noise process. Conse-
quently, the correlation matrix of the DMC and the measurement noise R(,,,.) can be con-
sidered as the covariance matrix of a coloured noise process R . There exist two general
solutions, namely the covariance and the square root approach, for the estimation of signal
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subspaces in coloured noise. See [44] (pp. 267-275) for a discussion of the two solutions. Al-
though both solutions can be theoretically applied to the problem at hand, the straightforward
implementation may be impractical. The direct implementation of the signal subspace estima-
tion step will lead to a memory inefficient algorithm as already discussed in the previous sec-
tion. In the following, a memory efficient algorithm for the signal subspace estimation from
observations with coloured noise is outlined.

The general structure of the signal correlation matrix is
Rxx :A.RSS.AH+RWW :E{ﬁxss Xi}’ (596)

and the signal subspace E_ to estimate spans the same subspace as A . The authors of [44]
suggest the decomposition of the noise covariance matrix into

R, =L L".
Then pre-whitening of the correlation matrix R can be achieved by calculating
R;x = L7w17 ’ Rxx ’ LﬁWH : (597)

Note that inserting (5.97) in (5.96) yields the structure of the data correlation matrix after pre-
whitening

LR _L'=L/AR_A"L +I. (5.98)
The eigenvalue decomposition of (5.98) has the form
[E E, [E E,]'=L'AR_A"L"+1,

where E/ =L AT is an estimate of the transformed signal subspace and E| is the trans-

formed noise subspace (null space of E! ). Reversing the pre-whitening with L yields the
signal subspace as

E =LE .

Applying the pre-whitener L' directly to the data matrix X yields the pre-whitened data
matrix

X, =LX,,

sS

which is related to the correlation matrix (5.97) according to
[ 1 ’ r \H }
R’ =E;—X| (X .
XX {N Ss ( ss )
The singular value decomposition of the pre-whitened data matrix yields
Urv?=X_. (5.99)

If the noise covariance matrix R has full rank the inverse R, exist, and the following
identity holds

(X)X, =X"LLIX =V EVE,
%f_/
R}

Therefore, we calculate the eigenvalue decomposition of
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XML 'L X =vEVE
to get the right singular vectors of (5.99). Using the singular vectors belonging to the right
signal subspace V| the left singular vectors spanning the estimated signal subspace E_ can be
derived from the observed smoothed data X according to

ES =USZS =XSS'VS =A'T'

As already discussed at the in Section 5.2.9 signal parameter estimation using signal subspace
based parameter estimation techniques requires multidimensional smoothing as a pre-
processing step. The data matrix X 1s related to the observed data x according to

Xo=£"{x}=[r{x} mEixy], (5.100)
where #"{e} denotes the forward-backward smoothing operator. Assuming we know the
covariance matrix of the DMC R(0,, ) the eigenvalue problem to solve is

vl =£"{x}" -R(0,,)" - E"{x}-V.

dan
Again, it is important to realise that only the right singular vectors V_ belonging to the P
dominant generalised eigenvalues must be computed for R-D Unitary ESPRIT.

A numerically stable algorithm for the calculation of some eigenvalues and eigenvec-
tors, i.e., singular vectors of complex matrices is also provided by ARPACK (see
http://www.caam.rice.edu/software/ARPACK, functions znaupd and zneupd), which is based
on implicitly restarted Arnoldi iterations [110]. The only function the user has to supply to the
algorithm is the product w=A-v,i.e.,

w=¢"{x}" RO, )" -F"{x} V. (5.101)

dan

Hence, an estimate of the signal subspace can be computed without forming the smoothed
data matrix X, explicitly. To compute the product (5.101) three steps are necessary

Y, =F"{x}-v=>y,=R(0,,) y,=>w=E"{x}""y,. (5.102)

If the covariance matrix can be factorized using the Kronecker product as discussed in Section
2.5.3 the computational effort to compute y, =R(0, )" -y, and even more important the
storage requirements for R(0,, )" can be reduced since

R(Bdan )_] = (RR (edan ) ® RT(G
=R, (0

)®R,(0,,)®R,(0,,))"
) ®R,(0,,) ®R,(0,,)".

dan

)_1 ® RT (9 dan

dan dan

Using implicitly restarted Arnoldi iterations in combination with (5.102) the computation and
the storage of the complete covariance matrix R(0,,,) can be avoided. In particular we can
even take advantage of the Toeplitz structure of R ,(8,,,) and use a computationally efficient
algorithm as outlined in section 6.1.12 when computing the product y, =R(0,, )" -y,.

Finally one should observe that the calculation of the left singular vectors of (5.100)
can be computed without forming the data matrix X explicitly too, using the relation

E =7"{x}-V,. (5.103)

From the estimated complex signal subspace EAZS the real valued signal subspace for R-D Uni-
tary ESPRIT D_ can be computed by
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D =Q"E, .

One should note that the transformation of the data and the noise covariance matrix to the real

domain before signal subspace estimation as proposed in [28] is not reasonable in the case

under consideration. This is due to the fact, that the transformation to the real domain destroys

the Toeflitz structure of the noise covariance matrix R(0,,, ). For example, the transformation
[

dan

of toepy2 j —I]H}leads to
2 -1 1 0 0
Qil-j 2 j|Q,=| 0 242
“1-j 2 02 3

Consequently, computationally efficient algorithms for the multiplication with inverse Toe-
plitz matrices (cf. Section 6.1.12) are not applicable anymore if the complex correlation ma-
trices are transformed to the real domain using equation (5.88).

Table 5-6: Truncated signal subspace estimation in coloured noise.

1) Call the Arnoldi-iteration function (e.g. znaupd).
2) Check convergence: yes - go to step 4; no - continue iteration with step 3.
3) Compute the product w' =#™{x}" -R(0, )" - F"{x}- v , where v has
been provided by the core function znaupd via
Y. = T;ﬂ){ X}V
¥:=R;(0,,) ®R,(8,,)" ®R,(0,,)" ®R,0,,)" -y,
wh=£"{x}"y,.

dan

Return the vector w'” to the core function znaupd. Go to step 1.

4) Compute the signal subspace estimate using the computed right singular vec-
tors as

Es = f;fb{x}"ls .
5) Optional: Compute the signal subspace for Unitary ESPRIT by
D =Q"E,.

5.3.7  Subspace Rotation Invariance - ESPRIT

Paulraj, Roy, and Kailath first introduced the ESPRIT algorithm in [107]. ESPRIT is a search
free fully parametric estimation procedure for undamped cisoids'' in noise. The original
method often referred to as LS (least squares) — ESPRIT is not statistically efficient, i.e., not
minimum variance unbiased (MVUB). Nevertheless, since it is very attractive in terms of
computational complexity various improved algorithms have been developed based on the
pioneering work of Paulraj, Roy, and Kailath. An overview of the variants is given in [44, pp.
21-26].

In the following a short summary of the LS-ESPRIT, the Unitary ESPRIT and the R-
dimensional Unitary ESPRIT is given.

"'Cisoid is an abbreviation for complex-valued sinusoidal signal, e.g., complex exponential
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5.3.8 LS-ESPRIT

The basis of the standard ESPRIT algorithm is the so-called invariance equation. It has the
form

JA(p) Qr)=J,A(p), (5.104)

where J, and J, are selection matrices and Q(p) is a diagonal matrix

e—j/ll 0 . 0

0 e :

Q(n)= 0
0 . 0 e—j#p

The invariance equation relates the subset J,A(p) via a phase rotation to J,A(p). For the
basis function defined in (3.4) the best choice for the selection matrices, providing maximum
overlap, is

J,=[10]eR"™ and J, =[0 I]e R* ™,
As discussed in section 5.3.1 the signal subspace E spans the same subspace as A(p), i.e.,

A(p)T=E,, (5.105)

where T is an arbitrary full rank matrix T e C™" . Replacing the exact signal subspace E

with the estimate E¢ and inserting equation (5.105) in (5.104) yields
JET'Q(u)~J,E T (5.106)

Consequently, the least squares solution of

A

A A 2
_ : PxP
Y, = argmin JEY¥,¢ _J2E5HF eC
LS

has approximately the structure
‘i’LS ~T"-Qp)T.

The eigenvalues of the solution ¥, are estimates of the P phase factors ¢ ** . In the final
step of LS-ESPRIT one has to calculate the P nonlinear model parameters 4, from the esti-
mated phase factors, i.e., from the P eigenvalues @, of ¥, as

i, =3{n(@,), 1<p<P.

The difference between LS-ESPRIT and its variations the TLS-, WLS-, and SLS-
ESPRIT [112] (Total-, Weighted-, Structured Least Squares) is the handling of the error
Ay =Eg—E; in the subspace estimate E;. More precisely, since we use overlapping subsets
of E, both sides of equation (5.106) contain some residual error from the subspace estimate.
It may be tempting to use the TLS (total least squares) solution instead of the LS solution to
solve for ¥ in (5.106). However also the TLS solution is suboptimal since the error on the
left hand side and the right hand side is correlated. It has been shown in [65], [112] that the
optimum solution in a least squares sense is the structured least squares solution (SLS).
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5.3.9  Unitary ESPRIT

Since the standard ESPRIT algorithm operates on complex-valued data, complex computa-
tions have to be carried out to compute a parameter estimate. In order to reduce the computa-
tional complexity, the Unitary ESPRIT [65], [28] algorithm has been developed. It transforms
the input data matrix X to a real-valued representation. Therefore, all computations are real-
valued. This transformation T, is applicable to the smoothed data matrix ¥ (x) if the
smoothed data can be expressed as #,(x)=A(p)-I'+N as already discussed in Section 5.3.3.
The transformation 7, can be expressed in the form

T =2=Q}_[r{x} W, el , QY ., ., e R (5107)

where II,, is the reflection matrix, i.e., a matrix with ones on its anti-diagonal and zeros else-
where. Similar to the standard ESPRIT algorithm the signal subspace E is estimated from
the real-valued data matrix Z using a singular value decomposition or using a eigenvalue
decomposition of the Gramian ZZ" . The real-valued representation of the invariance equa-
tion (5.104) is

KEY~K,E,,
where K, and K, are the transformed selection matrices J, and J, having the structure

K, =2-%{Q} J,Q, | (5.108)

and
K,=2-3{Q}, J,Q, | (5.109)
Solving the Unitary ESPRIT invariance equation using the least squares approach
Wy = (KIES )+K2Es

yields an estimate for the predictor matrix ¥, ;. The similarity transformation to diagonal
structure, i.e., the eigenvalue decomposition yields

¥, =TQ, T 'eR™.

From the eigenvalues @ =diag{Q,,} the estimates of the structural parameters p can be
computed by

. =2arctan(a@,). (5.110)

One should observe, that equation (5.110) reveals a weakness of the Unitary ESPRIT. If the
true parameter u are close to £ m the bilinear transformed parameters @, = tan|%) tend
to +oo. Hence, the price for the real-valued computation of Unitary ESPRIT is a larger eigen-
value spread of ¥, and numerical problems if | ,up| ~T.

5.3.10 Multidimensional Unitary ESPRIT

The extension of Unitary ESPRIT to multidimensional Unitary ESPRIT is straightforward.
After multidimensional smoothing the data matrix has multiple rotational invariance structure,
1.e., it can be expressed in the form

X =" {x} = (A(®)oA([*™)0...0A("))- T +N = A(n)-T+N.
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Observe, that the matrices A(p(’)) have, due to subarray smoothing, a size of
A(u(’))e CM" For every parameter dimension 1 <7 <R, the following generalised invari-
ance equation holds

I, A(n) Q. (n)=J,,Ap).

The related R, generalised selection matrices are given by

Jl,] = I ®-.. ®IMM[772 ®J§Ma‘ub,l)

M rp

®..0JM) ey,

sub,1

3, =1 e e,

i Moy,
and
Jy = IM.th,, ®.0I, ® J(ZMmb])
J,, =1, ®.0J"er,

suby

Iy = J(ZM’“‘bR”) ®..®1, ©I,

subl’

where the identity matrices have size I, ~eR™"* and the sub-selection matrices the
structure

300 2L, 0]e R M gng g o1, Je R

Replacing the sub-selection matrices J EM"““) and J (2M”"’*") by their real valued counterparts
defined in (5.108) and (5.109) and transforming the complex valued data to the real domain
using the transformation (5.107) leads to the R, real valued invariance equations for the sig-
nal subspace estimate,

Kl,rESlPr ~ Kz,rEs .

In the noiseless case or with an infinite number of independent observations all predictor ma-
trices admit the following eigenvalue decomposition

Y -TQT' eR™. (5.111)

The eigenvalues are related to the structural parameters p according to

,U(r) P
Q = diag{tan(f]} .
p=1

It is important to note that all R, predictor matrices share the same set of eigenvectors in the
noiseless case. Therefore, a joint eigenvalue decomposition of all predictor matrices leads to a
joint estimation procedure for all structural parameters. A solution to this joint eigenvalue
decomposition problem is the Simultaneous Schur Decomposition (SSD). A derivation of the
algorithm can be found in [65], [28], or [113].
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5.3.11 Data with Hidden Rotational Invariance Structure

The general data model for the radio channel developed in Section 2 has the structure
3(0)=GA(n)-y =B(n)-v

(cf. expression (2.54)). Now let us suppose the matrix valued function B(p) can be decom-
posed into

B(n)=(G,-AR®))o...0(G,-An")).

The related data model for the radio channel becomes

s(0)=((G,-A(n™))0...0(G, - A(u™)))-v,

or equivalently

5(0)=((G,®...9G,)-(A(™))o...o( A(")))-v.

