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Abstract 

The theme of this thesis is the estimation of model parameters of a radio channel snapshot. 
The main focus was the development of a general data model for the measured radio channel, 
suitable for both high resolution channel parameter estimation on the one hand, and the devel-
opment of a robust parameter estimator for the parameters of the designed parametric radio 
channel model, in line with this logical work flow is this thesis. 

In the first part of this work an algebraic representation of observed propagation paths 
is developed using a ray-optical model known from literature. The algebraic framework is 
suitable for the description of SISO (single-input-single-output) radio transmission systems. A 
SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx). 
The derived expression for the propagation paths is also suitable to describe SIMO (single-
input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-
multiple-output) radio channel measurements. In contrast to other models used for high reso-
lution channel parameter estimation the derived model makes no restriction regarding the 
structure of the antenna array used throughout the measurement. This is important since the 
ultimate goal in radio channel sounding is the complete description of the spatial (angular) 
structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite 
for the optimisation of the antenna array structure with respect to the measurement task. Such 
an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical 
arrangement of antenna elements. This antenna array configuration is well suited for the 
measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-
scenarios. Furthermore, a new component of the radio channel model is introduced in the first 
part of this work. It describes the contribution of distributed (diffuse) scattering to the radio 
transmission. The new component is key for the development of a robust radio channel pa-
rameter estimator, which is derived in the main part of this work. The ignorance of the contri-
bution of distributed scattering to radio propagation is one of the main reasons why high-
resolution radio channel parameter estimators fail in practice. Since the underlying data model 
is wrong the estimators produce erroneous results. The improved model describes the so 
called dominant propagation paths by a deterministic mapping of the propagation path pa-
rameters to the channel observation. The contribution of the distributed scattering is modelled 
as a zero-mean circular Gaussian process. The parameters of the distributed scattering process 
determine the structure of the covariance matrix of this process. Based on this data model 
current concepts for radio channel sounding devices are discussed. 

In the second part of this work expressions for the accuracy achievable by a radio 
channel sounder are derived. To this end the lower bound on the variance of the measure-
ments i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the 
Cramér-Rao lower bound is employed. On the way to the Cramér-Rao lower bound for all 
channel model parameters, important issues for the development of an appropriate parameter 
estimator are discussed. Among other things the coupling of model parameters is also dis-
cussed. 
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In the third part of this thesis, an estimator, for the propagation path parameters is de-
rived. For the estimator the ‘maximum-likelihood’ approach is employed. After a short over-
view of existing high-resolution channel parameter estimators the estimation problem is clas-
sified. It is shown, that the estimation of the parameters of the propagation paths can be un-
derstood as a nonlinear weighted least squares problem, provided the parameters of the dis-
tributed scattering process are known. Based on this observation a general algorithm for the 
estimation of raw parameters for the observed propagation paths is developed. The algorithm 
uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to 
reduce the numerical complexity of the estimation problem. A robust estimator for the precise 
estimation of the propagation path parameters is derived. The estimator is based on concepts 
well known from nonlinear local optimisation theory. In the last part of this chapter the appli-
cation of subspace based parameter estimation algorithms for path parameter estimation is 
discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary 
ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace 
based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal 
subspace estimation (economy size SVD, singular value decomposition) are not suitable since 
they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT 
(Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can 
also be employed for parameter estimation from data having hidden rotation invariance struc-
ture. As an example an ESPRIT algorithm for angle estimation using circular uniform beam 
arrays (circular multi-beam antennas) is derived. 

In the final part of this work a maximum likelihood estimator for the new component 
of the channel model is developed. Starting with the concept of iterative maximum likelihood 
estimation, an algorithm is developed having a low computational complexity. The low com-
plexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance ma-
trix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propaga-
tion paths and the parametric estimator for the covariance matrix of the process describing the 
distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX). 
The estimator is a ‘maximum likelihood’ estimator and uses the genuine SAGE concept to 
reduce the computational complexity. The estimator provides additional information about the 
reliability of the estimated channel parameters. This reliability information is used to deter-
mine an appropriate model for the observation. Furthermore, the reliability information i.e. 
the estimate of the covariance matrix of all parameter estimates is also an important parameter 
estimation result. This information is a prerequisite for further processing and evaluation of 
the measured channel parameters. 
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Kurzfassung 

Diese Dissertation behandelt die Schätzung der Modellparameter einer Momentanaufnahme 
des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines 
generischen Datenmodells für den gemessenen Funkkanal, welches für die hochauflösende 
Parameterschätzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung 
eines robusten Parameterschätzers für die Bestimmung der Parameter des entworfenen Mo-
dells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau 
dieser Arbeit. 

Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenopti-
schen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbrei-
tungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (sin-
gle-input-single-output)-Übertragungssystemen, also von Systemen mit einer Sendeantenne 
und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren 
Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO- 
(single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme 
(multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthält 
das entwickelte Modell keine Restriktionen bezüglich der modellierbaren Antennenarrayar-
chitekturen. Dies ist besonders wichtig in Hinblick auf die möglichst vollständige Erfassung 
der räumlichen Struktur des Funkkanals. Die Flexibilität des Modells ist eine Grundvoraus-
setzung für die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche 
angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Anten-
nenelementen. Sie ist gut geeignet für die Erfassung der räumlichen Struktur des Funkkanals 
(Azimut und Elevation) in so genannten Outdoor-Funkszenarien. Weiterhin wird im ersten 
Teil eine neue Komponente des Funkkanaldatenmodells eingeführt, welche den Beitrag ver-
teilter (diffuser) Streuungen zur Funkübertragung beschreibt. Die neue Modellkomponente 
spielt eine Schlüsselrolle bei der Entwicklung eines robusten Parameterschätzers im Hauptteil 
dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen 
für die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflö-
senden Funkkanalparameterschätzern, die in der Literatur etabliert sind. Das neue Datenmo-
dell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische 
Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten 
Streuungen wird mit Hilfe eines zirkularen mittelwertfreien Gaußschen Prozesses beschrie-
ben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix 
dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz über 
aktuelle Konzepte für Funkkanalmessgeräte, so genannte Channel-Sounder, diskutiert. 

Im zweiten Teil dieser Arbeit werden in erster Linie Ausdrücke zur Bestimmung der 
erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die 
untere Schranke für die Varianz der geschätzten Modellparameter, das heißt der Messwerte, 
bestimmt. Als Grundlage für die Varianzabschätzung wird das aus der Parameterschätztheorie 
bekannte Konzept der Cramér-Rao-Schranke angewandt. Im Rahmen der Ableitung der Cra-
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mér-Rao-Schranke werden außerdem wichtige Gesichtspunkte für die Entwicklung eines effi-
zienten Parameterschätzers diskutiert. 

Im dritten Teil der Arbeit wird ein Schätzer für die Bestimmung der Ausbreitungs-
pfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Über-
sicht über existierende Konzepte zur hochauflösenden Funkkanalparameterschätzung wird die 
vorliegende Schätzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Vor-
aussetzung, dass die Parameter der verteilten Streuungen bekannt sind, lässt sich zeigen, daß 
sich die Schätzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes 
kleinstes Fehlerquadratproblem auffassen lässt. Basierend auf dieser Erkenntnis wird ein ge-
nerischer Algorithmus zur Bestimmung einer globalen Startlösung für die Parameter eines 
Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-
Squares (SLS)-Probleme Gebrauch gemacht, um die Komplexität des Schätzproblems zu re-
duzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten 
robusten numerischen Algorithmen ein Schätzer zur genauen Bestimmung der Ausbreitungs-
pfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraum-
basierter Schätzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein 
speichereffizienter Algorithmus zur Signalraumschätzung entwickelt. Dieser Algorithmus ist 
eine Grundvoraussetzung für die Anwendung von mehrdimensionalen Parameterschätzern 
wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational 
Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-
Funkkanalmessungen. Traditionelle Verfahren zur Signalraumschätzung sind hier im Allge-
meinen nicht anwendbar, da sie einen zu großen Speicheraufwand erfordern. Außerdem wird 
in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur Parameterschätzung von Daten 
mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden können. Als Bei-
spiel wird ein ESPRIT-basierter Algorithmus zur Richtungsschätzung in Verbindung mit mul-
tibeam-Antennenarrays (CUBA) abgeleitet. 

Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-Schätzer für die neue 
Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausge-
hend vom Konzept des iterativen Maximum-Likelihood-Schätzers wird ein Algorithmus ent-
wickelt, der hinreichend geringe numerische Komplexität besitzt, so dass er praktisch an-
wendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schätzenden Kovari-
anzmatrix Gebrauch gemacht. Aufbauend auf dem Schätzer für die Parameter der Ausbrei-
tungspfade und dem Schätzer für die Parameter der verteilten Streuungen wird ein Maximum-
Likelihood-Schätzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Mo-
dells der Funkanalmessung im Verbund schätzt. Neben den geschätzten Parametern des Da-
tenmodells liefert der Schätzer zusätzlich Zuverlässigkeitsinformationen. Diese werden unter 
anderem zur Bestimmung der Modellordnung, das heißt zur Bestimmung der Anzahl der do-
minanten Ausbreitungspfade, herangezogen. Außerdem stellen die Zuverlässigkeitsinformati-
onen aber auch ein wichtiges Schätzergebnis dar. Die Zuverlässigkeitsinformationen machen 
die weitere Verarbeitung und Wertung der Messergebnisse möglich. 
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1 Introduction 

As high-speed data services for multimedia Internet access are brought to focus, huge date 
rates per user are anticipated for future 3G and 4G mobile radio systems. The most likely 
method of increasing capacity for wireless transmission is to exploit smart antennas. Space-
time processing using multiple antennas is supposed to enhance the performance in terms of 
coverage, capacity and quality of service (QoS) considerably. The signal processing methods 
widely discussed are beam forming, joint space-time equalisation, multi-user detection, inter-
ference cancellation, and spatial diversity. Link adaptation methods are applied to control the 
modulation and coding according to the available radio link performance in order to meet the 
required QoS. Highest link capacity is expected if multiple antennas are used at both the re-
ceiver and the transmitter site. In this case, the radio propagation channel as accessed by the 
antennas constitutes a multiple-input-multiple-output (MIMO) system. Profound knowledge 
of the multipath propagation channel impulse response (CIR) is a prerequisite for system 
planning, algorithm design, and link level simulation of advanced radio systems using adap-
tive multiple antenna modems. A lot of spatial channel models and propagation simulation 
tools have been developed (see [1] for an overview). In order to keep the simulation tractable, 
these models must extremely simplify the complicated electromagnetic transmission proc-
esses of reflection, scattering, diffraction, shadowing etc. In labyrinthine radio environments 
such as densely built-up areas, indoor and especially industrial areas and factory halls, car-to-
car links in heavy traffic, these models cannot reproduce the reality of wave propagation. To 
complicate matters further, random user mobility and possible movement of parts of the envi-
ronment have to be considered. Consequently, the MIMO radio channel has to be treated as a 
time-variant system. Moreover, adjacent-channel and co-channel interference from other sub-
scribers or even from coexisting systems have to be considered. Therefore, advanced meas-
urement systems are required, which deliver CIR data for realistic link level simulation and 
even for system level performance assessment. These data can also be used to deduce meas-
urement based channel models. 

1.1 Background 

The design of future mobile radio networks (beyond 3G) requires research towards new air 
interfaces which are characterized by highest bandwidth efficiency and unprecedented flexi-
bility. It is commonly understood that radio systems equipped with multiple antennas at both 
the mobile station (MS) and the base station (BS) have a huge potential to increase the avail-
able capacity for high bit rate wireless links, which results from a simultaneous transmission 
of multiple data streams from different antenna elements [2]. This multi-antenna transmission 
technique is called MIMO transmission. It can optimally exploit the spatial diversity of multi-
ple propagation paths existing in a rich scattering environment. Conceptually, the multipath 
propagation of the radio channel gives rise to different spatio-temporal signatures for the dif-
ferent transmit data streams, which permits a receiver equipped with multiple antennas to 
separate those data streams from the received signal mixture, that are otherwise not orthogo-
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nal in any of the conventional communication signal dimensions, i.e., by time, frequency, or 
code. With this information, it is not surprising that the performance of a MIMO system 
strongly depend on the radio channel conditions. A key question for a system design and im-
plementation is therefore, do we find practically feasible schemes that are sufficiently robust 
for this task? On the other hand, somewhat related, what specific features are required for a 
practical MIMO system to work reliably under a wealth of various propagation conditions? 
To give an example, the upcoming IEEE 802.11n standard applies the MIMO transmission 
concept to increase the data rate of WLAN-systems (Wireless Local Area Networks). Fur-
thermore, the new systems will use a bandwidth of up to 40MHz. The aim is to reach a 
throughput of at least 100Mbps.  
 

 
Figure 1-1: Double directional (direction of departure and direction of arrival) structure of a 
multipath channel. 

 

A thorough investigation of the multidimensional wave propagation mechanisms is a 
prerequisite for understanding the spatial and temporal structure of the channel transfer ma-
trix, and thus, for optimum design and realistic performance evaluation of multiple antenna 
systems. There are many attempts to simulate the input-output behaviour of the channel. One 
approach is physically motivated, it is based on electromagnetic wave propagation analysis 
and uses a ray optical model. In case of ray tracing or ray launching, a detailed database de-
scribing the propagation environment is required. Other models, although ray based as well, 
use statistical assumptions on the distribution of reflectors (e.g. COST 259 [3], COST273 
[4]). There are also models trying to reproduce the input/output behaviour in a statistical sense 
by formal assumptions of correlation coefficients and distributions resulting at transmit and 
receive antenna ports disregarding the geometrical distribution of the reflectors. A drawback 
of non-geometric models is that they are inherently specific for a certain antenna characteris-
tic. For antenna independent modelling (which allows antenna de-embedding and embed-
ding), it seems that geometry-based models are necessary [5], [6].  

As the complexity of wave reflection, scattering, diffraction, etc. in real propagation 
environments can never be completely reproduced by electromagnetic simulation and because 
of the strong simplifications of the statistical approaches, all models have to be verified and 
parameterised by propagation measurements. Moreover, channel models can be directly de-
duced from measurements in real propagation environments by estimating the geometric path 
parameters from the recorded data [7]. Given a ray-optical path model, the parameters of a 
suitably defined propagation path model are DoA (Direction of Arrival) at the receiver array, 
DoD (Direction of Departure) at the transmitter array, TDoA (Time Delay of Arrival), Dop-
pler shift, and the complex, polarimetric path weight matrix.  

A multidimensional channel sounder is a measuring device, which allows the observa-
tion of the time-varying multipath channel impulse response in its relevant multiple dimen-
sions. These dimensions may be temporal and spatial in nature and must contain information 

MS BS 
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on all model parameters described above. To this end, we need a broadband excitation signal 
to "sound" the channel in the frequency range of interest and antenna arrays, which sense the 
wave field in a properly defined spatial aperture. A sounder system typically consists of a 
mobile transmitter (Tx) which plays the role of the MS (mobile station) and a fixed receiver 
(Rx) acting as the BS (base station). Since the channel is reciprocal, it makes no difference if 
the results are interpreted as uplink or as downlink. The receiver may also be moving if we 
consider a peer-to-peer communication between two mobile platforms. Both excitation and 
recording must be repetitive with a period short enough to make the temporal variation statis-
tics according to Doppler shift and fast fading visible. Moreover, the data recording must be 
continuous along a precisely defined trajectory to reproduce slow channel parameter varia-
tion. This all is called real-time MIMO channel sounding and makes the measured data usable 
for simulating the MIMO transceiver performance including link- and system-level aspects.  
Figure 1-1 highlights the double directional structure of the multipath channel. Specifically, 
double directional measurement, which includes joint DoA/DoD estimation, allows the influ-
ence of the measurement antennas to be separated from the channel measurements. This is a 
prerequisite of antenna independent channel characterisation.  

The antenna array arrangement is of crucial importance to represent a certain system 
scenario. This applies to the typical BS or access point (AP) location in a cellular or WLAN 
specific deployment scenario. The MS antenna array location should resemble the characteris-
tic user roaming behaviour. This may include almost stationary user terminals but also high 
mobility user platforms such as cars, aircrafts, or trains. For ad-hoc and multi-hop network-
ing, the situation changes completely since there is no dedicated BS. Instead, both sides of the 
link have to represent the terminal morphology and mobility. This influences the antenna ar-
ray architecture, which consists of the array size, shape and of the number, orientation and 
characteristics of the individual antenna elements. Both BS and AP, e.g., may have a limited 
viewing sector. The MS, acting as the user, should have a full angular coverage in order to 
represent arbitrary user antenna orientation. Moreover, advanced network specific scenarios 
such as multiple users including known and unknown interference, cooperative downlinks 
from multiple BS or APs, multi-hop networking and relaying, etc. have to be emulated by the 
measurement setup. It is only if the measurement scenario is properly defined that the re-
corded CIR data can be used for realistic link- and system level simulation. The advantages of 
this measurement based off-line approach in comparison with the prototype hardware demon-
stration are higher flexibility, lower costs, and an improved perception of the transceiver's 
operation. The latter is primarily due to more effective analysis techniques, which allow the 
observed transceiver performance to be traced back to the actual time variant space-time 
structure and physical propagation phenomena.  

Even more specific design roles for antenna arrays apply if we have in mind high-
resolution estimation of the ray-optical multipath model. The channel response can, in gen-
eral, be observed only within a limited aperture volume which is somewhat related to the ar-
ray size, frequency bandwidth and temporal observation window. This strictly limits the 
achievable parameter resolution and accuracy when classical nonparametric estimation algo-
rithms are applied. Therefore, high-resolution parameter estimation algorithms have to be 
envisaged to enhance the resolution by fitting an appropriate data model to the measured data. 
In this case, the resolution is only limited by the signal to noise ratio (SNR), antenna and de-
vice imperfections, calibration quality, and the limited validity of the data model. The resolu-
tion performance mainly depends on the antenna array architecture and its manufacturing 
quality, which includes low electromagnetic coupling, high electrical and mechanical stability 
and precise calibration. In the context of high-resolution channel parameter estimation, also 
the definition of the data model is crucial for parameter estimation. It has to represent the real-
ity of wave propagation and the influence of the measurement device. A proper choice can 
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dramatically reduce the algorithmic complexity and enhance the accuracy and resolution as 
well as the reliability of the results. Moreover, a sufficient accurate continuous device data 
model is required, which includes the precise knowledge of the complex polarimetric antenna 
array response. 

1.2 Overview and Contributions 

Chapter 2 - Radio Channel and System Model describes the viewpoint of the mobile radio 
channel used throughout this work. A model for concentrated (specular alike) propagation 
paths is derived, which can be expressed entirely by means of linear algebra. The model is a 
continuous function of the propagation path parameters. Furthermore, the data model com-
monly used in high-resolution channel parameter estimation, which describes the radio chan-
nel observation (measurement) by a finite sum of concentrated propagation paths and meas-
urement noise, is extended. A third component of the channel model is introduced to account 
for so-called dense multipath, which is caused by distributed diffuse scattering. 

Chapter 3 - Radio Channel Measurement gives a short overview of radio channel 
sounding measurement devices. Furthermore, general issues in radio propagation measure-
ments related to channel parameter estimation are discussed.  

In Chapter 4 - Limits on Channel Parameter Estimation, closed form expressions 
for the Cramér-Rao lower bound on the variance of any channel parameter estimator are de-
rived. At first, expressions for the Cramér-Rao lower bound on the parameters of the propaga-
tion paths are established. The structure of the Fisher information matrix and its influence on 
path identifiability as well as parameter estimator structure is discussed. In the second part, a 
closed form expressions for the Cramér-Rao lower bound on the parameters of the stochastic 
part of radio channel observation (dense multipath) is derived. Finally, an expression for the 
joint Cramér-Rao lower bound of all channel model parameters is given. 

In Chapter 5 - Estimation of Path Parameters, the general structure of the path pa-
rameter estimation problem is discussed. A maximum likelihood estimator based on a global 
search strategy to determine raw initial path parameter estimates, and a subsequent local 
maximization algorithm is proposed in this chapter. In both algorithms, the new channel 
model component (dense multipath) is taken into account. Furthermore, it is discussed how 
the variance of the estimated path parameters can be estimated, and how the parameter esti-
mates are approximately distributed. Using the variance estimates, a new algorithm to deter-
mine the model order, i.e., the number of assessable propagation paths is proposed.  

In the second part of this chapter some algorithms, which are important if subspace 
based algorithms are applied to path parameter estimation are summarized. An algorithm for 
economy size signal subspace estimation is described. In the new algorithm for signal sub-
space estimation, multidimensional smoothing is carried out implicitly thus significantly re-
ducing the memory requirements. Furthermore, the algorithm for economy size signal sub-
space estimation is extended to account also for the contribution of dense multipath compo-
nents, i.e., to handle coloured noise.  

In Chapter 6 - Estimation of DMC Parameters, an approach to maximum likelihood 
estimation of the DMC (Dense Multipath Components) parameters is described. An algorithm 
based on iterative maximum likelihood is developed. Furthermore, it is shown that the direct 
implementation of the iterative ‘maximum likelihood’ estimator leads to an algorithm, which 
is computationally expensive. To resolve this problem an estimator is proposed, which em-
beds the parametric covariance matrix to estimate in a circulant matrix leading to a significant 
reduction in computational complexity. Finally, the RIMAX algorithm for joint estimation of 
all channel parameters is outlined. 
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In Chapter 7 - Antenna Array Calibration, an algorithm for the estimation of cali-
bration matrices for uniform linear, rectangular, and circular arrays as well as circular uniform 
beam arrays is described. The algorithm is a significant improvement in terms of computa-
tional complexity compared with existing algorithms. 

In Chapter 8 – Summary and Conclusion, the key issues of this thesis are summa-
rised and its main conclusions are repeated. Finally, an overview of open issues related to 
mobile radio channel parameter estimation, which are of further research interest, are dis-
cussed.  

The parameter estimation algorithm developed within this work has been implemented 
at Technische Universität Ilmenau at the Electronic Measurement Lab. It is also available as a 
commercial product from MEDAV GmbH. The name of the parameter estimator “RIMAX” 
has been proposed by MEDAV GmbH.  

1.3 Notation 

A capital boldfaced letter denotes a matrix, and a small boldfaced letter a vector. Furthermore, 
( )bA  denotes a matrix-valued function of the variable b , and ( )ba  denotes a vector valued 

function of b . Unless otherwise noted, are all vectors column vectors. A boldfaced 1  denotes 
a column vector with 1-elements. The superscripts ( )T⋅ , ( )H⋅ , and ( )∗⋅  denotes transposition, 
complex conjugate (Hermitian) transposition and element-wise complex conjugate, respec-
tively. The element ki,  of a matrix is called with { }ikA . The small letter j  denotes the square 
root of 1− , i.e., 1j −= . The operators {}⋅ℜ , {}⋅ℑ , and {}⋅E  denotes real part, imaginary 
part, and the expectation operator, respectively. The symbol ^ over a variable denotes its es-
timate. Additionally, important equations are marked with the symbol ■. Appendix A, B, and 
C contains frequently used symbols, acronyms, and often used relations. The symbol x∗  de-
notes convolution over the variable (domain) x . 
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2 Radio Channel and System Model 

The term “radio channel” does not have a clearly defined notion. It rather depends on the spe-
cific scientific area such as communications, wave propagation, Radar and so on what will be 
describe using the term “radio channel”. Since the radio channel is a distributed system, a 
critical issue is the definition of the input and the output ports of the system. In this work the 
term “radio channel” will be used to describe the physical wave propagation between two 
points in space. In other words, the antennas or antenna arrays do not belong to the radio 
channel. This is mainly motivated by the fact that we can generally choose the antenna array 
within certain limits, but not the radio channel. This is true for radio channel measurements 
but also applies to mobile communications.  

The focus of this chapter is the derivation of a mathematical framework to describe an 
observation of the radio channel. The algebraic data model will be the basis for all radio chan-
nel parameter estimators derived throughout this work. There are two contradicting design 
criteria for the data model. On one hand, it is desirable to make the data model as precise as 
possible since we want to investigate the radio channel. On the other hand, every measure-
ment contains finite information. That means we have to choose a channel model that can be 
estimated from the radio channel measurements. The amount of information contained in a 
radio channel observation must be sufficient to determine the number of unknowns in the 
model. This is a significant difference to radio channel modelling in general. If we have to 
generate a realisation of the radio channel, e.g., for simulations, we can make the data model 
arbitrarily precise.  

 A generally accepted model for the radio channel describes the channel as a superpo-
sition of a finite number of rays. This model has been used for a long time for ray-tracing 
based radio channel simulations, but with the growing interest in the spatial structure of the 
radio channel, it has been also applied to channel modelling and channel measurement. The 
model is applicable for the synthesis of radio channel realisations. The only drawback is its 
high complexity if wideband radio channels have to be synthesized. As we shall see later, this 
model is not applicable as a data model for parameter estimation since it violates the afore-
mentioned requirement on model complexity. In [8] has been shown that the radio channel 
contains concentrated propagation paths and so-called dense multipath components caused by 
distributed diffuse scattering. The ray model is appropriate to model the contribution of the 
concentrated (dominant) propagation paths. However, it is not suitable to model the contribu-
tion of the dense multipath components. In the next sections, we will derive an algebraic 
model for the concentrated propagation paths based on the ray-model. We extend this model 
with a new component describing the dense multipath components later on in this chapter.  

2.1 Definition of a Ray 

The smallest entity we will use to describe the radio channel is a ray. From ray-optical model-
ling it is well known that even complicated wave propagation phenomena in a continuum of 
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reflecting, diffracting, and scattering objects can be approximately modelled by a superposi-
tion of discrete waves. 
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Figure 2-1: Definition of a ray 

 
The method is based on geometric optics and the number of rays used determines the accu-
racy. The five parameters Tϕ , Tϑ , τ , Rϕ , and Rϑ  of a ray have the following meaning. If we 
generate a spherical wave at the transmitter position, only the part of the wave moving in the 
direction determined by the angle pair TT ϑϕ ,  will reach the receiver along this ray. We call 
these two angles the transmit-azimuth and -elevation. Due to the geometrical length of the ray 
and the propagation speeds within the mediums along the ray, the transmitted wave needs a 
certain time to reach the receiver over this ray. The total travelling time is called the time-
delay of arrival (TDoA) τ . Finally, the angles RR ϑϕ ,  determine the azimuth and elevation of 
the approaching wave reaching the receiver along this ray. 

Observe that the angles at the transmitter and at the receiver are defined in the local 
coordinate systems. There exist various advantages and disadvantages for the definition of the 
angles in the local coordinate systems and a global coordinate system. From a radio channel 
measurement point of view, the definition in the local Tx- and Rx-coordinate systems is pref-
erable. This is mainly due to the fact, that the angle information is gathered by the local an-
tenna arrays at Tx and Rx. Consequently, the angles of the rays are related to the local coordi-
nate system. Furthermore, the ray parameters can always be projected into the global coordi-
nate system if the absolute positions of Tx and Rx are known. A discussion about coordinate 
system definitions in radio channel modelling can be found in [5]. 
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Figure 2-2: Polarisation vectors on the transmit (left) and the receive site (right) 
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Using the transmit- and receive-angle pairs we define the Pointing-vectors at the 
transmitter and the receiver position, Tk , and Rk . Due to the energy transport, the Pointing-
vector points away from the transmitter and towards the receiver. Using the definitions of the 
azimuth and elevation angles, as well as the Pointing-vectors, we define the two linear polar-
ised components 

TT ϑϕ ee , and 
RR ϑϕ ee , of the wave leaving the transmitter and of the wave 

reaching the receiver, respectively. Figure 2-2 illustrates the definition of the linear polarised 
wave components. The ray projects the two transmitted linear polarised components onto the 
received linear polarised components. 

2.2 Definition of a Propagation Path 

The ray model derived in the previous section is suitable for the generation of a realisation of 
the stochastic process radio channel in simulations. It is also useful to understand wave 
propagation mechanisms. However, the ray model is not suitable to interpret the parameter 
estimation results of a channel parameter estimator. This is due to the limited resolution of 
any radio channel measurement system. We have to accept that the resolution of rays, which 
are close together, is always limited. The reason is as already stated before that we gather only 
finite information about the underlying physical phenomena while observing a system. There-
fore, we introduce the propagation path. A propagation path is a superposition of multiple 
rays, which are close together, i.e., they from a cluster. Observe that we introduce the cluster 
concept in the context of channel parameter estimation, as a concept to interpret the estima-
tion result. The parameterisation of a ray and a propagation path is identical. However, the ray 
model cannot be used to explain the observed time variance of the path weight (ray weight) if 
the structure of a cluster is changing. The time variance of the path weight of a propagation 
path can reveal, whether it is a superposition of multiple rays (cf. [9]).   
 

 

ϕR 

Tx 
Rx 

τ eT eR 

ϕT 

ϑT 
ϑR 

xT 

yT 

zT 
zR 

xR 

yR 

Cluster 
(group of scatterer) 

 
Figure 2-3: Definition of a propagation path 

 
The parameters of a propagation path are the mean values of the parameters of the rays com-
bined in the propagation path. As discussed in the previous section, the radio channel can be 
approximated by the superposition of multipath components. Let us suppose we transmit a 
narrowband signal with the baseband representation ( )tx  over a single propagation path with 
an electrical length of pl  at a carrier frequency cf , using a transmitter with the impulse re-
sponse ( )tgT , and a receiver having a impulse response of ( )tgR . Then1  

                                                 
1 The symbol t∗  denotes convolution in the time domain. 
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 ( ) ( ) ( ) ( ) 0

0

j2π
e c
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cp
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c

l

tTtRp txtgtgty
−

⋅−∗∗⋅= γ  

is a baseband representation of the received signal ( )ty , where 0c  denotes the velocity of 
light and pγ  describes all effects which can be treated as frequency independent such as free 
space loss, complex antenna gains, loss on scattering or reflection points, and so on. One 
should note that the term narrowband refers to a system with a small relative bandwidth. A 
radio system with a bandwidth of MHz 100=mB  operating at a carrier frequency of 

GHz 5=cf is a narrowband system, and a radio system with a bandwidth of 1 GHz at a car-
rier frequency of 60 GHz is a narrowband system too. The equivalent frequency-domain rep-
resentation of the received signal ( )ty  is given by 

 ( ) ( ) ( ) ( ) 0
j2πj2π

ee c

pl

cp

ff

ff

RTp fGfGfXfY
−− ⋅⋅⋅⋅⋅= τγ , 

where 
0c

l

p

p=τ  denotes the time a signal needs for the transmission over the propagation path 
p. From a system theoretic point of view the term  

 ( ) ( ) ( ) 0
j2πj2π

ee c

pl

cp

ff

ff

RTp fGfGfH
−− ⋅⋅⋅⋅= τγ  

is a frequency domain representation of a time invariant single-input single-output (SISO) 
system.  

If we assume that at least one, the transmitter, the receiver, a reflector or scatterer re-
lated to this propagation path is moving, the SISO system becomes time-variant. We assume 
the effective speed pv  of the moving objects related to the propagation path including trans-
mitter and receiver is constant within a short observation interval. Consequently, the time-
variant frequency response can be expressed for a small change in the electrical length pl  by 

 ( ) ( ) ( )
( )

c

tpvpl

p

ff

f

RTp fGfGtfH λτγ
+

−⋅⋅− ⋅⋅⋅⋅=
j2πj2π

ee, , (2.1) 

where 
cf

c

c
0=λ  denotes the wavelength of the carrier-frequency. This model is an approxima-

tion insofar as it neglects any change in the parameter pτ  and assumes a constant complex 
path-weight pγ . Hence, it is only valid as long as 

mB

c

p tv 0<<⋅ , where mB  denotes the observa-
tion bandwidth of the measurement system. We can derive a more common expression for 
(2.1) if we introduce the Doppler-shift pc

f

p vc ⋅−=
0

α  and merge the phase shift at time 0=t  
into the complex path weight 

 0
j2π' e c

pl

cf

pp

−
⋅= γγ , 

yielding for (2.1) the form 

 ( ) ( ) ( ) tf

RTp
p

ff
fGfGtfH

⋅⋅−⋅⋅− ⋅⋅⋅⋅= pj2πj2π' ee,
ατγ . (2.2) 

So far, we have derived a radio channel model for a SISO system with omni-
directional antennas at both the transmitter and the receiver site, now we extend this model to 
directional antennas at both sides. To this end we introduce the complex beam pattern of the 
transmit antenna  

 ( ) ( ) ( )[ ] 21,,,,,, ×∈= Cfbfbf TTTTTTTTT VH
ϑϕϑϕϑϕb   

and the receive antenna 
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  ( ) ( ) ( )[ ] 21,,,,,, ×∈= Cfbfbf RRRRRRRRR VH
ϑϕϑϕϑϕb , 

where ( )fb TTTH
,,ϑϕ , ( )fb RRRH

,,ϑϕ  and ( )fb TTTV
,,ϑϕ , ( )fb RRRV

,,ϑϕ   are the complex fre-
quency dependent beam pattern for horizontal and vertical polarisation, respectively. Assum-
ing that the signal bandwidth is equal or smaller as the antenna bandwidth at cf , we can write 
for the complex beam pattern of the transmit and the receive antenna 

 ( ) ( )cTTTTTT f,,, ϑϕϑϕ bb =  ,and ( ) ( )cRRRRRR f,,, ϑϕϑϕ bb = . 

Using these definitions the single-path SISO model (2.2) can be extended to directional an-
tennas at both link ends 

 ( ) ( ) ( ) ( ) ( ) tf

TTTTpRRRRRRTT
p

ff
fGfGtfH

⋅⋅−⋅⋅− ⋅⋅⋅⋅⋅⋅= pj2πj2πT ee,,,,,,,
ατϑϕϑϕϑϕϑϕ bΓb , (2.3) 

where the path weight matrix pΓ  contains the four polarimetric transmission coefficients 

 22

,,

,, ×∈







= C

pVVpHV

pVHpHH

p γγ
γγ

Γ . 

Since the single-path SISO model is a linear model, it can be easily extended to the multipath 
SISO model using the superposition principle. For P  propagation paths the multipath SISO 
radio channel model is given by 

 ( ) ( ) ( ) ( ) ( ){ }∑
=

⋅⋅−⋅⋅− ⋅⋅⋅⋅⋅⋅=
P

p

tf

pTpTTppRpRRTR
p

ff
fGfGtfH

1

j2πj2πT

,,,,
pee,,,

ατϑϕϑϕ bΓb . (2.4) 

If we employ multiple antennas at both sides of the radio link, and use a multi-channel trans-
mitter as well as a multi-channel receiver, to feed the transmit antennas and to receive multi-
ple signals, we yield a MIMO communication system. We will denote the number of transmit 
antenna array ports of such a MIMO system with TM  and the number of the receive array 
ports with RM . The MIMO channel is the entirety of all RT MM ×  SISO channels. The exten-
sion of the SISO radio channel model to the MIMO radio channel model is straightforward. 
To this end, let us introduce the matrix-valued functions 

 ( )
( )

( )

22

,

1,

,

,

,

, ×

















= T

T

M

TTMT

TTT

TTT CR aM

ϑϕ

ϑϕ

ϑϕ
b

b

B , (2.5) 

and 

 ( )
( )

( )

22

,

1,

,

,

,

, ×

















= R

R

M

RRMR

RRR

RRR CR aM

ϑϕ

ϑϕ
ϑϕ

b

b

B . (2.6) 

( )TTT ϑϕ ,B , and ( )RRR ϑϕ ,B  describe the far field beam pattern of all antenna array ports at 
the transmit array and the receive array, respectively. Using the definitions (2.5) and (2.6) in 
the model for the SISO channel (2.4) yields an expression for the MIMO radio channel 

( ) TR MMtf ×∈C,H  (2.7). 

 ( ) ( ) ( ) ( ) ( ){ }∑
=

⋅⋅−⋅⋅− ⋅⋅⋅⋅⋅⋅=
P

p

tf

pTpTTppRpRRTR
p

ff
fGfGtf

1

j2πj2πT

,,,,
pee,,,

ατϑϕϑϕ BΓBH  (2.7) 
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There exist two additional systems namely the SIMO radio system (single-input multiple-
output = SIMO) and the MISO radio system (multiple-input single-output = MISO). From a 
systematic point of view the SISO, the SIMO, and the MISO radio system are only special 
MIMO systems. For example, one can always reduce the channel model for the MIMO sys-
tem (2.7)  to the channel model ( ) 1, ×∈ RM

SIMO tf Ch  of a SIMO system yielding 

 ( ) ( ) ( ) ( ) ( ){ }∑
=

⋅⋅−⋅⋅− ⋅⋅⋅⋅⋅⋅=
P

p

tf

pTpTTppRpRRTRSIMO
p

ff
fGfGtf

1

j2πj2πT

,,,,
pee,,,

ατϑϕϑϕ bΓBh  

or equivalently to the model ( ) TM

S tf
×∈ 1, Ch  of a MISO system 

 ( ) ( ) ( ) ( ) ( ){ }∑
=

⋅⋅−⋅⋅− ⋅⋅⋅⋅⋅⋅=
P

p

tf

pTpTTppRpRRTRMISO
p

ff
fGfGtf

1

j2πj2πT

,,,,
pee,,,

ατϑϕϑϕ BΓbh . 

2.3 Frequency and Temporal Domain Sampling 

To use the MIMO radio channel model, derived in Section 2.2, as a model for radio channel 
parameter estimation or as a channel model for digital communications, we have to sample 
the continuous model (2.4) in the temporal as well as in the frequency domain. To this end, 
we introduce the sampling interval in the frequency domain 0f , and in the temporal do-
main 0t . Equidistant frequency domain sampling of (2.7) at fM  frequency points yields a set 
of fM  matrices ( ) TR MM

f tfm
×∈⋅ C,0H  where 2

1

2

1
,...,

−−
+−= ff MM

fm . Using these matrices the 
broadband MIMO radio channel model can be expressed in matrix form as follows 

 ( )

( )

( )

( ) ( )TfRf

f

f

MMMM

M

M

f

tf

tf

t
×

−

−

∈





















+

−

= C

,00

0

0

00,

02

1

02

1

H

H

H

L

OOM

MOO

L

. (2.8) 

In the same way temporal domain sampling of ( )tfH  at tM  time instances yields a set of 
matrices 

 ( ) ( ) ( )fTfR MMMM

tf tm
×∈⋅ C0H . 

It should be observed that (2.8) covers a bandwidth of fm MfB ⋅= 0 , and also that the set of 

tM  matrices ( )0tmtf ⋅H  represent the radio channel within the time interval 0tMT tm ⋅= . 

2.3.1 Expressions for the MIMO-Channel 

In the previous section, we have shown that the sampled radio channel model can be ex-
pressed at one time instance using a block diagonal matrix (2.8). To derive a more explicit 
expression let us introduce some matrices containing basic elements of the radio channel 
model. First we define the parameter vectors containing the model parameters summarised in 
Table 2-1.  

Using those parameter vectors we define four matrix valued functions, 

 ( )
( ) ( )

( ) ( )
PMP

PTPTMTTTMT

PTPTTTTT

ΤΤT
T

THTH

HH

H

bb

bb
××

















= CR a

L

MM

L
2

,,,1,1,,

,,1,1,1,1,

,

,,

,,

,

ϑϕϑϕ

ϑϕϑϕ
ϑϑϑϑϕϕϕϕB , (2.9) 
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Table 2-1: Definition of Propagation Path Parameter Vectors 

Angles at the transmitter site: 
[ ]T,1, PTTΤ ϕϕ L=ϕϕϕϕ , [ ]T,1, PTTΤ ϑϑ L=ϑϑϑϑ  

Angles at the receiver site:  
[ ]T,1, PRRR ϕϕ L=ϕϕϕϕ , [ ]T,1, PRRR ϑϑ L=ϑϑϑϑ  

Time delays: 
[ ]T1 Pττ L=ττττ  

Doppler-shifts: 
[ ]T1 Pαα L=αααα  

Complex path weights: 
[ ]T,1, PHHHHHH γγ L=γ  

[ ]T,1, PHVHVHV γγ L=γ  

[ ]T,1, PVHVHVH γγ L=γ  

[ ]T,1, PVVVVVV γγ L=γ  

 
 

 ( )
( ) ( )

( ) ( )
PMP

PTPTMTTTMT

PTPTTTTT

ΤΤT
T

TVTV

VV

V

bb

bb
××

















= CR a

L

MM

L
2

,,,1,1,,

,,1,1,1,1,

,

,,

,,

,

ϑϕϑϕ

ϑϕϑϕ
ϑϑϑϑϕϕϕϕB , (2.10) 

 ( )
( ) ( )

( ) ( )
PMP

PRPRMRRRMR

PRPRRRRR

RRR
R

THTH

HH

H

bb

bb
××

















= CR a

L

MM

L
2

,,,1,1,,

,,1,1,1,1,

,

,,

,,

,

ϑϕϑϕ

ϑϕϑϕ
ϑϑϑϑϕϕϕϕB , (2.11) 

and 

 ( )
( ) ( )

( ) ( )
PMP

PRPRMRRRMR

PRPRRRRR

RRR
R

TVTV

VV

V

bb

bb
××

















= CR a

L

MM

L
2

,,,1,1,,

,,1,1,1,1,

,

,,

,,

,

ϑϕϑϕ

ϑϕϑϕ
ϑϑϑϑϕϕϕϕB . (2.12) 

to describe the mapping of the parameter vectors Tϕϕϕϕ , Tϑϑϑϑ  to the transmit array responses as 
well as the mapping of the parameter vectors Rϕϕϕϕ , Rϑϑϑϑ  to the receive array responses for verti-
cal and horizontal polarisation. Using (2.9) - (2.12) in representation (2.7) yields for 0=f  
and 0=t  

 

( ) ( ) ( ) ( ) { } ( )(
( ) { } ( )
( ) { } ( )
( ) { } ( )).,diag,

,diag,

,diag,

,diag,000,0

T

T

T

T

TTTVVRRR

TTTHVRRR

TTTVHRRR

TTTHHRRRRT

VV

HV

VH

HHff
GG

ϑϑϑϑϕϕϕϕϑϑϑϑϕϕϕϕ

ϑϑϑϑϕϕϕϕϑϑϑϑϕϕϕϕ

ϑϑϑϑϕϕϕϕϑϑϑϑϕϕϕϕ

ϑϑϑϑϕϕϕϕϑϑϑϑϕϕϕϕ

BγB

BγB

BγB

BγBH

⋅⋅

+⋅⋅

+⋅⋅

+⋅⋅⋅⋅=

 (2.13) 
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For notational convenience let us drop the dependency of the matrices B  from the respective 
parameters ϑϑϑϑϕϕϕϕ, . To express the frequency dependence of (2.7) we define another fundamen-
tal matrix valued function ( )τAτ , mapping the time delays τ  to the related complex exponen-
tials pmf τ⋅⋅− 0π2j

e  in the frequency domain 

 ( ) PM

ff

ff

f

P
fMfM

P
fMfM

×

⋅⋅




 +−⋅⋅





 +−

⋅⋅




 −−⋅⋅





 −−

∈

























=
−−

−−

C

ττ

ττ

τ

02

1
102

1

02

1
102

1

j2πj2π

j2πj2π

ee

ee

L

MM

L

τA . (2.14) 

Again, we drop the dependence of ( )τAτ  on τ  and use the abbreviation τA . Furthermore, let 
us introduce two diagonal matrices 

  ( ) ( )[ ]{ } fff

f

f

ff

MMM

T

M

TT fGfG
×−−

∈+−= C02

1

02

1
diag LG   (2.15) 

and  

 ( ) ( )[ ]{ } fff

f

f

ff

MMM

R

M

RR fGfG
×−−

∈+−= C02

1

02

1
diag LG  (2.16) 

containing the sampled frequency responses of the transmitter and the receiver respectively. 
Using the definitions (2.14) - (2.16) in the broadband MIMO radio channel model (2.8) yields 
for time 0=t  the expression 

 

( ) ( ) { }( ) { }{ } ( )
( ) { }( ) { }{ } ( )
( ) { }( ) { }{ } ( )
( ) { }( ) { }{ } ( ) .vecdiagdiag

vecdiagdiag

vecdiagdiag

vecdiagdiag0

TT

TT

TT

TT

VfVf

VfHf

HfVf

HfHf

TTVVRR

TTVHRR

TTHVRR

TTHHRRf

BGAγIBG

BGAγIBG

BGAγIBG

BGAγIBGH

⊗⋅⋅⊗⋅⊗

+⊗⋅⋅⊗⋅⊗

+⊗⋅⋅⊗⋅⊗

+⊗⋅⋅⊗⋅⊗=

τ

τ

τ

τ

 (2.17) 

For the time being let us ignore the time dependence of ( )tfH . As already discussed fH  is a 
sparse matrix. Since only the non-zero elements of fH  are of interest, we choose a different 
representation. We sort the elements of the fM  block matrices ( ) TR MM

f fm
×∈⋅ C0H  into a 

vector 

 [ ] 1T

,,11,3,12,2,11,1,1 ,,,,,,,,,,,
×

− ∈= TRf

TRTTRRR

MMM

MMMMMMM Czzzzzzzzs KKKK , (2.18) 

where  

 ( )( ) ( )( )[ ]
kj

M

kj

M

jk ff ff

,02

1

,02

1
⋅+⋅−=

−−
HHz L  

is a vector containing all frequency domain samples for one transmit port - receive port com-
bination of the MIMO system. Using the elementary functions τA , 

VH TT BB , , and 
VH RR BB ,  

the vector defined in (2.18) can be calculated from the model parameters as follows2 

                                                 
2 Observe the following properties of the { }•vec  operator, the Schur o  and the Khatri-Rao ◊  product: 

{ }{ } ( ) cBAAcB ⋅◊=⋅⋅ Tdiagvec ,   ( ) ( ) ( )caBDcaBD o⋅◊=⋅◊◊ T ,  { } { } { } TT diagdiagdiag DacBDcaB ⋅⋅⋅=⋅⋅ o  
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( )( ) ( )( )
( )( ) ( )( ) ,VVSRTVHSRT

HVSRTHHSRT

fVVfHV

fVHfHH

γAGBBγAGBB

γAGBBγAGBBs

⋅⋅◊◊+⋅⋅◊◊

+⋅⋅◊◊+⋅⋅◊◊=

ττ

ττ
 (2.19) 

where 
fff RTS GGG ⋅=  is a diagonal matrix and ◊  denotes the Khatri-Rao product (column 

wise Kronecker product). Equation (2.19) can be rewritten to 

 
( ) ( ) ( ){

( ) ( ) }.VVRTVHRT

HVRTHHRTS

VVHV

VHHHf

γABBγABB

γABBγABBGIs

⋅◊◊+⋅◊◊

+⋅◊◊+⋅◊◊⋅⊗=

ττ

ττ
 

One should observe, that the ordering of the elements in s  is arbitrary, we can as well define a 
vector 

 
( )( ){ } ( )( ){ }[ ] ,vecvec

T
T

02

1T

02

1
ff ff MM −−

+−=′ HHs L  

which may be written as 

 
( )( ) ( )( )
( )( ) ( )( ) .VVRTSVHRTS

HVRTSHHRTS

VVfHVf

VHfHHf

γBBAGγBBAG

γBBAGγBBAGs

⋅◊◊⋅+⋅◊◊⋅

+⋅◊◊⋅+⋅◊◊⋅=′

ττ

ττ
 (2.20) 

This result can actually be generalised, a reordering of the basis functions τA , 
VH TT BB , , and 

VH RR BB ,  lead to a permutation of the elements in s  only. Equations (2.19), (2.20) motivate 
the definition of another basis function  

 ( ) ( )τAGτB τ⋅=
fSf . (2.21) 

Again, we drop the dependency of ( )τB f  on the parameter vector τ , writing only fB . Using 

the definition (2.21) in equation (2.19) yields 

     ( ) ( ) ( ) ( ) VVfRTVHfRTHVfRTHHfRT VVHVVHHH
γBBBγBBBγBBBγBBBs ⋅◊◊+⋅◊◊+⋅◊◊+⋅◊◊= . 

  (2.22) 

To complete the MIMO system model, we introduce the matrix valued function 

 ( )

( ) ( )

( ) ( )
PM

tt

tt

t

P
tMtM

P
tMtM

×

⋅⋅+−⋅⋅+−

⋅⋅−−⋅⋅−−

∈
















=
−−

−−

C

αα

αα

α

02
1

102
1

02
1

102
1

j2πj2π

j2πj2π

ee

ee

L

MM

L

αA , (2.23) 

mapping the Doppler-shifts α  to the phase-shifts of the path weights at each time instance 

2

1

2

1
0 ,...,, −− +−=∀⋅ tt MM

tt mtm . For the sake of completeness, we furthermore introduce the re-

lated matrix valued function 

 ( ) ( )αAGαB α⋅= tt . (2.24) 

One should note that if the transmitter as well as the receiver is a time invariant system what 
is usually the case, the matrix tG  is an identity matrix tt MM

t

×∈= RIG . From (2.7) we can 
deduce that for time 2

1

2

1
0 ,...,, −− +−=∀⋅ tt MM

tt mtm  the expression for the MIMO system 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ,
0

VVtfRTVHtfRT

HVtfRTHHtfRTt

mm

mmtm

VVHV

VHHH

γzBBBγzBBB

γzBBBγzBBBs

oo

oo

⋅◊◊+⋅◊◊

+⋅◊◊+⋅◊◊=⋅
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with 

  ( ) [ ] 1
T

tmj2πtmj2π 010 ee ×⋅⋅⋅−⋅⋅⋅− ∈= P

t
Pttm C

αα Lz  

holds. Observing, that αA  and all vectors ( )tmz , 2

1

2

1 ,..., −− +−= tt MM

tm  are related in the fol-
lowing way 

 

( )

( )















−

−

=
+

−

2
1

2
1

M

M

z

z

A Mα  

we extend the MIMO system model (2.22) to3 

 
( ) ( )
( ) ( ) .VVtfRTVHtfRT

HVtfRTHHtfRT

VVHV

VHHH

γBBBBγBBBB

γBBBBγBBBBs

⋅◊◊◊+⋅◊◊◊

+⋅◊◊◊+⋅◊◊◊=
 (2.25) 

If the antenna arrays at both link ends can only radiate and receive waves with horizontal po-
larisation, the MIMO system model (2.25) reduces to 

 HHtfTRHH HH
γBBBBs ⋅◊◊◊= . (2.26) 

If the transmit antenna array radiates vertical polarised waves only, we have to reduce the 
MIMO system model (2.25) to 

 [ ]VHXVVtfTRVHtfTRVX VVVH
∈⋅◊◊◊+⋅◊◊◊= ,γBBBBγBBBBs . (2.27) 

Noticing that equation (2.25) describes essentially the mapping of the parameter vectors τ , 

Tϕϕϕϕ , Tϑϑϑϑ , Rϕϕϕϕ , Rϑϑϑϑ , α , HHγ , HVγ , VHγ , and VVγ  to s , we define the parameter vector 

{ } { } { } { } { } { } { } { }[ ]TTTTTTTTTTTTTTT
VVVVVHVHHVHVHHHHRRTTsp γγγγγγγγταθ ℑℜℑℜℑℜℑℜ= ϑϕϑϕ  

  (2.28) 

and use hereinafter the notation 

 
( ) ( ) ( )

( ) ( ) ,VVtfRTVHtfRT

HVtfRTHHtfRTsp

VVHV

VHHH

γBBBBγBBBB

γBBBBγBBBBθs

⋅◊◊◊+⋅◊◊◊

+⋅◊◊◊+⋅◊◊◊=
 (2.29) 

to state explicitly the dependence of s  on the model parameters spθ . The data model for the 

concentrated propagation paths can also be expressed as  

( ) [ ]


















⋅◊◊◊◊◊◊◊◊◊◊◊◊=

VV

VH

HV

HH

tfRTtfRTtfRTtfRTsp VVHVVHHH

γ

γ

γ

γ

BBBBBBBBBBBBBBBBθs  

  (2.30) 

without loss of generality. We can conclude that the structure of the data model has always 
the same structure.  I.e. the expressions (2.25), (2.26), (2.27), (2.29) fit into the same model 

                                                 
3 Observe the following properties of the Schur o  and the Khatri-Rao ◊  product: ( ) ( ) ( )caBDcaBD o⋅◊=⋅◊◊ T  
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 ( ) ( ) γµBθs ⋅=sp , (2.31) 

with ( ) PM 4×∈CµB  and 14 ×∈ P
Cγ  

The matrix valued function ( )µB  is a description of the structure of the radio channel. 
Hence, we denote the nonlinear parameters µ  also as structural parameters. The coefficients 
γ  are linear weights in the model. We will refer to them also as linear parameters. In the fol-
lowing, we use expression (2.31) as a representative for all models of the concentrated propa-
gation paths if possible.  

2.4 Data Models for Antenna Arrays 

The structure of the data model expressing the beam pattern of the elements of an antenna 
array restricts the applicable parameter estimation algorithms. In the following section, gen-
eral concepts to model the beam patterns of antenna arrays as a function of the angle (azimuth 
and elevation) of incoming waves are summarised. Unless noted otherwise, we assume plane 
waves. In principle, incoming waves can be treated as plane waves if the approximation error 
of the antenna array model, due to the wave curvature, is smaller than other errors and uncer-
tainties of the channel model as a whole. 

From a parameter estimation point of view, a data model for antenna arrays should 
have a low computational complexity. The data model should provide valid results for the 
complete angular domain, i.e., it should express the beam pattern as a continuous function of 
azimuth and elevation. Finally, the data model should be continuously differentiable. This is a 
prerequisite for the computation of the Cramér-Rao lower bound of channel model parame-
ters, or for the application of gradient-based parameter estimation algorithms. 

One physical antenna element may have two ports to measure both horizontal and ver-
tical polarisations. We will use the term array element for the physical antenna element and 
the term antenna element port for the electrical antenna element.  The array response is a two 
dimensional function ( )ϑϕ,B  of the variables ϕ -azimuth and ϑ -elevation. Furthermore, if 
we excite an antenna array port we generate two field components in the far field, namely a 
horizontal ϕe  and vertical ϑe  polarised component. Since an antenna array is a passive sys-
tem, we can use the same function to describe the array response to a far field source with a 
horizontal as well as a vertical polarised component. There exist three different approaches to 
describe the relationship between the array response (beam pattern, array manifold) and a far 
field point source. 

