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Zusammenfassung

In der vorliegenden Dissertation werden einfache Modelle zur Beinlokomotion unter
der gemeinsamen Hypothese entwickelt, dass die beiden grundlegenden und als ver-
schieden angesehenen Gangarten Gehen und Rennen auf ein allgemeines Konzept
zurückgeführt werden können, welches allein auf nachgiebigem Beinverhalten beruht.

Hierzu werden im Kapitel 1 zunächst die bestehenden einfachen mechanischen
Modelle von Gehen und Rennen, respektive das inverse Pendel und das Masse-
Feder-Modell, vorgestellt und sowohl ihre inhaltlichen Möglichkeiten als auch ihre
innewohnenden Beschränkungen in der Beschreibung biologischer Beinlokomotion
aufgezeigt. Hierbei tritt ein Unterschied der Qualität beider Modelle deutlich in den
Vordergrund. Während das Masse-Feder-Modell die charakteristische Schwerpunkts-
dynamik der Standphase des Rennens wiedergibt und somit als ’Grundmodell ’ dieser
Gangart angesehen wird, gilt Gleiches nicht für das inverse Pendel-Modell und die
Schwerpunktsdynamik beim Gehen. Im Gegenteil: Anstelle einer Bogenbewegung,
die den Schwerpunkt wie bei einem inversen Pendel über die Landehöhe hebt, zei-
gen biomechanische Experimente, dass beim Gehen der Schwerpunkt deutlich näher
an der Landehöhe geführt wird, was tatsächlich ein nachgiebiges Beinverhalten auch
für diese Gangart nahe legt. Entsprechend dieser Vermutung wird in den nachfol-
genden Kapiteln die Bedeutung des allgemeinen Konzepts nachgiebigen Beinverhal-
tens für die Fortbewegung biologischer Systeme anhand von einfachen mechanischen
und neuromechanischen Modellen untersucht. Den Ausgangspunkt bildet hierbei das
als Grundmodell des Rennens akzeptierte Masse-Feder-Modell, welches nachgiebiges
Beinverhalten in seiner einfachsten Form repräsentiert.

Im Kapitel 2 wird zunächst auf eine Einschränkung dieses Modells eingegangen.
Entgegen seiner scheinbaren Einfachheit beschreibt es ein nichtlineares System, des-
sen Bewegungsgleichungen nicht integrierbar sind, was aufgrund der allgemeinen
Bedeutung dieses Modells innerhalb der Lokomotionsforschung und der Laufrobotik
wiederholt zu Bemühungen um eine geeignete Näherungslösung geführt hat. Trotz
dieser Anstrengungen ist es bisher nicht gelungen, eine Näherung zu finden, die
mathematische Einfachheit mit geeigneter Genauigkeit innerhalb des physiologisch
sinnvollen Parameterbereichs verbindet. Ersteres würde einen analytischen Zugang
zum Einfluss der Parameter auf das Verhalten des Masse-Feder-Modells ermöglichen.
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ZUSAMMENFASSUNG

Letzteres ist notwendig, um daraus resultierende Hypothesen zur Beinlokomotion
anhand von Laufexperimenten überprüfen zu können.
Ausgehend von der Annahme kleiner Winkelamplituden und kleiner Federkompres-
sionen wird in diesem Kapitel eine Näherungslösung hergeleitet, die nur aus ele-
mentaren mathematischen Funktionen besteht. Anschließend wird im Rahmen der
aus numerischen Berechnungen bekannten Selbststabilität des Rennens sowohl die
Genauigkeit der Näherungslösung als auch ihr Potential, analytisch Parameterab-
hängigkeiten aufzuzeigen, für Modellparameter untersucht, die für menschliches Ren-
nen relevant sind.
Der Vergleich mit den numerischen Berechnungen zeigt, dass die Näherungslösung
(i) für Federkompressionen von bis zu 20% (Beinanstellwinkel ≥ 60◦, Winkelam-
plitude ≤ 60◦) die Schwerpunktsbewegung mit einer Genauigkeit von 1% für die
Federkompression und 0.6◦ für die Winkelbewegung beschreibt und (ii) trotz ihrer
vergleichbaren Einfachheit stabiles Rennen innerhalb des physiologisch sinnvollen
Parameterraums exakt vorhersagt. (iii) Des Weiteren wird für einen Spezialfall die
Parameterabhängigkeit für selbststabiles Laufen explizit berechnet. Hierbei zeigt
sich, dass die identifizierte Abhängigkeit eine aus den numerischen Berechnungen
empirisch vorgeschlagene Relation beinhaltet und darüber hinaus erweitert.
Aufgrund dieser Ergebnisse wird die gefundene Näherungslösung als analytisches
Werkzeug für die weitergehende Erforschung der Beinlokomotion biologischer Syste-
me und für Anwendungen im Bereich der Laufrobotik vorgeschlagen.

Im Kapitel 3 wird das traditionell nur dem Rennen zugeordnete Masse-Feder-
Modell auf den Gangartenwechsel angewandt. Obgleich Zweibeiner in ihrer Ana-
tomie große Unterschiede aufweisen, kann die Geschwindigkeit vtrans, bei der sie
bevorzugt vom Gehen zum Rennen (und umgekehrt) wechseln, durch den einfachen
Zusammenhang vtrans ≈

√
0.5 g`0 dargestellt werden, in dem allein die Gravitati-

onsbeschleunigung g und die Beinlänge `0 als Einflussgrößen auftreten.
Diese erstaunlich einfache Abhängigkeit nur von mechanischen Parametern legt ei-
ne gleichermaßen mechanische Ursache des Gangartwechsels nahe. Tatsächlich zeigt
eine einfache Betrachtung am inversen Pendel-Modell, bei der die auftretende Zentri-
fugalkraft mit der ihr entgegenwirkenden Schwerkraft gleichgesetzt wird, eine obere
Geschwindigkeitsschranke vmax =

√
g`0 des Gehens auf, die zu identischen Einfluss-

größen führt. Allerdings kann das Pendel-Modell den zahlenmäßigen Unterschied
um den Faktor

√
2 nicht erklären. Diese Diskrepanz hat zu der Annahme geführt,

dass anstelle einer mechanischen, eine physiologische Ursache den Gangartenwechsel
auslöst. Zum Beispiel wurden metabolische Kosten, maximal mögliche Beinwinkel
oder die wahrgenommene Anstrengungsrate vorgeschlagen. Es konnte jedoch bis
heute keine befriedigende Erklärung des Unterschieds gefunden werden.
In diesem Kapitel wird zu einer rein mechanischen Betrachtung des Gangartwech-
sels zurückgekehrt und die Annahme verfolgt, dass dieser, anstelle von einer oberen
Grenzgeschwindigkeit des Gehens, durch eine untere Grenzgeschwindigkeit des Ren-
nens bestimmt ist. Im Speziellen wird untersucht, ab welcher Geschwindigkeit Ren-
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nen eine nahezu horizontale Bewegung des Schwerpunkts innerhalb der Standphase
zulässt, so dass ein ’glatter ’, mechanisch komfortabler Übergang zwischen beiden
Gangarten sichergestellt werden kann. Letzterer wird insbesondere bei der Vielzahl
am Boden lebender Vögel beobachtet.
Unter Verwendung eines vereinfachten Masse-Feder-Modells kann analytisch gezeigt
werden, (i) dass ein glatter Wechsel zwischen Gehen und Rennen eine Mindestrenn-
geschwindigkeit vmin '

√
0.4 g`0 benötigt, die erstaunlich gut mit der experimen-

tell beobachteten Geschwindigkeit des Gangartwechsels übereinstimmt. (ii) Darüber
hinaus folgt aus der Analyse, dass für niedrigere Geschwindigkeiten v < vmin die
Gangart Rennen zu übertriebenen vertikalen Auslenkungen führt, welche sowohl
auf erhöhte metabolische Kosten der Fortbewegung als auch auf einen verringerten
mechanischen Komfort hindeuten. (iii) Der Vergleich dieser Vorhersagen mit den
Ergebnissen einer Laufbandstudie zum menschlichen Gehen und Rennen bestätigt
diese mechanische Einschränkung des Rennens bei niedrigen Geschwindigkeiten und
deutet darauf hin, dass Zweibeiner das Gehen unterhalb der Wechselgeschwindigkeit
bevorzugen könnten, da es ausreichenden mechanischen Komfort sicherstellt.
Es wird vorgeschlagen, dass die Vorhersagbarkeit des Gangartwechsels nicht auf die
von der inversen Pendelbewegung abgeleitete, obere Grenzgeschwindigkeit vmax des
Gehens beschränkt ist, sondern gleichermaßen aus einer unteren Grenzgeschwin-
digkeit vmin des Rennens folgt, die unter der Annahme eines glatten, mechanisch
komfortablen Wechsels der Gangarten vom nachgiebigen Masse-Feder-Modell abge-
leitet werden kann und zugleich die numerische Diskrepanz zwischen berechnetem
und beobachtetem Übergang auflöst.

