
 

  
 

 

Knauf, Rainer; Baumeister, Joachim; Puppe, Frank: 

Semi-Automatic generation of test cases by case morphing 

Zuerst erschienen in: 
Proceedings of the eigtheenth International Florida Artificial 
Intelligence Research Society conference : [Clearwater Beach, 
Florida, May 15 - 17, 2005] / ed. by Ingrid Russel .... 
Menlo Park, Calif : AAAI Press, 2005 
Referenz-Link AAAI: 
http://www.aaai.org/Library/Conferences/FLAIRS/FLAIRS-
2005/Abstracts/flairs05-136.html  

http://www.aaai.org/Library/Conferences/FLAIRS/FLAIRS-2005/Abstracts/flairs05-136.html
http://www.aaai.org/Library/Conferences/FLAIRS/FLAIRS-2005/Abstracts/flairs05-136.html


Semi-Automatic Generation of Test Cases by Case Morphing

Joachim Baumeister1, Rainer Knauf 2, Frank Puppe1

1 Department of Computer Science, University of Wuerzburg, Germany
email:{baumeister, puppe}@informatik.uni-wuerzburg.de

2 Department of Computer Science and Automation, Technical University of Ilmenau, Germany
email: rainer.knauf@tu-ilmenau.de

Introduction
The success of knowledge systems for diagnostic tasks has
been proved in the last decades. Here, the evaluation of
the developed knowledge system is an important and criti-
cal issue to deal with. Besides analysis techniques, such as
manual inspection and static verification the use ofempiri-
cal testing(running previously solved test cases) is the most
common approach for the validation of knowledge systems.
In the past, some approaches for the automated generation
of test cases have been presented, cf. (Gupta & Biegel 1990;
Gonzalez & Dankel 1993; Knauf, Gonzalez, & Abel 2002;
Knauf et al. 2004). Suchconservativemethods are useful
for generating suitable test cases in arbitrary domains, but
require the availability of explicit knowledge, either repre-
sented as already formalized knowledge (e.g. rules) or de-
scribed as generation knowledge (e.g. constraints or causal
dependency models).

In this paper, we briefly introduce a novel method for test
case generation which is appropriate in the context of a test-
first approach. Test-first approaches postulate the develop-
ment of suitable test casesbefore the corresponding func-
tionality is added to the system, e.g. knowledge is formal-
ized and added to the knowledge base. Test-first approaches,
e.g. (Baumeister, Seipel, & Puppe 2004) have some advan-
tages when compared to conservative approaches: 1) The
developer needs to think about the desired functionality of
the system before coding knowledge. 2) Test knowledge is
not acquired depended on particular knowledge slices, e.g.
rules. 3) Unexpected errors (compared to conservative ap-
proaches) in knowledge can be detected due to the creative
nature of the approach, e.g. cases that were defined to derive
a particular solution but actually do not.

Basic Definitions For the description of the method we dis-
tinguishinput valuesgiven to a knowledge system andout-
put valuesthat are derived by the knowledge system for a
given set of inputs. More formally, we defineΩobs to be the
(universal) set of observableinputsa : v, wherea ∈ Ωa is
an attribute andv ∈ dom(a) is an assignable value. An ob-
servable inputa : v is often called afinding. Let Ωsol be the
universe set of (boolean)output values, i.e. solutions deriv-
able by the knowledge system. A test-casec is defined as

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a tuplec = (OBS c,SOL c ) , whereOBS c ⊆ Ωobs is the
problem descriptionof the case, i.e. the observed inputs of
the casec; OBS c = {f1,c, . . . , fn,c}. The setSOL c ⊆ Ωsol

contains the (correct) solutions of casec. A test suiteis a
collection of test cases that is used for empirical testing.

Method Overview
The presented morphing method is proposed to be a semi-
automatic process for generating test cases according to the
test-first approach. Since no available knowledge can be
used to support the construction of test cases the manual de-
velopment of the test suite is required. Thus, it is reasonable
to support the developer during the manual construction of
the test suite. For each solution the developer should think
about: a) Which inputs depend on this solution? b) Which
other solutions are depending on this solution? When cre-
ating new test cases the developer should include the results
of this consideration into the development process, i.e. by
creating test cases that include dependent input objects and
dependent solutions. For each new solution and its deriva-
tion knowledge, respectively, we propose a 5-fold process
with detailed descriptions in the following sections:

1. Consider dependent findings and (already existing) solu-
tions. Manually create a collection of test cases that tries
to take the considerations into account.

2. Formalize new derivation knowledge, e.g. rules, that infer
the considered solution.

3. Check whether the new knowledge successfully passes
the test cases. Start for each manually defined test case the
case morphing process, and remove all generated cases
that derive an incorrect solution. Select thek most di-
verse cases from the remaining morphing set (Smyth &
McClave 2001).

4. Coverage check: Investigate the coverage of the manually
defined cases and the remaining generated cases w.r.t. the
formalized knowledge. If the coverage of these tests is
found to be unsatisfactory, then propose a collection of
input values that should also be included in additional test
cases. These new input values serve as an input for a fur-
ther (parameterized) case morphing phase.

5. The remaining test cases are presented to the developer;
here the knowledge base can be refined if presented cases



are in contradiction to the developers knowledge or ex-
pectations. Successfully reviewed cases are accepted and
included in the (already existing) test suite.

We now describe the morphing process sketched in Step 3
step in more detail.

Morphing Cases
The idea of morphing an existing casec = (OBS c,SOL c)
is quite simple: new cases are generated by gradually in-
creasing or decreasing the values of findings inOBS c. We
restrict the number of morphed cases by a threshold valuet ,
which limits the maximum number of generated morphs for
each finding.