2.4.1 Stored Beam-Pattern 

A straightforward way to model an antenna array response to a far field source is to measure 
the directional characteristics of the antenna array in an anechoic chamber and to store the 
data. This model has two advantages, is its simple and it can be used to describe all available 
antenna arrays. However, this model has also some drawbacks. The function ( )ϑϕ,B  is con-
tinuous in the parameters ϕ , and ϑ , but we can only store a sampled version of ( )ϑϕ,B . The 
storage of the sampled array responses requires a large amount of memory and if we need an 
array response for an angle pair that has not been measured, we have to interpolate it using 
some interpolation algorithm on the stored data. Furthermore, since the array response is not 
expressed in an algebraic form the derivatives with respect to the parameters ϕ  and ϑ  

 ( )ϑϕϕ ,B∂
∂ , and ( )ϑϕϑ ,B∂

∂ , 
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necessary for some parameter estimation algorithms (see Section 5.2) and for the calculation 
of the Cramér-Rao lower bound (cf. Section 4.1), cannot be calculated directly from the stored 
data. 

2.4.2 Array Response Factorisation  

The second class of antenna array models decompose the array beam pattern ( )ϑϕ,comb  into 
an element beam pattern shared by all elements and a phase vector ( )ϑϕ,structa  relating the 
position of the individual elements within the array to the phases of the array response. The 
model describes the complete array response of an ideal antenna array by 

 ( ) ( ) ( )ϑϕϑϕϑϕ ,,, comstructideal bab ⋅= . (2.32) 

Since real antenna arrays are subjected to errors such as mutual antenna element coupling, we 
introduce a square matrix K  and approximate the real antenna array response with   

 ( ) ( ) ( )ϑϕϑϕϑϕ ,,, comstructreal baKb ⋅⋅= . (2.33) 

The most prominent representative belonging to this class of array models is the uni-
form linear array (ULA) model. The phase vector for an ULA row, having element spacing 

rd , is given by  

 ( )( ) ( )( ) ( ) ( ) ( ) ( )[ ]
T

jj11
1

2
111

2
11

ee
µµµµ

−− −+==
MM

ULArow Laa . (2.34) 

The spatial frequency ( )1µ  is defined as ( ) ( )ϑϕµ λ sincosπ2 rd)1( = . The phase vector for a ULA 

column having element spacing cd  can be expressed equivalently with 

 ( )( ) ( )( ) ( ) ( ) ( ) ( )[ ]
T

jj22
2

2
122

2
12

ee
µµµµ

−− −+==
MM

ULAcol Laa , (2.35) 

where ( )ϑµ λ sinπ2 cd)2( =  is again the related spatial frequency. Since a uniform rectangular 
array (URA), can be understood as a set of uniform linear arrays in a row or a column the 
related phase vector can be easily derived from (2.34) and (2.35) yielding  

 ( ) ( )( ) ( )( ) ( )( )1221 , µµµµ rowcolura aaa ⊗= . (2.36) 

Using (2.36) in (2.33) we yield an approximation of the real array response for an uniform 
rectangular array as 

 ( ) ( ) ( )ϑϕϑϕϑϕ ,,, comuraura baKb ⋅⋅= . 

Table 2-1 gives an overview of antenna arrays whose array responses can be approximated 
using the factorisation approach (2.33) and the related expressions. 
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Table 2-2: Planar and circular antenna architectures 

Uniform Linear Array (ULA) 

 

1 

N 

y 

z 

x 
p ϕ p k 

... 

... 
n 

r d 
1 

N 

y 

z 

x 
p 

p k 

... 

... 
n 

r d 

 

ULA – Row:          ( ) ( )ϑϕµ λ sincosπ2 rd)1( =  

( )( ) ( ) ( ) ( ) ( )[ ]
T

jj1
1

2
111

2
11

ee
µµµ

−− −+=
MM

row La  

 

ULA-Column:       ( )ϑµ λ sinπ2 cd)2( =  

( )( ) ( ) ( ) ( ) ( )[ ]
T

jj2
2

2
122

2
12

ee
µµµ

−− −+=
MM

col La  

 
( ) ( ) ( )ϑϕϑϕϑϕ ,,, comstructreal baKb ⋅⋅=  

Uniform Rectangular Array (URA) 
 

y 
x 

p ψ 

p k 

c d 

1 

N 

... 
... 

n 

p ϑ 

z 

r d M 

1 

m 

... 

... 

y 
x 

p ψ 

p k 

c d 

1 

N 

... 
... 

n 

p ϑ 

z 

r d M 

1 

m 

... 

... 

 

( ) ( )ϑϕµ λ sincosπ2 rd)1( = , ( )ϑµ λ sinπ2 cd)2( =  

 

( )( ) ( ) ( ) ( ) ( )[ ]
T

jj1
1

2
111

2
11

ee
µµµ

−− −+=
MM

row La  

( )( ) ( ) ( ) ( ) ( )[ ]
T

jj2
2

2
122

2
12

ee
µµµ

−− −+=
MM

col La  

 
( ) ( )( ) ( )( ) ( )( )1221 , µµµµ rowcolura aaa ⊗=  

( ) ( ) ( )ϑϕϑϕϑϕ ,,, comuraura baKb ⋅⋅=  

Circular Uniform Beam Array (CUBA) 

 

x 

z 

y 

0 ψ 

p ψ p k 
x 

z 

y 

0 ψ 

p ψ p k 
 

pp ψφ =   

( ) ( )[ ]Tφ1φ
...1φ pp Njj

pa ee
−−−=a  

 
( ) ( )pp ψnψψ 0 −= bb  

( ) ( )ppa ψφ 1
0 FbGa −=  

 
Stacked Circular Uniform Beam Array (SCUBA) 

 

x 

z 

c d 

y 

p ϑ 

p ψ 

p k 

x 

z 

c d 

y 

p ϑ 

p ψ 

p k 

 

( )pc
p

d
ϑsin

λ
θ = , pp ψφ =  

 

( ) ( )[ ]Tθ1π2πθ2
e...e1θ pp M-jj

pc

−−=a  

( ) ( )[ ]Tφ1φ
...1φ pp Njj

pa ee
−−−=a  

 
( ) ( )pp ψnψψ 0 −= bb  

( ) ( )ppa ψφ 1
0 FbGa −=  

 

( ) ( ) ( )Tpapcpp φθφ,θ aaA ⋅=  
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2.4.3 Effective Aperture Distribution Function 

The third model is related to the first model. In general we restrict the azimuth angle to the 
interval [ )π,π +−  and the elevation angle to the interval [ ]π,0 . Although redundant we can, 
without loss of generality, extend the beam pattern of an arbitrary antenna to cover the inter-
val [ )π,π +−  in azimuth and elevation. One has simply to map the function from the elevation 
range [ ]π,0 , to the range ( )0,π− . Consequently, we yield a 2-dimensional function that is 
under mild restrictions periodic in ϕ  and ϑ  with period π2  in both dimensions. Hence, the 
beam pattern can be expressed by a 2-dimensional complex Fourier-series expansion. We will 
refer to this 2-dimensional Fourier series as the effective aperture distribution function 
(EADF).  

The expression, relating the EADF and the beam pattern of an antenna array port for 
horizontal polarisation is 

 ( ) ( ) ( )ϑϕϑϕ aGa ⋅⋅= DHHb 2

T,  (2.37) 

with the phase vectors 

 ( ) ( ) ( )[ ] 1
T

jj
12

11
2
11

ee ×⋅⋅−⋅−⋅− ∈=
−−

N
NN

C
ϕϕϕ Ka , (2.38) 

  ( ) ( ) ( )[ ] 1
T

jj
22

12
2
12

ee ×⋅⋅−⋅−⋅− ∈=
−−

N
NN

C
ϑϑϑ Ka . (2.39) 

Here, 21

2
NN

DH

×∈CG  denotes the EADF for horizontal polarisation. Since expression (2.37) is 
only appropriate to describe a single array port, we apply the vector operator yielding 

  

( ) ( ) ( ){ }
( ) ( )( ) { }
{ } ( ) ( )( ).vec

vec

vec,

T

2

2

TT

2

T

ϕϑ

ϕϑ

ϑϕϑϕ

aaG

Gaa

aGa

⊗⋅=

⋅⊗=

⋅⋅=

DH

DH

DHHb

 (2.40) 

Now collecting the EADFs of all antenna array ports for horizontal polarisation in the matrix  

 

{ }

{ }
21

,2

1,2

vec

vec
NNM

T

MDH

T

DH

H

×∈
















= C

G

G

G M   (2.41) 

the vector valued function mapping the azimuth and elevation angles to the antenna array re-
sponse for horizontal polarisation is given by 

 ( ) ( ) ( )( ) M

HH CR a2,, ϕϑϑϕ aaGb ⊗⋅= . (2.42) 

The mapping of the azimuth and the elevation angle to the antenna array response for vertical 
polarisation can be expressed in the same fashion using 

 ( ) ( ) ( )( ) M

VV CR a2,, ϕϑϑϕ aaGb ⊗⋅=  (2.43) 

where the matrix 

 

{ }

{ }
21

,2

1,2

vec

vec
NNM

T

MDV

T

DV

V

×∈
















= C

G

G

G M  (2.44) 
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contains all EADFs of the antenna array ports for vertical polarisation. One should observe 
that the redundancy caused by the extension of the elevation angle range from [ ]π,0  to 
[ )π,π +−  can be exploited to reduce the operations in numerical implementations.  

2.4.4 Separating Radio Channel Model and Antenna Array Model 

It is often discussed whether or not the influence of the antenna arrays used throughout chan-
nel sounding measurements can be separated from the observed radio channel. In this section 
we will investigate whether or not this can be accomplished for the data model derived so far. 
To this end, we introduce four matrices containing the EADFs (2.41), (2.44) of the transmit 
antenna array and the receive antenna array for horizontal and vertical polarisation: 

  TTT

H

NNM

T
,2,1×∈CG , TTT

V

NNM

T
,2,1×∈CG , (2.45) 

and 

 RRR

H

NNM

R
,2,1×∈CG , and RRR

V

NNM

R
,2,1×∈CG . (2.46) 

Furthermore, we define four matrix valued functions to express the mapping of all angles Tϕϕϕϕ , 

Tϑϑϑϑ , and Rϕϕϕϕ , Rϑϑϑϑ   to all P vectors ( )pT ,ϕa , ( )pT ,ϑa , and ( )pR ,ϕa , ( )pR ,ϑa : 

 ( ) ( ) ( )[ ] PN

PTTT
T

T

×∈= ,1

,1, Cϕϕϕ aaA Lϕϕϕϕ , ( ) ( ) ( )[ ] PN

PTTT
T

T

×∈= ,2

,1, Cϑϑϑ aaA Lϑϑϑϑ ,  (2.47) 

and 

 ( ) ( ) ( )[ ] PN

PRRR
R

R

×∈= ,1

,1, Cϕϕϕ aaA Lϕϕϕϕ , ( ) ( ) ( )[ ] PN

PRRR
R

R

×∈= ,2

,1, Cϑϑϑ aaA Lϑϑϑϑ . (2.48) 

Now we can represent the mapping of the angles Tϕϕϕϕ , Tϑϑϑϑ  of all P propagation paths at the 
transmitter site to the transmit antenna array responses using the EADF with 

 ( ) ( ) ( )( ) PMP

TTTTTT
T

TTHH

××◊⋅= CR a2,, ϕϕϕϕϑϑϑϑϑϑϑϑϕϕϕϕ ϕϑ AAGB , (2.49) 

 ( ) ( ) ( )( ) PMP

TTTTTT
T

TTVV

××◊⋅= CR a2,, ϕϕϕϕϑϑϑϑϑϑϑϑϕϕϕϕ ϕϑ AAGB . (2.50) 

The mapping of the angles Rϕϕϕϕ , Rϑϑϑϑ  of all P propagation paths at the receiver site to the re-
ceive antenna array responses can be expressed in the same way as 

 ( ) ( ) ( )( ) PMP

RRRRRR
R

RRHH

××◊⋅= CR a2,, ϕϕϕϕϑϑϑϑϑϑϑϑϕϕϕϕ ϕϑ AAGB , (2.51) 

 ( ) ( ) ( )( ) PMP

RRRRRR
R

RRVV

××◊⋅= CR a2,, ϕϕϕϕϑϑϑϑϑϑϑϑϕϕϕϕ ϕϑ AAGB . (2.52) 

Again, let us use the abbreviations
TϕA , 

TϑA  for the functions defined in (2.47), and 
RϕA , 

RϑA  for the functions defined in (2.48). Using the relations (2.49) to (2.52) in the general ex-
pression for the MIMO system model (2.29) yields  

 

( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( ) .VVSRT

VHSRT

HVSRT

HHSRTsp

fRRVTTV

fRRHTTV

fRRVTTH

fRRHTTH

γAIAGAAGAAG

γAIAGAAGAAG

γAIAGAAGAAG

γAIAGAAGAAGθs

⋅⋅◊⋅◊◊⋅◊◊⋅

+⋅⋅◊⋅◊◊⋅◊◊⋅

+⋅⋅◊⋅◊◊⋅◊◊⋅

+⋅⋅◊⋅◊◊⋅◊◊⋅=

ατϕϑϕϑ

ατϕϑϕϑ

ατϕϑϕϑ

ατϕϑϕϑ

 (2.53) 

Now we are finally able to decompose the MIMO system model into a radio channel model 
and a transmission or measurement system model, respectively 
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( ) ( )
( )
( )

{
( ) ,

model channel radiomodel system measurment
444444 3444444 21 VVVV

VHVH

HVHV

HHHHsp

RRTT

RRTT

RRTT

RRTT

γAAAAAAG

γAAAAAAG

γAAAAAAG

γAAAAAAGθs

⋅◊◊◊◊◊⋅

+⋅◊◊◊◊◊⋅

+⋅◊◊◊◊◊⋅

+⋅◊◊◊◊◊⋅=

ατϕϑϕϑ

ατϕϑϕϑ

ατϕϑϕϑ

ατϕϑϕϑ

 (2.54) 

using the following definitions for the radio channel measurement system: 

 IGGGG ⊗⊗⊗=
fHH SRTHH ,  IGGGG ⊗⊗⊗=

fVH SRTHV , 

and 

 IGGGG ⊗⊗⊗=
fHV SRTVH ,  IGGGG ⊗⊗⊗=

fVV SRTVV . 

Similarly, we can decompose expression (2.17) into a radio channel model and a MIMO 
transmission system model. To this end, we define two system matrices describing the MIMO 
transmission system separately at both link ends. For the transmitter we define the system 
matrices 

 ( )
HffH TTT GGG ⊗= , ( )

VffV TTT GGG ⊗=  (2.55) 

using (2.15), (2.45). In addition, we express the system matrices for the receiver 

 ( )
HffH RRR GGG ⊗= , ( )

VffV RRR GGG ⊗= , (2.56) 

using (2.16), (2.46). All four matrices (2.55), (2.56) together describe the narrow band MIMO 
transmission system entirely. Using them in the MIMO system model (2.17) yield the repre-
sentation for horizontal polarisation 

 
{ {

rTransmitte

T

ChannelReceiver

fHfHS THHRHH GHGH ⋅⋅=
321

, 

where  

 ( )( ) { }( ) { }{ } ( )( )T
tterat transmi anglesdelay-time

T

tspath weigh
tindependenfrequency receiverat  angles

vecdiagdiag
44 344 21443442144 344 2144 344 21 TTRR HHHH ϑϑτϕϑ AAIAγIAAIH ◊⊗⋅⋅⊗⋅◊⊗=  (2.57) 

denotes the related radio channel matrix for horizontal-horizontal polarisation. The other three 
channel matrices for the remaining polarisation combinations can be easily derived by replac-
ing the path weights as well as the system matrices 

fHRG  and 
fHT

G . Combining the transmit-
ter system matrices (2.55) to 

 [ ] ( ) ( )TfTf

fVfH

NNMM

TTT

×⋅×⋅∈= 2
CGGG  

and the receiver system matrices (2.56) to 

 [ ] ( ) ( )RfRf

fVfH

NNMM

RRR

×⋅×⋅∈= 2
CGGG  

yields an representation for the complete polarimetric MIMO system model  

 ( ) ( ) T
TspRspS GθHGθH ⋅⋅=  (2.58) 



22 Radio Channel and System Model  

  

where  

 ( ) 







=

VVHV

VHHH

HH

HH
θH  (2.59) 

denotes the polarimetric narrow band radio channel model. Using representation (2.58) one 
can evaluate the influence of the antenna arrays, applied at the transmitter and the receiver, as 
well as the influence of the radio channel onto the performance of an arbitrary MIMO trans-
mission system independently from each other. 

Both, expression ( )spθs  (2.54) and expression ( )spθH  (2.59), are valid representations 
of the parametric radio channel. In the context of parameter estimation, the measured radio 
channel is an observation of the system “radio channel” and the propagation path parameters 

spθ  are hidden variables. It primarily depends on the application whether equation (2.59) or 
equation (2.54) is the better choice to formulate a problem. The input-output representation 
(2.59) is mainly useful for the analysis of communication systems, whereas (2.54), i.e., the 
mapping of the parameters spθ  to the vector s  

 sθa , 

is the best choice for the formulation of radio channel parameter estimation problems. One 
obvious advantage of equation (2.54) from a parameter estimation point of view is its regular 
structure. To conclude, the algebraic model for the observed concentrated propagation paths 
can be separated into a component describing the radio channel and a component describing 
the system used to observe the channel. However, this decomposition requires that the ob-
served radio channel can be approximated using concentrated propagation paths only. This 
does not hold in practice since the radio propagation is partially carried by distributed diffuse 
scattering as mentioned before. Consequently, the antenna influence can only be removed 
from channel sounding measurements with respect to the concentrated propagation paths.  

2.4.5 Definition of Data- and Parameter-Dimensions 

Beside the two algebraic forms discussed above, which express the radio channel as a vector- 
or matrix-valued function of the propagation path parameters, there exist another instructive 
representation. We express the sampled radio channel by means of a 4-dimensional data array. 
Here, the Khatri-Rao product in equation (2.25) motivates the four dimensions. The vector-
valued function ( )spθs  and the 4-dimensional data array are related in the following way4: 

1. Reshape the TRft MMMM ⋅⋅⋅  vector ( )spθs  into a matrix ( )spθS1  of size 

TRft MMMM ⋅⋅×  
2. Reshape the matrix ( )spθS1  into a three-dimensional data array ( )spθS2  having size 

TRft MMMM ⋅××  
3. Reshape the matrix ( )spθS2  into a four-dimensional data array ( )spθS3  having size 

TRft MMMM ××× . 
Every data dimension of ( )spθS3  corresponds to a domain where the entity transmit antenna 
array, radio channel, and receive antenna array has been sampled. The four domains are time, 
frequency, receive antenna array port, and transmit antenna array port. The representation 

( )spθS3  is only a different way to understand the sampled radio channel ( )spθs . It is reason-
able to say, that the observation of the radio channel ( )spθs  has four data dimensions. Ob-
serve, that the term data dimensions refers clearly not to the algebraic dimensionality of 
( )spθs , which is one as it is a vector. 

                                                 
4 In MatLab© or Octave the mapping of s to S3 is carried out by means of: S3=reshape(s,[Mt Mf MR MT]) and 
the mapping of S3 to s can be done by means of s=S3(:). 
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In many practical cases, one observes the radio channel with a measurement system, 
which is only able to measure some of the four data dimensions. Hence, we introduce the 
variable DR  to count the measured data dimensions. Sometimes the ports of an antenna array 
can be further separated into two independent data dimensions. An example is the ideal URA. 
We can separate the antenna array ports of the ideal URA into a column- and row-element 
domain. Consequently the maximum number of data domains is 6=DR . The range of data 
domains is 

  61 ≤≤ DR . 

Closely related to the number of data domains is the dimensionality of the parameter 
domains. From a signal-processing point of view, the number of free parameters determines 
the dimensionality of the parameter estimation problem. That means the length of the parame-
ter vector spθ  (2.28) gives the dimensionality of the parameter estimation problem. However, 
in the context of radio-channel parameter estimation the term multi-dimensional is often used 
in a different way. Here, the dimensionality of the problem determines the number of free 
structural (nonlinear) parameters of a single propagation path. The structural parameters are 
time-delay, Doppler-shift, receive-azimuth and -elevation, and transmit-azimuth and -
elevation. To be precise, the dimensionality of the parameter estimation problem in the con-
text of channel parameter estimation refers to the number of structural parameter domains. 
Hence, the estimation of all structural parameters is referred to as a 6-dimensional parameter 
estimation problem. Since the number of parameter dimensions can vary, we introduce the 
model parameter PR  describing the number of structural parameters of a single propagation 
path, which can be determined from a given channel sounding measurement.  

The structure of the radio channel model (2.25) implies that the data dimensions (data-
domains) and the parameter dimensions (domains of structural parameter) are closely related. 
The frequency-domain contains the information about the time-delay, the time-domain carries 
the information about the Doppler-shifts, and the transmit- and receive-port domains contain 
the information about the transmit- and receive-angles (azimuth and elevation), respectively. 
Therefore, the following relation between the number of data dimensions and the number of 
parameter dimensions 

 PD RR ≤  

holds. The valid range of the parameter dimensions is the same as the range of data dimen-
sions, i.e., the range is 

 61 ≤≤ DR . 

2.5 Dense Multipath Components 

On every crossing between two propagation media, where the relative electric or magnetic 
permeability changes, a propagating wave is subdivided into parts. A part of the waves travels 
into the other medium, and another part is reflected or scattered. The probability that a scat-
tered wave reaches the receiver is generally higher than the probability that a reflected wave 
reaches it. This is because a reflection requires a sufficiently large object with a reflecting 
surface, and if the reflection occurs it can only reach the receiver if the angles of incidence 
and the angle of reflection are appropriate to reach the next reflector or the receive antenna. 
Altogether the amount of specular (discrete/concentrated) propagation paths in a scenario is 
relatively small but their contribution to the total power transferred from the transmit antenna 
to the receive antenna is usually dominating the transmission. Although the contribution to the 
received power of a single scattered wave is small compared to the contribution of a reflected 
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wave, the contribution of all scattered waves together reaching the receiver is significant due 
to their large number. There exist scenarios where the dense multipath components dominate 
the transmission. One example is the industry scenario. Hence, we cannot ignore the contribu-
tion of the distributed scattering to the radio transmission, if we want to model the radio 
channel and estimate the model parameters from channel observations. This section is devoted 
to the parametric modelling of the dense multipath components (DMC) of the observed radio 
channel in the time-delay domain. 

2.5.1 Model for Dense Multipath Components in the Time Delay Domain 

Due to the finite measurement apertures used to observe the radio channel, it is not possible to 
resolve the large amount of scattered waves reaching the receiver. We can only resolve them 
within the Rayleigh-resolution determined by the apertures used during the measurements. 
The waves caused by distributed diffuse scattering reaching the receiver within a time inter-
val, which is the reciprocal of the measurement bandwidth cannot be resolved. The power of 
the individual components reaching the receiver within this time interval is largely determined 
by the free space attenuation, which is approximately constant over this interval. Therefore, 
we can assume that one complex delay-bin of the impulse response representing an observed 
time interval of 

0

1
fM f
 contains the superposition of some “propagation paths” caused by dis-

tributed scattering having approximately the same power. However, the phase of this “propa-
gation paths” is due to the large difference in terms of the wavelength between their path 
lengths, approximately uniformly distributed within the interval. To clarify this, let us discuss 
an example. We assume the radio channel is observed with a bandwidth of 120MHz at a car-
rier frequency of 5.2GHz. Then a single delay-bin in the impulse-response represents the su-
perposition of all propagation paths with an electrical length difference of approximately 
2.5m. Since the wavelength at 5.2GHz is approximately 5.77cm, this interval represents 
propagation paths with an electrical length difference of up to 43 wavelengths. 

Based on the central limit theorem we can assume that one complex delay-bin in the 
impulse response can be modelled as a complex circular normal distribution with zero mean, 
provided the relative bandwidth of the measurements is small cm fB << . Here (complex) cir-
cular Normal (Gaussian) distributed means that the real and imaginary parts of a complex 
random variable are Normal distributed. The real part and the imaginary part are realizations 
of two independent processes and have the same variance. What we need furthermore, is a 
parametric model for the statistics of all delay-bins of the observed impulse response. To this 
end let us discuss a continuous model, which has been used to describe the power delay pro-
file of the radio channel by various researchers [10], [11], [12]. The model is based on the 
observation that the power delay profile has an exponential decay over the time-delay and a 
base delay which is of course related to the distance between the transmit and the receive an-
tenna. Except for the infinite bandwidth assumed, the proposed model (2.60) describes the 
power delay profile or more precisely the variance as a function of the time-delay of the dense 
multipath components reasonably well. The bandwidth dB  is related to the coherence band-
width of the dense multipath components according to dBB π

3
3 = , and 1α  denotes the maxi-

mum variance (power). 
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The related power spectrum density, i.e., the Fourier-transform of (2.60) is 



2.5 Dense Multipath Components  25 

    

 ( ) df

d

H
f

f
τ

β
α ∆−⋅

∆+
=∆Ψ π2j1 e

π2j
, (2.61) 

where 
0fM

B

B

B

d f

d

m

d

⋅==β  is the normalized coherence bandwidth of the DMC. 

 Table 2-3: Parameter Definitions for the Dense Multipath Components 

dB  -  coherence bandwidth of the diffuse components 

dτ ′  -  base TDoA of the diffuse components 

0fM

B

B

B

d f

d

m

d

⋅==β  -  coherence bandwidth of the diffuse components normalised to the 
measurement bandwidth  

fM  - number of frequency points measured within the measurement band-
width 

m

d

td

ττ =  - base TDoA of the diffuse components normalised to the total length 
of the observed impulse-response  

1α  - power of the diffuse components at dττ =  

dBB π
3

3 =  -  3dB coherence bandwidth of the diffuse components 

 
The model (2.60) for the dense multipath components in the delay domain is incomplete inso-
far as it neglects the covariance between components at different time-delays. Let us assume 
the Fourier-transform of the channel impulse response ( )τh , i.e., channel transfer function, 
exist and is ( )fH  

 ( ) ( )fHh •oτ , 

where the symbol •o  denotes the Fourier integral transformation. Then assuming that 
( ) ( ){ } 2121 ,0E ττττ ≠∀=hh  the covariance function of the channel impulse response 
( )21,ττψ hh  and the covariance function of the channel transfer function ( )21, ffHHΨ  for infi-

nite bandwidth are related in the following way 
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 (2.62) 

Hence, the function ( )fHΨ  (2.61) describes a spectral correlation between components of the 
channel transfer function having a distance of 21 ff − . In other words, the process ( )τh  is sta-
tionary in the frequency domain and we can use the WSSUS concept outlined in [13] in this 
particular domain. 

Since we observe the radio channel usually with a limited bandwidth mB  we introduce 
the frequency response of the measurement system as ( )fG  and the related impulse response 

( )τg . 

 Using the frequency response ( )fG  in (2.62) yields 
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  (2.63) 

where 
1τ

∗  and 
2τ

∗  denotes convolution over 1τ  and 2τ  , respectively. If we measure the chan-
nel using a measurement system with a bandwidth of mB  and a rectangular frequency re-
sponse the covariance function of the observed channel impulse response becomes5 

 ( ) ( ) ( ) ( )2m1m2121 BπsiBπsi,ψ,ψ
21

ττττττ ττ ∗∗= xxhhgg . (2.64) 

One should observe that the convolution with the sinc-function in equation (2.64) guaranties 
that our assumption of a circular complex normal distribution of a single delay-bin is valid. 

Equation (2.63) reveals that the often-used time domain representation (2.60) is not a 
valid representation for the distribution of the dense multipath components for real measure-
ments, since it ignores the effect of bandwidth limitations of real systems. The frequency do-
main representation (2.61) in conjunction with (2.63) is a better representation for the second 
order statistics of the DMC.  

Figure 2-4 shows the PDP (Power Delay Profile) of the dense multipath components 
and measurement noise, i.e., the elements of the variance-covariance function ( )21,ττψ xxgg  for 

21 τττ ==   and the related model parameters. Here 0α  represents the noise variance of i.i.d. 
(independent identical distributed) Gaussian measurement noise. The effect of bandwidth 
limitation is clearly visible around dτ  in the example. In channel parameter estimation, we 
deal usually with sampled versions of the channel transfer function or the channel impulse 
response. Therefore, a parametric model for the covariance matrix of the DMC is derived in 
the next section. Recall that the covariance matrix is effectively a sampled version of the con-
tinuous variance-covariance function (2.63).  

  

                                                 
5 The si-function is defined as ( ) ( )

x

xx sinsi = . 
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Figure 2-4: Dense multipath distribution model in the time delay domain ( )ττψ ,

xxgg
. 

2.5.2 Data Model for Parameter Estimation 

Based on the model for the dense multipath components (DMC) (2.63) we will now derive a 
statistic for a sampled version of the observed channel transfer function containing dense mul-
tipath components only. Let us assume that we measure the channel transfer function x  at 

fM  frequency points equidistantly over the measurement bandwidth mB . With this assump-
tion and recalling the discussion about the nature of the band limited channel observations in 
the previous section, we model the distribution of x  as a multivariate circular normal distribu-
tion 

 ( )
( )( )

( ) xθRx
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θx

⋅⋅− −

=
1H

e
detπ

1 dmcf

f

dmcf

Mdmcp , (2.65) 

having zero mean. Here, the covariance matrix ( )dmcf θR  is effectively a sampled version of 
the variance-covariance function (2.63), i.e.,  
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Since an observation contains usually multiple realisations of this process Nxx ,,1 K , taken 
over time (sequence of observed transfer functions) or space (space sampling using an an-
tenna array) we collect multiple observations in the matrix [ ]NxxX ,,1 K=  and write for the 
distribution of the N independent realisations 

 ( )
( )( )

( )( )fdmcff

f

tr

N

dmcf

NMdmcf

XθRX

θR
θX

⋅⋅− −

=
1H

e
detπ

1
p . (2.66) 
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Equation (2.62) implies that the covariance matrix of x  has a Toeplitz structure (in the fre-
quency domain). Hence, assuming the measurement system used to observe the channel has a 
flat transfer function within the measurement bandwidth, we express the covariance matrix as  

 ( ) ( ) ( )( )H,toep dmcdmcdmcf θκθκθR = , (2.67) 

where ( ) 1×∈ fM

dmc Cθκ  is a sampled version of the power spectrum density ( )fxΨ , and 
( )toep  is the Toeplitz-operator (see Appendix C). Since the measurement noise can also be 

modelled as a multivariate circular normal distribution, we include it in our model, assuming 
it is independent identical distributed (i.i.d.) and has a covariance matrix of I0α . Conse-
quently ( )danθκ  is given by 
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L , (2.68) 

where 0α  is the variance of the circular (i.i.d.) Normal distributed measurement noise, and 
[ ]T0 001 L=e  is a unit vector. Here, danθ  is the parameter vector describing the distribution 

of the DMC and the measurement noise. The vector valued function ( )danθκ  is the sampled 
auto-correlation function of the channel transfer function without the contribution of concen-
trated propagation paths. 

The PDF (probability density function) of the DMC in the time-delay domain can be 
derived from (2.66) using the discrete Fourier-transform (DFT). With the DFT-matrix 
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the relation between the covariance matrix of the DMC in the time-delay domain and the fre-
quency domain can be expressed by 

 ( ) ( ) FθRFθR ⋅⋅= danfdan

H
τ . 

The relation between the observed channel impulse responses τX  and the observed channel 
transfer functions fX  is given by fXFX ⋅= H

τ . Therefore, the PDF of the DMC in the time-
delay domain is 
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since ( ) 1det =F . One should observe that the covariance matrix in the time domain is diago-
nal dominant. Nevertheless, it is not a diagonal matrix due to the convolution with the ( )

x

xsin  
functions (2.64) and the periodicity of the DFT. Hence, from a signal processing point of view 
a representation of the observed radio channel in the frequency domain is preferable. In the 
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frequency domain, the Toeplitz structure of the covariance matrix ( )danf θR  can be exploited 
to reduce the computational complexity of channel parameter estimation algorithms. 

Figure 2-5 and Figure 2-6 illustrates the relationship between the channel impulse re-
sponse, the channel transfer function, and the respective covariance matrices. The channel 
impulse responses as well as the channel transfer functions are derived from channel sounding 
measurements. The radio channel was measured with an 8-element uniform linear array four 
times in a street micro cell scenario. The concentrated propagations paths have been removed 
from the measurements. Therefore, the channel transfer functions and the related impulse re-
sponses shown in Figure 2-5 contain only contributions from distributed diffuse scattering and 
measurement noise. Observe the complex structure of the covariance matrix in the time-
domain. In contrast, the structure of the covariance matrix is very simple in the frequency 
domain due to the Toeplitz structure. One should note that the Toeplitz structure is only valid 
for narrow band systems. That means, the model has to be refined if ultra wideband channels 
are investigated. The same applies also to the model of the concentrated propagation paths 
derived in this chapter. 

 
Figure 2-5: PDP of 32 measured impulse responses after removing the contributions of the 
concentrated propagation paths (left) and the magnitude of the related channel transfer func-
tions (right). 

 

 
Figure 2-6: Structure of the covariance matrix of the DMC ( )dmcθRτ  in the time delay do-
main (left) and the structure of the covariance matrix of the DMC ( )dmcf θR  in the frequency 
domain (right). 
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2.5.3 Modeling the DMC in the Spatial and the Time Domain 

The covariance function derived in section 2.5.1 describing the DMC is restricted to the fre-
quency domain and time-delay domain, respectively. In general, we have to represent the sec-
ond order statistics of the dense multipath components with a 12-dimensional function, i.e.,  

 ( )212,1,2,1,2,1,1,21 ,,,,,,,,,,,
2

ttff RRRRTTTT ϑϑϕϕϑϑϕϕψ . 

Provided the WSSUS assumption [13] can be applied in the temporal and angular domains as 
well, the correlation function can be expressed by distances in the respective domains. This 
leads to a 6-dimensional correlation function 

 ( )tf RRTT ∆∆∆∆∆∆ ,,,,, ϑϕϑϕψ . 

The full covariance matrix ( )dmcθR  of the dense multipath components is of size 

tfTRtfTR MMMMMMMM × . Since the available measurement apertures in the time (Dop-
pler) domain as well as the spatial (angular) domain are relatively small, no satisfactory para-
metric models for the complete covariance matrix could be developed so far. Hence, we as-
sume that the DMC are i.i.d. in the remaining domains. Nevertheless, let us outline some im-
portant points, which should be considered if refinement is attempted. 

 From a signal processing point of view it is desirable to factorize the full covariance 
matrix, to keep the numerical complexity of the signal processing algorithms low. A promis-
ing approach, although not explicitly proposed for the DMC, is the so-called Kronecker 
model for narrow band MIMO channels [14]. Here, the idea is to factorize the full covariance 
matrix into Kronecker products. To this end, we introduce the covariance matrices 

( ) RR MM

dmcR

×∈CθR  and ( ) TT MM

dmcT

×∈CθR  describing the angular distribution of the dense 
multipath components at the transmitter and the receiver position, respectively. In addition, 
we define the covariance matrix ( )dmct θR  to model the correlation of the DMC for a short 
time interval. Now, a straightforward extension of the Kronecker model yields the following 
approximation for the covariance matrix 

 ( ) ( ) ( ) ( ) ( )dmctdmcfdmcTdmcRdmc θRθRθRθRθR ⊗⊗⊗= . 

In the Chapter 4 and 5, it is shown how the Kronecker model can be exploited to reduce the 
computational complexity of parameter estimation algorithms. Here the Kronecker model is 
effectively based on the assumption of uncorrelated scattering between the transmit angle, 
time delay, Doppler shift, and receive angle domains of the DMC. Consequently, the covari-
ance matrix of the DMC-process has the structure 

 ( ) ( )
tTR MdmcfMMdmc IθRIIθR ⊗⊗⊗= . (2.69) 

One should observe that the assumption of a Kronecker model for the DMC does not imply 
that the whole MIMO channel can be expressed by a Kronecker model. Strictly speaking, the 
assumption of a Kronecker model for a wideband channel is unlikely to hold due to the de-
terministic components in the channel, i.e., due to the existence of well-separated dominant 
propagation paths. For a discussion of the validity of the Kronecker-Model in general, see 
[14].  

2.5.4 Examples for DMC and Discussion  

Figure 2-7 and Figure 2-8 show power delay profiles of radio channels measured in a street 
micro-cell scenario. The measurements have been carried out with an omni-directional trans-
mit antenna and an 8-element uniform linear receive array at a carrier frequency of 5.2GHz. 
The measurement bandwidth used to observe the channel was 100MHz.  
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Figure 2-7: PDP of a complex SIMO-impulse response (LOS) averaged over all receive an-
tennas (left) and the same impulse response after removing the concentrated propagation 
paths (right). 

 

     
Figure 2-8: PDP of a SIMO-impulse response (NLOS) averaged over all receive antennas 
(left) and the same impulse response after removing the concentrated propagation paths 
(right). 

 
The first example is a line of sight (LOS) scenario, whereas the second example is a non-line 
of sight (NLOS) scenario. Both figures show the power delay profile (PDP) averaged over the 
SIMO channels on the left hand side. The right hand side of the figures shows the PDP after 
removing the concentrated propagation paths from the channel observations. In both cases, 
the remainder resembles the PDP described in (2.60). Furthermore, it is important to realise 
that this PDP contains by no means dominant propagation paths anymore. Instead, it resem-
bles a dense stochastic process. Therefore, the contribution of the distributed diffuse scatter-
ing to the channel impulse response is denoted as dense multipath. 

Since the DMC process is a strongly correlated process in the frequency domain, every 
parameter estimator ignoring its contribution to the observed channel impulse response will 
inevitably fail. The contributions of the distributed diffuse scattering to the radio transmission 
is also the reason why model order selection methods fail if the underlying data model take 
only white noise and concentrated propagation paths into account. Therefore, having discov-
ered the influence of the DMC to the radio channel observations it is understandable why the 
author of [15] encountered problems with the application of the Minimum Description Length 
(MDL) method [16], [17]. Strictly speaking, if time-delay information has to be estimated 
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from channel sounding measurements, the application of model order selection criteria is only 
reasonable if the contribution by distributed diffuse scattering to wave propagation is taken 
into account. Otherwise, model order selection criteria will fail since the set of models we are 
choosing from will not fit to the observation. This issue is more deeply discussed in Section 
5.2.7. However, this fact is not restricted to channel parameter estimation. It applies to all 
parameter estimation problems. 

So far, we have only discussed the importance of the DMC for channel parameter es-
timation. However, the contribution of the DMC to the radio transmission must also be con-
sidered in radio channel modelling. Figure 2-9 shows a measured PDP in a LOS scenario and 
the PDP reconstructed using the parameter estimates of 62 concentrated propagation paths. 

 

     
Figure 2-9: A measured PDP (dotted line) and the PDP (straight line) reconstructed using 62 
concentrated propagation paths estimated from the measurement. The left hand side shows the 
PDPs for an observation bandwidth of 100MHz and the right hand side the same PDPs after 
reducing the bandwidth to 5MHz. The parameters of the propagation paths have been esti-
mated from the measurement having 100MHz bandwidth. 

 
The graph on the left hand side of Figure 2-9 shows the power delay profile reconstructed 
with a bandwidth of 100MHz whereas the right hand side shows the same channel with a re-
construction bandwidth of 5MHz. The approximation of the channel having a bandwidth of 
100MHz with 62 propagation paths is not acceptable. On the other hand, the approximation of 
the channel having bandwidth 5MHz with 62 propagation paths is acceptable. To achieve the 
same approximation of the radio channel at 100MHz probably more than 500 concentrated 
propagation paths are necessary. However, the additional propagation paths are only neces-
sary to approximate the DMC since the concentrated propagation paths are already described 
by the 62 propagation paths in the example. Hence, the complexity of the radio channel gen-
erator can be significantly decreased if the same model for the DMC proposed for channel 
parameter estimation is used. That means one has to generate some propagation paths, to de-
scribe the contribution of the concentrated propagation paths to the transmission and a realisa-
tion of a coloured circular normal distributed process to describe the contribution of the DMC. 
A numerically efficient generator for such a process is described in Section 6.1.11. 

In Section 2.5.1 it is assumed that the DMC can be modelled as a circular Gaussian 
process. This assumption is based on physical considerations. To support this assumption the 
estimated distribution, i.e., the relative frequency of the DMC samples in a LOS scenario after 
whitening, and a Normal distribution with variance 

2
1  are shown in Figure 2-10. For the 

computation of the histogram only the delay bins between 250ns and 2000ns has been used. 

0 
 

0.5 
 

1 
 

1.5 
 

2 
 

2.5 
 

3 
 

-100 
 

-90 
 

-80 
 

-70 
 

-60 
 

-50 
 

-40 
 

TDoA [µs] 
 

M
a
g
n
it
u
d
e
 [
d
B
] 

 

0 
 

0.5 
 

1 
 

1.5 
 

2 
 

2.5 
 

3 
 

-100 
 

-90 
 

-80 
 

-70 
 

-60 
 

-50 
 

-40 
 

TDoA [µs] 
 

M
a
g
n
it
u
d
e
 [
d
B
] 

 



2.5 Dense Multipath Components  33 

    

The SIMO observation was taken from the same measurement campaign described in the be-
ginning of this section. The parameters of the distribution of the DMC and the parameters of 
the specular propagation paths have been jointly estimated with the maximum-likelihood es-
timator described in Section 6.2.1. The contribution of the specular propagation paths has 
been removed from the observation using their estimated parameters. For the whitening of the 
DMC the estimated covariance matrix ( )dmcf θR ˆ  has been employed. The total number of real 
valued samples used to compute the histogram was 2816 and the number of classes shown is 
81. The second example (Figure 2-11) shows the relative frequency of the DMC samples in a 
non line of sight scenario after whitening. The PDP on the left hand side shows again the PDP 
of the observed DMC after removing the estimates of the specular propagation paths. In this 
example the delay bins between 950ns and 2300ns has been used to compute the histogram 
shown on the right hand side. The total number of real valued samples used, to compute this 
histogram, was 2176 and the number of classes in the histogram was again 81. The Normal 
distribution is in both cases a reasonable hypothesis for the observed distribution of the DMC. 
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Figure 2-10: PDP of DMC in a line of sight scenario (left hand side) and the distribution of 
the real and imaginary parts of the delay bins between (250ns-2000ns) after whitening of the 
impulse response (right hand side). 
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Figure 2-11: PDP of DMC in a non line of sight scenario (left hand side) and the distribution 
of the real and imaginary parts of the delay bins between (950ns-2300ns) after whitening of 
the impulse response (right hand side).  
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Note that the contribution of dense multipath components can also be found in ultra-
wideband (UWB) radio channel measurements [18]. Hence, the outlined concept to model the 
radio channel for channel parameter estimation can also be adopted to describe upcoming 
UWB channel sounding measurements. Finally, the modelling of diffuse scattering is also 
discussed in the literature dealing with ray-tracing channel simulations. For example, the au-
thors of [19] describe how to improve ray-tracing simulation accuracy by including diffuse 
scattering in the radio propagation model. 

2.6 Complete Radio Channel Model 

The complete model for the sampled radio channel 1×∈ M
Ch , taking concentrated propagation 

paths as well as dense multipath components into account, is given by the superposition of the 
contribution of the concentrated propagation paths ( ) 1×∈ M

sp Cθs  and the contribution of the 
dense multipath components dmcd  as 

 ( ) dmcsp dθsh += . (2.70) 

The realisation 1×∈ M

dmc Cd  of the stochastic process describing the dense multipath ( )dmcθD  
is distributed according to 

 ( ) ( )( ) 1,~ ×∈= M

dmcCdmcdmc CθR0θd ND , 

where ( )Rm,CN  is a complex circular symmetric Gaussian process with mean 1×∈ M
Cm  and 

covariance matrix R . A numerically efficient way to generate a realisation of the process 
( )dmcθD  for covariance matrices ( )dmcθR  having Toeplitz-structure (cf. equation (2.67)) is 

described in Section 6.1.11. Equation (2.70) suggest that the sampled radio channel can be 
understood as a realisation of the process 

 ( ) ( )( ) 1,~ ×∈ M

dmcspC CθRθsh N , (2.71) 

so ( )dmcθs  can be interpreted as the mean of h . 

One should keep in mind that all parameters of the sampled radio channel 

 





=

dmc

sp

chn
θ

θ
θ  

are stochastic by nature. The distribution of chnθ  depends on the radio scenario type, e.g., 
Macro-, Micro-, Pico-cell, whereas their (time) variance depends on the movement of the ob-
jects in the scenario. The same applies also to the realisation dmcd , as long as no object having 
influence on the channel is moving the realisation dmcd  is time invariant. If an object is mov-
ing, some or all parameters become time variant. The structural parameters such as time-
delays of arrival, angles, Doppler-shifts, coherence bandwidth, and base-delay are typically 
slow time variant stochastic processes. The linear parameters HHγ , HVγ , VHγ , and VVγ  are 
typically fast time variant processes. 

2.7 On Radio Channel Statistics 

The data model for the concentrated propagation paths is a deterministic model mapping the 
propagation path parameters to the channel observation. The propagation path parameters 
itself are stochastic by nature. The complete statistic of the radio channel can be written as  

 ( ) ( ) ( )chnchnchn θθhθh ppp ⋅=, . 



2.7 On Radio Channel Statistics  35 

    

The data model (2.71) corresponds to the conditional probability density function ( )chnθhp . 
The focus of this work is to solve the inverse problem ( )iichn f hθ =,

ˆ  given the ith observation 
of the instantaneous impulse response ih taken at time it . The radio channel parameter esti-
mator ( )iichn f hθ =,

ˆ  will provide samples of the function ( )tchnθ . The time variance of the 
process ( )tchnθ  depends on the motion speed of the objects contributing to the radio propaga-
tion. Consequently, the processes ( )tchnθ  and ( )th  might not be time variant at all, if no ob-
jects in the observed radio propagation scenario are moving. To summarise, the vari-
able ( ) 1×∈ L

chn t Rθ  has to be described by a conditional probability density function 
( )( )chnchn t νθp , where chnν  describes the position and movement of the objects in the observed 

radio scenario. A main goal of channel sounding and subsequent channel parameter estima-
tion is to provide sufficient data for the modelling of ( )( )chnchn t νθp , and ( )chnνp . 
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3 Radio Channel Measurement 

From a historical perspective, the first sounding experiments were carried out by using single 
tone CW (continuous wave) signals. This was sufficient as long as only the narrow-band 
channel behavior was of interest. Single tone CW sounding, however, gives us no information 
to resolve path time delays. To resolve propagation paths regarding their time delay, we need 
a frequency domain bandwidth, which is roughly the inverse of the desired delay resolution. 
Sequential sounding at a number of different frequencies is the easiest approach to achieve 
time-delay resolution. The achievable resolution may be very high since standard vector net-
work analyser can be applied. The drawback is the huge measurement time needed to sample 
the whole frequency response. This inhibits measurement of mobile radio channels. The only 
solution is to keep the environment fixed during one series of frequency sampling measure-
ments. Frequency domain sampling has its equivalent in sequential sampling of the antenna 
array geometry. It may be considered as the synthetic antenna aperture approach, applied in 
the frequency domain. Sustained measurement along some longer trajectory is clearly prohibi-
tive.  

3.1 Broadband Radio Channel Sounding Techniques 

Short duration repetitive pulses, together with envelope detectors, have been used in 
early broadband real-time sounding experiments. The main drawback of this method is the 
high peak-to-mean power ratio at the transmitter and only power delay profiles can be meas-
ured. To achieve the maximum signal-to-noise ratio at the receiver, excitation signals are re-
quired having a minimum crest factor. The crest factor is given by the ratio of the peak value 
of the signal to its root mean square (r.m.s.) amplitude. Minimum crest factor signals are dis-
tinguished by a constant envelope in the time domain. At the same time, they must have a 
constant spectrum, which leads to a short autocorrelation function. This pulse compression 
approach is well known from spread spectrum technology. It makes these signals very useful 
for real-time identification of time delay systems since all frequencies are instantaneously 
excited and a considerable SNR processing gain is achieved in the time domain by correlation 
processing.  

Pulse compression requires noise-like structured signals. Periodic pseudo-random ex-
citation signals are of special importance as they can be processed in integer periods. The 
time-period must be at least as long as the maximum path excess time-delay τmax to avoid 
TDoA ambiguities. With a maximum delay-Doppler spreading factor S = τmax Bmax of a typi-
cal mobile radio channel well below 0.01, the period of the received time-variant channel re-
sponse signal is still almost the same as of the excitation signal. This presumes that the mini-
mum signal time period is chosen. Then the channel output can be transformed to the fre-
quency domain by DFT/FFT (discrete Fourier transform, fast Fourier transform) processing 
without any significant leakage variance. 
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Probably the best-known examples of those excitation signals are periodic pseudo-
random binary signals (PRBS). PRBS can be very easily generated by a shift register since 
only digital circuits are required. This makes it possible to generate broadband excitation sig-
nals, even suitable for ultra-wideband sounding [20]. Another advantage of PRBS is that they 
can be repeated in the receiver with a slightly slower clock rate. This is applied in the classical 
swept time-delay cross-correlation sounder implementation as originally proposed by Cox 
[21]. This “sliding correlation” sounder requires only slow AD converters (Analogue to Digi-
tal converter). The disadvantage of this principle, working sequentially in delay, is again the 
long measurement time, which prohibits real-time operation.  

The power spectrum of PRBS has the typical sinc-shape. For system identification 
purposes it can only be used up to a frequency of about 0.4fc, where fc is the clock rate [22]. 
Nevertheless, since the spectrum decays only slowly, a very high sampling rate or a suitable 
anti-aliasing filter at the receiver is required to avoid aliasing. In addition, the system under 
test is excited in a frequency band, which is not used. This effectively throws away transmit 
power. Moreover, most experimental transmit spectrum permissions given by regulation au-
thorities will require strictly band-limited spectra. Then the signal must be filtered at the 
transmitter to stay within a finite bandwidth. Any filtering and phase slope modification, 
however, will increase the crest factor of the PRBS, which is supposed to be unity in the ideal 
case. 

A much more flexible excitation signal concept is known as the “periodic multi-sine 
signal”. This approach is well known from frequency domain system identification in meas-
urement engineering [22]. In communication engineering terms, this signal may be refereed to 
as a multi-carrier spread spectrum signal (MCSSS). The MCSSS is defined by its complex 
discrete Fourier coefficients ( )0fX µ  : 

 ( ) ( )∑
−

=

=
1

0

/π2j
00 e

N
NfXntx

µ

µµ  (3.1) 

with tp=Nt0=1/f0. Once designed in the frequency domain, the corresponding time domain 
waveform ( )0ntx  is stored in an arbitrary waveform generator memory and periodically re-
peated at the Tx. It possesses all the advantages which are discussed above for periodic sig-
nals. Unlike the case of PRBS, the phases and magnitudes of ( )0fX µ  can be arbitrarily cho-
sen in order to optimize the system performance. As an example of this signal design flexibil-
ity, in Figure 3-1 a MCSSS excitation signal with uniform power spectrum is shown. The 
phases of the Fourier coefficients are chosen to minimize the crest factor of the signal wave-
form. Although a quadratic phase slope typically results in a crest factor below 2, numerical 
optimisation can even further reduce the crest factor to about 1.4. Eventually analogue hard-
ware phase distortion (e.g. from the filters) and even nonlinear distortion (from the power 
amplifier) can be mitigated. This means that a predefined ideal transmit signal is iteratively 
pre-distorted throughout a calibration procedure where the real output signal is measured and 
optimized.  

Regarding the overall spectral shape, the main advantage of MCSSS is its “brick wall” 
shape, which allows concentrating the signal energy exactly to the band of interest. This can 
even be multiple bands when spectral magnitudes are set to zero. One example application is 
FDD (frequency division duplex) sounding which means that the sounder simultaneously ex-
cites both the up- and the down-link band. To meet the UTRA FDD specifications, we need a 
total bandwidth of more than 200 MHz. Note that the desired full flexibility of the excitation 
signal requires quadrature up-conversion at the transmitter.  

At the receiver side the signal is filtered, down converted, and demodulated by a quad-
rature demodulator. An efficient architecture is based on low IF (intermediate frequency) ana-
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logue down conversion, IF sampling and final digital down conversion. A measurement-
bandwidth of 240 MHz, requires an IF frequency of 160 MHz and an ADC (analogue to digi-
tal converter) sampling rate of 640 MHz. For real-time processing Nyquist sampling at the 
receiver is necessary in most cases. One integer period of the received time-variant channel 
response ( )0,ntty  signal is sampled and transformed to the frequency domain by FFT proc-
essing. The final quadrature down-conversion is accomplished by cyclic FFT-shifting of the 
result, which finally gives the baseband representation ( )0, ftY µ  of the received signal. Fre-
quency selective fading as shown in Figure 3-1, shapes the power spectrum of the received 
signal. (bottom row, right). 
 

 
Figure 3-1: Broadband multi-carrier spread spectrum signal (MCSSS) in the time and mag-
nitude frequency domain (top row) and estimated CIR and received signal spectrum (bottom 
row).  

 
An estimate of the time-variant channel frequency response is calculated from input-output 
cross correlation as 
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µµ

µ ==  (3.2) 

The uniform shape of the excitation signal spectrum and its low crest factor at the 
transmitter maximizes the SNR. With integer period data acquisition, there is no additional 
estimation variance resulting from leakage noise [22]. Therefore, the required data acquisition 
time is minimal and the estimation variance is as small as possible. With Nyquist sampling at 
the receiver, the highest possible measurement repetition rate for a channel with a maximum 
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excess time-delay τmax can be achieved, which is 1/τmax. The lower limit is given by the Dop-
pler bandwidth Bmax. It results from the Nyquist sampling criterion of the fast fading channel 
response. However, since the delay-Doppler spreading factor S = τmax ·Bmax of a typical mo-
bile radio channels is well below 0.01, there are large gaps allowed between successive meas-
ured channel response functions without sacrificing the Nyquist criterion. Normally, there is 
no need to measure any more quickly since additional CIRs (which may be required for link 
level simulation) can always be calculated by band-limited interpolation. Nevertheless, faster 
measurement speed may be desirable if further noise reduction by synchronous averaging of a 
temporal sequence ( )0,ntty  is aimed at. Only if the averaging window approaches or exceeds 
1/Bmax this would act as a Doppler low-pass filter and potentially suppress fast fading.  

