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Time-varying polynomial matrix systems

ACHIM ILCHMANNY, INES NURNBERGERY
and WILAND SCHMALKES

Differential polynomial matrices with cocfficients meromorphie on an open interval
T<®r are studied first. The subelass of full matrices /> (having the properties I” is
non-singular and every local solution of /=0 extends analytically to [) forms a
sublattice with respect to right division of square matrices which is anti-isomorphic to
the lattice of the corresponding solution spaces.  This and further properties are then
exploited in the study of time-varying systems in differential operator representation.
Results on equivalence, state space models, controllability /observability and transfer
functions are derived.

Nomenclature
A (A ;) Set of meromorphie functions defined on R (on 1).
o/ {2/ ;) Set of analytic functions defined on R (on [).
%> Set of infinitely differentiable functions.
F
' ;} Definition 2.1,
ker; ; I Definition 3.5.
“full ” Definition 3.7.
U, Z, W Seeeqn. (1.3).
Theorem 3.1.
P~ Section 3.
rk 7 Definition 3.2,

} Lemma 2.6.

7% Lemma 3.11.
o

P, ~ P, Definition 5.1.
X t~242 Example 5.2.
ord P Definition 3.2.

1. Introduction
Our motivation for an algebraic treatment of time-varying systems in
differcntial operator representation of the type
Pz=0Qu l

(1.1)
y=Vz+ Wu j
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(the specifications valid in this paper are given in (1.3)) is whether a polynomial
framework exists which is suitable for the study of such systems. In the time-
invariant case such a framework arose from the work of Rosenbrock (1970) and
Wolovich (1974) and is well established.

In the few existing articles on the subject the entries of the differential
polynomial matrices are usually considered as members of some skew poly-
nomial ring .#{D] and the cocfficients of the polynomials belong to some
differentially closed ring of functions .# or generalizations of such a ring.

The choice of .# represents a main decision with regard to the chances for a
successful treatment of systems described by (1.1) and to the applicability of the
results.

Ylinen (1975) collects the basic algebraic results necessary for a thorough
analysis of the equation

Az= Bu (1.2)

in the case where .# is a ring of endomorphisms and A, 3 are matrices over
A D]. His main source is Cohn (1971). He also discusses basic system
theoretic problems (mainly transfer matrices, minimal realization, inter-
connections and observability). The conerete results still suffer from restrictive
assumptions which in situations of interest turn out to be unrealistic in the
time-varying case (e.g. Ylinen (1975), proposition 26, p. 61 ; proposition 37,
p. 63)). Ylinen only considers equations of type (1.2), a special case of (1.1),
but of course one can also consider (1.1) as a special case of (1.2) if we let

r o Q
A= and B=
-V 1 W

Therefore some results also have a meaning for (1.1).  Thus a right coprimencss
criterion on 2 and V for observability of (1.1) is kidden in the discussion of
Ylinen (1975, pp. 78-81).

Kamen (1976) assumes, for his main result, that .# is noetherian. Under
this hypothesis he constructs a state space representation for (1.2) with monie
A. The Noether condition is required essentially to ensure that monic poly-
nomials form an appropriate denominator set (see Cohn (1971)) thus making
possible the inversion of A in (1.2) and the reduction to the scalar case. The
Noether condition seems to be rather restrictive for the polynomial coefficients
(see examples given by Kamen (1976)).  The ring of all analytic functions is not
noctherian.  We mention also that, in general. monic polynomials do not form
a denominator set.

In another and more recent report by Ylinen (1980), he concentrates mainly
on the situation where .# is a subring of € ® the space of infinitely differentiable
complex-valued functions on an open real interval, and thus obtains more
precise results for svstems of type (1.2) and their interconnections.  In addition
to the topics in his report from 1975, controllability is now also treated and a
coprimeness criterion similar to the one known from the time-invariant case is
approached and partially established. The main restrictions required for the
substantial results in Ylinen (1980) are : .# must not contain zero-divisors of
% and the composite matrix |4 { — B} and all its right factors of the same
format must be row equivalent to a matrix in upper triangular form with
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coefficients also in .# and monic diagonal elements. It can be shown (sce
FExample 3.9 (¢)) that for a non-singular nxn matrix 4 with analytic
coefficients, A only has solutions which can be analytically continued to all of
R. Such differential polynomial matrices will be called full (see Definition 3.7).

In fact the possibility for a time-varying differential polynomial matrix not
to have ‘ sufficiently " many solutions represents a main difference to the time-
invariant case where the dimension of the solution space of a non-singular
differential polynomial matrix is prescribed only by the degree of the deter-
minant (see, for example, Hinrichsen and Pritzel-Wolters (1980)).

For this reason, in §§ 2 and 3 we study differential polynomials and non-
singular polynomial matrices with full kernels. We will call such operators
themselves full. In this paper we choose .# to be the field of real-valued
meromorphic functions defined on a fixed open interval of real numbers. The
main result is: The principal left idcals of nxn differential polynomial
matrices with a full generator form a sublattice of the lattice of all principal
left ideals and this sublattice is anti-isomorphic to the lattice of finite dimen-
sional real subvector spaces of .Z". The correspondence is given as follows :

Pe /[ D] full « kernel of P as an operator on ()"

We will also see that in the scalar case (n = 1) the set of full polynomials of equal
degree just represents a similarity class in the algebraic sense introduced bv
Ore (1933) (see also Cohn (1971)).

Thus it becomes clear that the notion *full * singles out a very natural
subclass of differential operators. Full operators are important system
theoretically because they lead to system trajectories which do not interrupt
within the time interval under consideration.

In § 4 we begin to analyse the trajectory spaces described by (1.1) with full
operator P and the additional condition im ¢ <im P. The latter condition
of course guarantees the existence of forced motions for any admitted u.

The specifications for (1.1) in detail will be

r=Qu, Y=Vz+Wu
Ped|D|=r, Qed[D*m, Ved (D, Wed[D]p-m
ue#™ 1= {ue(®”)" |supp u bounded to the left}
2€ZT = (€Y
yev .= (€=
P @
P= 6%/[1)]“"””7‘4(”"” (]';)
VoW

is called the system matrix corresponding to the above equations.

where

The matrix

Remarks
(@) We do not admit piecewise continuous functions or distributions as
inputs since the presence of jumps would destroy the following theory
(cf. §2).  As a consequence concatenation of inputs, a common axiom
in system theory (see Kalman et al. (1969)). is not present for arbitrary
inputs in our context.

M2
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() The restriction ye(%*)? for the outputs is not essential. 1f poles occur
they must be caused by the coefficients of ¥ and W. Thus left multi-
plication by an invertible p x p diagonal matrix with components in
A leads to a new set of equations producing no poles in the output.
Mathematically there is no reason not to admit poles in the output y or
the internal motions z, and nearly all results which follow are also valid
if we admit quotients f/a where f is in ¥* and @ is non-zero and
analytic.

In § 5 the concept of system equivalence is introduced. The equivalence
clagses are studied in detail and a state space representation is given. Section 6
discusses controllability and observability which are characterized by coprime-
ness conditions.  Finally, in § 7 transfer functions are introduced. As in the
time-invariant case the transfer function determines a system of type (1.3) up
to equivalence if controllability and observability are imposed.

2. The full polynomials of .#[D]

Let .o/ (.#) be the R-algebra of real-valued analytic (meromorphic) functions
defined in R. The ordinary differentiation operator D defined on .o/ extends
uniquely to all of .# and therefore will be considered as a special endomorphism
of A, i.e. an element of End (.#), the algebra of R-linear maps from .# to .#.
As usual . itself can be considered as a subset, of .#Z and one notes that D is an
indeterminate over .#.

We denote by .#| D] the set of (left-)polynomials

Y fDF
i=0

in D with coefficients f, out of .#. .#[D]is an R-vector space. Considering
also the multiplication in End (.#), we arrive at the skew polynomial ring
A D] (cf. Cohn (1971, pp. 34 and 64)) with the basic multiplication rule

Df=fD+f forevery fe.& (f means D(f))

It is easily proved that .#[D] is a left- and right-euclidean domain with no
non-trivial two-sided ideals (i.e. .Z[ D] is simple) (see Cozzens and Faith (1975,
p. 43)). We call the elements of #[D] differential polynomials. The
differential polynomials with all coefficients in .&7 form a subring which we
denote by /[ D].

