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Abstract— Output tracking of a reference signal (an abso- F (given by the graph of a suitably chosen set-valued map
lutely continuous bounded function with essentially bounded ¢, F(t)).
derivative) is considered in a context of a class of nonlinear The goal is a control structure which, for every admissible

systems described by functional differential equations. The t d ref . | that th h of th
primary control objective is tracking with prescribed accu- ~ SYS!€M and reierence signal, ensures that the grapn ot the

racy: given A > 0 (arbitrarily small), ensure that, for every  tracking errore(-) is contained in the funnelr. In [1],
admissible system and reference signal, the tracking erroe  this goal was achieved by the simple control structure

is ultimately smaller than A (that is, |le(t)|| < A for all ¢ () = —k(t)e(t) with the gain generated by a feedback
sufficiently large). The second objective is guaranteed transient law of the formk(t) = K (¢, e(t)), where K # is a contin-
perfor_manc_e: the evol_ution of the tracking error should_be uous function such thatf Ic’noseI' s eakinf the reciprocal
contained in a prescribed performance funnel 7. Adopting : v y sp 9 . p
the simple feedback control structurew(t) = —k(t)e(t), itis  1/Kx(t,e) provides a particular measure of distance of
shown that the above objectives can be achieved if the gain (¢,¢) from the boundary of the funneF (with the effect
k(t) = K(t,e(t)) is generated by any continuous function that, if the error approaches the boundary, then the gain
K7 exhibiting two specific properties formulated in terms of ;. aqsas which. in conjunction with a high-gain property
the distance ofe(t) to the funnel boundary. S .

of the underlying system class, precludes contact with the

I. INTRODUCTION boundary).

In a precursor [1] to the present paper, a proportional
output feedback controller has been introduced that guaran-
tees prespecified tracking behaviour for a class of nonlineay
systems described by functional differential equations of thg
form

() = f(p®), (Ty)(®), u(®), Yo =y,

where, loosely speaking, the parameter> 0 quantifies
system “memory”,p may be thought of as a (bounded)
disturbance term, an@' is a nonlinear causal operator, for

Fig. 2. Performance funnef.

: l—{ w="Ty : In [1], the choice of feasible gains includes the scaled
: w System : (scale factorl /) vertical distance to the funnel

| |

4:_,\:' v = w,u) " Kr(tie(t)) = —— /20 ()
N B —— YT, e A0 = 100 —Jeon
+ 1,00 i H i
(1) = — K~ (t.e(1)) eft wherep € W' and its reciprocall/p(t) specifies the
© #(t el ef )| > radius of the ballF'(t) (F = grapHF')), see Figure 2.

Error feedback

Fig. 1. Universal error feedback control. The purpose of the present papeis a vis its precursor

[1], is to extend the class of admissible gain functidtis

any reference signal in the spad&-> of locally absolutely by determining structural assumptions on the gain function,
continuous bounded functions € L> with essentially which allow for great flexibility in the choice of measure
bounded derivative: € L>°, the problem of tracking with of the distance to the funnel boundary (flexibility which,
prescribed asymptotic accuracy and prescribed transidf €xample, permits the control to anticipate the future

behaviour was formulated in terms of a performance funnéfape of the funnel and to adjust the current control gain
accordingly), and which may be of relevance in certain ap-
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(wherein0F (t) denotes the boundary of the sBtt)) or bounds on the nonlinearities of the system need to be
gains K r based on the future distance (see Figure 4) to tHenown.

funnel [3] have introduced a controller which guarantees pre-
_ - 5 specified transient behaviour. However, their controller is
dy(t,e(t)) = inf \/(T — )2 + (dist(e(t), 0F (1))". adaptive with monotonically non-decreasing gain, invokes