Im Kapitel 4 wird untersucht, inwiefern ein nachgiebiges Beinverhalten tatsächlich
die Schwerpunktsdynamik beim Gehen beschreibt. Hierzu wird das einfache Masse-
Feder-Modell des Rennens durch eine zweite, idealisierte Beinfeder ergänzt und nach
selbststabilen, periodischen Laufmustern gesucht (analog zu Seyfarth A, Geyer H,
Günther M, Blickhan R, 2002, A movement criterion for running. J. Biomech. 35:
649–655).
Die Analyse zeigt, dass (i) das zweibeinige Masse-Feder-Modell ähnlich dem ein-
beinigen Modell des Rennens selbststabile und robuste Beinlokomotion beschreiben
kann, wenn die Parameter Beinanstellwinkel, Federsteifigkeit und Systemenergie ge-
eignet gewählt sind, und (ii) die resultierenden Schwerpunktsdynamiken die für das
Gehen von Tieren und Menschen bekannten Muster beinhalten. (iii) Darüber hin-
aus stimmen die für stabiles Gehen vorhergesagten Modellparameter mit ihren aus
Laufbandexperimenten gewonnenen Abschätzungen für eine moderate Gehgeschwin-
digkeit von etwa 1.5m/s überein. (iv) Ober- und unterhalb dieser Geschwindigkeit
treten Abweichungen auf. Für niedrigere Geschwindigkeiten können diese erklärt
werden durch die Beschränkung auf feste Landeanstellwinkel in der Schwungpha-
se des Modells. Für höhere Geschwindigkeiten offenbaren sie jedoch eine Grenze
der Beschreibung von Gehen allein durch federartige Beine und deuten hier auf ein
komplexeres, nachgiebiges Beinverhalten hin.
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Aufgrund der Fähigkeit, die charakteristische Schwerpunktsdynamik des Gehens zu
reproduzieren, wird das zweibeinige Masse-Feder-Modell als Grundmodell dieser
Gangart vorgeschlagen, welches die Forschung auf dem Gebiet biologischer Kon-
trollstrategien der Beinlokomotion durch seine parametrische Einfachheit effektiv
begleiten könnte.

Im Kapitel 5 wird die Betrachtung biologischer Beinlokomotion auf der Ebene me-
chanischer Grundmodelle verlassen und der Fragestellung nachgegangen, inwiefern
ein globales, nachgiebiges Verhalten durch das neuromechanische Zusammenspiel
innerhalb eines biologischen Beins sichergestellt werden kann.
Obwohl passive Strukturen des Muskelskelettapparats, wie z.B. Sehnen, oft für
dieses Verhalten als Ursache angenommen werden, zeigen Experimente, dass die-
se nur einen Teil der Schrittenergie speichern und wieder freigeben können (z.B.
beim Menschen nur bis zu 50%). Entsprechend müssen die unvermeidlichen Verluste
durch aktive Muskelarbeit der Beinstrecker kompensiert werden, was eine geeignete,
motorische Kontrolle dieser Muskeln erfordert. Anhand eines einfachen, neurome-
chanischen Beinmodells des menschlichen Hüpfens auf der Stelle (das eindimensio-
nale Analogon zum Rennen) wird untersucht, inwieweit sensorische Informationen
der Muskelrezeptoren (Muskelspindeln und Golgi-Sehnen-Organe) durch einfache
Rückkopplungsschleifen in diese Kontrolle eingebunden sein könnten.
Die Analyse zeigt, dass (i) die positive Rückkopplung der Muskelfaserlänge oder der
Muskelkraft zu periodischen Hüpfmustern führen kann und (ii) hierbei die positive
Kraftrückkopplung das Hüpfmuster innerhalb eines großen Bereichs von Hüpfhöhen
stabilisiert (maximale Hüpfhöhe mit 16cm etwa doppelt so hoch wie bei positiver
Längenrückkopplung). (iii) Für moderate Hüpfhöhen von bis zu 9cm erzeugt die
positive Kraftrückkopplung elastisches Beinverhalten in der Standphase mit Bein-
steifigkeiten von 9kN/m bis 27kN/m (Hüpffrequenz: 1.4-3Hz). (iv) Darüber hin-
aus zeigt die Erweiterung des Modells auf planare Bewegungen, dass eine positive
Kraftrückkopplung auch Rennen stabilisieren kann.
Es wird vorgeschlagen, dass in der Standphase von Hüpfen und Rennen die re-
flexgenerierte, motorische Kontrolle basierend auf positiver Kraftrückkopplung eine
effiziente und zuverlässige Alternative zu zentralen Kontrollmechanismen des Ner-
vensystems darstellen könnte, um ein nachgiebiges Verhalten auf der globalen Bei-
nebene sicherzustellen.

Im letzten Teil der Dissertation, im Kapitel 6, werden die Ergebnisse der vorange-
gangenen Kapitel schließlich in einem Gesamtbild zur Beinlokomotion zusammen-
gefasst. Hierbei werden die beiden fundamentalen Gangarten Gehen und Rennen
innerhalb des zweibeinigen Masse-Feder-Modells vereinigt und die Bedeutung die-
ses, auf nachgiebigem Beinverhalten basierenden Zusammenschlusses sowohl für die
biomechanische und motorische Grundlagenforschung als auch für Anwendungen in
der Robotik, Rehabilitation und Prothetik erörtert.
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Abstract

In this dissertation, simple models of legged locomotion are developed mainly fol-
lowing the hypothesis that rather than reflecting two distinct phenomena, the fun-
damental gait patterns of walking and running can be described within a single
conceptual framework that is based on compliant limb behavior.

In Chapter 1, the most prominent mechanical paradigms of walking and running,
namely the stiff-legged inverted pendulum and the compliant spring-mass model, are
introduced by demonstrating their importance for investigating legged locomotion.
However, it is also discussed that both models must be ranked differently when
assessing their value as basic gait templates that encode parsimoniously the strik-
ingly uniform whole body dynamics observed during animal and human locomotion.
Whereas the spring-mass model can describe the characteristic motion of the cen-
ter of mass in running, the inverted pendulum fails to reproduce the corresponding
pattern in walking. By contrast, walking experiments show that, instead of vaulting
over rigid legs as suggested by the inverted pendulum motion, the center of mass ex-
periences much less vertical excursion requiring substantial stance-leg compressions.
Inspired by this observation, in the following chapters, the general significance of
limb compliance for biological legged locomotion is explored utilizing simple me-
chanical and neuromechanical models. Here, the spring-mass model for running is
used as starting point since it not only represents a known gait template, but also
embodies limb compliance in its simplest form.

In Chapter 2, a limitation of the spring-mass model is addressed. Although with
a Hooke’s law spring attached to a point mass the planar spring-mass model may
appear trivial, it describes a nonlinear system whose equations of motion are non-
integrable. In light of the model’s growing importance for basic research on legged
locomotion and for applications in robotics, the lack of a closed form solution of
its system dynamics has prompted scientists to seek suitable approximations. How-
ever, as of today, no approximation could be found that combines mathematical
tractability with sufficient accuracy in the physiologically relevant parameter do-
main. The former would allow to extract parametric dependencies of the model’s
behavior by analytical means, the latter is required to verify resulting hypotheses
on legged locomotion, in experiments.
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ABSTRACT

Assuming a small angular sweep and a small spring compression, in this chapter, an
approximate solution in elementary functions is derived. Within the scope of gait
stability, the quality and the predictive power of this solution are investigated for
model parameters relevant to human locomotion.
The comparison with numerical calculations shows that (i), for spring compressions
of up to 20% (angle of attack ≥ 60◦, angular sweep ≤ 60◦), the approximate solu-
tion describes the stance dynamics of the center of mass within a 1% tolerance of
spring compression and 0.6◦ tolerance of angular motion, and (ii), despite its rela-
tive simplicity, the approximate solution accurately predicts stable locomotion well
extending into the physiologically reasonable parameter domain. (iii) Furthermore,
in a particular case, an explicit parametric dependency required for gait stability
can be revealed extending an earlier, empirically found relationship.
It is suggested that this approximation of the planar spring-mass dynamics may
serve as an analytical tool for further research on legged locomotion and for appli-
cations in robotics.