Figure 3-1 also shows the impulse response which would result from the inverse Fou-
rier transform of ( )0, ftH µ . Calculating the impulse response in this way requires a tapering 
window function in the frequency domain, which effectively throws away measured data and, 
hence, reduces SNR and limits the resolution. A better choice is to use ( )0, ftH µ  as an ob-
servation vector in the frequency domain for high-resolution TDoA parameter estimation de-
scribed in Chapters 5 and 6. 

3.2 MIMO Channel Sounding 

A MIMO channel sounder measures the channel response matrix between all MT an-
tenna ports at the transmit side and all MR antenna ports at the receiver side. This could be 
carried out by applying a transmitter and a receiver having multiple transmit and receive 
chains, respectively. However, true parallel systems are not only extremely expensive, they 
are also inflexible (when considering changing the number of antenna channels) and suscepti-
ble to phase drift errors. Also parallel operation of the transmitter channels would cause prob-
lems since the MT transmitted signals have to be separated at the receiver. Therefore, orthogo-
nal transmit signals must be used. Since the time/frequency domains are the only domain 
available to make the transmit signals orthogonal, the only gain of a parallel transmitter is the 
gain in total transmit power. There is no gain in measurement time. A much more suitable 
sounder architecture is based on switched antenna access [23], [24], [25], [26], [27]. A 
switched antenna sounder contains only one physical transmitter and one receiver channel. 
Only the antennas and the switching channels are parallel. This reduces the sensitivity to 
channel imbalance.  

Figure 3-2 shows the switching time frame of a sequential MIMO sounder using an-
tenna arrays at both sides of the link [28]. Any rectangular block in the figure represents one 
period of the transmit/receive signal. Synchronous switching at the Rx and Tx is required in 
order to clearly assign the received signal periods to any input-output combination of the 
channel matrix. Timing and switching frame synchronization is established during an initial 
synchronization process prior to measurement data recording and must be maintained over the 
complete measurement time even in the case of remote operation of Tx and Rx. This is ac-
complished by rubidium reference oscillators (atomic clock) at both Rx and Tx. The total 
snapshot time length is now given by ts = 2τmax MT MR, where MT  and MR are the number of 
antenna array ports at the Tx and the Rx site, respectively. The factor of two comes from the 
one blank period, which is inserted at the receiver after every period acting as a guard interval 
to avoid switching transients. Similar to OFDM (orthogonal frequency division multiplexing), 
this CIR estimation principle relies on a periodic signal model for excitation and reception. 
Therefore, the guard interval has to cope with the channel and the device response. For some 
signal processing operations, based upon the recorded data, it may be a disadvantage that the 
antenna channels are not sampled at the same instant. If the maximum Doppler bandwidth for 
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real-time sounding is less than 1/ts, the antenna channels can be individually interpolated re-
sulting in MIMO channel responses with aligned sampling time for all channels.  

Further considerations concerning the hardware operation of the sounder system refer 
to the Tx/Rx synchronization in the remote operation mode, to the calibration, to the transmit 
power, and to link budget issues. Only a short overview to the more important topics will be 
given here. 

 

Tx

Rx

c
h
a
n
n
e
l

1

3

2

4

1

3

2

Tx Rx

Tx switching sequence Rx switching sequence

tp = Tx Signal period = τmax = maximum path excess delay

ts = τmax 2 MTx MRx = total snapshot time duration

time

MTx MRx

 
Figure 3-2: MIMO sounder switching time frame. 

 

Remote operation means that there is no synchronization link applied between Tx and 
Rx. Initial synchronization is accomplished by a back-to back calibration procedure. Hereby 
the overall device frequency response 

fS
G  is measured and stored for equalisation purposes. 

In addition, the frequency references are synchronized. The synchronization has to be main-
tained throughout the whole measurement cycle. Separate Rubidium reference sources at both 
Tx and Rx are required and the local oscillator (LO) signals have to be generated at both 
sides. This makes a sounder fundamentally different to a standard network analyser and asks 
for specific considerations. For DoA/DoD estimation full coherent operation is necessary dur-
ing the snapshot period ts. If Doppler estimation is required, or if a sequence of snapshots is to 
be averaged for SNR enhancement, the coherent operation period must extent to multiples of 
ts. This sets the limits for phase noise parts having a coherence time below this time interval. 
However, the time-period between two calibration measurements may easily take some hours 
if field measurements are considered. In this case, some drift of the references cannot be 
avoided even if Rubidium sources are used. This can normally be accepted as long as the ref-
erence offset is markedly smaller than the specified Doppler bandwidth. A small reference 
frequency offset would be measured as a respective Doppler shift. Note that in the case of 
synthetic antenna aperture measurements and for antenna array calibration a much longer co-
herent operation period will be necessary, which may require a direct Tx/Rx synchronization 
by cable. 

Calibration has to include the absolute device power gain as well. This is also 
achieved throughout the back-to-back calibration when operating the transmitter with its 
nominal output power to a reference attenuator. Nevertheless, antenna independent path loss 
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estimation is only possible if the antennas are calibrated in absolute gain and if the 
DoA/DoDs of the polarimetric wave components at the antennas are known. This means that 
both the DoA and DoD have to be estimated. Otherwise, the antenna influence cannot be 
separated from the measurements and the path attenuation can only be given including the 
influence of the specific antennas used throughout the measurement.  

Further issues are related to automatic gain control (AGC). AGC at the receiver has to 
ensure maximum signal level throughout the receiver chain from the antenna to the ADC in-
put. At the same time, it has to avoid overloading. The receiver should have a switched AGC 
in well-defined calibrated steps, which should cover at least a range between 50 and 60dB. 
The AGC setting has to be implemented on basis of instantaneous peak value estimation. To 
avoid uncontrolled transients, the AGC timing control must be synchronized to the MIMO 
switching time frame described in Figure 3-2. For very accurate angle-of-arrival estimation, 
the same AGC setting should be used for all antennas of the arrays. The best results are 
achieved if the complex frequency responses of all AGC steps are individually calibrated (in-
cluding the complex frequency response, which may vary because of changing electrical 
length). 

Regarding the arrangement of antenna switches and amplifiers there is always a trade-
off in sensitivity and phase stability. Individual low noise amplifiers (LNA) at Rx antennas 
and/or individual power amplifiers (PA) at the Tx are mostly inadequate because of the in-
crease in phase drift between antenna channels. However, if there is only a single PA at the 
Tx, the corresponding antenna switch has to handle the full output power which may exceed 
10 W for broadband bad urban measurements. At the Rx the switch just adds its attenuation to 
the receiver noise figure. 

Future steps in real-time MIMO sounding will include the usage of multiple sounding 
transmitters and/or receivers to emulate system specific scenarios and interference situations. 
Two transmitters and one receiver, e.g., can be operated in a coordinated way where the trans-
mitters are switched on/off in a staggered temporal sequence. This allows quasi simultaneous 
measurement of two spatially distributed links. These links can represent a multiuser scenario 
as seen from a base station. Also two base stations can be emulated to represent soft handover 
scenarios and cooperative downlink operation from spatially distributed access points. More-
over, a dual-hop link as a part of a multi-hop or ad-hoc network or just a relay extension can 
be investigated. A future sounder interface will be able to handle dual-band up- and down-
converters to emulate tandem air interfaces which will operate in completely different fre-
quency bands. For ultra-wideband operation, sounders will be developed having a real-time 
bandwidth of some GHz, e.g., from 3 to 11 GHz. The requirements on the hardware of these 
sounders will be extremely demanding and will require integrated SiGe-technology [20]. This 
relates also to very broadband sounding at mm-Wave frequencies, e.g., at 60 GHz. To achieve 
enough spatial resolution of indoor propagation environments, the bandwidth has to be en-
hanced up to several GHz. The very high frequency will set extreme demands to phase noise 
if DoA/DoD has to be estimated. UWB operation, however, will shift the angle resolution 
paradigm from phase difference estimation to time delay estimation allowing wider antenna 
distances and, thus, compensates loss in accuracy. 

3.3 Antenna Array Architectures for Channel Sounding Applications 

The spatial dimension of the channel response is accessed by antenna arrays. This mainly re-
lates to “true” arrays but can also include synthetic aperture arrays. Those arrays consist of a 
sequentially sampled spatial aperture where only one antenna (or a subset) of the respective 
array is physically deployed. The angular resolution capability of any array depends on the 
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effective aperture size as seen from the respective wave direction. So the spatial arrangement 
of the antenna elements has a major influence.  

Sophisticated antenna architecture design is required to achieve high DoD/DoA reso-
lution. This has to be developed with mechanically and electrically stable construction and 
precise calibration. Since there is always a tradeoff between various specifications including 
resolution, measurement time, availability and costs, there is a wide variety of useful antenna 
array architectures. In the following, we summarise some design considerations:  
• Planar antenna arrays such as uniform linear arrays or uniform rectangular arrays always 
have a limited viewing angle and suffer from inherent forward/backward ambiguity. They 
are useful to represent a base station’s view to the channel. Moreover, there is a nonlinear 
transformation from the geometrical DoA/DoD to the respective normalised structural pa-
rameters ( )i

kµ . Consequently, the effective array aperture depends on the DoA/DoD and the 
resolution capability is not uniform. Circular antennas, on the other hand, have a full field 
of view. They can be used to represent the mobile station. Their angular resolution capabil-
ity is uniform since the effective aperture does not change with azimuth angle.  

• Double directional estimation requires arrays at both sides of the link and MIMO operation 
of the sounder. For cellular system consideration, a combination of planar and circular ar-
rays is adequate, whereas for ad-hoc peer-to-peer networks identical circular arrays are 
most preferable.  

• Mainly for micro- and pico-cell scenarios, estimation of the elevation is aspired in addition 
to the azimuth. This requires application of uniform rectangular, cylindrical, or spherical 
arrays. But three dimensional wave analysis (azimuth and elevation) is not only necessary 
to deduce three dimensional propagation models. It is also required for removal of the in-
fluence of the measurement antennas from the data if there are incoming waves with non-
zero elevation. Moreover, this must also include polarisation resolution.  

• Spherical antenna arrays may be applied for full azimuth and elevation coverage. However, 
there exists no geometric solution to arrange more than 20 patch antenna elements on a 
spherical surface with identical inter-element distances. Therefore, non-uniform inter-
element distances and various relative polarisation orientations of adjacent elements will 
complicate the design of spherical arrays. Moreover, optimisation of the inter-element dis-
tance for circular and spherical arrays (or of the diameter in case of a fixed number of an-
tenna elements, respectively) is required to minimize the side-lobes of the angular correla-
tion function to reduce the probability of outliers in iterative parameters search. This typi-
cally leads to inter-element distances something smaller as half of the wavelength.  

• Full polarimetric analysis of the radio channel requires not only polarimetric reception but 
also polarimetric excitation of the channel. This is even true for omni-directional excitation 
where we need a two-port antenna, which launches both orthogonal polarised waves with 
omni-directional characteristics and, thus, doubles the required sounder output ports.  

• High and reliable resolution in terms of separation capability of closely spaced paths and 
low probability of outliers requires an antenna architecture, which offers a minimum of an-
tenna array aperture size in the respective spatial dimension, including a minimum number 
of antenna elements, low antenna element coupling, and precise calibration. This has also 
to include the antenna switches and feeder cables. An instructive discussion of real antenna 
array architectures developed for radio channel sounding and the occurrence of outliers 
(virtual paths) can be found in [29], [30]. The problem of virtual paths is also discussed in 
connection with channel model (order) selection in Section 5.2.7. 

• The characteristics of the antenna elements depend on the basic element design (dipoles, 
patches, slots, etc.). It has a strong influence to high-resolution performance, estimation 
ambiguities, probability of outliers and polarisation resolution capability, gain, bandwidth 
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etc. E.g., the directivity of the antenna elements is a means to mitigate the inherent for-
ward/backward ambiguity of ULA and URA. 

• For later relation of recorded data to the respective propagation scenario video cameras 
should be included into the antenna module. The optical viewing field of the cameras 
should correspond to the electromagnetic viewing field of the antennas. Also GPS (global 
positioning system) position recording, electronic compass, and inclination sensors helps to 
precisely document the measurement setup. Furthermore, a laser pointer should be con-
tained in the antenna array to support angular adjustment.  

The following figures show examples of high-resolution antennas. The URA in Figure 
3-3 comprises 8x8 vertical polarised patch elements. Three peripheral dummy rows and col-
umns are included to mitigate the fringing field effect, which distorts the beam patterns. The 
module also includes a 64x1 multiplexer, LNA, and filter. It can be used for joint azimuth and 
elevation estimation within the bore side viewing sector of 120 deg. and 60 deg., respectively. 
The UCA (uniform circular array) in Figure 3-4 (left) consists of 32 sleeve antennas, which 
do not require a ground plane. Here, a 2W power switch is included to support the application 
as a transmit antenna. The usage is essentially restricted to azimuth estimation only since 
there is no vertical aperture available for low elevation paths (which are most important for 
mobile radio application). The SPUCPA (stacked polarimetric uniform circular patch array) in 
Figure 3-4 (right) is the currently (2004) most sophisticated array available world wide. It 
comprises 4 stacked rings of 24 polarimetric patches yielding 192 output ports in total. The 
RF-multiplexer is arranged inside of the cylindrical body of the array. The cylindrical archi-
tecture gives a maximum resolution in azimuth for low elevation paths and good resolution of 
elevation within 30±  deg.  

 

 
 

Figure 3-3: Uniform rectangular patch array (URA8x8) [31], [32].  

 

 
  

Figure 3-4: Circular dipole array (UCA32), left, and stacked polarimetric uniform circular 
patch array (SPUCPA4x24), right [31], [32]. 
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3.4 On the Choice of Reference Scenarios 

The performance evaluation of channel-sounding systems requires appropriate test scenarios. 
The channel parameter estimator can be considered to be part of the channel sounder. Conse-
quently, the measurement results are the estimated channel parameters. Hence, we need ap-
propriate scenarios to determine the accuracy of the individual parameter estimates, for exam-
ple the systematic and the random error of the estimated time delay related to a single propa-
gation path. In addition, appropriate scenarios are needed to evaluate the resolution capability 
of the channel sounding system. 

Furthermore, the test conditions must be reproducible by someone else with a reason-
able effort. From our experience [33], [34], [35], [36], [37], and [38], this can only be guaran-
teed if the measurements for the performance evaluation are carried out in an anechoic cham-
ber. Measurements in application scenarios are generally not reproducible by third parties and 
are therefore not suited to evaluate the performance of a channel sounding system. 

We propose to use two scenarios in an anechoic chamber for the performance evalua-
tion of channel sounding systems. To determine the measurement accuracy, a single path sce-
nario is the best choice. The setup of such a scenario in an anechoic chamber is simple, since 
the LOS path is, within the limits of the wave absorbing material, the only path. The parame-
ters of this propagation path can be varied by means of a positioner, which changes the posi-
tion of the transmitter antenna or of the receive antenna array. 

 For the evaluation of the path resolution capabilities, we have to create two propaga-
tion paths in the anechoic chamber, where the parameters of one propagation path must be 
adjustable. One may try to use a reflector, for example a metallic plate or a metallic sphere, to 
create a second propagation path in addition to the direct path. However, it turns out that the 
parameters of these two propagation paths cannot be adjusted independently of each other. A 
change of the transmitter position or the transmit power will change the parameters of both 
paths. In addition, a variation of the reflector position will simultaneously change some and 
not only one of the parameters belonging to the reflected path. A better approach to create a 
two-path scenario is based on the observation that a receiver cannot distinguish between a 
scenario with a real and a virtual signal source and a scenario with two real signal sources as 
long as the same signal is broadcasted by them. Hence, a two path scenario can be created if 
we broadcast the transmit signal with two independent transmit antennas. Since every trans-
mit antenna is related to only one propagation path in an anechoic chamber, the propagation 
path parameters can be adjusted independently. This setup also allows independent adjust-
ment of the individual parameters of one propagation path. 

The described test scenarios have been used to evaluate the performance of various an-
tenna arrays [33], [34], [35], [36], [37], and [38]. It is understood, that especially the second 
test case with two propagation paths, i.e., two sources, is an important benchmark for the per-
formance evaluation of any channel parameter estimation algorithm, see also [39]. Further-
more, both test scenarios should be considered while choosing an antenna array structure for 
radio channel measurements. An antenna array that provides sufficient information to esti-
mate the parameters of a single propagation path may not provide sufficient information to 
resolve two propagation paths even if they are substantially separate. An example for such an 
array structure is a cross array. 

3.5 A Cross Array is Not Suitable for Radio Channel Sounding  

A question, often asked is. “Why is a cross array not suitable for channel sounding?” It is well 
known, that azimuth and elevation of a single source can be estimated if a cross array is used 
to receive the signal of the source. Hence, the cross array can be applied to estimate the 
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propagation path parameters of test case one (a single propagation path). However, the re-
ceived signal contains replicas of the same signal in real world scenarios due to multipath 
propagation. Hence, the second test case (two propagation paths) must be considered too. If 
the two propagation paths have approximately the same time delay at the receive site but a 
phase difference of π , they will suppress each other if the magnitude of the path weights are 
equal. This is effectively a case of space selective fading. The standing wave field of such a 
scenario is shown in Figure 3-5. In the case shown on the right hand side, the vertical ULA 
does not receive any signal from the two sources. Consequently, the channel observations 
measured with a cross array in such a scenario contains no information about the elevation of 
the two sources. The same problem will also arise, of course, if the two sources are separated 
only in elevation, i.e., if they have the same azimuth angle. 
 

 
Figure 3-5: Standing wave field and a cross array. 

It will depend on the phase difference between the two propagation paths in such a scenario, 
whether information about their elevation angles is available in the measurement data or not. 
Consequently, the parameter estimator will be unable to solve the estimation problem in cer-
tain cases. An analytical way to determine, whether sufficient information are available to 
solve an estimation problem or not, is provided by the Fisher information matrix and the 
Cramér-Rao lower bound [40]. Therefore, Chapter 4 is entirely devoted to the application of 
this performance measures to radio channel parameter estimation.  
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It is important to note, that the cross array provides sufficient information for the esti-
mation of azimuth and elevation of multiple signal sources which are uncorrelated or only 
partially coherent, or if they are coherent but well separated in another parameter domain, 
e.g., in the time delay or Doppler domain.  

3.6 Parameter Normalization  

All basis functions fB , 
HT

B , 
VT

B , 
HR

B , 
VR

B , and tB  of the channel model (2.29) have basi-
cally the same structure. The prototype for all functions B  is 

 AGB ⋅= , (3.3) 

where NM×∈CG  is a matrix describing the measurement system, and PN×∈CA  is a matrix of 
complex exponentials related to the radio channel parameters τ , Tϕ , Tϑ , Rϕ , Rϑ , or α  [see 
(2.14), (2.23), (2.34), (2.35), (2.38), and (2.39)]. For a signal processing, the physical meaning 
of the parameters is not important. Moreover, the different range of values of the physical 
parameters can be even disadvantageous. Therefore, we introduce the normalised parameter 

( )iµ  and the related vector valued functions 
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and 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) PNNikkiPkPi ki ××× ∈◊=∈∈ CRR µAµAµµAµµ ,, 11 a . (3.5) 

The definition of the complex exponentials in (3.4) is unusual, a much more common defini-
tion is  

 ( ) ( )( )
( ) ( ) ( ) ( )
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There are mainly two reasons, why we should favor definition (3.4) over definition (3.6). 
Firstly, the reference point for the complex path weight is exactly in the center of the observed 
aperture, i.e., in the middle of the observed frequency band, and in the center of the antenna 
arrays. Secondly, the matrix ( )( )iµA  is conjugate-symmetric along the columns, i.e., 

 ( )( ) ( )( )ii µΠAµA ∗= . 

This symmetry can be exploited in implementations to reduce the computational complexity. 
In Table 3-1 the basis functions introduced in Sections 2.2 - 2.4, the related normalised pa-
rameters, and the new basis functions based on the normalised parameters are summarised. 

3.7 Incorporation of Sequential Spatial Sampling into the Data Model 

The data model for the observed propagation paths developed in Chapter 2 is based on the 
assumption that the complete MIMO – channel is measured at one time. However, this is not 
true if the SISO-channels between the transmit- and receive-antenna array ports have been 
measured sequentially. Since the structural parameters µ  of the radio channel are slow time 
variant processes, we can treat them as constant within the time needed to take one channel 
snapshot. In contrast, the path weights may be fast time variant. Here the term fast time vari-
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ant relates to the time necessary to measure all SISO-channels, i.e., to acquire a complete 
snapshot of the MIMO channel. If we assume only the phase of the path weights γ  is chang-
ing within the observation time, the influence of sequential MIMO-channel measurement 
principle can be incorporated into the data model easily. The phase shift is determined by the 
Doppler-shift ( )

0π2 tpp αµ α =  of the concentrated propagations paths.  

Table 3-1: Definition of Propagation Path Parameter Vectors 

Basis Function Normalisation Denormalisation Basis Function with 
Normalised Parameters 
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0π2 f=  ( )
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Given the path weight 1γ  at time 1t  the path weight at time 2t  can be calculated according to  

 
( ) ( )αµ

γγ p-

tptp
0t
1t2t

12

j

,, e
−

⋅= . 

This follows directly from (2.2). Furthermore, suppose the antenna array outputs are sampled 
with a uniform sequence. Here uniform means that the time offset, when the SISO channel 
transfer function between the antenna ports Tm  ( )TT Mm <≤0 , Rm  ( )RR Mm <≤0  is meas-
ured, can be expressed in the form RRTTTR mtmtt ⋅+⋅= ,0,0 . This holds for example if the 
switching sequence shown in Figure 3-2 is used. The sampling interval is 

RRmaxRT tMMt ,0,0 2 == τ  at Tx and maxRt τ2,0 =  at Rx. The sampling of the MIMO channel is 
uniform if the antenna switching sequence at the Rx site is the same for every active Tx an-
tenna element. This is important since in modern MIMO channel sounding devices the 
switching sequence can be chosen arbitrarily [32]. The data model cannot be expressed any-
more using the Khatri-Rao product, if a non-regular switching sequence has been chosen 
throughout channel sounding measurements. This will in turn lead to an increase in computa-
tional complexity of the channel parameter estimator since some simplifications used in Sec-
tion 4.1 as well as in Chapter 5 will not apply anymore.  

Let us suppose the receive array output ports have been sampled at the time off-
sets

RMRR tt ,1, ,,K  within the receiver switching frame, and the transmit array ports have been 
activated at times 

TMTT tt ,1, ,,K  within the transmitter switching period, see also Figure 3-2. To 
incorporate the spatial sampling into the data model we introduce the following matrices 
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and 
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Using the (3.7) and (3.8) the model for the concentrated propagation paths (H-H component) 

 HHtfTRHH HH
γBBBBs ⋅◊◊◊=  

can be extended to account also for the influence of sequential MIMO channel sounding 
measurements yielding 

 ( ) ( ) HHtfTtTRtRssHH HH
γBBABABs ⋅◊◊◊= ,,, oo . (3.9) 

The influence of sequential MIMO channel sounding measurements can be incorporated into 
the other components of the path model HVs , VHs , and VVs  in a similar fashion. The sequential 
MIMO measurement principle has no influence on the model of the DMC, since the contribu-
tions of the DMC to the individual SISO channels are modelled as i.i.d. realisations (cf. Sec-
tion 2.5.3).  

It is important to note, that the matrices (3.7) and (3.8) can only be applied to refine 
the data model for channel parameter estimation if sufficient information for Doppler-shift 
estimation is available. However, radio channel sounders available so far are not able to 
measure the radio channel continuously. That means the time needed to measure as single 
MIMO-channel snapshot has to be significantly smaller than the time between two consecu-
tive MIMO-channel snapshots ( 1.0,...,05.0

0
=

t

ts ). Consequently, the influence of the sequential 
measurement principle can be neglected. However, upcoming channel sounders will be able 
to measure the radio channel without gaps between consecutive MIMO-channel snapshots 
[32]. To exploit their capabilities fully the refined data model (3.9) should be applied. The 
influence of sequential spatial sampling on ESPRIT based parameter estimation algorithms 
has been studied for example in [41]. 

The algorithms derived in this work are all based on the assumption that the influence 
of the sequential MIMO measurement principle can be neglected. I.e., the acquisition time for 
a single MIMO channel snapshot St  is much smaller than the sampling interval between con-
secutive MIMO snapshots 0t . 

3.8 Measurements with Missing Apertures 

If radio channel measurements have been carried out with a measurement system, which is 
unable to acquire the information necessary to determine the parameters of the complete 
channel model (2.70), we have to reduce it. If we neglect the effect of sequential spatial sam-
pling the six structural parameters τ , Tϕ , Tϑ , Rϕ , Rϑ , and α  relate to a specific aperture, 
i.e., data dimension. There are four data domains in total. These are the frequency domain, 
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which carries the information about the time delay τ , the time domain carrying the informa-
tion about the Doppler-shift α , and the spatial domains, i.e., antenna ports at the Tx- and the 
Rx-site carrying the information about the transmit angle pair Tϕ , Tϑ  and receive angle pair 

Rϕ , Rϑ , respectively. Furthermore, the antenna arrays used for the measurements also deter-
mine which of the four polarimetric path weights can be estimated from the channel observa-
tions. In the following, we discuss some cases of measurements with missing apertures. 
 
Case I: If only a single channel observation is available, the data model (2.70) reduces to 

 
( ) ( ) ( )

( ) ( ) ,VVRTVHRT

HVRTHHRTsp

VVHV

VHHH

γBBBγBBB

γBBBγBBBθs

⋅◊◊+⋅◊◊

+⋅◊◊+⋅◊◊=

ττ

ττ
 

as a result the Doppler-shifts of the propagation paths are not assessable. Additionally, the 
resolution of the propagation paths is reduced. However, the loss in resolution compared with 
other domains is comparatively small since the aperture in the time domain, i.e., the number 
of consecutive channel observations, must be kept small anyway to assure validity of the 
channel model. As discussed earlier, it is assumed that a movement of the objects in the radio 
scenario cause only phase shifts of the path weights. Missing information about the Doppler-
shift does not lead to systematic errors in the estimates of the remaining parameters, as long as 
the influence of sequential spatial sampling can be neglected.  
 
Case II: The radio channel is only measured at one frequency. Hence, the data model (2.29) 
reduces to  

 
( ) ( ) ( )

( ) ( ) .VVRTVHRT

HVRTHHRTsp

VVHV

VHHH

γBBBγBBB

γBBBγBBBθs

⋅◊◊+⋅◊◊

+⋅◊◊+⋅◊◊=

αα

αα
 

Consequently, the time delays of the propagation paths cannot be estimated and the resolution 
of the propagation paths is strongly reduced. As a rule of thumb, the frequency domain is the 
domain with the largest resolution capability. Missing information about the time delays of 
the propagation paths does not lead to systematic errors in the remaining parameters esti-
mated. 

 

Case III:  The radio channel is measured with reduced apertures in the spatial domain at the 
Tx-site or at the Rx-site. Since the influence of a reduced aperture is equivalent at the Tx-site 
and the Rx-site, we will discuss the influence at the Tx-site only. There exists a variety of 
possible measurement setups, since we can choose from a large amount of different antenna 
array structures.  

The antenna array may not provide enough information about azimuth and elevation. 
This applies to many array structures, such as URA, UCA, ULA, and CUBA. Consequently, 
the azimuth and/or the elevation will contain ambiguities. The antenna array does not provide 
enough information to estimate both angles, this is typical for antenna arrays having line aper-
tures, e.g., uniform linear arrays. In contrast to the previous cases, assumptions about the 
missing information must be made. I.e., we have to choose a prior, the most likely value for 
the unobserved parameters. This often leads to systematic errors, since the prior is wrong. For 
example, if the radio channel is measured using a uniform linear array we only have informa-
tion about one angle, e.g., the elevation if a ULA-column is used. However, the beam pattern 
of the array elements is also a function of the unobserved angle, i.e., the azimuth in our exam-
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ple. Consequently, the estimates of the path weights will be scaled versions of the true path 
weights, except we know the true azimuth angles of the observed propagation paths.  

Finally, the antenna array may not measure the field components ϕe  and ϑe  com-
pletely. This applies if the antenna elements have only one port either for “horizontal” or 
“vertical” polarisation. Therefore, only two of the four polarimetric path weights can be de-
termined. If the transmit antenna array generates only field components in ϑe , i.e., 

TTTH
ϑϕ ,∀= 0B , the data model (2.29) reduces to 

 ( ) ( ) ( ) .VVRTVHRTsp VVHV
γBBBBγBBBBθs ⋅◊◊◊+⋅◊◊◊= ατατ  

If the receive array receives only field components in ϕe , i.e., RRRV
ϑϕ ,∀= 0B  the data 

model reduces further to 

 ( ) ( ) VHRTsp HV
γBBBBθs ⋅◊◊◊= ατ . 

For measurements, channel sounding with incomplete apertures is not optimal. As already 
discussed in Section 3.3, we acquire incomplete information about the propagation paths. Fur-
thermore, we reduce with every missing aperture, i.e., parameter domain the ability to resolve 
the propagation paths in the scenario. 

To summarise, for a signal processing, the variety of measurement setups is not a 
problem insofar as the basic data model structure is not altered if an aperture is missing. Hav-
ing a parameter estimator for the model (2.29), we are from an algorithmic point of view able 
to cover also cases with missing apertures. However, it is important to realise that the estima-
tor will only yield reliable results if the assumptions about the unobserved information are 
accurate. This is especially important if information about polarisation and/or angles are miss-
ing, since the signal at the output port of an antenna element depends on two angles and the 
strength of the two electromagnetic field components in ϕe  and ϑe . In contrast, the frequency 
and the time domain only carry information about a single parameter the time delay of arrival 
and the Doppler-shift, respectively. 



  

 51  

4 Limits on Channel Parameter Estimation 

It is often criticized that high-resolution channel parameter estimators are not robust [14]. As 
an example, a robustness issue encountered regularly is the splitting of a propagation path into 
two. This leads to unusable parameter estimation results, since the path weights of these two 
paths have often a phase difference of π~  and consequently very large absolute path weights. 
Strictly speaking, the stated “low robustness” is often not a result of incapability of the pa-
rameter estimator, but rather due to the wrong underlying model. Namely, a wrong number of 
propagation paths or the negligence of the dense multipath components leads to completely 
wrong estimates. 

Furthermore, since one of the main goals of radio channel sounding in general is the 
derivation of channel parameter statistics, i.e., the modelling of the distribution ( )θp , it is 
important to know the limits on resolution and accuracy of θ̂ . In this context, accuracy means 
primarily the variance of the channel parameter estimates. If the variance of the estimates is 
ignored the derived distribution functions may partly model the statistics of the estimator ( )θ̂p  
instead of the statistics ( )θp  of the true channel parameters. 

Additionally, for measurement system design the reachable performance of a channel 
sounding system, i.e., of the entity channel sounder and parameter estimator is of interest. For 
example, the reachable accuracy of the estimates of the structural parameters compared with 
the Rayleigh resolution limit [40] is of interest. The Rayleigh resolution limit is a function of 
the aperture used to observe a system. For the normalised channel parameters iµ  the Rayleigh 
resolution is 

iM
π2∝ , i.e., it is not a function of the signal to noise ratio. The Rayleigh resolution 

determines roughly the resolution of beamforming and DFT methods without further process-
ing.  

A uniform bound on the variance of any parameter estimator θ̂  for the parameters of a 
given model is provided by the Cramér-Rao lower bound [42]. It determines the variance of 
an unbiased estimator, which is minimum variance unbiased (MVUB). An unbiased estimator 

1ˆ ×∈ L
Rθ  for the parameters of a given model 1×∈ L

Rθ  satisfies the following equation 

 { } 0θθ =−ˆE , 

i.e. the estimation error has zero mean. Then the Cramér-Rao lower bound CRLB states that 
for the covariance matrix LL×∈R

θ
C ˆ  of any unbiased estimator the following inequality holds. 

 ( ) ( ){ }
θθ

CRBθθθθC ˆ
T

ˆ
ˆˆE ≥−⋅−= . 

Observe, that the inequality sign between the matrices means that the difference 
θθ

CRBC ˆˆ −  
is positive definite.  

Before we start with the derivation of the Cramér-Rao lower bound let us recall the pa-
rametric channel model developed in Chapter 2. It describes the sampled radio channel h  as a 
circular Gaussian distributed process  
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 ( ) ( )( ) 1,~ ×∈ M

dmcspC CθRθsh N . 

with mean ( )spθs  and covariance ( )dmcθR . The stochastic part of the sampled radio channel, 
i.e., the contribution of the dense multipath is distributed according to 

 ( ) ( )( ) 1,~~ ×∈ M

dmcCdmcdmc CθR0θd ND . 

As described in Chapter 3, every channel sounding measurement is disturbed by measurement 
noise. We will assume in the following that the measurement noise is i.i.d. circular Gaussian 
distributed according to 

 ( ) 1
0,~ ×∈ M

C CI0w αN . 

Since both, dmcd  and w  are circular Gaussian distributed processes and independent, we can 
merge them into one process 

 ( )( ) 1
0,~ ×∈+ M

dmcCdan CIθR0n αN . (4.1) 

For a signal processing, it is unimportant that both originate from different sources, i.e., dmcd  
is part of the radio channel, and w  models the measurement noise and is therefore part of the 
measurement system model. The covariance matrix of the joint process dmcdan dwn +=  is 

 ( )dmcnn θRIR += 0α . (4.2) 

Altogether, the observed sampled radio channel x  can be expressed with 

 ( ) dansp nθsx += . (4.3) 

Consequently, the probability density function of a radio channel observation is a multivariate 
normal distribution   

 ( )
( )( )

( )( ) ( ) ( )( )θsxθRθsx

θR
Rθx

−⋅⋅−− −

=
1H

e,
detπ

1 nn

nn
Mnnp . (4.4) 

The data model, i.e., the model of the observation x  (4.3), is a deterministic function 
of the parameters spθ . Therefore the maximum likelihood estimation of spθ  is a so-called de-
terministic maximum likelihood (DML) problem. In contrast, the maximum likelihood esti-
mation of the parameters of the stochastic process n  constitutes a stochastic maximum likeli-
hood (SML) problem. Here, we estimate the parameters of a covariance matrix (4.2). Clearly, 
the joint Cramér-Rao lower bound (CRLB) of all parameters has to be derived. However, for 
the sake of clarity we split the joint estimation problem into the DML and SML parts, and 
derive the CRLBs for both problems independently in Section 4.1 and Section 4.3. In Section 
4.4 the results for the DML and SML problem are generalised to the joint maximum likeli-
hood parameter estimation task, i.e., the joint Cramér-Rao lower bound for all model parame-
ters chnθ  is derived.  

Before we start with the derivation of the Cramér-Rao Lower Bound, let us summarise 
some important general algebraic properties of the data model for the sampled radio channel. 

Cond. 1: The data model is continuous within the parameter space chnΘ  of the parameters 
spθ  and dmcθ . 

Cond. 2: The parameter space of chnΘ  is compact and the true parameter vector chnθ  is an 
interior point. 

Cond. 3: The stochastic process n  has zero mean and its covariance matrix nnR  is positive 
definite. 
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4.1 Cramér-Rao Lower Bound for the Deterministic Parameters 

Similar to the derivations in [43], [44], [45], [46], [47] we derive in this section the Cramér-
Rao lower bound of the deterministic parameters of the data model describing the channel 
observation x . We assume for the time being, that the covariance matrix nnR  (cf. (4.2)) is 
known. Hence the parameters of the vector valued function ( )spθs  are the only model parame-
ter we have to estimate. For notational convenience we drop for the time being the subscript 

sp  of the parameter vector spθ . Furthermore, we state an additional property of the channel 
model in particular of the vector valued function ( )spθs . 

Cond. 4: The vector valued function ( )spθs  is continuous and has bounded continuous first 
and second order partial derivatives in spΘ . 

In addition, the vector valued function ( )θs  has to fulfil the following condition: 

Cond. 5: For any pair of parameter vectors spi Θθ ∈ , spk Θθ ∈  with ki θθ ≠ , the following 
inequality must hold 
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θsθs

θs , 

 i.e., the mapping ( ) 11 ××∈ ML
CR θsθ a  must be unique for all spΘθ∈ . 

Observe that condition 5 is a fundamental design criterion for a radio channel measurement 
device. See also Chapter 3 for a discussion of design criteria for channel sounders. 

4.1.1 Fisher Information Matrix for the DML Problem 

In order to derive the Cramér-Rao lower bound we have to derive the Fisher information ma-
trix (FIM) [40] of the parameters θ .  

Taking the logarithm of (4.4) yields the log-likelihood function as 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )θsxRθsxRRθxRθx −−−−⋅−== −1Hdetlnπln,ln, nnnnnnnn MpL . (4.5) 

The first order partial derivative with respect to the parameters θ  of the log-likelihood func-
tion (4.5) is the so-called score-function [40] 
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The score-function is effectively the first gradient of the log-likelihood function at θ  given 
the observation x . The partial derivative of the log-likelihood function (4.5) with respect to 
the parameter iθ  is  
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 (4.7) 

Since { }aaa ℜ⋅=+ ∗ 2  equation (4.7) can be simplified to 
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To achieve a compact expression for the score function we define the matrix valued function 
containing the first order partial derivatives of the data model ( )θs  with respect to the parame-
ter vector θ  as 
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Observe that (4.9) is effectively the Jacobian of ( )θs . Using the definition (4.9) in (4.6) yields 
the following compact form of the score-function 

■ ( ) ( ) ( )( ){ }θsxRθDRθxq −ℜ⋅= −1H2, nnnn . (4.10) 

Now we recall that the observation x  is only one realisation of a stochastic process. Conse-
quently, the log-likelihood and the score-function become random variables too. The negative 
covariance matrix of the score-function is the Fisher information matrix, and is defined as 
follows 
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A single element of the Fisher information matrix is given by the relation 
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Hence, the Fisher information matrix can be understood as the negative expected value of the 
second gradient of the log-likelihood function [40]. The second partial derivative of the log-
likelihood function with respect to the parameters iθ , and kθ , i.e., the first partial derivative of 
the score function with respect to the parameter kθ  is 
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Again using the relation { }aaa ℜ⋅=+ ∗ 2  we get the expression 
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Now we define a matrix-valued function containing the second order partial derivatives of 
( )θs  as 
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With this definition the stochastic Fisher-Matrix [40] LL×∈RJJJJ
~ , sometimes also called ob-

served Fisher Information [48] can be written in the following compact form (cf. Appendix C 
regarding the definition of the { }•mat  operator) 

 ( ) ( ) ( ){ } ( ) ( )( ){ }{ }θsxRθDθDRθDRθx −⋅⋅′′ℜ⋅−⋅⋅ℜ⋅= −− 1H1H mat22,~
nnnnnnJJJJ . (4.15) 

The expected value of the stochastic Fisher-Matrix is the Fisher information matrix 

 ( ) ( ){ }nnnn RθxRθ ,~E, JJJJJJJJ = . 

Since we assume an unbiased estimator θ̂  and due to the model property Cond. 3, the term in 
equation (4.15) containing the second gradient of ( )θs  goes to zero since 

 ( ){ } 0θsx =−E . 

Consequently, the Fisher information matrix of the parameter vector θ , assuming the covari-
ance matrix (4.2) is known, can be calculated as follows    

■ ( ) ( ) ( ){ }θDRθDRθ
1H2, −ℜ⋅= nnnnJJJJ . (4.16) 

If the stochastic process n  is i.i.d. circular Gaussian with covariance matrix IR 0α=nn  the 
expression for the Fisher information matrix can be further simplified to 

 ( ) ( )( ) ( ){ }θDθDIθ ⋅ℜ⋅= H

0

0

2
,

α
αJJJJ  (4.17) 

Observe, that the Fisher information matrix is a symmetric matrix, i.e., 

 ( ) ( )nnnn RθRθ ,, TJJJJJJJJ = . 

The main diagonal elements of the Fisher information matrix indicate how informative 
the measurement data are with regard to the model parameters θ . The off-diagonal elements 
indicate the amount of mutual information between two parameters iθ  and kθ . If the off-
diagonal elements ( ){ } ( ){ }

kinniknn RθRθ ,, JJJJJJJJ =  are zero, the two related model parameters iθ  
and kθ  are asymptotically uncoupled. In general a data model is optimally parameterised if 
the Fisher information matrix is diagonal. This is an important criterion if we have to choose 
between two equivalent models. 

Furthermore, if the Fisher information matrix is singular the information contained in 
an observation x  is not sufficient to estimate all model parameters θ , i.e., the data are not 
sufficiently detailed enough. Consequently, there is no unique solution to the parameter esti-
mation problem at hand. Theoretically, there exist two ways to resolve this problem. We can 
try to gather more information about the parameters, or we reduce the complexity of the 
model, i.e., we decrease the number of free parameters. Practically, the first solution requires 
generally a change of the measurement setup, e.g. a modification of the channel sounder. For 
a given measurement, this is clearly not a valid option. Hence, the only solution is the reduc-
tion of the models complexity.  

Altogether we can state the following necessary condition for the unique solvability of 
a given parameter estimation problem ( )xθ̂ : 

Cond. 6: For the parameter set Θθ∈  of the model ( ) 1×∈ M
Cθs , the Fisher information ma-

trix must have full rank, i.e., ( )( ) Lnn =Rθ,rank JJJJ . 

The necessary condition 6 directly implies the common requirement ML 2< , i.e., the number 
of measurements must be equal to or larger than the number of unknowns.  
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If we have to reduce the number of parameters, to get a parameter estimation problem 
having a unique solution, we have at first to detect the parameters which are strongly coupled. 
To this end, we introduce the normalised Fisher information matrix6 

■ ( ) ( )( ) ( ) ( )( ) 2
1

2
1

,,,, −− ⋅⋅= LnnnnLnnnn IRθRθIRθRθ oo
)

JJJJJJJJJJJJJJJJ . (4.18) 

Clearly, the normalised Fisher information matrix only exists if the following inequality for 
all main diagonal elements of the Fisher information matrix holds 

 ( ){ } 0, ≠iiRθJJJJ .  (4.19) 

If the main diagonal element related to the parameter iθ  is ( ){ } 0, ≡iiRθJJJJ , the parameter iθ  is 
not a parameter of the model, i.e., the observation contains no information about it. Conse-
quently, we can state that (4.18) exist for all reasonable parameter sets θ . 

The normalised Fisher information matrix contains the correlation coefficients be-
tween two parameters iθ  and kθ . That means the main diagonal elements of (4.18) are 

 ( ){ } j
jjnn ∀=1,RθJJJJ

)
, 

and the off-diagonal elements are within the closed interval 

 ( ){ } kjkj
jknn ∀∀≠≤≤− ,,1,1 RθJJJJ

)
. 

If the absolute value of an off-diagonal element is ( ){ } 1=ikθJJJJ
)

 the related parameter pair 

ki θθ ,  carries identical information. Therefore, (4.18) is a first diagnosis tool to detect poten-
tial problems in the parameterisation of the model to be estimated. If two parameters ki θθ ,  
carry identical information, but are parameters of different propagation paths the parameter 
estimation problem can be solved if one of the propagation paths is dropped, i.e., removed 
from the model. However, in practice the parameter estimation problem is already ill-posed if 
one or several off-diagonal elements of (4.18) are close to 1 in magnitude.  

As a rule of thumb, the smaller the magnitude of the off diagonal elements of the nor-
malised Fisher information matrix (NFIM), the better the parameter estimation problem con-
ditioned is.  

4.1.2 Cramér-Rao Lower Bound for the DML Problem 

The asymptotic Cramér-Rao lower bound on the covariance matrix of every unbiased estima-
tor θ̂  for the deterministic parameters θ  from the observation x  is determined by the follow-
ing inequality7 

 ( ) ( ){ } ( ) θθ
CRBRθθθθθC =≥−⋅−= −

nn,ˆˆE 1T

ˆ JJJJ . (4.20) 

Using the result for the Fisher information matrix (4.16) in (4.20) yields the following explicit 
expression for the CRLB 

■ ( ) ( ){ }( ) 11H

2

1 −−ℜ⋅= θDRθDCRBθ nn . (4.21) 

It is often questioned whether or not this lower bound on the covariance matrix 
θ

C ˆ  is 
practically relevant. In [49] Viberg et al. have shown, that the DML estimator θ̂  is consistent 

                                                 
6 Observe that the main diagonal elements of the Fisher information matrix are positive, since it is a covariance 
matrix. 
7 Here, the inequality of two matrices BA ≥  means, that the difference BA −  is positive semi-definite. 
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under the Gaussian noise assumption. Since the stochastic part of the radio channel observa-
tion x  is Gaussian distributed, the DML estimator for the propagation path parameters is as-
ymptotically efficient (for large M ), i.e., the covariance matrix 

θ
C ˆ  of the parameter estimates 

coincides with θCRB . This result has been verified for radio channel sounding measure-
ments, using the ML (Maximum Likelihood) channel parameter estimation algorithm outlined 
in Chapter 5, by Landmann et al. in [36] (see also [37] and [38]).  

Observe, if the Fisher information matrix of the model parameters is diagonal, i.e., the 
parameters are asymptotically uncoupled then the CRLB matrix is also diagonal. 

 { } ( )( ){ }1,diagˆvar −≥ nnRθθ JJJJ . (4.22) 

Now suppose all but one of the parameters of the model are known. Then the Cramér-Rao 
lower bound on the variance of this parameter iθ  is given by the reciprocal of the respective 
main diagonal entry of the Fisher information matrix ( ){ }

iinnRθ,JJJJ . This implies that the 
Cramér-Rao lower bound of the individual parameters in the uncoupled case is asymptotically 
the same as the Cramér-Rao lower bound if only a single parameter is unknown. This is an 
important result for the development of a channel parameter estimator, implying that propaga-
tion paths with uncoupled parameters can be estimated separately.  

4.1.3 Cramér-Rao Lower Bound of Physical Path Parameters 

As we are usually interested in the lower bound of the variance of the estimated physical pa-
rameters, it may be tempting to use the channel model parameterised by the physical parame-
ters as described in Chapter 2 to derive the respective CRLBs. However, this may be a time-
consuming task since the model contains non-linear functions for mapping the physical pa-
rameters to the normalised parameters (see, e.g., Table 3-1). A better way to calculate the 
Cramér-Rao lower bound of the physical parameters is the invariance property of the Cramér-
Rao lower bound under reparametrisation [40] (pp. 229), [50]. It is a chain rule for the Fisher 
information matrix and consequently also for the Cramér-Rao lower bound. 

Suppose the vector valued function ( )θρη =  is a nonsingular mapping of the normal-
ised parameters 1×∈ L

Rθ  to the physical parameters 1×∈ L
Rη , e.g., as outlined in Table 3-1. If 

the first order partial derivatives of ( )θρ  exist, the Fisher information matrix of the physical 
parameters is related to the Fisher information matrix of the normalised parameters as follows 

 ( ) ( ) T,, ηθηθ PRηPRθ nnnn JJJJJJJJ = , (4.23) 
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Hence, the CRLB of the physical parameters is related to the CRLB of the normalised pa-
rameters as follows 
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Observe, that under the stated condition of a nonsingular mapping ( )θρη =  also the following 

relation holds  
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with 
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since  

 IPP ηθθη =−1 . 

In general, it is favourable to calculate the CRLB of the physical parameters via the CRLB of 
the normalised parameters. Observe also that the projection matrices (4.24) and (4.27) are 
sparse matrices, since one physical parameter is at most a function of two normalised parame-
ters and vice versa. 

4.1.4 Deterministic Cramér-Rao Lower Bounds for several canonical Models 

Although the expression for the CRLB (4.22) is explicit it is somewhat unwieldy; to get more 
insight, let us discuss some examples. 

Example 4-1: One dimensional single path case, i.i.d. circular Gaussian noise, exponential 
model, single path weight (magnitude and phase). 

Let us start with the simplest model. The observed radio channel consists of one propagation 
path only, i.e., 1=P . The stochastic process 1×∈ M

Cn  is i.i.d. circular Gaussian with standard 
deviationσ . In addition, the basis function has only one data dimension with structure (1-D 
complex exponential model) 

 ( ) ( ) ( ) ( )[ ] 1
T

jj
2
1

2
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ee ×⋅⋅−−⋅⋅− ∈==
−−

M
MM

C
µµµ KaµB , 

see also Section 3.6, Table 3-1 for a list of normalised parameters and the related basis func-
tions ( )µB . Furthermore, there is only one path weight (e.g. non-polarimetric measurement) 

φγ jer= . Consequently, the general data model (4.3) reduces to 

 ( ) ( ) ( ) naγµBnθsx +⋅=⋅=+= φµ jer . 

This data model applies for example if the radio channel has been observed (i) using a ULA 
(µ - normalised angle), or (ii) using a SISO channel sounder having a flat transfer function 
( µ - normalised TDoA). The function mapping the parameter vector [ ] 13T ×∈= Rφµ rθ  to 
the observed channel is  

 ( ) ( ) φµ jer⋅= aθs . (4.28) 

At first, we have to determine the Jacobian matrix of (4.28) being   
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T
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where Ξ  is a diagonal matrix  
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Using the Jacobian matrix (4.29) in (4.17) yields the Fisher information matrix for Example 
4-1 as 
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This shows that the Fisher information matrix is diagonal, meaning there is no coupling be-
tween parameters. Consequently, the Cramér-Rao lower bound on the variance of any unbi-
ased estimator for θ  is a diagonal matrix and the main diagonal elements are  

 ( ) ( )1
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22
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and 
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r
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CRB
2

ˆ

σ
= . (4.33) 

Observe, the term ( )2
r
σ  in the expressions for the CRLB of µ̂ , and φ̂ . It is the inverse signal 

to noise ratio of the propagation path. Furthermore, the term 
M2
1  corresponds to the averaging 

gain over the M2  real valued measured data samples. That means the estimates of structural 
parameter µ  and the phase of the path weight φ  gain equally in accuracy if the SNR is in-
creased. But whereas the variance of the parameters of the path weight decreases proportional 
to M , the bound on the variance decreases with 3M . The term ( )12 −⋅ MM  in equation 
(4.31) can be interpreted in the following way: The term ( )12 −M  corresponds to the Rayleigh 
resolution, and M  to the averaging gain, i.e., the noise reduction. The effective noise contri-
bution to all parameter estimates is 

M2

2σ . 

Observe that the matrix (4.30) is an expression for the gain in accuracy with increasing 
aperture. The larger the apertures the larger are the outer elements in (4.30).  

Example 4-2: One dimensional single-path case, i.i.d. circular Gaussian noise, exponential 
model, single path weight (real and imaginary components) 

In the previous example the path weight was expressed by means of magnitude and phase. 
Since the phase is a nonlinear model parameter it is, from a signal processing point of view, 
better to express the weight by its real and imaginary part. Hence, we change the parameters 
of the model in Example 4-1 as follows 

 ( ) ( ) ( ) ( ) naγµBnθsx ++⋅=⋅=+= ir γγµ j . 

The new parameter vector is [ ] 13T ×∈= Rir γγµθ , and the related channel model 

 ( ) ( ) ( )ir γγµ j+⋅= aθs . 

The Jacobian matrix of ( )θs  is  

 ( ) ( ) ( ) ( ) ( )[ ]µµµγ aaaΞθs
θ

θD ⋅⋅⋅−=
∂
∂

= jj
T

. (4.34) 

Again using the Jacobian matrix (4.34) in (4.17) yields the Fisher information matrix as 
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Since the Fisher information matrix is again diagonal, the CRLB matrix is also diagonal hav-
ing entries on the main diagonal as follows 
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It is apparent from (4.36) that the Cramér-Rao lower bounds on the linear weight parameters 
(real and imaginary part of the complex path weight) are equal. This means that if the ob-
served radio channel contains only one propagation path, the estimates of the real and imagi-
nary parts of the complex path weight have asymptotically the same variance. 

Suppose the normalised parameter µ  relates to the physical parameter ϑ  via 
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ϑ , (4.37) 

i.e., the radio channel has been measured with an column-ULA (cf. Table 2-2 and Table 3-1). 
Applying the invariance theorem of the CRLB (4.26) yields 
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The CRLB of the parameters r  and φ  is unchanged, since the parameters are not part of the 
transformation (4.37). The complete projection matrix ηθP  is 
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The term ( )( ) 1sin −ϑ  describes the influence of the effective ULA aperture as a function of the 
DoA or DoD on the variance of the estimate ϑ̂ .  

In the next example, we extend the one-dimensional data model to a two-dimensional 
problem. 

Example 4-3: Two-dimensional single path case, i.i.d. circular Gaussian noise, exponential 
model, single path weight (real and imaginary parts). 

The extension of the one-dimensional single-path model in Example 4-2 is straight forward. 

The observation 1×∈ M
Cx  has basically the same structure, i.e., 

 ( ) ( ) ( ) ( ) nµaγµBnθsx ++⋅=⋅=+= irD γγ j2 . 