Now it can be shown that the model s(0) has hidden rotational invariance structure if all sub-
matrices G, € C"”"" have an appropriate size and rank.

At first let us suppose the observed system response has been over-sampled, i.e.,
M, >N, Vr and the rank of G, € C""*" is rank(G,)= N, . Then the observed data can be
transformed such that the transformed data have the multidimensional rotational invariance
structure required for subarray smoothing and for the application of, e.g., multidimensional
Unitary ESPRIT. The transformation matrix for every data dimension has to satisfy

P, G, =1. (5.112)

The Moore-Penrose pseudo inverse yields a solution in the least-squares sense to (5.112).
That means we can calculate the projector P, using the singular value decomposition of the
system matrix G,, i.e., we compute first

G, = [UG,. Uo]{z(fr}vé{,.

and with this decomposition the linear transformation matrix can be calculated by
P, =V, X, Ug . (5.113)

It is easy to prove that this projector fulfils equation (5.112). However, if the observed system
response 1s under-sampled, i.e., M, < N, for some r, the singular value decomposition of the
respective system matrix becomes

H
G, =U, [z, O]Bﬂ. (5.114)

0

The Moore-Penrose pseudo inverse is now
P, =V, I, Ug . (5.115)

Using equation (5.115), and (5.114) we yield for the product between the system matrix G,
and the related projector P, the expression

P.G=V .V, =1-V, V' =1
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since
VGVéi + VOVOH =1.

Hence, the observed data only have hidden rotational invariance structure if the system re-
sponse is over-sampled and all system matrices have full column rank. To summarise, if the
measurement system matrix G allows the factorisation

G=G; ®-®G, (5.116)
where each of the R, sub matrices have full column rank, 1.e.,
rank(G,)=N, Vr,

the channel sounding measurements can be transformed such that the transformed data have a
multidimensional rotational invariance structure. Furthermore, the transformation matrix P,
is given by the Kronecker-product of the individual transformation matrices P as

P, =P, ®-®FP.

Altogether, the parameter estimation from data having hidden rotational invariance structure
requires only the extension of the signal subspace estimation step by

x =P,x. (5.117)

The transformed data x’ have the rotational invariance structure necessary for Unitary ES-
PRIT or RARE application. In addition, multidimensional smoothing can be applied to the
transformed data. Observe that the multiplication of the observed data with P, changes the
structure of the covariance matrix R, of the stochastic part of the observation. The new co-
variance matrix is

R:m = ]‘)GRnn]‘)le_l :

If both, the covariance matrix R, and the measurement system matrix G can be factorized
into sub matrices

Rnn = Rnn,R,) ® o ® Rnn,]

and
G=G,; ®-®G,,
the transformed covariance matrix R/ has Kronecker structure as well

R =R/ ., ®--QR/

nn nn,Rp nn,l
with the sub matrices

R, =P, R, P, Vr. (5.118)

nn,r

This is an important fact in terms of computational complexity, since the observed data have
often only a hidden rotational invariance structure in some but not all data dimensions. Con-
sequently, only the data dimensions having hidden rotational invariance structure and the re-
lated covariance matrices must be transformed according to (5.117) and (5.118).
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Data having such a hidden rotational invariance structure are for example the meas-
urement data acquired with a circular uniform beam array. The resulting CUBA-ESPRIT al-
gorithm is described in the next section.

5.3.12 Unitary ESPRIT for CUBA Configurations

It is often assumed that ESPRIT in combination with subarray smoothing is only applicable if
uniform linear or rectangular arrays have been applied during measurements. As already dis-
cussed in the previous section, subarray smoothing and consequently ESPRIT is applicable if
the observed data have hidden rotational invariance structure. A class of antenna arrays hav-
ing hidden rotational invariance structure is the class of circular uniform beam arrays (CUBA)
[114]. A circular uniform beam array (CUBA) consists of M antennas with identical beam
patterns b, (,u) The main beam directions of two adjacent elements are rotated by x, =2n/M
with respect to each other as depicted in Figure 5-9.

180

270
Figure 5-9: Beam patterns of a 6-element CUBA.

Given a narrowband signal from a single source that impinges on the CUBA from the direc-
tion of arrival y,, the output signals of the M array elements can be described by means of
the sampled beam pattern as

b, (m- )= bylm-u,— 1) (5.119)

with m=0,1,. ..,(M —1) . Since the antenna beam pattern is periodic in 2zn , b, (,u)z
b(t+k-2m), k € 7, the equivalent virtual aperture function of a single element can be calcu-
lated via the discrete Fourier transform (DFT) as

ml

M-l ol
g,(1-5,)= Y by(m-p)e ", (5.120)
m=0

where s, =1/ (2n). Consequently, in the virtual aperture domain the single source response
(5.119) equals g, (I-s))=g,( -so)ejl” P s, (n) denotes the signal received from source p at
time n, the virtual aperture function of the array output at time » can be expressed as
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Therefore,

P .
g,(n)= ga(l~s0)2sp(n)e_ﬂ#”, 0<I<(M-1). (5.121)
The set of equations (5.121) can be simplified to
g(n)=G As(n), (5.122)

where the array steering matrix A =[a(g,) a(x,) -+ a(x,)] contains the steering vectors of
the P sources

)< e e ]

the diagonal matrix

2,(0) 0 0
G, = O ga.(SO) . . c CMm
: . . 0
0 0g(M-1s,)

represents the virtual aperture function of a single element, the signal vector at time 7 is
formed as

s(n)=[s,(n) 5,(2) ... su(n)]" eC”,

and the virtual aperture output vector at time # is given by

g(n)=[g,(n) &(n) .. gy ()"

Since the array output signal depends on samples of the beam pattern b,(m - 1, ), the Nyquist
sampling criterion has to be considered, i.e., the virtual aperture function g (/-s,) contains
the required rotational invariance structure only if the Fourier-transform of b,(x) has finite
support in L-s, and L <M . The virtual aperture output vector x(n) is calculated from the
received data x R(n) =B- s(n) via a DFT, where

B= [b(:ul) b(:uz) b(ﬂp )]T
is a matrix that contains the P beam vectors
b, )=[5,0) &,() . B, (M ~1)-a1, )]

The transformation matrix P, that transforms x,(n) into the virtual aperture space
x(n)=P; -x,(n) is defined as:

P, =G,'J,F, . (5.123)

Here,
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is the M x M DFT-matrix and

0. (Lt | P
S, ZHI ; )(g} 0 L; e )ﬂ R

(51K(51) (5(5)
denotes the selection matrix that chooses only the useful part of g, (l -so) and ensures a good
condition of G, =J,G,J] , and thus also of its inverse G'. In this case, the modified virtual
aperture space x(n) shows the required rotational invariance structure. Therefore, the signal
subspace can be obtained from x(n) as in other ESPRIT-type algorithms. Since A is left IT-
real, Unitary ESPRIT can also be used. Even the usual subarray smoothing techniques can be
applied. Hence, the algorithm can be applied to channel parameter estimation from channel

sounding measurements. For notational simplicity, Table 5-7 summarises Unitary ESPRIT for
CUBA configurations without the subarray smoothing technique.

—

Obviously, the ideal beam pattern of a CUBA for the described algorithm is a sinc-
function, since a beam pattern b,(u)=sinc(L/2- ) provides a virtual aperture function
g,(l-s,)=rect(l/L) with strictly limited support. In the context of Nyquist sampling, this is
the ideal anti-aliasing lowpass filter for an angular sampling rate of 1/ (L . So)-

Example 5-5: The following example is based on measured beam patterns of an M =6 ele-
ment CUBA. The left picture of Figure 5-10 shows the uncalibrated and the calibrated beam
pattern b, (,u) of a single antenna element. The transformation matrix P; has been estimated
using the calibration algorithm described in Chapter 7. Then the calibrated beam pattern has
been obtained using the inverse Fourier-transform.

To illustrate the DoA estimation performance of Unitary ESPRIT for CUBA configu-
rations in the noise free case, a simple scenario with P =3 coherent sources was simulated.
With 2 sources at fixed angles (— 90°,+90°), and simultaneously rotating one source and the
array from —75° to +75°, 151 scenarios have been created. Figure 5-11 shows the estimated
angles. The parameters have been estimated from a single snapshot.

Parameter estimation results using the CUBA-ESPRIT have been published in [1],
[61], [96], and [99].

—©- uncalibrated
-©~ calibrated
|

— — 7 = uncalibrated |{
— calibrated

Figure 5-10: CUBA beam pattern (left) and corresponding virtual aperture function (right).
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Figure 5-11: DoA estimation results for three coherent sources obtained by Unitary ESPRIT
for CUBA configurations.

Table 5-7: Summary of Unitary ESPRIT for CUBA configurations with white noise.

1)  Signal Subspace Estimation: Let x(n) = P, b(n) and determine the matrix

X € C*" . Then, compute the signal subspace E, € R”" as the P dominant
singular vectors of
Top(X)e RP2Y.
2) Solution to the Invariance Equations: Then solve
KEY~K,E,
by means of LS, TLS, or SLS.

3) Frequency Estimation: Calculate the eigenvectors of the resulting real-valued
solution

¥Y=TQT"' with Q=diaglw, }

P
p=1’
4) Direction estimation: Calculate the estimates i, =2 arctan(w p), they are al-

ready the estimated directions.




6 Estimation of DMC Parameters

A

Based on the model (2.63) we derive in this section an estimator 0, for the parameters of the
dense multipath components (DMC) 0, . As already stated in Section 2.5 we combine the
contributions of the measurement noise and the dense multipath components in one model
since both are complex circular normal distributed processes. The focus of this chapter is only
the estimation of the parameters 0,,,. Hence, we assume in the subsequent sections of this
chapter that the radio channel observation contains DMC and noise only, i.e.,

X= ndan ~ Wc (0’ R(edan )) .

The joint estimation of all channel parameter 0 , is treated at the end of this chapter.

chn

6.1 Maximum Likelihood Estimation of DMC Parameters

Since the parametric covariance matrix (2.67), (2.68) is a nonlinear function in some of its
parameters, a closed form solution for the maximization problem
0 X) (6.1)

dan dan

= argmax £(0
0 4an

is not available. Hence, we will discuss, in the following section, global and local search
strategies to find the parameter vector 0, maximizing (6.1). Since we usually measure not
only one but rather sequences of channel observations over time and since the parameters of
the dense multipath components are only slowly time varying we can track the parameters
0, from observation to observation. That means that we use the estimated parameters of the
previous observation as an initial solution for the parameters of the current observation. Thus,
a global search algorithm is needed only once, namely to estimate raw parameters 0, for the
very first observation of the whole measurement sequence. Consequently, we will focus the
discussion on the computational complexity as well as the statistical efficiency of local search
strategies. Let us for the time being drop the subscript ,,, from the parameter vector 0, for
notational convenience.

dan dan

6.1.1  Local Search Strategies

Having derived algebraic expressions for the Fisher information matrix and the score function
one can say the local search for the maximum of the log-likelihood function has been solved
already. Namely, application of the iterative maximum likelihood algorithm requires the
knowledge of (4.89) and (4.91) only. The drawback of this approach is its high computational
complexity. Therefore, we discuss algorithms with a reduced computational complexity and
low storage requirements in the following sections. Nevertheless, we will start with the direct
approach to compare the complexity of the other algorithms later on.

131
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6.1.2  Direct Approach

Since the score function is the gradient of the log-likelihood function and the Fisher informa-
tion matrix'” is an approximation of the related Hessian we can for example use the Gauf-
Newton algorithm to iteratively maximize (6.1) using the iteration step

00 =0 + - 77(6%)-q(x,0). (6.2)

The resulting algorithm is a so-called iterative maximum likelihood algorithm. To find a suit-
able step size A, one can use a line search strategy or a trust region algorithm to ensure strict
maximization of (6.1), e.g., the Levenberg-Marquardt algorithm. The disadvantage of this
local optimisation strategy is the high memory and computatlon effort for a single iteration.
For every iteration we have to invert the Toeplitz matrix R 0'), if we use the Levinson algo-
rithm this requires O(M 2) operations. To calculate the matrlx (4.88) we need the product
between this inverse and the Toeplitz matrices (4.93) - (4.96), an efficient algorithm for the
product between the inverse of a Toeplitz matrix and an arbitrary vector requires
O(M log(M)) operations using fast Fourier-Transforms (FFT). Hence, the calculation of
(4.88) requires O(L-M *log(M )) operations. The computation of the score function and the
Fisher Information matrix requires algorithms with a complexity of O(M*log(M ))+O(M>L)
and O(M Lz) , respectively. Therefore, the complexity of one iteration is of order
O(L M?log(M )) under the assumption L < log( ) Additionally, we have to store the com-
plete estimated non-parametric covariance matrix R (4.83). Altogether, the complexity of an
iterative maximum likelihood estimator based on the direct implementation of (6.2) is too
high. In the next sections we derive an parameter estimator, which is computationally less
expensive.

Table 6-1: Iterative optimisation of the parameters 0, = using the direct approach

dme

(Gauf3-Newton algorithm)

Input data: Data matrix X, initial solution 0"

Preprocessing: Compute the estimate of the non-parametric covariance matrix

R=Lxx"
N

1) Compute the first order derivatives to the parameters 0 of K(B) using equa-
tions (4.93) - (4.96).
2) Compute the Jacobian D(0"").

3) Compute A" =arg min“D(ﬂ{i})-AB—Vec{ (0" )R - I}H Set A"
4) Compute the update 0" =@ + 21 . AQ" .