If p is a differential polynomial, we are interested in the solutions fe.# of
the equation pf=0, or equivalently in the kernel of the endomorphism p.
(Note that pf means p(f), p viewed as an endomorphism of .#. Clearly the
product pf also has a meaning within .Z[ D] but the actual interpretation will
always be clear from the context.) For technical reasons we introduce a
slightly more general notation.

2.1. Definition
(a) Let I be an open real-interval. Then by .o/, (.#;) we denote the algebra

of real-valued analytic (meromorphic) functions defined on 1. (Note
that ./, does not consist of the restriction of .o/ to [ only.)
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(b) By F,; (orsimply F if / = R) we will always mean a member of a family
(% Dieo» where O is the set of real open intervals, which has to fulfil the
following two properties : .o/, <%, <.#, for every IeO and J <] =
Fn, %, Here 7, denotes the space of functions taken from .7,
and restricted to J.

(¢) Finally for pe# | D) let ker, , p:= |feF,|p/=0} where we omit [
if I=R.

If the leading coefficient of pe.o/,| )] is a unit in .o/, the theory of ordinary
differential equations (Herold 1975) guarantees that ker ; ; p is an#-dimensional
subspace of .«;, n=deg p being the degree of p. In general one can only be
sure of the following obvious property.

2.2, Property
For pe | D], p+#0 and €0 we always have

dim ker; ; p<degp

The example p := t1) demonstrates that the admission of distributions as
solutions of the equation pf=0 would lead to a violation of Property 2.2
(Gel’Fand and Shilov (1969, p. 42)).

The examples p, =tD*+ D, p,=tD + | and p;=12D + 1 illustrate some situa-
tions where equality does not hold in Property 2.2.

In detail, let IeO and 0¢/. Then ker , ;p,=<1,In |t|>5 and ker , p, =
omi kery  py=ker , ;py={1/t>y but [0}=ker, Py T ker , py=1/t)g:
ker , py={0} but ker , ; py=exp (1/t) .

If the differential polynomials p are to describe internal motions of a
dynamical system one cannot expect to get reasonable results admitting any
kind of such polynomials. The full polynomials are of main interest and are
defined as follows.

2.3. Definition

pe| D]is called full (with reference to (wrt).Z ;) if p# 0 and dim ker; , p=
deg p.

Monic polynomials out of /[ D] are examples of full polynomials wrt .o7.
Also for fe.#, the polynomial fD — fis full wrt ./ since ker , (fD—f)=frp. A
complete description of full differential polynomials will be given below.

Since we consider only meromorphic solutions the identity theorem for .o/
extended to .# causes the injectivity of the restriction mappings m;, (for
J<cl; J, [€0) defined as follows :

g kerf‘,p — kery”, P

f"*fl./

In this context the property ‘ full * just means that surjectivity is also valid.

2.4. Property

Let 1€O. pe#[D|. Then p is full wrt F, iff ;. g 18 an isomorphism for all
JeI, JeO.

In the following sections the next lemma will also become important.
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2.5. Lemma
Let pe#Z[ D] be full wrt .#. Then, for fe€>, pf=0 implies fe.o/.

In the case where p is not full p=12D + 1 is a counter-example of the above
lemma since the function f, with f(t)=exp (1/¢) for i< 0 and f(t)=0fort =0, is a
solution which belongs to % *\.«7.

We now turn to the more algebraic properties of differential polynomials
and in particular of the full ones. The next basic lemma is due to Ore (1933).

2.6. Lemma

For all p, gqe.#[ D] a monic greatest common right divisor g=gerd (p, ¢)
and a monic least common left multiple [=lclm (p, q) exist and are unique.

There exist a, be.Z[ D | such that g =ap + bq and the following degree formula
is valid.

deg [+ deg g=deg p+deg ¢

Analogous results hold if “left " and °right * are interchanged and if finitely
many polynomials are considered.

The algebraic structure of a differential polynomial p depends very much
on its kernel. This is expressed by the following lemma already known to
Schlesinger (1895, p. 81).

2.7. Lemma
Let pe#[ D] and 0+ feker , p. Then p has fD —f as a right factor, i.e.
(fD_f)|1]'

Proof
The right euclidean algorithm leads to the equation p =q¢(fD —f)+r where
re.#l. Since pf=0 we conclude r=0. O

We illustrate "this by an example. Let p=D*+1 and 0+#fcker_p=
{sin, cosyg.  Then p=f1D(fD—f).

2.8. Proposition
(a) Let pe#[D] be full wrt F and ker; p=<f,, ..., f, & Then for some
ued and := lelm {(f,D—f,)} we have p=ul.
l<isn
(b) For any finite-dimensional subspace V of .#, there exists a full poly-
nomial pe.#| D] such that ker , p= V.

Proof

(@) Without restriction assume f, ..., f, to be R-linearly independent.
Since p is full and by the degree formula in Lemma 2.6 we conclude that
degl<n=degp. By Property 2.2 we have a n<degl and therefore
deg l=deg p. Because of Lemma 2.7, [ is a right divisor of p. This concludes
the proof.

(b) Straightforward. ]

Further properties of full polvnomials follow.
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2.9. Proposition
(@) For p, qe.#[ D] where p is full wrt & we have ker, pckergqiff g=rp
for some re#{D].
() If p=rgis full wrt F, then g is full wrt % and r is full wrt .
(c) lelm and gerd of full polynomials are again full.

Proof

(@) Proposition 2.8 gives a representation for p which by Lemma 2.7 must
right divide ¢ if the inclusion of the kernels is valid. The converse is immediate.

(b) Assume p=7rg#0. Let J be such that all occurring polynomials are
full wrt o7, and o/, <img. We have ker, ;p=ker, ; g®V, where V is an
arbitrary complementing vector space. Now g(V)= ker, ; r and g is injective
on V. If p is full then ker, , p=ker; p|,. Therefore all solutions out of
ker,, ; g extend to solutions in ker, ¢ and all solutions in g(V) extend to
solutions in ker , r, i.e. » and ¢ are full wrt .# and F respectively.

(¢) The statement for the lclm is a consequence of the associativity of this
operation (cf. Ore (1933, p. 487)) and Proposition 2.8. The statement for the
gerd is a special case of (b). U

The example p=D and g= D+ 1 where
£2—1
lelm (p, )= D2+—t— D

shows that the multiplicative semigroup of monic polynomials in .2/[ D] is not
closed under the formation gerd and lelm. On the other hand the set of full
polynomials which is closed under the operations lelm and gerd does not form a
multiplicative semigroup. This can be seen by the following example.

Let p=tD+1 and ¢=D. Then ker,q=<1>, and ker , p=<1/t>5 but
ker , ; pg=<1,1n |t|> for every open interval / excluding zero.

For differential polynomials Ore (1933, p. 488) introduced the notion of
similarity which will become important in § 3 in the context of a canonical form
for matrices over .#[D]. For this reason we will discuss this notion and study
its meaning for full differential polynomials.

2.10. Defination

P, qe#[ D] are called similar if they can be put in a coprime relation, i.e. if
pa=bq for some a, be.#[ D] where in addition p, b are left coprime and a, g are
right coprime.

2.11. Lemma
Let p, qe.#[D].
(@) p, q are similar iff #[D]/p.#[D] is isomorphic to A[D)jq#[D] as an

A| D] right module.

(b) Similarity is an equivalence relation.
(¢) If p, q are similar then deg p=deg q.

(d) In a coprime relation pa=bq, it can always be assumed without
restriction that deg a < deg ¢ and deg b < deg p.

(¢} The differential polynomials p, ¢ of degree one are similar iff they are
associated, i.e. if pu=wvq for some u. ve# .
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Proof

A proof of (a) is given by Cohn (1971, p. 126). Of course (b) is a trivial
consequence of (a¢). Ore (1933, p. 488) gives a direct and more elementary proof
of (b).

(¢) is also a consequence of (a) but is obtained in a more natural way by Ore
(1933, p. 488).

To prove (d) we apply the euclidean right-algorithm as follows : a=rg+a’
where deg a’ <degq. This changes the given coprime relation to pa’=b'g
where b’ =b—pr. The new relation is again coprime. The left algorithm now
gives b’ =pa+b" and leads analogously to a new coprime relation for p and ¢
with the properties required in (d). Finally (d) implies (e). ]

For a complete description of some of the similarity classes in Proposition
2.13 we will need the following lemma also of importance in later sections.

2.12. Lemma

Let f,, ..., [,e.# be linearly independent and b, ..., h,e#. 'Then there
exists ae.#[ D] with dega=n-1 and af,=hk, for i=1, ..., n.