The function mapping the parameter vector ( ) ( )[ ] 14T21 ×∈= Rir γγµµθ  to the observed chan-
nel is  
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 ( ) ( ) ( ) ( )µaµaθs DirD 22 j ⋅+=⋅= γγγ , (4.39) 

where the basis function ( )µB  is given by (2-D complex exponential model) 

 ( ) ( ) ( )( ) ( )( )12
2 µµD aaµaµB ◊== . (4.40) 

The two basis functions ( )( ) 11 1×∈ M
Cµa  and ( )( ) 12 2×∈ M

Cµa  are given by 

 ( )( ) ( ) ( ) ( ) ( )[ ] i
iMiiMi

M
T

i
C∈=

−− ⋅⋅−−⋅⋅−
2
1

2
1 jj

ee
µµµ Ka . (4.41) 

The partial derivative of the data model (4.39) with respect to the parameters θ  is 

( ) ( ) ( )( ) ( )( )( ) ( )( )( ) ( )( ) ( ) ( )[ ]µaµaaaΞaΞaθs
θ

θD DDT 22
12

2
1

1
2 jjj µµγµµγ ◊−−◊=

∂
∂

=  

  (4.42) 

with 
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The Fisher information matrix is diagonal again 

 ( )


















=

−

−

12

12
12

122

2

2
2

2
1

000

000

000

000

2
,

M

M

M

M

M

M

γ

γσ
σθJJJJ , (4.43) 

 

i.e., the lower bound on the covariance between the parameter estimates ki θθ ˆ,ˆ  is 
{ } kikiki ∀∀≠= ,,0ˆˆE θθ . Consequently, the matrix 

θ
CRB ˆ  is diagonal too having main di-

agonal entries 

 ( ) ( )1
6

CRB
2
1

2

2

ˆ 1

−⋅
=

MMγ

σ
µ

, (4.44) 

 ( ) ( )1
6

CRB
2
2

2

2

ˆ 2

−⋅
=

MMγ

σ
µ

, (4.45) 

and 

 
Mir 2

CRBCRB
2

ˆˆ

σ
γγ == . (4.46) 

The results for the lower bound on the variance of the normalised structural parame-
ters ( )iµ  support the observation that the term ( )12 −iM  corresponds to the Rayleigh resolution 
limit. Furthermore, it is intriguing to see that an increase of the array aperture in one dimen-
sion reduces the CRLB in the other dimension linearly. This is reasonable since we effectively 
increase the number of independent observations. The interesting fact is that the structure, 
e.g., the complex exponential model, of one dimension has no influence on the Cramér-Rao 
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lower bound of the other dimension. In the next example we generalize the result from the 
2-D data model to the R -D data model. 

Example 4-4:  R -dimensional single path case, i.i.d. circular Gaussian noise, exponential 
model, single path weight (real and imaginary part). 

The observation 1×∈ M
Cx  has the same general structure as in the previous examples, i.e., 

 ( ) ( ) ( ) ( ) nµaγµBnθsx ++⋅=⋅=+= irRD γγ j . 

The function mapping the parameter vector ( ) ( )[ ] ( ) 12T1 ×+∈= R

ir

R
Rγγµµ Lθ  to the 

observed channel is  

 ( ) ( ) ( ) ( )µaµaθs RDirRD ⋅+=⋅= γγγ j , (4.47) 

here the basis function ( )µB  is given by ( R -D complex exponential model) 

 ( ) ( )( ) ( )( )1µµ R

RD aaµa ◊◊= K , 

and the vector valued function mapping the parameters ( )iµ  to the related complex exponen-
tial is defined as in equation (4.41). The total number of samples is determined by the number 
of samples of the individual data domains, i.e., 

  ∏
=

=
dR

r

rMM
1

. 

The Jacobian matrix and the Fisher information matrix of (4.47) have the same structure as in 
(4.42) and (4.43), respectively. Consequently the CRLB for the normalised structural parame-
ters ( )rµ̂  is  

 ( ) ( ) r
MM r

r ∀
−⋅

=
1

6
CRB

22

2

ˆ γ
σ

µ
. (4.48) 

And the lower bound on the variance of any estimator for { }γ̂ℜ  and { }γ̂ℑ  is given by 

 
Mir 2

CRBCRB
2

ˆˆ

σ
γγ == . (4.49) 

Naturally, the results of Example 4-2 and Example 4-3 are special cases of (4.48), and (4.49). 

So far, we have not discussed the validity range of the bounds (4.48), and (4.49). In 
channel sounding measurements, we encounter some propagation paths with a high SNR, and 
many propagation paths with a low SNR. As already discussed in Section 4.1.2 the bounds 
(4.48) and (4.49) are reasonable in the high SNR case, i.e., 

 1
2

1
2

2

>>⋅
Mσ

γ
 . 

However, suppose the path weight has an absolute value of  

 
M

σ
γ = , (4.50) 

then (4.48) becomes 
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 ( ) ( )1
6

CRB
2ˆ −

=
rM

rµ
, (4.51) 

and the CRLB on the relative variance of the magnitude estimate is due to (4.33)  

 { }
2

1CRB
var

2
==

γ
γ γ

rel . 

In other words, the estimate of the path magnitude has an SNR of 3dB. This is the lowest limit 
for equations (4.48) and (4.49) to be reasonable. Moreover, let us compare (4.51) with the 
Rayleigh limit on resolution 

rM
π2 . For the minimum aperture 2=rM  the ratio between the 

Cramér-Rao lower bound and the Rayleigh limit on resolution of the structural parameter is 
given by 

 
( ) M

M r

M r

r
σ

γµ ==≈= ,2,45.0
π

2CRB
2π2

ˆ
. 

As rM  goes to infinity this ratio becomes  
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( ) M

M

M

r

r
M

M
M r

r

r

r

σ
γµ =≈=⋅

−
=

∞→∞→
,39.0

π2

6

π21

6
lim

CRB
lim

22π2

ˆ . 

Hence, the CRLB on the variance of the structural parameter ( )rµ  is roughly ½ of the 
Rayleigh limit on resolution provided the magnitude of the path weight is

M

σ . Furthermore 
observe that for detection a SNR of 3dB is a low threshold. That means there is a high prob-
ability (13.5%) that the detected path is part of the stochastic process and should therefore not 
be classified as a concentrated propagation path. Altogether we can state that the equations for 
the Cramér-Rao lower bound derived in Example 4-1 to Example 4-5 of the deterministic 
parameters provides reasonable results for propagation paths having a path weight of at least 

M
σγ > . That means they have a significant power and can be classified as dominant propa-

gation paths. 

Up to now we have only discussed cases with a single propagation path. In the next 
example we extend the data model to the more general multipath case.  

Example 4-5: Two-dimensional multipath case, i.i.d. circular Gaussian noise, exponential 
model with one path weight (real and imaginary parts) for every propagation 
path. 

The basic structure of the channel observation is unchanged, being 

 ( ) nθsx += . 

The function describing the contribution of the P  observed concentrated propagation paths is 

 ( ) ( ) ( ) ( )ir γγµAγµBθs j+⋅=⋅= , (4.52) 

where ( ) ( )( ) ( )( )12 µAµAµA ◊=  is a matrix containing the Khatri-Rao product of the basis ma-
trices ( )( )1µA  and ( )( )2µA  (see (3.4) for a definition ) and  

 ( ) ( )[ ] [ ] 14TT21 ×∈== P

irir Rγγµγγµµθ  
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is the related parameter vector. Observe that the structural parameters ( )1µ  and ( )2µ  are 
merged into one vector ( ) ( )[ ] 12T21 ×∈= P

Rµµµ .  

Now we define the matrix containing the first order partial derivatives of the matrix-
valued function ( )( )rµA  with respect to the related parameters ( )rµ  as 

 ( )
( )

( )( ) ( )
( )( ) ( )( )r

r

r

r

P

r

r

r
µAΞaaD j

1

−=







∂
∂

∂
∂

= µ
µ

µ
µ

K . (4.53) 

The Jacobian matrix of (4.52) can be expressed using the definitions (4.30), (4.53), and the 
diagonal matrix { }γΓ diag=  in a compact form by 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )[ ]µAµAΓµAΞΓΞµAθs
θ

θD j1
21

2

T
◊◊=

∂
∂

= . (4.54) 

To gain further insight into the structure of the Jacobian (4.54) we factorize it using the Kha-
tri-Rao product of the following matrices 

 ( ) [ ]TTTT0 j11γγD = , (4.55) 

 ( ) ( )( ) ( )( ) ( )( )[ ]1111
1 µAµAµADD = , (4.56) 

and 

 ( )( ) ( ) ( )( ) ( )( )[ ]2222
2 µAµADµAD = . (4.57) 

Observe that the matrices (4.56) and (4.57) are both block matrices with a regular structure. 
The Jacobian matrix is given by the simple expression 

 ( ) 012 DDDθD ◊◊= . (4.58) 

This expression can be easily extended to the multidimensional case due to its regular 
structure. This is especially important in numerical implementations, since it provides a sim-
ple means to scale the dimensionality of the model. 

Since for the Gram matrix of the Khatri-Rao product (4.58) the following identity8 (cf. 
Appendix C) ( ) ( ) ( ) ( )FFEEFEFE HHH

o=◊◊  holds, the Fisher information matrix (FIM) for 
the parameter estimation problem at hand is 

 ( ) ( ) ( ) ( ){ }2
H
21

H
10

H
02

2 2
, DDDDDDθ ⋅⋅⋅ℜ⋅= oo

σ
σJJJJ . (4.59) 

The main diagonal entries of (4.59) are the same as in the single source case, i.e., the elements 
of (4.43) are closed form expressions for the related elements in ( ){ }2,J σθdiag .  Furthermore, 
the off-diagonal elements of the FIM belonging to the same propagation path are all zero due 
to (4.43), i.e., the parameters are asymptotically uncoupled. 

The remaining elements describe the coupling of parameters of different propagation 
paths. As already discussed in Section 4.1.1 a model having a diagonal FIM is a good model 
since all parameters are orthogonal, whereas a model having strong off-diagonal elements in 
its FIM is a bad model since it contains strongly coupled parameters, i.e., they are not or-
thogonal. To understand, which parameter combinations lead to a bad parameterised and con-
sequently ill-posed problem we have to analyze the off-diagonal elements belonging to differ-
ent propagation paths further. First observe, that the Gram matrices of  (4.56) and (4.57) are 
both real matrices, i.e., PP 44

1
H
1

×∈RDD  and PP 44
2

H
2

×∈RDD . This is due to the fact, that the 

                                                 
8 The symbol o  denotes the Hadamard or Schur product (element-wise product). 
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sub-matrices ( )( )1µA , ( )( )2µA , ( )1D , and ( )2D  are all conjugate symmetric along the columns 
(cf. Appendix C). Hence (4.59) becomes 

 ( ) ( ){ } ( ) ( )2H
21

H
10

H
02

2 2
, DDDDDDθ ⋅⋅⋅ℜ⋅= oo

σ
σJJJJ . (4.60) 

Now supposing that the path weights of two propagation paths are orthogonal, that means 
their phase difference is 90° or -90°. Then all elements of the Gram matrix { } PP 44

0
H
0

×∈ℜ RDD  
contributing to the coupling of the structural parameters are zero. Hence, we can state that a 
two propagation path model with orthogonal path weights constitute the best case in terms of 
the path weights. This effect has been observed in measurements carried out for channel 
sounder performance evaluation [36], [37]. 

Finally, let us investigate the dependency of the elements of the four basic block ma-
trices ( )( ) ( )( )ii µAµA ⋅H , ( )( ) ( )ii DµA ⋅H ,  ( )( ) ( )( )ii µAD

H
, and ( )( ) ( )ii DD ⋅

H
  on the structural pa-

rameters ( )iµ . Observe that the correlation, in the algebraic sense, of two arbitrary vectors 
( )( )i

1µa , ( )( )i

2µa  does not depend on the absolute value of ( )i
1µ  and ( )i

2µ , but rather on their 
distance ( ) ( ) ( )iii

12 µµµ −=∆ . The same applies to the inner product of the vectors ( )( )i

1µd , 
( )( )i

2µa  and ( )( )i

1µd , ( )( )i

2µd , where ( )( )iµd  is according to (4.53) defined as 
( )( ) ( )( )i

r

i µµ aΞd j−= .  
Figure 4-1 and Figure 4-2 show the dependency of the three inner products on the parameter 
distance µ∆ . The correlation function on the left hand side of Figure 4-1 is due to the expo-
nential data model a periodic sinc-function ( )µµ 2

2 sin M . Observe, that no parameter distance 
µ∆  exist where all vectors are orthogonal. The vectors ( )( )i

1µa , ( )( )i

2µa  are orthogonal for a 
parameter distance of ( ) ( ) ( )

iM

iii k π2
12 =−=∆ µµµ  for all N∈∀ k  with N∈∀⋅≠ iMik , 

whereas the related inner products ( )( )i

1µd , ( )( )i

2µa  and ( )( )i

1µd , ( )( )i

2µd  are not equal to zero at 
the same points. Nevertheless, all correlations are decaying with increasing parameter dis-
tance.  

In general, we can state that usually some of the parameters of several propagation 
paths in a given scenario are strongly coupled and some propagation paths are only slightly 
coupled. Thereby, the Fisher information matrix or more precisely the normalised Fisher in-
formation matrix (cf. Section 4.1.1) determines which paths can be treated as uncoupled. 
Strictly speaking, the structure of the FIM already determines the structure of the parameter 
estimator for a given estimation task, i.e., whether parameters can be estimated separately or 
have to be processed jointly.  

Equation (4.59) shows in the same context mathematically that an additionally meas-
ured parameter dimension improves the resolution of the channel sounding system, i.e., the 
resolution capabilities of the entity channel sounder and parameter estimator. This is due to 
the fact, that the off diagonal elements of the Gram matrices PP

ii

44H ×∈RDD  are always 
smaller or equal to the related main diagonal elements. Observe, that the main diagonal ele-
ments of PP

ii

44H ×∈RDD  are positive real values. 

Furthermore, if we can measure an additional dimension, i.e., add a new aperture di-
mension, and have to choose between two parameter dimensions, we should choose the pa-
rameter dimension with the largest parameter spread since it provides the highest increase in 
resolution. The higher the parameter spread, the higher the probability that some basis vectors 
in ( )µB  are nearly orthogonal.  

Hence, for parameter estimation, the optimal parameter distribution is the uniform dis-
tribution. This statement implies that the channel sounder maps the physical parameters line-
arly to the normalised parameters.  
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Figure 4-1: Correlation between two vectors ( )1µa , ( )2µa  (left hand side), and ( )1µa , 
( )2µd  (right hand side) as a function of the parameter distance 12 µµµ −=∆  
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Figure 4-2:  Correlation between the vectors ( )1µd  and ( )2µd  as a function of the parameter 
distance 12 µµµ −=∆  

This first requires that the effective aperture is not a function of the parameter itself; conse-
quently a ULA or URA is a suboptimal antenna array structure, provided the DoAs and DoDs 
are uniformly distributed. Using the same argument we can state that a UCA, CUBA, or 
SUCPA (stacked uniform circular patch array) is a much more suitable array structure for 
channel sounding applications. Nevertheless, those are only general rules. As an example, a 
SUCPA is a better choice for outdoor applications than a spherical array. It is unlikely that we 
encounter a uniform angular distribution in elevation in outdoor scenarios. However, the re-
verse is true for indoor measurements.  

4.1.5 Inherent Limits on the Variance of the Deterministic Parameters  

In view of the expressions for the Cramér-Rao lower bound of the deterministic parameters in 
Example 4-1, Example 4-2, Example 4-3, and Example 4-5 one may be tempted to assume 
that the variance of the parameter estimates can be made arbitrarily small, just by reducing the 
measurement noise. However, this is not true since the stochastic part n of the observation x  
contains not only measurement noise but also the contribution of the dense multipath compo-
nents. The limit of (4.2) for 00 →α  is 

 ( )dmcnn θRR = . 
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Consequently, the variance of any parameter estimator for the deterministic channel parame-
ters in the high SNR case is inherently limited by the radio channel itself and the apertures of 
the measurement device. Hence, the only way to improve the accuracy and resolution of the 
parameter estimates is to increase the number of samples, i.e., increasing the aperture in 
space, frequency, or time. Notice in the same context that an extension of the measurement 
apertures would inevitably lead to a more complex data model. This is because simplifica-
tions, such as frequency independents of the antenna array beam patterns will not hold any-
more. Consequently, the data model has to be refined leading to a more complex model and 
therefore to a more complex estimation algorithm. 

4.2 Expression for the Jacobian and the Fisher Information Matrix  

In the previous section only the general form of the FIM and the Cramér-Rao lower bound has 
been derived. In this section we summarise the expressions for the Jacobian matrix and the 
FIM for the complete data-model derived in Chapter 2., i.e., 

 
( )

.VVtfTRVHtfTR

HVtfTRHHtfTR

VVVH

HVHH

γBBBBγBBBB

γBBBBγBBBBθs

⋅◊◊◊+⋅◊◊◊+

+⋅◊◊◊+⋅◊◊◊=
 (4.61) 

Since the variety of possible measurement setups is enormous, we put the focus on the modu-
larity of the expressions. The expressions are structured in such a way that all possible mod-
els, i.e., measurement configurations, are covered.  

First, recall that each structural parameter is, as already discussed in Section 2.4.5, di-
rectly related to a specific data dimension. Table 4-1 summarises the associations between the 
data dimensions, the physical parameters and the normalised parameters.  

Table 4-1: Relationship between data dimensions and parameters 

Parameters 
 

Aperture / 
Data Domain 

Physical Normalised 

Temporal samples Time t  Doppler-shiftα  ( )αµ  

Frequency samples Frequency f  Time delay of arrival τ  ( )τµ  

Tx antenna ports Space at Tx 
Azimuth of Departure Tϕ  

Elevation of Departure Tϑ  

( )Tϕµ  
( )Tϑµ  

Rx antenna ports Space at Rx 
Azimuth of Arrival Rϕ  

Elevation of Arrival Rϑ  

( )Rϕµ  
( )Rϑµ  

 

All matrices PM

r
r×∈CCCCB  have as shown in Section 3.6 [ ]VHVH RRTTtfr ,,,,,∈  the 

same basic structure, i.e.,  

 ( )( )i

rr µAGB ⋅=  (4.62) 

if  the data domain r  contains information about one parameter. If the data domain contains 
information about two parameters, e.g., azimuth and elevation the structure of rB  is  
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 ( )( ) ( )( )( )ik

rr µAµAGB ◊⋅= . (4.63) 

Since each parameter is related to one column of ( )µA , and thus also to one column of rB  

the first order partial derivatives with respect to the structural parameters µ  can be expressed 

in compact form as 

■ ( )( )i

rri µAΞGD j−=  (4.64) 

for (4.62), and as  

■ ( )( ) ( )( )( )i

i

k

ri µAΞµAGD ◊−= j , ( )( ) ( )( )( )ik

krk µAµAΞGD ◊−= j  (4.65) 

for (4.63) with [ ]RRTTki ϑϕϑϕτα ,,,,,, ∈ . The matrix ii NN

i

×∈CΞ  is a diagonal weighting ma-
trix having the same definition as (4.30). 

4.2.1 Full Polarimetric Model 

Let us start with derivation of expressions for the Jacobian matrix and the Fisher information 
matrix for the full polarimetric model (4.61). Observe that this model is only applicable if the 
radio channel measurements provide sufficient information about the horizontal and vertical 
polarisation at both link ends. First, define the following matrices,  

 T

HVR

T

HHRH VH
γBγBB ◊+◊= , (4.66) 

 T

VVR

T

VHRV VH
γBγBB ◊+◊=  

and the related partial derivatives using (4.64), (4.65) as 

 T

HVR

T

HHRH RVRHR
γDγDD ◊+◊= ϕϕϕ ,,, , T

HVR

T

HHRH RVRHR
γDγDD ◊+◊= ϑϑϑ ,,, , (4.67) 

 T

VVR

T

VHRV RVRHR
γDγDD ◊+◊= ϕϕϕ ,,, , and T

VVR

T

VHRV RVRHR
γDγDD ◊+◊= ϑϑϑ ,,, . 

With these definitions, we are prepared to form component matrices of the Jacobian matrix 
for (4.61). Table 4-2 summarises the elementary matrices. 

Table 4-2: Component matrices of the Jacobian matrix for the complete data model. 
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With the definitions of the matrices tD , fD , 
HT

D , 
VT

D , 
HR

D , 
VR

D , and gD  the Jaco-
bian matrix can be represented in compact form as 

■ ( ) tfgTRTR HHVV
DDDDDDDD ◊◊◊◊+◊= . (4.68) 

Assuming the covariance matrix of the stochastic process n  is IR
2σ=nn  the Fisher informa-

tion matrix of the normalised deterministic parameters of the radio channel is given by 
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( ) {

( )}.

2
,

HHHHHHHH

HHH

2

2

VVVVHVHVVHVHHHHH RRTTRRTTRRTTRRTT

ggfftt

DDDDDDDDDDDDDDDD

DDDDDDθ

ooooo

ooo

+++

ℜ=
σ

σJJJJ
 

  (4.69) 

Observe, that (4.69) follows from (4.17), (4.68), and ( ) ( ) ( ) ( )FFEEFEFE HHH
o=◊◊ . Likewise, 

the Fisher information matrix involving the covariance matrix MM

nn

×∈CR having structure  
IRIIR ⊗⊗⊗= fnn  (cf. Section 2.5.3), is given by 

■ 
( ) {

( )}.
2,

HHHHHHHH

H1HH

VVVVHVHVVHVHHHHH RRTTRRTTRRTTRRTT

ggfffttnn

DDDDDDDDDDDDDDDD

DDDRDDDRθ

ooooo

ooo

+++

ℜ⋅= −JJJJ
 

  (4.70) 

The structure of (4.70) results directly from the Kronecker structure of the covariance matrix 

nnR . Recall, that the covariance matrix nnR  describes the contribution of the dense multipath 
components plus measurement noise to the observation. 

The computation of the FIM using (4.69) is significantly cheaper in terms of computa-
tional complexity than the computation using the direct approach (4.16), i.e., via the full Jaco-
bian matrix (4.68). This is especially true in view of the strong redundancies of the component 
matrices D  shown in Table 4-2. It is not necessary to compute the products rr DDH  

[ ]VHVH RRTTftr ,,,,,∈  explicitly, since all products are block matrices with redundant 
blocks. For example all block matrices related to the Fisher information matrix for the fre-
quency domain only fff DDH=JJJJ , are given by 
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ffffJJJJ . (4.71) 

Furthermore, since we face increasing numbers of large scale problems due to ad-
vances in channel sounder technology, computations involving the full Jacobian matrix are 
not reasonable. Channel observations with a large number of samples M and a large number 
of assessable propagation paths P  leads to a large Jacobian matrix. Today, measurements 
with more than 400 000 real valued samples and more than 50 assessable paths are not un-
common. Altogether, it is in view of memory requirements favourable to avoid computations 
with the full matrix D , instead the component matrices from Table 4-2 should be used di-
rectly. 

 If the covariance matrix nnR  contains no redundancies one has to use the expression 
(4.16) to compute the Fisher information matrix and the Cramér-Rao lower bound of the de-
terministic parameters. 

Observe that equations (4.68) and (4.70) cover also cases with missing apertures in the 
time- and/or frequency-domain. One has to delete the matrices tD  or fD  from the equations 
(4.68) and (4.70), and the columns in Table 4-2 belonging to the related parameters α  and τ , 
to get the reduced expressions. Similarly, if an antenna array has been applied at one link end, 
which is only able to gather information about one angle the column for the other parameter 
must be removed from all entries in Table 4-2.  

4.2.2 Polarimetric Model for one Link End 

If channel sounding measurements have been carried out using only one antenna array able to 
gather sufficient information about the horizontal and vertical field strength, the channel 
model (4.61) has to be reduced. For polarimetric measurements at the Rx-site we get 
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 ( ) HVtfTRHHtfTR HVHH
γBBBBγBBBBθs ⋅◊◊◊+⋅◊◊◊= , (4.72) 

and for polarimetric measurements at the Tx-site we have for example the model 

 ( ) VHtfTRHHtfTR VHHH
γBBBBγBBBBθs ⋅◊◊◊+⋅◊◊◊= . 

Since, all four possible cases out of (4.61) (H→HV, V→HV, HV→H, and HV→V) have the 
same structure, we restrict ourselves to the derivation of the equations for the Jacobian matrix 
and the Fisher information matrix for (4.72) only. Using the definitions (4.68) and (4.69) the 
component matrices of the Jacobian matrices are given by Table 4-3. 

Table 4-3: Component matrices of the Jacobian matrix for polarimetric measurements 
at one link end. 
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Using these definitions, the Jacobian matrix for the model (4.72) can be expressed as  

■ tfgTR HH
DDDDDD ◊◊◊◊= . (4.73) 

Assuming the covariance matrix of the stochastic process n  is IR
2σ=nn  the Fisher informa-

tion matrix of the normalised deterministic parameters is given by 

 ( ) { }
HHHH RRTTggfftt DDDDDDDDDDθ

HHHHH

2

2 2
, ooooℜ=

σ
σJJJJ , (4.74) 

and for the structured covariance matrix IRIIR ⊗⊗⊗= fnn  we yield 

■ ( ) { }
HHHH RRTTggfffttnn DDDDDDDRDDDRθ HHH1HH2, oooo −ℜ⋅=JJJJ . (4.75) 

4.2.3 Model for Non-polarimetric Measurements 

If only one field component has been excited at the transmitter and only one field component 
can be received, the radio channel model reduces to 

 ( ) HHtfTR HH
γBBBBθs ⋅◊◊◊= . (4.76) 

Again, using the definitions (4.68) and (4.69) the component matrices of the Jacobian matri-
ces in Table 4-4 are given. Using these definitions, the Jacobian matrix for the (non-
polarimetric) model (4.76) can be expressed as follows 

■ tfgTR HH
DDDDDD ◊◊◊◊= . (4.77) 

Assuming the covariance matrix of the stochastic process n  is IRIIR ⊗⊗⊗= fnn  the 
Fisher information matrix of the normalised deterministic parameters is given by 

■ ( ) { }
HHHH RRTTggfffttnn DDDDDDDRDDDRθ HHH1HH2, oooo −ℜ⋅=JJJJ . (4.78) 
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Table 4-4: Component matrices of the Jacobian matrix for non-polarimetric measure-
ments. 
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Observe that the elementary blocks in Table 4-2, Table 4-3, and Table 4-4 have a triangular 
structure. This can be exploited to significantly reduce the computational complexity in im-
plementations. See also the discussion regarding the numerically efficient computation of the 
Khatri-Rao product ( ) cBAd ⋅◊= H  outlined in Section 5.2.9 (cf. [51]). Table 4-5 summarises 
the computation steps for the Fisher information matrix and the Cramér-Rao lower bound of 
the deterministic model parameters, i.e., the deterministic maximum likelihood problem. 

Table 4-5: Calculation steps for the Fisher information matrix and the Cramér-Rao 
lower bound on the variance of any unbiased estimator for spθ  (DML) 

Input: Parameter vector spθ , nnR  ( ( ) )0IθR α+DMC  

1) Compute all matrices rB [ ]VHRRTTtfr VHVH ,,,,,,,∈  using equations 

(4.62), (4.63), and (4.66) (Basis functions of the channel model) 

2) Compute all matrices iD  [ ]RRTTi ϑϕϑϕτα ,,,,,∈  using equations (4.64), 

(4.65), and (4.67) 

3) Compute the FIM (4.70) ( )nnsp Rθ ,JJJJ . 

4) Compute the Cramér-Rao lower bound ( )nnspsp
RθCRBθ ,1−= JJJJ . 

Optional Step: 

5) Compute the Cramér-Rao lower bound of the physical parameters from the 
Cramér-Rao lower bound of the normalised parameters using the chain rule 
(4.25). 

4.3 Cramér-Rao lower bound for the Stochastic Model Parameters 

The derivation of the Cramér-Rao lower bound for the variance of any unbiased estimator 

dmcθ̂  for the parameters dmcθ  of the covariance-matrix ( )dmcθR  is straightforward. Since this 
section is solely dedicated to the lower bound on the variance of  dmcθ̂ , we will for the time 
being drop the subscript dmc  from the parameter vector dmcθ  and write θ . 

For simplicity, we assume that the observed channel contains dense multipath compo-
nents only 

 1×∈= M

dan Cnx . 

Furthermore, we generalize the model and assume that some independent observations of the 
stochastic process dann  are available. We collect all observations in the matrix 

[ ] NM

N

×∈= CxxX L1 . The log-likelihood function of (2.66) is 
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 ( ) ( ) ( )( )( ) ( )( )XθRXθRθX ⋅⋅−−⋅−= −1Htrdetlnπln NMNL . (4.79) 

Observe that the derivation of explicit expressions for the Cramér-Rao lower bound requires 
the differentiation of complex-valued matrices. There exist various ways to get closed form 
expressions for complex matrix derivatives. An elegant way to accomplish that is described in 
[52]. The author uses the generalised complex derivative (cf. [53]) and provides results for 
typical expressions. 

The score-function, i.e., the first gradient of the log-likelihood function [40] is 
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  (4.80) 

Since ( )( ) ( )( )θRθR adjdet 1 ⋅−  is just the inverse ( )θR 1−  of the covariance matrix ( )θR  [53], 
we can simplify expression (4.80) to  
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Using the relationship between the inner and outer product of two vectors ( )HH tr xyyx =   and 
the property of the trace operator ( ) ( )BCDAABCD trtr =  [53] we rewrite (4.81) to 
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We now note that the term H1 XX ⋅⋅N  in (4.82) can be understood as an estimate of the co-
variance matrix R̂  and introduce the non-parametric estimate of the covariance matrix as 

 H1ˆ XXR
N

= . (4.83) 

Using (4.83) in (4.82) yields for the score function 
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or equivalently 
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The stochastic Fisher matrix is the second gradient of the log-likelihood function [40], hence 
we take the second partial derivative with respect to the parameter kθ  and obtain 
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 (4.86) 

Now assuming an unbiased estimator for the covariance matrix 
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 ( ) ( ){ } 0θRθRE =− ˆ , and ( ) ( ){ } IθRθRE =− ˆ1  

we yield for the elements of the Fisher Information Matrix the equation 
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The sum of the main diagonal elements (trace) of the product between a square Hermitian 
matrix HAA =  and an arbitrary square matrix B  can be expressed using the vector operator 

{ }•vec  as 

 ( ) ( ) { } { }BAbaBABA vecvectrtr
H

1

HH ==⋅=⋅ ∑
=

N

n

nn . 

Consequently, using the decomposition ( ) ( ) ( )θLθLθR H⋅= , a single element of the Fisher 

information matrix can be expressed as 
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Employing the vector operator { }•vec , the matrix containing the partial derivatives with re-

spect to all L elements of the parameter vector θ  can be defined as 
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Using the matrix ( )θD  the Fisher Information matrix ( )θJJJJ  of the parameters θ  can be ex-
pressed in a compact form by 
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Now we can easily derive the asymptotic Cramér-Rao lower bound [40] on the variance of 
any unbiased estimator θ̂  for the parameters θ  as 

■ ( ) ( ) ( )( ) ( )( ){ }T1H1 ˆˆE
1
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N

-JJJJ . (4.90) 

Furthermore, using the matrix ( )θD  in the expression for the score function (4.84) yields the 
compact form by 

■ ( ) ( ) ( ) ( ) ( ){ }IθLRθLθDθX
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So far, we have derived a general expressions for the score function, the Fisher information 
matrix, and the Cramér-Rao lower bound of the parameters θ .  

Since ( )•toep  is a linear operator the first order partial derivatives of (2.67) with re-
spect to the parameters DMCθ  are given by 
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Hence, we have only to calculate the first order partial derivatives of (2.68) with respect to the 
four parameters in the parameter vector [ ]T010 τβαα=DMCθ  to derive the related Fisher In-
formation matrix. The four partial derivatives are 
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and 
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Using equations (4.92) - (4.96) in (4.90) one can now easily calculate the Cramér-Rao lower 
bound of any unbiased estimator DMCθ̂  for the parameters DMCθ  of the covariance matrix 

( )DMCθR . Table 4-6 summarises the processing steps for the calculation of the Cramér-Rao 
lower bound on DMCθ̂ . 

Table 4-6: Summary of calculation steps for the Cramér-Rao lower bound on any unbi-
ased estimator for DMCθ  (SML) 

Input: Parameter vector DMCθ , Number of independent realisations N  

1) Compute the first order derivatives (equation (4.92) - (4.96)) 

2) Compute the matrix ( )θD  using equation (4.88) (section 6.1.12 describes an 

computationally efficient algorithm for the multiplication with the inverse 

Toeplitz matrix ( )DMCθR
1− ). 

3) Compute the Cramér-Rao lower bound ( ) ( )( ) 1H1 −
⋅= θDθDCRBθ

N
 

4.4 Joint DML and SML Problem 

So far, we have derived explicit expressions for the DML problem and the SML problem in-
dependently. However, for channel parameter estimation from channel sounding measure-
ments all parameters of the model must be estimated jointly. Therefore, we derive in the fol-
lowing the Fisher information matrix and the Cramér-Rao lower bound for the joint estima-
tion problem. 

The general structure of the Fisher information matrix of any estimator for the parame-
ters of a multivariate normal distribution  

 ( )( )
( )( )

( )( ) ( ) ( )( )θsxθRθsx

θR
θθx −⋅⋅−− −

=
1

e
detπ

1
,

H

M
p  

is due to [40], [43], [54], and [55] given by 
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Since the parameters spθ  of the deterministic components, i.e., of the concentrated paths 
( )spθs  are not parameters of the distribution of the dense multipath components dmcd , i.e., of 
the covariance matrix ( )θR  and vice versa, the Fisher information matrix is a block diagonal 
matrix 
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Consequently, the Cramér-Rao lower bound is a block diagonal matrix too with one block for 
the parameters of the deterministic components and one block for the parameters of the dense 
multipath components 
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This has two consequences. First of all the expressions for the Cramér-Rao lower bounds 
(4.21), (4.70), (4.75), (4.78), and (4.90) are also valid for the joint estimation problem. Sec-
ondly the disjoint parameter subsets SPθ  and DMCθ  are asymptotically uncoupled. The latter 
statement has important consequences for the structure of the parameter estimator to develop. 
We will make use of this model property in the subsequent chapters. 

4.5 Conclusion on the CRLB of the Deterministic Parameters 

For the model developed in Chapter 2 explicit expressions for the Fisher information matrix 
and the Cramér-Rao lower bound can be given. The equations are structured in such a way, 
that almost all possible channel-sounding setups are covered. 

The Cramér-Rao lower bound provides an effective means to decide, whether a propa-
gation path should be classified as a concentrated propagation path or not. If it is too weak, it 
should be added to the stochastic process describing the dense multipath components or to the 
measurement noise. Here the term too weak refers to the lower bound on the relative variance 
of the propagation path. 

Furthermore, it has been shown that the FIM is not only a matrix on the way to the 
Cramér-Rao lower bound of the model parameters. It provides insight in the properties of the 
parameter estimation problem. In general, it is a powerful tool for diagnostic purposes. In ad-
dition, the FIM plays an important role in the parameter estimators described in the following 
chapters.  

We can split the joint estimation problem for all propagation paths often into decoup-
led sub-problems. Each sub-problem contains a smaller amount of propagation paths. This 
can be exploited to reduce the complexity of the parameter estimator. The probability that a 
given problem can be separated grows with iM   and with the amount of parameter dimen-
sions PR , available to resolve the propagation paths. Nevertheless, the structure of the FIM 
shows also that we should not split the entire problem into P  sub problems a priori, since 
some of the P  propagation paths might be coupled. As we shall see later, this observation is 
of crucial importance for the choice of the parameter estimator, e.g., whether the Expectation 
Maximization algorithm is a good choice or not.  

The Cramér-Rao lower bound of closely spaced, i.e., coupled propagation paths de-
pends on the parameters of all propagation paths in a path group. 
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It is important to recognize that the data model is the crucial point in parameter esti-
mation. The real art is the selection of a model, which is accurate enough. In the same context 
we have to state that an excessive accurate model is unsuitable as well. This is due to the fact 
that all radio channel observations contain finite information about the underlying noise-free 
radio channel. Observe that for the concentrated propagation paths the term “noise-free” im-
plies that the observed channel contains no dense multipath components.  

The bound on the relative variance of the weight parameters provides a means to con-
trol the model complexity, as stated in Example 4-4. That means for every propagation path 
the following inequality must be fulfilled 

 1
CRB

2

2
<< γ

γ

γ
ε . (4.100) 

Equation (4.100) is an effective way to determine the number of assessable propagation paths 
in an observation. The estimate of the relative variance, i.e., the individual SNR of a propaga-
tion path is used in Section 5.2.7 for model order selection. That means it is used to determine 
the number of specular propagation paths in a radio channel observation. Furthermore, rea-
sonable values for 2

γε  are given therein. As already discussed in Example 4-4, the expressions 
for the Cramér-Rao bound will not provide reasonable estimates of the variance of the path 
weight if the SNR of a propagation path is close to 0dB or negative. However, this is a weak 
restriction since only propagation paths with a positive SNR (dominant paths) are of interest. 
For further discussion on the validity of the Cramér-Rao bound see, e.g., [49], [56]. In [57] it 
has been shown that the maximum likelihood estimator developed within this work reaches 
the Cramér-Rao lower bound for the propagation path parameters derived in this chapter, pro-
vided the radio channel sounder including the antenna arrays is well calibrated. 
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5 Estimation of Path Parameters 

In recent years, high-resolution channel parameter estimation from channel sounding meas-
urements has attracted a great deal of interest. Initial research work was focused on the esti-
mation of direction of arrival (DoA) of the propagation paths at the base station and was 
shortly after, extended to the joint estimation of time-delay and DoA [58], [59]. The pioneer-
ing work of Steinbauer et al. [60] on the measurement of the double directional radio channel 
roused the interest in the joint estimation of direction of departure, time-delay, and direction 
of arrival [61], [1], [6] from channel sounding measurements. 

As already discussed in Chapter 2, the radio channel observation x  is a realisation of a 
stochastic process, and the parameters θ  are stochastic too. The aim of radio channel meas-
urements in combination with channel parameter estimation is the determination of the distri-
bution ( )θp . We assume that no prior distribution ( )θp  of the unknown parameters is avail-
able. In other words, we choose the uniform distribution as a prior for θ . Hence the maximum 
likelihood estimate  

 ( )( )θxθ
θ

,maxargˆ p=  

is given by  

 ( )( )θxθ
θ

pmaxargˆ = , 

since 

 ( ) ( ) ( )θθxθx ppp =,  

and ( ) constp =θ . Nevertheless, one should observe that if reliable probability densities of the 
parameters θ  are available, the parameter estimator developed within this work, can be im-
proved further by taking them into account. This will lead to better parameter estimates, i.e., 
to parameter estimates with a lower variance. 

For the estimation of propagation path parameters from channel sounding measure-
ments, two classes of parameter estimators have been deployed so far. Namely, various algo-
rithms belonging to the so-called subspace based class of algorithms and algorithms based on 
the SAGE (space alternating generalised expectation maximization) procedure [62]. Since the 
authors of [63], [64], and [11] did not assign a name to their SAGE based channel parameter 
estimation algorithm we will refer to it in the following as SAGECPE1. Subspace based 
channel parameter estimation algorithms reportedly used to estimated propagation path pa-
rameters are Unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance 
Techniques) [65], [44], [15], MUSIC (MUltiple SIgnal Classification), and RARE (Rank Re-
duction) [66], [67] 
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All algorithms published so far have widely ignored the contribution of the dense mul-
tipath components to the radio-channel observation. The models used to develop the parame-
ter estimators are usually based on the assumption that the channel observation contains only 
concentrated propagation paths and white receiver noise. The first and obvious drawback is 
the lack of information about the distribution of the dense multipath components in the pa-
rameter estimation results. Omitting the dense multipath components in the channel parameter 
estimator’s data model causes also significant problems while estimating the parameters of 
the concentrated propagation paths. Mainly two problems arise if we assume that the covari-
ance matrix is a scaled version of the identity matrix. The first problem observed, is that 
highly sophisticated model order selection criteria based on stochastic complexity arguments 
such as AIC (Akaike information criterion) or MDL (minimum description length) fail to de-
tect a useable number of assessable propagation paths, since the data model is wrong. Often 
the estimated model order is completely wrong, leading to unacceptable estimation results of 
the parameter estimator. Secondly, the estimator approximates the distribution of the dense 
multipath components with concentrated propagation paths what will fail since the observed 
information is not sufficient to accomplish that. It is important to note, that both errors de-
scribed are not caused by any inability of the estimators or the used estimation framework, but 
rather by the incompleteness of the data model. In general, the robustness of parameter esti-
mators depends heavily on the completeness of the data model used to derive the estimator. 

The objective of the subsequent sections is to develop an algorithm framework for 
high-resolution parameter estimation from measurements. The parameter estimator should 
compute parameter estimates for every observation and provide reliability information about 
the parameter estimates. In general, we expect the estimator to process data without user in-
teraction. The derivation of sufficient statistics for radio channel parameters ( )θp  requires the 
processing of large amounts of data, i.e., thousands of observations. The main challenge of the 
parameter estimation problem is the complexity. If the number of observable propagation 
paths is 100 and all model parameters can be estimated, the total number of real-valued propa-
gation path parameters is 1400. Consequently, we can classify the problem as a mid- or large- 
scale problem. Additionally, no algorithm for the joint estimation of propagation path parame-
ters and DMC parameters exists.  

5.1 Global Maximization Algorithms 

Given a channel observation x , the maximization problem to solve is  

 
( )( )

( )( ) ( ) ( )( )








=







 −⋅⋅−− −
spdansp

dandan

sp θsxθRθsx

θRθ

θ 1H

e
detπ

1
maxarg

ˆ

ˆ
M

, 

or equivalently 

 ( )( )( ) ( )( ) ( ) ( )( )( )spdanspdac

dan

sp θsxθRθsxθR
θ

θ
−⋅⋅−−−=







 −1H
detlnmaxarg

ˆ

ˆ
. (5.1) 

The methods to solve (5.1) described in the following are implicit in nature. The parameter 
estimates are defined as the maximizing or minimizing arguments of some nonlinear objective 
function. In practice, finding the solution of (5.1) is far from trivial, especially since the num-
ber of nonlinear parameters (i.e. structural parameters) is large. In the following, we propose a 
computationally attractive and reasonably reliable procedure to solve such a problem. The 
procedure is based on numerical nonlinear local optimisation techniques, such as Gauß-
Newton, Levenberg-Marquardt [68], or iterative maximum likelihood [40]. The initial values 
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for the local optimisation algorithms are estimated with suitable global search algorithms or 
are handed down from the previous observation. 

Usually a long sequence of channel observations, taken over time, has to be processed. 
Since the structural parameters (time-delay, angles, Doppler-shift) of the radio channel change 
slowly over time, the parameter estimates of the actual observation can be used as the initial 
values for the nonlinear parameters of the subsequent observation. This reduces the computa-
tional complexity of the global search procedure significantly, because only initial values for 
propagation paths, emerged in the actual observation, have to be found. Candidate algorithms 
for the determination of the initial values are based on the Expectation-Maximization ap-
proach [69]. In some cases also subspace based algorithms such as multidimensional Unitary 
ESPRIT, or RARE [66], [67] can be applied to find initial values. The applicability of the 
subspace-based algorithm depends primarily on the structure of the measurement system ma-
trix G  (cf. Section 5.3.11). 

The joint maximization of the log-likelihood function (5.1) with a multidimensional 
exhaustive search is not feasible in practice. A way to find a solution is to separate the prob-
lem into smaller sub-problems. Due to [62] we can solve the joint maximization problem if 
we choose parameter subsets and maximize the objective function in an alternating manner 
with respect to the subsets. An obvious choice for two parameter subsets are the parameters 
sets spθ  and danθ . So we suppose for the time being the covariance matrix nnR  of the stochas-
tic process n  is known, i.e., we know the parameters danθ . Consequently, the maximization 
problem (5.1) reduces to 

■ ( )( ) ( )( )θsxRθsxθ
θ

−⋅⋅−= −1Hminargˆ
nn . (5.2) 

The term ( )( ) ( )( )θsxRθsx −⋅⋅− −1H

nn  in equation (5.2) is the so-called Mahalanobis norm or 
Mahalanobis distance [70], [71]. 

Because the objective function (5.2) is a nonlinear function in the structural parame-
ters µ  and since we minimize a weighted error (Mahalanobis norm) the maximum likelihood 
estimation problem can also be classified as a nonlinear weighted least squares problem 
NWLS. To be precise, the problem to solve is an optimally weighted least squares problem, 
since we do not use an arbitrary weighting matrix. Optimally weighted refers to the fact, that 
the inverse noise covariance matrix 1−

nnR  is used as the weighting matrix. 

It is a well-known fact from estimation theory [40] that the maximum likelihood esti-
mation of data corrupted by additive normal distributed noise is equivalent to the solution of a 
(weighted) least squares problem. Surprisingly, this is rarely discussed in publications dedi-
cated to maximum likelihood radio channel parameter estimation. Nevertheless, it is an im-
portant observation since a large amount of numerical optimisation algorithms exist for this 
class of estimation problems since a long time. 

If the stochastic part of the observation n  is a zero-mean circular Gaussian i.i.d. proc-
ess with covariance IR

2σ=nn , the minimization problem reduces to a classical nonlinear 
least squares problem NLS. We search for the value θ̂  minimizing the error ( )θsx − , i.e., we 
minimize the Euclidian norm or Frobenius norm 

 ( ) 2minargˆ
F

θsxθ
θ

−= . 

The general structure of the model describing the contribution of the concentrated propagation 
paths to the channel is due to (3.3) given by 

 ( ) ( ) ( ) 1, ×∈⋅= M
CθsγµBθs  (5.3) 
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with ( ) PNM pol×∈CµB , the structural parameters 
1×∈ µL

Rµ , and the weights 
1×∈ PN pol

Cγ . The 
scalar [ ]421∈polN  denotes the number of path weights per path, i.e., how many weights 
from the complete set HHγ , HVγ , VHγ , VVγ  are contained in the model. Using (5.3) in (5.2) 
yields 

 ( )( ) ( )( )γµBxRγµBx
γ

µ

γµ
⋅−⋅⋅⋅−=




 −1H

,
minarg

ˆ

ˆ
nn . (5.4) 

Since the parameters γ  are linear parameters, the minimization problem (5.4) can be solved 
directly for γ̂  given a parameter set µ̂ . For any µ̂  the “best linear unbiased estimate” 
(BLUE)9 is determined by 

■ ( ) ( )( ) ( ) xRµBµBRµBγ ⋅⋅⋅⋅⋅= −−− 1H11H ˆˆˆˆ
nnnn . (5.5) 

The value γ̂   is the maximum likelihood estimate of γ . The estimate is consistent and the 
estimator (5.5) is statistically efficient [22]. Replacing γ  in equation (5.4) by its estimate γ̂  
yields 

 ( ) ( )( ) ( ) ( )( ) ( )( )( )( )xRµBµBRµBµBRxxRxµ
µ

⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅= −−−−− 1H11H1H1Hminargˆ
nnnnnnnn . (5.6) 

Hence, the maximum likelihood estimate MLµ̂  is the value minimizing the function 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( )xRµBµBRµBµBRxxRxµx ⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅=′ −−−−− 1H11H1H1H
nnnnnnnnNL . (5.7) 

Observe that the cost function ( )µxNL′  is not a function of the linear parameters, i.e., the path 
weights, any more. Function (5.7) is in fact the negative compressed log-likelihood function 
[40] for the structural parameters µ . Dropping the constant term in (5.7) yields the general 
correlation function 

■ ( ) ( )( ) ( ) ( )( ) ( )( )xRµBµBRµBµBRxxµ ⋅⋅⋅⋅⋅⋅⋅⋅= −−−− 1H11H1H, nnnnnnC . (5.8) 

The reduced nonlinear optimisation problem to solve is now 

 ( )( ) ( )( )xµµxµ
µµ

,maxargminargˆ CL =′= N . 

Since the joint optimisation problem with respect to γ̂  and µ̂  can be separated into a optimi-
sation problem of µ̂  only, the estimation problem constitutes a separable least squares prob-
lem (SLS) [72], [73]. Once we have estimated µ̂  we can calculate the best linear unbiased 
estimate γ̂  directly using the estimator (5.5). 

Without additional knowledge about the structure of ( )µB  the nonlinear maximization 
problem can only be solved by an exhaustive multidimensional search over all parameters of 
the parameter vector µ . Such a global search algorithm has exponential complexity in the 
number of structural parameters µ  and is therefore only applicable if µL  is small. In the con-
text of channel parameter estimation µL  can be considered as small only if [ ]21∈µL . 

Let us, for the time being, assume the observation contains a single propagation path. 
In the subsequent examples, we will discuss some typical cases of (5.8). Depending on the 
structure of the basis function ( )µB  and the covariance matrix nnR , the expression for the 
correlation function can be simplified.  

 

                                                 
9 Observe that the estimate (5.5) is also known as the weighted least squares or Gauß-Markov estimate [135]. 
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Example 5-1: i.i.d. circular complex Gaussian process 

First, let us assume the noise covariance matrix has structure IR ⋅= 2σ  

 ( ) ( )( ) ( ) ( )( ) ( )( )xµBµBµBµBxxµ ⋅⋅⋅⋅⋅=
− H1HH

2

1
,

σ
C . (5.9) 

Using the QR decomposition to factorize the matrix-valued function ( )µB  yields 

■ ( ) ( ) ( )µTµQµB ⋅=  (5.10) 

with 

 ( ) ( ) IµQµQ =⋅H , and ( ) polpol NN ×∈CµT . 

The matrix valued function ( )µQl  can be interpreted as a unitary parametric subspace. Using 
(5.10) in (5.9) yields 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )xµQµTµTµQµQµTµTµQxxµ ⋅⋅⋅⋅⋅⋅⋅⋅⋅=
− HH1HHH

2

1
,

σ
C . (5.11) 

This expression for the cost function can be simplified using the definition  

■ ( ) ( )xµQµz H=  (5.12) 

to 

 ( ) ( ) ( ) ( ) 2

2

HH

2

11
,

Fl µzxµQµQxxµ
σσ

=⋅⋅⋅=C . (5.13) 

We can interpret ( )µQ  as a set of matched filters, and the objective is to find the matched 
filter and the related parameter set µ̂  that maximizes the correlation function (5.13). Having 
estimated µ̂  we can calculate the best linear unbiased estimate of the linear model parameters 
using 

  ( ) ( ) xµQµTγ ⋅⋅= − ˆˆˆ H1 . (5.14) 

The estimated data can be reconstructed using one of the following equations 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ).ˆˆ

ˆˆ

ˆˆˆˆ

ˆˆˆ

H

H1

µzµQ

xµQµQ

xµQµTµTµQ

γµBθs

⋅=

⋅⋅=

⋅⋅⋅⋅=

⋅=
−

 (5.15) 

Note that the estimate γ̂  is not necessarily required to reconstruct the complete estimated data 
( )θs ˆ .  
 

Example 5-2: i.i.d. circular complex Gaussian process with covariance matrix R 

To simplify the expression for the correlation function 

 ( ) ( ) ( ) ( )( ) ( ) xRµBµBRµBµBRxxµ ⋅⋅⋅⋅⋅⋅⋅⋅= −−−− 1H11H1H,C  (5.16) 

we decompose the covariance matrix into 

 HLLR = . (5.17) 



82 Estimation of Path Parameters  

 

This decomposition can be accomplished by using the Cholesky decomposition. Using (5.17) 
in (5.16) yields 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) xLLµBµBLLµBµBLLxxµ ⋅⋅⋅⋅⋅⋅⋅⋅=
−−−− 1HH

11HH1HH,C  

what can be rewritten to 

 ( ) ( ) ( )( ) ( )( ) ( )( ) xLµBLµBLµBLµBLLxxµ 1-H1-
1

1-H1-1-H-H, ⋅⋅⋅⋅=
−

C . (5.18) 

Now we introduce the observation with applied pre-whitening xLx 1−=′ , and the matrix val-
ued function with pre-whitening ( ) ( )µBLµB 1−=′ . Using these definitions, the expression for 
the cost function can be simplified to 

 ( ) ( )( ) ( ) ( )( ) ( )( )xµBµBµBµBxxµ ′⋅′⋅′⋅′⋅′⋅′=
− H1HH,C . (5.19) 

It is instructive to observe, that the new cost function (5.19) is equivalent to (5.9), that is rea-
sonable since the coloured noise in the observation x  has been transformed into i.i.d. normal 
distributed noise by the pre-whitening matrix 1−L . Using, the QR-decomposition of the trans-
formed matrix valued function ( ) ( ) ( )µTµQµB ′⋅′=′  yields ( ) ( )xµQµz ′′=′ H . Therefore, the 
cost function can simply be calculated as  

■ ( ) ( ) ( ) ( ) 2HH,
Fll µzxµQµQxxµ ′=′⋅′⋅′⋅′=C . 

 

Example 5-3: i.i.d. circular complex Gaussian process, complex exponential model, one 

parameter [ )π,π +−∈µ . 

In this example, we investigate the estimation of the scalar parameter µ  of the complex ex-
ponential model 

■ ( ) ( ) ( ) ( ) ( )[ ]Tjj
2
1

2
1

ee
1 µµµµµ ⋅+⋅− −−−−===

MM

M
LaQB . (5.20) 

Since the basis-function ( )µa  has unit norm the cost function can be calculated by 

 ( ) ( ) ( ) ( )
2H

2

HH

2

11
, xaxaaxx ⋅=⋅⋅⋅= µ

σ
µµ

σ
µC . (5.21) 

Now let us suppose, we sample the parameter domain of µ  equidistantly on sN  points yield-
ing the set [ ]T1

2
11

2
1

2
1 ,...,,π2

NNs −+−−⋅=µ . Furthermore, we assume that the number of sam-
ples of the parameter domain is equal to the number of samples in the observation x . Conse-
quently, the cost function sampled at the points sµ  can be efficiently computed using the FFT, 
i.e., by 

■ ( ) ( ) ( ) 1HH

2

1
, ×∗

∈= sN

s RxFxFxµ o
σ

CCCC . (5.22) 

Here, the matrix F  denotes the DFT-matrix. Furthermore, if the number of samples of the 
parameter domain is larger than the number of samples in the observation MN s > the cost 
function can be computed using the FFT by using zero padding, i.e., by computing 

■ ( ) ( ) ( )∗= xJFxJFxµ
HHHH

22
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, o
M

N

w

s
s σ

CCCC  
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using the selection matrix  [ ] kNM×∈= R0IJ . One should note that the FFT is fast if the num-
ber of samples sN  can be factorized into a product of small prime numbers. 