5) Check strict maximization L(X‘B{”‘}) > L(X‘B{i} ); yes: go to 1., no: reduce

A% go to 4.
6) Check convergence; not converged: go to 1.

12 Usage of the stochastic Fisher matrix leads to a Newton-Raphson procedure.
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6.1.3  Averaged Covariance Matrix

We can reduce the storage requirements by replacing the non-parametric covariance matrix
R with toep(f',f'H using the coefficients'’

1 M—Il+1

- v le R}, (=1..M). (6.3)

This approach reduces the memory requirements roughly by a factor 1A/ . The elements of r

are the mean values of the diagonals of the matrix R, and have an expected value of
E{f}=x(0). We can anticipate that an algorithm using toep(f',f'H) has the same performance
statistically as an algorithm using R directly, since we average in (6.3) only values with the
same distribution. Nevertheless, we have not reduced the computational complexity of the
iterations (6.2) so far.

Table 6-2: Iterative optimisation of the parameters 0, using the direct approach and
the averaged covariance matrix (Gauf3-Newton algorithm)

Input: data matrix X, initial solution 0"

Preprocessing: Compute the coefficients r (6.3) of the non-parametric covariance
matrix toep(f‘, i )

1) Compute the first order derivatives to the parameters 0"/ of K(ﬂ{i}) using
equations (4.93) - (4.96).

2) Compute the Jacobian D(6"").

3) Compute A" =arg nlli)nHD(ﬁ{"} )- A8 —vec{ R (0 )toep{F, i |- I}Hjr . Set
A =1

4) Compute the update 0" =@ + 21 . AQ" .

5) Check strict maximization L(X‘B{”‘}) > L(X‘B{i} ); yes: go to 6., no: reduce

A% go to 4.
6) Check convergence; not converged: go to 1.

6.1.4  Approximation of the Covariance Matrix with a Diagonal Matrix

An approach for the development of an algorithm with a lower computational complexity than
the direct solution is based on the observation, that the inverse Fourier-transform of the co-
variance matrix R, (0) is a diagonal dominant matrix. Hence, we approximate the covariance
matrix in the time-delay domain using its main diagonal elements

diag{ F" -R ,(8)-F}=diag{R, (8)} = B(6), (6.4)

where diag{A} denotes an operator selecting the main diagonal elements of A .
The cost function to maximize follows from the log-likelihood function (4.79) and is

' {A},, denotes the element in row / and column k of A.
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C(X,0)=—N -In(det(diag{ p(0)}))— ﬁ:(xlH -F-diag{p(0)}" -F" -x, ) (6.5)

i=l1

For notational convenience we introduce the vector

=%;(FHX:‘)O(FHX:')* g (6.6)

containing the data for the estimator to be constructed. The vector y is an estimate of the
main diagonal elements of the covariance matrix R, (@) in the time-delay domain (the (PDP)
of the dense multipath components). Using (6.6) in the cost function (6.5) yields the compact
expression

0)= —N-mf_;[ln(ﬁm (0))+ ﬂy ZB)J' (6.7)

The parameter vector 0, maximizing (6.7) is an estimate of the parameter vector describing
the covariance matrix R(B) and the spectra k(0). The gradient of the cost function (6.7) is
given by the partial derivatives with respect to the parameters 6,

g = ﬁ(ﬁ:(e)( -0 )] ﬁmm)(aeﬁ (@ )D (68)

Equation (6.8) can be rewritten to

2 €00 :N;((ﬁm(ﬂ) jﬁ:(e)'(aae,ﬁm(")n )

Hence the parameters to estimate 0 are a solution of

i&ﬁy(ﬂ) _lj'ﬁml(é) (aae ﬁ’”(A)ﬂO o

i

can be interpreted as the error function to minimize, and £,'(8) as an error weighting. One
should observe that for an infinite number of independent observations

The term

}vgnl]lvlz](m)( x,) =E{y}=p(0)

holds. Consequently the error function (6.10) tends to zero if 0=0 and N - «. Hence, the
estimator is asymptotically unbiased and consistent. For the Gau-Newton procedure, we
need an approximation of the Hessian, i.e., the second gradient of the cost function, which is
negative definite. The second gradient of the cost function (6.7), i.e., the second order partial
derivatives with respect to the parameter pairs &,,6, , is

o S &A@ 8.0) (5 aia B0
6@6@C(y’e):N';ul_zﬁj(e)] 5:(0) +[ﬁj(e)_lJ 5.0) ]'(6'1”
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If we use the second gradient itself in the iteration to adjust the metric and the direction of the
gradient we end up with a Newton-Raphson algorithm. It is known that the Newton-Raphson
algorithm is not always globally convergent since the second gradient, the Hessian, may be
positive [22]. In other words the calculated step direction will not point to the maximum.
Thus we use an approximation of the Hessian which is at least negative definite. To this end
let us analyze the limit of equation (6.11) if N — c. The two terms in the Hessian related to
our data y have the following limit values

N
m{l 2ﬁ’m(9)} 1

and

. Yu 1L
}Vlig{ﬂm(ﬂ) 1} 0

Hence an approximation of the Hessian being always negative definite is given by

& 2 [(az,ﬂm ©))-(5 2. (9)))

206, ‘W02, 5(0)

m=1
To calculate the gradient (6.9) and the approximation of the Hessian (6.12) numerically, we
need an efficient way to compute B(0) and the related partial derivatives. One can use the
direct approach and implement the definitions (6.4) and (2.67). But this approach is numeri-
cally unattractive, since we compute many more values than needed, namely all off diagonal
elements of F"-R(0)-F . A computational efficient way to map k() to B(0) is given by the
relation

(6.12)

diag{F" -R(8)-F} = ﬁ.w’(w1 k(0)+ W, -k*(0)), (6.13)
using the weighting matrices
W, =diag{[M¥ M-1 - 1]}

and

"o 0

W, = 0 2 0

| 0 M-10 0 |

Proof:

Let us suppose a e C** is an arbitrary vector and b=F-a,b e C"* is its discrete Fourier-
transform. Furthermore, we define the matrices X =a-a" and Y =b-b" . The main diagonal
elements of X can be expressed using the cyclic convolution @ between the vectors b and
Ib" [115]

1

c=Wb@(n-b*)zF-(aoa*)zF-diag{X}, (6.14)
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where II is the reflection matrix (see Appendix C). The cyclic convolution between b and
b* can be calculated using the vector z having elements

M—-l+1

zy= D buyb, (I=1...M). (6.15)
i=1

The elements of z are also the sums of the diagonals of Y

M-I1+1 M-I1+1

Z = ZbHI—I 'bi* = Zyi+l—1,iﬂ (lzl,..,,M),
i=l i=1

0 0],
C=Z+ z .
0 I

Hence, the main diagonal elements of X and the total sums along the diagonals of Y are re-
lated in the following way

diag{X}= ﬁFH -[z {g (ﬂz*]. (6.16)

Since b =F -a is a linear transformation (6.16) is also valid for matrices

diag{A-AH}z diag{X}zﬁFH -(Z+|:3 (;]Z*] 5

and are related to ¢ as follows

where
Y=B-B”=F-A-A” .F/ =F-X.-F”.

If Y has Toeplitz structure Y = toep{y,yH } the first column of Y, i.e., y, is related to the
main diagonal elements of X=F”.Y-F as

diag{F" Y Fl=— F" (W, .y + W, y’) (6.17)

-F
M
since

M—l+1

4= zy,-+z4,,- =(M_l+1)'yi (l=1,..,,M)_
il

Based on (6.17) we define the transformation b = 7 {a}

" b= F".(W,-a+W,-a')=,1a}. (6.18)

NITa

Since B(8)= T, {k(8)} is a linear transformation of k(@) to B(6), the first order derivatives of
B(6) can be calculated using (4.93)-(4.96) in

0 0
a—gi[i(e):q“@{a—ax(ﬂ)}. (6.19)

Furthermore, the parameter estimates 0 are a solution of
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In terms of numerical complexity an algorithm, using only the main diagonal elements of the
covariance matrix F” -R-F , is very attractive. But equation (6.18) reveals also the drawback
of the approximation diag{B(8)}~F"-R(8)-F, it leads to a superposition W,a+W,a" of
values carrying different information about the parameters 0, i.e., with different distributions.
The reason is effectively the relation between the Schur-product and the cyclic convolution in
(6.14). Hence, in the next section we derive an improved algorithm, avoiding this overlap.

Table 6-3: Iterative optimisation of the parameters 0, . using the approximation

dme

diag{FH ‘R(0)- F} =p(0) (GauB-Newton algorithm)

Input: data matrix X, initial solution '
Preprocessing: Compute the PDP y using equation (6.6) from X.

1) Compute the first order derivatives to the parameters 0 of K(B{i}) using
equations (4.93) - (4.96).
2) Compute B(6”)= T, (k(6"")) and

D(0")=diag{p(6" )} {%B(ﬂ) %B(ﬂ)} .

3) Compute the error &' = diag{p(6"" )}Ay ~1.

4) Compute the solution to A@"! = arg nlli)n“D(B{i} )- A0 —g"" H; and set A" =1,
5) Compute the update 07" =07 + 1. A0

6) Check strict maximization L(X|9{”1} ) > L(X|9{i} ); yes: go to 7., no: reduce

A% goto 5.
7) Check convergence; not converged: go to 1.

6.1.5 A Numerically Efficient Algorithm for the Estimation of DMC Parameters

Let us consider a circulant matrix C = circ{c}M, it is completely determined by its first col-
umn ¢ e C** each column of C is equal to the previous column rotated downwards by one
element. Hence the circulant matrix C contains every element of its first column M times. Let
us embed the smoothed covariance matrix R = toep(r r ) in a circulant matrix R in such a
way, that all the information in r is as often represented in the smoothed covariance matrix

itself
. W i
R =cird — v, (6.20)
2M -1| W, -r

' The function C = circ{c} maps the vector ¢ to the circulant matrix C, where the first column of C equals c.
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where W, is the weighting matrix

W, =
0O M-1 0 -~ 0
Now we recall that the eigenvectors of an arbitrary circulant matrix are given by the DFT-
matrix. In other words a circulant matrix is diagonalized by the DFT-matrix F

diag{y ' =F"-R, -F.

The eigenvalues y, are related to the first column of the circulant matrix lic by

y:;-FH W, -f
©N2M -1 W, -

So we define the transformation b =T, {a}, mapping vector a to vector b, as
W .
n b= _.p" " a* =T {a}. (6.21)
2M -1 W, -a

Now, replacing the Toeplitz matrices R and R(B) by their circulant counterparts in the log-
likelihood function (4.79) yields the new cost function to maximize as

C[(f,9)=—N~m§_;[1n(‘11 h«(ﬂ%ﬁ%)

The gradient of the new cost function and an approximation of the Hessian can be derived in a
similar fashion from (4.85) or (4.87) yielding

ool 5 [ ol o). )

c c

(6.22)

and

H (6.24)
7 {(0)f,
In summary the update equation for the GauBB-Newton algorithm becomes
0,,=0,+1-0H(,)g0,). (6.25)

and we have reduced the numerical complexity of one iteration by a factor of M since the
complexity for the new iteration is O(L M - log(M )) only. One should observe that y, can be
calculated directly from the observed channel transfer functions x; as follows

g = LS (g X e %) 6.26
yc‘ﬁ; oM -4 © oM || (6.26)
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Equation (6.26) reveals that the embedding of the smoothed covariance matrix in the circulant
matrix is effectively a means to avoid the spectral overlap underlying the transformation
T, {0} (6.18), leading to an estimation algorithm with a better statistical efficiency. The com-
putational complexity of an algorithm using 7, {0} is approximately two times higher than the
complexity of an algorithm using 7 {0} The parameter estimation algorithm for the parame-
ters 0,,,. of the structured covariance matrix using the circulant matrix approach is summa-
rised in Table 6-4.

Table 6-4: Iterative optimisation of the parameters 0, . circulant matrix approach

dme

(GauBB-Newton algorithm)

Input: data matrix X, initial solution 0"

Preprocessing: Compute the PDP y_ using equation (6.26) from X.

1) Compute the first order derivatives to the parameters 0"/ of K(ﬂ{i}) using
equations (4.93) - (4.96).

%) Compute D0 )= diag(T he(0™ I {TC{%K@)} e {%K(B)H.

4
3) Compute the error &' = DT(B{i})(diag{TC KOy, —1).

4) Compute the solution to A®" =arg rri(i)n||D(9{i})- A —s{i}||2F and set A" =1.
5) Compute the update 0" =@ + 1/ . AQ'" |

6) Check strict maximization £(X]0"")> £(X]0"); yes: go to 7., no: reduce

A% goto 5.
7)  Check convergence; not converged: go to 1.

Note, the maximization check L(X|9{i+l})>L(X|9{i}) can be replaced by a gradient check
||g(9{"“}]|< ||g(9{i}X , what is computationally less expensive especially since the gradient is
required in the next iteration step, anyway. The computation of the log-likelihood function
involves the computation of the logarithm ln(O) at least M times, whereas the calculation of
the gradient does not. The robustness of the algorithm outlined in Table 6-4 can be enhanced
using the Levenberg-Marquardt optimisation strategy [68], [82], [116] see also Section 5.2.4
for a discussion of the Levenberg-Marquardt method.

Figure 6-1 shows the development of A®" over the iterations i of the algorithm out-
lined in Table 6-4. The algorithm converges quickly to a solution. Typically, less than 30 it-
erations are necessary to determine the parameter estimates within double precision accuracy
(64 bit IEEE float).