Proof
lfa:=a, D1+ ... +a, we have to show that
o] TR0 e f B[] [h
i) L g illa L
—W

has a solution. This is true if det W0 in .#. Considering

I= lelm {(/,D—f)}
l<isn
we see that, at least locally, det W is a classical wronskian for the differential
equation /f=0. Thus it is non-zero. ™

2.13. Proposition
Let qe.#| D] be full wrt % and deg ¢g=n. Then the similarity class of ¢
consists of all full polynomials of degree n.

Proof

Let pa=bg be a coprime relation and ¢ be full. Recalling Lemma 2.7 we
observe that @ acts as a monomorphism on ker; ¢ since ¢ and ¢ are right
coprime. Therefore dim ker; p>dim kery g=degq. By Lemma 2.11 (¢),
p and ¢ have the same degree and therefore by Property 2.2 we conclude that p
must be full, too.

It remains for us to demonstrate that any two full polynomials p and ¢ of
necessarily equal degree n can be put in a coprime relation. For this, let
fio - fpand ky, .., &, be a basis of ker; q and ker; p respectively. Applying
Lemma 2.12 we can construct ac.#[D] such that deg a=n—1 and af,=h, for
t=1,...,n. Now ker;g<ker, pa. Because of Proposition 2.9 (¢) we must
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have the relation pa =bq for some be.#[D]. By construction, @ and ¢ are right
coprime. If p=Ip’ and b=Ib" the validity of p'a=>b'q together with the
monomorphy of a restricted to ker; ¢ would imply deg p’=n and therefore

led. O

We conclude this section with two examples.

2.14. Ezamples

The polynomials p = D? and ¢= D?+ 1 are similar but not associated. The
latter is easily proved by calculation. It remains to show that the relation
pa=>bq with a=(tsin (t)+2 cos (¢)) D +2 sin () —t cos ()

and b=(tsin (£)+2 cos (t)) D+t cos (t)

is coprime. Assume @ and ¢ have a common right divisor which has (without
restriction since q is full) the form fD —f, 0% feker; q. Then there exist , yeR
such that f=usin (t)+y cos (t)ckers p
From af =0 we deduce that t=y=0. To show that p and b are left coprime we
use the same method as above and notice that D as a left operator has the form
fr—f

If two full polynomials p, ge.#[ D] are in a coprime relation pa=bq then
a, b are not necessarily full. To see this, let g=D?and a=2D+1. Clearly @ is
not full wrt .#. For these polynomials the relation pa=>bg=Ilclm (o, q) is
coprime and p is full wrt .#Z.

Several further results on full polynomials not mentioned here are special
cases of results in § 3.

3. The lattice of full matrices over .# [D]

As in the case of polynomials we shall see that also for matrices over #[ D]
the property that a ‘ reasonable * kernel exists will single out the subclass of
 full matrices ’ (see Definition 3.7) which is studied in detail.

The main result will be that full matrices form a lattice which, by considering
kernels, becomes (anti-)isomorphic to a lattice of finite-dimensional function
spaces.

The set .#[ D "< of matrices over .#[D] is naturally a left and right .#[ D]
module and in addition has a ring structure if m =n.

At first we discuss a generalization of the Smith form and the normed upper
triangular form, known from the commutative theory, which both represent an
important tool in the subsequent analysis.

Two matrices P, Qe#[D]"" are called equivalent, written P~¢@, if
P=UQYV for some invertible Ue#[ D] and Ve Z[ D>

3.1. Theorem

(a) Every matrix Pe#[D]"*" is equivalent to a matrix
P.=diag (1, ...,1,p,0,...,0), pe#[D]
LR S —

=:]

p is uniquely determined by P up to similarity.
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(b) If I>1, p can be chosen arbitrarily within its similarity class. We
call P, a canonical form of P.

The proof for a more general situation is given by Cohn (1971, p. 288). The
result simplifies considerably for the ring .#[D] since it is a simple one.

In general the elements of a canonical form are not unique up to left and
right multiplication by units, as claimed by Ylinen (1975, p. 46). To see this
we construct two equivalent canonical matrices whose elements are not pairwise
associated. We choose p, ge.#[D], as in Example 2.14, which satisfy the
coprime relation pa=bg and are not associated. By Cohn (1971, p. 89)
there exist r, s, v, we.#[ D] such that

p b v —a
U= and U-1l=
r oS w o q
Since —ra+sq=1 for
1 —a
P=
0 q ]
we have
p 0]
UP=
r IJ

Since U is invertible we conclude

1 0 1 0
~UP~ P~
0 p 0 ¢
3.2. Definition

Given the situation of Theorem 3.1. The degree of p is called the order of
P,ord P. The number of non-zero elements in P, is called the rank of P, rk P.
P is called non-singular if tk P =min (m, n).

The rank just defined has the familiar property that it equals the left
column rank and right row rank of P. See Cohn (1971, p. 194) for details.

3.3. Lemma

Every matrix Pe#[D]"*" can be transformed by multiplication from the
left by an invertible Uc.Z[D]"*™ into a normed upper triangular matriz, i.e.
the first non-zero element of every row is monic and the entries above it are of
lower degree. An analogous result, which considers the transformation from
the right, can be obtained as, in addition, can various further triangular forms
if row and column permutations are considered.

The proof is completely analogous to the commutative case (Newman
1972, p. 15).  We can use the canonical forms to derive the following rule.

3.4. Cancellation rule

Let Pe#[D}™™ be non-singular, n<m (n>m) and A,Be | D]xn
(e#[D]™). Then AP=BP (PA=PB)implies 4= B.
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From this rule it is easily seen that if a square matrix over .#[ D] has a right
(left) inverse it is a left (right) inverse, too.

We now begin the study of the kernels for matrices out of .#[ D" and the
extension of the notion ‘ full ’ to the matrix case.

3.5. Definition
Let (# )0 e as in Definition 2.1 and Pe.#,[D]*". Then kery ; P :=
{fe#/|Pf=0}. If I=R we omit [.

3.6. Elementary properties of the kernels
For P, Q, Re#/|DY*", P~ P.,=diag (1, ..., 1, p), p#£0 and IO we have
(@) dim ker; ; P<dim ker, ; P for J <1, JeO.
(b) deg p>dim ker , ; p=dim ker , ;, P .=dim ker , , P.
(¢) tk @ =r iff dim ker, ; @ < o0.
(d) There exists JeO such that
P: o7 o,

f— Pf
is surjective.
(¢) For R=QP we have

dim kerz ; R <dim ker , ; @ +dim ker; , P

If ker , ; @ <im (P|;) then equality holds.

Proof
(@)—(c) is immediate.
(d) Without restriction we consider P, and p to be monic. In an interval

J where the coefficients of p are analytic the operator p restricted to .7 is
surjective.

(¢) Let V be a finite dimensional subvector space of %7 with ker 1 R=
kery ; P@V. Now P acts injectively on V and P(V) cker , ; Q. N

3.7. Definition
A non-singular PeZ,[D]>" is called full wrt %, if the map

my g kerg ; P —kery ;, P
f1ls
is surjective for every open interval J < 1.

Note that =, , is always injective.
We first derive basic properties of full differential polynomial matrices and
then give some examples.

3.8. Proposition
For P, Qe.#| D} and p as defined by Theorem 3.1 (a) we have

(@) If P~@ and P is full wrt .# then Q is full wrt .#, too.
(b) P is full wrt & iff dim ker; P=deg p=ord P.
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(¢) Let P be full wrt.#, dimker, P=n and r>1. Then P~
diag (1, ..., 1, D»).

(d) If PeR[D]>" is non-singular, and r>1 then in .#[D}* we have
P~diag (1, ..., 1, D") where n=deg det P.

Proof

We use the notation of Theorem 3.1.

(a) follows by Definition 3.7.

(b) © = There exists an open interval J =R such that dim ker; ; P .=
deg p. By Property 3.6 (b) we have dim kerz , P.<dimker , , P <degp.
Since P is full the assertion follows. < ": Once more by Property 3.6 (b)

we have for every open interval .J = R,
deg p>dim ker, ; P>dim ker; P’=deg p

(¢) By Proposition 2.13 and Theorem 3.1 for r > 1, p as a full polynomial can
be chosen arbitrarily of degree n.