Furthermore, one should observe that the cost function is a representation of the im-
pulse response if we assume that the observation x  contains samples of the channel transfer 
function. If the observation contains data measured with a uniform linear array the cost func-
tion is effectively a beam-space representation of the data. Finally, if we assume that the ob-
servation contains samples of the radio channel taken over time at the same frequency, and 
between the same Tx-, Rx-antenna pair, than the cost function is simply a representation of 
the Doppler-spectrum. The estimated data are reconstructed without explicit estimation of γ̂  
by 

 ( ) ( ) ( ) ( ) xaaaθs ⋅⋅=⋅= µµγµ ˆˆˆˆˆ H . (5.23) 

 

Example 5-4: circular complex Gaussian process with Toeplitz-structured covariance 

matrix R, complex exponential model, one parameter [ )π,π +−∈µ . 

In this example, we investigate the estimation of the scalar parameter µ  of the complex ex-
ponential model 

 ( ) ( ) ( ) ( ) ( )[ ]Tjj
2
1

2
1

ee
1 µµµµµ ⋅+⋅− −−−−===

MM

M
LaQB  

in coloured noise. The cost function can be expressed as 

 ( )
( )

( ) ( )µµ

µ
µ
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1H

21H

,
−

−

=C . 

At first, we calculate the solution ( ) ( )µµ aRa 1−=′ . Using this solution in the expression for 

the cost function yields 

 ( )
( )

( ) ( )
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So, we introduce the vector valued function  

■ ( ) ( )

( ) ( )µµ

µ
µ

aa

a
q

′

′
=

H
, (5.24) 

and compute the cost function using the expression 

 ( ) ( )
2H, µµ qxx =C . 

Here, it is important to note, that the computation of N  solutions to a system of equations 
involving a Toeplitz matrix can be computed in ( )( )MNMO log  operations. Such an algo-
rithm is described in Section 6.1.12. The application of the pre-whitening approach leads to an 
algorithm for the computation of the cost function with a higher computational complexity. 
This is due to the fact, that the decomposition of the covariance matrix used in the pre-
whitening approach leads to a matrix L  without Toeplitz structure.  
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5.1.1 Basis Functions with Kronecker Structure  

The radio channel model for a single propagation path can be expressed as a weighted sum of 
the Kronecker product of four basis functions 

 ( ) ( ) 1×∈⋅⊗⊗⊗= M

RTsp CγBBBBθs ατ , 

with ( ) ( )( ) 2, ×∈= TTT M

TT C
ϑϕ µµBB , ( ) ( )( ) 2, ×∈= RRR M

RR C
ϑϕ µµBB , ( ) 1×∈= fM

ff CτBB , 

( ) 1×∈ tM

t CαB , [ ]TVVVHHVHH γγγγ=γ , and the parameter vector describing the single path 

entirely 

     ( ) ( ) ( ) ( ) ( ) ( )[ ]T,,,,,,,,, iVVrVViVHrVHiHVrHViHHrHHpsp
RRTT γγγγγγγγµµµµµµ ϑϕϑϕτα=θ . 

  (5.25) 

This follows directly from the data model (2.29). We exploit in the following the Kronecker-
structured of basis functions to get more insight into the structure of the correlation function 
(5.8). Since all matrices TB , RB , fB , tB  have the same structure, we drop in the following 
the index (T, R, f, t) and use the general form ( )( )i

i µB . First, we decompose the matrix valued 
function ( )µB  using the matrices ( )( ) 21

1
1×∈ M

CµB , ( )( ) 22
2

2×∈ M
CµB  into  

 ( ) ( )( ) ( )( )1
1

2
2 µBµBµB ⊗= . (5.26) 

And we factorize the covariance matrix nnR  using 11

1
MM ×∈CR , 22

2
MM ×∈CR  into 

 12 RRR ⊗=nn . (5.27) 

Using (5.26) and (5.27) in expression (5.8) for the correlation function yields  
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−−−−

−−−−C
 (5.28) 

Observe that the cost function retains the same structure. The two-dimensional case can be 
easily extended to the DR -dimensional case due to its regular structure. Here, DR -
dimensional refers to the number of data dimensions and not to the number of parameter di-
mensions PR  (cf. Section 2.4.5). The decomposition of the matrix valued function in the DR -
dimensional case becomes 

 ( ) ( )( ) ( )( )1
1 µBµBµB ⊗⊗= KD

D

R

R , (5.29) 

and the decomposition of the covariance matrix yields 

 1RRR ⊗⊗= K
DRnn . (5.30) 

Using the expressions (5.26) and (5.27) to express the correlation function leads to 
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 (5.31) 

It is instructive to see that the correlation function keeps its structure in the individual data 
domains. However, expression (5.31) is somewhat unwieldy. Therefore, we apply the same 
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pre-whitening approach as in Example 5-2, equations (5.16) - (5.19) . To this end, we define 
the transformed matrices 

 ( )( ) ( )( ) D

r

rr

r

r Rrr ,,1,1 K=∀=′ − µBLµB , (5.32) 

using the decompositions H
rrr LLR = . The QR-decomposition of the DR  matrix-valued func-

tions (5.32) is given by 

 ( )( ) ( )( ) ( )( ) D

r

r

r

r

r

r Rrr ,,1, K=∀′⋅′=′ µTµQµB . (5.33) 

The pre-whitening of the observation can be expressed as 

■ ( ) xLLx ⋅⊗⊗=′ −− 1
1

1 LR . (5.34) 

Using some simple math yields the expression for the correlation function 

 ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( ) xµQµQµQµQxxµ ′⋅′⋅′⊗⊗′⋅′′= 1H
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that is equivalent to 
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This expression is useful. We define the vector valued function 

■ ( ) ( )( ) ( )( )( ) xµQµQxµz ′⋅′⊗⊗′=′ 1H
1

H, KD

D

R

R  (5.35) 

and express the correlation function simply by 

 ( ) ( ) 2,,
F

xµzxµ ′=C . (5.36) 

The advantage of expression (5.35) is that every data dimension can be processed individu-
ally. This is a natural result, if we consider how we would transform channel transfer func-
tions measured with a ULA into the time-delay and the beam-space domain. We apply a 2-D 
DFT to accomplish that. However, we can also first transform the data into the time-delay 
domain with a 1-D DFT and in the next step the beam-space using another 1-D DFT. Fur-
thermore, the order of the two transformations can be chosen arbitrarily.  

The derived expression for the correlation function (5.35), (5.36) allows the processing 
of polarimetric channel sounding measurements, as well as the incorporation of the covari-
ance matrix of the dense multipath components. The expression is a prerequisite for a number 
of parameter estimation algorithms, as we shall see in the next sections. It leads furthermore 
to a general form of the multidimensional power profile also covering the polarimetric case. 

5.1.2 Efficient Computation of the Correlation Function 

The straightforward implementation of expression (5.35) leads to an algorithm, which is inef-
ficient especially in terms of memory usage, but also in terms of computational effort. The 
main drawback of the direct implementation is the computation of the Kronecker product. 
This leads to large matrices and requires therefore a large amount of memory. Observe that 
the storage of the Kronecker product of all matrices ( )( )r

rr µQQ =  requires more memory in 
the polarimetric case as the storage of the observation itself. The relationship between the 
number of samples in the observation 1×∈ M

Cx  and the column-size of the matrices 
rr NM

r

×∈CQ  is given by 

 ∏
=

=
DR

i

iMM
1

. 
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The relation between the length of the vector 1×∈ N
Cz  and the row-size of the matrices rQ  is 

given by 

 ∏
=

=
DR

i

iNN
1

. 

Instead of computing the Kronecker products, one can as well multiply the individual data 
dimensions r  of the observed data with the related matrices rQ . For the first dimension, we 
yield the expression 
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For the penultimate dimension we get 
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and in the last step we compute the result 
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Observe that the order of the data dimensions can be chosen arbitrarily, since the data dimen-
sions are independent from each other. Observe that the pre-whitening step is not necessary 
for the data model developed in Chapter 2. Furthermore, the expressions for the matrices rQ  
have been derived in the previous section. Table 5-1 gives an overview of the parameter do-
mains and the related expressions.  

Table 5-1: List of parameter domains and related expressions for the construction of the 
matrices rQ  required for correlation function computations. 

Data domain Parameter domain Example and Expression 
Antenna ports Tx Tx azimuth, Tx elevation Example 5-1, (5.10) 
Antenna ports Rx Rx azimuth, Rx elevation Example 5-1, (5.10) 
Frequency domain Time delay of arrival Example 5-4, (5.24) 
Time domain Doppler-shift Example 5-3, (5.20) 
 

Suppose we want to calculate some samples of the correlation function with respect to 
one data-, or parameter-domain. For example, we want to calculate the PDP for a specific 
Doppler-shift ( )αµ , Tx-angle ( ) ( ) ( )[ ]TT ϑϕ µµ=Tµ , and Rx- angle ( ) ( ) ( )[ ]RR ϑϕ µµ=Rµ . To this 
end, we compute two matrices representing two beam formers ( )( )TµQ , ( )( )RµQ . In addition, 
we compute a vector ( )( )αµq , which plays the role of a Doppler-filter. Applying the three ma-
trices to the respective data dimensions yields a reduced observation containing channel trans-
fer functions polf NM

f

×∈′ CX . Using this matrix the PDP can be calculated in an arbitrary reso-
lution by correlation with vectors constructed according to (5.24). Using this approach the 
computational effort is significantly reduced, if some samples of the correlation function in 
the same parameter domain have to be computed. Furthermore, the memory requirements for 
the calculation of a section of the cost function are lower in comparison with the straightfor-
ward implementation based on (5.35). 
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5.1.3 Relation between Correlation function and Multidimensional Power Spectra 

Observe also that the correlation function (5.8) has a direct physical interpretation. If we cal-
culate a set of samples of this correlation function in all six parameter domains, we transform 
the observed data into the time-delay-, Doppler- and angular-domain. One can understand the 
correlation function as correlation values in a six-dimensional hypercube. Every dimension 
represents one of the physical parameter dimensions (TDoA, Tx azimuth and elevation, Rx 
azimuth and elevation, and the Doppler-shift). The large magnitudes of this correlation func-
tion correspond to the observable propagation paths. Due to the weighting with the covariance 
matrix of the stochastic part of the measured channel, the magnitudes of the peaks of this cor-
relation function corresponds directly to the total signal-to-noise-ratio of the individual propa-
gation paths, in terms of channel parameter estimation. The appropriate weighting with the 
covariance matrix nnR  as well as the handling of the polarisation is the main difference to the 
usual representation of a radio channel in the joint time-delay- (impulse response), Doppler- 
(Doppler spectra) and angular-domains (angular power spectra). This is a by-product of the 
development of the maximum likelihood estimator. Nonetheless, it is a powerful tool provid-
ing insight into the characteristics of the radio channel. Furthermore, it is useful for diagnos-
tics purposes, e.g., it can be valuable while implementing a high-resolution parameter estima-
tion algorithm. 

Replacing the covariance matrix nnR  with the identity matrix I  yields a representation 
of the observed radio channel x  as a power profile even for polarimetric channel measure-
ments. Here, the magnitudes of the peaks correspond to the total power transfer factor of the 
individual propagation paths. 

5.1.4 Iterative ML Estimation using Parameter Subset Update Techniques 

Suppose the number of observable propagation paths is P . Then the radio channel observa-
tion can be expressed as  

 ( )∑
=

++=
P

p

pspdmc

1
,0 θsdwx α . 

For the clarity we combine the vector w0α  describing the measurement noise and the con-
tribution of the DMC to the observation in one vector wdn 0α+= dmcdan  and express the 
radio channel observation as 

 ( )∑
=

+=
P

p

pspdan

1
,θsnx . (5.40) 

Since the contribution of the concentrated propagation paths can be expressed by the superpo-
sition of individual paths, we can maximize the correlation function sequentially in respect to 
the parameters psp,θ  of theirs. In other words, we minimize the objective function in (5.2) 
sequentially with respect to parameter subsets.  

Let us suppose we have estimates { }i
psp,θ̂  for all propagation paths in the ith optimisation 

step. If we want to improve the estimates of the parameters describing path p , we partially 
remove the contributions of the other paths by  

■ ( )∑
≠=

−=
P

pkk

kspp

,1
,θ̂sxx . (5.41) 

This approach reduces the parameter estimation problem to the estimation of the propagation 
path parameters of path p only, i.e., 
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minargˆ θsxRθsxθ
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−⋅⋅−= −+ . 

This iteration can be understood as an application of the expectation maximization algorithm 
(EM) [69]. Since the parameter estimation problem constitutes a separable least squares prob-
lem [72], [73], the non-linear parameters pµ  and the linear parameters pγ  can be improved 
sequentially. At first, we update the non-linear parameters by using the maximization step 

 { } { }( )( )i

p

i

p xµµ ,maxargˆ 1 C=+ . (5.42) 

In the second step we solve for the linear parameters using a closed from solution, e.g., 

 { } { }( ) { }( )( ) { }( ) { }i
pnn

i

p

i

pnn

i

p

i

p xRµBµBRµBγ ⋅⋅⋅⋅⋅= −+−+−++ 11H1111H1ˆ . 

Together, the linear and the non-linear parameters yield the updated parameter vector { }1
,

ˆ +i
pspθ . 

Since we update the parameters sequentially for every path, and sequentially for the non-
linear and linear parameters, the resulting algorithm can be understood as an application of the 
SAGE method for maximum-likelihood estimation [62]. 

Having noticed, that every data-dimension of the path model can be processed sepa-
rately, when computing the correlation function ( )xµ,C , we reduce the size of the jointly up-
dated parameter subspaces further. Since we have four independent data dimensions, the ad-
missible subsets are ( ) ( )TT

pp

ϑϕ µµ , , ( ) ( )RR

pp

ϑϕ µµ , , ( )τµ p , and ( )ϕµ p . Observe, that the subsets 
( ) ( )TT

pp

ϑϕ µµ ,  and ( ) ( )RR

pp

ϑϕ µµ ,  should not be divided any further. This is due to the fact that, the 
response of an antenna array cannot be decomposed into a product of two independent array 
responses, e.g., into an azimuth- and an elevation-response. However, there exist some spe-
cially array structures where this decomposition is possible. Namely, the array response of an 
ULA or an URA can be factorized in this way as discussed in Section 2.4.  

The outlined algorithm is very simple and regular in its structure and therefore very at-
tractive. Unfortunately, the estimator has a serious drawback. The fundamental problem lies 
in the very first simplification, i.e., to optimize the parameter sets for every propagation path 
independently. This approach will result in a fast converging algorithm only if the modes of 
the individual paths are almost orthogonal. Otherwise, we have to accept that, due to the cou-
pling between the modes, the convergence speed is significantly reduced. This issue of pa-
rameter coupling has already been addressed in Section 4.1.4. The solution to iterative maxi-
mum likelihood estimation and further discussions regarding their convergence speed can be 
found in Section 5.2.3 and the following. 

One should note that the outlined maximization strategy is similar to the alternating 
projection algorithm [74] developed by Ziskind et al. and the RELAX algorithm proposed by 
Li et al. in [75], [76], [44]. Although they have not been designed for the same data model, the 
underlying estimator concept is clearly the same. Furthermore, the SAGECPE1 [63], [64], 
[11] is based on the same estimation strategy, but ignores the contribution of the dense multi-
path components. The algorithm is based on the assumption that a channel observation con-
tains only concentrated propagation paths and i.i.d. circular Gaussian noise.  

5.1.5 Path Parameter Initialization for Iterative Maximum Likelihood Algorithms 

A critical part in all iterative optimisation algorithms is the choice of a good initial value. An 
exhaustive search over all possible parameter combinations is not feasible considering the 
high computational complexity. In radio channel parameter estimation, often sequences of 
some hundreds even several thousands of channel observations, taken over time, have to be 
processed. Since the structural parameters are slow time variant, it is not necessary to deter-
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mine initial parameters for all propagation paths. Instead, we use the estimates of the struc-
tural parameters of the previous observation as initial values for the actual observation. Hav-
ing estimates for the structural parameters, we can always calculate initial values for the linear 
model parameters, i.e., the path weights using a closed form solution such as (5.5). This ap-
proach to parameter initialization inherently provides a means to track propagation paths over 
a long time. We will only loose track of an individual path, if it coincides with a second path, 
if it is shadowed for some time, or if the estimator jumps to another path. The tracking of 
propagation paths is out of the focus of this work. A first attempt to improve the tracking per-
formance of the channel parameter estimator developed in this work has been made by Al-
geier et al., the approach and first results are presented in [48] and [77].  

Since some propagation paths become suddenly visible if a time variant radio channel 
is measured, we are still left with the task to estimate initial parameters of “newborn” propa-
gation paths. To accomplish this we remove at first the contributions of the tracked propaga-
tion paths from the actual observation. This can be carried out using  

 ( )∑
=

−=
P

p

pspr

1
,θ̂sxx . (5.43) 

In the remainder rx , we search for new propagation paths and their parameters. If the number 
of parameter-domains is small, 3≤pR  as a rule of thumb, we can calculate the correlation 
function of the remainder rx  sampled sufficiently densely in all parameter domains. The po-
sition of the maximum of the correlation function determines the initial structural parame-
ters 1+Pµ  for the new propagation path. Using these parameters the linear parameters can be 
estimated from rx  by the close form solution (5.5). However, if the number of parameter do-
mains is large the effort for the computation of the correlation function, which is dense sam-
pled in all parameter dimensions, is very high. If we accept an approach being statistically less 
efficient, we can reduce the computational cost. The basic idea is to exploit the independence 
of the data domains, while respecting the covariance matrix nnR  of the stochastic part of the 
observation.  

Let us suppose for the beginning that the covariance matrix nnR  has the struc-
ture IR 0α=nn . Applying expression (5.37) to rx  yields the matrix 

 








= ∏
=

DR

i

irr MM
2

11, ,,mat xX . (5.44) 

Now motivated by the Kronecker-structure of the data model we interpret the columns of 1,rX  
as realisations of the same process. Using a matrix ( )( )1

1 µQ , we calculate a set of∏ =

DR

i iM
2

 
correlation values by 

 ( )( ) ( )( ) 1,
1H

1
1

1 rXµQµZ ⋅= . (5.45) 

Ignoring the interrelationship between the columns of ( )( )1
1 µZ  we calculate an incoherent 

averaged correlation function by 

 ( )( ) ( )( ) 21
11,

1 ,
Fr µZXµ =C . (5.46) 

Solving the reduced maximization problem 

 ( )
( )

( )( )1,11 ,maxargˆ
1 rXµµ

µ

C=  (5.47) 

we yield an estimate of the parameter(s) ( )1µ̂  for a new candidate propagation path. One 
should observe that the oversampling of the correlation function by a factor of 4 is sufficient 
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in most cases. This is because we search for a raw initial estimate of the parameters only. In 
the next step, we use the estimated parameter ( )1µ̂  to reduce the dimensionality of the estima-
tion problem by computing 
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i.e. we apply the same idea as in Section 5.1.2. In the next step, we determine raw estimates 
for ( )2µ  by replacing rx  with 2,rx  in equation (5.44) and the following. Having estimates µ̂  
of all nonlinear parameters the estimates of the path weights can be calculated using the 
closed form expression (5.5). Together the estimates 1ˆ +Pµ  and 1

ˆ +Pγ  yield an estimate 1
ˆ

+Pθ  of 
the parameters of a new propagation path. Since some propagation paths are removed from 
the entirety of observed concentrated propagation paths after some channel observations, and 
new propagation paths are added from time to time it is important to assign every new propa-
gation path a unique identifier. This is crucial important for further processing of estimated 
radio channel parameters, e.g., to track the parameters of individual propagation paths over 
their lifetime.  

To clarify the global search strategy let us discuss an example. Suppose the channel 
transfer function has been measured using a 10-element ULA at one link end. At first, we 
calculate the 10 related individual channel impulse responses, treat them as independent reali-
sations of the same process, and maximize the log-likelihood function with respect to the time 
delay of arrival. Here, a non-coherent combining procedure avoids any assumption on un-
known DoA, or DoD in this step. In the next step, we keep the estimated time delay fixed and 
maximize for the DoA or DoD. This reduces the maximization problem to two concatenated 
one-dimensional problems. Any arbitrary assumption of the DoA or DoD angles in the exam-
ple would implicitly realise coherent combining, which potentially disregards paths impinging 
from other angles by beam forming. This kind of non-coherent handling of data dimensions 
related to unknown parameters (e.g. DoA, DoD, Doppler-shift) gives us a higher probability 
to detect the relevant parameters, which is the time delay of arrival in the example. 

The drawback of the outlined procedure is the loss of correlation gain, since we proc-
ess some of the data domains incoherently. The loss of correlation gain is highest in the first 
step. This is the reason why the data domain with the largest amount of samples rM  should 
be processed first. The outlined procedure is a trade-off between computational complexity 
and robustness. A similar procedure is used in the SAGECPE1 [63], [64] and the RELAX 
[44] algorithms. 

The outlined algorithm is not yet applicable to determine raw initial estimates for new 
propagation paths, since we have ignored the contribution of the DMC to the channel observa-
tion. In general, we have to work with the pre-whitened data (5.34). However, we can avoid 
the pre-whitening step, since the stochastic process dann  is only correlated in the frequency or 
time delay domain. To this end, we start the global search for an initial solution always in the 
frequency domain, i.e., we search for a raw estimate of the time delay of arrival 1ˆ +Pτ . The re-
spective correlation vectors, taking the colouring of the stochastic process dann  into account, 
are defined in (5.24). The necessary condition for this approach is that the full covariance ma-
trix allows the factorisation  

 12 RRRR ⊗⊗⊗= K
DR

. 

The prewhitening step is necessary in general to guarantee maximum ratio combining of the 
correlation values in (5.46). 
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Having estimated raw parameters of the new propagation path, the outlined procedure 
can be repeated to find additional paths by removing the contribution of the new path 
from rx . I.e. we increase the number of propagation paths 1+= PP  and add the new parame-
ters 1

ˆ
+Pθ  to the complete parameter set θ̂ . The algorithm for the estimation of raw parameters 

1
ˆ

+Pθ  is outlined in Table 5-2. For further discussions on global optimisation techniques, see 
also Chapter 4 in [78]. Observe that the explicit estimation of the linear parameters γ  is not 
necessarily required throughout the algorithm since the estimated data ( )1ˆ

+Pθs  can often be 
reconstructed without computation of the estimate γ̂ , e.g., using equation (5.15) or (5.23). 

One should note that the outlined procedure might not determine a valid initial esti-
mate for the parameters of new propagation paths if multiple propagation paths arise at the 
same time in a measured scenario having the same power. This issue is for example addressed 
in [29], [30]. The authors show that the antenna array design has a significant influence on the 
probability of false detection. The probability of false detection depends clearly on the or-
thogonality between the basis-vectors of the new propagation paths in a scenario see also 
Cond. 5, Section 4.1. If the antenna arrays used for channel sounding are properly designed, 
and parameter tracking is applied the probability of “ghost path” detection can be kept to a 
minimum. 

Table 5-2: Computation of initial path parameter estimates for a new propagation path. 

Input: 

 Data vector x , parameters of the known propagation paths spθ̂ . 

Preprocessing: 

  Sample all parameter domains sufficiently dense (oversampling) yielding 
( )r
sµ . Compute all matrices ( )( )r

r µQ  related to the samples ( )r
sµ .  

1) Compute the remainder ( )∑
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3) Compute all correlation values ( )( )1,1 , remXµC  for the set ( )r
sµ  using 
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4) Determine the raw estimate ( )
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5) Compute the reduced remainder 
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6) Repeat steps 2 - 5 for the remaining data-dimensions. 

    

5.2 Local Maximization 

The algorithms described in the previous section are all based on grid search procedures. 
There are basically two drawbacks of the estimation procedure outlined so far. At first the 
grid search strategies are in general inefficient in terms of computational complexity, since we 
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calculate some function values to improve only one estimate. Secondly, a full search over all 
parameter dimensions is not feasible. Therefore, we have to break down the full multidimen-
sional search into one- or two-dimensional search steps. Consequently, we will inevitably 
ignore the coupling between parameters. This leads in turn to a considerable reduction in con-
vergence speed if two parameters of the estimated data model are coupled.  

Hence we make a step back to the formula (5.4). Basically we have to find the mini-
mum of the function  

 ( )( ) ( )( )γµBxRγµBx ⋅−⋅⋅⋅− −1H

nn . (5.49) 

Now we recall an important property of the data model. The model has continuous first and 
second order partial derivatives, which can be calculated algebraically. Namely, the score 
function (4.10) is the first gradient of (5.49). The calculation of the score function requires 
only the computation of ( )θs  and of the related Jacobian matrix ( ) ( )θsθD

θ
T∂

∂=  at θ . In Sec-
tion (4.2) we have already derived the expressions for ( )θD , see equations (4.68), (4.73), and 
(4.77). Furthermore, the second gradient at point θ  of the function to minimize (5.49) is the 
stochastic Fisher matrix as defined in (4.15). Hence, we reformulate the parameter estimation 
problem as follows 

 ( ) 0θxq =ˆ . (5.50) 

Since the Mahalanobis norm is not a convex function of the structural parameters µ  multiple 
solutions to (5.50) exist. No closed form solution is available for this optimisation problem. 
Therefore, we have to use an iterative procedure to find θ̂ . 

Candidate algorithms for the iterative minimization of (5.2) are the steepest descend 
[79], [80], the Newton-Raphson [22], the Gauß-Newton [22], [81], and the Levenberg-
Marquardt algorithm [82], [68]. All methods update the actual estimate { }iθ̂  along some de-
scend direction { }iθ̂∆ . The general parameter update expression for all gradient-based methods 
is 

 { } { } { }iii θθθ ˆˆˆ 1 ∆+=+ . 

If the new parameter { }1ˆ +iθ  reduces the Mahalanobis norm  

 { }( )( ) { }( )( ) { }( )( ) { }( )( )i

nn

ii

nn

i θsxRθsxθsxRθsx ˆˆˆˆ 1H11H1 −⋅⋅−<−⋅⋅− −+−+  (5.51) 

it is accepted. If the norm is not reduced, a new trial step { }iθ̂∆  has to be calculated. In the 
following, a short overview of the algorithms is given. 

5.2.1 Steepest Descent Method 

The steepest descend method updates the parameter vector { }iθ̂  along the gradient at { }iθ̂  

 { } { }( )nn

ii

sd Rθxqθ ,ˆˆ ⋅=∆ ς . 

Where λ  has to be chosen such that (5.51) is satisfied. The update equation of the steepest 
descend algorithm is  

 { } { } { }( )nn

iii Rθxqθθ ,ˆˆˆ 1 ⋅+=+ ς . (5.52) 

Expression (5.52) can be understood in terms of the EM algorithm as a one-dimensional 
search over the parameter ς . In infinite precision arithmetic the steepest descend algorithm 
will converge to the next local minima or saddle point. The advantage of the algorithm in 



5.2 Local Maximization  93 

    

general is the low computational cost of a single iteration. The disadvantage is the suboptimal 
search direction [22].  

5.2.2 Newton-Raphson Method 

The Newton or Newton-Raphson procedure is a means to find zeros of a smooth function. It 
is based on the assumption that the objective function is quadratic between the actual point 

{ }iθ̂  and the solution θ̂ . 

The Taylor series expansion of the log-likelihood function around 0θ  up to the quad-
ratic term yields 
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Using the definition of the score function (4.6) and the stochastic Fisher matrix (4.15) in the 
Taylor series expansion yields 
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Consequently, the Taylor series for the score function at point 0θ  is 

 ( ) ( ) ( )( )000 ,~,, θθRθxRθxqRθxq −−= nnnnnn JJJJ . (5.54) 

Using (5.50) in (5.54) yields the Newton-Raphson step for iterative maximum likelihood es-
timation as 

 { } { } { }( ) { }( )nn

i

nn

i-ii RθxqRθxθθ ,ˆ,ˆ~ˆˆ 11 JJJJ+=+ . (5.55) 

Observe, that the expression for the stochastic Fisher matrix is equivalent to the exact Hessian 
of the objective function at { }iθ̂ .  

The Newton-Raphson method converges only to a solution of (5.50) if the higher order 
terms neglected in the Taylor series expansion are small compared to the absolute value of the 
function approximation. For nonlinear least squares problems this condition is not always 
satisfied. Therefore, condition (5.51) may not be fulfilled by the provisional step { }1ˆ +iθ . One 
can reduce the step length to improve global convergence leading to the form 

 { } { } { }( ) { }( )nn

i

nn

i-ii RθxqRθxθθ ,ˆ,ˆ~ˆˆ 11 JJJJς+=+ . 

However, the reduction of the step size does not assure strict convergence of the Newton-
Raphson method. The crucial point is the selection of the exact Hessian, i.e., of the stochastic 
Fisher matrix as a projector for the gradient. The authors of [22] show that the exact Hessian 
is not necessarily positive definite. Consequently, the sign of the projected gradient may 
change and the method will not converge to the maximum of the likelihood function or to the 
minimum of the negative log-likelihood function. Hence the Newton-Raphson method is not 
globally convergent. Nevertheless, if the method converges to a solution it will need signifi-
cantly less iterations than the steepest descent algorithm. 

5.2.3 Gauß-Newton Method  

The Gauß-Newton method can be understood as a derivative of the Newton-Raphson method. 
The main advantage is the improved global convergence. As stated above the main drawback 
of the Newton-Raphson method is the choice of the exact Hessian to project the gradient. In 
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the Gauß-Newton method the Hessian is replaced by the first order approximation of the exact 
Hessian 

 { }( ) { }( )( )i

nn

i θDRθD ˆˆ2 1H −ℜ⋅ . 

Interestingly, this approximation of the Hessian is equivalent to the expression for the Fisher 
information matrix defined in (4.11). Since the Fisher information matrix is a covariance ma-
trix it is always positive semi definite. The iteration for the Gauß-Newton algorithm is 

 { } { } { }( ) { }( )nn

i

nn

i-ii RθxqRθθθ ,ˆ,ˆˆˆ 11 JJJJς+=+ . 

Again, the step length ς  has to be chosen such that (5.51) holds. The global convergence of 
the Gauß-Newton method is better than the global convergence of the Newton-Raphson 
method due to the choice of the approximated Hessian [22]. Nevertheless, also the conver-
gence speed of the Gauß-Newton algorithm is not always sufficient. The inverse of 

{ }( )nn

i Rθ ,ˆJJJJ  is subjected to numerical errors if the problem is bad conditioned at { }iθ̂ . Further-
more, the projected gradient { }( ) { }( )nn

i

nn

i- RθxqRθ ,ˆ,ˆ1JJJJ  may not point to the solution if the 
function to maximize or minimize is not quadratic close to { }iθ̂ .  

Close to the solution, the convergence speed of the Gauß-Newton algorithm is signifi-
cantly higher than the convergence speed of the steepest-descend algorithm. In the early itera-
tions, it cannot be expected that the modified-Newton method will converge quickly to a solu-
tion. However, locally a Gauß-Newton algorithm has at least super-linear convergence and 
quadratic convergence for zero residual problems (see, e.g., [83]).  

The application of the Gauß-Newton algorithm for high resolution propagation path 
parameter estimation has been described in [84], [85]. 

5.2.4 Levenberg-Marquardt Method 

The Levenberg method was introduced first in [82] and 19 years later derived in a different 
framework by D. Marquardt in [68]. For many nonlinear optimisation tasks, the Levenberg-
Marquardt algorithm is the method of choice (cf. [81], [86], and [87]). It belongs to the class 
of trust-region algorithms. The Gauß-Newton and the Newton-Raphson method are based on 
the assumption that the objective function is quadratic near { }iθ̂ . For nonlinear functions, this 
assumption holds only for a small region around { }iθ̂ . Consequently, both algorithms do not 
converge if the step size { }i

θ∆  is too large. The basic idea of the trust region algorithms is to 
constrain the step size such that the assumption of a quadratic objective function holds. The 
Taylor series for the residual ( ) ( )( )θsxLθr −= −1  at 0θ  produces the following linear model 

 ( ) ( ) ( )( )( )000
1

θθθDθsxLθr −−−≈ − , 

where L  denotes the decomposition of the covariance matrix LLR ⋅= H
nn . Hence the pre-

dicted Mahalanobis norm of the residual, assuming a quadratic objective function in { }iθ∆ , is 

 { }( ) { }( ) { }( ) { }( ) 2121

F

iii

F

i θθDθsxLθr ∆⋅−−≈ −+ . 

The idea behind the trust-region algorithms is to choose a step size { }iθ∆  such that  
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−

−+−+

θθDRθsxθRθθ

θsxRθsxθsxRθsx

JJJJ
. (5.56) 

The numerator in (5.56) is referred to as the actual change and the denominator is called the 
predicted change. If the ratio { }iρ  is close to one, the actual change of the objective function is 
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similar to the predicted change of the objective function that means we can trust in the 
step { }iθ∆ . In other words, the assumption of a quadratic function holds. If the ratio is close to 
zero or negative, the trust region must be shrunk. The trust region radius { }i∆  determines the 
trust region where { } { }ii ∆≤∆θ . Levenberg proposed in [82] to modify the Gauß-Newton 
method as follows 

 { } { } { }( ) { }( ) { }( )nn

ii

nn

iii

l RθxqIRθθθ ,ˆ,ˆˆˆ 11 −+ ++= ςJJJJ . (5.57) 

J. Nocedal and S. Wright have show in [88] that a { }iς  exist such that { } { }ii ∆=∆θ . They pro-
posed the following iterative procedure to determine its value. Given an initial value { }i

0ς and a 
trust region radius { }i∆ , compute the Cholesky factorisation in every iteration l   

 { }( ) { } { }( ) { }iii

lnn

i
UUIRθ

T
,ˆ =+ςJJJJ . (5.58) 

Using the decomposition solve { }( ) { } { } { }( )nn

ii

l

ii RθxqθUU ,
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=∆⋅  and { }( ) { } { }i
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i

l

i
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. Fi-

nally, update { }i
lς  as 
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The iteration is terminated if the ratio 
{ }

{ }i
l

i
l

ς

ς 1+  is close to one, i.e., if the update is below some tol-
erance. Observe that for positive { }i

lς  the Cholesky decomposition (5.58) exist since 
{ }( ) { } IRθ i

lnn

i ς+,ˆJJJJ  is positive semi definite. Using the solution { }iς  the update step { }iθ∆  is 
computed. Finally, the trust region has to be adjusted based on the ratio between the actual 
change and the predicted change of the objective function { }iρ , e.g., by 

 { }

{ } { }

{ }( ) { }
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∆
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4
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1 ,2min ρ

ρθ

 (5.60) 

where max∆  is the largest admissible trust region radius. Provided the initial trust region radius 
{ }0∆  is small enough, this solution for { }iς  assures that the Levenberg algorithm converges to 

the closest maximum or minimum of the objective function. The drawback of this approach is 
the computational complexity of the iteration (5.59). For problems with some hundred un-
knowns the Cholesky factorisation (5.58) and the computation of the solutions { } { }i

l

i

l zθ ,∆  is 
too expensive.  

Hence, a different suboptimal approach is often used for large-scale problems [89]. If 
the objective function is improved for a given { }iς  the weight is decreased by a certain factor, 
e.g., { } { }ii ςς 10

11 =+ . If the objective function is not improved the weight is increased, e.g., 
{ } { }ii ςς 101 =+ . In terms of maximum likelihood estimation improved means that the likelihood 

of the new parameter vector { }1+i
θ  is larger than the likelihood of { }i

θ . For the estimation of 
the propagation path parameters (DML), this is also equivalent to a decrease of the Maha-
lanobis norm (5.49).  

The resulting algorithm is computationally less expensive than an algorithm based on 
the approach of Nocedal and Wright. However, in a strict sense the simplified algorithm is not 
a trust region algorithm anymore, since we do not verify whether the assumption of a quad-
ratic objective function was valid or not. The simplified algorithm is sufficient for path pa-
rameter estimation if it is initialized with a parameter vector, which is close to the solution. 
The global search algorithm described in the previous section using a sufficiently dense 
search grid can ensure this.  
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It is instructive to analyze extreme values of the weight { }iς . If the weight { }iς  is sig-
nificantly smaller than the smallest eigenvalue iλ  of { }( )nn

i Rθ ,ˆJJJJ , i.e., ii ∀<< ,λς  the Leven-
berg step becomes a Gauß-Newton step 

 { } { } { }( ) { }( )nn

i

nn

iii RθxqRθθθ ,ˆ,ˆˆˆ 11 −+ += JJJJ . 

If the weight is larger than the maximum eigenvalue ii ∀>> ,λς , the Levenberg step becomes 

a Steepest Descent step 

 { } { } { }( )nn

iii Rθxqθθ ,ˆ1ˆˆ 1

ς
+=+ . 

As already mentioned the method described by D. Marquardt in [68] is similar to the 
Levenberg method. The main drawback of the Levenberg algorithm is that we ignore the met-
ric of the individual parameters. D. Marquardt observed that the main diagonal elements 
of { }( )nn

i Rθ ,ˆJJJJ  are related to the metric of the parameters. He proposed to scale the main di-
agonal elements of { }( )nn

i Rθ ,ˆJJJJ   by ς+1  yielding 

 { } { } { }( ) { }( )( ) { }( )nn

i

nn

i

nn

iii

m RθxqRθIRθθθ ,ˆ,ˆ,ˆˆˆ 11 −+ ++= JJJJJJJJ oς . (5.61) 

If the factor { }iς is much smaller than one, the step becomes a Gauß-Newton step, i.e.,  

 { } { } { }( ) { }( )nn

i

nn

iii RθxqRθxθθ ,ˆ,ˆˆˆ 11 −+ += JJJJ . 

Moreover, if the weight { }iς  is significantly larger than 1.0 it becomes a Steepest Descent 
method with matched metric, i.e., 

■ { } { } { }( )( ) { }( )nn

i

nn

iii RθxqRθxIθθ ,ˆ,ˆˆˆ 11 −+ += JJJJoς . 

Therefore, the weight { }iς  is a relative value in (5.61) and an absolute value in (5.57). Hence, 
if we apply the Marquardt method, we can make sure that the algorithm starts with small steps 
by choosing a value, which is significantly larger than one. 

Since the algorithms developed by K. Levenberg and D. Marquardt are similar they 
are usually called Levenberg-Marquardt methods in the literature. The complete algorithm is 
outlined in Table 5-3. 
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Table 5-3: Iterative optimisation of the parameters spθ using the Levenberg-Marquardt 

algorithm. 

Input: observation x , initial solution { }0θ̂ , covariance matrix nnR , ς . 

 

1) Compute the component matrices of the Jacobian matrix Table 4-2 - Table 
4-4. 

2) Compute the score function  

 { }( ) { }( ) { }( )( ){ }i

nn

i

nn

i θsxRθDRθxq −ℜ⋅= −1H2, . 

3) Compute the approximation of the Hessian using equations (4.70), (4.75), or 
(4.78) 

 { }( )nn

i Rθ ,ˆJJJJ . 

4) Compute the parameter update 

 { } { } { }( ) { }( )( ) { }( )nn

i

nn

i

nn

iii

m RθxqRθIRθθθ ,ˆ,ˆ,ˆˆˆ 11 −+ ++= JJJJJJJJ oς . 

5) Check strict maximization { }( ) { }( )ii θxθx LL >+1 ; yes: set 4
ςς =  go to 6. , no: 

set ςς 8=  go to 4. 

6) Check convergence; not converged: set 1+= ii  and go to 1. 

 
Observe that in contrast to other large-scale problems the computation of the Hessian is com-
putationally inexpensive. For the computation of the gradient and the Mahalanobis norm the 
same approach as in (5.37) - (5.39) can be applied to avoid the computation of the full Jaco-
bian matrix and of the full matrix ( )µB . 

The following examples demonstrate the performance of the Gauß-Newton based al-
gorithm compared with the SAGECPE1 or AP algorithm. The simulation results in Figure 5-1 
and Figure 5-2 compare the convergence behaviour of the gradient-based ML search to the 
parameter wise search of the SAGECPE1 in a noise free, closely spaced coherent path sce-
nario. In this case, the paths differ only in DoA and are separated by 5 deg. in angle of arrival 
which is closer than the Rayleigh resolution of the array. The path magnitudes are equal and 
the phase difference is zero in Figure 5-1 and 180 deg. in Figure 5-2. Although these constel-
lations maybe considered as worst-case situations, they frequently occur in a practical propa-
gation scenario since path length difference has to change only by 2.5 cm to move from one 
worst-case situation to the other. The antenna array was a 24-element circular patch array. 
Only matched vertical polarisation was considered. The two figures depict the iteration steps, 
which are plotted on the cost function surface. Note that both constellations cause completely 
different cost function surfaces, which are characterized by shaped, narrow valleys. The pa-
rameter wise search of the SAGECPE1 forces very small zigzag steps in the direction of the 
individual parameters, which can be seen most clearly in Figure 5-2. In both cases, final con-
vergence requires more than 2000 iterations of the SAGECPE1 procedure whereas the gradi-
ent search needs only 26 and 13 steps, respectively, to reach the solution. Figure 5-2 (right) 
also indicates the initial SAGE steps before starting the final gradient steps. The example also 
shows that quantization of the data model would be detrimental since very small steps are 
required by the SAGECPE1 in order to achieve some progress. The example also shows that 
the data model quantization is not directly related to the desired parameter quantization. Actu-
ally much finer steps are required. Figure 5-3 further compares coordinate wise (alternating) 
and gradient based optimisation in terms of the number of iteration vs. the angular separation 
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of two coherent paths. It becomes clear that especially for paths which are closely spaced than 
Rayleigh resolution the number of the required iterations becomes prohibitively large. 
 

   
Figure 5-1: Convergence behaviour of the SAGECPE1 algorithm (right) compared to the 
gradient based algorithm (left) in case of two strong coupled paths with an angular separation 
of 5° and a phase difference of  0°. The solution (minimum) is (0°,-5°). 

    
Figure 5-2: Convergence behaviour of the SAGECPE1 algorithm (right) compared to the 
gradient based algorithm (left) in case of two strong coupled paths with 5° angular separation 
and 180° phase difference. The solution (minimum) is (0°,-5°). 
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Figure 5-3: Convergence speed of SAGECPE1 and the Gauss-Newton based algorithm as a 
function of path separation. 

5.2.5 Optimisation of Parameter Subsets 

Now we recall the discussion about the Fisher information matrix and parameter coupling. 
We have discussed in Section 4.1.4 that some model parameters are strongly coupled and 
some are nearly uncoupled. This can be exploited to reduce the computational complexity of 
the gradient-based algorithms. We divide the complete parameter space into non-overlapping 
parameter subspaces, and optimize the subspaces individually. This approach can be under-
stood as an application of the SAGE [62] method to the parameter estimation problem (5.1). 
However, in contrast to other channel parameter estimation implementations we choose the 
parameter subspaces based on parameter coupling. The issue of parameter coupling has al-
ready been discussed in Section 4.1.4. The influence of parameter coupling is also clearly 
visible in Figure 5-3. If the coupling between the parameters is weak, i.e., the parameters are 
well separated in the parameter domain, the convergence speed of the SAGECPE1 / AP algo-
rithm is sufficient.  

Suppose the second partial derivative of the log-likelihood function with respect to the 
two parameters iθ , kθ  is zero. This implies that a change of the parameter estimate iθ̂  has no 
direct influence on the parameter kθ̂  and vice versa. Therefore, we can at first minimize 
(5.49)  with respect to iθ  and than with respect to kθ . Now consider the special case where all 
parameters are uncoupled, i.e., 

  ( ) kiki
ki

≠∀∀=
∂∂
∂

,,0
2

θxL
θθ

. 

Consequently, the Hessian is a diagonal matrix and we can use the steepest descent method or 
the AP algorithm to maximize the log-likelihood function without sacrificing the convergence 
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speed of the parameter estimator. The parameter update step of the steepest descent algorithm 
respecting the metric of the individual parameters is 

 { } { } { }( )( ) { }( )nn

i

nn

iii

m RθxqRθIθθ ,ˆ,ˆˆˆ 11 −+ += JJJJo  . 

It is important to observe that the inversion of the diagonal matrix { }( )nn

i RθI ,ˆJJJJo  requires 
( )LO  operations only. Now recall that only some model parameters are typically strongly 

coupled as already discussed in Section 4.1.4. Consequently, the complete parameter space Θ  
can be divided into LK ≤<1  non-overlapping subspaces kΘ . In other words, we can break 
the parameter vector θ  into smaller parameter vectors kθ , and assume that  

 ( ) kiki
ki

≠∀∀=
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∂

,,
T

2

0θx
θθ
L . (5.62) 

If we reorder the parameters in the parameter vector θ , keeping the parameter-groups kθ  to-
gether the approximation of the Hessian becomes, due to (5.62), a block-diagonal matrix. As a 
first result of this approximation, the computational complexity of the Levenberg-Marquardt 
algorithm is reduced. However, this approximation can be further exploited if we generalize 
the AP algorithm. In the alternating projection algorithm, all parameters are updated sequen-
tially. Since we do not want to sacrifice the overall convergence speed, we apply this strategy 
to the parameter groups, i.e., we update the parameter groups sequentially. However, within a 
parameter group we apply the Levenberg-Marquardt method. 

The computational complexity can be reduced further if we assign all parameters of a 
propagation path to one parameter group. That means we form groups of coupled propagation 
paths instead of coupled parameters. Using this approach, we are able to optimize the parame-
ters of the propagation path groups individually. As a side effect, the computational effort is 
often reduced further since the parameters of some path groups converge faster than others. 
Among other things, the complete algorithm can be understood as an application of the SAGE 
framework, described by Hero and Fessler [62], to the maximum likelihood estimation prob-
lem (5.2), where the parameter subspaces kΘ  are chosen such that the overall convergence 
speed is not impaired.  

5.2.6 Estimation of the Covariance Matrix of the Parameter Estimates 

A by-product of the Gauß-Newton based algorithms is an estimate of the Fisher information 
matrix ( )nnRθ,ˆJJJJ . Hence, the estimator does not only provide an estimate of the path parame-
ters spθ , but also an estimate of the covariance matrix of the estimation error. It is well known 
from estimation theory [40] that the maximum likelihood parameter estimates are asymptoti-
cally Normal distributed, if the data model is continuous differentiable in θ  with finite differ-
entials. Since the data model is expressed as a linear projection of complex exponentials, this 
condition is fulfilled. That means we can interpret the parameter estimate θ̂  as a vector draw 
from a multivariate normal distribution, i.e., 

 ( )( )nn

-
das

Rθθθ ,,~ˆ 1
..

JJJJN . 

Here as.d. stands for asymptotic in distribution. Since we have no access to the real parameter 
vector θ  we replace it by its ML-estimate (maximum likelihood) θ̂  leading to 

 ( )( )nn

-
das

Rθθθ ,ˆ,ˆ~ˆ 1
..

JJJJN . (5.63) 

Since the amount of independent samples is significantly larger than the number of model 
parameters in channel sounding measurements, this approximation of the distribution of the 
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estimates fits very well to the real distribution due to the central limit theorem. Further discus-
sions about and examples for the distribution of channel parameter estimates can be found in 
[90] and [36]. It is important to note that the approximation (5.63) is only valid if the number 
of measurements is sufficiently large in respect to the complexity (number of parameters) of 
the DML problem. A discussion about the efficiency of DML estimators for large M can be 
found in [49]. 

The knowledge of the approximate distribution (5.63) of the parameter estimates in-
creases their value as a radio channel measurement result significantly. Furthermore, it is the 
prerequisite for further processing of the parameters. In principle the estimated channel pa-
rameters can be treated again as observations having the form 

 θnθθ +=ˆ , 

where the stochastic process θn  is distributed according to ( )( )nn

- Rθ0 ,ˆ, 1JJJJN . This is of crucial 
importance if someone wants to use the parameter estimation results to develop a radio chan-
nel model or derive the related probability density functions for the channel parameters. If the 
error distribution of the parameter estimates is ignored the derived probability density func-
tions may partially represent the error of the parameter estimator and not only of the channel 
parameters θ . A discussion of this problem can be found in [90].  

For the parameter estimation problem, the information about the variance of the pa-
rameter estimates is the basis for a new approach to model selection in high-resolution chan-
nel parameter estimation as shown in the next section. 

5.2.7 Model Order Selection for Gauß-Newton based Algorithms 

The estimate of the parameter variance given in Section 5.2.6 formula (5.63) together with the 
discussion about the relative variance of the path weights in Section 4.5 equation (4.100) 
gives rise to a new approach for model selection. In particular, since we have to choose the 
number of components contained in the model describing the concentrated propagation paths, 
the problem to solve is a model order selection problem. The term model order selection re-
fers to the fact that we have to choose the number of propagation paths, but not to pick the 
type of the model for the individual paths. The fundamental idea is to use the condition 
(4.100) as a criterion for model order selection, i.e., we introduce the following constraint for 
the path weights 

 
{ }

1
var 2

2 << γ
γ

γ
ε . (5.64) 

That means we require that the certainty of the estimated path magnitude must be larger than 
its uncertainty. We require that the relative variance of the measured path magnitude is 
smaller than 2

γε . Observe, that the constraint (5.64) can be directly interpreted as a rule to 
decide, whether the estimated propagation path belongs to the circular normal distributed 
dense multipath components or not. If we choose 3695.02 =γε  there is probability of 10% 
that we select a propagation path, which belongs to the noise or DMC process. If we choose 

0924.02 =γε  there is a probability of 1% that we choose a propagation path which belongs to 
the noise or DMC process. See also Section 4.5 for a discussion of the bound 2

γε . This ap-
proach is a means to avoid so-called path splitting. A typical sign of path splitting are ex-
tremely large path magnitude estimates of two propagation paths having almost the same 
structural parameters, i.e., similar angles, time delay of arrival, and Doppler shift. Typically 
the phase difference between the two estimated closely spaced paths is close to π± . That 
means the superposition of the two estimated paths approximate the observed propagation 
path very well, however the parameter estimates itself does not represent the physical reality. 
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This effect is not restricted to maximum likelihood estimation. For example, it can also be 
observed if the ESPRIT algorithm is applied to channel parameter estimation. This is the main 
reason why the often proposed strategy for model order selection in channel parameter esti-
mation, to use a “large enough number of propagation paths such that all dominant impinging 
waves can be estimated” [63], [91], [92] does not work in practice.  

Figure 5-5 shows an example of a measured channel impulse response and the related 
parameter estimates in the time delay domain. For every estimated path a dot is plotted repre-
senting the parameter pair pp τγ ˆ,ˆ . Furthermore, the estimated variance of the estimated path 
weight is also shown as a dot. The dots related to a single propagation path are connected by a 
line. Since the power-delay-profile PDP is shown in a logarithmic scale, the lines represent 
directly the signal to noise ratio of the estimated path magnitudes. In this example path split-
ting has occurred twice. There is a pair of closely spaced paths at 3050ns and another pair at 
3370ns. The SNR of the first pair is negative, i.e., the estimation error of the path magnitudes 
is larger than the power of the paths. The estimated path weights are approximately 10dB lar-
ger than the magnitude of the observed propagation path, nevertheless it is important to note 
that the approximation of the path by the two propagation paths is reasonably good. This is an 
important observation. The goodness of fit, i.e., the approximation of the impulse response is 
by no means a measure for the goodness of the parameter estimates. In the same context we 
have to stress the fact that an overestimation of the model order will promise a good approxi-
mation of the channel observation, but may lead to incorrect parameter results. Nevertheless, 
the overestimation of the model order is a good approach to model order selection if it is com-
bined with the condition (5.64). As already discussed the overestimation of the model order is 
leading to path splitting. Furthermore, it leads to the estimation of propagation paths with low 
power. In both cases the relative variance of the estimated path weights will be too large. 
Consequently, we can estimate the model order in the following way. First, we overestimate 
the number of concentrated propagation paths. In a subsequent step we remove the estimated 
paths having a small or negative SNR, starting with the worst estimate. If all estimated propa-
gation paths meet the condition (5.64), we have an estimate of the model order and a reliable 
set of parameter estimates. 
The advantage of the outlined approach to model order selection is that the model order is 
chosen such that the parameter estimates are reliable. The disadvantage is that we have to 
overestimate the model order and consequently increase the computational effort. However, 
this drawback is acceptable if we consider that all existing algorithms for model order selec-
tion, such as the Akaike information criterion [44] or the Minimum Description Length [65], 
[28], [44] requires the computation of the log-likelihood values of the candidate models as 
well and have therefore the same or even a higher computational complexity.  

It is instructive to observe, that the SNR of an estimated propagation path, which is 
well separated from the others, is determined by the path magnitude and power of the dense 
multipath components only having the same time delay of arrival, provided of course that the 
measurement noise is small enough. This is an example for the inherent limitation of the 
reachable path parameter variance through the radio channel itself (cf. Section 4.1.5). Fur-
thermore, the estimated propagation paths close to the direct path (line of sight) show a sig-
nificant increase in the variance of the estimated path weights. This is a result of the parame-
ter coupling of the closely spaced paths as discussed in Section 4.1.4. In simple terms a short 
distance between two propagation paths in the parameter space leads to noise enhancement.  

Figure 5-7 shows an example for a reliable parameter set, i.e., all paths have a positive 
SNR. 
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Figure 5-4: An example for a measured CIR and the related parameter estimates (four paths 
unreliable). The dashed line shows the PDP of the specular propagation paths reconstructed 
with the measurement bandwidth and the dotted line represents the PDP of the measured 
DMC and noise. The straight line shows the estimated PDP of the DMC and the measurement 
noise. The blue and red dots denote the magnitude of the estimated path weights and the esti-
mated variance of the path weights, respectively. The length of the lines connecting the dots 
represents the SNR of the propagation path.  

 

 
Figure 5-5: Magnified view of Figure 5-4, an example for a measured CIR and the related 
parameter estimates (four paths unreliable). 
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Figure 5-6: An example for a measured CIR and the related parameter estimates (all parame-
ters reliable). The dashed line shows the PDP of the specular propagation paths reconstructed 
with the measurement bandwidth and the dotted line represents the PDP of the measured 
DMC and noise. The straight line shows the estimated PDP of the DMC and the measurement 
noise. The blue and red dots denote the magnitude of the estimated path weights and the esti-
mated variance of the path weights, respectively. The length of the lines connecting the dots 
represents the SNR of the propagation path. 

