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Adaptive tracking within prescribed funnels
Achim Ilchmann, Eugene P. Ryan, Stephan Trenn

Abstract— Output tracking of a reference signal (an abso-
lutely continuous bounded function with essentially bounded
derivative) is considered in a context of a class of nonlinear
systems described by functional differential equations. The
primary control objective is tracking with prescribed accu-
racy: given λ > 0 (arbitrarily small), ensure that, for every
admissible system and reference signal, the tracking errore
is ultimately smaller than λ (that is, ‖e(t)‖ < λ for all t
sufficiently large). The second objective is guaranteed transient
performance: the evolution of the tracking error should be
contained in a prescribed performance funnelF . Adopting
the simple feedback control structureu(t) = −k(t)e(t), it is
shown that the above objectives can be achieved if the gain
k(t) = K

F
(t, e(t)) is generated by any continuous function

K
F

exhibiting two specific properties formulated in terms of
the distance ofe(t) to the funnel boundary.

I. I NTRODUCTION

In a precursor [1] to the present paper, a proportional
output feedback controller has been introduced that guaran-
tees prespecified tracking behaviour for a class of nonlinear
systems described by functional differential equations of the
form

ẏ(t) = f
(

p(t), (Ty)(t), u(t)
)

, y[−h,0] = y0 ,

where, loosely speaking, the parameterh ≥ 0 quantifies
system “memory”,p may be thought of as a (bounded)
disturbance term, andT is a nonlinear causal operator, for
details see Section II. For the underlying system class and

w = Ty

System

ẏ = f(p, w, u)

u(t) = −KF (t, e(t)) e(t)
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Fig. 1. Universal error feedback control.

any reference signal in the spaceW 1,∞ of locally absolutely
continuous bounded functionsr ∈ L∞ with essentially
bounded derivativėr ∈ L∞, the problem of tracking with
prescribed asymptotic accuracy and prescribed transient
behaviour was formulated in terms of a performance funnel
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F (given by the graph of a suitably chosen set-valued map
t 7→ F (t)).
The goal is a control structure which, for every admissible
system and reference signal, ensures that the graph of the
tracking errore(·) is contained in the funnelF . In [1],
this goal was achieved by the simple control structure
u(t) = −k(t)e(t) with the gain generated by a feedback
law of the formk(t) = KF (t, e(t)), whereKF is a contin-
uous function such that, loosely speaking, the reciprocal
1/KF (t, e) provides a particular measure of distance of
(t, e) from the boundary of the funnelF (with the effect
that, if the error approaches the boundary, then the gain
increases which, in conjunction with a high-gain property
of the underlying system class, precludes contact with the
boundary).

b

e(0)

t = 0

t

F (t)

b

e(t)

Fig. 2. Performance funnelF .

In [1], the choice of feasible gains includes the scaled
(scale factor1/ϕ) vertical distance to the funnel

KF (t, e(t)) =
1/ϕ(t)

1/ϕ(t) − ‖e(t)‖ , (1)

where ϕ ∈ W 1,∞ and its reciprocal1/ϕ(t) specifies the
radius of the ballF (t) (F = graph(F )), see Figure 2.

The purpose of the present paper,vis à vis its precursor
[1], is to extend the class of admissible gain functionsKF

by determining structural assumptions on the gain function,
which allow for great flexibility in the choice of measure
of the distance to the funnel boundary (flexibility which,
for example, permits the control to anticipate the future
shape of the funnel and to adjust the current control gain
accordingly), and which may be of relevance in certain ap-
plications. These general results encompass such examples
as the unscaled vertical distance (see Figure 3) to the funnel,
viz.

KF (t, e(t)) = dist(e(t), ∂F (t)) =
1

1/ϕ(t) − ‖e(t)‖ ,
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(wherein∂F (t) denotes the boundary of the setF (t)) or
gainsKF based on the future distance (see Figure 4) to the
funnel

df (t, e(t)) := inf
τ>t

√

(τ − t)2 +
(

dist(e(t), ∂F (τ)
)2

.