(d) Since any non-singular matrix P out of R[D]*" is of course full (see
Example 3.9 (a) with ord =deg det P=n any matrix out of R[D]" whose
determinant has degree » is in the equivalence class of P. L]

3.9. Examples of full polynomial matrices
(@) Let PeR[D|™" be non-singular. Then P is full wrt.Z and ord P =
deg det P.
(b) Let Pe(/™)[ D] be monic. Then P is full wrt <.
(¢) Let Peo/[ D] be non-singular and in normed upper triangular form as
described in Lemma 3.3. Then P is full wrt .o7.

Of course there are full matrices which are not of the type (a), (b) or (c).

Proof

(@) We can transform P into Smith form P,=diag (p,, ..., p,) by uni-
modular matrices over R[D]. Since

r
dim ker, P=dim ker, P,= Y deg p,
i=1
the assertion follows.

(b) In the same way as a scalar differential equation is transformed to a
first-order vector differential equation we can transform the equation Pf=0
to an equation (DI,,— B)y=0, Bes/>™ such that the solution spaces are
isomorphic. Now the assertion follows.

(¢) A matrix Ues/[ D | with inverse in /[ D | can be constructed such
that the entries of P'=PU satisfy the following conditions for 1<, Jj<r:
Pp'y=0 for i>j; pu=p,; deg p';y<min (deg p’;;, degp’y;), i#j. Let
so= max degp’;;, s;=degp’; for 1<i<r and @Q=diag (D=, ..., Dso=sr),

1<igr
Then @ P’ is a monic element of (/”*")[D] and thus full wrt .o/ by (b). The
proof becomes complete if we apply the following proposition. ]
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3.10. Proposition
Let P, R, Ge#[ D] and P= R(.

{(a) If P is full wrt % then @ is full wrt % and R is full wrt .#.
(b) If P is non-singular we have

ord P=ord R+ord G

Proof
Use canonical form and the same arguments as in the proof of Proposition
2.9 (b). J

3.11. Lemma (and definition)
For Pe.Z[ D] and Qe.#[D]2*" we have the following.

(@) Let r;=r. In .#{D]>" there exists a greatest common right divisor
(gerd) G of P and @ which can be written as 6= A P + B@) for some Ac.#| D |
and BeZ[D]>m=. If P or { is non-singular, a gerd of P and @ is unique
modulo left multiplication by an invertible matrix and non-singular too.

(b) P and @ are called right coprime if there exist Se.#[ D |2 and Te [ D <"
such that I,=TP +8¢. Clearly, P and @ are right coprime iff every square
crd of P and ¢ is invertible.

(c) Let JeO. Then P and @ are right coprime iff P|; and @[, are right
coprime in .4 ,{ D],

(d) Let ry=r,=v and P, be non-singular. Then there exists a non-
singular least common left multiple (lelm) in .Z[D]™>" of P and @ which is
unique modulo multiplication from the left by an invertible matrix,

Analogous results hold if ‘ left > and ‘ right ’ are interchanged.

Proof

(a) To prove the existence of a gerd we can slightly modify the results of
MacDuffee (1956, p. 35) who proved the statement for matrices over a com-
mutative principal ideal domain. Within the same framework the uniqueness
is proved by using Cancellation Rule 3.4.

(b) Use (a).

(¢) Let P|, and @], be right coprime in .# ;[ D] and @ be a gerd of P and
Q. By (a) there exist A, B such that G=A4 P+ BQ. A canonical form of ¢ is
diag (1, ..., 1, p). Since ¢ is invertible on J, pe#\{0} and by the identity
theorem @ is invertible.

(d) By Lemma 3.3 there exists an invertible

v, 0, V. 7,
U= and U-1=
PRSI
P G
U =
L

such that
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A slightly modified version of MacDuffee (1956, p. 36) gives: U,P=
-U,@ =:Lisan lclm of P and Q. Now for every ve /[ D] the equations
wL=xU;P=0=—2U,Q imply 2U,;=0=—alU, Since U, Vo+ U, V=1,
necessarily x =0 and thus L is non-singular. ]

By Proposition 3.10 we already know that especially a gerd of two poly-
nomial matrices, one of them being full, is full too. In order to prove that an
lelm of two full matrices is also full we need the following two propositions,
which are of importance on their own.

3.12. Proposition

For Pe.Z| D> full wrt & and Qe.#[ D" the following holds. ker, Pc<
ker; @ iff there exists Re.#[D v such that Q = RP.

Proof
By Proposition 2.9 the result is obvious for r =1, since .# [D] is euclidian.
Therefore let »>1. We have to show = * while the converse is trivial.
Choose two invertible matrices {/ and V such that P=U P,V where
P.=diag (1, ..., 1, D"). Since P is full we have for every feker # P, that
V-lfeker, P and with the assumption it follows that ker; P.cker, QV-1,
Since kery D"cker; (QV-1),, for i=1,...,7, by Proposition 2.9 t,, ..., ¢, €
A D] such that (QV-1),.=t,D*. Let (Q V=1);, 5=1, ..., r, denote the columns
of QV-1. Then we have
@V Yy, ., (QVY, ., ¢y, .., tn)T]jdiag (1, ..., 1, Dr)y=@Q V!

—

=:T
Therefore (TU‘I)UPc V=0. U

3.13. Proposttion

Let V be a finite n-dimensional subvector space of #7*. Then Pe#[D]™"
full wrt # can be constructed such that ker, P=V.

Proof

Let V=<f,,.... f,> =.%" with f,, ..., f, linearly independent and let

[fll fnl:l
A= :
flr fnr

Without restriction assume that the first row of A is not zero otherwise
multiply A from the left by an invertible matrix. Choose an R basis of the
first row entries and by multiplication from the right by an invertible matrix
U, eR™" we get

gu - Gy 0 .00
"1 (/71 - g.12 e 9?2

glr gm‘
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with ¢4, ..., g;,1 linearly independent. Of course the columns of 41/, are still
a basis of V. By Lemma 2.12 there exists p,e.#[D] such that p,g, , =g, for
I<k<i,.

Therefore with

1
. 0
[)2: — P2 e,/[[D]TXT
0 R
1
we have
911 gi,l 0 0
PUAUN=| 0 0 0 s e G
£

Defining p,, ..., pe#[D] and Py, ..., Pe#[ D] in a similar way we get.

g1 - G 0 . 0
(P ... Py)(AU )= Ji+1,2 -+ In2
0 :
gh+Lr T gnr

Applying this procedure successively on the remaining submatrices we finally
find an invertible matrix Pe.#Z[D]>" and an invertible matrix JeR»*" such
that -

Ju - i 0 0 ]
G12® o gy, ® 0
0 ". ...
P(AD)= I o g ®
0 0
K 0|

for 1 <k <7, and the elements g, ;9 in every row are linearly independent. Now
define for 1 < j <k

¢;= lelm (g, ;9 D—g,_ D)

I <e<iy
For @ := diag (¢, ..., ¢4, 1, ..., NeZ[ DT> we have QP(A0)=0. Since @ is
full wrt # the product P=QP is also full wrt % and ker; P=1V. 0

3.14. Proposition
Every lclm of two full matrices P, Qe[ D] is also full.

Proof

Let L=lclm(P,Q) and kery P+ker; Q =:{f, ....f s =: V. By
Proposition 3.13 there exists L'e.#[ D] full wrt F such that ker, L'= V.
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Together with Proposition 3.12 this implies that L’ isa clm of P and . There-
fore there exists Ee.#[ D] such that EL=L’. By Proposition 3.10 it follows
that L is full wrt #. ]

Let us define (P) = {RP|Re.#[ D>} for Pe.#[D]">r. Then by Proposition
3.14 the set
L= {(P)| Pe| D> full wrt F}

is a lattice with the operations lclm and gerd as supremum and infimum ordered
by inclusion.

If Z, denotes the lattice of finite-dimensional subvector spaces of #7 with
inclusion as the ordering and ‘N’ and * + * as infimum and supremum res-
pectively, the foregoing facts can be summarized by a theorem about .#;.

3.15. Theorem
Z; is anti-isomorphic to &£ .

Proof

The map h: ¥, — ¥, with (P)— ker; P is well defined because of
Proposition 3.12.  Again by Propositions 3.12 and 3.13 we know that A is injec-
tive and surjective. It remains to show that for full P, Qe.#[D]>" we have

(i) R((P) +(@) =R({(P))NR((Q))

and
(ii) R(P)ON(@) =h((P)) + h((Q))
which imply that % is an anti-homomorphism.

(i) Let ¢ be a gerd of P and @ which by Lemma 3.11 (a) fulfils (P) + (Q) =
(¢). Therefore we have to prove ker; ( =ker, Pnker, @ which is
evident.