 

 
Figure 5-7: Magnified view of Figure 5-6, an example for a measured CIR and the related 
parameter estimates (all parameters reliable). 
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Another way to select an appropriate model for a given observation are so called 
model selection criteria. A criterion often proposed for model order selection is the minimum 
description length (MDL) criterion [16], [17], [93]. The objective function of the MDL crite-
rion is 

 ( ) ( )( )( ) ( ) ( )( ) ( )
2

ˆˆln
Pp

PpPd PP

MDL +−=+−= θxθx Lp , (5.65) 

where ( )Pp  is a penalty term describing the complexity of the model P . The minimum of 
the criterion function ( )Pd  gives an estimate of the model order by 

 ( )( )Pdminargˆ =P . 

Another criterion also proposed for model selection is the Akaike Information Criterion (AIC) 
[44], [93]. The related criterion function is 

 ( ) ( )( )( ) ( ) ( )( ) ( )PpPpPd PP

AIC +−=+−= θxθx ˆˆln Lp . (5.66) 

The main drawback of both information theoretic criteria is the expensive computation of the 
first term ( )( )PθxL . We have to estimate the solutions ( )Pθ̂  for all possible models that are not 
feasible in general. An exemption are subspace based algorithms such as ESPRIT, MUSIC, 
and RARE. Here, the estimation of the model order is carried out during the subspace estima-
tion step, namely when signal and noise subspace are separated. However, it should be noted 
that the model order determined from the singular values or eigenvalues as proposed in [28], 
[65] is not necessarily the best choice for the parameter estimation algorithm used in the sub-
sequent steps to compute the actual parameter estimation results. The model order selection 
criteria (5.65) and (5.66) require that the parameter estimator employed is a maximum likeli-
hood estimator for the model parameters. If the parameter estimator is statistically less effi-
cient the assumptions made during the derivation of MDL and AIC are not fulfilled. Never-
theless, the solution described in [28], [65] provides at least a raw estimate of the model order. 
Therefore, the model order selection criteria outlined above are the methods of choice if the 
multidimensional Unitary ESPRIT is applied to channel parameter estimation. 

Finally, it should be noted that the proposed algorithm for model order selection as 
well as the AIC and MDL criterion would inevitably fail, if the underlying candidate models 
do not fit to the observation. That means for the problem at hand, the number of the concen-
trated propagation paths can only be estimated if the contribution of the dense multipath com-
ponents to the channel observation is taken into account. The advantage of the proposed crite-
ria to determine the number of concentrated propagation paths is that we evaluate the chosen 
model order and get information on how the model must be changed to improve the result. 
The drawback is we have to overestimate the model order at the beginning. However, this is 
acceptable since the number of propagation paths changes slowly over time. To conclude the 
outlined strategy for model order selection is a feasible way to determine the number of 
dominant propagation paths in a radio channel observation.   

5.2.8 Problem Conditioning 

A crucial point of the gradient-based algorithms is the condition of the Hessian or its ap-
proximation. The approximation of the Hessian used in the Gauß-Newton (Section 5.2.3) and 
the Levenberg-Marquardt (Section 5.2.4) algorithm is given by the expressions for the Fisher 
information matrix derived in Section 4.2. Observe that the second order derivatives with re-
spect to the nonlinear model parameters are functions of the path weights, whereas the second 
order derivatives with respect to the linear parameters are not. That means they can improve 
the condition of the approximated Hessian by scaling the observation and the path weights 
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appropriately. Let ( )nnRµ,JJJJ  be the block matrix of ( )nnRθ,JJJJ  describing the Fisher informa-
tion of the nonlinear parameters only and ( )nnRγ,JJJJ  the block matrix describing the Fisher 
information of the linear parameters only. An appropriate scaling factor for the channel ob-
servation is given by the maximum and minimum values of the main diagonal elements of the 
two block matrices  

 ( ){ }( )
( ){ }( )

( ){ }( )
( ){ }( )

4
,diagmin

,diagmin

,diagmax

,diagmax

nn

nn

nn

nn

mima Rµ

Rγ

Rµ

Rγ

JJJJJJJJ

JJJJ J⋅=ι . (5.67) 

One should observe, that mimaι  is not the optimum solution to the minimization problem  

 ( )( )( )ιι
ι

,,condminarg nnopt RθJJJJ= . 

However, it provides a reasonable trade off between computational complexity and condition 
improvement. The determination of the optimum value optι  is computationally much more 
expensive, than the search for the maximum and minimum values of the main diagonal ele-
ments of the two block matrices ( )nnRµ,JJJJ  and ( )nnRγ,JJJJ . 

If the matrix ( )nnRθ,JJJJ  is badly conditioned and the observation has been scaled by 

mimaι , then the observed information is not sufficient to determine all parameters of the actual 
model. Recalling the discussion in Section 5.2.7 about the relative variance of the path 
weights and model order selection this problem can be solved by determining the path having 
a path weight with a relative variance close to or larger than 1.0.  If the problem is badly con-
ditioned, we have one or more very small eigenvalues in ( )nnRθ,JJJJ . That means some parame-
ters have a very large variance in a transformed parameter space. Consequently, one or more 
propagation paths have to be removed from the data model since they cannot be estimated 
reliably.  

To summarise, badly conditioned problems can be avoided by appropriate scaling of 
the channel observations using (5.67) and by application of the proposed model order selec-
tion criteria outlined in Section 5.2.7.  

5.2.9 Implementation Issues 

For the iterative maximum likelihood estimation of the parameters spθ  using a Gauß-Newton 
based algorithm, three basic function blocks have to be implemented. Namely the gradient, 
the approximation of the Hessian, and the negative log-likelihood function, i.e., the Maha-
lanobis norm have to be computed. Furthermore, for the estimation of γ̂  given the structural 
parameters µ̂  the computation of (5.5) (BLUE) is required. To study the general structure of 
the four function blocks we introduce abstract versions of the data model ( )spθs  and the Jaco-
bian matrix (4.68), (4.73), and (4.77). The data model has the general structure 

 ( ) ( )γBBBθs 123 ◊◊=sp , 

and the Jacobian matrix can be expressed as 

 123 DDDD ◊◊= . 

The related component matrices have sizes PM

i
i×∈CB  and LM

i
i×∈CD , where L  denotes the 

number of real valued parameters in 1×∈ L

sp Rθ . Furthermore, we define the covariance matrix 
of the stochastic process n  using the covariance matrices related to the three dimensions 

ii MM

i

×∈CR  as 

  123 RRRR ⊗⊗=nn . 
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The expressions for the BLUE, the Hessian, the gradient, and the Mahalanobis norm are 
summarised in expressions (5.68) to (5.71). 
 
BLUE: 

 

( )
( ) ( ) ( ) ( )( ) ,
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Approximation of the Hessian (Fisher information matrix): 
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Gradient: 
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Mahalanobis norm (negative log-likelihood function): 
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Observe, that all expressions above requires the computation of a term of Type I having struc-
ture 

 1
1

1
H
12

1
2

H
23

1
3

H
3 BRBBRBBRB

−−− oo . 

The computational complexity of an algorithm implementing this basic block is, depending 
on the structure of the covariance matrices iR  (see also Section 6.1.12), 
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and 
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
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Hence, the computational complexity is roughly proportional to the square of the propagation 
paths and the sum of the samples taken in the individual data domains DR  ∑ =

DR

i iM
1

. In con-
trast, it is easy to see that the computation of a term of Type II requires an algorithm having 
computational complexity ∏ =

DR

i iMP
1

. That means the computation of terms of Type II is 
typically by far more expensive than the computation of terms of Type I. 

 As a first result, we can conclude that the computation of the Hessian is, in contrast to 
other mid- or large-scale problems, feasible since it contains only a term of Type I. This is 
especially true if we exploit the redundancies in the Jacobian matrices (4.68), (4.73), or 
(4.77). Furthermore, the computational complexity of one iteration of any gradient based al-
gorithm for spθ̂  is proportional to the number of propagation paths and to the number of sam-
ples in one radio channel snapshot 1×∈ M

Cx . This estimate of the computational complexity 
holds as long as 3LM >> , or the parameter subset update strategy outlined in Section 5.2.5 is 
employed. Otherwise, the computation of the update step { }i

θ∆  (cf. expressions (5.57) and 
(5.61)) will determine the computational complexity of the parameter update step since the 
solution to a system of L  equations has to be found.  

Since the computation of terms having structure of Type II determine the computation 
time of the whole algorithm, we discuss in the following a way to implement the product 

 ( ) xBBy
H

1RRD
◊◊= K . (5.72) 

A straightforward way to compute y  is to form 
1RRD

BBB ◊◊= K  and to compute xBy H= . 
The drawback of this approach is that we need a large amount of memory to store the full 
matrix B . An algorithm, which avoids the explicit computation of B  is outlined in Table 5-4. 
In addition to the reduced memory requirements, the outlined algorithm is significantly faster 
than the direct approach since the first processing step is formulated as a matrix-matrix multi-
plication. In today’s layered memory architectures the time needed to compute the product of 
two matrices is mainly determined by the number of floating point operations the FPU is able 
to carry out in a given time, especially if the matrices involved are large. In contrast, the com-
putation of a matrix–vector product is mainly determined by the memory-bandwidth of the 
system if the involved matrix is large. The algorithm outlined in Table 5-4 is still suboptimal 
in terms of the required data transfers between FPU and memory. An optimal implementation 
of (5.72) is described in [51]. Furthermore, the aforementioned redundancies of the Jacobian 
matrix can easily be exploited if the outlined algorithm is used. In addition, the computation 
of the full Jacobian matrix D  is not feasible for example if parameters from broadband 
MIMO-channel measurements have to be estimated.  
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Table 5-4: Memory efficient Computation of the Product ( ) xBBy
H

1RRD
◊◊= K  

1) Compute the matrix { }xBZ matH
1

T
1 =  

2) for Pk ,,1K= do 

3.1)   { }
k11 Zz =  

3.2)   for DRr ,,2K=  

       Compute the vector matrix product { } { }1
TT mat −= rkrr zBz . 

   end 

3.3)   
DRky z=  

 

To summarize, a parameter update step of the algorithm outlined in Table 5-3 has ap-
proximately linear computational complexity in the number of concentrated propagation paths 
P , and in the number of data samples M . The iterative maximum likelihood estimator can be 
implemented without forming the full matrices D , and B  explicitly.  

5.3 Subspace Based Algorithms 

Another class of estimators, which can be applied to channel parameter estimation, is the class 
of so-called subspace based algorithms. The most prominent representative of this class of 
parameter estimators is the ESPRIT algorithm. It has been applied to radio channel parameter 
estimation for 10 years [94], [58], [59], [15], [1], [61], [95], [28], [96], [97], [98], and [99]. 
However, also the RARE and MUSIC algorithm have been applied to high-resolution channel 
parameter estimation from radio channel sounding measurements [100], [101], [102] and 
[103]. The general model [44] used in all subspace-based algorithms models oM  observations 

[ ] o

o

MM

M

×∈= CxxX K1  by  

 [ ] ( ) NSµBxxX +==
oMK1 . (5.73) 

Here, the matrix oMP×∈CS  represents samples of signals received from P  signal sources and 
the matrix oMM×∈CN  (the measurement noise). In general it is assumed, that the signal co-
variance matrix 

 { }H1E SSRSS
oM

=  

has full rank ( ) P=SSRrank  and that the number of observations is large 1>>oM . The sec-
ond assumption guarantees that the estimate of the data correlation matrix 

 H1ˆ XXRXX
oM

=  (5.74) 

has at least rank P . Furthermore, the algorithms are constructed on the assumption that the 
correlation matrix has the structure 

 ( ) ( ) NNSSXX RµBRµBR += H , 

where { }H1E NNRNN
oM

=  is the noise covariance matrix. In the context of high-resolution 
parameter estimation it is crucially important to realise that only one observation of the radio 
channel is available as discussed in Chapter 2. Consequently, the data correlation matrix can-
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not be estimated using (5.74). A solution to this problem is the so-called subarray-smoothing 
technique [104], [105].  

If an observed radio scenario contains highly correlated or even coherent sources, the 
signal correlation matrix SSR  will have a rank, which is smaller than the number of 
sources P . Consequently, a signal subspace having rank P  could not be estimated from the 
estimated data correlation matrix (5.74) as shown for example in [104]. 

 The subarray smoothing techniques has been developed for uniform linear arrays to 
overcome this problem. The idea is to decompose the uniform linear array into smaller over-
lapping subarrays. Using this approach the number of independent measurements can be in-
creased, where the array aperture is decreased to the size of the subarrays. Using these ap-
proach subspace-based algorithms can be used for parameter estimation even in scenarios 
with coherent sources. The subarray smoothing can also be applied to increase the number of 
independent observations in radio channel parameter estimation. 

In radio channel parameter estimation, the generalised form of subarray smoothing the 
multidimensional smoothing technique [65], [44] has to be applied. It is important to keep in 
mind that the availability of only one observation is the reason why the application of multi-
dimensional smoothing is necessary. Although, subarray smoothing is often discussed in 
combination with ESPRIT it is a signal processing technique on its own. To be precise, it is a 
signal processing technique for signal-subspace estimation and does not imply the subsequent 
application of the ESPRIT [106], [44], [107], the Unitary ESPRIT [65], [44], or the multidi-
mensional Unitary ESPRIT [65], [44]. For example, the multidimensional smoothing tech-
nique is also a prerequisite for the application of the RARE algorithm [66], [67], [65] to radio 
channel parameter estimation. 

An implicit result of the discussion about multidimensional smoothing for signal sub-
space estimation for subspace based channel parameter estimation is that the signal model 
must correspond directly or by a linear transformation to the model   

 ( ) ( ) γµBθs ⋅= , (5.75) 

where the signal modes ( )µB  must have the structure 

 ( ) ( )( ) ( )( )1µAµAµB ◊◊= KPR . (5.76) 

If the measured channel sounding data can be transformed into the data model (5.76) by a 
linear projection, we say the observed data exhibits a hidden rotational invariance structure. 
The processing of data having hidden rotational invariance structure is discussed in section 
5.3.11. Observe that equation (5.76) implies that the number of data-dimensions is equal to 
the number of parameter dimensions DP RR = . See also Section 2.4.5 for a discussion of data- 
and parameter dimensions.  

To summarise, the availability of only a single observation (single snapshot case) is 
the reason why multidimensional smoothing must be applied in channel parameter estimation 
from channel sounding measurements. Consequently, the applicability of subspace based 
high-resolution parameter estimators is restricted to a subset of the available antenna array 
structure. The observed channel sounding data have rotational invariance structure if uniform 
linear arrays or uniform rectangular arrays are used throughout the measurements. Further-
more, the measured data exhibits a hidden rotational invariance structure if a circular uniform 
beam array (CUBA) is used at the Tx- and/or the Rx-site to observe the radio channel. The 
CUBA-ESPRIT algorithm was first published first in [108]. The algorithm is outlined in Sec-
tion 5.3.12. Finally, it should be noted that uniform circular arrays have approximately hidden 
rotational invariance structure. Consequently, subarray smoothing is also applicable if a UCA 
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has been used to measure the radio channel. However, the parameter estimates determined by 
a signal subspace based parameter estimator will be biased since the UCA data model only 
approximately exhibits the rotational invariance structure. Additionally, the elevation angles 
of the propagation paths at the UCA must be the same for all propagation paths and known a 
priori, otherwise, the projector for the transformation of the UCA output data to data having 
approximately rotational invariance structure cannot be constructed. Altogether, if a UCA is 
used to measure the radio channel it is preferable to use the maximum likelihood estimator 
outlined in the previous sections.  

In the next sections, the signal subspace estimation from channel sounding measure-
ments is discussed. We will mainly focus on memory efficient techniques for signal subspace 
estimation. Especially the naïve implementation of multidimensional smoothing and of the 
subsequent signal subspace estimation step using the EVD (eigenvalue decomposition) or 
SVD (singular value decomposition) will lead to very large matrices. This is all the more true 
if we want to estimate channel parameters from MIMO channel sounding measurements. 

5.3.1 Signal Subspace Estimation for Polarimetric Measurements  

Subspace based algorithms can also be used for DoA or DoD estimation if polarimetric uni-
form linear or rectangular arrays (PULA, PURA) has been used while measuring the radio 
channel. Each antenna element of a PULA/PURA has two output ports, one port for horizon-
tal ( )ϕe  and one for vertical ( )ϑe  polarisation. We can interpret the output signal of such an 
antenna array as the output signals of two independent uniform linear or rectangular arrays, 
respectively.  In both cases the observed data show the same rotational invariance structure. 
An efficient direction and polarisation estimation algorithm for a special kind of antenna ar-
rays, so called COLD arrays (co-centred orthogonal loop and dipole), has been proposed in 
[109]. However, this algorithm is not applicable to channel parameter estimation since differ-
ent antenna arrays are used. Therefore, we outline in the following an alternative approach to 
signal subspace based direction of departure and/or direction of arrival estimation for po-
larimetric antenna arrays. 

Let us introduce the common complex gain of the antenna array elements (cf. Section 
2.4.2) for horizontal and vertical polarisation at the Tx-site 

 ( )( )T

pTHcomb Ω, , ( )( )T

pTVcomb Ω,  (5.77) 

and at the Rx-site 

 ( )( )R

pRHcomb Ω, , ( )( )R

pRVcomb Ω, , (5.78) 

where ( ) [ ]T,, pTpT

T

p ϑϕ=Ω represents the DoD and ( ) [ ]T,, pRpR

R

p ϑϕ=Ω  the DoA of path p . 
Now we combine the common complex gain of the antenna array elements with the respective 
path weights HHγ , HVγ , VHγ , VVγ  yielding 

 ( )( ) ( )( ) ( )( ) ( )( )[ ]T,,,1,1,1, PHH

R

PRHcom

T

PTHcomHH

R

RHcom

T

THcomHH bbbb γγ ΩΩΩΩ=′ Kγ , 

 ( )( ) ( )( ) ( )( ) ( )( )[ ]T,,,1,1,1, PHV

R

PRVcom

T

PTHcomHV

R

RVcom

T

THcomHV bbbb γγ ΩΩΩΩ=′ Kγ , 

 ( )( ) ( )( ) ( )( ) ( )( )[ ]T,,,1,1,1, PVH

R

PRHcom

T

PTVcomVH

R

RHcom

T

TVcomVH bbbb γγ ΩΩΩΩ=′ Kγ , 

and, 

 ( )( ) ( )( ) ( )( ) ( )( )[ ]T,,,1,1,1, PVV

R

PRVcom

T

PTVcomVV

R

RVcom

T

TVcomVV bbbb γγ ΩΩΩΩ=′ Kγ . 
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If polarimetric uniform linear or rectangular arrays have been applied at both link ends, we 
get four measurements of the radio channel sharing the same rotational invariance structure 

( ) ( )( ) ( )( )1µAµAµA ◊◊= KR . We combine the measurements in one matrix polX  having struc-
ture 

 
[ ] ( ) ( ) ( ) ( )[ ]

( ) [ ] .NγγγγµAX

NγµAγµAγµAγµAxxxxX

+′′′′⋅=

+′⋅′⋅′⋅′⋅==

VVVHHVHHpol

VVVHHVHHVVVHHVHHpol
 (5.79) 

The structure of the data matrix polX allows multidimensional smoothing as a pre-processing 
step. All subspace-based algorithms developed for non-polarimetric antenna arrays are as well 
applicable for parameter estimation from measurements carried out with polarimetric antenna 
arrays. Furthermore, one should note that the data model (5.79) is general insofar as it also 
covers measurements with a polarimetric antenna array at one link end or with non-
polarimetric antenna arrays at both link ends. 

Equation (5.79) shows that polarimetric measurements are also a means to increase the 
resolvability of concentrated propagation paths, since the data matrix polX  has already a 
maximum rank of 4 without forward-backward and subarray smoothing. 

5.3.2 On the Choice of Subarray Sizes for Multidimensional Smoothing 

An issue not discussed so far is how to choose the subarray sizes for the subarray smoothing 
technique. For the one-dimensional case the optimum subarray size has been found in [104] to 
be10 

   13
2 += rsub MM

r
. (5.80) 

This subarray size is optimal insofar that it allows the estimation of the largest number of 
sources. To understand this result, consider the following example. Suppose the channel is 
observed by a 9-element uniform linear array. The data model of the channel observation is 

 ( )( ) 19×∈+⋅= CnγµAx . (5.81) 

The optimum subarray size due to (5.80) is 7=subM . Using a subarray size of 7=subM  three 
overlapping subarrays can be selected out of the 9-element uniform linear array. Using for-
ward-backward smoothing [104], [105] a total number of six independent measurements can 
be generated from the observation (5.81). The smoothed data matrix is 

 67
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
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xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

SSX . (5.82) 

It has been shown in [104] that this matrix has full column rank except for special angle and 
path weight constellations. Consequently, the maximum rank of the signal subspace estimated 
from this data matrix is  

                                                 
10 Here  •  means rounding to the next integer value greater or equal to • . 
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 ( )( ) ( )( ) 6rankmaxrankmax == SSS XE
θθ

. 

This is sufficient to estimate the angles of six propagation paths (sources) from the observed 
data using for example ESPRIT. For the six propagation paths six complex path weights have 
to be estimated. Therefore, the number of real-valued unknowns in the six-path model is 18 
and the number of independent real valued measurements is also 18. That means the maxi-
mum number of propagation paths (sources) that can be resolved with a 9-element ULA 
is 6=P . However, one should note that the subarray size given in (5.80) is not necessarily 
optimal in terms of statistical performance. If the observed scenario contains only a single 
propagation path, the reduction of the array size from a 9-element ULA to a 7-element ULA 
will lead to an increase of the estimator variance. The authors of [39] researched the optimal 
subarray size for the case of two equiv.-powered closely spaced coherent sources (propagation 
paths) and found a solution, which is only slightly different from (5.80), namely 

 ( )16.0
2, += roptsub MM

r
. (5.83) 

For a small number of samples rM  the difference between (5.80) and (5.83) is negligible. For 
large rM  the ratio between the two solutions tends to 

  9
10

2,
→

optrsub

rsub

M

M
. 

In general, the solution (5.80) is preferable for channel sounding application since it leads to a 
signal subspace estimate having the highest rank possible. Consequently, it allows the estima-
tion of the largest number of propagation paths. 

In Figure 5-8, the multidimensional smoothing technique is visualized for 3== DP RR  
parameter-dimensions. One can understand the measured data as a three-dimensional cuboid. 
If we apply multidimensional smoothing to this cuboid, we decompose it into a large number 
of overlapping smaller cuboids. It is straightforward to interpret the general case of multidi-
mensional smoothing in a similar way. In cases with a higher dimensionality, we interpret the 
measured data as hyper-cuboids. 
 

 

M1

M2

M3

 
Figure 5-8: Visualization of the multidimensional smoothing technique for 3=DR  
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It is important to realise that the smoothed data matrix has a row size of 

  ∏
=

+=
DR

r

rrow MM
1

3
2 1 

and a column size of 

  ( )∏
=

+−=
DR

r

rrcol MMM
1

3
2 1 . 

The complete data matrix colrow MM

SS

×∈CX  may become very large if the number of data di-
mensions, e.g., parameter dimensions is large since the row- and column size is a product of 
the individual sizes of the data dimensions. This is the reason why the explicit implementation 
of the multidimensional smoothing step is not feasible in practice. In this context, it is impor-
tant to observe that the multidimensional smoothing operation can also be understood as an 
indexing operation (data addressing) on the data vector x . In Section 5.3.4 it is shown how 
this indexing approach can be used to carry out multidimensional smoothing implicitly, i.e., 
without forming the data matrix SSX , during the signal subspace estimation step. 

5.3.3 Signal Subspace Estimation for Conjugate Centro-Symmetric Data 

In [65] it is shown that, using an appropriate transformation, the ESPRIT algorithm can be 
implemented using real-valued arithmetic only. The resulting algorithm is the Unitary ES-
PRIT. However, a prerequisite for the application of Unitary ESPRIT is that the matrices 

( )( )rµA  are conjugate centro-symmetric matrices, i.e., 

 ( )( ) ( )( )∆µΠAµA rr ∗=  (5.84) 

must hold, where ∆  is an arbitrary diagonal matrix. Since the same structure is also required 
for multidimensional smoothing as discussed in the previous sections this requirement is al-
ready fulfilled if smoothing is applicable. Consequently, the Unitary ESPRIT algorithm can 
be applied to estimate the structural parameters µ  from channel sounding measurements if the 
channel observation can be expressed using (5.76). The transformation of the complex-valued 
data into real-valued data can be carried out by the sparse unitary matrices 

 ( ) qM r

qq

qq

M r
2,

j

j

2

1s =







−

+
=
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II
Q  (5.85) 

if rM is even or 

 ( ) 12,

j

2

j

2

1 TTs +=
















−

+

= qM r

qq

qq

M r

Π0Π

00

I0I

Q  (5.86) 

if rM  is odd. For multidimensional data, the transformation matrices have to be applied to 
every data dimensions. For the multidimensional smoothed data, the following transformation 
matrix may be used 

 ( ) ( ) ( )s
M

s

M

s

MM subRsubRsubcol 11
QQQQ ⊗⊗⊗=

−
K . (5.87) 

The transformation from the complex-valued correlation matrix to the real valued correlation 
matrix is carried out by 

 { }
SSSS MxxMxx QRQHℜ=Ξ . (5.88) 
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Equivalently the complex-valued smoothed data matrix SSX  can be transformed into a real-
valued data matrix by 

 { } { }[ ]SSSSSSR XQXQX ⋅ℑ⋅ℜ= HH . 

One should note that taking the real- and imaginary-part of the transformed data matrix is 
equivalent to forward-backward smoothing. Therefore, it is sufficient to create only the for-
ward-smoothed data matrix from the observed data x . 

In has been shown in both [1] and [44] that the straight-forward application of multi-
dimensional smoothing to MIMO channel sounding measurements may lead to very large 
data matrices. To overcome that problem an algorithm for economy size signal subspace es-
timation has been developed (Section 5.3.6). The algorithm calculates only the signal sub-
space and not the noise subspace of the measured data. Furthermore, the multidimensional 
smoothing step is carried out implicitly. This avoids the explicit generation of a possibly large 
matrix containing the smoothed data.  

5.3.4 Economy Size Signal Subspace Estimation 

In this subsection, we discuss an efficient implementation of the first step of R-D Unitary ES-
PRIT with smoothing, i.e., the signal subspace estimation step. Throughout the derivation of 
the algorithm, it is assumed that the left Π -real matrices ( )s

M
rsub

Q  as defined in equation (5.85) 
and (5.86) are used to transform the complex valued data to real valued data. For simplicity, 
we assume at the beginning that there is only additive white noise. 

Note that only the P left singular vectors that correspond to the P largest singular val-
ues of  

 { } { }[ ] THH
VΣUXQXQ ⋅⋅=⋅ℑ⋅ℜ SSSS  (5.89) 

have to be computed to estimate the structural parameters of P propagation paths. In the case 
of channel parameter estimation from multi-dimensional channel sounding measurements, the 
dimension of the signal subspace may be small compared to the dimension of the noise sub-
space. Therefore, the standard economy size SVD algorithm based on Householder and modi-
fied QR-decompositions, is for the application at hand, not computational efficient as it com-
putes all singular vectors and singular values. Let us discuss an example. 

Suppose we have an observation of a 5-dimensional ( 5=PR ) harmonic retrieval prob-
lem with the following dimensions 971 =M , 82 =M , 83 =M , 44 =M , 55 =M  and we want 
to estimate the parameters of 20=P  dominant multipath components. Using a subarray size 
of approximately rsub MM

r
⋅= 3

2  for subarray smoothing leads to a data matrix of size 
( ) ( ) 2376280802233332436665 ×=⋅⋅⋅⋅⋅×⋅⋅⋅⋅ . The matrix of the left singular vectors U has 
a size of 237628080× . Altogether, we need approximately memory for 610140 ⋅  values or, in 
other words, approximately 556 megabytes if we use single precision arithmetic or 1.1 giga-
bytes of memory if we use double precision arithmetic, only to store SSX  and the results U 
and V. But for R-D Unitary ESPRIT, only the 20=P  left singular vectors spanning the signal 
subspace have to be computed. Therefore, we now derive an algorithm to estimate only the 
signal subspace. 

5.3.5 Economy Size Signal Subspace Estimation for Data in White Noise 

For notational convenience, let us introduce the smoothing operator 

 { } LM

sSS
sub×∈= CxX F  
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describing the R-dimensional forward smoothing operation introduced in Section 5.3.2. Here 
the vector M

C∈x  contains only a single snapshot, i.e., 1=N . Note that a product involving a 
matrix { }xX sSS F=  can be computed without forming the matrix SSX  itself. This is because 
the R-dimensional smoothing operation defines only indexing operations on x. This property 
has the advantages that no additional memory is needed to store the full matrix SSX . This is 
also advantageous in layered memory architectures, where memory bandwidth is limited.  

A computationally efficient algorithm to calculate some eigenvalues and the related 
eigenvectors of a matrix is based on Arnoldi-iterations [110], [111]. Let  

 { } { }[ ] { } { }[ ]SSSSSSSS XQXQXQXQT
HHTHH ℑℜ⋅ℑℜ=  (5.90) 

be the correlation matrix of the R-D smoothed data x. The eigenvalue decomposition of T is 
equal to 

 ΛVVT ⋅=⋅ , 

where the diagonal matrix 2ΣΛ =  contains the eigenvalues of T. Expanding the equation for 
the correlation matrix (5.90) yields 

 ΛVV
TT

TT
VT ⋅=⋅








=⋅

2221

1211 , (5.91) 

where the block matrices 22211211 ,,, TTTT are given by  

 
{ } { } { } { }
{ } { } { } { }







ℑ⋅ℑℜ⋅ℑ

ℑ⋅ℜℜ⋅ℜ
=






SSSSSSSS

SSSSSSSS

XQQXXQQX

XQQXXQQX

TT

TT
HHHH

HHHH

2221

1211 . 

Observe that the products { } { }HQQ ℜ⋅ℜ , { } { }HQQ ℑ⋅ℑ , { } { }HQQ ℑ⋅ℜ , and { } { }HQQ ℜ⋅ℑ  
yield the following simple sparse matrices 

 { } { } ( ) 1
H

2

1
ZΠIQQ =+⋅=ℜ⋅ℜ , 

 { } { } ( ) 2
H

2

1
ZIΠQQ =−⋅=ℑ⋅ℑ  

or even a zero matrix 

 { } { } { } { } 0QQQQ =ℜ⋅ℑ=ℑ⋅ℜ HH . 

Using these properties, we can express the four block matrices 22211211 ,,, TTTT  as 

 

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }.2
T

1
T

22

2
T

1
T

21

2
T

1
T

12

2
T

1
T

11

SSSSSSSS

SSSSSSSS

SSSSSSSS

SSSSSSSS

XZXXZXT

XZXXZXT

XZXXZXT

XZXXZXT

ℑ⋅⋅ℜ−ℑ⋅⋅ℑ=

ℜ⋅⋅ℜ+ℜ⋅⋅ℑ=

ℑ⋅⋅ℑ+ℑ⋅⋅ℜ=

ℜ⋅⋅ℑ−ℜ⋅⋅ℜ=

 

Note that the computation of a product that involves 1Z  or 2Z  requires no multiplication (ex-
cept for the scaling by 2

1 ), but only real-valued additions and subtractions are necessary. 
Moreover, the product of 1Z  and an arbitrary vector w yields the even part of w and the prod-
uct wZ ⋅2  is the odd part. 
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In one Arnoldi iteration, the product between T and a vector provided by the Arnoldi 
core algorithm, e.g., v, has to be calculated. 

 







⋅








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
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
=⋅=

2

1

2221

1211

2

1

v

v

TT

TT

w

w
vTw  (5.92) 

Exploiting the redundancies in the expressions for the block matrices 22211211 ,,, TTTT and 
omitting the scaling by 2

1  in 1Z  and 2Z  leads to the following steps for the calculation of 
vTw ⋅=  
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{ } { } .1
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By taking into account that the matrix SSX  can be expressed via the R-D smoothing operator 
that is applied to x, we compute the product vTw ⋅=  in the following fashion 
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Using this scheme in conjunction with an eigenvalue decomposition based on implicitly re-
started Arnoldi-iterations (reference netlib ARPACK (Arnoldi Package, functions dsaupd and 
dseupd)), we get a computationally efficient and also memory efficient algorithm for the cal-
culation of some right singular vectors SV  of SSX . ARPACK uses a so called reverse com-
munication interfaces. One has to allocate the necessary space for the eigenvectors, eigenval-
ues and some temporary work memory. The main computation steps are carried out by the 
core functions, e.g., dsaupd. An iteration step is carried out by calling at first the core func-
tion. Depending on the return value one has either to compute the product vTw ⋅= , where v  
is provided by the core function, or stop the iteration since the algorithm has converged. 

Finally, the signal subspace estimate for R-D Unitary ESPRIT can be calculated from 

SV  using the following relationship: 

 { } { }[ ] SSSSSSSS ΣUVXQXQE =ℑℜ= HH . (5.93) 

The left singular vectors of SSX  that correspond to the calculated right singular vectors SV  
are obtained from SE  by taking into account that 

 SSSSSSSS ΣΣΣUUΣEE
TTTT == . (5.94) 

In other words, the singular values { }SΣdiag  are just the vector-norms of the columns of SE . 
Nevertheless, one should note that the normalization of the columns of SE  is not necessary 
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for R-D Unitary ESPRIT. Therefore, a computationally and memory efficient way to calculate 
the signal subspace SE  from SV  is given by 

 { } { }[ ] SSSSSS VXQXQE
HH ℑℜ= . (5.95) 

The computational complexity of the proposed algorithm for the computation of all 
singular vectors is approximately twice the effort of the classical SVD using Householder- 
and modified QR-transformations. However, since the number of concentrated propagation 
paths is typically significantly smaller than the number of columns of the smoothed data ma-
trix SSX  the outlined algorithm reduces the computational effort for the estimation of the sig-
nal subspace. One should note that the accuracy of the described algorithm is similar to the 
accuracy of classical SVD algorithms. 

In view of the memory requirements, the signal subspace estimation algorithm is a 
prerequisite for the application of the multidimensional Unitary ESPRIT to large scale prob-
lems, such as channel parameter estimation from MIMO channel sounding measurements. 
The ESSSE (economy size signal subspace estimation) algorithm is summarised in Table 5-5. 

Table 5-5: Summary of economy size signal subspace estimation in white noise. 

1) Call the Arnoldi-iteration function (e.g. dsaupd) yielding an estimated eigen-
vector v .  

2) Check convergence: yes - go to step 4; no - continue iteration with step 3. 

3) Compute the product { } { }
{ }
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vTw , where { }i

v  has 

been provided by the core function dsaupd via 
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Form the result { }i
w  and return it to the core function dsaupd. Go to step 1. 

4) Compute the signal subspace estimate using the computed right singular vec-
tors as 

 { }{ } { }{ }[ ] SssS VxQxQE FF HH ℑℜ= . 

 

5.3.6 Economy Size Signal Subspace Estimation for Data in Coloured Noise 

If we want to use R-D Unitary ESPRIT or RARE for the estimation of the parameters of the 
specular propagation paths, we have to consider the contribution of the dense multipath com-
ponents to the observation. In the context of signal subspace estimation, the contributions of 
the DMC can be understood as contributions from an additive coloured noise process. Conse-
quently, the correlation matrix of the DMC and the measurement noise ( )DMCθR  can be con-
sidered as the covariance matrix of a coloured noise process wwR . There exist two general 
solutions, namely the covariance and the square root approach, for the estimation of signal 
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subspaces in coloured noise. See [44] (pp. 267-275) for a discussion of the two solutions. Al-
though both solutions can be theoretically applied to the problem at hand, the straightforward 
implementation may be impractical. The direct implementation of the signal subspace estima-
tion step will lead to a memory inefficient algorithm as already discussed in the previous sec-
tion. In the following, a memory efficient algorithm for the signal subspace estimation from 
observations with coloured noise is outlined. 

The general structure of the signal correlation matrix is 

 { }H1H
ssssNwwssxx XXERARAR ⋅=+⋅⋅= , (5.96) 

and the signal subspace sE  to estimate spans the same subspace as A . The authors of [44] 
suggest the decomposition of the noise covariance matrix into 

 H
wwww LLR = . 

Then pre-whitening of the correlation matrix xxR  can be achieved by calculating 

 H1 −− ⋅⋅=′
wxxwxx LRLR . (5.97) 

Note that inserting (5.97) in (5.96) yields the structure of the data correlation matrix after pre-
whitening  

 ILARALLRL += −−−− HH1H1
wsswwxxw . (5.98) 

The eigenvalue decomposition of (5.98) has the form 

 [ ] [ ] ILAARLEEΣEE +=′′′′ −− HH1H

0
2

0 wsswss , 

where ATLE
1−=′
ws  is an estimate of the transformed signal subspace and 0E′  is the trans-

formed noise subspace (null space of sE′ ). Reversing the pre-whitening with wL  yields the 
signal subspace as 

 sws ELE ′= . 

Applying the pre-whitener 1−
wL  directly to the data matrix X  yields the pre-whitened data 

matrix 

 sswss XLX 1−=′ , 

which is related to the correlation matrix (5.97) according to 

 ( )






 ′⋅′=′ H1

ssssxx
N

XXER . 

The singular value decomposition of the pre-whitened data matrix yields 

 ss

H
XVΣU ′=′ . (5.99) 

If the noise covariance matrix wwR  has full rank the inverse 1−
wwR  exist, and the following 

identity holds 

 ( ) H21HH
ss

H

1

VΣVXLLXXX

R

==′′
−

−−
sswwssss

ww

321
. 

Therefore, we calculate the eigenvalue decomposition of 
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 H21HH
ss VΣVXLLX =−−

ssww  

to get the right singular vectors of (5.99). Using the singular vectors belonging to the right 
signal subspace sV  the left singular vectors spanning the estimated signal subspace sÊ  can be 
derived from the observed smoothed data SSX according to 

 TAVXΣUE ⋅=⋅== ˆˆ
ssssss . 

As already discussed at the in Section 5.2.9 signal parameter estimation using signal subspace 
based parameter estimation techniques requires multidimensional smoothing as a pre-
processing step. The data matrix SSX  is related to the observed data x  according to 

 { } { } { }[ ]∗== xΠxxX sss FFF fb
SS , (5.100) 

where { }•fb
sF  denotes the forward-backward smoothing operator. Assuming we know the 

covariance matrix of the DMC ( )danθR  the eigenvalue problem to solve is 

 { } ( ) { } VxθRxVΣ ⋅⋅⋅= − fb1Hfb2
ss FF dan . 

Again, it is important to realise that only the right singular vectors sV  belonging to the P  
dominant generalised eigenvalues must be computed for R-D Unitary ESPRIT.  

A numerically stable algorithm for the calculation of some eigenvalues and eigenvec-
tors, i.e., singular vectors of complex matrices is also provided by ARPACK (see 
http://www.caam.rice.edu/software/ARPACK, functions znaupd and zneupd), which is based 
on implicitly restarted Arnoldi iterations [110]. The only function the user has to supply to the 
algorithm is the product vAw ⋅= , i.e.,  

 { } ( ) { } vxθRxw ⋅⋅⋅= − fb1Hfb
ss FF dan . (5.101) 

Hence, an estimate of the signal subspace can be computed without forming the smoothed 
data matrix SSX  explicitly. To compute the product (5.101) three steps are necessary 

 { } ( ) { } .2
Hfb

1

1

2
fb

1 yxwyθRyvxy ⋅=⇒⋅=⇒⋅= −
ss FF dan  (5.102) 

If the covariance matrix can be factorized using the Kronecker product as discussed in Section 
2.5.3 the computational effort to compute ( ) 1

1

2 yθRy ⋅= −
dan  and even more important the 

storage requirements for ( ) 1−
danθR  can be reduced since  

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) .1111

11

−−−−

−−

⊗⊗⊗=

⊗⊗⊗=

dantdanfdanTdanR

dantdanfdanTdanRdan

θRθRθRθR

θRθRθRθRθR
 

Using implicitly restarted Arnoldi iterations in combination with (5.102) the computation and 
the storage of the complete covariance matrix ( )danθR  can be avoided. In particular we can 
even take advantage of the Toeplitz structure of ( )danf θR  and use a computationally efficient 
algorithm as outlined in section 6.1.12 when computing the product ( ) 1

1

2 yθRy ⋅= −
dan . 

Finally one should observe that the calculation of the left singular vectors of (5.100) 
can be computed without forming the data matrix SSX  explicitly too, using the relation 

 { } ss VxE ⋅= fbˆ
sF . (5.103) 

From the estimated complex signal subspace sÊ   the real valued signal subspace for R-D Uni-
tary ESPRIT sD̂  can be computed by 
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 ss EQD ˆˆ H= . 

One should note that the transformation of the data and the noise covariance matrix to the real 
domain before signal subspace estimation as proposed in [28] is not reasonable in the case 
under consideration. This is due to the fact, that the transformation to the real domain destroys 
the Toeplitz structure of the noise covariance matrix ( )danθR . For example, the transformation 
of [ ]{ }H12toep −j  leads to 
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Consequently, computationally efficient algorithms for the multiplication with inverse Toe-
plitz matrices (cf. Section 6.1.12) are not applicable anymore if the complex correlation ma-
trices are transformed to the real domain using equation (5.88). 

Table 5-6: Truncated signal subspace estimation in coloured noise. 

1) Call the Arnoldi-iteration function (e.g. znaupd).  

2) Check convergence: yes - go to step 4; no - continue iteration with step 3. 

3) Compute the product { } { } ( ) { } { }i
dan

i vxθRxw ⋅⋅⋅= − fb1Hfb
ss FF  , where { }i

v  has 

been provided by the core function znaupd via 

 { } vxy ⋅= fb
1 sF  

 ( ) ( ) ( ) ( ) 1

1111

2 yθRθRθRθRy ⋅⊗⊗⊗= −−−−
dantdanfdanTdanR  

 { } { } .2
Hfb yxw ⋅= sF

i  

Return the vector { }i
w  to the core function znaupd. Go to step 1. 

4) Compute the signal subspace estimate using the computed right singular vec-
tors as 

 { } ss VxE ⋅= fbˆ
sF . 

5) Optional: Compute the signal subspace for Unitary ESPRIT by 

 ss EQD ˆˆ H= . 

 

5.3.7 Subspace Rotation Invariance - ESPRIT 

Paulraj, Roy, and Kailath first introduced the ESPRIT algorithm in [107]. ESPRIT is a search 
free fully parametric estimation procedure for undamped cisoids11  in noise. The original 
method often referred to as LS (least squares) – ESPRIT is not statistically efficient, i.e., not 
minimum variance unbiased (MVUB). Nevertheless, since it is very attractive in terms of 
computational complexity various improved algorithms have been developed based on the 
pioneering work of Paulraj, Roy, and Kailath. An overview of the variants is given in [44, pp. 
21-26].  

In the following a short summary of the LS-ESPRIT, the Unitary ESPRIT and the R-
dimensional Unitary ESPRIT is given.  

                                                 
11Cisoid is an abbreviation for complex-valued sinusoidal signal, e.g., complex exponential  
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5.3.8 LS-ESPRIT 

The basis of the standard ESPRIT algorithm is the so-called invariance equation. It has the 
form 

 ( ) ( ) ( )µAJµΩµAJ 21 =⋅ , (5.104) 

where 1J  and 2J  are selection matrices and ( )µΩ  is a diagonal matrix  

 ( )



















=

−

−

−

Pµ

µ

µ

j

j

j

e00

0

e0

00e
2

1

L

OOM

MO

L

µΩ . 

The invariance equation relates the subset ( )µAJ1  via a phase rotation to ( )µAJ 2 . For the 
basis function defined in (3.4) the best choice for the selection matrices, providing maximum 
overlap, is 

 [ ] MM ×−∈= 1
1 R0IJ , and [ ] MM ×−∈= 1

2 RI0J . 

As discussed in section 5.3.1 the signal subspace SE  spans the same subspace as ( )µA , i.e.,  

 ( ) sETµA = , (5.105) 

where T  is an arbitrary full rank matrix PP×∈CT . Replacing the exact signal subspace SE  
with the estimate SÊ  and inserting equation (5.105) in (5.104) yields 

 ( ) 1
2

1
1

ˆˆ −− ≈ TEJµΩTEJ SS . (5.106) 

Consequently, the least squares solution of 

 PP

F
SLSSLS

LS

×∈−= C
2

21
ˆˆminargˆ EJΨEJΨ

Ψ
 

has approximately the structure 

 ( ) TµΩTΨ ⋅⋅≈ −1ˆ
LS . 

The eigenvalues of the solution LSΨ̂  are estimates of the P  phase factors pj
e

µ−
. In the final 

step of LS-ESPRIT one has to calculate the P  nonlinear model parameters pµ̂  from the esti-
mated phase factors, i.e., from the P  eigenvalues pϖ  of LSΨ̂  as 

 ( ){ } Pppp ≤≤ℑ= 1,lnˆ ϖµ . 

The difference between LS-ESPRIT and its variations the TLS-, WLS-, and SLS-
ESPRIT [112] (Total-, Weighted-, Structured Least Squares) is the handling of the error 

SSES
EE∆ −= ˆ  in the subspace estimate SÊ . More precisely, since we use overlapping subsets 

of SÊ  both sides of equation (5.106) contain some residual error from the subspace estimate. 
It may be tempting to use the TLS (total least squares) solution instead of the LS solution to 
solve for Ψ̂  in (5.106). However also the TLS solution is suboptimal since the error on the 
left hand side and the right hand side is correlated. It has been shown in [65], [112] that the 
optimum solution in a least squares sense is the structured least squares solution (SLS). 
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5.3.9 Unitary ESPRIT 

Since the standard ESPRIT algorithm operates on complex-valued data, complex computa-
tions have to be carried out to compute a parameter estimate. In order to reduce the computa-
tional complexity, the Unitary ESPRIT [65], [28] algorithm has been developed. It transforms 
the input data matrix X  to a real-valued representation. Therefore, all computations are real-
valued. This transformation CRT  is applicable to the smoothed data matrix ( )xSF  if the 
smoothed data can be expressed as ( ) ( ) NΓµAx +⋅=SF  as already discussed in Section 5.3.3. 
The transformation CRT  can be expressed in the form 

 { } { }[ ] ( )12H
2221

H sub

subsub

+−×
+−+−

∗ ∈== MMM

MMMMMMCR
sub

subsub
RQΠxΠxQZ ss FFT , (5.107) 

where NΠ  is the reflection matrix, i.e., a matrix with ones on its anti-diagonal and zeros else-
where. Similar to the standard ESPRIT algorithm the signal subspace SE  is estimated from 
the real-valued data matrix Z  using a singular value decomposition or using a eigenvalue 
decomposition of the Gramian HZZ . The real-valued representation of the invariance equa-
tion (5.104) is 

 SS EKΨEK 21 ≈ , 

where 1K  and 2K are the transformed selection matrices 1J  and 2J  having the structure 

 { }
subsub MM QJQK 2

H
11 2 −ℜ⋅=   (5.108) 

and 

 { }
subsub MM QJQK 2

H
12 2 −ℑ⋅= .  (5.109) 

Solving the Unitary ESPRIT invariance equation using the least squares approach 

 ( ) SSULS EKEKΨ 21

+=  

yields an estimate for  the predictor matrix ULSΨ . The similarity transformation to diagonal 
structure, i.e., the eigenvalue decomposition yields 

 PP

ULSULS

×− ∈= R
1

TTΩΨ . 

From the eigenvalues { }ULSΩdiag=ϖ  the estimates of the structural parameters µ  can be 

computed by 

 ( )ii ϖµ arctan2ˆ = .  (5.110) 

One should observe, that equation (5.110) reveals a weakness of the Unitary ESPRIT. If the 
true parameter µ  are close to π±  the bilinear transformed parameters ( )2tan i

i

µϖ =  tend 
to ∞± . Hence, the price for the real-valued computation of Unitary ESPRIT is a larger eigen-
value spread of ULSΨ  and numerical problems if π~pµ . 

5.3.10 Multidimensional Unitary ESPRIT 

The extension of Unitary ESPRIT to multidimensional Unitary ESPRIT is straightforward. 
After multidimensional smoothing the data matrix has multiple rotational invariance structure, 
i.e., it can be expressed in the form 

 { } ( )( ) ( )( ) ( )( )( ) ( ) NΓµANΓµAµAµAxX +⋅=+⋅◊◊◊== − 11fb KPP RR

sF .  
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Observe, that the matrices ( )( )rµA  have, due to subarray smoothing, a size of 
( )( ) PMr rsub ×∈CµA . For every parameter dimension PRr ≤≤1  the following generalised invari-

ance equation holds 

 ( ) ( ) ( )µAJµΩµAJ rrr ,2,1 =⋅ . 

The related PR  generalised selection matrices are given by 

 

( )

( )

( )
1,2,

,

1,

2,

,

1,

2,,

1,1

12,1

11,1

subsub

PRsub

P

sub

sub

PRsub

sub

subPRsub

MM

M

R

M

M

M

M

MM

IIJJ

IJIJ

JIIJ

⊗⊗⊗=

⊗⊗⊗=

⊗⊗⊗=

K

NM

K

K

 

and 

 

( )

( )

( )
,

12

1

2

1

2

2,2

22,2

21,2

subsub

PR
sub

P

sub

sub

PR
sub

sub

sub
PR

sub

MM

M

R

M

M

M

M

MM

IIJJ

IJIJ

JIIJ

⊗⊗⊗=

⊗⊗⊗=

⊗⊗⊗=

K

NM

K

K

 

where the identity matrices have size rsubrsub

rsub

MM

M
,,

,

×∈RI  and the sub-selection matrices the 
structure 

 
( ) [ ] ( ) rsubrsub

rsub

rsub MM

M

M ,,

,

, 1

1

×−∈= R0IJ , and 
( ) [ ] ( ) rsubrsub

rsub

rsub MM

M

M ,,

,

, 1

2

×−∈= RI0J . 

Replacing the sub-selection matrices 
( )rsubM ,

1J  and 
( )rsubM ,

2J  by their real valued counterparts 
defined in (5.108) and (5.109) and transforming the complex valued data to the real domain 
using the transformation (5.107) leads to the PR  real valued invariance equations for the sig-
nal subspace estimate, 

 SrrSr EKΨEK ,2,1 ≈ . 

In the noiseless case or with an infinite number of independent observations all predictor ma-
trices admit the following eigenvalue decomposition 

 PP

rr

×− ∈= R
1TTΩΨ . (5.111) 

The eigenvalues are related to the structural parameters µ  according to 

 
( ) P

p

r

p

r

1
2

tandiag
=
















=

µ
Ω . 

It is important to note that all PR  predictor matrices share the same set of eigenvectors in the 
noiseless case. Therefore, a joint eigenvalue decomposition of all predictor matrices leads to a 
joint estimation procedure for all structural parameters. A solution to this joint eigenvalue 
decomposition problem is the Simultaneous Schur Decomposition (SSD). A derivation of the 
algorithm can be found in [65], [28], or [113].  
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5.3.11 Data with Hidden Rotational Invariance Structure 

The general data model for the radio channel developed in Section 2 has the structure 

 ( ) ( ) ( ) γµBγµGAθs ⋅=⋅=  

(cf. expression (2.54)). Now let us suppose the matrix valued function ( )µB  can be decom-

posed into 

 ( ) ( )( )( ) ( )( )( )1
1 µAGµAGµB ⋅◊◊⋅= KR

R . 

The related data model for the radio channel becomes 

 ( ) ( )( )( ) ( )( )( )( ) γµAGµAGθs ⋅⋅◊◊⋅= 1
1KR

R , 

or equivalently 

 ( ) ( ) ( )( )( ) ( )( )( )( )( ) γµAµAGGθs ⋅⋅◊◊⋅⊗⊗= 1
1 KK R

R . 

Now it can be shown that the model ( )θs  has hidden rotational invariance structure if all sub-
matrices rr NM

r

×∈CG  have an appropriate size and rank. 

At first let us suppose the observed system response has been over-sampled, i.e., 
rNM rr ∀≥ ,  and the rank of rr NM

r

×∈CG  is ( ) rr N=Grank . Then the observed data can be 
transformed such that the transformed data have the multidimensional rotational invariance 
structure required for subarray smoothing and for the application of, e.g., multidimensional 
Unitary ESPRIT. The transformation matrix for every data dimension has to satisfy  

 IGP =rGr
. (5.112) 

The Moore-Penrose pseudo inverse yields a solution in the least-squares sense to (5.112). 
That means we can calculate the projector 

rG
P  using the singular value decomposition of the 

system matrix rG , i.e., we compute first 

 [ ] H
0 r

r

r G

G

Gr V
0

Σ
UUG 





=  

and with this decomposition the linear transformation matrix can be calculated by 

 H1

rrrr GGGG UΣVP −= . (5.113) 

It is easy to prove that this projector fulfils equation (5.112). However, if the observed system 
response is under-sampled, i.e., rr NM <   for some r , the singular value decomposition of the 
respective system matrix becomes 

 [ ] 







=

H
0

H

V

V
0ΣUG r

rr

G

GGr . (5.114) 

The Moore-Penrose pseudo inverse is now 

 H1

rrrr GGGG UΣVP −= . (5.115) 

Using equation (5.115), and (5.114) we yield for the product between the system matrix rG  
and the related projector 

rG
P  the expression 

 IVVIVVGP ≠−== H
00

H
GGG  
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since  

 IVVVV =+ H
00

H
GG . 

Hence, the observed data only have hidden rotational invariance structure if the system re-
sponse is over-sampled and all system matrices have full column rank. To summarise, if the 
measurement system matrix G  allows the factorisation 

 1GGG ⊗⊗= L
DR

, (5.116) 

where each of the DR  sub matrices have full column rank, i.e., 

 ( ) rNrr ∀=Grank , 

the channel sounding measurements can be transformed such that the transformed data have a 
multidimensional rotational invariance structure. Furthermore, the transformation matrix GP  
is given by the Kronecker-product of the individual transformation matrices 

rG
P  as 

 
rDR

GGG PPP ⊗⊗= L . 

Altogether, the parameter estimation from data having hidden rotational invariance structure 
requires only the extension of the signal subspace estimation step by 

 xPx G=′ . (5.117) 

The transformed data x′  have the rotational invariance structure necessary for Unitary ES-
PRIT or RARE application. In addition, multidimensional smoothing can be applied to the 
transformed data. Observe that the multiplication of the observed data with GP  changes the 
structure of the covariance matrix nnR  of the stochastic part of the observation. The new co-
variance matrix is 

 H
GnnGnn PRPR =′ . 