Furthermore, we investigate gains based on a numerical
future distance (a numerical approximation of the above
future distance), and “direction-dependent” gains associated
with non-axially-symmetric funnels.

R

0 t

1/ϕ(·)

‖e(·)‖

b

b

df
(

t, e(t)
)

b

b

dist
(

e(t), ∂F (t)
)

Fig. 3. The distancedf (t, e(t)) to the future funnel, and the unscaled
vertical distance dist(e(t), ∂F (t)) to the funnel.
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Fig. 4. The numerical distancednf to the future funnel.

The control strategy investigated in [1] and the present
paper, is essentially applicable to the same system class also
studied for high-gain adaptive control. Roughly speaking,
the system class encompasses relative degree one systems
with “weakly stable” zero dynamics and known sign of
the high-frequency gain. The main difference to adaptive
control strategies (see [2] and the reference therein) is
that in the present paper we (i) obey prespecified transient
behaviour, (ii) the gaint 7→ k(t) is not a monotonically
non-decreasing function, (iii) the gain is not tuned by a
dynamical system (e.g.̇k = ‖e‖2 in the adaptive context)
and hence may not even be called adaptive, and (iv) no

bounds on the nonlinearities of the system need to be
known.
[3] have introduced a controller which guarantees pre-
specified transient behaviour. However, their controller is
adaptive with monotonically non-decreasing gain, invokes
a piecewise constant switching strategy.

The proposed controller also toleratesoutput measurement
disturbancen, provided that the disturbance belongs to
the same function class as the reference signals. With
reference to Figure 1, the disturbed error signal is then
e = (y + n) − r = y − (r − n). Therefore, from a strictly
analytical viewpoint, in the presence of output disturbances
of classW 1,∞(R≥0; R

M ), the disturbance-free analysis is
immediately applicable on replacing the reference signalr
by the signalr−n. Even though the reference signalr and
disturbance signaln are assumed to be of the same class,
practically, these signals might be distinguished by their
respective spectra (ntypically having “high-frequency”
content). Moreover, from a practical viewpoint, one might
reasonably expect that the disturbancen is “small”. For
example, if an upper boundε > 0 of the magnitude of
the disturbance is known, viz.‖n‖∞ ≤ ε, and λ > 0 is
the prescribed measure of asymptotic tracking accuracy (for
the disturbance free case), then the actual tracking accuracy
achieved in the presence of disturbance is quantified by
λ̂ = λ+ ε. For simplicity of presentation, we consider only
the disturbance-free case in the analysis.

The paper is organised as follows. In Section II, we make
precise the underlying system class. The control problem is
formulated in Section III, wherein the class of reference sig-
nals and the performance funnel are described. Section IV
elucidates the proposed output feedback control and, in the
main result (Theorem 1), establishes the requisite transient
and asymptotic behaviour of the closed-loop system. Fi-
nally, in Section V, the flexibility in the choice of gain
functions KF , alluded to above, is illustrated via diverse
examples determined by a variety of measures of distance
to the funnel boundary. Owing to page restrictions on this
conference paper, all proofs are omitted.

We close the present section with some remarks on
notation.

Define R≥0 := [0,∞), R>0 := (0,∞), ‖x‖ :=√
xT x, x ∈ R

n, and

dist(x,A) := infa∈A ‖x − a‖, the Euclidean dis-
tance ofx ∈ R

nfrom a non-empty set
A ⊂ R

n, dist(·, A) is Lipschitz with
constant 1,

Bδ(ξ) :=
{

x ∈ R
n
∣

∣ ‖x − ξ‖ < δ
}

, the open
ball of radiusδ > 0 centred atξ ∈ R

n,
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C(S; Rn) the set of continuous functionsS → R
n,

L∞(I; Rn) the space of measurable essentially
bounded functionsI → R

n, I ⊂ R an
interval, with norm

‖x‖∞ := esssup
t∈I

‖x(t)‖,

L∞

loc (I; Rn) the space of measurable, locally essen-
tially bounded functionsI → R

n, I ⊂
R an interval.