(ii) Let L be an lelm of P and Q. Since (L)=(P)N(Q) we have to prove
kerz L=kery P+ker; Q. ‘2’ is trivial while using the proof of
Proposition 3.14 we know that EL=L’. Proposition 3.12 implies
ker; L=ker; L’ which concludes the proof. O

3.16. Remark

Some of the results in Hinrichsen and Pritzel-Wolters (1980) in the context
of Theorem 3.15 summarize as follows.

The non-singular » x 7-polynomial matrices over R[] form a sublattice of
Z; which is anti-isomorphic to the sublattice of D-invariant spaces of % .

3.17. Order formula

Conditions (i) and (ii) in the proof of Theorem 3.15 enable us to generalize the
degree formula (cf. Lemma 2.6) for non-singular square matrices P, Qe
A D= Let L denote an lelm of P and @, and G a gerd of P and @, then

ord L +ord G=ord P +ord @
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Proof

Applying the foregoing results it is possible to choose an interval .JeO such
that the following equations are valid :

dim ker , ; P +dim ker , ; @
=dim (ker , , P+ker , ; @)+dim (ker , ; PNnker , ; @)
=dim ker , ; L+dim ker , ; G U

4. Solution spaces and their homomorphisms

In this section, as a first step towards the study of system equivalence, we
study the equation

Pz=0Qu (4.1)
with Pe#| D>, Qe[ D]>m, 262", ue¥U™.
The material is organized along the same lines as in Hinrichsen and Pritzel-

Wolters (1980). As far as possible similar notations are used to make visible

the far-reaching analogy between time-invariant and meromorphic equations
of the form (4.1).

The solution space of the eqn. (4.1) is denoted by
M(P,Q):= {(z, w)TeZ"x U™ | Pz=Qu}
M(P, @) contains the subspace of forced motions starting from zero
M (P, Q):= {(z, u)TeM (P, Q)|supp z is bounded to the left}
and the subspace of free motions
ker P x {0}={(z, 0)Te M(P, Q)}

In the following ‘ full * will always mean ‘ full wrt &/’ ; of course many of
the following statements will also hold if full wrt some & is required.

4.1. Proposition
Given Pe#/[ D} is full and Qe[ D]*™ there exists a direct decomposition
of M(P, Q) :
M(P, Q)= (ker Px{0)Yy®M (P, Q)

Proof

ker P x {0}nM (P, Q)={0} follows directly from the definition of sub-
spaces and the identity theorem for analytic functions. It remains to show
‘<. Let (z w)TeM(P, ). Then there exists I =(— o0, {,) such that u|,=0.

Thus (z, u)T|;=(z|;, 0)T. ker Pxker, P implies the existence of a unique
z'eker P with 2’ |I=z|,. Therefore we have
(z, w)T=(2", )T+ (2 —2", )T, (z—2", weM (P, Q) M

If (z,, w)eM (P, @), z, is called the forced motion starting from zero under
control u. Of course z,, with support bounded to the left, is always uniquely
determined by ». If, moreover, im ¢ <im P then z, exists for every ue%™.

1f we omit the assumption * P full * in Proposition 4.1 the decomposition
may not be possible. Choosing p=£2D+1 and ¢(D)=1, we see that p with
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ker, ; p=<{exp (1/t)>g (if 0¢J) is not full. TLet k(t) be zero for t>0 and
exp (1/t) for <0, then k€. For a> 0 let he?*® such that

1 fortg< —a
h(t)=

0 fort=0

Finally let w=p(hk). Then u#0 and ue%. But (hk, ) cannot be decom-
posed.
We now list basic properties of solution spaces.

4.2. Proposition
Let Pie| Dyv<ri, Qe[ D]m §=1, 2.

(@) Given Te#[D)>*n with P,= TP, and Q,=TQ,, then M(P,, Q,)<
M(P,, @,). If, moreover, T is left invertible then the equality holds.

(b) If P, is full, M(P,, Q,) S M(P,, @,) and im @, <im P, there exists
Te#t[ DI»m with Py=TP, and Q,=TQ,.

(c) Let ry=r,, P, and P, full and im Q, <im P,. Then M(P,, Q,) =
M(P,, Q,) iff there exists an invertible Ted| D] with Py= TP, and
Q=T0Q,.

Proof

(@) is immediate.

(b) Since ker P, cker P, and P, is full by Proposition 3.13 there exists
Ted|DJ>n with P,=TP,. im Q,<im P, implies (TQ,—Q,)u=0
for all ue#™. Now Lemma Al in the Appendix gives TQ, = Q,.

(¢} im @, <im P, follows from im ¢ sim P, and M (P, Q,) S M(P,, Q,).
By (b) there exist matrices 7,7T"e.#[ D> with Py=TP,, Q,=T0,
and P,=T'P,  Hence: P,=T'TP,. The Cancellation Rule 3.4
implies that 7' is invertible. J

4.3. Definition
Given Pe#[D]rr: full, QM| D™, i=1,2 and T,ed[Dy>n, Ye
A D]Jr¥m the map

[ M(Py, Q) — M(Py, Q)
T, Y
(z, u)T > (z, )T
0 I

is called a solution homomorphism.
If f is, in addition, bijective it is called a solution 1somorphism.

An example of a solution isomorphism is already known from the theory of
linear differential equations.
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Given p,=ay+a, D+ ... +a, D" 14+ Dreg/[D], nz1, ¢,/ and

0 1 0 17
0 1
P,=| DI, — ' 0
01
B L — % =Ope —@p_1] |
0
Q=] 0 |eamat
| 41

then

f: M(py, q1) = M(P,, @)
defined by

1 7o
D
(@ u)" - N I RCAOR
Dn-1] 0
0 1]

is a solution isomorphism.

4.4. Remark
Every solution homomorphism f induces the following R-linear maps.
frio M(Py, @) — 27
(2, )T > T2+ Yu
fo: ker P; — ker P,
2z Tz

Every solution homomorphism preserves the direct decomposition of the
solution space M(P,, ¢,), i.e.

(a) f (ker P, x {0}) sker P, x {0}
(b) f(M (Py, Q1)) S M (Py, @)

The existence of a solution homomorphism is described algebraically by the
following proposition.
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4.5. Proposition

Let P, @, T,, Tl, Y, Y, i=1, 2 be as in Definition 4.3 with im @, cim P,
and let f, f be described by

T, Y] [T, T
o I o I
respectively.

(@) f maps M(P,, Q,) into M(P,, Q,) iff there exists T'e#[D]=*" with

T, Y
T(l)l’ Q1)= (P2’ Qz)[ :,
o I

m
in this case :

(b) im @, €im P, results in im @, <im P,.
¢)

(¢) f=f iff there exists a uniquely determined Le.#|D]?*" such that
T\=T,—LP,and Y=Y +LQ,.

Proof
(a) follows from Proposition 4.2 (b) since
[IM(Py, Q1)) S M(Py, @) < M(Py, Q) = M(P,T,, — P,Y +Q,)

(b) Given T as in (a), it can be shown that im (P,Y +@,) sim P,. Take
veim @y, ie. v=Quu, ue%”. Now for v:= P,Yu+Q,u there exists z'eZ"
with x=P,2’. We see that Py(Yu—2")=Qu=v.

(¢) © <=’ is obvious from the definition of f and f. For < =’ the proof is
analogous to Hinrichsen and Pratzel-Wolters (1980, p. 792). ]

3

In the following, various properties of a solution homomorphism are
expressed algebraically in terms of the corresponding matrices. Since, as in
Proposition 4.5, the results are either elementary or their proofs are completely
analogous to the time-invariant case, we skip all the proofs and refer to
Hinrichsen and Pratzel-Wolters (1980, p. 793).

4.6. Proposition
Suppose that f: M(P,, Q) - M(P,, Q,) is given as in Definition 4.3.
Then
(a) f1is injective <> f, is injective <= P, and 7', are right coprime,
() If im @, <im P, and Te#[D]2* as in Proposition 4.5 (a) then
f is surjective <> f, is surjective <= P, and T are left coprime.

{c) If fis bijective {1 is again of the form

T Y
0 I?Il

with T'e.4[ Do, Yed [ D). ]
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5. Systems and their homomorphisms

Now, for the systems described by a system matrix P as given in (1.3), the
notion of equivalence is introduced and studied in detail. In particular we
look for typical representatives in the equivalence classes, especially for a state
space representation. Asin §4 we maintain as far as possible the analogy to
Hinrichsen and Pritzel-Wolters (1980), though results and proofs will now
differ much more. All through § 5 the matrices P and @ within the system
matrix P will have the properties P full wrt .7 and im @ cim P.