Morphing a Finding A given findingf = a : v is mor-
phed by using a morphing functionmorph : Ωa × ΩV →
×n

i=1 ΩV , which returns a list of thet most adjacent values
v′ ∈ dom(a) \ {v} for a valuev ∈ dom(a); for a numer-
ical finding f we first divide the value range intop equal
partitions, and we select the partitionpi which contains the
valuev. Then, the functionmorph can deal with the par-
titions in the same way as for symbolic values. Thus, for
a given findinga : vi the function yieldsmorph(a, vi) =
(vi1 , . . . , vit′ ) , where the distanced(vi, vij

) ≤ d(v, v′) for
all v′ ∈ dom(a) \ {vi1 , . . . , vit′}. Note thatt ′ ≤ t , i.e. the
actual number of selected valuest ′ can be smaller thant , if
|dom(a)| − 1 < t .

Generate Cases with Morphed Findings For a given test
casec = (OBS c,SOL c) we enumerate the possible combi-
nations of morphed findings in a|OBS c|-dimensional ma-
trix M . Each entry of the matrixMi,j describes a problem
description of a morphed case. We see that the number of en-
tries in the matrixM , i.e. the number of generated problem
descriptions, is at most|OBS c|t . For larger|OBS c| andt
the number of the generated cases may be too large. There-
fore, we discuss additional domain knowledge that further
restricts the size of the generated matrix.

Using Domain Knowledge Ontological knowledge can be
defined for the values of a finding which provides informa-
tion about the normality of the values, i.e. their pathological
importance in the application domain. In general, an abnor-
mality functionabn : Ωobs → Ωabn is defined by the do-
main specialist. With a given abnormality function we are
able to refine the morphing functionmorph, so that normal
values are omitted during the generation of the generation of
the matrix, i.e. reducing the number of considered findings
f ∈ OBS c. Then, all findings with normal values are not
morphed but are included with original values in the gener-
ated problem descriptions.

Filter Generated Cases Each generated problem descrip-
tion OBS c′ in the matrixM is passed to the knowledge sys-
tem in order to derive a solutionSOL c′ for OBS c′ . The
case is removed if an incorrect solution set was derived, i.e.
the derived solutions differ from the solutions included in
the manually defined case. The remaining cases are filtered
according to their diversity: We select thek most diverse
cases from the remaining cases. The diversity of cases was
investigated e.g. in (Smyth & McClave 2001).

Computing the Coverage of the Test Suite
Test cases are generated before the acquisition of the corre-
sponding knowledge. In consequence, we cannot guarantee
a suitable cover of the knowledge to be tested. For this rea-
son, a check is performed in order to identify areas of the
acquired knowledge, that are not covered by the test suite.
Such, missing combinations of findings are used in a subse-
quent iteration of the morphing process, and additional cases
are generated. For rule-based knowledge representations ap-
propriate methods has been investigated thoroughly in the
past, cf. (Barr 1999; Knauf, Gonzalez, & Abel 2002).

Discussion
We classified the presented method as acreativeapproach
in contrast to traditionalconservativeones. When com-
paring the approaches we see some differences: Creative
approaches are independent of the knowledge to be tested
and therefore can be applied for arbitrary representations of
knowledge. Furthermore, they are appropriate for develop-
ment process models postulating atest-first paradigm, e.g.
an agile methodology (Baumeister, Seipel, & Puppe 2004).
However, since conservative approaches use the available
knowledge, they can guarantee that generated test cases
completely cover all aspects of the acquired knowledge. By
nature, creative approaches cannot consider the coverage of
the knowledge during the generation of the test cases, but we
cope with this problem by iterating the morphing step based
on a coverage analysis.

References
[Barr 1999] Barr, V. 1999. Applications of Rule-Base Cov-
erage Measures to Expert System Evaluation.Knowledge-
Based Systems12:27–35.

[Baumeister, Seipel, & Puppe 2004] Baumeister, J.; Seipel,
D.; and Puppe, F. 2004. Using Automated Tests and Re-
structuring Methods for an Agile Development of Diagnos-
tic Knowledge Systems. InProc. 17th Intl. FLAIRS Con-
ference, 319–324. AAAI Press.

[Gonzalez & Dankel 1993] Gonzalez, A. J., and Dankel,
D. D. 1993. The Engineering of Knowledge–Based Sys-
tems – Theory and Practice. Prentice Hall.

[Gupta & Biegel 1990] Gupta, U. G., and Biegel, J. 1990.
A Rule–Based Intelligent Test Case Generator. InProc.
AAAI–90 Workshop on Knowledge–Based System Verifica-
tion, Validation and Testing. AAAI Press.

[Knauf et al.2004] Knauf, R.; Spreeuwenberg, S.; Gerrits,
R.; and Jendreck, M. 2004. A Step out of the Ivory Tower:
Experiences with Adapting a Test Case Generation Idea to
Business Rules. InProc. 17th Intl. FLAIRS Conference,
343–348. AAAI Press.

[Knauf, Gonzalez, & Abel 2002] Knauf, R.; Gonzalez,
A. J.; and Abel, T. 2002. A Framework for Validation of
Rule-Based Systems.IEEE Transactions of Systems, Man
and Cybernetics - Part B: Cybernetics32(3):281–295.

[Smyth & McClave 2001] Smyth, B., and McClave, P.
2001. Similarity vs. Diversity. InProc. 4th Intl. Confer-
ence on Case-Based Reasoning, ICCBR 2001, 347–361.
Springer, LNAI 2080.


	Introduction
	Method Overview
	Morphing Cases
	Computing the Coverage of the Test Suite

	Discussion