W 1,∞(R≥0; R
M ) the set of bounded locally abso-

lutely continuous functionsr :
R≥0 → R

M with essentially
bounded derivative and norm

‖x‖1,∞ := ‖x‖∞ + ‖ẋ‖∞ .

II. SYSTEM CLASSΣ

Consider the classΣ of infinite-dimensional, nonlinear,
M -input u, M -output y systems(p, f, T ), given by a
controlled nonlinear functional differential equation of the
form

ẏ(t) = f
(

p(t), (Ty)(t), u(t)
)

, y[−h,0] = y0 (2)

with h ≥ 0, y0 ∈ C
(

[−h, 0]; RM
)

, and satisfying the
following properties for someP,Q ∈ N:

(i) p ∈ L∞(R≥0; R
P );

(ii) f ∈ C
(

R
P × R

Q × R
M ; R

M
)

;
(iii) for every non-empty compact subsetC ⊆ R

P × R
Q

and every sequence(un) in R
M\{0} the following

property (akin to radial unboundedness or weak co-
ercivity) holds:

‖un‖ → ∞ as n → ∞ =⇒
lim

n→∞

min
(v,w)∈C

〈un, f(v, w, un)〉/‖un‖ = ∞ ;

(iv) T : C([−h,∞); RM ) → L∞

loc(R≥0; R
Q) denotes an

operator of classT , i.e.

a) ∀ δ > 0 ∃∆ > 0 ∀x ∈ C
(

[−h,∞); RM
)

:

‖x‖∞ ≤ δ ⇒
∥

∥(Tx)(t)‖ ≤ ∆ for a.a.t ≥ 0;
b) ∀ t ≥ 0 ∀x, ξ ∈ C

(

[−h,∞); RM
)

:

x|[−h,t] = ξ|[−h,t] =⇒

(Tx)(s) = (Tξ)(s) for a.a.s ∈ [0, t]
]

;

c) ∀t ≥ 0∀ζ ∈ C
(

[−h, t]; RM
)

∃ τ, δ, c > 0
∀x, ξ ∈ C

(

[−h,∞); RM
)

with
x|[−h,t] = ζ = ξ|[−h,t] and
x(s), ξ(s) ∈ Bδ(ζ(t))∀s ∈ [t, t + τ ] :
ess-sups∈[t,t+τ ] ‖(Tx)(s) − (Tξ)(s)‖ ≤
c sups∈[t,t+τ ] ‖x(s) − ξ(s)‖ .

The functionp in (2) may be thought of as a (bounded)
disturbance term; the non-negative constanth quantifies the
“memory” of the system.
Property (iii) generalizes the positive “high-frequency gain”
concept in linear systems and, in particular, that (2) has
strict relative degree one.

Property (iv)(a) is a crucial “bounded-input, bounded-
output” assumption on the operatorT .
Property (iv)(b) is an assumption of causality; and Prop-
erty 4c is a technical assumption onT of a “locally
Lipschitz” nature.

Numerous examples can be found in [1], [4] and, fur-
thermore, diverse phenomena are incorporated within the
class including, for example, diffusion processes, delays
(both point and distributed) and hysteretic effects. The pro-
totypical example is the class of finite-dimensional, linear,
minimum-phase systems of relative degree one described
by

ẏ(t) = A1y(t) + A2z(t) + CB u(t), y(0) = y0,
ż(t) = A3y(t) + A4z(t), z(0) = z0,

with real matrices of conforming formats, and(CB)T +
CB > 0, σ(A4) ⊂ C−. We may rewrite the above system
in terms of (2) by

ẏ(t)=A2 exp(A4t)z
0+(Ty)(t)+CB u(t), y(0)=y0

(Ty)(t) :=A1y(t)+A2

∫ t

0
exp(A4(t − s))A3y(s)ds.