Given two system matrices

P, —Q,
P, = EH| D) itpylriimg g | 2 (5.1)
v, W,
A system homomorphism f between the solution spaces M(P), ¢,) and
M(P,, @,) should not change the input u and should guarantee that the outputs
of the systems described by P, with respect to (z, «)T and f((z, «)T) are identical,
i.e. it should make the following diagram commute :

M(Py, Q)

:/ (Vi Wy)

v

j
:2\ (Vo W)

*11(])27 Q2)

un

with
m i M(P;, Q) — U™
1=1,2
(z, W)T > u

This is expressed by the following definition.

5.1. Definition
Given two system matrices P;, P, of the form (5.1), a solution homo-
morphism
fo M(Py, Q1) = M(Py, Q)
defined by
T, Y
(z, )T +— (z, u)T

0o I

with T\ e[ D", Yed [ D)™ (see Definition 4.3) is called a system homo-
morphism if, in addition

Vig+ W= (V, Wof((z, w)T) for all (z, w)"eM(P,, @,) (5.2)

[ 1s called a system isomorphism if it is invertible as a system homomorphism.

P, and P, are called system equivalent, denoted by P, ~ P,, if there exists a
system ismorphism f: M (P, Q,) — M(P,, Q,).
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5.2. Example

A special case of equivalent system matrices is represented by system
matrices given by similar analytic state space systems X .. We recall that
two state space systems X1, ¥ 2 described by

DI, —4, -B,

Pi: e&[[l)](rﬁp)x(rﬁm) (5.3)
& Ey(D)

(where i =1, 2 and 4,, B;, C; are matrices over &/ ) are called s¢milar, denoted

by EstliZstz, if ry=ry and there exists an invertible matrix Teo/"1*n such
that 4,7 —TA, =T, B,=TB,, C,=C,T-, E,(D)=E,(D). Defining

f: M(DI,—A,, B))— M(DI,— A, B,)

T 0
(z u)T > (z, w)T
0 I

. . . se
we see that f is a system isomorphism. Therefore P, ~ P,.
In contrast to the time-invariant case we see that every system X1 with

DI,— A4, -B,
P, =
C,  E.D)

PieZ| D] T eim) s similar to a system X2 with system matrix

DI, -B,
Py,= eﬂ[l)](rﬂl)x(wrn)
Cy  Ey(D)

(Choose for the transformation the transition matrix ®,(t,, -) of 2at)

Thus in the time-varying case there is much more freedom in the choice of
the internal behaviour without changing the overall properties. In this
context also, the following observation is of interest : Applying the well-known
rank criteria for complete controllability and complete observability (Kalman
et al. 1969, pp. 36 and 55) for time-invariant systems, it can be shown that two
time-invariant completely controllable or completely observable state space
systems which are not equivalent in the sense of the classical theory (i.e.
transformation is a constant invertible matrix) cannot become equivalent if
embedded in the set of time-varying systems.

A very useful criterion for the study of system equivalence is now derived.
It is completely analogous to the time-invariant result of Hinrichsen and
Pritzel-Wolters (1980, p. 794).

5.3. Proposition

Let P; be two system matrices of the form (5.1). Then Plf P, <> there
exist T', T\e#| D]>xn, Xe/[ D> and Ye [ D)™ such that

T 0 T, Y
() P,=P,
X I o I

» m
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(b) T, P, are left coprime and P,, T, are right coprime.

im @, €im P, is only needed for the implication ¢ = .

Proof

3 2

=" : Using the notations of Definition 5.1 and combining the results of
Proposition 4.5 and 4.6, we have only to show the existence of Xe.#[D P> such
that XP 4+ V,=V,T, and XQ,+ W,=V, Y + W,.
Condition (5.2) gives

M(P,Q)SM(Vy=V,T,, Wy— W+ V,Y)

Thus Proposition 4.2 gives the desired matrix X. ‘<’ follows from
Proposition 4.5 (a¢) and 4.6. ]
5.4. Remark

If in condition (a) in Proposition 5.3, T;=1, and Y =0 then—if also (b) is
valid—7" is necessarily invertible. Therefore in the case where M(P,, Q,)=
M(P,, @,) the identity map is a system isomorphism iff

T 0
Py=P,
X 1,

and Ted[ D] is invertible. 1f M (P, Q,)=DM(P,, @,) and if the identity
map is a system isomorphism, then the systems described by P,, P, are called
undistinguishable.

In the Example 5.2 we saw that system matrices given by similar analytic
state space systems X are always system equivalent. The following pro-
position shows that the converse is also true.

5.5. Proposition

Let 4% i=1, 2, be two state space systems described by system matrices
P; asin (5.3). Then

P AP, iff T 852

Proof

3 ’

= . By assumption ker (DI, —A,)xker (DI, —4,). Therefore r;=r,.
By the Example 5.2 and * <=’ it suffices to consider (r : = r))

DI, —-F,|1 ~ [DI, —F,
P, = XP,=
G, E(D) Gy  EyD)
f: M(DI, F,)— M(DI,, F,)

T, Y
(z, )T > (z, u)T
o I

m

Let

described by
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with T\e#[ D" and Ye#[D]*™, be the system isomorphism. Choosing
Qe D>, He ™ such that T, =QDI,.+ H, we see that

flz, w)") =(Tyz+ Yu, u)" = (QF, + Y)u+ Hz, u)"
Since f: ker DI, — ker DI, with z — Hz is an isomorphism we have H is
invertible over R. Therefore
DI (QF,+ Y)u+ Hz)=Fyu forall (z, w)TeM(DI,, F,)

Defining Y, := QF,+Y we see DIz=H-YF,— DI, Y)u for all (z, u)'e
M(DI., F)). Thus F,=H-YF,—DI.Y,) is given by Lemma A1 in the
Appendix. Hence F,— DI Y e.#™™, which implies Y,=0, i.e. F,=HF,.
Condition (5.2) gives the implication
(Gy, E)f((z, w)T)=(Gy, E))z, «)T  for all (z, w)TeM(DI,, F,)
Thus
Giz+ Eou=0,Hz+ Eyu  for all (z, w)TeM(DI,, F,)

Since im F, cim DI, we can choose u=0 and see G,H=(,. Application of
Lemma A 1 in the Appendix to F,u= K,u gives E,=E,. ]

We can now begin to study the equivalence class of a system matrix
5.6. Proposition

Given a system matrix P; of the form (5.1) with im @, €im P, and matrices
Ped[D]i<ri, j=2,3, 4, 5 satisfying

(a) Py~ Py (ry="3)
(h) P,=diag (I,, P,), leN arbitrary (ry=1+7)
() P,= DI, with n=ord P, (ry=mn)
{d) P,= D" with n=ord P, (rs=1)

Then for 2 < j <5 there exist matrices Q;, V;, W, such that

Pi - QJ’
P]. = M| D |ritpIXem

7

V, W;
. . 8¢

satisfies P, ~ P;.

In case (b) P, is called a trivial expansion of P,.

Proof
We use the criteria and notation of Proposition 5.3.

(a) Let P,=0U"P U, where {/ and U’ are invertible »; x », matrices over
HN D). Choose T=U, X=0,T,=U'"1,Y=0, Vo=V, U, Qo=0Q,, W,=W,.

(b) The map
[+ M(Pq, Q) — M(P,, Q)

0,
(z, )T > | 2
U

defines an isomorphism with the required properties. P is obviously full.

with



Time-varying polynomial matrix systems 353

(¢) By (b) we can assume r;=n. Since DI ~diag(l,...,1, D*) the
assertion now is a special case of (a).

{(d) is a consequence of (a) and (b). ]

Of course there are more constructive procedures for the transition between
the different equivalent systems of Proposition 5.6 which we do not develop
here.

5.7. Proposition (state space representation for system matrices)
For every system matrix P, of the form (5.1) there exists a system matrix
DI, —-B
Py= ed[D|mtp)xtetm) (p=ord Py) (5.4)
¢ ED)

with B, C defined over .« such that P,~ ®,. P, is uniquely determined up to
a constant similarity transformation.

Proof
By Proposition 5.6 (c) we can assume that
DI, -@
P= E%[D](7L+p)><(n+m)
14 W

There exist Be.#w<n, Cedv<, Ye D, Xed[D]P** such that —@=
DI, Y—Band V=XDI, +C. Setting E(D):= W+ X@—CY we obtain

I 0 DI, —-B[I Y
P, =
-X 1 c ED)|lo 1

Therefore P, ~ P,.