To compare the statistical performance of the proposed estimators for the parameters
of the dense multipath components, simulations have been carried out. In Figure 6-2, Figure
6-3, and Figure 6-4 the performance of the estimators outlined in Table 6-4, Table 6-3 and of
the ML-estimator are compared to the CRLB. For the DMC parameters, typical values ob-
served in channel sounding measurements have been selected
0, =[e, @ B 7]=[0.110.07 0.1]". The number of frequency samples was the same in
all three simulations. In the simulations the number of independent realisations N has been
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varied between N =1 and N =1024. For each N, 10000 experiments have been carried out.
All estimators attain the CRLB if the number of realisations is N >1, except for the base-
delay. The variance of the estimates of the base delay determined by the estimator outlined in
Table 6-3 are approx. 2 times the CRLB of the base delay for N >100. The variance of the
estimates of the estimator outlined in Table 6-4 for the same parameter is approx. 1.3 times
the CRLB for N >10. The ML-estimator attains the CRLB of the base delay for large N.
Since the parameter estimator outlined in Section 6.1.5 (Table 6-4) has almost the same per-
formance statistically as the ML-estimator but significantly lower computational complexity,
it 1s the best choice for the estimation of the parameters of the dense multipath components.
Figure 6-5 and Figure 6-6 shows the performance of the proposed estimator for a fixed num-
ber of realisations N =64 and various numbers of frequency domain or time-delay domain
samples M . In the simulation for Figure 6-5 the bandwidth was kept constant, i.c., the
length of the impulse response has been changed between M, =32 and M , =1024 samples.
In the simulation for Figure 6-6 the length of the impulse response was constant, i.e., the
bandwidth of the observation has been changed between M, =32 and M, =1024. The es-
timator attains the CRLB in both cases except for the base delay estimate. The variance of the
base delay estimate is approximately 1.3 times the CRLB in all simulated cases.

Whereas the number of frequency samples cannot be chosen arbitrarily in practice,
there are various ways to increase the number of independent observations N . The number of
independent observations of the DMC process increases if the number of transmit or receive
antennas is increased, provided the DMC process is spatially uncorrelated and white. If the
transmitter or the receiver is moving, the number of independent observations can also be
increased, by using multiple channel observations over time. However, a necessary condition
is that the radio channel is sampled fast enough. Here, fast enough refers to the fact that the
estimator treats the parameters of the DMC process as stationary parameters within the obser-
vation time. On the other hand, one should note that the sampling interval should not be made
arbitrarily small, since only independent observations of the DMC process will enhance the
statistical performance of the estimator. Since the radio channel is a correlated process with
respect to time, the correlation between the observations is growing if the sampling interval
between the channel snapshots decreases. Observe, that a MIMO channel sounding measure-
ment carried out with an 8-element transmit and an 8-element receive array contains 64 reali-
sations of the DMC process. Consequently, MIMO channel sounding measurements are an
effective means to acquire a large amount of independent observations for the estimation of
the parameters 0

dan *
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Figure 6-1: Convergence of the parameters versus the number of iterations of the Leven-

berg-Marquardt algorithm outlined in Table 6-5.
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Figure 6-2: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-4) as a function of realisations N . The number of samples in the frequency
domain was M , =128. The dashed lines denote the variance of the estimates and the straight
lines the related CRLB. The Estimator attains the CRLB except for the base delay estimate.
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Figure 6-6: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-4) as a function of number of samples in the frequency domain M , i.e., for a
fixed impulse response length. The number of observations was N =64 . The dashed lines
denote the variance of the estimates and the straight lines the related CRLB. The Estimator
attains the CRLB except for the base delay estimate.
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6.1.6 Model Selection for DMC and Noise

So far, we have always assumed the observed radio channel contains DMC and noise. How-
ever, in channel sounding this model is not always valid. Here valid means, the observation
does not contain enough information to estimate both components of the model. If the signal
to noise ratio is low, the parameters of the DMC cannot be estimated. If the SNR 1is very high,
the power of the noise is not measurable. The three possible models are listed in the follow-
ing.:

1. The observation contains measurement noise but no DMC, i.e., the observation has a
low SNR.

2. The observation contains DMC but no measurement noise, i.c., the observation has a
high SNR. No measurement noise means that the measurement noise is hidden by the
DMC.

3. The observation contains both model components DMC and measurement noise (best
case).

Consequently, we have to solve a model selection problem. It is important to observe that this
model selection problem is not a model order selection problem in the strict sense, since all
three resulting models are different. However, we can interpret the problem as two independ-
ent model order selection tasks. The model orders to choose from are zero (not contained in
the model) or one (contained in the model) for both the DMC and the measurement noise.
Using this approach, we can use the same reasoning as in Section 5.2.7 for the model selec-
tion. That means we estimate the relative variance of the weights of the components noise and
DMC, i.e., of ¢, and «,. Using the estimated relative variance, we can decide the model or-
der individually for the noise model and the DMC model. Observe that an estimate of the
variance of the parameter estimates 0, can be computed using expression (4.90), replacing
the true parameters 0, by the estimates 0

dan dan *

Figure 6-7 shows estimates of ¢, and «,. The parameters have been calculated from
a MIMO indoor channel sounding measurement, using the algorithm outlined in Table 6-4
and applying the outlined method for model selection. The bound for the relative variance was
chosen as 0.3. At the beginning of the measurements, the SNR was very low. Consequently,
the data model reduces to a white circular normal distributed process describing the measure-
ment noise, since no radio channel components could be measured. After 300 observations,
the SNR was sufficient for the estimation of the DMC parameters. As a reference, the number
of propagation paths jointly estimated from the measurements using the RIMAX algorithm
(cf. Section 6.2.1) is depicted in Figure 6-8. In addition, the estimated base delay 7, of the
DMC is shown in Table 6-5.
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Figure 6-7: Estimation results of the parameters ¢, and ¢, applying the model selection
algorithm outlined in Section 6.1.6.
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Figure 6-8: Number of propagation paths estimated by the RIMAX algorithm.
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Figure 6-9: Estimated base delay of dense multipath components.

6.1.7 Estimation of the Parameters of Multiple Independent DMC Processes

Since the developed algorithm exploits the Toeplitz structure of the parametric covariance
matrix only, we can apply it too, if the radio channel contains multiple independent versions
of the DMC process. Figure 6-10 shows an example of such a radio channel. In this example,
a radio channel containing two DMC clusters has been simulated. The parameters of the first
process and the second process have been chosen as 0,,., =[e, B 7,]' =[10.005 0.1]" and
0,...=[a, B 7,]' =[0.2 0.005 0.4]", respectively. The variance of the measurement noise
was o, =0.0316, 1.e., 15dB below the maximum variance of the first DMC process. The fig-
ure on the left hand side shows the expected value of the PDP of the simulated radio channel
and the right hand side shows the PDP estimated from eight independent realizations.

Normalised PDP [dB]

Normalised PDP [dB]
[e0]
T
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Figure 6-10: Example for a PDP containing two DMC clusters. The left hand side shows the
expected value of the PDP and the right hand side shows an example of a PDP estimated from
eight realisations of the DMC process.
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T . g s
Let us assume 0, = [a . B, rq] ,1<g <0 are independent parameter vectors describing the
covariance matrices of Q uncorrelated DMC processes. Consequently, one observation is
given by

9]
x:w+2d(ﬂdmc,q).

g=1

Since the processes and the measurement noise are uncorrelated by definition, the covariance
matrix of the process x is given by the sum of the covariance matrices of the O DMC proc-
esses and the covariance matrix of the white measurement noise as

Q
R, = E{XXH } =a0+ z toep(K(Bdmc’q ), KH(edmc,q )) (6.27)

g=1

Remembering, that the sum of two Toeplitz matrices has Toeplitz structure too, we represent
the covariance matrix (6.27) by

R, =E{xx"}= ] +toep(k(®,,).k"(©,,)) (6.28)
using the spectrum
0
k(0,,.)=>_k(0,,,)- (6.29)
q=1

Since the spectrum x(0,,.) (6.29) is only the sum of the individual spectra of the O uncorre-
lated DMC processes, the equations for the first order partial derivatives (4.94)-(4.96) as well
as (4.92) are still valid. Consequently, we can apply the algorithm as outlined in Table 6-5 to
estimate the set of parameters 0, ,1<¢ <0 without modifications. Furthermore, one can
use the general expression (4.90) to compute the related Cramér-Rao lower bound as outlined
in Table 4-6.

What we still need is an initial solution for the first iteration 0. It should be close
enough to the optimum solution to ensure convergence of the iterative algorithms described
so far.

6.1.8 Estimation of an Initial Solution

To determine an initial solution 60 we compute an estimate of the power delay profile from
R using equation (6.6) as

§ = diag{F" -R-F}. (6.30)

If the impulse response is observed over a sufficiently long time, an estimate of the noise vari-
ance a, is

&, =min(y). (6.31)
Furthermore an estimate of ¢, can be derived from y using &, by
&, =max(y)-4,. (6.32)

The first element of r defined in equation (6.3), i.e., 7; has an expected value of

B = (0)), = MO_“ﬂd +a,
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since it is the mean value of the main diagonal elements of the sample covariance R, having
expected value

E{ﬁ}: R(0,,)-

Table 6-5: Iterative optimisation of the parameters 0, using the circulant matrix ap-
proach (Levenberg-Marquardt algorithm)

Input: data matrix X, initial solution 0", 1.

Pre-processing: Compute the PDP y_ using equation (6.26) from X.

1) Compute the first order derivatives to the parameters 0"/ of K(ﬂ{i}) using
equations (4.93) - (4.96).

%) Compute D(O")= diag{r (0™ I {Tc{ixm)} T {ikm)}]
26 26,
3) Compute the error £ = diag{T, (6" )l} 'y 1.
4) Compute the solution to A6 = (D" (6" )D(0 )+ A I)ﬁlDT (0 )e!.
5) Compute the update 07" =@ + 11 . AQ' .
6) Check strict maximization L(X‘B{”‘}) > L(X‘B{i} ); yes: set A=% goto 7., no:

set A =84 goto4.
7)  Check convergence; not converged: go to 1.

Consequently, an raw estimate of ﬁd can be determined from r using the raw estimates ¢,
and @, according to

A a]

By = MG -a) (6.33)

Finally, we have to determine a initial solution for the base time delay of the dense multipath
components 7,. At this point it is important to note that the determinant of R(B) is independ-
ent of the parameter 7, . If we define the matrix valued function

Q(V) = dlag{[l e*jZTW . eszn(Mfl)V ]}’
we can express R(8) as

Q,

a

R(0,, )= toep(K(Gdan ).x"(0,,, )) =Q(z,)'R -Q(z,).

d

0

Since €(r,) is unitary the determinant det(R(®,,)), with 8, =[e, , B, 7,]", is not a
function of 7, . Consequently, det(R(0,,))= det(R(G dono))> With 0, =[e, @, B, 0]', holds
Vr,. This 1s important insofar that if the log-likelihood function is maximized over 7, only,
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the term In(det(R(0))) in the log-likelihood function (4.79) can be neglected and accordingly
the term In(7, {K(O } in the cost function (6.22), leading to the simplified maximization prob-
lem

w .
7, =argmaxz AU

Ao o h T

So we compute at first the elements of the vector z from K([o?o & B, Or)

B 1
Zm_TC{K([o?O & B o]T]}

After embedding this vector in the circulant matrix Z = circ{z}, an estimate of the base delay
z, can be computed from the index /_, =argmaxic, }] belonging to the largest element of
c,=7"-y, using :

(6.34)

m

T, =—X . 6.35
o (6.35)

One should observe that the cyclic convolution between z and y, can be calculated in a com-
putationally efficient way using the FFT by

¢, =F"-((F-§,)o(F-z)). (6.36)

Equation (6.36) implies also that the cost function can be calculated with an arbitrary resolu-
tion using zero-padding. Altogether to calculate an initial solution 0 we have first to com-
pute y using equation (6.30) and then to establish an estimate for &,, &,, and S, using
(6.31), (6.32), and (6.33). Using these estimates, we compute the vector z from equation
(6.34). Finnally, we determine the initial estimate for 7, from equation (6.36) and (6.35) us-
ing the vector z . All four estimates together yield the initial solution 0 for the local search
algorithm. Table 6-6 gives a summary of the complete algorithm for the estimation of an ini-
tial solution.
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Table 6-6: Computation of an initial solution for the parameters 0

dmc *

Input: data matrix X
Preprocessing: Compute the PDP y using equation (6.6) from X.

1) Compute an estimate of the measurement noise ¢, = min(ﬁ).
2) Compute the maximum power of DMC &, = max(y)-4&, .

M
3) Compute 7 = Z V.

m=1

4) Compute an estimate of the coherence bandwidth of the DMC as

A a,
ﬂd B M (’;1 - do) '
5) Compute the reference vector
z = ! J<m<2M -1
" {K[[&O é B o]Tj}
and the interpolated PDP "

A 1 y H Xi H Xi '
yc:ﬁ;(F [O(MI)XI:DO(F l:O(Ml)xl:D .

6) Compute ¢, =F" ((F&L)o (Fz)*) using the FFT.

7) Find [ , =arg mlax{cT }] and compute the estimate of the base delay of the

Y
DMCas 7, = 2“‘3"

M, -1

A A T
8) Form the initial estimate 6'” =[0?0 a p, 7 d] .