In Chapter 3, the spring-mass model for running is applied to the walk-run tran-
sition. Although bipedal animals and humans are characterized by different mor-
phologies, the velocity vtrans at which they prefer to switch from walking to run-
ning (and from running to walking), can be described by the simple relationship
vtrans ≈

√
0.5 g`0 where g is the gravitational acceleration and `0 represents the leg

length.
The dependence of the transition speed only on mechanical parameters suggests a
mechanical explanation for the gait transition. And indeed, assuming an inverted-
pendulum-like motion of the center of mass, a maximum walking speed vmax =

√
g`0

can be obtained from the equilibrium of the counteracting centrifugal and gravita-
tional forces, which leads to a similar functional relationship. Yet the inverted
pendulum model cannot explain the numerical difference of factor

√
2. This dis-

crepancy has led to the assumption that rather than a mechanical, there might be a
physiological constraint inducing the gait transition. For instance, metabolic costs,
or a maximum inter-thigh angle, or the rate of perceived exertion are suggested as
the possible trigger. However, a conclusive explanation for the difference in number
still remains elusive.
In this chapter, it is returned to a mechanical interpretation of the walk-run transi-
tion by assuming that, instead of an upper speed limit in walking, the gait transition
could be induced by a lower speed limit in running. More precisely, it is investi-
gated at which speed running with a virtual horizontal center-of-mass motion during
stance becomes possible, so that a ’smooth’, mechanically comfortable transition be-
tween both gaits can be ensured. The latter is observed especially for the multitude
of ground dwelling birds.
By employing a simplified version of the spring-mass model, it is found analytically
(i) that the smooth transition requires a minimum running speed vmin '

√
0.4 g`0,

which surprisingly well matches the experimentally observed speed of the preferred
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gait transition. (ii) Moreover, the model predicts that, for lower speeds v < vmin,
running leads to exaggerated vertical motions indicating an unfavorable growth of
the cost of transport, as well as a reduced mechanical comfort. (iii) The comparison
of the model predictions with the results of a treadmill study on human locomotion
confirms this mechanical limitation of running, and indicates that, below the pre-
ferred transition speed, bipeds may choose walking since it can guarantee sufficient
mechanical comfort.
It is suggested that the predictability of the walk-run transition is not constrained
to the maximum walking speed vmax derived from the inverted pendulum model,
but equally results from a lower speed limit vmin of running, which can be derived
from the compliant spring-mass model assuming a smooth, mechanical comfortable
gait transition, and which resolves the numerical discrepancy between predicted and
observed transition speed.

In Chapter 4, it is addressed to what extent a compliant leg behavior can indeed
account for the characteristic whole body dynamics observed in animal and human
walking. Therefore, the simple spring-mass model for running is extended by a
second, idealized leg spring, and self-stable periodic locomotion patterns are sought
(analogue to Seyfarth, Geyer, Günther, Blickhan, 2002, A movement criterion for
running. J. Biomech. 35: 649-655).
The analysis reveals that (i), similar to the simple running model, the bipedal spring-
mass model can describe self-stable and robust periodic locomotion if the parameters
angle of attack, spring stiffness, and system energy are properly chosen, and (ii) the
resulting steady-state dynamics include those typical for animal and human walking.
(iii) Furthermore, an agreement between the model parameters predicted for stable
walking and their experimental estimates is found for moderate walking speeds of
about 1.5m/s. (iv) Above and below this speed differences are observed, which,
for slower speeds (v < 1.5m/s), can be explained by the restrictions imposed by
the methodological approach of investigating stability using fixed leg angles during
swing. For higher speeds (v > 1.5m/s), however, the discrepancy reveals an intrin-
sic limitation of describing the stance phase dynamics solely based on elastic legs
indicating a more complex, compliant leg behavior to become indispensable at these
speeds.
Reproducing the characteristic motion of the center of mass in walking, the bipedal
spring-mass model is suggested as a template for this gait, which, due to its paramet-
ric simplicity, might effectively guide future research on biological control strategies
for legged locomotion.

In Chapter 5, the focus shifts from exploring legged locomotion based on simple gait
templates, to the higher-dimensional problem of how the remarkable uniform, spring-
like leg response of animals and humans can be ensured by the neuromechanical
interplay within the musculo-skeletal system.
Although passive structures, such as tendons or ligaments, are frequently suggested
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as the likely origin for the spring-like leg response, experiments show that they
can only partially store and restore the stride energy (e.g. in humans only up to
50%), which requires active extensor-muscle contributions to compensate for the
inevitable losses. Consequently, the muscles must adequately be stimulated by the
nervous system. With a simple neuromechanical model of human hopping (the one-
dimensional paradigm for running), it is investigated whether afferent information
from muscle receptors (muscle spindles, Golgi tendon organs) can contribute to the
required neural control, using single-loop feedbacks.
It is found that (i) the positive feedbacks of muscle fiber length and muscle force
can result in periodic bouncing, and (ii) positive force feedback stabilizes bouncing
patterns within a large range of stride energies (maximum hopping height 16cm,
almost twofold higher than by using length feedback). (iii) Employing this reflex
scheme, for moderate hopping heights (up to 9cm), an overall elastic leg behavior is
predicted with a leg stiffness ranging from 9kN/m to 27kN/m (hopping frequency:
1.4-3Hz). (iv) Moreover, by extending the model to planar motions, it is shown
that positive force feedback can also stabilize running.
It is suggested that, during the stance phase of bouncing tasks, the reflex generated
motor control based on positive force feedback might be an efficient and reliable al-
ternative to central motor commands, to guarantee a compliant limb behavior on
the global leg level.

In the final part of this dissertation, in Chapter 6, the results of the preceding
chapters are summarized to a more coherent picture of legged locomotion. Here, the
two fundamental gait patterns of walking and running are combined within a single,
the bipedal spring-mass model; and the implications of this functional, compliance-
based unification are discussed with respect to basic research in biomechanics and
motor control, as well as to applications in robotics, rehabilitation, and prosthetics.
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Preface

On an international scale, investigating biological locomotor systems is a rapidly

advancing field of a much more general and interdisciplinary approach to animal

and human behavior requiring the combined expertise in research areas as diverse

as artificial intelligence, medicine, physics, robotics, and systems theory. Such a

development appears natural and necessary since, with animals and humans, we are

facing very complex biological systems often denying access by classical methods

fostered within a single discipline, and a joint effort seems to promise the most

success.

Receiving a graduate student scholarship of the German Academic Exchange

Service (DAAD) I was granted the opportunity to partake in this interdisciplinary

approach during my doctoral work by visiting two of the most recognized research

laboratories investigating legged locomotion, the Leg Laboratory of the Artificial

Intelligence Laboratory of the Massachusetts Institute of Technology, Cambridge,

USA, famous for its achievements in the fields of legged robots and prosthetics, and

the ParaCare Research Laboratory of the University Hospital Balgrist of the Univer-

sity of Zurich, Switzerland, where one of the first orthotic devices was and continues

to be developed to help spinal cord injured patients regaining their locomotor abil-

ity. I would like to take this opportunity to express my gratitude to the German

Academic Exchange Service and to Prof. H. Herr (MIT Leg Laboratory) and Prof.

V. Dietz (ParaCare Research Laboratory) who, by their support, invitation and

collaboration, made such an international research project possible.

I would also like to express my indebtedness to my head supervisor Prof. R.

Blickhan and to Dr. A. Seyfarth of the Jena University. Prof. R. Blickhan as Chair

of Motion Sciences of the Institute of Sport Science accepted to supervise my thesis

work although a substantial part was undertaken abroad. I am thankful to him for

this decision and his inspiring advice and suggestions which I received even when

our communication was reduced to email contacts and phone calls by geographic

constraints. As holder of an Emmy-Noether scholarship of the German Research
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Foundation (DFG), Dr. A. Seyfarth visited both the MIT Leg Laboratory and the

ParaCare Research Laboratory at about the same time as I did, although his time

schedule always led him first to the research facilities we visited, which more than

once noticeably lowered the administrative hurdles I had to take when arriving. I

am grateful to him for this organizational help, his ideas and suggestions he com-

municated about my work during our joint time abroad, and his continuing support

within the framework of the Emmy-Noether scholarship he still receives to estab-

lish and maintain a young scientists group (Locomotion Laboratory at the Jena

University).

At the outset of my doctoral term, I intended to analyze whether the remarkable

uniform, global spring-like leg response of the running gait of animals and humans

can be embedded within an articulated leg in a largely decentralized and autonomous

manner using the reflex-based interplay of musculo-skeletal mechanics and neural

control. Embarking on this program, however, it soon became obvious that many

questions concerning legged locomotion on the more general, global leg level were

unresolved, and we were fortunate enough to have some scientific tools at hand,

which made it possible to elucidate part of them. In consequence, I decided to

continue investigating legged locomotion using simple mechanical models first and

postponed the higher-dimensional and more complex problem of their morphological

embodiment within the biological system. Such an approach is strongly advised

in the interdisciplinary field of biomechanics and motor control since although we

possess the computational power to develop more complex models, these models

seem best to advance our knowledge of the neuromechanical organization in the

presence of underlying functional templates.