Tt remains to show that B, (' are matrices over .o/ and F is a matrix over
/[D]. Let IR be an open interval. For w,e#™ with u;;=e; for each
i=1, ..., n (compare Lemma A 1 in the Appendix) there exists, by the condition
im @, =im Py, ze(6*)" such that DI, z= Be,in I. Therefore B cannot haveany
poles on I. Since I was chosen arbitrarily we have Beg/"*m.  Setting u=0
and z=e,eR*=ker DI, and y=Cz+ E(D)u shows (because of the assumption
that the outputs of the system belonging to P, should have no poles) Ceo??>™.

Now taking u;e#™ such that u;,. =tke;, on I, ecR™, i=1, ..., m, keN, we
see from the reasoning as above that E(D)e/[D]#*™. The uniqueness follows
by the proof of Proposition 5.5 ¢ = . ]

Rosenbrock (1970) introduced the concept of strict system equivalence. In
our context the definition appears as follows.

5.8. Definition
Two system matrices Py, P, of the form (5.1) and satisfying r, =r,, are called
strictly system equivalent (sse) if there exist invertible matrices (r:= ry)
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M, Nel| D", ReM[ D> and Se#[D]>™ such that

M 0 ‘N S8
Pl = Pz
R 1, 0o I,

As in the commutative case (see Hinrichsen and Pritzel-Wolters (1980)) the
relation between ‘ se " and ‘ sse ’ can be clarified by the method of trivial expan-
sion (see Proposition 5.6 (b)).

5.9. Proposition
Let P;, P, be as in (5.1), then P,X P, <> there exist trivial expansions
P,, P, satisfying B, X P,.

We omit the proof since it does not require new ideas in addition to those
applied in the proofs of the foregoing propositions.

To conclude this section we derive a result on system equivalence which will
be of use in § 6.

5.10. Lemma

Given two system matrices P; as in (5.1), with P, < Py, then P, and @, are
left coprime iff P, and @, are left coprime.

Proof

It suffices to show * = ’. By Proposition 5.3 there exist 7, Ted[D]axm,
Xed [ D]xn, Yed[ D™ such that TP, =P,T, and Q,= P,Y + T¢,. Since
T and P, are left coprime there exist Ae.#[ D] and Be /| D]r2%r such that
I,,=TA+ P,B. By assumption there exist Ec.#[D]"*n and Fe#| Drxn
such that I, =P E+@,F. Therefore

T=TP,E+TQ,F
=P T\ E+(Qe— Py Y)F
=P,(T\E—-YF)+Q,F

Furthermore

TA=PyT,EA~YFA)+Q,FA
1,,—P,B=PyT\EA~YFA4)+Q,FA
I,,=Py(T\EA+B—YFA)+Q,FA (]

6. Controllability and observability

The result given in this section is mainly a characterization of controllability
by a coprimeness condition. A similar result also holds for observability. As
in the time-invariant case the latter is much more straightforward since no
inputs are involved.

In this section Pe.#Z[DV>" is always assumed to be full wrt .o7.
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6.1. Definition
Let
P -Q
P= e [ Dtr-r+m. IO, be a system matrix
Vv w
(a) P is called (completely) controllable on [y, t,] <1 if for any z°cker,, ; P
a control ue?Z/™ exists with supp u <[4, ;] such that

2t) fort<i,
(20 +2,)() =
0 for t>¢,

(b) P is called (completely) observable (on I) if V acts as a monomorphism
on ker ; P.

For time-varying state space systems in the literature, various notions of
controllability and also reachability are usually introduced which could be
easily translated to the present arrangement. But since most of them coincide
in the analytic case we concentrate on completely controllable system matrices
and omit ‘completely’ in the following. A similar remark is valid for
observability. Without losing generality we can restrict our analysis to I = R.

6.2. Remark

Controllability and observability are maintained under system equivalence.
Given two system matrices P; (¢=1, 2) as in (5.1) with Plﬁ P, then P, is
controllable (observable) on [f,, ¢, ] =R, ¢, <?, iff P, is controllable (observable)
on [, t]ER, f, <ty

Proof

Let the system equivalence be described by the system-isomorphism
f: M(P,, Q) — M(P,, Q,)
T, Y

(z, )T —> (z, w)T

o I

n

For given zeker , P, we have to show that there exists ue%™ with supp u <

[£o, t;] such that 2(r) for r<i,

(z+ 2"2)(7) =
0 for r=¢;

By assumption there exists a unique 2%ker P; with T'20=2. Since P, is
controllable on [{,, ¢,] there exists ue%™ with supp u S[t,, {;] such that

27y for r<t,
(2°+2,)(1)= (*)
0 for r=¢,
By Remark 4.4 we have for every (z,,u)'eM (P, @) that f((z, »)T)=
(T2, 4+ Yu, w)TeM (P,, Q,). Since 2,2=T,z,+ Yu the assertion follows by
(*).
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The proof that observability is invariant under system equivalence is
straightforward. O

It is easily proved that our definition of observability coincides with the
usual ones if considering system matrices in state space form.

The same is not straightforward for controllability. The reason is that
common definitions for state space systems involve a much larger control space
namely piecewise-continuous vector functions. For simplicity let

DI. -B
P= EM [ D]r+pIxr+m)
¢ EWD)
be in state space form. Define

U ={ue |suppucl} [:= [t,t,]

For such a system matrix our definition of controllability on [ just means that
for any x%ker DI, = R" there exists a control ue#,” such that

—a0= jl'l B(t)yu(t) dt =: H(u) (6.1)
to

Or equivalently : P is controllable iff # : #,m — Rr is surjective.

It can be proved (see Appendix, Lemma A 2) that the image of H does not
depend on whether we admit, in addition, piecewise continuous controls or not.
When this is done it becomes clear that for every system matrix P being
controllable according to Definition 6.1, its corresponding state space system is
controllable in the classical sense. Therefore we can apply the corresponding
results from the state space theory, in particular the following criterion.

6.3. Controllability criterion (Silverman and Meadows 1967)

Let DI, —B

P= EM[D]("H’)X("“"’ (6.2)
¢ ED)
be in state space form. Then P is completely controllable on [t ] SR,
ty <ty iff
rk (B(¢), B@), ..., B=V(#))=r for every te(ty, t,)\NV (6.3)

where N is a discrete set and B%) denotes the kth derivative of B.

6.4. Theorem
For a system matrix
P -
P= EH[ D] +p)x +m)
W
with im @ <im P the following statements are equivalent.
(a) P is controllable on [ty, t,] S R, t,<t,.

(b) P is controllable on every closed subinterval of R.
(¢c) P and @ are left coprime.
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Proof

By Proposition 5.3 we know that left coprimeness of P and ¢ is maintained
under system equivalence. Therefore by Proposition 5.9 and Remark 6.2 it
suffices to show the assertion for a system matrix P of the form (6.2) where
r=ord P.

Let 2, :=[B, B, ..., B“V] for ¢>0 and note that the rank condition
(6.3) is equivalent to rk , #",=r where rk , denotes the rank over .#.

) = (c): Since rk , 4 ,=r there exist Y, ..., Y, ,e#™ such that for

(@) < (b) : Since B and its derivatives are analytic the assertion is obvious.
(b) =
=[Y,y ..o, Y,1]T we have Y =1,. Since

YT

n—1
BDr=¥ (7;‘> (— 1ADnAB® 4 (— 12 B

A=0

<2> ( . I)ADnV/\—l B(/\)] + ( _ l)nB('n)

—

A=0

:D[g

=: M, (D)
we calculate

B[Y,—DY,+ ... +(—1)y"1D1Y, ]
=BY,—[DM,(D)-B]Y,+ ...
+ (= 1y DLM, (D)+(=1)y'BeD]Y,

r—1

= BYy+ BY 4 o +BOVY, 4 B (-1 DMD)Y,

-1
=[B, ..., Be=D]Y + D z (=AM (D)Y,

By Lemma 3.11 we conclude that B and DI, are left coprime.
(¢) = (b) : By Lemma 3.11 and the assumption there exist Xe.Z[D]™>" and

Y=Y DiYen#[ D>
=0

such that DI, X+ BY=1_. We now calculate as follows :
I,=DX+BY

-DX+ ¥, ;(}(—W( >D’ ABVY,

i=0
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Comparing the coefficients we have
'}{n[ Y, - Yy, (- 5K Yn]T:[r

which impliesrk , #", =r. We have to prove thatrk , #",=r. Sincerk , .1,
considered as a function of 4 can only be strictly monotonic within the set
{0,...,7} rk , A", =7 implies rk , A ,=r. 'This proves (b). ]

We conclude this section with a result for observability which is analogous
to Theorem 6.4.