. . . . a piecewise constant switching strategy.
Furthermore, we investigate gains based on a numerlcalp g 9

future distance (a numerical approximation of the abov&he proposed controller also toleraiestput measurement
future distance), and “direction-dependent” gains associatgésturbancen, provided that the disturbance belongs to

with non-axially-symmetric funnels. the same function class as the reference signals. With
reference to Figure 1, the disturbed error signal is then
R e=(y+n)—r=y— (r—n). Therefore, from a strictly

analytical viewpoint, in the presence of output disturbances
of classW 1> (R »o; RM), the disturbance-free analysis is
df(te(t) immediately applicable on replacing the reference signal
by the signal- — n. Even though the reference signahnd
disturbance signah are assumed to be of the same class,
practically, these signals might be distinguished by their
respective spectra (rtypically having “high-frequency”
content). Moreover, from a practical viewpoint, one might
~o reasonably expect that the disturbancdas “small”. For
~~~~~~ example, if an upper bound > 0 of the magnitude of
the disturbance is known, vigln|. < e, andA > 0 is
0 t the prescribed measure of asymptotic tracking accuracy (for
the disturbance free case), then the actual tracking accuracy
Fig. 3. The distancel¢ (¢, e(t)) to the future funnel, and the unscaled achieved in the presence of disturbance is quantified by
vertical distance dig(t), 0F (t)) to the funnel. A = A+e. For simplicity of presentation, we consider only
the disturbance-free case in the analysis.

/()
— = el

——

R The paper is organised as follows. In Section I, we make
precise the underlying system class. The control problem is
formulated in Section Ill, wherein the class of reference sig-
nals and the performance funnel are described. Section IV
elucidates the proposed output feedback control and, in the
main result (Theorem 1), establishes the requisite transient
and asymptotic behaviour of the closed-loop system. Fi-
nally, in Section V, the flexibility in the choice of gain
functions K =, alluded to above, is illustrated via diverse
examples determined by a variety of measures of distance
______ to the funnel boundary. Owing to page restrictions on this
conference paper, all proofs are omitted.

1/0()
— = eIl

P

0 hohy hohs t

We close the present section with some remarks on

Fig. 4. The numerical distanag, s to the future funnel. :
notation.

The control strategy investigated in [1] and the present
paper, is essentially applicable to the same system class alsgyqfine Rso = [0,00), Rso = (0,00), || :=
studied for high-gain adaptive control. Roughly speaking, /7 _%n and ’ ’
the system class encompasses relative degree one systems '
with “weakly stable” zero dynamics and known sign of

the high-frequency gain. The main difference to adaptive dist(X,A) := inf,c4 || — al|, the Euclidean dis-

control strategies (see [2] and the reference therein) is tance ofz € R"from a non-empty set
that in the present paper we (i) obey prespecified transient A c R™, dist(, A) is Lipschitz with

behaviour, (i) the gain — k(¢) is not a monotonically constant 1,

non-decreasing function, (iii) the gain is not tuned by a Bs (&) — {ar c Rn| e — €| < 5}, the open

dynamical system (e.gi = le]|? in the adaptive context)

) ’ ball of radiusd > 0 centred at € R",
and hence may not even be called adaptive, and (iv) no
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C(S;R")

L>(I;R™) the space of measurable essentially
bounded functiond — R™, I C R an
interval, with norm

the set of continuous functiorfs — R",

[l = esssup [|z(1)]],
tel

Lee(I;R™) the space of measurable, locally essen-
tially bounded functiond — R", I C
R an interval.
W (R >o;RM) the set of bounded locally abso-
lutely continuous functions- :
R>y — RM with essentially

bounded derivative and norm