If both, the covariance matrix nnR  and the measurement system matrix G  can be factorized 

into sub matrices 

 1,, nnRnnnn D
RRR ⊗⊗= L  

and 

 1GGG ⊗⊗= L
DR

, 

the transformed covariance matrix nnR′  has Kronecker structure as well 

 1,, nnRnnnn D
RRR ′⊗⊗′=′ L , 

with the sub matrices 

 rrGrnnrGrnn ∀=′ H
,,,, PRPR . (5.118) 

This is an important fact in terms of computational complexity, since the observed data have 
often only a hidden rotational invariance structure in some but not all data dimensions. Con-
sequently, only the data dimensions having hidden rotational invariance structure and the re-
lated covariance matrices must be transformed according to (5.117) and (5.118). 
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Data having such a hidden rotational invariance structure are for example the meas-
urement data acquired with a circular uniform beam array. The resulting CUBA-ESPRIT al-
gorithm is described in the next section.  

5.3.12 Unitary ESPRIT for CUBA Configurations 

It is often assumed that ESPRIT in combination with subarray smoothing is only applicable if 
uniform linear or rectangular arrays have been applied during measurements. As already dis-
cussed in the previous section, subarray smoothing and consequently ESPRIT is applicable if 
the observed data have hidden rotational invariance structure. A class of antenna arrays hav-
ing hidden rotational invariance structure is the class of circular uniform beam arrays (CUBA) 
[114]. A circular uniform beam array (CUBA) consists of M antennas with identical beam 
patterns ( )µ0b . The main beam directions of two adjacent elements are rotated by Mπ20 =µ  
with respect to each other as depicted in Figure 5-9. 
 

 
Figure 5-9: Beam patterns of a 6-element CUBA. 

 
Given a narrowband signal from a single source that impinges on the CUBA from the direc-
tion of arrival pµ , the output signals of the M array elements can be described by means of 
the sampled beam pattern as 

 ( ) ( )
pp mbmb µµµ −⋅=⋅ 000  (5.119) 

with ( )1,,1,0 −= Mm K . Since the antenna beam pattern is periodic in π2 , ( )=µ0b  
( )π20 ⋅+ kb µ , Z∈k , the equivalent virtual aperture function of a single element can be calcu-

lated via the discrete Fourier transform (DFT) as 

 ( ) ( )∑
−

=

−
⋅=⋅

1

0

j2π

000 e
M

m

M

ml

a mbslg µ , (5.120) 

where ( )π210 =s . Consequently, in the virtual aperture domain the single source response 
(5.119) equals ( ) ( ) pl

ap slgslg
µj

00 e
−⋅=⋅ . If ( )nsp  denotes the signal received from source p at 

time n, the virtual aperture function of the array output at time n can be expressed as 
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 ( ) ( ) ( ) ( )10,e
1

j

0 −≤≤⋅=∑
=

−
Mlslgnsng

P

p

l

apl
pµ

. 

Therefore, 

 ( ) ( ) ( ) ( )10,e
1

j

0 −≤≤⋅= ∑
=

−
Mlnsslgng

P

p

l

pal
pµ

. (5.121) 

The set of equations (5.121) can be simplified to 

 ( ) ( )nn a sAGg = , (5.122) 

where the array steering matrix ( ) ( ) ( )[ ]Pµµµ aaaA L21=  contains the steering vectors of 
the P sources 

 ( ) ( )[ ]TM

p
pp 1jj

ee1
−−−= µµµ La , 

the diagonal matrix 

 

( )
( )

( )( )

MM

a

a

a

a

sMg

sg

g

×∈



















−

= C

0

0

100

0

0

000

L

OOM

MO

L

G  

represents the virtual aperture function of a single element, the signal vector at time n is 
formed as 

 ( ) ( ) ( ) ( )[ ] PT

P nsnsnsn C∈= K21s , 

and the virtual aperture output vector at time n is given by 

 ( ) ( ) ( ) ( )[ ]TM ngngngn 110 −= Kg . 

Since the array output signal depends on samples of the beam pattern ( )00 µ⋅mb , the Nyquist 
sampling criterion has to be considered, i.e., the virtual aperture function ( )0slga ⋅  contains 
the required rotational invariance structure only if the Fourier-transform of ( )µ0b  has finite 
support in 0sL ⋅  and ML ≤ . The virtual aperture output vector ( )nx  is calculated from the 
received data ( ) ( )nnR sBx ⋅=  via a DFT, where 

 ( ) ( ) ( )[ ]Tpµµµ bbbB K21=  

is a matrix that contains the P beam vectors 

 ( ) ( ) ( ) ( )( )[ ]Tppppp Mbbb µµµ ⋅−= 10 0 Kb . 

The transformation matrix
aG

P  that transforms ( )nRx  into the virtual aperture space 
( ) ( )nn RGa

xPx ⋅=  is defined as: 

 MLLGa
FJGP 1−= . (5.123) 

Here, 
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is the MM ×  DFT-matrix and 
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denotes the selection matrix that chooses only the useful part of ( )0slga ⋅  and ensures a good 
condition of T

LLL JGJG 0= , and thus also of its inverse 1−
LG . In this case, the modified virtual 

aperture space ( )nx  shows the required rotational invariance structure. Therefore, the signal 
subspace can be obtained from ( )nx  as in other ESPRIT-type algorithms. Since A is left Π -
real, Unitary ESPRIT can also be used. Even the usual subarray smoothing techniques can be 
applied. Hence, the algorithm can be applied to channel parameter estimation from channel 
sounding measurements. For notational simplicity, Table 5-7 summarises Unitary ESPRIT for 
CUBA configurations without the subarray smoothing technique. 

Obviously, the ideal beam pattern of a CUBA for the described algorithm is a sinc-
function, since a beam pattern ( ) ( )µµ ⋅= 2sinc0 Lb  provides a virtual aperture function 

( ) ( )Llslga rect0 =⋅  with strictly limited support. In the context of Nyquist sampling, this is 
the ideal anti-aliasing lowpass filter for an angular sampling rate of ( )01 sL ⋅ . 
 

Example 5-5: The following example is based on measured beam patterns of an 6=M  ele-
ment CUBA. The left picture of Figure 5-10 shows the uncalibrated and the calibrated beam 
pattern ( )µ0b  of a single antenna element. The transformation matrix 

aG
P  has been estimated 

using the calibration algorithm described in Chapter 7. Then the calibrated beam pattern has 
been obtained using the inverse Fourier-transform.  
 

To illustrate the DoA estimation performance of Unitary ESPRIT for CUBA configu-
rations in the noise free case, a simple scenario with 3=P  coherent sources was simulated. 
With 2 sources at fixed angles ( )°+°− 90,90 , and simultaneously rotating one source and the 
array from °− 75  to  °+ 75 , 151 scenarios have been created. Figure 5-11 shows the estimated 
angles. The parameters have been estimated from a single snapshot. 

Parameter estimation results using the CUBA-ESPRIT have been published in [1], 
[61], [96], and [99]. 
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Figure 5-10: CUBA beam pattern (left) and corresponding virtual aperture function (right). 
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Figure 5-11: DoA estimation results for three coherent sources obtained by Unitary ESPRIT 
for CUBA configurations. 

 

Table 5-7: Summary of Unitary ESPRIT for CUBA configurations with white noise. 

1) Signal Subspace Estimation: Let ( ) ( )nn
aG
bPx =  and determine the matrix 

NL×∈CX . Then, compute the signal subspace PL

s

×∈RE  as the P  dominant 

singular vectors of 

 ( ) NL

CR

2×∈RXT . 

2) Solution to the Invariance Equations: Then solve 
 SS EKΨEK 21 ≈  

by means of LS, TLS, or SLS. 

3) Frequency Estimation: Calculate the eigenvectors of the resulting real-valued 
solution 

 1−= TΩTΨ  with { }P
pp 1

diag
=

= ϖΩ . 

4) Direction estimation: Calculate the estimates ( )ppµ ϖarctan2ˆ = , they are al-

ready the estimated directions. 
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6 Estimation of DMC Parameters 

Based on the model (2.63) we derive in this section an estimator danθ̂  for the parameters of the 
dense multipath components (DMC) danθ . As already stated in Section 2.5 we combine the 
contributions of the measurement noise and the dense multipath components in one model 
since both are complex circular normal distributed processes. The focus of this chapter is only 
the estimation of the parameters danθ . Hence, we assume in the subsequent sections of this 
chapter that the radio channel observation contains DMC and noise only, i.e., 

 ( )( )dancdan θR0nx ,~ N= . 

The joint estimation of all channel parameter chnθ  is treated at the end of this chapter. 

6.1 Maximum Likelihood Estimation of DMC Parameters 

Since the parametric covariance matrix (2.67), (2.68) is a nonlinear function in some of its 
parameters, a closed form solution for the maximization problem 

 ( )Xθθ
θ

dandan
dan

Lmaxargˆ =  (6.1) 

is not available. Hence, we will discuss, in the following section, global and local search 
strategies to find the parameter vector danθ̂  maximizing (6.1). Since we usually measure not 
only one but rather sequences of channel observations over time and since the parameters of 
the dense multipath components are only slowly time varying we can track the parameters 

danθ  from observation to observation. That means that we use the estimated parameters of the 
previous observation as an initial solution for the parameters of the current observation. Thus, 
a global search algorithm is needed only once, namely to estimate raw parameters danθ  for the 
very first observation of the whole measurement sequence. Consequently, we will focus the 
discussion on the computational complexity as well as the statistical efficiency of local search 
strategies. Let us for the time being drop the subscript dan  from the parameter vector danθ  for 
notational convenience.  

6.1.1 Local Search Strategies 

Having derived algebraic expressions for the Fisher information matrix and the score function 
one can say the local search for the maximum of the log-likelihood function has been solved 
already. Namely, application of the iterative maximum likelihood algorithm requires the 
knowledge of (4.89) and (4.91) only. The drawback of this approach is its high computational 
complexity. Therefore, we discuss algorithms with a reduced computational complexity and 
low storage requirements in the following sections. Nevertheless, we will start with the direct 
approach to compare the complexity of the other algorithms later on. 
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6.1.2 Direct Approach 

Since the score function is the gradient of the log-likelihood function and the Fisher informa-
tion matrix12 is an approximation of the related Hessian we can for example use the Gauß-
Newton algorithm to iteratively maximize (6.1) using the iteration step 

 { } { } { }( ) { }( )iiii θXqθθθ ˆ,ˆˆˆ 11 ⋅⋅+= −+ JJJJλ . (6.2) 

The resulting algorithm is a so-called iterative maximum likelihood algorithm. To find a suit-
able step size λ, one can use a line search strategy or a trust region algorithm to ensure strict 
maximization of (6.1), e.g., the Levenberg-Marquardt algorithm. The disadvantage of this 
local optimisation strategy is the high memory and computation effort for a single iteration. 
For every iteration we have to invert the Toeplitz matrix { }( )iθR ˆ , if we use the Levinson algo-
rithm this requires ( )2MO  operations. To calculate the matrix (4.88) we need the product 
between this inverse and the Toeplitz matrices (4.93) - (4.96), an efficient algorithm for the 
product between the inverse of a Toeplitz matrix and an arbitrary vector requires 

( )( )MMO log  operations using fast Fourier-Transforms (FFT). Hence, the calculation of 
(4.88) requires ( )( )MMLO log2⋅  operations. The computation of the score function and the 
Fisher Information matrix requires algorithms with a complexity of ( )( ) ( )LMOMMO 22 log +  
and ( )22LMO , respectively. Therefore, the complexity of one iteration is of order 

( )( )MMLO log2⋅ , under the assumption ( )ML log< . Additionally, we have to store the com-
plete estimated non-parametric covariance matrix R̂  (4.83). Altogether, the complexity of an 
iterative maximum likelihood estimator based on the direct implementation of (6.2) is too 
high. In the next sections we derive an parameter estimator, which is computationally less 
expensive. 

Table 6-1: Iterative optimisation of the parameters dmcθ  using the direct approach 

 (Gauß-Newton algorithm) 

Input data: Data matrix X , initial solution { }0
θ  

Preprocessing: Compute the estimate of the non-parametric covariance matrix 

H1ˆ XXR
N

=  

 

1) Compute the first order derivatives to the parameters θ  of  ( )θκ  using equa-

tions (4.93) - (4.96). 

2) Compute the Jacobian { }( )iθD . 

3) Compute { } { }( ) { }( ){ } 21 ˆvecminarg
F

iii
IRθRθθDθ

θ
−−∆⋅=∆ −

∆
. Set { } 1=iλ  

4) Compute the update { } { } { } { }iiii
θθθ ∆⋅+=+ λ1 . 

5) Check strict maximization { }( ) { }( )ii θXθX LL >+1 ; yes: go to 1. , no: reduce 
{ }iλ  go to 4. 

6) Check convergence; not converged: go to 1. 

 

                                                 
12 Usage of the stochastic Fisher matrix leads to a Newton-Raphson procedure. 
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6.1.3 Averaged Covariance Matrix 

We can reduce the storage requirements by replacing the non-parametric covariance matrix 
R̂  with ( )Hrr ˆ,ˆtoep  using the coefficients13 

■ { } ( )Ml
lM

r
lM

i

ilil ,,1ˆ
1

1
ˆ

1

1
,1 K=

+−
= ∑

+−

=
−+R . (6.3) 

This approach reduces the memory requirements roughly by a factor M2
1 . The elements of r̂  

are the mean values of the diagonals of the matrix R̂ , and have an expected value of 
{ } ( )θκr =ˆE . We can anticipate that an algorithm using ( )Hˆ,ˆtoep rr  has the same performance 

statistically as an algorithm using R̂  directly, since we average in (6.3) only values with the 
same distribution. Nevertheless, we have not reduced the computational complexity of the 
iterations (6.2) so far. 

Table 6-2: Iterative optimisation of the parameters dmcθ  using the direct approach and 

the averaged covariance matrix (Gauß-Newton algorithm) 

Input: data matrix X , initial solution { }0
θ  

Preprocessing: Compute the coefficients r̂  (6.3) of the non-parametric covariance 

matrix ( )Hˆ,ˆtoep rr . 

 

1) Compute the first order derivatives to the parameters { }i
θ  of  { }( )iθκ  using 

equations (4.93) - (4.96). 

2) Compute the Jacobian { }( )iθD . 

3) Compute { } { }( ) { }( ) { }{ } 2H1 ˆ,ˆtoepvecminarg
F

iii IrrθRθθDθ
θ

−−∆⋅=∆ −

∆
. Set 

{ } 1=iλ  

4) Compute the update { } { } { } { }iiii
θθθ ∆⋅+=+ λ1 . 

5) Check strict maximization { }( ) { }( )ii θXθX LL >+1 ; yes: go to 6. , no: reduce 
{ }iλ  go to 4. 

6) Check convergence; not converged: go to 1. 

 

6.1.4 Approximation of the Covariance Matrix with a Diagonal Matrix 

An approach for the development of an algorithm with a lower computational complexity than 
the direct solution is based on the observation, that the inverse Fourier-transform of the co-
variance matrix ( )θR f  is a diagonal dominant matrix. Hence, we approximate the covariance 
matrix in the time-delay domain using its main diagonal elements 

 ( ){ } ( ){ } ( )θβθRFθRF ==⋅⋅ τdiagdiag H
f , (6.4) 

where { }Adiag  denotes an operator selecting the main diagonal elements of A . 
The cost function to maximize follows from the log-likelihood function (4.79) and is 

                                                 
13 { }

kl ,A  denotes the element in row l and column k of A. 
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 ( ) ( ){ }( )( ) ( ){ }( )∑
=

− ⋅⋅⋅⋅−⋅−=
N

i

iiN
1

H1H diagdiagdetln, xFθβFxθβθXC . (6.5) 

For notational convenience we introduce the vector 

 ( ) ( )∑
=

∗
=

N

i

ii
N 1

HH1
xFxFy o , (6.6) 

containing the data for the estimator to be constructed. The vector y  is an estimate of the 
main diagonal elements of the covariance matrix ( )θR f  in the time-delay domain (the (PDP) 
of the dense multipath components). Using (6.6) in the cost function (6.5) yields the compact 
expression 

 ( ) ( )( )
( )∑

=








+⋅−=

M

m m

m
m

β

y
βN

1

ln,
θ

θθyC . (6.7) 

The parameter vector θ̂ , maximizing (6.7) is an estimate of the parameter vector describing 
the covariance matrix ( )θR  and the spectra ( )θκ . The gradient of the cost function (6.7) is 
given by the partial derivatives with respect to the parameters iθ  

 ( )
( )

( )
( )

( )∑
=

















∂
∂

−







∂
∂

⋅⋅−=
∂
∂ M

m

m

im

m
m

imi

β
β

y
β

β
N

1
2

1
, θ

θ
θ

θ
θy

θθθ
C . (6.8) 

Equation (6.8) can be rewritten to 

 ( )
( ) ( )

( )∑
=




















∂
∂

⋅⋅







−⋅=

∂
∂ M

m

m

imm

m

i

β
ββ

y
N

1

1
1, θ

θθ
θy

θθ
C . (6.9) 

Hence the parameters to estimate θ̂  are a solution of 

 
( ) ( )

( ) i

M

m

m

i
mm

m β
ββ

y
θ

θ
∀=








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


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






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⋅⋅






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


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θθ

. 

The term  

 
( ) 








−1

θm

my

β
 (6.10) 

can be interpreted as the error function to minimize, and ( )θ1−
mβ  as an error weighting. One 

should observe that for an infinite number of independent observations 

 ( ) ( ) { } ( )θβyxFxF ==∑
=

∗

∞→
E

1
lim

1

HH
N

i

ii
N N

o   

holds. Consequently the error function (6.10) tends to zero if θθ =ˆ  and ∞→N . Hence, the 
estimator is asymptotically unbiased and consistent. For the Gauß-Newton procedure, we 
need an approximation of the Hessian, i.e., the second gradient of the cost function, which is 
negative definite. The second gradient of the cost function (6.7), i.e., the second order partial 
derivatives with respect to the parameter pairs ki θθ , , is 

 ( )
( )

( )( ) ( )( )
( ) ( )

( )
( )∑

=

∂∂
∂

∂
∂

∂
∂






















−+

⋅








−⋅=

∂∂
∂ f

kiki

M

mki

yy
N

1
2

2
2

121,
θ

θ

θθ

θθ

θ
θy

m

m

m

m

m

mm

m

mC
β

β

ββ

ββ

βθθ
θθθθ

. (6.11) 
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If we use the second gradient itself in the iteration to adjust the metric and the direction of the 
gradient we end up with a Newton-Raphson algorithm. It is known that the Newton-Raphson 
algorithm is not always globally convergent since the second gradient, the Hessian, may be 
positive [22]. In other words the calculated step direction will not point to the maximum. 
Thus we use an approximation of the Hessian which is at least negative definite. To this end 
let us analyze the limit of equation (6.11) if ∞→N . The two terms in the Hessian related to 
our data y  have the following limit values 

 
( )

121lim −=








−
∞→ θm

m

N

y

β
 

and 

 
( )

01lim =








−
∞→ θm

m

N

y

β
. 

Hence an approximation of the Hessian being always negative definite is given by 

 ( )
( )( ) ( )( )

( )∑
=

∂
∂

∂
∂








 ⋅
⋅−≈

∂∂
∂ f

ki

M

mki

N
1

2

2

,
θ

θθ
θy

m

mm
C

β

ββ

θθ
θθ

. (6.12) 

To calculate the gradient (6.9) and the approximation of the Hessian (6.12) numerically, we 
need an efficient way to compute ( )θβ  and the related partial derivatives. One can use the 
direct approach and implement the definitions (6.4) and (2.67). But this approach is numeri-
cally unattractive, since we compute many more values than needed, namely all off diagonal 
elements of ( ) FθRF ⋅⋅H . A computational efficient way to map ( )θκ  to ( )θβ  is given by the 
relation 

 ( ){ } ( ) ( )( )θκWθκWFFθRF
∗⋅+⋅⋅=⋅⋅ 21

H 1
diag H

M
, (6.13) 

using the weighting matrices 

 [ ]{ }11diag1 L−= MMW  

and  
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
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



−

=
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1

00
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L

MNNN

M

N

L

M

W . 

 
Proof: 
Let us suppose 1×∈ M

Ca  is an arbitrary vector and 1, ×∈⋅= M
CbaFb  is its discrete Fourier-

transform. Furthermore, we define the matrices H
aaX ⋅=  and H

bbY ⋅= . The main diagonal 
elements of X  can be expressed using the cyclic convolution ⊕  between the vectors b  and 

∗
Πb  [115] 

 ( ) ( ) { }XFaaFbΠbc diag
1

⋅=⋅=⋅⊕= ∗∗ o
M

, (6.14)  
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where Π  is the reflection matrix (see Appendix C). The cyclic convolution between b  and 
∗
b  can be calculated using the vector z having elements 

 ( )Mlbbz
lM

i

ilil ,,1,
1

1
1 K=⋅= ∑

+−

=

∗
−+ . (6.15)  

The elements of z are also the sums of the diagonals of Y 

 ( )Mlybbz
lM

i

ili

lM

i

ilil ,,1,
1

1
,1

1

1
1 K==⋅= ∑∑

+−

=
−+

+−

=

∗
−+ , 

and are related to c as follows 

 ∗








+= z

Π0

0
zc

0
. 

Hence, the main diagonal elements of X and the total sums along the diagonals of Y  are re-
lated in the following way 

 { } 

















+⋅= ∗

z
Π0

0
zFX

T

H

M

01
diag . (6.16) 

Since aFb ⋅=  is a linear transformation (6.16) is also valid for matrices 

 { } { } 









⋅








+⋅==⋅ ∗

z
Π0

0
zFXAA

T

HH

M

01
diagdiag , 

where 

 HHHH FXFFAAFBBY ⋅⋅=⋅⋅⋅=⋅= . 

If Y has Toeplitz structure { }HyyY ,toep=  the first column of Y , i.e., y , is related to the 
main diagonal elements of  FYFX ⋅⋅= H  as 

 { } ( )∗⋅+⋅⋅⋅=⋅⋅ yWyWFFYF 21

1
diag HH

M
 (6.17) 

since 

 ( ) ( )MlylMyz
lM

i

iilil ,,11
1

1
,1 K=⋅+−== ∑

+−

=
−+ . 

Based on (6.17) we define the transformation { }ab
D
T=  

■ ( ) { }aaWaWFb DT=⋅+⋅⋅⋅= ∗
21

1 H

M
. (6.18) 

Since ( ) ( ){ }θκθβ DT=  is a linear transformation of ( )θκ  to ( )θβ , the first order derivatives of 
( )θβ  can be calculated using (4.93)-(4.96) in  

 ( ) ( )








∂
∂

=
∂
∂

θκθβ
ii θθ DT . (6.19) 

Furthermore, the parameter estimates θ̂  are a solution of  
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. 

In terms of numerical complexity an algorithm, using only the main diagonal elements of the 
covariance matrix FRF ⋅⋅H , is very attractive. But equation (6.18) reveals also the drawback 
of the approximation ( ){ } ( ) FθRFθβ ⋅⋅≈ Hdiag , it leads to a superposition ∗+ aWaW 21  of 
values carrying different information about the parameters θ , i.e., with different distributions. 
The reason is effectively the relation between the Schur-product and the cyclic convolution in 
(6.14). Hence, in the next section we derive an improved algorithm, avoiding this overlap. 
 

Table 6-3: Iterative optimisation of the parameters dmcθ  using the approximation 

( ){ } ( )θβFθRF =⋅⋅Hdiag  (Gauß-Newton algorithm) 

Input: data matrix X , initial solution { }0
θ  

Preprocessing: Compute the PDP y  using equation (6.6) from X . 

 

1) Compute the first order derivatives to the parameters { }i
θ  of  { }( )iθκ  using 

equations (4.93) - (4.96). 

2) Compute { }( ) { }( )( )ii
θκθβ DT=  and 

{ }( ) { }( ){ } ( ) ( )







∂
∂

∂
∂

=
−

θβθβθβθD
41

1
diag

θθ
Lii . 

3) Compute the error { } { }( ){ } 1diag
1

−=
−
yθβε ii . 

4) Compute the solution to { } { }( ) { } 2
minarg

F

iii εθθDθ
θ

−∆⋅=∆
∆

 and set { } 1=iλ . 

5) Compute the update { } { } { } { }iiii
θθθ ∆⋅+=+ λ1 . 

6) Check strict maximization { }( ) { }( )ii θXθX LL >+1 ; yes: go to 7. , no: reduce 
{ }iλ  go to 5. 

7) Check convergence; not converged: go to 1. 

 

6.1.5 A Numerically Efficient Algorithm for the Estimation of DMC Parameters 

Let us consider a circulant matrix { }cC circ= 14, it is completely determined by its first col-
umn 1×∈ M

Cc , each column of C is equal to the previous column rotated downwards by one 
element. Hence, the circulant matrix C contains every element of its first column M times. Let 
us embed the smoothed covariance matrix ( )H

s rrR ˆ,ˆtoepˆ =  in a circulant matrix cR̂  in such a 
way, that all the information in r̂  is as often represented in the smoothed covariance matrix 
itself 

 
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M
c ,  (6.20) 

                                                 
14 The function { }cC circ=  maps the vector c to the circulant matrix C, where the first column of C equals c. 
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where 3W  is the weighting matrix 
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Now we recall that the eigenvectors of an arbitrary circulant matrix are given by the DFT-
matrix. In other words a circulant matrix is diagonalized by the DFT-matrix F 

 { } FRFy ⋅⋅= cc
ˆˆdiag H . 

The eigenvalues cŷ  are related to the first column of the circulant matrix cR̂  by 
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So we define the transformation { }ab cT= , mapping vector a to vector b, as 

■ { }a
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M
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.  (6.21) 

Now, replacing the Toeplitz matrices R̂  and ( )θR  by their circulant counterparts in the log-
likelihood function (4.79) yields the new cost function to maximize as 
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The gradient of the new cost function and an approximation of the Hessian can be derived in a 
similar fashion from (4.85) or (4.87) yielding 
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and 

 ( )
( ) ( )

( ){ }∑
=





























∂
∂

⋅








∂
∂

=
M

m mc

mk

c

mi

c

ik

1
2

~

θκ

θκθκ

θH
T

TT
θθ

.  (6.24) 

In summary the update equation for the Gauß-Newton algorithm becomes 

 ( ) ( )iiii θrgθHθθ ˆ,ˆˆ~ˆˆ 1
1 ⋅⋅+= −

+ λ , (6.25) 

and we have reduced the numerical complexity of one iteration by a factor of M since the 
complexity for the new iteration is ( )( )MMLO log⋅⋅  only. One should observe that cŷ  can be 
calculated directly from the observed channel transfer functions ix  as follows 
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Equation (6.26) reveals that the embedding of the smoothed covariance matrix in the circulant 
matrix is effectively a means to avoid the spectral overlap underlying the transformation 

{ }•DT  (6.18), leading to an estimation algorithm with a better statistical efficiency. The com-
putational complexity of an algorithm using { }•CT  is approximately two times higher than the 
complexity of an algorithm using { }•DT . The parameter estimation algorithm for the parame-
ters DMCθ  of the structured covariance matrix using the circulant matrix approach is summa-
rised in Table 6-4. 

Table 6-4: Iterative optimisation of the parameters dmcθ  circulant matrix approach  

(Gauß-Newton algorithm) 

Input: data matrix X , initial solution { }0
θ  

Preprocessing: Compute the PDP cy  using equation (6.26) from X . 

 

1) Compute the first order derivatives to the parameters { }i
θ  of  { }( )iθκ  using 

equations (4.93) - (4.96). 

2) Compute { }( ) { }( ){ }{ } ( ) ( ) 





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





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∂
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=
−

θκθκθκθD
41

1
diag

θθ CCC TTT Lii . 

3) Compute the error { } { }( ) { }( ){ }{ }( )1diag
1T −=

−

CCT yθκθDε
iii . 

4) Compute the solution to { } { }( ) { } 2
minarg

F

iii εθθDθ
θ

−∆⋅=∆
∆

 and set { } 1=iλ . 

5) Compute the update { } { } { } { }iiii
θθθ ∆⋅+=+ λ1 . 

6) Check strict maximization { }( ) { }( )ii θXθX LL >+1 ; yes: go to 7. , no: reduce 
{ }iλ  go to 5. 

7) Check convergence; not converged: go to 1. 

 
Note, the maximization check { }( ) { }( )ii θXθX LL >+1  can be replaced by a gradient check 

{ }( ) { }( )ii θgθg <+1 , what is computationally less expensive especially since the gradient is 
required in the next iteration step, anyway. The computation of the log-likelihood function 
involves the computation of the logarithm ( )•ln  at least M times, whereas the calculation of 
the gradient does not. The robustness of the algorithm outlined in Table 6-4 can be enhanced 
using the Levenberg-Marquardt optimisation strategy [68], [82], [116] see also Section 5.2.4 
for a discussion of the Levenberg-Marquardt method. 

Figure 6-1 shows the development of { }i
θ∆  over the iterations i  of the algorithm out-

lined in Table 6-4. The algorithm converges quickly to a solution. Typically, less than 30 it-
erations are necessary to determine the parameter estimates within double precision accuracy 
(64 bit IEEE float).  

To compare the statistical performance of the proposed estimators for the parameters 
of the dense multipath components, simulations have been carried out. In Figure 6-2, Figure 
6-3, and Figure 6-4 the performance of the estimators outlined in Table 6-4, Table 6-3 and of 
the ML-estimator are compared to the CRLB. For the DMC parameters, typical values ob-
served in channel sounding measurements have been selected 

[ ] [ ]T10 1.007.011.0== τβααdanθ . The number of frequency samples   was the same in 
all three simulations. In the simulations the number of independent realisations N has been 
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varied between 1=N  and 1024=N . For each N, 10000 experiments have been carried out. 
All estimators attain the CRLB if the number of realisations is 1>N , except for the base-
delay. The variance of the estimates of the base delay determined by the estimator outlined in 
Table 6-3 are approx. 2 times the CRLB of the base delay for 100>N . The variance of the 
estimates of the estimator outlined in Table 6-4 for the same parameter is approx. 1.3 times 
the CRLB for 10>N . The ML-estimator attains the CRLB of the base delay for large N. 
Since the parameter estimator outlined in Section 6.1.5 (Table 6-4) has almost the same per-
formance statistically as the ML-estimator but significantly lower computational complexity, 
it is the best choice for the estimation of the parameters of the dense multipath components. 
Figure 6-5 and Figure 6-6 shows the performance of the proposed estimator for a fixed num-
ber of realisations 64=N  and various numbers of frequency domain or time-delay domain 
samples fM . In the simulation for Figure 6-5 the bandwidth was kept constant, i.e., the 
length of the impulse response has been changed between 32=fM  and 1024=fM  samples. 
In the simulation for Figure 6-6 the length of the impulse response was constant, i.e., the 
bandwidth of the observation has been changed between 32=fM  and 1024=fM . The es-
timator attains the CRLB in both cases except for the base delay estimate. The variance of the 
base delay estimate is approximately 1.3 times the CRLB in all simulated cases. 

Whereas the number of frequency samples cannot be chosen arbitrarily in practice, 
there are various ways to increase the number of independent observations N . The number of 
independent observations of the DMC process increases if the number of transmit or receive 
antennas is increased, provided the DMC process is spatially uncorrelated and white. If the 
transmitter or the receiver is moving, the number of independent observations can also be 
increased, by using multiple channel observations over time. However, a necessary condition 
is that the radio channel is sampled fast enough. Here, fast enough refers to the fact that the 
estimator treats the parameters of the DMC process as stationary parameters within the obser-
vation time. On the other hand, one should note that the sampling interval should not be made 
arbitrarily small, since only independent observations of the DMC process will enhance the 
statistical performance of the estimator. Since the radio channel is a correlated process with 
respect to time, the correlation between the observations is growing if the sampling interval 
between the channel snapshots decreases. Observe, that a MIMO channel sounding measure-
ment carried out with an 8-element transmit and an 8-element receive array contains 64 reali-
sations of the DMC process. Consequently, MIMO channel sounding measurements are an 
effective means to acquire a large amount of independent observations for the estimation of 
the parameters danθ . 
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Figure 6-1: Convergence of the parameters versus the number of iterations of the Leven-
berg-Marquardt algorithm outlined in Table 6-5. 

 
Figure 6-2: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-4) as a function of realisations N . The number of samples in the frequency 
domain was 128=fM . The dashed lines denote the variance of the estimates and the straight 
lines the related CRLB. The Estimator attains the CRLB except for the base delay estimate. 
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Figure 6-3: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-3) as a function of independent realisationsN . The number of samples in the 
frequency domain was 128=fM . The dashed lines denote the variance of the estimates and 
the straight lines the related CRLB. The Estimator attains the CRLB except for the base delay 
estimate. 

 
Figure 6-4: Performance of the ML-estimator for the parameters of the dense multipath com-
ponents as a function of realisations N . The number of samples in the frequency domain 
was 128=fM . The dashed lines denote the variance of the estimates and the straight lines the 
related CRLB. The Estimator attains the CRLB for large N. 
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Figure 6-5: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-4) as a function of number of samples in the frequency domain fM , i.e., for a 
fixed bandwidth. The number of observations was 64=N . The dashed lines denote the vari-
ance of the estimates and the straight lines the related CRLB. The Estimator attains the CRLB 
except for the base delay estimate. 

 
Figure 6-6: Performance of the estimator for the parameters of the dense multipath compo-
nents (Table 6-4) as a function of number of samples in the frequency domain fM , i.e., for a 
fixed impulse response length. The number of observations was 64=N . The dashed lines 
denote the variance of the estimates and the straight lines the related CRLB. The Estimator 
attains the CRLB except for the base delay estimate. 
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6.1.6 Model Selection for DMC and Noise 

So far, we have always assumed the observed radio channel contains DMC and noise. How-
ever, in channel sounding this model is not always valid. Here valid means, the observation 
does not contain enough information to estimate both components of the model. If the signal 
to noise ratio is low, the parameters of the DMC cannot be estimated. If the SNR is very high, 
the power of the noise is not measurable. The three possible models are listed in the follow-
ing.: 
 

1. The observation contains measurement noise but no DMC, i.e., the observation has a 
low SNR. 

2. The observation contains DMC but no measurement noise, i.e., the observation has a 
high SNR. No measurement noise means that the measurement noise is hidden by the 
DMC. 

3. The observation contains both model components DMC and measurement noise (best 
case). 

 
Consequently, we have to solve a model selection problem. It is important to observe that this 
model selection problem is not a model order selection problem in the strict sense, since all 
three resulting models are different. However, we can interpret the problem as two independ-
ent model order selection tasks. The model orders to choose from are zero (not contained in 
the model) or one (contained in the model) for both the DMC and the measurement noise. 
Using this approach, we can use the same reasoning as in Section 5.2.7 for the model selec-
tion. That means we estimate the relative variance of the weights of the components noise and 
DMC, i.e., of 0α  and 1α . Using the estimated relative variance, we can decide the model or-
der individually for the noise model and the DMC model. Observe that an estimate of the 
variance of the parameter estimates danθ  can be computed using expression (4.90), replacing 
the true parameters danθ  by the estimates danθ̂ .  

Figure 6-7 shows estimates of 0α , and 1α . The parameters have been calculated from 
a MIMO indoor channel sounding measurement, using the algorithm outlined in Table 6-4 
and applying the outlined method for model selection. The bound for the relative variance was 
chosen as 0.3. At the beginning of the measurements, the SNR was very low. Consequently, 
the data model reduces to a white circular normal distributed process describing the measure-
ment noise, since no radio channel components could be measured. After 300 observations, 
the SNR was sufficient for the estimation of the DMC parameters. As a reference, the number 
of propagation paths jointly estimated from the measurements using the RIMAX algorithm 
(cf. Section 6.2.1) is depicted in Figure 6-8. In addition, the estimated base delay dτ̂  of the 
DMC is shown in Table 6-5. 
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Figure 6-7: Estimation results of the parameters 0α  and 1α applying the model selection 
algorithm outlined in Section 6.1.6. 

 
 

     
Figure 6-8: Number of propagation paths estimated by the RIMAX algorithm. 

 

500 1000 1500 2000 2500 3000 
-120 

-110 

-100 

-90 

-80 

-70 

-60 

-50 

-40 

-30 

P
a
ra
m
e
te
rs
 o
f 
th
e
 D
M
C
 [
d
B
] 

Snapshot Index 

α 
0 

α 
1 

500 1000 1500 2000 2500 3000 

10 

20 

30 

40 

50 

60 

N
u
m
b
e
r 
o
f 
E
s
ti
m
a
te
d
 P
ro
p
a
g
a
ti
o
n
 P
a
th
s
 

Snapshot Index 



146 Estimation of DMC Parameters  

 

 
Figure 6-9: Estimated base delay of dense multipath components. 

 

6.1.7 Estimation of the Parameters of Multiple Independent DMC Processes 

Since the developed algorithm exploits the Toeplitz structure of the parametric covariance 
matrix only, we can apply it too, if the radio channel contains multiple independent versions 
of the DMC process. Figure 6-10 shows an example of such a radio channel. In this example, 
a radio channel containing two DMC clusters has been simulated. The parameters of the first 
process and the second process have been chosen as [ ] [ ]TT

1111, 1.0005.01== τβαdmcθ  and 
[ ] [ ]TT

2222, 4.0005.02.0== τβαdmcθ , respectively. The variance of the measurement noise 
was 0316.00 =α , i.e., 15dB below the maximum variance of the first DMC process. The fig-
ure on the left hand side shows the expected value of the PDP of the simulated radio channel 
and the right hand side shows the PDP estimated from eight independent realizations. 
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Figure 6-10: Example for a PDP containing two DMC clusters. The left hand side shows the 
expected value of the PDP and the right hand side shows an example of a PDP estimated from 
eight realisations of the DMC process. 
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Let us assume [ ] Qqqqqqdmc ≤≤= 1,

T

, τβαθ  are independent parameter vectors describing the 
covariance matrices of Q  uncorrelated DMC processes. Consequently, one observation is 
given by 

 ( )∑
=

+=
Q

q

qdmc

1
,θdwx . 

Since the processes and the measurement noise are uncorrelated by definition, the covariance 
matrix of the process x  is given by the sum of the covariance matrices of the Q  DMC proc-
esses and the covariance matrix of the white measurement noise as 

 { } ( ) ( )( )∑
=

+==
Q

q

qdmcqdmc

1
,

H
,0

H ,toepE θκθκIxxR xx α . (6.27) 

Remembering, that the sum of two Toeplitz matrices has Toeplitz structure too, we represent 
the covariance matrix (6.27) by 

 { } ( ) ( )( )dmcdmc θκθκIxxR xx

H
0

H ,toepE +== α  (6.28) 

using the spectrum 

 ( ) ( )∑
=

=
Q

q

qdmcdmc

1
,θκθκ . (6.29) 

Since the spectrum ( )dmcθκ  (6.29) is only the sum of the individual spectra of the Q  uncorre-
lated DMC processes, the equations for the first order partial derivatives (4.94)-(4.96) as well 
as (4.92) are still valid. Consequently, we can apply the algorithm as outlined in Table 6-5 to 
estimate the set of parameters Qqqdmc ≤≤1,ˆ

,θ  without modifications. Furthermore, one can 
use the general expression (4.90) to compute the related Cramér-Rao lower bound as outlined 
in Table 4-6.  

What we still need is an initial solution for the first iteration { }iθ̂ . It should be close 
enough to the optimum solution to ensure convergence of the iterative algorithms described 
so far.  

6.1.8 Estimation of an Initial Solution 

To determine an initial solution 0θ̂  we compute an estimate of the power delay profile from 
R̂  using equation (6.6) as 

 { }FRFy ⋅⋅= ˆdiagˆ H . (6.30) 

If the impulse response is observed over a sufficiently long time, an estimate of the noise vari-
ance 0α̂  is 

 ( )ŷminˆ
0 =α . (6.31) 

Furthermore an estimate of 1α̂  can be derived from ŷ  using 0α̂  by 

 ( ) 01
ˆˆmaxˆ αα −= y . (6.32) 

The first element of r̂  defined in equation (6.3), i.e., 1̂r  has an expected value of 

 { }{ } ( ){ } 0
1

11
ˆE α

β
α

+
⋅

==
dM

r θκ , 
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since it is the mean value of the main diagonal elements of the sample covariance R̂ , having 
expected value  

 { } ( )danθRR =ˆE . 

 

Table 6-5: Iterative optimisation of the parameters dmcθ using the circulant matrix ap-

proach (Levenberg-Marquardt algorithm) 

Input: data matrix X , initial solution { }iθ̂ , λ . 

Pre-processing: Compute the PDP cy  using equation (6.26) from X . 

 

1) Compute the first order derivatives to the parameters { }i
θ  of  { }( )iθκ  using 

equations (4.93) - (4.96). 

2) Compute { }( ) { }( ){ }{ } ( ) ( ) 















∂
∂








∂
∂

=
−

θκθκθκθD
41

1
diag

θθ CCC TTT Lii . 

3) Compute the error { } { }( ){ }{ } 1diag
1

−=
−

CCT yθκε
ii . 

4) Compute the solution to { } { }( ) { }( )( ) { }( ) { }iiiii εθDIθDθDθ T1T −
+=∆ λ . 

5) Compute the update { } { } { } { }iiii
θθθ ∆⋅+=+ λ1 . 

6) Check strict maximization { }( ) { }( )ii θXθX LL >+1 ; yes: set 4
λλ =  go to 7. , no: 

set λλ 8=  go to 4. 

7) Check convergence; not converged: go to 1. 

 
Consequently, an raw estimate of dβ̂  can be determined from r̂  using the raw estimates 1α̂  
and 0α̂  according to 

 
( )01

1

ˆˆ

ˆˆ
α

α
β

−
=

rM
d . (6.33) 

Finally, we have to determine a initial solution for the base time delay of the dense multipath 
components dτ̂ . At this point it is important to note that the determinant of ( )θR  is independ-
ent of the parameter dτ . If we define the matrix valued function 

 ( ) ( )[ ]{ }ννν 1π2jπ2j ee1diag −−−= MLΩ , 

we can express ( )θR  as  

 ( ) ( ) ( )( ) ( ) ( )d
d

ddandandan τ
β
α
α

τ H1

0

H

0

,toep ΩRΩθκθκθR ⋅





































⋅== . 

Since ( )dτΩ  is unitary the determinant ( )( )danθRdet , with [ ]T10 dddan τβαα=θ , is not a 
function of dτ . Consequently, ( )( ) ( )( )0,detdet dandan θRθR = , with [ ]T100, 0ddan βαα=θ , holds 

dτ∀ . This is important insofar that if the log-likelihood function is maximized over dτ  only, 
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the term ( )( )( )θRdetln  in the log-likelihood function (4.79) can be neglected and accordingly 
the term ( ){ }( )θκcTln  in the cost function (6.22), leading to the simplified maximization prob-
lem 

 
{ }
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













 
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

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M

m

m
dd

m
d

d 1 T

10
ˆˆˆ

ˆ
maxargˆ

τβαα
τ

τ
κ

r

c

c

T

T
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So we compute at first the elements of the vector z from [ ]( )T10 0ˆˆˆ
dβαακ  

 
[ ]

m
d

mz







 







=
T

10 0ˆˆˆ

1

βαακCT

. (6.34) 

After embedding this vector in the circulant matrix { }zZ circ= , an estimate of the base delay 

dτ  can be computed from the index { }
l

l
l τcmaxargmax =  belonging to the largest element of 

c

T
yZc ˆ⋅=τ  using 

 
12

1
ˆ max

−
−

=
f

d
M

l
τ . (6.35) 

One should observe that the cyclic convolution between z and cŷ  can be calculated in a com-
putationally efficient way using the FFT by 

 ( ) ( )( )∗⋅⋅⋅= zFyFFc oc
ˆH

τ . (6.36) 

Equation (6.36) implies also that the cost function can be calculated with an arbitrary resolu-
tion using zero-padding. Altogether to calculate an initial solution { }0θ̂  we have first to com-
pute ŷ  using equation (6.30) and then to establish an estimate for 0α̂ , 1α̂ , and dβ̂  using 
(6.31), (6.32), and (6.33). Using these estimates, we compute the vector z from equation 
(6.34). Finnally, we determine the initial estimate for dτ̂  from equation (6.36) and (6.35) us-
ing the vector z . All four estimates together yield the initial solution { }0θ̂  for the local search 
algorithm. Table 6-6 gives a summary of the complete algorithm for the estimation of an ini-
tial solution. 
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Table 6-6: Computation of an initial solution for the parameters dmcθ . 

Input: data matrix X  

Preprocessing: Compute the PDP y  using equation (6.6) from X . 

 

1) Compute an estimate of the measurement noise ( )ŷminˆ
0 =α . 

2) Compute the maximum power of DMC ( ) 01
ˆˆmaxˆ αα −= y . 

3) Compute ∑
=

=
M

m

myr
1

1̂  

4) Compute an estimate of the coherence bandwidth of the DMC as 

( )01

1

ˆˆ

ˆˆ
α

α
β

−
=

rM
d . 

5) Compute the reference vector 
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and the interpolated PDP 
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6) Compute ( ) ( )( )∗⋅⋅⋅= zFyFFc oc
ˆH

τ  using the FFT.  

7) Find { }
l

l
l τcmaxargmax =  and compute the estimate of the base delay of the 

DMC as 
12

1
ˆ max

−
−

=
f

d
M

l
τ . 

8) Form the initial estimate { } [ ]T10
0 ˆˆˆˆˆ

dd τβαα=θ . 

 

6.1.9 Frequency Domain Smoothing 

The global search algorithm yields unreliable results, if the number of independent observa-
tions is small and/or if the observations contain strong discrete (specular) components. A way 
to improve the robustness of the global search strategy is to decompose the observation into 
overlapping observations. If we reduce the column size of the data matrix X , i.e., the band-
width, from fM  to 

fsubM  we can effectively increase the number of observations by a factor 
of 1−−=

fsubff MML . Using the fL  selection matrices defined by 

  
} } }

MM

lLMl

l
sub

sub

×
−−

∈













= R0I0J

1

 

the new set of observations SSX  can be expressed algebraically by 

 [ ] NLM

LSS

ffsub

f

×
∈= CXJXJXJX L21 . (6.37) 

Notice that the covariance matrix of an arbitrary segment XJ l  is given by 
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 { } { } ( ) ( )( ) HHH1H1 ,toepEE ldmcdmclllNllNll
JθκθκJJXXJXXJJR XX ⋅⋅=== . 

For all Toeplitz matrices, the following holds 

 ffkkii LkLi ≤≤≤≤∀= 1,1,HH TJJTJJ  

holds. Consequently the covariance matrix of (6.37)  

 ( ) ( )( ) ( ) ( )( )( )H

11
H
1

H
1 ,toep,toep dmcdmcdmcdmcSS

θκJθκJJθκθκJR XX =⋅⋅=  

is simply a reduced version of the covariance matrix ( ) ( )( )dmcdmc θκθκ
H,toep . 

The outlined smoothing technique increases the amount of observations, and reduces 
the influence of strong specular paths at the same time. The principle is similar to the sub-
space (subarray) smoothing algorithm used for the signal subspace estimation needed by sub-
space-based estimators (ESPRIT, RARE, MUSIC) but the intention is clearly different. 
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Figure 6-11: Example for the influence of smoothing in the frequency domain to the PDP of a 
measured SIMO impulse response containing some specular-alike propagation paths and the 
PDP estimated using the algorithm in Table 6-4. 

 

In Figure 6-11 the influence of smoothing in the frequency domain to the PDP is 
shown. The PDP has been calculated from a SIMO measurement carried out with an 8-
element uniform linear array. The measurement campaign has been carried out in a non-line 
of sight scenario. Using the smoothed data, at first the parameter of the DMC has been esti-
mated using the global search algorithm outlined in Table 6-6. With these initial estimates, the 
algorithm summarised in Table 6-4 has been applied to get the final estimate shown in the 
example. It is instructive to see that the contribution of the specular propagation paths van-
ishes if the observation bandwidth is reduced. This effect has already been discussed in Sec-
tion 2.5.4. The reason for this behavior can be found in the nature of the two channel model 
components. The specular paths contribute to the mean of the channel, i.e., they are the de-
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terministic part of the channel. The dense multipath components on the other hand are the 
stochastic part of the channel. 

6.1.10 A Comment on the Least Squares Estimation of Parametric Covariance Matri-

ces 

If we have to estimate the parameters θ  of a covariance matrix ( )θR  from an observed co-
variance matrix R̂  (4.83) we may be tempted to use the simple nonlinear least squares (NLS) 
approach 

 ( )
2ˆminargˆ
FLS θRRθ

θ
−= . (6.38) 

To understand why this least squares approach is not optimal compared with the maximum 
likelihood approach (6.1) let us calculate the first order derivatives, i.e., the first gradient of 
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to θ . Straight forward calculations yield 
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Hence, the least squares estimate LSθ̂  is a solution of 

 ( ) ( )( ) iLSLSLS
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θ
θ

,
H

,

ˆ,0ˆˆˆ
ˆ

tr ∀=












−⋅
∂

∂
θRRθR , 

whereas the maximum likelihood estimate MLθ̂  is according to (4.84) a solution of  

 ( ) ( ) ( ) ( )( ) iMLMLMLML

i

ML ,
11 ˆ,0ˆˆˆˆˆtr θ

θ
∀=








−⋅








∂
∂ −−

θRRθRθRθR . 

So, the difference between the least squares estimator and the maximum likelihood estimator 
for the parametric covariance matrix ( )θR  is effectively the weighting with ( )θR ˆ1−  of the 
difference between the observation and the estimate 

 ( )( ) ( ) ( )( )MLMLLS θRRθRθRR ˆˆˆˆˆ 1 −⇔− − , 

and of the differential 

 ( ) ( ) ( )ML

iML

MLiLS

iLS

θRθRθR ˆˆˆ
ˆ

,

1
,

,
θθ ∂
∂

⇔
∂

∂ − . 

Finally, note that the maximum likelihood estimator is, although similar, not a weighted 
nonlinear least squares (WNLS) estimator, since the weighting matrix ( )θR 1−  depends on the 
parameters to estimate θ . 

6.1.11 A Generator for the DMC Process 

To generate realisations of dense multipath components for numerical simulations we have to 
generate a circular Gaussian process 
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 ( ) ( )( ) 1
,

×∈ fM

dmcdmc CθR0θd CN~ , 

having zero mean and covariance matrix ( )dmcθR . To this end we generate usually a multi-

variate i.i.d. circular Gaussian process  

 ( )I0z ,~
1

CN
×∈ fM

C  

and use a transformation matrix ( )dmcθL  satisfying  

 ( ) ( ) ( )dmcdmcdmc θLθLθR
H⋅=  (6.39) 

to compute the coloured process  

 ( ) ( ) zθLθd ⋅= dmcdmc . (6.40) 

The generator (6.40) for the process ( )dmcθd  has a computational complexity of ( )NM f

2O  if 
we ask for N realisations. And the computational complexity of algorithms for the decomposi-
tion (6.39) is of order ( )3fMO , in general. For example, the projector ( )dmcθL   can be calcu-
lated using the Cholesky decomposition 

 HLLR ⋅= , 

or the singular value decomposition (SVD)  

 ( ) ( ) H
H

HH 2
1

2
1

LLUΣUΣUΣUVΣUR ⋅=⋅=⋅⋅=⋅⋅= . 

The computational complexity can be reduced significantly if we exploit the Toeplitz struc-
ture of the covariance matrix (2.67).  

The covariance matrix ( ) ( ) ( )( )θκθκθR H,toep=  can also be expressed using the circu-
lant matrix 

 ( )
( )

[ ] ( ) 






















⋅
= ∗

− θκΠ0

θκ
θR

1

circ
fM

c  

by 

 ( ) ( ) H
JθRJθR ⋅⋅= c , (6.41) 

where the selection matrix J  is defined as 

 [ ] 12 −×∈= ff

f

MM

M R0IJ . 

Now recalling, that any circulant matrix is diagonalized by the DFT-matrix we rewrite 
expression (6.41) to  

 ( ) ( ){ } HH2diag JFθwFJθR ⋅⋅⋅⋅= . 

Hence, a computationally efficient procedure to generate the process ( )dmcθd  is given by the 
relation  

 ( ) ( )( )zθwFJθd odmcdmc ⋅⋅= , (6.42) 

where 
( ) 112 ×−∈ fM

Cz  is now a realisation of the multivariate i.i.d. circular Gaussian process 
distributed according to 
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 ( )I0,CN~ . 

The generator (6.42) has a numerical complexity ( )( )
ff MMO log⋅  for one realisation and 

consequently a complexity of ( )( )
ff MMNO log⋅⋅  if we ask for N realisations. This is an im-

provement of ( )( )
ff MMO log  compared with the generator (6.40). Furthermore, one should 

note that the weighting vector ( )θw  can be calculate in a computationally efficient way using 

 ( )
( )

[ ] ( )
( ) ( ) 112

1

H ,
12

1 ×−

∗
−

∈












⋅−
= f

f

M

MfM
Rθλ

θκΠ0

θκ
Fθλ  

and15 

 ( ){ } ( ){ }
ii

θλθw += . 

Hence, the computation of ( )θw  requires ( )( )
ff MMO log  operations only. This is a signifi-

cant improvement compared with the computational complexity ( )3fMO  necessary for the 
computation of ( )θL , especially if we have to generate a sequence of realisations having 
varying parameters θ .  

Table 6-7: Generator for the circular zero-mean normal distributed process  
( )( )dmcdmc θR0d ,CN~  

1) Compute ( )
( )

[ ] ( )











⋅−
= ∗

− θκΠ0

θκ
Fθλ

1

H

12

1

fMfM
 using the FFT. 

2) Compute the square roots of the elements of ( )θλ  as ( ){ } ( ){ }
ii

θλθw += . 

3) Compute a realisation of the multivariate i.i.d. circular normal distributed 
process ( )I0z ,CN~ . 

4) Computed the coloured process ( ) ( )( )zθwFJθd odmcdmc ⋅⋅= . 

5) If multiple realisations are required, repeat step 3 and step 4.  