During my doctoral work, I have received much advice and valuable help from

many including my supervisors, numerous colleagues, anonymous reviewers, and

friends. As such, the ideas presented in this thesis are influenced by provoking

discussions and stimulating criticism and I cannot claim them to be based solely on

my own thoughts. What I can say is that, with this dissertation, I have worked out

the consequences of these ideas to their present state.

Finally, I must thank my family for their loving support throughout this time.

Hartmut Geyer

Jena

April 11th, 2005
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Chapter 1

General introduction

1.1 Legged locomotion

A formal definition may state that legged locomotion is the motion of the bodies locus

among a path in space using legs as means of transportation. Although very simple

in description, our understanding of the fundamental principles underlying legged

locomotion is far from adequate. For instance, we hardly know what construction

and control principles yield a prosthetic limb which conveys a patient the feeling of

a natural limb, why a particular therapeutic approach in rehabilitation helps one

spinal cord injured patient regaining his locomotor ability and not the other, or

how we should devise robotic platforms to realize dynamic, fast and stable legged

machines.

On the other hand, in our daily experience we are surrounded by remarkable

examples of legged locomotion. The astonishing elegance and efficiency with which

legged animals and humans traverse natural terrain outclasses any present day man-

made competitor. And consequently, beyond sheer fascination, such a ’technological’

superiority heavily attracts the interest from many scientists. However, concerned

with animals and humans, we are also facing an overwhelming diversity. Biological

legged systems range from small (e.g. ants) to large animals (elephants) and from

bipeds to millipedes. Even between systems of comparable size and with equal

number of legs, we still observe different morphologies (e.g. limb design and actuation

in large ground dwelling birds vs. humans). Hence, it seems that nature in her

resourcefulness has invented a great variety of prototypes confronting scientists with

the difficult question of how to extract the underlying principles.

Here, two contrasting approaches are employed. In the first method as much

features of the biological system under consideration as known from or potentially
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1.1 Legged locomotion

identified in experiments are implemented. By successive elimination of single fea-

tures it is then tried to identify the crucial components. Whereas this approach

allows to produce sophisticated models in terms of complexity, it suffers from the

vast number of parameters or degrees of freedom this simulated complexity requires.

Lacking experimentally valid data for most of the parameters, the starting point of

the elimination process can be any from close to the biological prototype to almost

entirely arbitrary. On the contrary, in the second method only those features are

implemented that seem indispensable. Whereas, due to its parametric simplicity,

this approach allows to investigate more thoroughly the model behavior and, hence,

parametric insights are more likely to be disclosed, it suffers from the choice of

the indispensable components. Lacking essential features can lead to substantially

wrong conclusions.

Figure 1.1. Characteristic ground reaction force (GRF) patterns observed during
the stance phase in walking (A) and running (B).

Which method is appropriate when addressing legged locomotion of biological

systems? Certainly, both have their advantages and disadvantages, but it seems

that high-dimensional models are better suited to reveal how fundamental mech-

anisms are implemented in the actual system once they are identified by simple

functional models. This notion may reflect the personal preference of the author,

however, nature itself provides a surprising insight when considering legged loco-

motion on a purely mechanical level. Despite the diversity in size, number of legs,

and limb design and actuation, classifying the integral force the legs exert on the

ground (ground reaction force, GRF), only two functional gait patterns prevail with

remarkably simple force shapes. For comparably slow speeds, biological systems
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1.2 Two mechanical paradigms of the fundamental gaits

prefer the walking gait recognized by its characteristic double-peak of the vertical

GRF (Fig. 1.1A). And with increasing speed, they switch to bouncing gaits (run-

ning, trotting, and hopping), which have in common that the vertical force pattern

reduces to a single-peak structure (Fig. 1.1B).

1.2 Two mechanical paradigms of the fundamental gaits

Understanding this striking uniformity is a likely candidate to unveil some essentials

of legged locomotion. A first step towards this aim is to find suitable model represen-

tations covering the salient features inherent in these two basic patterns. In an early

study, Saunders et al. (1953) observed that walking seems to resemble a ’compass

gait’ where the center of mass (COM) vaults over rigid stance legs suggesting an

inverted pendulum as an appropriate plant for the walking gait (Fig. 1.2A).

Figure 1.2. Mechanical paradigms of the stance phase in walking and running.
The body is reduced to a point mass m at the COM. For the inverted pendulum
model of walking (A) the COM is supported by a massless rigid stick of length
`0, for the spring-mass model of running (B) it is supported by a massless spring
(rest length `0, spring stiffness k). The angle α0 denotes the leg orientation at
touch-down, g the gravitational acceleration.

Later, this model enjoyed increasing attention when experiments showed that

it can in part explain the transfer of potential and kinetic energy during walking

(Cavagna et al., 1977), and that it correctly predicts the speed at which animals

and humans prefer to switch from walking to running to be solely a function of gravi-

tational acceleration and leg length (e.g. Alexander and Jayes, 1983; Kram et al.,

1997). Since the pioneering work of McGeer (1990), the inverted pendulum is also

exploited in robotics. For instance, it could be demonstrated that, when starting

on a shallow down-slope, ’passive dynamic walkers’ mimicking the inverted pendu-

lum can exhibit stable periodic forward locomotion without active control or energy

supply (McGeer, 1990; Coleman and Ruina, 1998). But, although the inverted
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pendulum renders the simplest walking model conceivable, it generates GRF pat-

terns notably inconsistent with experimental observations (Full and Koditschek,

1999; Pandy, 2003). Correspondingly, investigations on human walking revealed

that, instead of vaulting over rigid legs, the COM experiences much less vertical ex-

cursion necessitating significant stance-limb compression (Lee and Farley, 1998;

Gard et al., 2004).

Such a stance-limb compression, however, is traditionally assigned to bouncing

gaits as a characteristic feature. Here, part of the stride energy is stored and released

in passive compliant structures such as tendons, ligaments, and perhaps even bone

(in some animals up to 70% of the stride energy can be stored in these structures,

Alexander and Vernon, 1975; Biewener, 1998). In consequence, an elastic leg

behavior is observed (Cavagna et al., 1964, 1977), which led to the introduction

of the planar spring-mass model (Blickhan, 1989; McMahon and Cheng, 1990).

Of similar simplicity as the inverted pendulum model (Fig. 1.2B), the spring-mass

model realizes a simple mechanical paradigm of the stance phase in running or

hopping. More importantly, it also well describes the characteristic GRF pattern. In

consequence, not only biomechanical studies investigating hopping (Farley et al.,

1991; Seyfarth et al., 2001) or running (He et al., 1991; Blickhan and Full,

1993; Farley et al., 1993), but also fast legged robots driven by model based control

algorithms (Raibert, 1986; Saranli and Koditschek, 2003) rely on this plant.

1.3 Stable spring-mass running

By constructing hopping robots, Raibert (1986) was among the first who showed

that a statically instable legged system can exhibit dynamically stable locomotion.

To achieve stable hopping, only as few as three quantities needed to be addressed

by servo control within a state machine: hopping height, forward speed, and body

attitude (pitch). Although the ’Raibert-Controller’ based on the idea of a simple

spring-mass system as a virtual control model (Stentz, 1983), the identification

of the correct servo parameters was still limited to trial and error. As the spring-

mass model represents a non-integrable system (Whittacker, 1904), parametric

insights remained obscured. Nevertheless, aside from the animal-like ease and ele-

gance these robots conveyed, they also demonstrated that dynamic stability might

be one important clue to the understanding of legged locomotion. In consequence,

the exploration of dynamic stability using the spring-mass model started to enjoy

increasing attention. Lacking a closed form solution of the model’s equations of
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motion, two parallel developments commenced.

On the one hand, research activities concentrated on identifying a suitable ap-

proximate solution for the stance phase dynamics. To achieve this, the common ap-

proach was to simply neglect the acting gravitational force in the equations of motion

reducing the system to a central force problem. Although a closed form representa-

tion could be derived, the resulting solution involved elliptic integrals (Schmitt and

Holmes, 2000; Ghigliazza et al., 2003) hampering the desired parametric insight.

Moreover, it could be demonstrated that neglecting gravity produces quantitatively

erroneous parameter relations (Schwind and Koditschek, 2000; Geyer, 2001).

To correct for this discrepancy, Schwind and Koditschek (2000) suggested an

iterative algorithm similar to Picard iterations that successively reintegrates the

gravitational force. Although with each iteration the resulting approximate solution

more closely fitted the original system, its mathematical tractability significantly

decreased.