III. PROBLEM FORMULATION

A. The performance funnel

Let Φ denote the class of functionsϕ ∈
W 1,∞(R≥0; R) which are positive-valued on(0,∞) and
bounded away from zero “at infinity”, i.e.,

Φ :=

{

ϕ ∈ W 1,∞(R≥0; R)

∣

∣

∣

∣

∣

ϕ(s) > 0∀ s > 0

lim infs→∞ ϕ(s) ∈ (0,∞).

}

With ϕ ∈ Φ, we associate a set-valued map (defined on
R≥0)

F : t 7→ F (t) :=
{

e ∈ R
M | ϕ(t)‖e‖ < 1

}

,

the graph of which we refer to as the performance funnel

F := graph(F ) :=
{

(t, e) ∈ R≥0 × R
M | e ∈ F (t)

}

.

Observe that (i)ϕ(0) = 0 is permissible, in which case,
F (0) = R

M , and (ii) for everyϕ ∈ Φ and τ > 0, there
exists µ > 0 such thatϕ(t) ≥ µ for all t ≥ τ , and so
F (t) ⊂ B1/µ(0) for all t ≥ τ .
As a concrete example, forλ > 0, τ > 0 and ε ∈ (0, 1),
the choice

t 7→ ϕ(t) =
t

([1 − ε]t + ετ)λ

yields an associated performance funnelF which reflects
an overall objective of attaining tracking accuracyλ in
prescribed timeτ .

B. Class of reference signals and control objective

As reference signalsr, we allow bounded locally ab-
solutely continuous functions with bounded derivative, i.e.
r ∈ W 1,∞(R≥0; R

M ) with norm given by‖r‖1,∞ :=
‖r‖∞ + ‖ṙ‖∞ .

Given ϕ ∈ Φ and its associated performance funnelF ,
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the control objective is a single feedback strategy ensuring
that, for each reference signalr ∈ W 1,∞ and every system
of classΣ, the tracking errore = y − r has graph inF
(equivalently:e(t) ∈ F (t) for all t ≥ 0), and all variables
are bounded.

IV. OUTPUT FEEDBACK CONTROL

Let ϕ ∈ Φ determine a performance funnelF and letr ∈
W 1,∞(R≥0; R

M ). We seek to achieve the above control
objective via the simple proportional time-varying output
error feedback

u(t) = −k(t)e(t), k(t) = KF (t, e(t)), (3)

where e(t) = y(t) − r(t), whilst ensuring boundedness
of the gain k. Here, KF : F → R≥0 is a continuous
function chosen to ensure the intuition underlying the con-
trol approach:KF is such that, if(t, e(t)) approached the
boundary of the funnelF , then the gaink(t) = KF (t, e(t))
increases at a rate sufficient to preclude – via an implicit
high-gain stability property of underlying system classΣ –
boundary contact, thereby maintaining the error evolution
within the performance funnel. Next, we elucidate two
properties which, when imposed on the gain functionKF ,
confirm this intuition.

A. Requisite properties of the gain function

Let ϕ ∈ Φ, with associated mapt 7→ F (t) and perfor-
mance funnelF = graph(F ). For eacht ∈ R≥0, we denote
the boundary of the setF (t) by ∂F (t). Let KF : F → R≥0

be a continuous function. We impose only the following
additional properties onKF .
Property A: ∀K > 0 ∃ ε > 0 ∀ (t, e) ∈ F :

[

dist(e, ∂F (t)) ≤ ε ⇒ KF (t, e) ≥ K
]

.

Property B: ∀ε > 0 ∀δ > 0 ∃K > 0 ∀(t, e) ∈ F :
[

dist(e, ∂F (t)) ≥ ε ∧ t ≥ δ ⇒ KF (t, e) ≤ K
]

.

The essence of these properties is as follows. Property A
ensures that, in (3), if the tracking errore(t) is close to
the funnel boundary, then the associated gain valuek(t) is
large. Property B, loosely speaking, obviates the need for
large gain values away from the funnel boundary.