6.1.12 Implementation Issues  

In this subsection, we investigate computationally efficient ways to solve a set of linear equa-
tions 

 ABT =⋅ , (6.43) 

where MM×∈CT  is Hermitian and Toeplitz, NM×∈CA an arbitrary matrix, and NM×∈CB  the 
solution to be calculated. Having covariance matrices in mind, we assume that T  is positive 
definite, i.e., the inverse 1−T  exists. Since (6.43) can be solved separately for every column 

na  of A , we will focus the discussion on the solution of the linear system of equations 

 aTb ⋅= −1 . (6.44) 

In computations with the inverses of Toeplitz matrices, the Gohberg-Semencul formula [117], 
[118] is useful. This formula represents the inverse of a finite Toeplitz matrix in the form of 
the sum of products of triangular Toeplitz matrices [119]. The inverse of an arbitrary non-

                                                 
15 The values of ( )θλ  are nonnegative since they are the eigenvalues of a covariance matrix. 
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singular Toeplitz matrix can be expressed using the solutions 1×∈ M
Cx  and 1×∈ M

Cy  of the 
equations 

 0exT =⋅  (6.45) 

and 

 1−=⋅ MeyT  (6.46) 

as 
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 (6.47) 

A Hermitian Toeplitz matrix satisfies ∗=⋅⋅ TΠΤΠ , hence equation (6.46) can be rewritten to 

 

( ) 0

0

1

eyΠT

eyΠT

eΠyΠΠTΠ

=⋅

=⋅

⋅=⋅⋅⋅⋅

∗

∗

−M

 

since IΠΠ =⋅ . Consequently the solution (6.45) and (6.46) are, for a Hermitian Toeplitz 
matrix, related according to 

 ∗⋅= xΠy . (6.48) 

The solution x  to the equation (6.45) is sufficient to express the inverse of a Hermitian Toe-
plitz matrix. Using (6.48) in (6.47) yields for the inverse 
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Therefore, we define a lower triangular Toeplitz matrix [ ]( ) MMTx ×∈= C0xT 11 ,toep  and an 
upper triangular Toeplitz matrix [ ]( ) MM

M xx ×∈= C22 0,toep L0T  and write the inverse 
(6.51) in compact form as 

 ( )2H
2

H
11

1

1 1
TTTTT −=−

x
. 

If we embed the matrices 1T  and 2T  as block matrices in the circulant matrix 

 MM 22

12

21 circ ×∈













=





= C

0

x

TT

TT
C , (6.50) 

we can express the product (6.44) as 

 ∗⋅−= 21 wΠwb , 

where 1
1

×∈ M
Cw  and 1

2
×∈ M

Cw  are given by 

 








⋅
⋅⋅








⋅=








∗××

××

aΠ

a
C

00

0I
C

w

w H

2

1

MMMM

MMMM

. (6.51) 

Proof: Using the definition of C  (6.50) in (6.51) yields 

 

( ) ( )( )

( )( ),1

1

T
22

H
12

H
21

H
11

1

H
22

H
12

H
21

H
11

1

aΠΠTΠΠTaTTΠΠaTTaTTb

aΠTTΠaTTΠΠaTTaTTb

⋅⋅−−+=

⋅−−+=

∗∗∗∗

∗∗∗∗

x

x
 

which can be simplified to  

 ( )( )aTTaTTΠΠaTTaTTb 2
H
2

H
12

H
21

H
11

1

1
−−+= ∗∗∗

x
, (6.52) 

since TTΠTΠ =⋅⋅ . The two triangular Toeplitz matrices 1T  and 2T  commute, i.e.,  

 1
H
2

H
21 TTTT = . 

Consequently, equation (6.52) can be reduced to 

 ( ) ( )aTTTTaTTaTTb 2
H
2

H
11

1

2
H
2

H
11

1

11
−=−=

xx
. 

Since C  is circulant it can be diagonalized using the DFT-matrix 
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1
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x
FFCFΛ . (6.53) 

Using (6.53) in (6.51) yields the expression  

 








⋅
⋅⋅⋅⋅








⋅⋅⋅=




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


∗
aΠ

a
FΛF

00

0I
FΛF

w

w HHH

2

1 . 

Hence, the solution B  of equation (6.43) can be computed by 
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 








⋅
⋅⋅⋅⋅








⋅⋅⋅=




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


∗

AΠ

A
FΛF

00

0I
FΛF

W

W HHH

2

1 , (6.54) 

and  

 ( )∗⋅−= 21

1

1
WΠWB

x
. 

Since equation (6.54) contains products with only diagonal- and Fourier-matrices, we can 
compute the product ATB 1−=  with an algorithm having computational complexity of 

( )( )MMNO log , since the multiplication with a Fourier-matrix F  requires ( )( )MMNO log  
operations, if fast Fourier-transform (FFT) algorithms are used, and the multiplication with a 
diagonal matrix can be computed using ( )MNO  operations. Note, that the direct approach not 
exploiting the Toeplitz structure of T  has a computational complexity of ( )NMO 2 . Further-
more, it is possible to use zero padding to get matrix sizes in (6.54) appropriate for the appli-
cation of radix-2 or radix-4 FFT algorithms. This is especially important if M  is a prime 
number. Nevertheless, it is important to note, that in today’s layered memory architectures 
mix-radix algorithms may be a better choice than radix-2 algorithms in combination with ex-
cessive zero-padding [118].  

We have so far ignored the computational complexity of the solution to the set of lin-
ear equations 

 0exT =⋅ . (6.55) 

Algorithms don’t exploit the Toeplitz structure of T  have a computational complexity of 
( )3MO . An Algorithm being computationally more efficient is the Levinson algorithm it re-

quires ( )2MO  operations only [120], to compute a solution to the system of equations (6.54). 
Finally if M is large one can also use a so-called super-fast algorithm to solve (6.54), having 
computational complexity ( )( )2log MMO  [121]. Table 6-8 summarises the whole algorithm 
to solve multiple systems of equations of type (6.43) in a computationally efficient way. An 
computationally efficient implementation of the FFT is available from the fftw-library [122]. 

6.2 Joint Estimation of Concentrated Propagation Paths and DMC 

So far, we have only derived estimators for the independent estimation of spθ  and danθ . How-
ever, the parameter estimation problem to solve is the joint estimation of both parameter vec-
tors, i.e., of  

 [ ]TTT
danspchn θθθ = . 

Therefore, we derive in the next section a joint estimator for all channel parameters. We use 
the global search algorithm for the raw parameters of new propagation paths outlined in Sec-
tion 5.1.5, and the global search algorithm for the parameters of the DMC outlined in Section 
6.1.8. For local maximization of the likelihood function, we apply the iterative maximum 
likelihood estimator for the parameters of the propagation paths derived in Section 5.2.4, and 
the iterative maximum likelihood estimator for the parameters of the DMC derived in Section 
6.1.5. 
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Table 6-8: Fast Matrix Multiplication for Inverse Toeplitz Matrices 

Preprocessing: Calculate the diagonal elements z  of the matrix Λ   (6.53) using 

the FFT as 







⋅⋅=

×

×

1

1

2
M

M

HM
0

x
Fz  , in ( )( )MM logO  operations. 

For every column na  of the matrix A  do: 

1) Compute 1z  using the FFT as 
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





⋅
⋅= ∗

n

nH

aΠ

a
Fz1 , in ( )( )MM logO  operations. 

2) Compute 2z  using the FFT as 

( )12 zzFz o∗⋅= , in ( )( )MM logO  operations. 

3) Compute 3z  using the FFT as 

23 z
00

0I
Fz ⋅








⋅= H , in ( )( )MM logO  operations. 

4) Compute [ ]TT
2

T
1 ww  using the FFT as 

( )3
2

1
zzF

w

w
o⋅=





, in ( )( )MM logO . 

5) Compute the solution nn aTb
1−=  

( )∗⋅−= 21

1

1
wΠwb

x
, in ( )MO  operations. 

 

6.2.1 Joint Maximum Likelihood Estimation (RIMAX) 

As already discussed in Section 4.4, the Fisher information matrix (4.98) of the complete pa-
rameter set chnθ  is a block diagonal matrix with one block related to spθ  and another one re-
lated to the parameters danθ . Recalling the discussion about parameter coupling and the choice 
of parameter index sets in the sense of the genuine SAGE algorithm [62] in Section (5.3) we 
choose two non-overlapping parameter sets spθ  and danθ . Applying the SAGE idea, we alter-
nate between the maximization of the log-likelihood function 

 ( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )spdanspdandansp M θsxθRθsxθRθθx −⋅⋅−−−−= −1Hdetlnπln,L  (6.56) 

with respect to the parameters of the concentrated propagation paths and with respect to the 
parameters of the DMC and measurement noise. Since both parameter sets are not strongly 
coupled the alternating maximization procedure will converge as fast as a joint iterative 
maximum likelihood procedure (cf. Section 6.1.2 equation (6.2)). For the maximization of 
(6.56) with respect to danθ , given an estimate spθ̂ , we apply the estimator outlined in Table 
6-5. For the update of the parameters spθ̂ given the parameter estimates danθ̂ , we use the 
Levenberg-Marquardt algorithm summarised in Table 5-3.  The basic concept of the maxi-
mum likelihood estimator is outlined in Figure 6-12.  
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( )( ) ( ) ( )( )( )spdanspsp
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θ
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xθRxθRθ
θ

ˆˆdetlnmaxargˆ 1H −−−=  

( )spdan θsxx ˆˆ −=  

 
Figure 6-12: Concept for joint maximum likelihood estimation of chnθ . 

For the selection of the model order, we use the estimated relative variance of the estimated 
path weights as described in Section 5.2.7 and drop the propagation paths that are unreliable. 
The initial estimates are chosen as follows. For the DMC parameters, we use the estimates 
from the previous observation if available, or employ the global search algorithm outlined in 
Section 6.1.8. The structural parameters of the propagation paths are initialized using the 
structural parameters of the previous observation. The related path weights are computed us-
ing the closed form solution (5.5) (BLUE). The contribution of the tracked propagation paths 
is removed from the radio channel observation, and a search for propagation paths that have 
become visible is carried out using the algorithm outlined in Section 5.1.5. For the channel 
sounding measurements processed so far, it was sufficient to search for five new propagation 
paths. One should observe that the global search algorithm for new propagation paths is com-
putationally expensive. Hence, it is important to limit the search for new propagation paths to 
a reasonable small number of paths. The structure of the RIMAX algorithm is outlined in 
Figure 6-13.  

The number of global iterations required by RIMAX varies strongly. The number of 
iterations depends heavily on the observation. If the number of assessable propagation paths is 
small, the SNR of the individual propagation paths is high, and if all paths are well separated,  
the number of iterations required can be as low as 20. If the scenario is complicated, i.e., the 
number of propagation paths is high and a lot of closely spaced propagation paths exist in the 
scenario, the number of iterations required to achieve convergence can be higher than 100. 

 In Figure 6-14 the PDP of a measured SIMO channel and the related SIMO impulse 
response reconstructed from the estimated propagation path parameters is shown. The meas-
urement has been carried out in a street micro-cell scenario at 5.2GHz with an 8-element 
ULA. The next figure shows the PDP after removing the contribution of the concentrated 
propagation paths, i.e., danx̂  and the estimated PDP of the DMC.  Finally, Figure 6-16 shows 
the PDP of danx̂  after whitening with the estimated covariance matrix nnR . This PDP shows 
that the new data model, describing the radio channel as a superposition of concentrated 
propagation paths and DMC, is a reasonably good approximation. It is also clearly visible that 
the data model can be further improved. The variance of the PDP between 800ns and 3000ns 
is higher then the variance in the other parts of PDP. However, the data model is suitable if 
the SNR of the measurement is lower. An example is shown in Figure 6-17 to Figure 6-19. 
Altogether, the derived algorithm (RIMAX) is a significant improvement compared to all ex-
isting high-resolution channel parameter estimation algorithms due to the enhanced data 
model. The RIMAX algorithm has been published in [123], [124], and [136]. 
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Channel sounding 
data 

Improve the parameter estimates of the 
distributed diffuse components ML-Gauss-Newton 

Algorithm (Section 6.1.5). 

Improve the parameter estimates of the 
propagation paths with the Levenberg-Marquardt 
algorithm using alternating path group parameter 
updates (Sections 5.2.4 and 5.2.5). 

check  
convergence 

Read new 
Observation 

 x 

reached 

not reached 

Store the parameter estimates. 

Calculate estimates for the path weights using the 
structural parameters µ of the previous 

observation (BLUE, Section 5.1). 

Search for new propagation paths 
(Section 5.1.5). 

Check the reliability of the propagation paths. 
Drop the unreliable paths (Section 5.2.7). 

Paths 
dropped ? 

yes 

no 

 
Figure 6-13: Outline of the RIMAX structure 
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Figure 6-14: Example for the PDP of a measured impulse response and the related estimated 
concentrated propagation paths. 

 
Figure 6-15: Example for the PDP of the remainder of a measured impulse response after 
removing the estimated concentrated propagation paths, and the estimated PDP of the DMC. 

 
Figure 6-16: Example for the PDP of the remainder of a measured impulse response after 
removing the estimated concentrated propagation paths and whitening. 
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Figure 6-17: Example for the PDP of a measured impulse response and of the estimated con-
centrated propagation paths. 

 
Figure 6-18: Example for the PDP of the remainder of a measured impulse response after 
removing the estimated concentrated propagation paths, and the estimated PDP of the DMC. 

 
Figure 6-19: Example for the PDP of the remainder of a measured impulse response after 
removing the estimated concentrated propagation paths and whitening. 
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6.2.2 Application of Subspace Based Algorithms for Parameter Estimation in the 

Presence of DMC 

The iterative nature of the estimator for the concentrated propagation paths and the DMC out-
lined in Section 5.2 and 6.1.5 is a prerequisite for the joint estimation of all channel parame-
ters chnθ . In contrast the joint estimation of the parameters spθ  and danθ  is not feasible if a 
subspace-based algorithm is applied to the estimation of the propagation path parameters spθ . 
For the estimation of the signal subspace needed for the estimation of the propagation path 
parameters, the information about the covariance matrix ( )danθR  is necessary. However, if the 
parameters spθ  are not available, the parameters danθ  of the covariance matrix ( )danθR  cannot 
be estimated. If a sequence of measurements is processed a less than optimal approach can be 
used to resolve this problem.  

One can use the parameter estimates from the previous observation danθ  and estimate 
the signal subspace needed for the estimation of spθ . Having an estimate of the channel pa-
rameters spθ , an estimate of the parameters danθ  can be determined. However, the estimate 

[ ]TTT ˆˆˆ
danspchn θθθ =  determined in this way is clearly not a joint estimate of the channel parame-

ters chnθ . In principle, the same approach to joint maximum likelihood estimation as used in 
the RIMAX algorithm can be applied to compute a joint estimate of the complete channel 
parameter set. The outlined procedure for the sequential estimation of spθ , using the subspace 
based algorithm of choice, and danθ  has to be carried out in an alternating manner. However, 
the resulting iterative algorithm is computationally expensive, since we have to perform the 
complete subspace based parameter estimation algorithm in every iteration. Currently, no sub-
space based algorithm is known, which can take advantage of an initial solution to speed up 
the computation substantially. This consideration also applies to parameter tracking from ob-
servation to observation. Whereas the RIMAX algorithm can in a natural way, use the pa-
rameter estimates from the previous observation as initial values for the actual observation, 
this a priori information can typically not be used in known subspace-based algorithms. How-
ever, since basic algorithms used in, e.g., the multidimensional Unitary ESPRIT are all of 
iterative nature, the development of an algorithm that takes advantage of previously computed 
results seems feasible.  

6.2.3 Estimation of an initial solution without a priori information 

The estimation of an initial solution { }0θ̂  for the very first observation (snapshot) of a se-
quence of channel measurements is critical, since no a-priori information about the channel-
parameters is available. The constructed estimator dmcθ̂  (cf. Table 6-5 and Table 6-6) is based 
on the assumption that the observation of the channel has zero mean 

 ( )( ) 1,~ ×∈ M

dmcC CθR0x N , 

i.e. contains dense multipath components only. The estimator can handle weak concentrated 
propagation paths especially if frequency domain smoothing is applied during the computa-
tion of initial values for dmcθ̂  (cf. Section 6.1.9). However, it will produce unusable estimates 
if the data fed into the estimator contains strong propagation paths such as the line of sight 
path. Therefore, one should start with the estimation of some propagation paths at the begin-
ning. Since no a priori information about the parameters of the covariance matrix ( )dmcθR  is 
available we initialize it with a scaled version of the identity matrix 

 ( ) IθR 0α̂=dmc , 

and choose 
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 xx
H

0

1
ˆ

M
=α . 

This means that initially we set the estimated of the maximum power of the dense multipath 
components to 0ˆ

1 =α . The assumption that the stochastic part of the observation is white in 
all data dimensions has clearly only a small impact on the initial estimates of the strong 
propagation paths. Having estimated raw parameters { }0ˆ

spθ  of the strongest propagation paths, 
their contribution can be removed from the observation. The remainder of the observation is 
then used to estimate initial values for the dense multipath components { }0ˆ

dmcθ , using the algo-
rithm outlined in Table 6-6. Both parameter sets { }0ˆ

spθ  and { }0ˆ
dmcθ  together yield an initial esti-

mate of the channel parameters { }0ˆ
chnθ . 

Often it is sufficient to estimate only the strongest propagation path of the observation, 
before estimating initial parameters of the dense multipath components { }0ˆ

spθ . As a rule of 
thumb, it is sufficient to search for the { } 50 =P  strongest propagation paths.  

6.2.4 General Limitations 

The joint estimation of the parameters of the dense multipath components and of the propaga-
tion paths from a SISO channel sounding measurement taken only between two points in 
space, is not possible without systematic errors. The basic problem here is that only one reali-
sation of the dense multipath components is available. Consequently, we cannot distinguish 
between the contributions of the propagation paths and of the dense multipath components. 
Hence, if SISO channel sounding measurements are carried out, it is necessary to move Tx or 
Rx while measuring the radio channel.  

It is generally better to carry out measurements with a moving transmitter and/or re-
ceiver. This is due to the stochastic nature of the radio channel. As mentioned in Section 
2.5.4, the radio channel is a spatial variant stochastic process. Therefore, taking measurements 
while moving transmitter and/or receiver over some wavelength, ensures that the complete 
measurement contains various realisations of the radio channel. 

6.3 Conclusions on Parameter Estimation 

The joint estimation of the parameters of the dense multipath components and of the 
propagation paths can be carried out by the RIMAX algorithm outlined in Section 6.2.1. The 
estimate of the relative variance of the propagation path weights can be used as a reliability 
measure and for model order selection, i.e., to determine the number of assessable propaga-
tion paths. The algorithm has been implemented at the Electronic Measurement Lab at Tech-
nische Universität Ilmenau. 

The algorithm has been used for statistical analysis of channels sounding campaigns in 
various scenarios. See for example the results presented in [137] and [138] . Furthermore, the 
algorithm has been used to evaluate the significance of dense multipath components in real 
radio channels. In [138] it has been shown that the DMC dominate the radio propagation in 
some scenarios, whereas the specular propagation paths may dominate in others. Altogether, 
the outlined parametric channel estimator has proved to be a reliable tool for the analysis of 
radio propagation channels. 
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7 Antenna Array Calibration 

In practice, the output signals of antenna arrays do not strictly conform to the theoretical an-
tenna array model. There are a variety of reasons for this difference mainly mutual coupling 
between the antenna elements and geometrical as well as electrical tolerances of the single 
elements. Often, the mapping of the ideal array manifold vector ( )µa  to the array manifold 
vector ( )µa~  of a real antenna array (ULA, URA, CUBA, UCA) can be, to some extend, ex-
pressed via a transformation matrix K if the mismatch is independent of the spatial frequency 
µ  and the signals are assumed to be narrowband, i.e., 

 ( ) ( )µaKµa ⋅=~  (7.1) 

Therefore, the data measured with a real antenna array (ULA, URA, CUBA, UCA) have hid-
den rotational invariance structure cf. Section 5.3.11. We can reduce the influence of the an-
tenna array imperfections on the parameter estimates if we estimate the transformation matrix 
K or even better its inverse C from reference measurements and use it to calibrate the antenna 
array. Let us assume that we measure a set of N array steering vectors ( )nµa  over the whole 
angular domain at known spatial frequencies nµ , Nn ≤≤1 . The noise corrupted measure-
ments will be denoted as nx

~ . By taking into account that every calibration measurement con-
tains one unknown complex factor nγ  due to the unknown complex beam patterns of the an-
tenna array elements, phase drifts, and so on, the measurement data is modelled in the follow-
ing way 

 ( ) nnnn nµaKx +⋅⋅= γ~ . (7.2) 

Let us collect all measurements in the matrix  

 [ ]NxxxX ~~~~
21 K= , 

all ideal (sampled) array manifold vectors (or array steering vectors) in  

 ( ) ( ) ( )[ ]Nµµµ aaaA K21= , 

and the related unknown weighting factors nγ  in the diagonal matrix 

 

















=

Nγ

γ

0

0

Γ O

1

. 

Then we get the following linear data model for all measurements 

 WΓAKX +⋅⋅=
~

, (7.3) 

where W is assumed to model complex circular i.i.d. measurement noise. The objective is to 
estimate the calibration matrix Ĉ  such that 
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2

ˆ
F

IKC −⋅  

is minimized. Due to the unknown parameters nγ , this problem cannot be solved directly. 

In the following a generalization of the idea proposed in [125] is used to reformulate 
the optimization problem. For any array steering vector ( )nµa  of length M, we can construct a 
set of 1−=ML  linear independent vectors 

 [ ]Lnnnn ,2,1, bbbB K=  

that span the left null space of ( )nµa , i.e., 

 ( ) 0µaB =⋅ n

H

n . 

An orthogonal basis of the left null space is  

 n

m

mn zΩb ⋅=, , (7.4) 

where the diagonal matrix 

 





















=
−

⋅⋅⋅−

+−
⋅⋅⋅−

2

1
2j

2

1
2j

1

1

1

M

M

M

M

M
π

π

e0

0e

Ω O  

and the vectors nz  are chosen such that 

 ( ) 1µaz =∗
nn o . 

Recall that o  denotes the Hadamard-product (element-wise product) and 

 [ ]111 K=T1 . 

Thus, the calibration matrix Ĉ  should be chosen such that 

 { ( ) nmn

H

mn

M

,,0ˆ
, ∀=⋅⋅ µaKCb

I

. 

Using the noise corrupted measurements in (7.2), we, therefore, have to minimize 

 ( ) ( ) nmmn

HH

nnmn
F

n

H

mn ,,ˆ~~ˆ~ˆ
,

H
,

2

, ∀⋅⋅⋅⋅⋅=⋅⋅ bCxxCbxCb . (7.5) 

Hence, the calibration matrix Ĉ  is obtained as 

 ( ) ( )∑∑
−

= =

⋅⋅⋅⋅⋅=
1

1 1
,,

~~minargˆ
M

m

N

n

mn

HH

nn

H

mn bCxxCbC
C

. 

Applying the { }•vec -operator to mn

H

,bC  and its Hermitian transpose, we obtain 

 ( ) ( ) ( ) ( )∗
−

= =

∗∑∑ ⋅⊗⋅⋅⋅⊗⋅= CbIxxbICC
C

vec~~vecminargˆ
1

1 1
,,

M

m

N

n

T

mnM

H

nnmnM

T . 

Since 
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 { } ( ) { }213321 vecvec YYYYYY ⊗= T  

if 21

1
yy ×∈CY , 32

2
yy ×∈CY , and 43

3
yy ×∈CY . 

With the definition { }Cc vec=  we get  

 ( ) ( ) cwIxxwIcc
c

⋅







⊗⋅⋅⋅⊗⋅= ∑∑

−

= =

∗
1

1 1
,,

~~minargˆ
M

m

N

n

H

mn

T

nnmn

H . 

The choice of mn,b  in (7.4) and some rearrangements lead to 

 ( ) ( ) ( ) ( ) cΩIzIxxzIΩIcc
c

⋅







⊗⋅








⊗⋅⋅⋅⊗⋅⊗⋅= ∑ ∑

−

= =

∗
1

1 1

~~minargˆ
M

m

Hm

M

N

n

H

nM

T

nnnM

m

M

H . (7.6) 

By utilizing the { }•vec -operator again, equation (7.6) can be expressed as 

 ( ) ( ) ( ) ( ) cΩIxzxzΩIcc
c

⋅







⊗⋅








⋅⋅⋅⋅⊗⋅= ∑ ∑

−

= =

1

1 1

~vec~vecminargˆ
M

m

Hm
N

n

HH

nn

H

nn

mH . 

Now, let us replace the inner sum by the correlation matrix zxzxR  defined as 

 

{ } { }

( ) ( )∑

∑

=

∗

=

⋅⊗⋅=

⋅⋅⋅=

N

n

T

nn

H

nn

N

n

HH

nn

H

nnzxzx

N

N

1

1

.~~1

~vec~vec
1

xxzz

xzxzR

 

Note that this correlation matrix can directly be computed from the observation using the 
measured data nx

~  and the ideal steering vectors ( )nµa  calculated from the known spatial fre-
quencies nµ . Consequently, we have the following compact form of the optimisation problem 

 ( ) ( ) cΩIRΩIcc
c

⋅







⊗⋅⋅⊗⋅= ∑

−

=

1

1

minargˆ
M

m

Hm

Mzxzx

m

M

H . 

The multiplications of the MM ×  block matrices of zxzxR  by the 1−M  diagonal matrices 
mΩ  can also be expressed as 

 ( ) ( )
cR1FF1cc

c
⋅























 −⋅⊗⋅= ××
zxzx

MMHMMH

M
o

1
minargˆ , (7.7) 

where ( ) MMTMM ×× ∈⋅= R111 . Equation (7.7) holds since for an arbitrary matrix R 

 ( ) ( ) ( )( ) R1FFRTTΩRΩ oo MM

M

HH
M

m

Hmm ×
−

=

−⋅=⋅=⋅⋅∑ 1
1

1

, 

where the matrix T is given by 

 { } { }[ ] 111 diagdiag −×− ∈= MMM
CΩΩT K  

and the DFT-matrix F is defined as 

 { } { }[ ] MMM ×− ∈= C
1´0 diagdiag ΩΩF K . 

Since the DFT matrix F is unitary, equation (7.7) can be simplified further to  
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 ( )( ) cRRI1cc

R

c
⋅







 ⋅−⊗⋅=

′

×

444444 3444444 21

o

zxzx

zxzxzxzxM

MMH

M

1
minargˆ , 

so finally we end up with the simple eigenvalue problem 

 cRcc
c

⋅⋅= 'minargˆ
zxzx

H , 

where we have defined the matrix '
zxzxR  as 

 ( )( ) zxzxzxzxM

MM

zxzx
M

RRI1R ⋅−⊗= × 1' o . (7.8) 

The solution of the minimization problem ĉ  is given by the eigenvector corresponding to the 
smallest eigenvalue of 

 0cIcR =⋅⋅−⋅ ˆˆ 2min
'

Mzxzx λ . (7.9) 

Table 7-1 summarises the complete algorithm to estimate the calibration matrix Ĉ . 

Table 7-1: Summary of the Calibration Algorithm 

Data Matrix calculation 

1) Compute the matrix zxzxR  using the reference measurements nx
~  

( ) ( )∑
=

∗ ⋅⊗⋅=
N

n

T

nn

H

nnzxzx
N 1

~~1
xxzzR  

2) Compute the data matrix '
zxzxR  from zxzxR  as  

( )( ) zxzxzxzxM

MM

zxzx
M

RRI1R ⋅−⊗= × 1' o  

3) Solution to the Minimization Problem: 
Compute the eigenvectors ĉ  corresponding to the smallest eigenvalue of 

0cIcR =⋅⋅−⋅ ˆˆ 2min
'

Mzxzx λ  

4) Solution Reshaping: 

Reshape the vector c
)
 to the calibration matrix Ĉ  using ( )cC ˆmatˆ = . 

 

If the SNR is low or the estimation problem is ill conditioned, the calibration algo-
rithm can be improved by taking the influence of our vectors nz  onto the noise correlation 
into account. To this end, we introduce the noise covariance matrix 

 { } { }








⋅⋅⋅= ∑
=

N

n

HH

nn

H

nnznzn

1

vecvecE nznzR . 

Furthermore we assume that the measurement noise is i.i.d. complex circular Gaussian noise 
with variance 2

nσ . Consequently, the noise covariance matrix can be expressed as 

 ( )zznznzn RIR ⊗⋅= 2σ  (7.10) 

with 
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 







⋅= ∑

=

N

n

H

nnzz
N 1

1
zzR . 

Replacing zxzxR  in (7.8) by znznR  from (7.10) yields the following expression for the structure 
of the noise covariance matrix 

 znznMznMznzn RRIR 1'
2 −= o . 

With this knowledge we are able to improve our estimate of Ĉ . We extend the special eigen-
value problem (7.9) to a generalised eigenvalue problem, taking the noise colouring through 

nz  into account. The optimum solution to the minimization problem is given by the eigenvec-
tor corresponding to the smallest eigenvalue minλ  of the following generalised eigenvalue 
problem 

 0cRcR =⋅⋅−⋅ min
'' ˆˆ λznznzxzx . 

The knowledge of the noise variance 2σ  itself is not required if we want to find the optimum 
solution Ĉ . The complete algorithm to estimate the calibration matrix Ĉ  considering noise 
colouring is summarised in Table 7-2. 

Table 7-2: Summary of the Calibration Algorithm considering Noise Colouring 

Data Matrix calculation 

1) Compute the matrix zxzxR  using the reference measurements nx
~  

( ) ( )∑
=

∗ ⋅⊗⋅=
N

n

T

nn

H

nnzxzx
N 1

~~1
xxzzR  

2) Compute the data matrix '
zxzxR  from zxzxR  as  

( )( ) zxzxzxzxM

MM

zxzx
M

RRI1R ⋅−⊗= × 1' o  

Noise Covariance Matrix calculation: 

3) Compute the matrix zwzwR  

zzznzn RIR ⊗=  with 







⋅= ∑

=

N

n

H

nnzz
N 1

1
zzR  

4) Compute the data matrix '
znznR  from znznR  using 

znznMznMznzn RRIR 1'
2 −= o  

5) Solution to the Minimization Problem: 

0cRcR =⋅⋅−⋅ min
'' ˆˆ λznznzxzx  

6) Solution Reshaping: 

Reshape the vector c
)
 to the calibration matrix Ĉ  using ( )cC ˆmatˆ = . 

 

Nevertheless, it is important to note that taking the noise colouring by nz  into account 
may not necessarily lead to improved estimates. This is because in practical situations expres-
sion (7.5) may be dominated by systematic errors such as positioning errors while taking the 
reference measurements and not by the measurement noise. 
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Another problem while estimating Ĉ  may arise if not enough independent information 
is available from the measurements to determine all of the coefficients in Ĉ . This will lead to 
an underdetermined problem. If the matrix '

zxzxR  has not only one but several small eigenval-
ues with a similar magnitude then we have such a case. A good way to solve this issue is to 
take more measurements. It is, in this context, important to realise that taking measurements 
over a larger angular range is better than taking more measurements in the same angular range 
again. One can also solve the problem if a priori information about the structure of K is avail-
able. Usually mutual coupling effects between the antenna array elements dominate K. Since 
elements with a larger distance in the array often have only small mutual coupling, we can set 
the corresponding coefficients in the data matrix '

zxzxR  to zero. Consequently, the correspond-
ing rows and columns in the data matrix Ĉ  as well as in the noise covariance matrix '

znznR  
can be deleted, leading to a reduced and better-conditioned problem. 

The main advantage of the outlined calibration algorithm is its low complexity. This 
makes it also suitable for the estimation of the calibration matrix of large antenna arrays, such 
as uniform rectangular arrays. 

Figure 7-1 depicts the absolute values of the uncalibrated and calibrated beam patterns 
of a uniform linear array having eight active elements. On the left hand side only the mean 
gain of the antenna elements has been calibrated, which corresponds to equalisation with the 
main diagonal elements of the calibration matrix Ĉ . On the right hand side, all elements of 
the calibration matrix have been used to calibrate the antenna array. The resulting beam pat-
terns are much more uniform. This calibration gain will lead to a significant reduction of es-
timation error in the (angle) estimates obtained with ESPRIT based parameter estimation al-
gorithms. Further discussions about the influence of antenna array imperfections on ESPRIT 
based parameter estimation algorithms as well as antenna array calibration for channel sound-
ing applications can be found in [28], [126], [127], and [128]. 
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Figure 7-1: Example of an uncalibrated and a calibrated uniform linear antenna array having 
eight active antenna elements. The figure on the left hand side shows the beam pattern of all 
eight antenna elements without calibration. On the right hand side the beam pattern of all an-
tenna elements after calibration is depicted. 
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8 Summary and Conclusions 

8.1 Summary and Conclusion 

With the RIMAX algorithm, a reliable tool is available to estimate channel parameters from 
channel sounding measurements. The algorithm is sufficiently robust for the processing of 
long radio channel measurements containing some thousands of channel observations, almost 
without user interaction. 

To conclude, let me summarise the most important results of this thesis: 
 

• An appropriate data model for parameter estimation from channel sounding measure-
ments describes the radio channel as a superposition of a finite number of concentrated 
propagation paths and a circular normal distributed process. The circular normal dis-
tributed process describes the dense multipath components caused by distributed dif-
fuse scattering. 

 
• The effective aperture distribution function is a mean to express the antenna array re-

sponse of an arbitrary antenna array. Using the EADF the data model for the concen-
trated propagation paths can be expressed in an algebraic form. The expression of the 
data model as a continuous algebraic function is a prerequisite for the application of 
gradient-based iterative maximum likelihood estimators and for the derivation of 
closed form expressions for the Cramér-Rao lower bound. 

 
• The covariance matrix describing the zero-mean dense multipath components can be 

expressed as a continuous matrix-valued function of three channel parameters.  
 
• The Cramér-Rao lower bound on all channel parameters can be expressed in a closed 

form. The estimation error covariance matrix depends on the coupling between propa-
gation paths, precisely on the coupling of their parameters. The Fisher information 
matrix is a means to detect groups of coupled propagation paths.  

 
• The estimation of the parameters of concentrated propagation paths is a nonlinear 

weighted least squares problem. The optimal weighting matrix is the covariance ma-
trix of the dense multipath components and noise. A computationally efficient solution 
to solve this optimisation problem is provided by the Levenberg-Marquardt algorithm.  

 
• The parameters of the propagation paths and the dense multipath components have to 

be estimated jointly. The joint maximum likelihood estimation of all radio channel pa-
rameters can be carried out using an alternating maximization procedure (SAGE).  

 
• A feasible way to determine the number of propagation paths is given by the relative 

variance of the propagation path weights. The variance of all parameter estimates can 
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be estimated using the closed form expressions for the Cramér-Rao lower bound. The 
estimate of the parameter covariance matrix is an important result of the RIMAX algo-
rithm. The covariance matrix provides important reliability information about the pa-
rameter estimates.  

 
• The RIMAX algorithm is a means of estimating radio channel parameters from a long 

sequence of radio channel observations. The estimator tracks propagation paths over 
some time. Thus, it is a means to derive parameter statistics for individual propagation 
paths. 

 

8.2 Further research areas 

Since RIMAX provides additional reliability information for the parameters estimated. The 
parameters can be used to derive probability density functions for the parameters of the de-
terministic as well the dense multipath components of the radio channel. To this end, a large 
amount of channel sounding measurements gathered in various radio scenarios has to be proc-
essed. The reliability information, provided by the outlined parameter estimator, is important 
in distinguishing between the parameter variations and the estimation error (variance) of the 
data processor. Without this information, one may tend to model the statistics of the estima-
tion error and not of the radio channel parameters.  

A research area, which has been widely ignored up to now, is the tracking of radio 
channel parameters, or more precisely the estimation of deterministic changes of channel pa-
rameters. The variations of the structural path parameters are closely related to the movement 
of objects influencing the radio channel. A first promising attempt has been made to estimate 
the parameter changes of the propagation path parameters using a linear model [48], [77]. 

A further research topic is the optimal antenna array structure for channel sounding 
applications. Closely related to this issue is the calibration of antenna arrays, e.g., the estima-
tion of the antenna array model especially the EADF. Since upcoming channel sounding sys-
tems will have a larger bandwidth, also the frequency dependence of the array response, e.g., 
the EADF must be investigated. 

A fourth research area is the development of appropriate models to describe the corre-
lation function of the DMC in the spatial domain as well as in the time/Doppler domain. Here, 
the challenge is the coarse Rayleigh resolution in these domains compared to the resolution in 
the time delay domain. It is generally a lot easier to increase the measurement bandwidth, than 
increasing the array aperture, i.e., the angular resolution.  

A further research area is related to MIMO communication systems. It is generally ac-
cepted that MIMO-systems with knowledge of the radio channel at the transmitter have a 
higher channel capacity than systems having only knowledge about the radio channel at the 
receiver. If we need channel information at the transmitter, we have to transmit this informa-
tion from the receiver back to the transmitter. However, this back transmission will in turn 
reduce the available channel capacity. Hence, we have to find the shortest code to transmit the 
channel information back to the transmitter. In other words, we have to measure the stochastic 
complexity of the radio channel. One way to code the channel information is for example the 
developed radio channel model, since one has only to transmit the channel parameters with 
the accuracy (SNR) given by the estimated channel parameter variance. Closely related to this 
research area are clearly the second and the third research theme mentioned above. Since they 
will increase the a priori information contained in the channel model and consequently reduce 
the information necessary to store, e.g. transmit the channel. 
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Appendix 

 

A List of Frequently Used Symbols 

 
 
Symbol Range Description Section 

F  MM×
C  unitary Fourier-matrix (DFT-matrix) C 

I  MM×
R  identity matrix C 

J  NM×
R  selection matrix C 

θ  1×L
R  general model parameters  2 

G  NM×
C  General measurement system matrix 2 

Tϕ  R  Azimuth of departure (Tx) 2.1 

Rϕ  R  Azimuth of arrival (Rx) 2.1 

Rϑ  R  Elevation of Departure (Tx) 2.1 

Tϑ  R  Elevation of Arrival (Rx) 2.1 

τ  R  Time delay of arrival (TDoA) 2.1 
( )TTT ϑϕ ,b  21×

C  Polarimetric Tx antenna response 2.2 

( )TTTH
b ϑϕ ,  C  Tx antenna response for horizontal excitation 2.2 

( )TTTV
b ϑϕ ,  C  Tx antenna response for vertical excitation 2.2 

( )RRR ϑϕ ,b  21×
C  Polarimetric Rx antenna response 2.2 

( )RRRH
b ϑϕ ,  C  Rx antenna response for horizontal excitation 2.2 

( )RRRV
b ϑϕ ,  C  Rx antenna response for horizontal excitation 2.2 

TM  R  Number of Tx antenna ports 2.2 

RM  R  Number of Rx antenna ports 2.2 

P  R  Number of propagation paths 2.2 

fT
G  ff MM ×

C  Frequency response of the transmitter 2.2 

fR
G  ff MM ×

C  Frequency response of the receiver 2.2 

( )tf ,H  TR MM ×
C  Frequency and time dependent channel matrix 2.2 

α  R  Doppler-shift 2.2 
γ , pγ  C  Scalar path weight 2.2 

( )spθs  1×M
C  Parametric model for observed propagation 

paths (maps propagation paths parameters to 
measurement system response) 

2.3 

mB  R  Observation bandwidth 2.3 
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M  R  Total number of samples in a channel observa-
tion 

2.3 

fM  R  Number of frequency samples 2.3 

tM  R  Number of time domain samples 2.3 

mT  R  Observation time 2.3 

τA , ( )τAτ  PM f ×
C  Complex exponentials describing the TDoA of 

the propagation paths 
2.3 

αA , ( )αAα  PM t×C  Complex exponentials describing the Doppler-
shift of the propagation paths 

2.3 

( )µB  PNM pol×
C  General matrix valued function, mapping the 

structural path parameters µ  to the system re-

sponse 

2.3 

HR
B , ( )RRRH

ϑϑϑϑϕϕϕϕ ,B  PM R×C  Rx-Array response for all propagation paths 
(horizontal field component) 

2.3 

VR
B , ( )RRRV

ϑϑϑϑϕϕϕϕ ,B  PM R×C  Rx-Array response for all propagation paths 
(vertical field component) 

2.3 

HT
B , ( )TTTH

ϑϑϑϑϕϕϕϕ ,B  PMT ×
C  Tx-Array response for all propagation paths 

(horizontal field component) 
2.3 

VT
B , ( )TTTV

ϑϑϑϑϕϕϕϕ ,B  PMT ×
C  Tx-Array response for all propagation paths 

(vertical field component) 
2.3 

fB  PM f ×
C  Frequency responses of the measurement sys-

tem for all propagation paths 
2.3 

tB  PM t×C  Time domain responses of the measurement 
system for all propagation paths 

2.3 

fS
G  ff MM ×

C  Frequency response of the transmission or 
measurement system 

2.3 

γ  1×PN pol
C  All complex path weights in a model 2.3 

HHγ  1×P
C  Complex path weights H-H polarisation 2.3 

HVγ  1×P
C  Complex path weights H-V polarisation 2.3 

VHγ  1×P
C  Complex path weights V-H polarisation 2.3 

VVγ  1×P
C  Complex path weights V-V polarisation 2.3 

µ  1×µL
R  Normalised structural parameters (nonlinear 

parameters) 
2.3 

spθ  1×L
R  Parameters of all propagation paths 2.3 

TϕA , ( )TT
ϕϕA  PN ×1C  Complex exponentials describing the azimuth 

of departure of the propagation paths 
2.4 

TϑA , ( )TT
ϑϑA  PN ×2C  Complex exponentials describing the elevation 

of departure of the propagation paths 
2.4 

RϕA , ( )RR
ϕϕA  PN ×1C  Complex exponentials describing the azimuth 

of arrival of the propagation paths 
2.4 

RϑA , ( )RR
ϑϑA  PN ×2C  Complex exponentials describing the elevation 

of arrival of the propagation paths 
2.4 

HT
G , 

VT
G   21NNMT ×

C  Effective aperture distribution function of the 
Tx-antenna array 

2.4 

HR
G , 

VR
G  21NNM R×C  Effective aperture distribution function of the 

Rx-antenna array 
2.4 

( )θH  fTfR MMMM ×
C  Parametric broadband channel matrix 2.4 
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K  NM×
C  coupling matrix 2.4.2, 7 

dB  R  Coherence bandwidth of DMC 2.5 

( )dmcθR  MM×
C  Covariance matrix of DMC 2.5 

( )dmcf θR  ff MM ×
C  Covariance matrix of DMC in the frequency 

domain 
2.5 

( )dmcθRτ  ff MM ×
C  Covariance matrix of DMC in the time delay 

domain 
2.5 

( )dmcT θR  TT MM ×
C  Covariance matrix of DMC at Tx 2.5 

( )dmcR θR  RR MM ×
C  Covariance matrix of DMC at Rx 2.5 

( )dmct θR  tt MM ×
C  Covariance matrix of DMC in the temporal 

domain 
2.5 

0α  R  Noise power 2.5 

1α  R  Maximum power of the DMC 2.5 

dβ  R  Normalised coherence bandwidth 2.5 

( )danθκ  1×fM
C  Auto-covariance function of the DMC and 

noise in the frequency domain 
2.5 

dmcθ  1×L
R  Parameters of the dense multipath components 2.5 

danθ  1×L
R  Parameters of the dense multipath components 

and noise 
2.5 

dτ ′  R  Base time delay of DMC 2.5 

dτ  R  Base time delay of DMC normalised to meas-
urement bandwidth 

2.5 

( )θRR,  MM×
C  covariance matrix, parametric covariance ma-

trix 
2.5, 4 

dmcd  1×M
C  Realisation of the DMC process 2.6 

chnθ  1×L
R  All channel parameters (concentrated propaga-

tion paths and DMC) 
2.6 

( )µA  PN×
C  Vector valued function, mapping normalised 

structural parameters µ  to complex exponen-

tials (1-dimensional) 

3.6 

( ) ( )( )21 ,µµA  PN×
C  Vector valued function, mapping normalised 

structural parameters ( )1µ , ( )2µ  to complex ex-

ponentials (2-dimensional) 

3.6 

( )τµ  1×P
R  Normalised time delays of arrival 3.6 

( )αµ  1×P
R  Normalised Doppler-shifts 3.6 

( )Tϕ
µ  1×P

R  Normalised azimuth of departure (Tx) 3.6 
( )Tϑ
µ  1×P

R  Normalised elevation of departure (Tx) 3.6 
( )Rϕ
µ  1×P

R  Normalised azimuth of arrival (Rx) 3.6 
( )Rϑ
µ  1×P

R  Normalised elevation of arrival (Rx) 3.6 

L  R  Number of model parameters 4 

dann  1×M
C  Realisation of the DMC process and noise 4 

w  1×M
C  independent circular white Gaussian noise 4 

x  1×M
C  Observation (measured radio channel) 4 

( )Rθx ,L  R  Log-likelihood function 4 
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( )µD  LM×
C  matrix of first order differentials (Jacobian ma-

trix) 
4 

XXD   Component matrices of the Jacobian matrix 4 

( )nnRθ,JJJJ   Fisher information matrix 4 

X  NM×
C  Set of channel observations 4 

( )µx,c  R  Cost-function 5.1 

( )µQQ,  NM×
C  orthogonal unitary basis vectors 5.1 

( )danθβ  1×fM
C  Sampled PDP of the DMC in the time-delay 

domain 
6.1.4 
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B Abbreviations  

 
3  
3GPP Third Generation Partnership Program 
  
A  
AIC Akaike Information Criterion 
APS Azimuth power spectrum 
  
B  
BLUE Best Linear Unbiased Estimate 
BS Base Station 
  
C  
CIR Complex Impulse Response 
COST European CO-operation in the field of Science and Technical Research 
CRLB Cramér-Rao lower bound 
CUBA Circular uniform beam array 
  
D  
DCM Directional Channel Model 
DFT Discrete Fourier transform 
DMC Dense Multipath Components 
DML Deterministic Maximum Likelihood 
DoA Direction of Arrival 
DoD Direction of Departure 
  
E  
EADF Effective Apperture Distribution Function 
EM Expectation Maximization 
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques 
ESSSE Economy Size Signal Subspace Estimation 
EVD Eigenvalue Decomposition 
  
F  
FFT Fast (discrete) Fourier Transform 
FIM Fisher Information Matrix 
  
G  
GSCM Geometry-based Stochastic Channel Model 
GSVD Generalised Singular Value Decomposition 
  
I  
i.i.d. independent identically distributed 
  
L  
LS least squares 
  
M  
MDL Minimum Description Length 
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MIMO Multiple-input multiple-output 
MISO Multiple-input single-output 
ML Maximum Likelihood 
MS Mobile Station 
MUSIC Multiple Signal Classification 
MVUB minimum variance unbiased 
MCSSS Multi-Carrier Spread Spectrum Signal 
  
O  
OFDM orthogonal frequency division multiplexing 
  
P  
PDF probability density function 
PRBS Pseudo-Random Binary Signal 
PULA polarimetric uniform linear array 
PURA polarimetric uniform rectangular array 
  
Q  
QoS Quality of Service 
  
R  
RARE Rank Reduction 
RF radio frequency 
Rx Receive 
  
S  
SAGE Space Alternating Generalised Expectation Maximization 
SCM spatial channel model (3GPP) 
SCUBA stacked circular uniform beam array 
SIMO single-input multiple-output 
SISO single-input single-output 
SLS Structured Least Squares / Separable Least Squares 
SML Stochastic Maximum Likelihood 
SNR signal to noise ratio 
SSE Signal Subspace Estimation 
SVD singular value decomposition 
  
T  
TDoA Time Delay of Arrival 
TLS Total Least Squares 
Tx Transmit 
  
U  
UCA Uniform Circular Array 
ULA Uniform Linear Array 
URA Uniform Rectangular Array 
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C Some Common Definitions and Useful Relations 

 

Matrix definition: 

 [ ] nm

n

mnmm

n

n

aaa

aaa

aaa

×∈=



















= CaaaA L

L

MOMM

L

L

21

21

22221

11211

  

 [ ] qp

n

mnmm

n

n

bbb

bbb

bbb

×∈=



















= CbbbB L

L

MOMM

L

L

21

21

22221

11211

 

 

Selection of Matrix and Vector elements: 

 { } ii aA = , { } ikki a=,A , { } ii a=a  

 
Schur or Hadamard product ( qnpm == , ): 

 nm

mnmnmmmm

nn

nn

bababa

bababa

bababa

×∈



















== C

L

MOMM

L

L

o

2211

2222222121

1112121111

BAC  

Kronecker product: 

 nqmp

mnmm

n

n

aaa

aaa

aaa

×∈



















⋅
=⊗= C

BBB

BBB

BBB

BAC

L

MMM

L

L

21

22221

11211

 

Identities of Kronecker products: 

 ( ) ( ) ( )BABABA α⊗=⊗α=⊗α  

 ( ) ( ) CBACBACBA ⊗⊗=⊗⊗=⊗⊗  

 ( ) HHH
BABA ⊗=⊗  

 ( ) ( ) ( ) ( )FBEAFEBA ⋅⊗⋅=⊗⋅⊗  

 ( ) 111 −−− ⊗=⊗ BABA  

 ( ) CBCACBA ⊗+⊗=⊗+  

 [ ] [ ]CBCACBA ⊗⊗=⊗  
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Khatri-Rao product qn = : 

 ( ) ( )[ ] nmp

nn

×∈⊗⊗=◊= CababABC K11  

 

Identities involving the Khatri-Rao product: 

 ( ) ( ) ( )caBDcaBD o⋅◊=⋅◊◊ T  

 ( ) ( ) ( ) ( ) ( ) ( )BBAAABABBABACC HHHHH o=◊◊=◊◊=⋅  

since 

 ( ) ( ) ( ) ( )2H
12

H
122

H

11 bbaaabab ⋅⋅⋅=⊗⋅⊗  

 

Definition of the vector operator { }•vec : 

 { }


















=

na

a

a

A
2

1

vec  

Identities involving the vector operator: 

 ( ) { } { }BABA vecvectr H ⋅=H  

 { } ( ) { }BACCBA vecvec ⋅⊗=⋅⋅ T  

 ( )( ) ( )aIBBa ⊗⋅= TT vec  

 { }{ } ( ) cABBcA ⋅◊=⋅⋅ Tdiagvec  

 ( ) ( ) ( )caBDcaBD o⋅◊=⋅◊◊ T  

 { } { } { } TT diagdiagdiag DacBDcaB ⋅⋅⋅=⋅⋅ o  

 

Matrix operator, reshaping a vector to a nm×  matrix: 

 nm

m

n

m

m

nm ×

×

×

×

=













































A

a

a

a

,,mat

1

2
1

1
1

M
 

For nm ≡ : 
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 mm

m

m

m

m

×

×

×

×

=













































A

a

a

a

1

1
2

1
1

mat
M

 

 
 

Definition of a Unitary Matrix: 

 IQQ =⋅H  

 
Reflection Matrix, Reverse Permutation Matrix: 

 























=

0001

0

001

0100

1000

L

MMNN

NM

L

L

Π  

 

Identities involving the Reflection Matrix: 

 
















⋅=

















M

M

a

a

a

a

MM

1

1

Π  

 

Definition of a Left Conjugate Symmetric Matrix: 

 ∗=ΠAA  

 

Definition of the Selection Matrix: 

 ( ) ( )[ ]kMLMMMkMLM

k

−−××−×× = 0I0J
1  

 

Identities involving the Selection Matrix: 

 
















⋅=
















×

−+ L

LM

k

Mk

k

a

a

a

a

MM

1

1

J  

 

Definition of the DFT matrix: 
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 ( )

( ) ( )

Mw

wwww

wwww

wwww

wwww

M

MMM

M

M

π2j

2

e,
1

11210

12420

1210

0000

−

−−−

−

−

=























=

L

MMM

L

L

L

F  
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Definition of a Toeplitz matrix: 

 { } [ ] 1

!

1

121

21

12

121

1

1

,,toep,toep rc

cccc

rc

rc

rrrc

rr

c

c

MM

M

M

MM

M

M

≡























=
































==

−

−

−

−

L

OO

MOOOM

OO

L

LMrcT  

 

Definition of a Hermitian Toeplitz Matrix: 

 { }
otherwise

i
ci

HH

C

R 1
;,toep

=
∈== ccTT  

 

Definition of a Circulant Matrix: 

 { }























=
















==

−

−−

121

121

3412

231

1

circcirc

cccc

cccc

cccc

cccc

c

c

MM

MMM

M

M

L

MOMM

L

McC  

Identities of Toeplitz Matrices: 

 TTTΠΤΠ ==⋅⋅ ∗ , if T is Hermitian 

 
Some Matrix Gradients [53], [40]: 

 ( ) IA
A

=
∂
∂
tr  

 ( )( ) ( )H1detln −=
∂
∂

AA
A

 

 ( ) ( ) ( )H1111 trtr −−−− −=
∂
∂

=
∂
∂

BAABA
A

BA
A

, provided B  is independent of A  

 
Calculation of Least Squares Estimates, A  and Y  known, X  unknown: 

 

 YAX =  

solve: 

 2minargˆ
F

YAXX
X

−=  

I. direct solution: 

 ( ) YAAAX H1Hˆ −
=  
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II. Best solution in terms of diagnostics Moore-Penrose-Pseudo-Inverse +A  

 YAX +=ˆ . 

Proof: 

 

( )

( )

XYA

XYUΣV

VΣΣVXΣVUUΣVYUΣV

A

T

ˆ

ˆ

ˆ

TH

HHTHTH

=

=⋅

→⋅⋅=⋅

+

+

++

+

43421
 

 

III. Computationally efficient solution using the QR decomposition: 

 [ ] RQ
0

R
QQA SNS =





=  

 
YQXR

YQRXRQQR

⋅=⋅

⋅=⋅⋅
H

HHHH

ˆ

ˆ

S

SSS  

1) Compute: 

 YQZ
H
S=  

2)  Solve 

 ZXR =⋅ ˆ , 

Observe that R  is an upper triangular matrix! 
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