On the other hand, dynamic stability of the spring-mass model was investigated

using numerical parameter identifications. Here, simulations using the spring-mass

model without gravity yielded first insights. By modeling the horizontal plane mo-

tion of the alternating tripod gait of six-legged insects with spring-legs for each

tripod, Schmitt and Holmes (2000) could show that lateral perturbations di-

minish within this alternating contact regime. Later, we demonstrated that this

self-stabilization also holds for sagittal plane running with alternating flight and

contact phases using a ballistic motion of the COM during flight and the planar

spring-mass model during stance (Geyer et al., 2002; Seyfarth et al., 2002). The

term ’self-stabilization’ here refers to the observation that, after disturbances of the

periodic locomotion pattern (e.g. by ground irregularities), the COM returns to the

limit-cycle trajectory without any feedback control processing sensory information

on the actual disturbance (compare also Ringrose, 1997; Blickhan et al., 2003).

Comparing the parameter combinations required for the self-stabilizing behavior in

spring-mass running with experimental data on human running, we also found that

biological systems seem well to adapt to this parameter region (Fig. 1.3) suggesting

the exploration of self-stability as important concept for the identification of general

principles in legged locomotion.

Correspondingly, in a follow-up research, we expanded upon this concept and

could demonstrate that the parameter region leading to self-stable spring-mass run-

ning largely enhances if a feedforwardly controlled retraction motion of the swing-leg

is introduced during the flight phase (Seyfarth and Geyer, 2002; Seyfarth et al.,
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1.3 Stable spring-mass running

Figure 1.3. Comparison of model parameters required for self-stable spring-mass
running (region indicated by the arrow) with experimental results (open circles,
adapted from Seyfarth et al., 2002).

2003). This research was inspired by the observation that running animals and hu-

mans retract their swing-legs prior to touch-down (Muybridge, 1955; Gray, 1968)

instead of having a fixed leg orientation during flight, which has been used in the

preceding investigations on spring-mass running. Additionally, simulation results on

a more complex biomechanical model for quadrupedal locomotion indicated that a

leg retraction strategy could indeed improve running stability (Herr, 1998; Herr

and McMahon, 2000, 2001).

Recently, the results from the analysis of the spring-mass model find an increasing

interest in robotics. The design and control of the fastest legged running machines is

based on this gait paradigm and speeds of up to 15 body lengths per second (2.3m/s)

are achieved (Kim et al., 2004) – a record that can compete with wheeled toy vehicles

of about the same size. Taking advantage of their limbs, these six-legged machines

outperform wheeled systems in unstructured terrain already (Altendorfer et al.,

2001).
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1.4 Thesis outline

The scientific advances discussed in the previous sections indicate that the spring-

mass model serves as a remarkable simple yet sufficiently complex model to address

fundamental control strategies of legged locomotion in running. However, due to the

lack of a mathematically tractable approximate solution of the stance phase dynam-

ics, the success mainly depends on numerical simulation studies rather than thorough

understanding of the parametric relationships. In the light of the model’s simplicity,

this might be deemed of minor concern. Yet if more complex representations of the

basic spring-mass model are addressed (e.g. three dimensional spring-mass running

or more elaborate leg recirculation strategies during flight), the situation rapidly

changes and tractable analytical descriptions become indispensable.

Motivated by the lack of an analytical access to the planar spring-mass dynamics,

in Chapter 2 an approximate solution is derived that combines mathematical sim-

plicity with surprising accuracy. The approach taken is similar to that of an earlier

work (Geyer, 2001) where an approximation was identified which, due to neglect-

ing the effects of gravity, produced quantitatively erroneous results. In contrast,

by assuming a small angular sweep and a small spring compression during stance,

the solution derived in Chapter 2 inherently incorporates the effects of gravity. Its

predictive power and quality with respect to self-stability in spring-mass running is

demonstrated for model parameters relevant to human locomotion.

In contrast to the running pattern, for walking, such an analytical access has

not yet been identified. Although dynamic stability has also been investigated on

a mathematical basis for the inverted pendulum model (e.g. Garcia et al., 1998),

this model cannot describe the biologically observed GRF pattern and corresponding

model results are limited to some qualitative predictions. Hence, the identification

of a sufficiently simple mechanical model is required that encodes parsimoniously

the fundamental characteristics of the whole body dynamics in walking.

The identification of such a gait template for walking is addressed in Chapters 3

and 4. Motivated by experimental observations of significant stance limb compres-

sions (Lee and Farley, 1998; Gard et al., 2004, compare section 1.2), in these

chapters, the traditional approach of understanding walking as a stiff legged gait is

abandoned in favor of the hypothesis that walking can rather be understood assum-

ing compliant leg behavior during stance. Hereto, in Chapter 3, it is first addressed

whether the characteristic walk-run transition speed of animals and humans, which

is generally derived using the inverted pendulum model for walking, can alternatively

be explained from a running perspective using a simplified version of the compliant
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spring-mass model. One step further, in Chapter 4, the spring-mass model so well-

known for the running gait is put forth as an equally adequate gait template for

walking hereby unifying both fundamental gait patterns within a single theoretical

framework.

Chapter 5 leaves the realm of simple mechanical models. If the two fundamental

gaits of walking and running can be described by a spring-like leg behavior, this

behavior should somehow be embodied in the actual musculo-skeletal system. Al-

though in some animals passive elastic structures are suggested as origin, a different

situation applies to humans where active muscle tissue with non-negligible viscous

properties contributes to the leg force generation to a large extent. Hence, the ob-

served ’functional’ spring-leg representation requires proper neural stimulation of

the load bearing extensor muscles. And, by investigating a simple neuro-muscle-

skeleton model with only one extensor muscle, it is addressed whether this internal

leg control can largely be decentralized using autonomous muscle reflex loops.

Finally, in Chapter 6 the separate findings of this thesis work are summarized to

a more coherent picture of legged locomotion and general conclusions suggested by

the results are drawn.

8



Chapter 2

Spring-mass running: simple

approximate solution and

application to gait stability

2.1 Introduction

The planar spring-mass model for bouncing gaits (Blickhan, 1989; McMahon

and Cheng, 1990) has drawn increasing attention since, while advocating a largely

reductionist description, it retains key features discriminating legged from wheeled

systems: phase switches between flight (swing) and stance phase, a leg orientation,

and a repulsive leg behavior in stance. In consequence, not only biomechanical

studies investigating hopping (Farley et al., 1991; Seyfarth et al., 2001) or run-

ning (He et al., 1991; Farley et al., 1993), but also fast legged robots driven by

model based control algorithms (Raibert, 1986; Saranli and Koditschek, 2003)

rely on this plant. Yet still, even for the simple spring-mass model, parametric

insights remain obscured as the dynamics of the stance phase are non-integrable

(Whittacker, 1904). Lacking a closed form solution, research is either bound to

extensive numerical investigations or needs to establish suitable approximations.

For instance, by mapping the model’s parameter space, simulation studies sug-

gest that the spring-mass system for running can display a ’self-stable’ behavior

(Seyfarth et al., 2002; Ghigliazza et al., 2003). Here, self-stability refers to the

observation of asymptotically stable gait trajectories automatically recovering af-

ter disturbances without having to resort to sensory information about the actual

disturbances. As the spring-mass model is energy preserving, i.e. non-dissipative,

this behavior seems counterintuitive. However, it also constitutes a piecewise holo-
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nomic system experiencing phase-dependent dynamics (different stance and flight

phase dynamics), and several recent investigations demonstrate that such systems

can exhibit asymptotic stability (Coleman et al., 1997; Ruina, 1998; Coleman

and Holmes, 1999).

Analytical investigations assessing this issue for the spring-mass model in par-

ticular, for reasons of accessibility, mostly neglect gravity when approximating the

stance-phase dynamics (e.g. Ghigliazza et al., 2003). As this can hardly be done

in general locomotion (Schwind and Koditschek, 2000) or when addressing phys-

iologically motivated parameters (Geyer, 2001), in Schwind and Koditschek

(2000) an iterative algorithm reincorporating the effect of gravity is introduced. Al-

though the quality of the approximate solution improves with each iteration, its

decreasing mathematical tractability hampers the intended deeper parametric in-

sight into the functional relations.

In this chapter, a comparably simple approximate solution for the dynamics of

the planar spring-mass model is derived including gravitational effects. Within the

scope of stability in spring-mass running, the predictive power and the quality of

this solution are investigated. The former by considering a special case, the latter

by comparing a return-map analysis based on the approximation with numerical

results throughout the range of the parameters spring stiffness, angle of attack, and

system energy. In both situations, model parameters relevant to human locomotion

are addressed.

2.2 Spring-mass running

2.2.1 Model

Planar spring-mass running is characterized by alternating flight and contact phases.

As described previously (Seyfarth et al., 2002), during flight the center of mass

trajectory is influenced by the gravitational force. Here, a virtual leg of length l0

and a constant angle of attack α0 are assumed (Fig. 2.1). When the leg strikes the

ground, the dynamic behavior of spring-mass running is further influenced by the

force exerted by the leg spring (stiffness k, rest length l0) attached to the center of

mass. The transition from stance to flight occurs if the spring reaches its rest length

again during lengthening.