6.1.9 Frequency Domain Smoothing

The global search algorithm yields unreliable results, if the number of independent observa-
tions is small and/or if the observations contain strong discrete (specular) components. A way
to improve the robustness of the global search strategy is to decompose the observation into
overlapping observations. If we reduce the column size of the data matrix X, i.e., the band-
width, from M, to M, we can effectively increase the number of observations by a factor
of L, =M ,-M,, —1.Usingthe L, selection matrices defined by

subf

the new set of observations X can be expressed algebraically by

xL, N

XSS=[J1X ILX - JL[X]GCM”‘” . (6.37)

Notice that the covariance matrix of an arbitrary segment J,X is given by
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Ry =+E{UXXJ) =13, E{(XXN]' =J, - toep(k(B,,. ). k" (0,,.))-J}'.
For all Toeplitz matrices, the following holds
JTI =3, T3, VI<i<L 1<k<L,
holds. Consequently the covariance matrix of (6.37)
Rox, =3, -108p(i(0, )" (8,,0))-91" = toep(y (B, (,x(0,,.))")

is simply a reduced version of the covariance matrix toep(K(ﬂ e KO, ))

The outlined smoothing technique increases the amount of observations, and reduces
the influence of strong specular paths at the same time. The principle is similar to the sub-
space (subarray) smoothing algorithm used for the signal subspace estimation needed by sub-
space-based estimators (ESPRIT, RARE, MUSIC) but the intention is clearly different.

10"

10

10"

1071

Magnitude of PDP

10

,,,,,,,,,,,, : ‘1

wl il !“ vmr‘y 7 5 1’ ; d

10"

04 0.5 0.6 0.7 08 0.9 1
normalized time delay

Figure 6-11: Example for the influence of smoothing in the frequency domain to the PDP of a

measured SIMO impulse response containing some specular-alike propagation paths and the

PDP estimated using the algorithm in Table 6-4.

In Figure 6-11 the influence of smoothing in the frequency domain to the PDP is
shown. The PDP has been calculated from a SIMO measurement carried out with an 8-
element uniform linear array. The measurement campaign has been carried out in a non-line
of sight scenario. Using the smoothed data, at first the parameter of the DMC has been esti-
mated using the global search algorithm outlined in Table 6-6. With these initial estimates, the
algorithm summarised in Table 6-4 has been applied to get the final estimate shown in the
example. It is instructive to see that the contribution of the specular propagation paths van-
ishes if the observation bandwidth is reduced. This effect has already been discussed in Sec-
tion 2.5.4. The reason for this behavior can be found in the nature of the two channel model
components. The specular paths contribute to the mean of the channel, i.e., they are the de-
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terministic part of the channel. The dense multipath components on the other hand are the
stochastic part of the channel.

6.1.10 A Comment on the Least Squares Estimation of Parametric Covariance Matri-
ces

If we have to estimate the parameters 0 of a covariance matrix R(0) from an observed co-
variance matrix R (4.83) we may be tempted to use the simple nonlinear least squares (NLS)
approach

0, =arg rneinHli—R(G)Hi . (6.38)

To understand why this least squares approach is not optimal compared with the maximum
likelihood approach (6.1) let us calculate the first order derivatives, i.e., the first gradient of

-} ~ul®-RO)" (- RO)]
= tr{ R"R—R"R(6)~R"(0)R + R" (0)R(0)},

to 0. Straight forward calculations yield
0 ||a 2 0 .y N
a_eiHR ~R(0)] =2- tr{a—eiR 0)-(R- R(B))}.

Hence, the least squares estimate 0 ;s 1s a solution of

tr{ : RH(@LS).(ﬁ_R(aLS))}:o, v,

aQLS,i

whereas the maximum likelihood estimate 6 w18 according to (4.84) a solution of

tr(R1 (éML (% R(éML )] ‘R” (éML )(ﬁ - R(éML ))j =0,V éML" '

So, the difference between the least squares estimator and the maximum likelihood estimator
for the parametric covariance matrix R(0) is effectively the weighting with R“(ﬂ) of the
difference between the observation and the estimate

(R-R(6,,) =R, JR-R(@,, ).
and of the differential

0
00,5,

R, ) R(0,,)- —R,).
ML,i

Finally, note that the maximum likelihood estimator is, although similar, not a weighted
nonlinear least squares (WNLS) estimator, since the weighting matrix R™'(0) depends on the
parameters to estimate 0 .

6.1.11 A Generator for the DMC Process

To generate realisations of dense multipath components for numerical simulations we have to
generate a circular Gaussian process
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d(e,,.)~ ~.(0,R(®,,)eC"",

dme dmce

having zero mean and covariance matrix R(0,,.). To this end we generate usually a multi-

dme

variate i.1.d. circular Gaussian process

M>/><1

2eC"" ~ . (0,1)

and use a transformation matrix L(0,, ) satisfying

dme
R(ﬂdmc) = L(ﬂdmc)'LH(edmc) (639)

to compute the coloured process
d(ﬁdmc ) = L(dec ) "Z. (640)

The generator (6.40) for the process d(0,,. ) has a computational complexity of O(M ?N ) if
we ask for N realisations. And the computational complexity of algorithms for the decomposi-
tion (6.39) is of order O(M ;), in general. For example, the projector L(0, ) can be calcu-
lated using the Cholesky decomposition

dmc
R=L-L",
or the singular value decomposition (SVD)
1 1 \H
R=U-Z.V'=U.x.U" =(U)25)-(U):7) =L-L".

The computational complexity can be reduced significantly if we exploit the Toeplitz struc-
ture of the covariance matrix (2.67).

The covariance matrix R(0)= toep(K(B),KH(B)) can also be expressed using the circu-

lant matrix
. k(0)
R.(0)= ‘”“’[[[ 0m, ]~K*(9)D

R(0)=J-R_(0)-J", (6.41)

by

where the selection matrix J is defined as
J=[1, 0]er™™"™

Now recalling, that any circulant matrix is diagonalized by the DFT-matrix we rewrite
expression (6.41) to

R(0)=J-F-diag{w(0)}’ -F"-J".

Hence, a computationally efficient procedure to generate the process d(0,, ) is given by the

relation

dme

d@e,, )=J-F- (w0, )oz), (6.42)

2M —1)x1 . . . . . .. . .
where z GC( o1k is now a realisation of the multivariate i.i.d. circular Gaussian process

distributed according to
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.(0,1).

The generator (6.42) has a numerlcal complexity O( log(M s )) for one realisation and
consequently a complex1 of O N-M,-log\M , )) if we ask for N realisations. This is an im-
provement of O M. / loga compared with the generator (6.40). Furthermore, one should
note that the welghtlng Vector w 9 can be calculate in a computationally efficient way using

2(0) e R 2

o)=L g KO
JzM -1 |fom, . ]x(6)

and®
{w(0)}, =+y{10)}; .

Hence, the computation of W(B) requires O(M log( » operations only. This is a signifi-
cant improvement compared with the computatlonal complex1ty owm )5 necessary for the
computation of L(0), especially if we have to generate a sequence of realisations having
varying parameters 0.

Table 6-7: Generator for the circular zero-mean normal distributed process

ddmc ~ WC (O’R(dec ))
0
1) Compute A(0)=——F" (6) using the FFT.
oM, -1 ([omm,  ]x'(8)

2) Compute the square roots of the elements of A(8) as {W(ﬂ)}i =+ {k(ﬂ)}i .

3) Compute a realisation of the multivariate i.i.d. circular normal distributed
process z ~ N ,(0,I).

4) Computed the coloured process d(0,,, )=J-F-(w(0,,)oz).

5) If multiple realisations are required, repeat step 3 and step 4.

6.1.12 Implementation Issues

In this subsection, we investigate computationally efficient ways to solve a set of linear equa-
tions

T-B=A, (6.43)

where T e C**" is Hermitian and Toeplitz, A € C**" an arbitrary matrix, and B € C"*" the
solution to be calculated. Having covariance matrices in mind, we assume that T is positive
definite, i.e., the inverse T~ exists. Since (6.43) can be solved separately for every column
a, of A, we will focus the discussion on the solution of the linear system of equations

b=T"a. (6.44)

In computations with the inverses of Toeplitz matrices, the Gohberg-Semencul formula [117],
[118] is useful. This formula represents the inverse of a finite Toeplitz matrix in the form of
the sum of products of triangular Toeplitz matrices [119]. The inverse of an arbitrary non-

" The values of )»(9) are nonnegative since they are the eigenvalues of a covariance matrix.
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singular Toeplitz matrix can be expressed using the solutions x € C**! and y e C**' of the
equations

T-x=e, (6.45)
and
T-y=e, (6.46)
as
—xl 0 e 0] _yM Y- 32 ]
Xy X 0 Yy Yua :
41 . . )
T =— X, : . AP
X 0 : .
: - Yua
_xM ------ x2 xl_ L 0 cee eee 0 yM ] (6 47)
T 0 O - 0]1[0x, - - x, | '
» O 00 x, :
SRR I
L0 Xy,
| Yy oo y, 0] 10 - - 0 0

A Hermitian Toeplitz matrix satisfies II-T-II = T", hence equation (6.46) can be rewritten to
InI-T-I-MI-y=I-e, |
T-y=e,
T(H 'y ) =€

since II- Il =1. Consequently the solution (6.45) and (6.46) are, for a Hermitian Toeplitz
matrix, related according to

y=II-x". (6.48)

The solution x to the equation (6.45) is sufficient to express the inverse of a Hermitian Toe-
plitz matrix. Using (6.48) in (6.47) yields for the inverse

X, 0O .- 0 xl* x; ----- X;,[
| X, X . : 0 x x :
T '=—|| i x, : ' :
X, ¥
0 - X
Ly e 5 L0 0 x| (6.49)
0 0 - - 0 [0x, - - X,
x;, 0 2110 0 x,
— x;/[ I
. 0 Xy
_X2 ...... x;/[ O_ 0 """ 0 0
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Therefore, we define a lower triangular Toeplitz matrix T, = toep(x, [x, 07 ])e C*** and an
upper triangular Toeplitz matrix T, = toep(0,[0 x,, -+ x,])e C" and write the inverse
(6.51) in compact form as
1
T =—(TT" -T'T,).

X

If we embed the matrices T, and T, as block matrices in the circulant matrix

T T
Cc=| ' 2 |=cird | ¥ |e CHPM (6.50)
T, T, 0

we can express the product (6.44) as
b=w, -1I-w,,

where w, € C""! and w, e C" are given by

W1 IM><M 0M><M . a
=C-. -C- . 6.51
|:W2:| |:0M><M 0M><M H'a* ( )
Proof: Using the definition of C (6.50) in (6.51) yields

b= i(TlTl“a +T T Ma’ - 1(T,T" ) a* - 1(T, T )*H-a)
X

1

1 * ok %
b=—(T1T1“a+T1T2HHa ~n(L,T" ) a —HTZH-HTZTITa)
X

1
which can be simplified to

b= xi(TlTlHa + T Ma" - 1(T,T" Ja" - TZHTZa), (6.52)

1
since II-T-I =T" . The two triangular Toeplitz matrices T, and T, commute, i.e.,
TT,' =T'T,.
Consequently, equation (6.52) can be reduced to
b= xl(TlTlHa ~T/'T,a)= xl(TlTlH ~TI'T, )a.
1 1

Since C is circulant it can be diagonalized using the DFT-matrix

A=F".C-F=+2M -diag{FH .{xml }} | o)

0M><]

Using (6.53) in (6.51) yields the expression

I 0 a
Wi —F-A-F". F-AH.FH. .
w, 0 0 II-a

Hence, the solution B of equation (6.43) can be computed by
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W, LMo oul oA
=F-A-F". F-A".F". - (6.54)
W, 0 0 m-A

B=(W,—11.W;).

X

and

Since equation (6.54) contains products with only diagonal- and Fourier-matrices, we can
compute the product B=T'A with an algorithm having computational complexity of
O(MNlog(M)), since the multiplication with a Fourier-matrix F requires O(MN log(M ))
operations, if fast Fourier-transform (FFT) algorithms are used, and the multiplication with a
diagonal matrix can be computed using O(MN ) operations. Note, that the direct approach not
exploiting the Toeplitz structure of T has a computational complexity of O(M ZNE. Further-
more, it is possible to use zero padding to get matrix sizes in (6.54) appropriate for the appli-
cation of radix-2 or radix-4 FFT algorithms. This is especially important if M is a prime
number. Nevertheless, it is important to note, that in today’s layered memory architectures
mix-radix algorithms may be a better choice than radix-2 algorithms in combination with ex-
cessive zero-padding [118].

We have so far ignored the computational complexity of the solution to the set of lin-
ear equations

T-x=e,. (6.55)

Algorithms don’t exploit the Toeplitz structure of T have a computational complexity of
owm 3). An Algorithm being computationally more efficient is the Levinson algorithm it re-
quires O(M*) operations only [120], to compute a solution to the system of equations (6.54).
Finally if M is large one can also use a so-called super-fast algorithm to solve (6.54), having
computational complexity O\M log(M )2) [121]. Table 6-8 summarises the whole algorithm
to solve multiple systems of equations of type (6.43) in a computationally efficient way. An
computationally efficient implementation of the FFT is available from the fftw-library [122].