6.5. Proposition
For a system matrix
P —Q
P= e%[D](r—’rp)X(rer)
Vv W

the following statements are equivalent :

(a) P is observable.

(b) P and V are right coprime.

Proof

Let ¢ denote a gerd of P and V.

(@) = (b) : Since ker,, G=ker,, Pnker,, V we have ker , G¢={0}. Assume
P and V are not right coprime. Then there exists a crd of P and V called

@’ which is not invertible. Therefore 0+ ze.o/" exists such that G'z=0 which
implies ker , ¢/ + {0}.

(b) = (a) : Since ¢ is invertible we have ker,, = {0}. 7

Remark

Based on the unique anti-isomorphism ¢ of [ D] which maps fD onto
— Df one can define the generalized transpose *P = (*p) for matrices P =
(pij)e | D™ as follows
Pij 1= $(p;i)
Now the system matrix dual or adjoint to P is just *P and the duality of the
criteria in Theorem 6.4 (¢) and in Proposition 6.5 (b) is obvious. Note that
if pe#| D] is full wrt o7, then *p is in most case only full wrt .#.

7. System homomorphisms and transfer functions
The following more intrinsic definition of a system homomorphism turns
out to be equivalent to the one given in Definition 5.1.

7.1. Definition

Let P; be defined as in (5.1) for 1=1, 2, im @, <im P, and P; full wrt .«/.
The map f: M(P,, Q) — M(P,, Q,) is called a system homomorphism if the
following conditions are satisfied :

(@) fis R linear.
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(b) f does not affect the inputs and outputs. More precisely : The diagram

M(Py, @)

:/ wj’l)
u”m ¥7j v

f
:’N A'IV2)
M(Pgy, Q)
commutes. (mi(z, w)T:=u; (V,, W), w)T:= Viz+Waufori=1, 2))

(¢) For every open interval I there exists an R-linear map f|; such that

/
M(P, Q))———>M(P,, Q)
restriction restriction
on / fl, on [
M(P,, Ql)li"’—‘_—"ﬂ[(l)zy Qz)‘I
commutes.
(d) fis called time invariant if it commutes with all time shifts.
Condition (c¢) can be replaced by the condition

(¢") For every (z, u)TeM(P,, §,) we have
(z, )" ;=0 = f((z, u)T);=0

Clearly every system homomorphism according to Definition 5.1 satisfies
(a), (b) and (c). Conversely a system homomorphism according to Definition
7.1 can be represented by a differential polynomial matrix as in Definition 5.1
which has constant coefficients if (d) is fulfilled. The proof of the latter
statement is lengthy and is omitted here. Its main tool is a result of Peetre
(1960) (see also Wells and De Prima (1973)). ‘

The equivalence of the two definitions of system homomorphy enables us
to clarify the relation between transfer function and system equivalence.

7.2. Definition

Let [* be of the form (5.1) and im ¢ =im P. Since for any ue%™ the forced
motion z, starting from zero is unique. The map §: %™ — Z7 with u > 2, Is
well-defined. Therefore the transfer function T of P is introduced by

T: Um — v
w = (Vi + Wiu

Algebraically there is no difficulty in also defining transfer matrices asso-
ciated with a transfer function T over the quotient skew field of .#[D]. Of
course, not all matrices VP~1Q + W can be interpreted as an operator on all of
™. For this paper there is no advantage in considering transfer matrices.

7.3. Proposition
For ¢=1, 2, let P, be defined as in (5.1), im @, =im P,, P; full wrt o/, and
T, be the transfer functions of P,.

(@) If a system homomorphism exists between P, and P, then T,=17,.



360 A. Ilchmann et al.

(b) If T,=T, and in addition both P, and P, are controllable on J=
£y t;] and observable then P, ~ P,.

Proof

(@) is an immediate consequence of our definition.

To prove (b) we proceed in several steps :

(1) For every ue#,m there is a unique zeker,, P such that z(t)=z,(f) for
tzt,. Thus o;: U;m — ker, P with o,(u)=2 is a well defined
R-linear map (cf. Hinrichsen and Pratzel-Wolters (1980)).

2

~

The controllability of P can now be characterized as follows: P is
controllable on J iff o, is surjective.

(3) Now let " be the corresponding maps for P; (i =1, 2) as defined in (1).
We then have that if P, is controllable, P, is observable and 7', =7,
then o,! can be factorized by 0,2, i.e. there is a unique R-linear map fr
such that the following diagram commutes :

y ker , P,
Uy I

x

o ker,, P,

To prove this we demonstrate that o1 is surjective and ker o1 cker 2.
The first property is fulfilled by (2). For the latter, assume o,!(u)=0
for we?,m. Since (2, u)|¢, =0 and Vi 4+ Wu="Tu="Tu=
Vaz,2+ Wau we conclude V,z2|(, ,)=0. Since P, is observable we
conclude z,2|(,, ,,=0 which implies o ,2(u)=0.

(4) Now let P; (1 =1, 2) be given as in part (b) of Proposition 7.3. Applying
(3) twice we see that the R-linear map

fs: ker P, — ker P,
2t a2 (u)
for some ue(o,1)~1(z!) is in fact an isomorphism.
(5) Now we define the linear map

{1 M(Py, Q) — M(P,, @)
by

o

f keros I)IX{O)(ZI’ u)T = (fJ(Z]); 0)T
fl MU APy, Q )(2111’ H)T = (Zuza u)T

f is a system isomorphism if we prove the conditions (b) and (¢’) of
Definition 7.1.

(6) First we prove Definition 7.1 (b). We decompose (2, u)Te M(P,, Q,) by
Proposition 4.1 as follows

(Z, u) = (Zl’ O) + (zulz u)
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Therefore
f((z, w)T) = (f;(2"), O)T + (2,2, w)"
It remains to show that
Vizt+ Vizt 4+ W= Vof ;) + Vi, 2+ Wou

Since T, =T, it remains to show that V,2t=V,f;(z'). Choose w'e# ;™
such that o,i(u’)=z!. Therefore f,;(z')=0,%u’) and by definition
(f,z1), w)T = (2,2 0)T for t>¢,. Since T,=T, we have V;zl=Vz,'=
Vozu 2= Vaf(2!) for t>¢;. By the identity property of analytic func-
tions the assertion follows.

(7) It now remains to prove Definition 7.1 (¢'). Let (z, u)TeM(P,, §,) and
(2, u)|;=0. We decompose (z, u) by Proposition 4.1 as follows :

(Z, u) = (Zl, 0) + (zuls u)
By (b) we already know that
Viz4+ W=V, +2,0)+ W= Vy(f,(21) +2,2) + Wau

For tel therefore V,(f,(z')+2,2) =0 which by observability of P, gives
f((z, w)T)y=01in I.

Appendix
Lemma A1
Given u
A= Z AiDie_%lxm[D]
i=o
then Au=0 for all ueZ™ results in 4;=4,= ... =4,=0.
Proof
For ¢, <t,, t,, t;€R there is ue%® satisfying
0 t<t,
u(t)y=4 >0 ty<t<ty
1 4 <t
Inserting successively
wy(t) = theu(t)eU™
fork=0,1,...,n—1,j=1,2, ..., mand ¢; the jth canonical basis vector of R™,
gives the assertion. O
Lemma A 2
Let Bes/™™ and H be the map (6.2). Define
%, 1:= {piecewise continuous functions f: I — R}

Then for the map G : %, /™ — R with

t
wis | B(u(t) dt
we have im G'=1im H. b
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Proof

Trivially im H cim (/. Since the set of ¥ functions is dense in % ,,1 With
reference to the L, norm and for every closed interval K < (tg, t;), there exists
he®® such that supp A< 1, h|,=1and 0<h(t) <1 for tel\K we can prove that
U™ (the set of € *-m-vector functions with supp 1) is L, dense in €™ Now
let 2, ..., 2, be an R basis of im ¢ =R*. Then by continuity of G for each
€>0 there are uy, ..., u, %™ such that |H(u;) x| <e for 1<i<s. Choosing
e small enough the vectors H(u;) become linearly independent. The latter
means im G =im H. ]
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