10
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Figure 2.1. Spring-mass model for running. Parameters: m - point mass, `0 -
rest length, α0 - leg angle of attack during flight, g - gravitational acceleration, k
- spring stiffness, r - radial and ϕ - angular position of the point mass, ∆ϕ - angle
swept during stance.

2.2.2 Apex return map

To investigate periodicity for this running model, it suffices to consider the apex

height yi of two subsequent flight phases. This holds since (i) at apex the vertical

velocity ẏi equals zero, (ii) the forward velocity ẋi can be expressed in terms of the

apex height due to the constant system energy Es, and (iii) the forward position xi

has no influence on the further system dynamics.

Consequently, the stability of spring-mass running can be analyzed with a one-

dimensional return map yi+1(yi) of the apex height of two subsequent flight phases

(single step analysis). In terms of the apex return map, a periodic movement trajec-

tory in spring-mass running is represented by a fixed point yi+1(yi) = yi. Moreover,

as a sufficient condition, a slope dyi+1(yi)/dyi within a range of (−1, 1) in the neigh-

borhood of the fixed point indicates the stability of the movement pattern (higher

than period 1 stability, which corresponds to symmetric contacts with time reflec-

tion symmetry about midstance, is not considered). The size of the neighborhood

defines the basin of attraction of the stable trajectory.

2.3 Approximate solution

2.3.1 Model approximations

The analytical solution for the center of mass motion during flight is well known

(ballistic flight trajectory), but a different situation applies to the stance phase.

Using polar coordinates (r, ϕ), the Lagrange function of the contact phase is given

11
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by (see Fig. 2.1 for notation)

L =
m

2

(
ṙ2 + r2ϕ̇2

)
− k

2
(`0 − r)2 −mgr sinϕ . (2.1)

From the Lagrange function, the derived center of mass dynamics is characterized by

a set of coupled nonlinear differential equations. As of today, the analytical solution

for the contact phase remains open. For such situations, a common approach is to

ask for simplifications, which could provide an approximate solution. In the case

of (2.1), for sufficiently small angles ∆ϕ swept during stance, the sine term on the

right side can assumed to be

sinϕ ≈ 1 (2.2)

and the equations of motion simplify to

mr̈ = k(`0 − r) + mrϕ̇2 −mg (2.3)

and
d

dt

(
mr2ϕ̇

)
= 0 (2.4)

transforming the spring-mass model into an integrable central force system, where

the mechanical energy E and the angular momentum P = mr2ϕ̇ are conserved.

To derive the apex return map yi+1(yi), it suffices to identify the system state at

the phase transitions (flight-to-stance and stance-to-flight), regardless of the actual

motion during stance. Due to both, the radial symmetry of the model (spring

assumes rest length `0 at each phase transition) and the conservation of angular

momentum (2.4), the system state at take-off (TO) relates to the state at touch-

down (TD) with
rTO = rTD

ṙTO = −ṙTD

ϕTO = ϕTD + ∆ϕ

ϕ̇TO = ϕ̇TD

, (2.5)

where only the angle ∆ϕ swept during stance can not simply be expressed by the

state at touch-down. Hence, we will calculate this angle from the dynamics of the

central force system (2.3) and (2.4) in the following sections. Particularly, we will

first derive the radial motion r(t) and then integrate ϕ̇ = P
mr2 . In both cases, we

will use the further assumption of small relative spring amplitudes

|ρ| � 1 , (2.6)
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2.3 Approximate solution

with ρ = r−`0
`0

≤ 0 to attain an approximate solution of the central force system

and, consequently, of the planar spring-mass dynamics in elementary functions.

2.3.2 Radial motion during stance

Using the conservation of angular momentum P , the constant mechanical energy of

the contact phase is given by

E =
m

2
ṙ2 +

P 2

2mr2
+

k

2
(`0 − r)2 + mgr . (2.7)

Applying the substitutions ε = 2E
m`20

, ω = P
m`20

, and ω0 =
√

k
m , the equation rewrites

to

ε = ρ̇2 +
ω2

(1 + ρ)2
+ ω2

0ρ
2 +

2g

`0
(1 + ρ) , (2.8)

where ρ represents the relative spring amplitude introduced in the previous section.

The term 1
(1+ρ)2

can be represented as a Taylor expansion around the initial relative

amplitude ρ = 0
1

(1 + ρ)2

∣∣∣∣
ρ=0

= 1− 2ρ + 3ρ2 −O(ρ3) . (2.9)

The restriction (2.6) to small values of ρ allows to truncate the expansion after the

square term. Hence, the differential equation (2.8) transforms into

t =
∫

dρ√
λρ2 + µρ + ν

, (2.10)

where the factors are given by λ = −(3ω2 + ω2
0), µ = 2(ω2 − g/`0), and ν =

(ε− ω2 − 2g/`0). The integral in (2.10) is given by

∫
dρ√

λρ2 + µρ + ν
= − 1√

−λ
arcsin

(
2λρ + µ√
µ2 − 4λν

)
, (2.11)

provided that both the factor λ and the expression 4λν − µ2 are negative. The first

condition is fulfilled by the definition of λ. The second one holds if ν is positive.

Since ν is constant, it suffices to check this condition at the instant of touch-down.

From here it follows that ν = ṙ2
0/`2

0. Using (2.11), equation (2.10) can be resolved

and yields the general radial motion

r(t) = `0 (1 + a + b sin ω̂0t) (2.12)

13



2.3 Approximate solution

with

a =
ω2 − g/`0

ω2
0 + 3ω2

,

b =

√
(ω2 − g/`0)2 + (ω2

0 + 3ω2)(ε− ω2 − 2g/`0)

ω2
0 + 3ω2

,

ω̂0 =
√

ω2
0 + 3ω2 .

Figure 2.2. General solution for the radial motion r(t) during stance describing
a sinusoidal oscillation around r = `0(1+a) with amplitude `0b and frequency ω̂0.
The solution only holds for r(t) ≤ `0. Note that a can also be negative shifting `0
above `0(1 + a). ∆`max - maximum leg compression.

The radial motion r(t) describes a harmonic oscillation around the length `0(1+

a) with an amplitude `0b and an angular frequency ω̂0 (Fig. 2.2). However, the

solution r(t) only holds for the contact phase of spring-mass running where r ≤ `0.

Using the condition r = `0, (2.12) can be resolved to identify the instances of touch-

down and take-off (Fig. 2.2)

tTD =
1
ω̂0

{(
2n +

3
2

)
π −

[
π

2
+ arcsin

(
−a

b

)]}
(2.13)

and

tTO =
1
ω̂0

{(
2n +

3
2

)
π +

[
π

2
+ arcsin

(
−a

b

)]}
(2.14)

where n is an arbitrary integer.

The maximum spring compression ∆`max during stance is given by the difference

of the amplitude `0b of r(t) and the shift `0a of the touch-down position r(tTD) = `0
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2.3 Approximate solution

(Fig. 2.2). Thus, restriction (2.6) to small values of ρ is adequately formulated by

b− a � 1 . (2.15)

2.3.3 Angle swept during stance

With the radial motion r(t), the angle swept during stance can be derived from

the equation P = mr2ϕ̇ describing the constant angular momentum. Using the

substitutions ω and ρ, the angular velocity is given by

ϕ̇ =
ω

(1 + ρ)2
. (2.16)

To integrate (2.16), again, we use the Taylor expansion (2.9), but cancel this expan-

sion after the linear term already. The Taylor expansion of 1
(1+ρ)2

to the second order

in ρ for both the r- and ϕ-trajectory would lead to a more accurate approximate

solution of the central force dynamics (2.3) and (2.4). However, approximating the

actual spring-mass dynamics (2.1), the central force approach (2.2) is error-prone

itself. Carrying out the expansion to the first order only for ϕ̇ allows in part to

compensate for the error introduced by this general approach (see appendix).