21,00 = |zl + |2 ]loo -

Il. SYSTEM CLASSY

Consider the clas¥ of infinite-dimensional, nonlinear,
M-input u, M-output y systems(p, f,T), given by a

Property (iv)(a) is a crucial “bounded-input, bounded-
output” assumption on the operator

Property (iv)(b) is an assumption of causality; and Prop-
erty 4c is a technical assumption dfi of a “locally
Lipschitz” nature.

Numerous examples can be found in [1], [4] and, fur-
thermore, diverse phenomena are incorporated within the
class including, for example, diffusion processes, delays
(both point and distributed) and hysteretic effects. The pro-
totypical example is the class of finite-dimensional, linear,
minimum-phase systems of relative degree one described

by

§(t) = Ay (t) + A22(t) + CBu(t), y(0) =y,

2(t) = Asy(t) + Asz(t), 2(0) = 2Y,
with real matrices of conforming formats, arfd'B)” +

CB > 0, 0(A4) C C_. We may rewrite the above system
in terms of (2) by

controlled nonlinear functional differential equation of the 5(t) = A, exp(A4t)z° +(Ty)(t) +C B u(t), y(0) =y°

form

y(t) = f(p(t), (Ty)(t), u(t)),

with b > 0, 4 € C([-h,0;RM), and satisfying the

following properties for some”, Q € N:
(i) pe LOO(RZO;RP);
(i) fe C(RP x RQ x RM, ]RM) :

(i) for every non-empty compact subsétC RY x R?
and every sequencer,) in RM\{0} the following @ =3¢ € W'*(R>;R
property (akin to radial unboundedness or weak co-

ercivity) holds:

|[tn|| — 00 as n— oo =

lim  min (up, f(v, w,un))/|[un|| = oo;
n—oo (v,w)€C

(IV) T: C([fhvoo);RAl) - Lf(?c
operator of clas¥, i.e.

a) V6 >03A>0Vz e C([—h,00);RM) :
[#]lcc <6 = [|(Tx)(t)]| < A for a.a.t > 0;

b) Vit > 0Vaz, €€ C’([—h,oo);RM) :
'r|[7h,t] = ‘£|[7h,t] =
(Tz)(s) = (T€)(s) for a.a.s € [O,t}] ;

) Vt >0V¢ € C([~h, t;RM)37,6,¢ >0
Va,€ € C’([—h,oo);RM) with
ol _py = ¢ = &|[—ny and
z(s),6(s) € Bs(C(t))Vs € [t,t + 7]
eSSsup ¢y 4. [|(T2)(s) — (TE)(s)|| <
C SUDgc(t,t+47] [2(s) —&(s)]|-

The functionp in (2) may be thought of as a (bounded)
disturbance term; the non-negative constfaquantifies the

“memory” of the system.

Property (iii) generalizes the positive “high-frequency gain’

Yno =¥ ()

(R >0; R?) denotes an

(Ty)(t) := Ary(t) + Asfiexp(As(t — 5)) Asy(s)ds.
IIl. PROBLEM FORMULATION
A. The performance funnel

Let ® denote the class of functions e
Whe(R »o; R) which are positive-valued 010, c0) and
bounded away from zero “at infinity”, i.e.,

o(s) >0Vs>0 }

liminf,_. ¢(s) € (0,00).

With ¢ € ®, we associate a set-valued map (defined on
R >0)

F:t—F(t):={ec RM | ot)|e| < 1},
the graph of which we refer to as the performance funnel
F:=graphF) := {(t,e) e Ro x RM| e e F(t)}.

Observe that (ix(0) = 0 is permissible, in which case,
F(0) = RM, and (ii) for everyp € ® andr > 0, there
exists u > 0 such thate(t) > p for all ¢ > 7, and so
F(t) C By,(0) for all t > 7.
As a concrete example, for > 0, 7 > 0 ande € (0,1),
the choice
t

b elt) = (L =€t +em)A
yields an associated performance funtielwhich reflects
an overall objective of attaining tracking accuraayin
prescribed timer.

B. Class of reference signals and control objective

As reference signalg, we allow bounded locally ab-
solutely continuous functions with bounded derivative, i.e.
r € WHe(Rso;RM) with norm given by |r|i. =

concept in linear systems and, in particular, that (2) ha'g||C>o +7lloo -

strict relative degree one.

Given ¢ € ® and its associated performance funif|
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the control objective is a single feedback strategy ensurirfgvery solution can be extended to a maximal extension
that, for each reference signake W1 and every system y : [-h,w) — R" and every maximal solution has the
of classX, the tracking errore = y — r has graph inF  following properties

(equivalently:e(t) € F(t) for all ¢ > 0), and all variables (i) w = o,

are bounded. (i) t— k(t) = Kz(t,y(t) —r(t)) is bounded,
o (i) there existse > 0 such that, for allt € [0, ),