6.2 Joint Estimation of Concentrated Propagation Paths and DMC

So far, we have only derived estimators for the independent estimation of 0, and 0, . How-
ever, the parameter estimation problem to solve is the joint estimation of both parameter vec-
tors, i.e., of

T
_[aT T
_[esp 0 ] .

dan

0

chn

Therefore, we derive in the next section a joint estimator for all channel parameters. We use
the global search algorithm for the raw parameters of new propagation paths outlined in Sec-
tion 5.1.5, and the global search algorithm for the parameters of the DMC outlined in Section
6.1.8. For local maximization of the likelihood function, we apply the iterative maximum
likelihood estimator for the parameters of the propagation paths derived in Section 5.2.4, and
the iterative maximum likelihood estimator for the parameters of the DMC derived in Section
6.1.5.
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Table 6-8: Fast Matrix Multiplication for Inverse Toeplitz Matrices

Preprocessing: Calculate the diagonal elements z of the matrix A (6.53) using

Mx1
the FFT as z = 2M -F" B

Mx1

} ,in O(M log(M)) operations.

For every column a, of the matrix A do:
1) Compute z, using the FFT as
z, =F" { A *}, in O(M log(M)) operations.
II-a,
2) Compute z, using the FFT as
z,=F- (z* ° zl), in O(M log(M )) operations.
3) Compute z, using the FFT as

z,=F" B ?J-zz, in O(M log(M )) operations.

4) Compute [w wl]" using the FFT as

Dl} =F-(zoz,), in 0(M log(M)).

2
5) Compute the solution b, =T 'a,

b :i(w1 ~I-w}), in O(M) operations.

1

6.2.1 Joint Maximum Likelihood Estimation (RIMAX)

As already discussed in Section 4.4, the Fisher information matrix (4.98) of the complete pa-
rameter set 0, is a block diagonal matrix with one block related to 0,, and another one re-
lated to the parameters 0, . Recalling the discussion about parameter coupling and the choice
of parameter index sets in the sense of the genuine SAGE algorithm [62] in Section (5.3) we
choose two non-overlapping parameter sets 6, and 0, . Applying the SAGE idea, we alter-
nate between the maximization of the log-likelihood function

£(x}p,,.0,,, )= —M In(x) - In(det(R(0,,,,))) - (x-5(0,, )] R0, ) (x-5(0,,)) ~ (6.56)

sp?o

with respect to the parameters of the concentrated propagation paths and with respect to the
parameters of the DMC and measurement noise. Since both parameter sets are not strongly
coupled the alternating maximization procedure will converge as fast as a joint iterative
maximum likelihood procedure (cf. Section 6.1.2 equation (6.2)). For the maximization of
(6.56) with respect to 0, , given an estimate 0,,, we apply the estimator outlined in Table
6-5. For the update of the parameters 0, given the parameter estimates 6,,,, we use the
Levenberg-Marquardt algorithm summarised in Table 5-3. The basic concept of the maxi-
mum likelihood estimator is outlined in Figure 6-12.
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0, =argminl(x-s(0, ) R0, ) (50, )) =, =x-56, )

sp

T 1

0, =—arg rglax(— In(det(R(0,,,))-%" R7'(0,,,)%,,,)

dan

Figure 6-12: Concept for joint maximum likelihood estimation of @

chn *

For the selection of the model order, we use the estimated relative variance of the estimated
path weights as described in Section 5.2.7 and drop the propagation paths that are unreliable.
The initial estimates are chosen as follows. For the DMC parameters, we use the estimates
from the previous observation if available, or employ the global search algorithm outlined in
Section 6.1.8. The structural parameters of the propagation paths are initialized using the
structural parameters of the previous observation. The related path weights are computed us-
ing the closed form solution (5.5) (BLUE). The contribution of the tracked propagation paths
is removed from the radio channel observation, and a search for propagation paths that have
become visible is carried out using the algorithm outlined in Section 5.1.5. For the channel
sounding measurements processed so far, it was sufficient to search for five new propagation
paths. One should observe that the global search algorithm for new propagation paths is com-
putationally expensive. Hence, it is important to limit the search for new propagation paths to
a reasonable small number of paths. The structure of the RIMAX algorithm is outlined in
Figure 6-13.

The number of global iterations required by RIMAX varies strongly. The number of
iterations depends heavily on the observation. If the number of assessable propagation paths is
small, the SNR of the individual propagation paths is high, and if all paths are well separated,
the number of iterations required can be as low as 20. If the scenario is complicated, i.e., the
number of propagation paths is high and a lot of closely spaced propagation paths exist in the
scenario, the number of iterations required to achieve convergence can be higher than 100.

In Figure 6-14 the PDP of a measured SIMO channel and the related SIMO impulse
response reconstructed from the estimated propagation path parameters is shown. The meas-
urement has been carried out in a street micro-cell scenario at 5.2GHz with an 8-element
ULA. The next figure shows the PDP after removing the contribution of the concentrated
propagation paths, i.e., X, and the estimated PDP of the DMC. Finally, Figure 6-16 shows
the PDP of X, after whitening with the estimated covariance matrix R,,. This PDP shows
that the new data model, describing the radio channel as a superposition of concentrated
propagation paths and DMC, is a reasonably good approximation. It is also clearly visible that
the data model can be further improved. The variance of the PDP between 800ns and 3000ns
is higher then the variance in the other parts of PDP. However, the data model is suitable if
the SNR of the measurement is lower. An example is shown in Figure 6-17 to Figure 6-19.
Altogether, the derived algorithm (RIMAX) is a significant improvement compared to all ex-
isting high-resolution channel parameter estimation algorithms due to the enhanced data
model. The RIMAX algorithm has been published in [123], [124], and [136].
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Channel sounding
data

A 4

Read new Calculate estimates for the path weights using the
Observation structural parameters u of the previous
X observation (BLUE, Section 5.1).

A v

Search for new propagation paths
(Section 5.1.5).

Improve the parameter estimates of the

distributed diffuse components ML-Gauss-Newton
Algorithm (Section 6.1.5).

A 4

Improve the parameter estimates of the
propagation paths with the Levenberg-Marquardt
algorithm using alternating path group parameter
updates (Sections 5.2.4 and 5.2.5).

not reached check

convergence

Check the reliability of the propagation paths.
Drop the unreliable paths (Section 5.2.7).

yes

Store the parameter estimates.

Figure 6-13: Outline of the RIMAX structure
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Figure 6-14: Example for the PDP of a measured impulse response and the related estimated
concentrated propagation paths.
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Figure 6-15: Example for the PDP of the remainder of a measured impulse response after
removing the estimated concentrated propagation paths, and the estimated PDP of the DMC.
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Figure 6-16: Example for the PDP of the remainder of a measured impulse response after
removing the estimated concentrated propagation paths and whitening.
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Figure 6-17: Example for the PDP of a measured impulse response and of the estimated con-
centrated propagation paths.
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Figure 6-18: Example for the PDP of the remainder of a measured impulse response after
removing the estimated concentrated propagation paths, and the estimated PDP of the DMC.
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Figure 6-19: Example for the PDP of the remainder of a measured impulse response after
removing the estimated concentrated propagation paths and whitening.
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6.2.2  Application of Subspace Based Algorithms for Parameter Estimation in the
Presence of DMC

The iterative nature of the estimator for the concentrated propagation paths and the DMC out-
lined in Section 5.2 and 6.1.5 is a prerequisite for the joint estimation of all channel parame-
ters 0, . In contrast the joint estimation of the parameters 0, and 0, is not feasible if a
subspace-based algorithm is applied to the estimation of the propagation path parameters 0., .
For the estimation of the signal subspace needed for the estimation of the propagation path
parameters, the information about the covariance matrix R(0,,,) is necessary. However, if the
parameters 0, are not available, the parameters 0, of the covariance matrix R(0,,,) cannot
be estimated. If a sequence of measurements is processed a less than optimal approach can be
used to resolve this problem.

One can use the parameter estimates from the previous observation 0, and estimate
the signal subspace needed for the estimation of ,,. Having an estimate of the channel pa-
rameters 0, anp estimate of the parameters 0, can be determined. However, the estimate
0, = BSTP e;,j determined in this way is clearly not a joint estimate of the channel parame-
ters 0_,,. In principle, the same approach to joint maximum likelihood estimation as used in
the RIMAX algorithm can be applied to compute a joint estimate of the complete channel
parameter set. The outlined procedure for the sequential estimation of 0, , using the subspace
based algorithm of choice, and 0, has to be carried out in an alternating manner. However,
the resulting iterative algorithm is computationally expensive, since we have to perform the
complete subspace based parameter estimation algorithm in every iteration. Currently, no sub-
space based algorithm is known, which can take advantage of an initial solution to speed up
the computation substantially. This consideration also applies to parameter tracking from ob-
servation to observation. Whereas the RIMAX algorithm can in a natural way, use the pa-
rameter estimates from the previous observation as initial values for the actual observation,
this a priori information can typically not be used in known subspace-based algorithms. How-
ever, since basic algorithms used in, e.g., the multidimensional Unitary ESPRIT are all of
iterative nature, the development of an algorithm that takes advantage of previously computed
results seems feasible.

6.2.3  Estimation of an initial solution without a priori information

The estimation of an initial solution 8 for the very first observation (snapshot) of a se-
quence of channel measurements is critical, since no a-priori information about the channel-
parameters is available. The constructed estimator 0, . (cf. Table 6-5 and Table 6-6) is based

on the assumption that the observation of the channel has zero mean

x~N.(0,R(0, ))eC",

dme
i.e. contains dense multipath components only. The estimator can handle weak concentrated
propagation paths especially if frequency domain smoothing is applied during the computa-
tion of initial values for 0,,. (cf. Section 6.1.9). However, it will produce unusable estimates
if the data fed into the estimator contains strong propagation paths such as the line of sight
path. Therefore, one should start with the estimation of some propagation paths at the begin-
ning. Since no a priori information about the parameters of the covariance matrix R(0,, ) is
available we initialize it with a scaled version of the identity matrix

R(Bdmc ) = aAOI °

and choose
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0{0 =—X X.

This means that initially we set the estimated of the maximum power of the dense multipath
components to ¢, =0. The assumption that the stochastic part of the observation is white in
all data dimensions has clearly only a small impact on the initial estimates of the strong
propagation paths. Having estimated raw parameters 9{ of the strongest propagation paths,
their contribution can be removed from the observatlon The remainder of the observation is
then used to estimate initial values for the dense multipath components 9;1?”6, using the algo-
rithm outlined in Table 6-6. Both parameter sets 9{0 and 0% together yield an initial esti-
mate of the channel parameters 0

dme

chn *

Often it is sufficient to estimate only the strongest propagation path of the observation,
before estimating initial parameters of the dense multipath components 9 . As a rule of
thumb, it is sufficient to search for the P'% =5 strongest propagation paths.

6.2.4 General Limitations

The joint estimation of the parameters of the dense multipath components and of the propaga-
tion paths from a SISO channel sounding measurement taken only between two points in
space, is not possible without systematic errors. The basic problem here is that only one reali-
sation of the dense multipath components is available. Consequently, we cannot distinguish
between the contributions of the propagation paths and of the dense multipath components.
Hence, if SISO channel sounding measurements are carried out, it is necessary to move Tx or
Rx while measuring the radio channel.

It is generally better to carry out measurements with a moving transmitter and/or re-
ceiver. This is due to the stochastic nature of the radio channel. As mentioned in Section
2.5.4, the radio channel is a spatial variant stochastic process. Therefore, taking measurements
while moving transmitter and/or receiver over some wavelength, ensures that the complete
measurement contains various realisations of the radio channel.

6.3 Conclusions on Parameter Estimation

The joint estimation of the parameters of the dense multipath components and of the
propagation paths can be carried out by the RIMAX algorithm outlined in Section 6.2.1. The
estimate of the relative variance of the propagation path weights can be used as a reliability
measure and for model order selection, i.e., to determine the number of assessable propaga-
tion paths. The algorithm has been implemented at the Electronic Measurement Lab at Tech-
nische Universitit [lmenau.

The algorithm has been used for statistical analysis of channels sounding campaigns in
various scenarios. See for example the results presented in [137] and [138] . Furthermore, the
algorithm has been used to evaluate the significance of dense multipath components in real
radio channels. In [138] it has been shown that the DMC dominate the radio propagation in
some scenarios, whereas the specular propagation paths may dominate in others. Altogether,
the outlined parametric channel estimator has proved to be a reliable tool for the analysis of
radio propagation channels.



7 Antenna Array Calibration

In practice, the output signals of antenna arrays do not strictly conform to the theoretical an-
tenna array model. There are a variety of reasons for this difference mainly mutual coupling
between the antenna elements and geometrical as well as electrical tolerances of the single
elements. Often, the mapping of the ideal array manifold vector a(p) to the array manifold
vector 5(;1) of a real antenna array (ULA, URA, CUBA, UCA) can be, to some extend, ex-
pressed via a transformation matrix K if the mismatch is independent of the spatial frequency
4 and the signals are assumed to be narrowband, i.e.,

a(n)=K-a(p) (7.1)

Therefore, the data measured with a real antenna array (ULA, URA, CUBA, UCA) have hid-
den rotational invariance structure cf. Section 5.3.11. We can reduce the influence of the an-
tenna array imperfections on the parameter estimates if we estimate the transformation matrix
K or even better its inverse C from reference measurements and use it to calibrate the antenna
array. Let us assume that we measure a set of N array steering vectors a(,un) over the whole
angular domain at known spatial frequencies x,, 1<n <N . The noise corrupted measure-
ments will be denoted as X, . By taking into account that every calibration measurement con-
tains one unknown complex factor y, due to the unknown complex beam patterns of the an-
tenna array elements, phase drifts, and so on, the measurement data is modelled in the follow-
ing way

X,=K-7,-a(u,)+n,. (7.2)
Let us collect all measurements in the matrix

X=[x % .. %]
all ideal (sampled) array manifold vectors (or array steering vectors) in

A=[a(,u]) a(/‘z) a(/uN)]’

and the related unknown weighting factors y, in the diagonal matrix
7 0
o .
0 Vn
Then we get the following linear data model for all measurements
X=K-A-T+W, (7.3)

where W is assumed to model complex circular i.i.d. measurement noise. The objective is to
estimate the calibration matrix C such that
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HC-K—I

2
F

1s minimized. Due to the unknown parameters y, , this problem cannot be solved directly.