With ϕ̇ = ω(1 − 2ρ) and substituting ρ by r, we obtain the angle ∆ϕ swept

during stance

∆ϕ =
tTO∫

tTD

ω [(1− 2a)− 2b sin ω̂0t] dt . (2.17)

Considering (2.13) and (2.14) as integration limits, and using the identities cos(arcsin x) =
√

1− x2 and π+2 arcsin
(
−a

b

)
= 2arccos

(
a
b

)
, the angle swept during stance resolves

to

∆ϕ = 2
ω

ω̂0

[
(1− 2a) arccos

a

b
+ 2

√
b2 − a2

]
. (2.18)

As both the mechanical energy and the angular momentum are conserved, the pa-

rameters ω, ω̂0, a and b can be related to the system state at touch-down by solving

(2.4) and (2.8) at this instant. Therefore, ∆ϕ is uniquely determined by the system

state at touch-down (`0, ṙTD, ϕTD, ϕ̇TD) and the parameters of the spring-mass

system (k, m, g). Although not explicitly appearing when re-substituting in (2.18),

the landing angle ϕTD = π − α0 influences ∆ϕ by determining the distribution of

the landing velocity to the radial and angular component.
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2.4 Stability of spring-mass running

2.3.4 Approximate solution

By defining the instant of touch-down as t = 0, the radial (2.12) and angular motions

during stance (2.17) rewrite to

r(t) = `0 + `0

[
a (1− cos ω̂0t)−

√
b2 − a2 sin ω̂0t

]
(2.19)

ϕ(t) = ϕTD + (1− 2a)ωt +
2ω

ω̂0

[
a sin ω̂0t +

√
b2 − a2 (1− cos ω̂0t)

]
(2.20)

with t ranging from 0 to tc = [π+2arcsin(−a/b)]/ω̂0. By substituting a and b (2.12)

as well as expressing ε, ω, and ω0 with the system state at touch-down, the center

of mass trajectory during stance resolves to

r(t) = `0 −
|ṙTD|
ω̂0

sin ω̂0t +
ϕ̇2

TD`0 − g

ω̂2
0

(1− cos ω̂0t) (2.21)

ϕ(t) = π − α0 +
(

1− 2 ϕ̇2
TD−g/`0

ω̂2
0

)
ϕ̇TDt

+2ϕ̇TD
ω̂0

[
ϕ̇2

TD−g/`0
ω̂2

0
sin ω̂0t + |ṙTD|

ω̂0`0
(1− cos ω̂0t)

] (2.22)

The radial motion corresponds to the motion of a one-dimensional spring-mass sys-

tem under the influence of gravity except for the increased oscillation frequency

ω̂0 =
√

k/m + 3ϕ̇2
TD. The angular motion has a linear characteristic, which is mod-

ulated by trigonometric functions. The time in contact resolves to

tc =
1
ω̂0

[
π + 2 arctan

(
g − `0ϕ̇

2
TD

|ṙTD| ω̂0

)]
(2.23)

2.4 Stability of spring-mass running

2.4.1 Analytical apex return map

In the following section we use the derived analytical solution for the contact to

calculate the dependency of two subsequent apex heights. Based on this apex return

map, for a special case, we derive an explicit parametric dependency required for

stable spring-mass running and, within the scope of gait stability, compare parameter

predictions with previous numerical results.

With the angle swept during stance (2.18), we know how the system state at

take-off relates to the initial state of the contact phase at touch-down (2.5). But,

to apply the correct initial values, the mapping between the apex height yi and the
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2.4 Stability of spring-mass running

touch-down state in polar coordinates is required

yi 7→


ẋ =

√
2
m (Es −mgyi)

y = `0 sin α0

ẏ = −
√

2g (yi − y)


TD

7→


r = `0

ṙ = ẋ cos ϕ + ẏ sinϕ

ϕ = π − α0

ϕ̇ = 1
`0

(ẏ cos ϕ− ẋ sinϕ)


TD

(2.24)

where Es is the system energy prior to touch-down (for details see sections 2.2.2 and

2.4.2). To obtain the apex return map yi+1(yi), the system state at the following

apex i + 1 has to be derived, i.e. the mapping between the state at take-off and the

apex i + 1 is further required
ẋ = ṙ cos ϕ− `0ϕ̇ sinϕ

y = `0 sinϕ

ẏ = ṙ sinϕ + `0ϕ̇ cos ϕ


TO

7→
ẋi+1 = ẋTO

yi+1 = yTO + 1
2g ẏTO

. (2.25)

Using both mappings, the apex return map function of approximated spring-mass

running can be constructed and yields after simplification

yi+1(yi) = 1
mg

[
cos(∆ϕ−2α0)

√
mg (yi − `0 sinα0)

+ sin(∆ϕ−2α0)
√

Es −mgyi
]2 + `0 sin(α0−∆ϕ) .

(2.26)

Next to the preceding apex height (yi), yi+1 is a function of the system energy (Es),

the landing leg configuration (`0, α0), and the dynamic response of the spring-mass

system (k, m, g). However, the apex return map can only exist where yi+1 exceeds

the landing height yi+1 ≥ `0 sinα0. Otherwise, the leg would extend into the ground

(stumbling).

2.4.2 System energy correction

For spring-mass running, the stability analysis can be performed based on a one-

dimensional apex return map since the system energy Es remains constant (see

section 2.2.2). When using the approximation for the stance phase, in particular due

to assumption (2.2), this conservation of energy is violated if the vertical position

at take-off differs from that at touch-down (yTD 6= yTO, i.e. asymmetric contact

phase):

In a central force system approach, the kinetic energy m
2

(
ṙ2 + r2ϕ̇2

)
is equal at

touch-down and take-off (2.5), regardless of the angle swept during stance. At the

transitions between flight and stance phase the direction of the gravitational force
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2.4 Stability of spring-mass running

’switches’ between vertical and leg orientation. The corresponding shifts in energy

at touch-down and take-off compensate each other for symmetric stance phases

(yTD = yTO). In contrast, for asymmetric contact phases, a net change in system

energy ∆E = mg (yTO − yTD) occurs. To restore the conservative nature of the

model (Es = const), this change is corrected in (2.25) by readjusting the horizontal

velocity to

ẋi+1 =
√

2
m

(Es −mgyi+1) . (2.27)

When reapplying the apex return map (2.26) for the new apex height yi+1, this is

automatically taken into account by reusing the system energy Es.

2.4.3 Stability analysis: the special case a = 0

From (2.26) we obtain that the fixed point condition yi+1(yi) = yi is fulfilled if

(2.18) describes symmetric contacts with ∆ϕ = 2α0 − π. In general, solving (2.18)

appears to be difficult since this equation involves nonlinearities. However, in order

to demonstrate the existence and stability of fixed points of the apex return map, it

suffices to present one example. In the following, we will confine our investigation

to the special case a = 0, i.e. when the angular velocity at touch-down is identical

to the pendulum frequency ω = ϕ̇TD = −
√

g/`0 (although ω = +
√

g/`0 equally

satisfies a = 0, we are concerned with forward locomotion only). In this particular

situation, (2.18) considerably simplifies to

∆ϕ(k̃, α0, Ẽs) = − 2√
k̃ + 3

π

2
+ 2

√
2Ẽs − 1− 2 sinα0

k̃ + 3

 (2.28)

where k̃ = k`0
mg represents the dimensionless spring stiffness and Ẽs = Es

mg`0
is the

dimensionless system energy.1

Apart from its mathematical simplicity, this special case addresses a characteris-

tic running speed in animals and humans. Considering that, for rather steep angles

of attack, the horizontal velocity ẋ relates to the angular velocity with ẋ ≈ `0ϕ̇TD,

the case a = 0 describes running with a Froude number Fr = ẋ2

g`0
= 1, which is close

to the preferred trotting speed in horses (Alexander, 1989; Wickler et al., 2001)

or to a typical jogging speed in humans (Alexander, 1989).

1The appearance of k̃ and Ẽs is not restricted to the special case a = 0. Rather, these substitutes
can be identified as independent parameter groups when applying a dimensional analysis of the
governing equations in spring-mass running. Specifically, the dimensionless stiffness k̃ is a well
known parameter group frequently used in comparative studies on animal and human locomotion
(e.g. Blickhan, 1989; Blickhan and Full, 1993).

18



2.4 Stability of spring-mass running

Existence of fixed points

Before continuing with (2.28), we need to check whether apex states yi restricted by

the touch-down condition ω = −
√

g/`0 can be found. By using the apex-to-touch-

down map (2.24), we find the formal expression

ω =

√
2g

`0

(
cos α0

√
yi/`0 − sinα0 − sinα0

√
Ẽs − yi/`0

)
. (2.29)

Resolving for ω = −
√

g/`0 leads to the corresponding apex height

yi = `0 sinα0 + `0
2

(
cos α0 − sinα0

√
2Ẽs − 1− 2 sinα0

)2

= `0Ẽs − `0
2

(
sinα0 + cos α0

√
2Ẽs − 1− 2 sinα0

)2

.
(2.30)

However, substituting (2.30) back into (2.29) yields

−1 = cos α0 | cos α0 − sinα0

√
2Ẽs − 1− 2 sinα0|

− sinα0 | sinα0 + cos α0

√
2Ẽs − 1− 2 sinα0|

(2.31)

and it follows that the solution (2.30) only holds if cos α0 ≤ sinα0

√
2Ẽs − 1− 2 sinα0,

i.e. the system energy fulfils Ẽs ≥ Ẽmin
s with

Ẽmin
s =

1
2 sin2 α0

+ sinα0 . (2.32)

For a system energy Ẽs = Ẽmin
s , the apex height is identical to the landing height

yi = `0 sinα0. Above this level Ẽs > Ẽmin
s , the apex height increases, but never

approaches the upper boundary yi = `0Ẽs.