B. The main result

Theorem 1: Let (f, p, T ) ∈ Σ. Let ϕ ∈ Φ with
associated mapF and performance funnelF = graph(F ).
Let KF : F → R≥0 be continuous with Properties A and
B.
For any reference signalr ∈ W 1,∞(R≥0; R

M ) and initial
data y0 ∈ C

(

[−h, 0]; RM
)

such that y0(0) − r(0) ∈
F (0), there exists a solution of the closed-loop initial-value
problem (2), (3), that is,

ẏ(t) = f
(

p(t), (Ty)(t),−KF (t, e(t)) e(t)
)

,
e(t) = y(t) − r(t) ∈ F (t), y|[−h,0] = y0 .

Every solution can be extended to a maximal extension
y : [−h, ω) → R

n and every maximal solution has the
following properties

(i) ω = ∞,
(ii) t 7→ k(t) = KF (t, y(t) − r(t)) is bounded,
(iii) there existsε > 0 such that, for allt ∈ [0,∞),

dist
(

y(t) − r(t), ∂F (t)
)

≥ ε .

V. GAIN FUNCTIONS

In this section we describe various choices of continuous
gain functionKF , with the requisite Properties A and B,
which are feasible for the feedback (3).

A. Scaled vertical distance

Here, we base the gain function on measurements of the
distance of the instantaneous errore(t) from the boundary
of the setF (t): this approach uses only funnel information
at current timet and, in particular, does not anticipate the
future shape of the funnel boundary.

With reference to Figure 3, for(t, e) ∈ F , we refer to the
distance dist(e, ∂F (t)) = 1/ϕ(t)−‖e‖ (with the convention
that dist(e, ∂F (0)) = ∞ if ϕ(0) = 0) as the vertical
distance from(t, e) to the funnel boundary: in incorporating
this distance in the design of gain functionsKF , we allow
for scaling by a suitable functionψ and refer to the quantity
ψ(t)dist(e, ∂F (t)) as a scaled vertical distance.

Proposition 2: Let ϕ,ψ ∈ Φ such that
limt→0+ ψ(t)ϕ(t)−1 =: ψ0 ∈ (0,∞], and letF be the
performance funnel associated withϕ. Assume thatβ :
R>0 → R≥0 is continuous, unbounded and non-increasing.
Then

KF : F → R≥0, (t, e) 7→










β
(

ψ(t) dist(e, ∂F (t))
)

, t > 0

β
(

ψ0 − ψ(0)‖e‖
)

, t = 0 andψ0 < ∞
β∗ := lims→∞ β(s), t = 0 andψ0 = ∞

is continuous and has Properties A and B.
It can be shown, that the strategy introduced in [1] is also

covered by a functionKF satisfying Properties 1 and 2.
The simplest example, covered by Proposition 2, is the

unscaled vertical distance: forψ ≡ 1 andβ : s 7→ 1/s, we
have, for all(t, e) ∈ F ,

KF (t, e) = 1
dist(e,∂F (t))

=

{

0, t = ϕ(0) = 0,
(

1
ϕ(t) − ‖e‖

)

−1

, otherwise.

B. The distance to the future funnel

As already mentioned, the scaled vertical distance, inves-
tigated in the previous sub-section, uses only instantaneous
funnel information. It is of theoretical interest, and also of
relevance in certain applications, to incorporate anticipation
of the future funnel shape in determining the current gain
value. To this end, we next investigate the adoption of the
distancedf (t, e) of (t, e) ∈ F to the future funnel boundary
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in the design of gain functionsKF with Properties A and
B. For ϕ ∈ Φ, with associated mapF and performance
funnel F , this distance is defined for all(t, e) ∈ F , with
reference to Figure 3, as follows

df (t, e) := inf
τ>t

√

(τ − t)2 +
(

dist(e, ∂F (τ)
)2

.

In contrast with the (scaled) vertical distance of the
previous subsection (which is infinite at(0, e) in cases
where ϕ(0) = 0), the distancedf (t, e) is finite for all
(t, e) ∈ F .