In the following a generalization of the idea proposed in [125] is used to reformulate
the optimization problem. For any array steering vector a(p,) of length M, we can construct a
set of L =M —1 linear independent vectors

B,=b,, b, .. b,,]

n n,l

that span the left null space of a(pn ) ,1.e.,
Br]z-[ ’ a(un ) = 0 .

An orthogonal basis of the left null space is

b,,=Q" -z, (7.4)
where the diagonal matrix
—j2r 1 M+
e "2 0
- 1
‘M 2. I,E
0 e’ "2

and the vectors z, are chosen such that
z,0a(p,)=1.
Recall that o denotes the Hadamard-product (element-wise product) and
=1 1 ... 1].
Thus, the calibration matrix C should be chosen such that

b’ C K-a(u,)=0, Vmn.

Ly

Using the noise corrupted measurements in (7.2), we, therefore, have to minimize

b’ %[ =p" ¢ )& -C"b ) VYmn. (1.5)
; F

n,m n,m

n

Hence, the calibration matrix C is obtained as

M-1 N

é:argmcin ZZ(anm Cin)(if .c" -bn’m).

m=1 n=1

Applying the Vec{O}—operator to Can’ and its Hermitian transpose, we obtain

m

C= arg min > > vee(C) -(IM ®b:)m)-in XM -(IM ®b£’m)-vec(C)*.

Since
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Vec{Y] Y)Y, } = (Y3T Y, )Vec{Y2 }

if Y, eC"”? Y,eC”" and Y, e C".
With the definition ¢ = vec{C} we get

g

-1

ﬁ:(l@“’n,m)'i: X7 '(I®Wzm)j'c'
1 n=1

3
I

¢ =argmine” [
c

The choice of b, ,, in (7.4) and some rearrangements lead to

m

é:argmcincH -(MZ_:I(IM ®Q’”)-(ZN:(IM ®z,) X X! -(IM ®ZnH)j-(IM ®Q'”)HJ-C. (7.6)

m=1 n=l1
By utilizing the Vec{O}—operator again, equation (7.6) can be expressed as
M-1

Soar) Soede, 52 hvele, 1) o) e

m=1

¢ =argminc” [
Cc

Now, let us replace the inner sum by the correlation matrix R___ defined as

ZXZX

1 & —H p \H
R__. =NZVGC{Z'1 ‘X, }'VCC{Zn ‘X, }

n=1
2l )l ).

Note that this correlation matrix can directly be computed from the observation using the
measured data X, and the ideal steering vectors a(,un) calculated from the known spatial fre-
quencies u,. Consequently, we have the following compact form of the optimisation problem

¢ =argminc” - M_II RKQ")R__ I, Q") |-c.
g ! Z M T \EM

m=1

The multiplications of the M xM block matrices of R
Q" can also be expressed as

¢ =argminc” -[[1“‘““ ® (F F" —ﬁlwxmn ° RMJ e, (7.7)

by the M —1 diagonal matrices

ZXzZX

(MxM)

where 1 =1-1" e R"*  Equation (7.7) holds since for an arbitrary matrix R
q

Sarr-(@ ) = (117 R = (F-F — 119" )oR,
m=1

where the matrix T is given by
T =|[diag{Q'} ... diag{Q"']] e ¥
and the DFT-matrix F is defined as
F = [diag{Q"} ... diag{Q™"}] e C*¥

Since the DFT matrix F is unitary, equation (7.7) can be simplified further to
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é = arg min cH ) ((I(MXM) ®IM )o szzx _i ’ szzx] €,

R’

zxzx

so finally we end up with the simple eigenvalue problem

¢=argmine” -R__ -c,
where we have defined the matrix R___ as
R;xzx = (I(MXM) ® IM )O szzx _L ' szzx * (78)

The solution of the minimization problem ¢ is given by the eigenvector corresponding to the
smallest eigenvalue of

R -¢—A. -1

zXzZX min "~ pz2

¢=0. (7.9)
Table 7-1 summarises the complete algorithm to estimate the calibration matrix C.

Table 7-1: Summary of the Calibration Algorithm

Data Matrix calculation

1) Compute the matrix R___using the reference measurements X,

R =12l 2! )0l )

2) Compute the data matrix R___ from R__ as

ZXZX ZXZX

R, =(1“*"®I1,)R, — R

ZXzX ZXZX M ZXzZX

3) Solution to the Minimization Problem:
Compute the eigenvectors ¢ corresponding to the smallest eigenvalue of
R ¢4, ,¢=0

zXzZX min "~ pz2
4) Solution Reshaping:
Reshape the vector ¢ to the calibration matrix C using C= mat(é).

If the SNR is low or the estimation problem is ill conditioned, the calibration algo-
rithm can be improved by taking the influence of our vectors z, onto the noise correlation
into account. To this end, we introduce the noise covariance matrix

N

_ H g\

R, —E{E Vec{zn ‘n, }-VGC{ZH ‘n, } }
n=l1

Furthermore we assume that the measurement noise is i.i.d. complex circular Gaussian noise
with variance o . Consequently, the noise covariance matrix can be expressed as

R, =o.-(I®R_) (7.10)

znzn

with
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R —i(ZN:Z -ZHJ
ZZ_N — n n |

Replacing R, in (7.8) by R_,_, from (7.10) yields the following expression for the structure
of the noise covariance matrix

o= _ L
Rznzn - IM2 © Rzn M Rznzn :

With this knowledge we are able to improve our estimate of C. We extend the special eigen-
value problem (7.9) to a generalised eigenvalue problem, taking the noise colouring through
z, into account. The optimum solution to the minimization problem is given by the eigenvec-

tor corresponding to the smallest eigenvalue A, of the following generalised eigenvalue
problem

R.__¢-R__-¢- 4. =0.

ZXzZX znzn min

The knowledge of the noise variance o’ itself is not required if we want to find the optimum
solution C. The complete algorithm to estimate the calibration matrix C considering noise
colouring is summarised in Table 7-2.

Table 7-2: Summary of the Calibration Algorithm considering Noise Colouring

Data Matrix calculation

1) Compute the matrix R

ZXzZX

R =12l 2ol %)

using the reference measurements X,

ZXZX from RZXZ]C aS
. 1
R, =(1""®1,) R, -— R

ZXZX ZXzX M ZXZX

2) Compute the data matrix R

Noise Covariance Matrix calculation:
3) Compute the matrix R

zwzw

) 1 (&
R, =I®R_ with R _ =N[22n zfj
n=1

4) Compute the data matrix R__ from R__ using
R, =1_.°R -+R

znzn znzn

5) Solution to the Minimization Problem:
R'zxzx ’ é - R'znzn ’ é ’ ﬂ’min = 0

6) Solution Reshaping:
Reshape the vector ¢ to the calibration matrix C using C = mat(¢).

Nevertheless, it is important to note that taking the noise colouring by z, into account
may not necessarily lead to improved estimates. This is because in practical situations expres-
sion (7.5) may be dominated by systematic errors such as positioning errors while taking the
reference measurements and not by the measurement noise.
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Another problem while estimating C may arise if not enough independent information
is available from the measurements to determine all of the coefficients in C. This will lead to
an underdetermined problem. If the matrix R__, has not only one but several small eigenval-
ues with a similar magnitude then we have such a case. A good way to solve this issue is to
take more measurements. It is, in this context, important to realise that taking measurements
over a larger angular range is better than taking more measurements in the same angular range
again. One can also solve the problem if a priori information about the structure of K is avail-
able. Usually mutual coupling effects between the antenna array elements dominate K. Since
elements with a larger distance in the array often have only small mutual coupling, we can set
the corresponding coefficients in the data matrix R__ to zero. Consequently, the correspond-
ing rows and columns in the data matrix C as well as in the noise covariance matrix R
can be deleted, leading to a reduced and better-conditioned problem.

znzn

The main advantage of the outlined calibration algorithm is its low complexity. This
makes it also suitable for the estimation of the calibration matrix of large antenna arrays, such
as uniform rectangular arrays.

Figure 7-1 depicts the absolute values of the uncalibrated and calibrated beam patterns
of a uniform linear array having eight active elements. On the left hand side only the mean
gain of the antenna elements has been calibrated, which corresponds to equalisation with the
main diagonal elements of the calibration matrix C. On the right hand side, all elements of
the calibration matrix have been used to calibrate the antenna array. The resulting beam pat-
terns are much more uniform. This calibration gain will lead to a significant reduction of es-
timation error in the (angle) estimates obtained with ESPRIT based parameter estimation al-
gorithms. Further discussions about the influence of antenna array imperfections on ESPRIT
based parameter estimation algorithms as well as antenna array calibration for channel sound-
ing applications can be found in [28], [126], [127], and [128].

Uncalibrated Beampattern Calibrated Beampattern
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Figure 7-1: Example of an uncalibrated and a calibrated uniform linear antenna array having
eight active antenna elements. The figure on the left hand side shows the beam pattern of all
eight antenna elements without calibration. On the right hand side the beam pattern of all an-
tenna elements after calibration is depicted.



8 Summary and Conclusions

8.1 Summary and Conclusion

With the RIMAX algorithm, a reliable tool is available to estimate channel parameters from
channel sounding measurements. The algorithm is sufficiently robust for the processing of
long radio channel measurements containing some thousands of channel observations, almost
without user interaction.

To conclude, let me summarise the most important results of this thesis:

e An appropriate data model for parameter estimation from channel sounding measure-
ments describes the radio channel as a superposition of a finite number of concentrated
propagation paths and a circular normal distributed process. The circular normal dis-
tributed process describes the dense multipath components caused by distributed dif-
fuse scattering.

e The effective aperture distribution function is a mean to express the antenna array re-
sponse of an arbitrary antenna array. Using the EADF the data model for the concen-
trated propagation paths can be expressed in an algebraic form. The expression of the
data model as a continuous algebraic function is a prerequisite for the application of
gradient-based iterative maximum likelihood estimators and for the derivation of
closed form expressions for the Cramér-Rao lower bound.

e The covariance matrix describing the zero-mean dense multipath components can be
expressed as a continuous matrix-valued function of three channel parameters.

e The Cramér-Rao lower bound on all channel parameters can be expressed in a closed
form. The estimation error covariance matrix depends on the coupling between propa-
gation paths, precisely on the coupling of their parameters. The Fisher information
matrix is a means to detect groups of coupled propagation paths.

e The estimation of the parameters of concentrated propagation paths is a nonlinear
weighted least squares problem. The optimal weighting matrix is the covariance ma-
trix of the dense multipath components and noise. A computationally efficient solution
to solve this optimisation problem is provided by the Levenberg-Marquardt algorithm.

e The parameters of the propagation paths and the dense multipath components have to
be estimated jointly. The joint maximum likelihood estimation of all radio channel pa-
rameters can be carried out using an alternating maximization procedure (SAGE).

e A feasible way to determine the number of propagation paths is given by the relative
variance of the propagation path weights. The variance of all parameter estimates can
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be estimated using the closed form expressions for the Cramér-Rao lower bound. The
estimate of the parameter covariance matrix is an important result of the RIMAX algo-
rithm. The covariance matrix provides important reliability information about the pa-
rameter estimates.

e The RIMAX algorithm is a means of estimating radio channel parameters from a long
sequence of radio channel observations. The estimator tracks propagation paths over
some time. Thus, it is a means to derive parameter statistics for individual propagation
paths.

8.2 Further research areas

Since RIMAX provides additional reliability information for the parameters estimated. The
parameters can be used to derive probability density functions for the parameters of the de-
terministic as well the dense multipath components of the radio channel. To this end, a large
amount of channel sounding measurements gathered in various radio scenarios has to be proc-
essed. The reliability information, provided by the outlined parameter estimator, is important
in distinguishing between the parameter variations and the estimation error (variance) of the
data processor. Without this information, one may tend to model the statistics of the estima-
tion error and not of the radio channel parameters.

A research area, which has been widely ignored up to now, is the tracking of radio
channel parameters, or more precisely the estimation of deterministic changes of channel pa-
rameters. The variations of the structural path parameters are closely related to the movement
of objects influencing the radio channel. A first promising attempt has been made to estimate
the parameter changes of the propagation path parameters using a linear model [48], [77].

A further research topic is the optimal antenna array structure for channel sounding
applications. Closely related to this issue is the calibration of antenna arrays, e.g., the estima-
tion of the antenna array model especially the EADF. Since upcoming channel sounding sys-
tems will have a larger bandwidth, also the frequency dependence of the array response, e.g.,
the EADF must be investigated.

A fourth research area is the development of appropriate models to describe the corre-
lation function of the DMC in the spatial domain as well as in the time/Doppler domain. Here,
the challenge is the coarse Rayleigh resolution in these domains compared to the resolution in
the time delay domain. It is generally a lot easier to increase the measurement bandwidth, than
increasing the array aperture, i.e., the angular resolution.