IV. OUTPUT FEEDBACK CONTROL dist(y(t) — r(t), OF (1)) > ¢ .

Let p € ® determine a performance funngland letr €
W (R so; RM). We seek to achieve the above control
objective via the simple proportional time-varying output In this section we describe various choices of continuous
error feedback gain function Kz, with the requisite Properties A and B,

which are feasible for the feedback (3).
u(t) = —k(t)e(t), k(t) = Kr(t,e(t)), ®) o
A. Scaled vertical distance

where e(t) = y(t) — r(t), whilst ensuring boundedness ere we base the gain function on measurements of the
of the gaink. Here, Kx : 7 — R is @ continuous gjstance of the instantaneous eregt) from the boundary
function chosen to ensure the intuition underlying the conss ihe setF (¢): this approach uses only funnel information
trol approach:Kx is such that, if(¢, e(t)) approached the a¢ cyrrent timer and, in particular, does not anticipate the
boundary of the funnef, then the gairk(t) = Kx(t,e(t))  future shape of the funnel boundary.

increases at a rate sufficient to preclude — via an implicit \yjtn reference to Figure 3, fdt, ¢) € F, we refer to the

high-gain stability property of underlying system class-  gistance dist(, 9F () = 1/¢(t)—||e|| (with the convention
boundary contact, thereby maintaining the error evolutiofhat giste, 9F(0)) = o if ¢(0) = 0) as the vertical

within the performance funnel. Next, we elucidate tWqyjistance frontt, e) to the funnel boundary: in incorporating
properties which, when imposed on the gain functioR,  hjs distance in the design of gain functiois-, we allow
confirm this intuition. for scaling by a suitable function and refer to the quantity
W (t)dist(e, 0F(t)) as a scaled vertical distance.
Proposition 2:  Let ¢, 9 € ® such that
Let ¢ € @, with associated map — F'(t) and perfor- limy oy ¥(t) p(t)~" =: 1y € (0,00], and letF be the
mance funnelF = graph("). For eacht € R >, we denote performance funnel associated with Assume thatg :
the boundary of the sdt(t) by 9F(t). Let K : F — R>0 R, — R is continuous, unbounded and non-increasing.
be a continuous function. We impose only the followingThen
additional properties ot . .
Property A1 YK >0 3e>0 Y(te) € F: Kr:F = Rxo, (t:e) =

[dist(e,0F (1)) <e = Kx(t,e)>K | B(v(t) distle, 0F(¢))), t>0
B(vo — ¥(0)]le]]), t=0andy < oo
B = limg_, o0 B(3), t=0andyy = oo
is continuous and has Properties A and B.

The essence of these properties is as follows. Property At can be shown, that the strategy introduced in [1] is also
ensures that, in (3), if the tracking erreft) is close to covered by a functionts satisfying Properties 1 and 2.

V. GAIN FUNCTIONS

A. Requisite properties of the gain function

Property B: Ve >0V0 >0 3K >0 VY(t,e) € F:
[dist(e, 0F(t)) > e A t>0= Kz(t,e) < K].

the funnel boundary, then the associated gain valug is The simplest example, covered by Proposition 2, is the
large. Property B, loosely speaking, obviates the need fif'Scaled vertical distance: for=1andj: s — 1/s, we
large gain values away from the funnel boundary. have, for all(t, e) € 7,

. K]_—(t7 e) = ;
B. The main result dist(e,0F (1))

0, t=¢(0)=0,

Theorem 1: Let (f,p,T) € X. Let ¢ € @ with -1 .
(/,p, T) i (ﬁ—”e“) , otherwise

associated map’ and performance funnef = grapH F).
Let Kr : F — R be continuous with Properties A andg_ The distance to the future funnel

B. . . . .
For any reference signal € > (R -; RM) and initial . As already mentlloned, the scaled vertical d|§tance, inves-
0 M =" tigated in the previous sub-section, uses only instantaneous
data y° € C([-h,0;;RM) such thaty®(0) — r(0) . . : D
) . CN funnel information. It is of theoretical interest, and also of
F(0), there exists a solution of the closed-loop initial-value . . o ! S
roblem (2), (3), that is relevance in certain appllcat_lons, to incorporate anticipation
P e ' of the future funnel shape in determining the current gain