Proposition 3: Let ϕ ∈ Φ, with associated mapF and
performance funnelF . Then the functiondf : F → R>0

is continuous.
Let, furthermore,ψ ∈ Φ be such thatψ(0) > 0 and assume
that β : R>0 → R≥0 is continuous, unbounded and non-
increasing. Then

KF : F → R≥0, (t, e) 7→ β
(

ψ(t)df (t, e)
)

is continuous and has Properties A and B.

C. A numerical future distance

The following distance is less sensitive to the change
of the funnel boundary but easier to calculate. Choose, for
N ∈ N, the partition

0 = h0 < h1 < . . . < hN ≤ 1.

Let ϕ ∈ Φ such thatϕ(0) > 0, and letF be the associated
performance funnel. Define for all(t, e) ∈ F

d(t, e) := dist(e, ∂F (t)) < ∞

and the numerical future distance, with reference to Fig-
ure 4, as

dnf (t, e) :=

min0≤i≤Ndist
(

(t, ‖e‖), (t+hid(t, e), 1/ϕ(t+hid(t, e))
)

=min0≤i≤N

√

(

hid(t, e)
)2

+
(

1
ϕ(t+hid(t,e))−‖e‖

)2

.

The numerical future distance calculates, at any timet,
the distance to the funnel boundary at finitely many future
pointst+hid(t, e). Since dist

(

(t, ‖e‖), (t+δ, 1/ϕ(t+δ)
)

≥
δ for all δ > 0, it is not necessary to look further into
the future than the value of the actual “vertical” distance
dist(e, ∂F (t)) = d(t, e). Note that, sinceh0 = 0, the
inequality

dnf (t, e)
≤ dist

(

(t, |e|), (t + h0d(t, e), 1/ϕ(t + h0d(t, e))
)

= dist(e, ∂F (t)) ∀ (t, e) ∈ F
implies that any future point with a time-distance greater
than dist(e, ∂F (t)) = d(t, e) has no influence ondnf (t, e).

Proposition 4: Let ϕ, ψ ∈ Φ with ϕ(0) > 0 andψ(0) >
0, and letF be the performance funnel associated with

ϕ. Assume thatβ : (0,∞) → R≥0 is a continuous, non-
increasing and unbounded function. Then

KF : F → R≥0, (t, e) 7→ β
(

ψ(t)dnf (t, e)
)

is continuous and satisfies the Properties A and B in Sub-
section IV-A.

D. A direction-depending gain

All gains KF of the previous Sub-sections V-A-V-C de-
pend only on the norm of the error. Now a gain is introduced
which allows a scaling depending on the directione/‖e‖ by
the continuous function

s ∈ C(SM−1; R >0) .

Proposition 5: Let ϕ ∈ Φ with associated performance
funnelF , andK̂F denote any of the the gain functions in
Sub-sections V-A-V-C. ThenKF defined onF by

KF (t, e) :=

{

s(e/‖e‖) ‖e‖ K̂F (t, e), e 6= 0
0, e = 0

is continuous and satisfies Properties A and B in Sub-
section IV-A.

VI. CONCLUSIONS

We have studied an output feedback lawu(t) =
−k(t)e(t) which ensures tracking with prespecified accu-
racy and, more importantly, guarantees transient behaviour
of the evolution of the tracking error within a prescribed
performance funnel. The feedback law is simple in its
design: the gaink(t) = KF (t, e(t)) depends on time
t and errore(t) where, loosely speaking, the reciprocal
1/KF (t, e) provides a particular measure of the distance
of (t, e) from the boundary of the funnelF . The effect is
that, if the error approaches the boundary, then the gain
increases which, in conjunction with a high-gain property
of the underlying system class, precludes contact with the
boundary.

Compared to ubiquitous high-gain adaptive control strate-
gies (which apply to the same class of nonlinear systems)
it may be surprising that the gain is not a monotone
function and, most importantly, the feedback law ensures
a prespecified transient behaviour.

The main result of the present note is a feedback law
which allows for a great flexibility of the measures of the
distance to the boundary of the funnel. This permits the
control to anticipate the future shape of the funnel and to
adjust the current control gain accordingly.
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