A further research area is related to MIMO communication systems. It is generally ac-
cepted that MIMO-systems with knowledge of the radio channel at the transmitter have a
higher channel capacity than systems having only knowledge about the radio channel at the
receiver. If we need channel information at the transmitter, we have to transmit this informa-
tion from the receiver back to the transmitter. However, this back transmission will in turn
reduce the available channel capacity. Hence, we have to find the shortest code to transmit the
channel information back to the transmitter. In other words, we have to measure the stochastic
complexity of the radio channel. One way to code the channel information is for example the
developed radio channel model, since one has only to transmit the channel parameters with
the accuracy (SNR) given by the estimated channel parameter variance. Closely related to this
research area are clearly the second and the third research theme mentioned above. Since they
will increase the a priori information contained in the channel model and consequently reduce
the information necessary to store, e.g. transmit the channel.



Appendix

A  List of Frequently Used Symbols

Symbol | | Range | Description ‘ Section
F MM unitary Fourier-matrix (DFT-matrix) C
I RMM identity matrix C
J RV selection matrix C
0 R general model parameters 2
G CMN General measurement system matrix 2
o, R Azimuth of departure (Tx) 2.1
P R Azimuth of arrival (Rx) 2.1
9 R Elevation of Departure (Tx) 2.1
9, R Elevation of Arrival (Rx) 2.1
T R Time delay of arrival (TDoA) 2.1
b, (¢, %) Cc? Polarimetric Tx antenna response 2.2
b, (9r, ) C Tx antenna response for horizontal excitation | 2.2
by, (¢;,9;) C Tx antenna response for vertical excitation 2.2
b, (@, %) Cch? Polarimetric Rx antenna response 2.2
by, (9p, %) C Rx antenna response for horizontal excitation 2.2
by, (9r>3) C Rx antenna response for horizontal excitation 2.2
M, R Number of Tx antenna ports 2.2
M, R Number of Rx antenna ports 2.2
P R Number of propagation paths 2.2
GT,. MM, Frequency response of the transmitter 2.2
G,, CMrM; Frequency response of the receiver 2.2
H(f,1) CMweMr Frequency and time dependent channel matrix | 2.2
a R Doppler-shift 2.2
757, C Scalar path weight 22
S(esp) M Parametric model for observed propagation | 2.3
paths (maps propagation paths parameters to
measurement system response)
B, R Observation bandwidth 23
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M R Total number of samples in a channel observa- | 2.3
tion

M, R Number of frequency samples 2.3

M, R Number of time domain samples 23

T, R Observation time 2.3

A, A, (1:) CcMr Complex exponentials describing the TDoA of | 2.3
the propagation paths

A, A, (a) CMP Complex exponentials describing the Doppler- | 2.3
shift of the propagation paths

B(p) CM NP General matrix valued function, mapping the | 2.3
structural path parameters p to the system re-
sponse

B, . B, (9,.9;) || C"~" Rx-Array response for all propagation paths | 2.3
(horizontal field component)

B, . B, (9,.9;) || C"" Rx-Array response for all propagation paths | 2.3
(vertical field component)

r > By ((pT,ST) CMr<P Tx-Array response for all propagation paths | 2.3

(horizontal field component)

B, ,B, ((pT,ST) CMr<P Tx-Array response for all propagation paths | 2.3
(vertical field component)

B, CMrP Frequency responses of the measurement sys- | 2.3
tem for all propagation paths

B, M Time domain responses of the measurement | 2.3
system for all propagation paths

G s, CMrM; Frequency response of the transmission or | 2.3
measurement system

Y CNpaPx All complex path weights in a model 2.3

Y ch Complex path weights H-H polarisation 2.3

Y ch Complex path weights H-V polarisation 2.3

You ch Complex path weights V-H polarisation 2.3

Yor ch Complex path weights V-V polarisation 2.3

n R Normalised structural parameters (nonlinear | 2.3
parameters)

0, R Parameters of all propagation paths 23

A, A, (o) CNixP Complex exponentials describing the azimuth | 2.4
of departure of the propagation paths

Ay, A, (%) C NP Complex exponentials describing the elevation | 2.4
of departure of the propagation paths

A, A, (9z) (Ohlad Complex exponentials describing the azimuth | 2.4
of arrival of the propagation paths

A, . A, (%) C NP Complex exponentials describing the elevation | 2.4
of arrival of the propagation paths

G, .G, CMrMN, Effective aperture distribution function of the | 2.4
Tx-antenna array

G, G, CM NN, Effective aperture distribution function of the | 2.4
Rx-antenna array

H(0) CMeMpMMy | Parametric broadband channel matrix 24
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K CMN coupling matrix 2.4.2,7
B, R Coherence bandwidth of DMC 2.5
R(0,,.) MM Covariance matrix of DMC 2.5

R, (0,,) MMy Covariance matrix of DMC in the frequency | 2.5

‘ domain

R.(0,. ) MMy Covariance matrix of DMC in the time delay | 2.5
domain

R,(0,.) C MMz Covariance matrix of DMC at Tx 2.5

R,(0,.) CMr<Me Covariance matrix of DMC at Rx 2.5

R,(0,. ) CMM; Covariance matrix of DMC in the temporal | 2.5
domain

a, R Noise power 2.5

Q, R Maximum power of the DMC 2.5

iy R Normalised coherence bandwidth 2.5

x(0,,) M Auto-covariance function of the DMC and | 2.5
noise in the frequency domain

0,. R Parameters of the dense multipath components | 2.5

0., R Parameters of the dense multipath components | 2.5
and noise

) R Base time delay of DMC 2.5

7, R Base time delay of DMC normalised to meas- | 2.5
urement bandwidth

R,R(0) MM covariance matrix, parametric covariance ma- | 2.5, 4
trix

d,. M Realisation of the DMC process 2.6

0, R All channel parameters (concentrated propaga- | 2.6
tion paths and DMC)

A(p) cMr Vector valued function, mapping normalised | 3.6
structural parameters p to complex exponen-
tials (1-dimensional)

Ap®,n®) CN<P Vector valued function, mapping normalised | 3.6
structural parameters p, p® to complex ex-
ponentials (2-dimensional)

ThE R Normalised time delays of arrival 3.6

T R Normalised Doppler-shifts 3.6

plor) RP Normalised azimuth of departure (Tx) 3.6

ptor) R Normalised elevation of departure (Tx) 3.6

poo) RPA Normalised azimuth of arrival (Rx) 3.6

p o) R Normalised elevation of arrival (Rx) 3.6

L R Number of model parameters 4

n,, M Realisation of the DMC process and noise 4

w (Ol independent circular white Gaussian noise 4

X cMA Observation (measured radio channel) 4

£(x|0,R) R Log-likelihood function 4
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D(p) cMxL matrix of first order differentials (Jacobian ma- | 4
trix)

D, Component matrices of the Jacobian matrix 4
JO.R,,) Fisher information matrix 4

X CMxN Set of channel observations 4
c(xp) R Cost-function 5.1
Q,Q(p) CMN orthogonal unitary basis vectors 5.1
Bo,,) cMrd Sampled PDP of the DMC in the time-delay | 6.1.4

domain
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B Abbreviations

3GPP

AIC
APS

BLUE
BS

CIR

COST
CRLB
CUBA

DCM
DFT
DMC
DML
DoA
DoD

E
EADF
EM
ESPRIT
ESSSE
EVD

F

FFT
FIM

GSCM
GSVD

1i.d.

Third Generation Partnership Program

Akaike Information Criterion
Azimuth power spectrum

Best Linear Unbiased Estimate
Base Station

Complex Impulse Response

European CO-operation in the field of Science and Technical Research
Cramér-Rao lower bound

Circular uniform beam array

Directional Channel Model
Discrete Fourier transform

Dense Multipath Components
Deterministic Maximum Likelihood
Direction of Arrival

Direction of Departure

Effective Apperture Distribution Function

Expectation Maximization

Estimation of Signal Parameters via Rotational Invariance Techniques
Economy Size Signal Subspace Estimation

Eigenvalue Decomposition

Fast (discrete) Fourier Transform
Fisher Information Matrix

Geometry-based Stochastic Channel Model
Generalised Singular Value Decomposition

independent identically distributed

least squares

Minimum Description Length
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MIMO Multiple-input multiple-output

MISO Multiple-input single-output
ML Maximum Likelihood

MS Mobile Station

MUSIC Multiple Signal Classification
MVUB minimum variance unbiased

MCSSS Multi-Carrier Spread Spectrum Signal

(0)

OFDM orthogonal frequency division multiplexing
P

PDF probability density function

PRBS Pseudo-Random Binary Signal

PULA polarimetric uniform linear array
PURA polarimetric uniform rectangular array
Q

QoS Quality of Service

R

RARE Rank Reduction

RF radio frequency

Rx Receive

S

SAGE Space Alternating Generalised Expectation Maximization
SCM spatial channel model (3GPP)
SCUBA stacked circular uniform beam array
SIMO single-input multiple-output

SISO single-input single-output

SLS Structured Least Squares / Separable Least Squares
SML Stochastic Maximum Likelihood

SNR signal to noise ratio

SSE Signal Subspace Estimation

SVD singular value decomposition

T

TDoA Time Delay of Arrival

TLS Total Least Squares

Tx Transmit

U

UCA Uniform Circular Array

ULA Uniform Linear Array

URA Uniform Rectangular Array
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C Some Common Definitions and Useful Relations

Matrix definition:

ay  ap a,
a a a
21 2 2

A= ; "l=[a, a, - a,JeC™
_aml amZ amn
TR In
b b b
)1 2 p)

B=| 1 . "|=[b, b, b, |eCre
_bml bm2 mn

Selection of Matrix and Vector elements:

{A}i =a,, {A}i,k =y {a}i =4q

Schur or Hadamard product (m = p,n=q):

anb, ayb, -+ a,b

a,b,, a,b,, ---a, b
C=AoB-= 21. 21 22. 22 2n. 2n c Cm
amlbml am2bm2 amnbmn
Kronecker product:
a,B a,B - q,B
C-aop=|@B @B aBl .,
amlB amZB amnB

Identities of Kronecker products:
W(A®B)=(0A)®B =AQ(aB)
(A®B)®C=A®(B®C)=A®B®C
(A®B)' =A" @ B”
(A®B)-(E®F)=(A-E)®(B-F)
(A®B)' =A"®B"'
(A+B)®C=AQ®C+B®C
[A B]eC=[A®C B®C(]
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Khatri-Rao product n=g¢:
C=B0A=[(b,®a,)... (b, ®a, )eC™"

Identities involving the Khatri-Rao product:
(DOBOa™)-c=(DOB)-(acc)
C"-.C=(A%B)"(A0B)=(BOA)" (BOA)=(A"A ) (B"B)
since

(b, ®a1)H (b, ®az):(ar 'az)'(blH 'bz)

Definition of the vector operator Vec{O}:

Identities involving the vector operator:
tr(A7B)=vec{A!" - vec(B}
vec{A-B-C}=(C" ® A)-vec{B}
a’B = (vec(B))' -(I®a)
vec{A -diag{c} BT }=(B0OA)-¢
(DOBOa™)-c=(DOB)-(acc)

B-diag{aoc}-D' = B-diag{c}-diag{a}- D"

Matrix operator, reshaping a vector to a m xn matrix:

mx1
a1
mx2

1
mats| . |,m,ny=A""

mxl
n

For m=n:
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mat =A""

Definition of a Unitary Matrix:

Q"-Q=1

Reflection Matrix, Reverse Permutation Matrix:

m={: - 1 0
o .-~ .
10 0 0

a ay

Definition of a Left Conjugate Symmetric Matrix:

A=TIA"

Definition of the Selection Matrix:

JQ/IXL:[OMx(k—l) M OMX(L—M—k)]

Identities involving the Selection Matrix:

Definition of the DFT matrix:



182

==

(U] 0
w w
1 2
w w
2 4
w w
M-1 2(M -1
200D
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Definition of a Toeplitz matrix:

¢ r v Ty
¢ C, Py ‘
T =toepfe,r}=toep| : [ - r,]t=] : © e =n
Cy Cir . . v,
L Cv Cya &) ¢

Definition of a Hermitian Toeplitz Matrix:
Ri=1

T=T" = toep{c,cH}; c, € .
C otherwise

Definition of a Circulant Matrix:

[ ¢, ¢, ¢, ¢ |
¢ ¢, q ¢ G
C =circ{e}=circ] : b= :
Cum Cyu-1 Cu- G Cy
L v Cma 6 G

Identities of Toeplitz Matrices:

I-T-O=T =T", if Tis Hermitian

Some Matrix Gradients [53], [40]:

I

(a)

ﬁiA tr(BA“ )= ﬁiA tr(A“B) = —(A‘IBA“ )H , provided B is independent of A

0
< (A
A T(A)

aiAln(det(A))

Calculation of Least Squares Estimates, A and Y known, X unknown:

AX=Y

solve:
X =arg mXin||AX ~Y|.

I. direct solution:

Iy

X

(A"A)A"Y
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I1. Best solution in terms of diagnostics Moore-Penrose-Pseudo-Inverse A”*
X=A"Y.
Proof:
VIETU-Y =V"E'U-U"EV X ‘VHZ*(ETTV -
ViEZT)Uu-Y=X
——

A'Y =X

III. Computationally efficient solution using the QR decomposition:

A-l0. @, |-or

R"Q-QR-X=R"Q{ Y
R-X=Q!.Y
1) Compute:
Z=QY
2) Solve
R-X=Z,

Observe that R is an upper triangular matrix!
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