y(t) = f(p(t), (Ty)(t), —Kx(t,e(t)) e(t)), value. To this end, we next investigate the adoption of the
e(t) =y(t) —r(t) € F(t), yli—nog=1"" distanced; (¢, e) of (¢, e) € F to the future funnel boundary
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in the design of gain function& » with Properties A and ¢. Assume thai? : (0,00) — R>( is a continuous, non-
B. For ¢ € &, with associated mag’ and performance increasing and unbounded function. Then
funnel F, this distance is defined for afk,e) € F, with Kr:F —Rso, (te) B(t)dns(t,e))

reference to Figure 3, as follows
is continuous and satisfies the Properties A and B in Sub-
dy(t,e) = nf \/(r — )2 + (diste, 0F (7)) section IV-A,
eD' A direction-depending gain

All gains K of the previous Sub-sections V-A-V-C de-
pend only on the norm of the error. Now a gain is introduced

In contrast with the (scaled) vertical distance of th
previous subsection (which is infinite &0,e) in cases
where ¢(0) = 0), the distanced;(t,e) is finite for all

(t.e) € F. which aII_ows a scalin_g depending on the directigiije|| by

the continuous function
M-1,
Proposition 3:  Lety € &, with associated map' and s€C(S iR>0).

performance funnelF. Then the functiond; : 7 — Rsq Proposition 5: Let ¢ € ® with associated performance

is continuous. funnel F, and K = denote any of the the gain functions in

Let, furthermorey) € ® be such that)(0) > 0 and assume Sub-sections V-A-V-C. Thei » defined onF by

that 5 : Ry — R is continuous, unbounded and non- -

. . = Kr(t 0

|ncreas|ng_ Then K}-(t’e) = { g(e/Hen) HeH .7:( 76)7 i i O

Kr:F —Rxo, (te)— B(¢(t)ds(t,e)) is continuous and satisfies Properties A and B in Sub-

section IV-A.

is continuous and has Properties A and B.
VI. CONCLUSIONS

C. A numerical future distance We have studied an output feedback lamit) =
The following distance is less sensitive to the changek(t)e(t) which ensures tracking with prespecified accu-
of the funnel boundary but easier to calculate. Choose, foacy and, more importantly, guarantees transient behaviour

N € N, the partition of the evolution of the tracking error within a prescribed
performance funnel. The feedback law is simple in its
O=ho < i < ... <hys<l design: the gaink(t) = Kx(t,e(t)) depends on time

t and errore(t) where, loosely speaking, the reciprocal
1/Kx(t,e) provides a particular measure of the distance
of (¢,e) from the boundary of the funnef. The effect is
d(t,e) :=dist(e, 0F (t)) < oo that, if the error approaches the boundary, then the gain
) ] ) _increases which, in conjunction with a high-gain property
and the numerical future distance, with reference to Figss the underlying system class, precludes contact with the
ure 4, as boundary.
dns(t,e) == Compared to ubiquitous high-gain adaptive control strate-
. . gies (which apply to the same class of nonlinear systems)
ming<;<ndist((t, | |)’(tthid(t’€)’1/99(t+h‘id(2t’e))) it may be surprising that the gain is not a monotone
TR _ 1 _ function and, most importantly, the feedback law ensures
mmOSZSN\/@Id(t’e)) +(“’(”’”d<t’e)) ) ' a prespecified transient behaviour.
The numerical future distance calculates, at any time  The main result of the present note is a feedback law
the distance to the funnel boundary at finitely many futuréhich allows for a great flexibility of the measures of the
pointst+h;d(t, ¢). Since dis(t, |le|), (t+0,1/p(t+5)) > distance to tf_le_ boundary of the funnel. This permits the
s for all 6 > 0, it is not necessary to look further into control to anticipate the future shape of the funnel and to
the future than the value of the actual “vertical” distanc@djust the current control gain accordingly.
dist(e,ﬁF(t)) = d(t7€). Note that, sincehy = 0, the REFERENCES
inequality

Let ¢ € ® such thatp(0) > 0, and letF be the associated
performance funnel. Define for alt,e) € F

e
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