Having established the flight phase limitations for the existence of apex states

yi characterized by a = 0, we can proceed with (2.28). Solving for ∆ϕ = 2α0 − π

involves a quadratic equation for
√

k̃ + 3, which has only one physically reasonable

solution yielding an expression for the required spring stiffness

k̃(α0, Ẽs) =

[
π +

√
π2 + 32

(
π
2 − α0

)√
2Ẽs − 1− 2 sinα0

]2

16
(

π
2 − α0

)2 − 3 . (2.33)

At given angle of attack (α0 ∈
[
0, π

2

]
in forward locomotion), the stiffness is lowest
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2.4 Stability of spring-mass running

for the minimum system energy

k̃min(α0) = k̃min(α0, Ẽ
min
s ) =

[
π +

√
π2 + 32

(
π
2 − α0

) cos α0
sin α0

]2
16
(

π
2 − α0

)2 − 3 , (2.34)

with increasing system energy Ẽs > Ẽmin
s , a larger spring stiffness is required to

ensure symmetric contacts (Fig. 2.3).

Figure 2.3. Parameter interdependence for fixed point solutions with a = 0. The
fixed points can only exist if a minimum energy Ẽmin(α0) is exceeded (permitted
parameter range). Above this level, the required parameter combinations of angle
of attack α0, system energy Ẽs, and spring stiffness k̃ are defined by relation (2.33)
describing a sub set k̃(α0, Ẽs) within the parameter space. The dark area within
this sub set characterizes stable fixed point solutions (see section 2.4.3). The open
lines indicate the parameter combination that is used as apex return map example
in Fig. 2.4.

With (2.32) and (2.33) we have identified the parameter dependence required for

periodic locomotion constrained by ω = −
√

g/`0. Although the resulting steady-

state solutions (2.30) demonstrate the existence of fixed points of the apex return

map, it remains to investigate to what extent the derived parameter relations rep-

resent stable gait patterns.
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2.4 Stability of spring-mass running

Stability of fixed points

Stable fixed point solutions yi are characterized by

−1 < ∂
∂yi

[yi+1(yi)]yi+1=yi
= ∂iy

∗ < 1 . (2.35)

To prove stability, we need to identify at least one parameter set (α0, Ẽs) leading to

solutions yi satisfying (2.35). Starting with (2.26), we obtain

∂iy
∗ = 1 +

[
`0 cos α0 + 2

√
(`0Ẽs − yi) (yi − `0 sinα0)

]
∂i∆ϕ∗ (2.36)

by using ∆ϕ = 2α0− π for symmetric contacts. As the bracketed expression always

remains positive, (2.35) transforms into a condition for the angle swept during stance

∂i∆ϕ∗ ∈
(
− 2

`0 cos α0+2
√

(`0Ẽs−yi)(yi−`0 sin α0)
, 0
)

indicating that disturbed apex con-

ditions towards higher (lower) apices must be compensated for by a larger (smaller)

amount of angular sweep in contact (∆ϕ∗ is negative). However, to remain stable,

the rate of this ’negative’ correlation must not exceed− 2

`0 cos α0+2
√

(`0Ẽs−yi)(yi−`0 sin α0)
.

From (2.18) it follows that

∂i∆ϕ∗ =
(

1
ω −

3ω
ω̂2

0

)
(2α0 − π) ∂iω

∗

−2 ω
ω̂0

2 arccos
(

a
b

)
∂ia

∗ −

(
a
b
−2a2

b
+2b

)
∂ib

∗− ∂ia
∗

√
b2−a2

 ,
(2.37)

which, by expressing ∂ia
∗ and ∂ib

∗ with ∂iω
∗, and resolving ∂iω

∗, can be further

deduced to

∂i∆ϕ∗ =
{(

1
ω −

3ω
ω̂2

0

)
(2α0 − π)− 2ω2

ω̂3
0

[
(4− 12a) arccos

(
a
b

)
−

(
a
b
−2a2

b
+2b

)(
2a

b
− 1

b
−3a2

b
−3b

)
−2+6a

√
b2−a2


×

√
2g

2`0

(
cos α0√

y∗i −`0 sin α0
+ sin α0√

`0Ẽs−y∗i

)
.

(2.38)

Note that (2.38) is valid for any fixed point solution with symmetric contacts ∆ϕ∗ =

2α0 − π since a = 0 has not yet been utilized. Finally, applying a = 0 and ω =

−
√

g/`0 yields

∂i∆ϕ∗ = 1
k̃+3

[
k̃(π

2 − α0)− 2π√
k̃+3

− 6
√

2Ẽs−1−2 sin α0

k̃+3

− 4√
2Ẽs−1−2 sin α0

]
×
√

2
`0

(
cos α0√

y∗i −`0 sin α0
+ sin α0√

`0Ẽs−y∗i

)
.

(2.39)
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2.4 Stability of spring-mass running

By substituting (2.39) back into (2.36) and using (2.30) as well as (2.33), we ob-

tain an expression ∂iy
∗ = ∂iy

∗(α0, Ẽs) identifying the parameter dependence of the

derivative of the apex height return map yi+1(yi) at the fixed points y∗i in the special

case a = 0.

Based on this result, in Fig. 2.3, parameter combinations leading to stable fixed

points are indicated in the k̃(α0, Ẽs)–region as dark area, which is limited by two

curves denoting the lower (∂iy
∗ = −1) and upper constraint (∂iy

∗ = +1) for stable

solutions (2.35). Although this area narrows and almost diminishes below the min-

imum system energy Ẽmin(α0) for steep angles of attack, parameter combinations

above this critical level remain existent. For example, an angle of attack α0 = 85◦

(not shown in Fig. 2.3) necessitates a minimum system energy Ẽmin = 1.500, and

the lower stability constraint corresponds to a system energy (Ẽ−
s = 1.497) below

this minimum. Nevertheless, the system energy related to the upper constraint

(Ẽ+
s = 1.506) still exceeds the critical level, and, for instance, for a system energy

Ẽmin < Ẽs = 1.503 < Ẽ+
s , one easily checks that, besides the steep angle condition

(2.2), with b− a < 0.06 the resulting apex return map (2.26) fulfils (2.15) required

for the validity of the approximate solution.

As a result of the steep angle α0 = 85◦, the return map yi+1(yi) almost matches

the diagonal yi+1 = yi, if viewed on the large scale of all possible apex heights,

hampering a compact overview of its qualitative behavior. However, to provide such

an overview, in Fig. 2.4, an explicit return map example is shown for the moderate

angle of attack α0 = 60◦. Here, the system energy Ẽs = 1.61 and, as a result

of (2.33), the spring stiffness k̃ = 10.8 (indicated by the open lines in Fig. 2.3)

are chosen such that the fixed point y∗ = 0.872`0 (open circle) calculated from

(2.30) is stable with ∂iy
∗ = 0. Starting from disturbed apex heights, the system

stabilizes within a few steps (as indicated by the arrow traces in the small panel of

Fig. 2.4). Here, the basin of attraction contains all apex heights from the landing

height y` = `0 sinα0 to the second, unstable fixed point (closed circle). As the

analysis performed in this section is restricted to local predictions, both the basin

and the second fixed point are merely observations from plotting (2.26). However,

from Fig. 2.3 it is obtained that, if the system energy is not adequately selected,

the fixed point given by (2.30) is unstable. Without proof we observed the following

behavior: For a system energy leading to ∂iy
∗ < −1, (2.30) still traces the lower

fixed point being unstable. For ∂iy
∗ = 1, both fixed points collapse to a single one,

and, if ∂iy
∗ > 1, (2.30) describes the upper, unstable fixed point.
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2.4 Stability of spring-mass running

Figure 2.4. Stability of spring-mass running. The return map function yi+1(yi)
is shown for the parameter set α0 = 60◦, Ẽs = 1.61, and k̃ = 10.8, which belongs
to the calculated region of parameter combinations producing stable fixed point
solutions. As predicted, the return map has a stable fixed point yi+1 = yi at-
tracting neighboring apex states within a few steps (arrow traces in the magnified
region). Furthermore, the return map is characterized by an additional, unstable
fixed point representing the upper limit of the basin of attraction of the stable one
(the lower limit is given by the landing height y` = `0 sinα0).

k-α0-relationships for stable running

In the last two sections, we have identified the parameter combinations (k̃, α0,

and Ẽs) required to achieve self-stable running patterns characterized by a = 0

(dark area in Fig. 2.3). Specifically, for steep angles of attack α0 → π
2 , stable

trajectories are obtained when the system energy Ẽs is close to the minimum sys-

tem energy Ẽmin
s (2.32), i.e. the parametric dependency approaches the minimum

stiffness-angle-relation k̃min(α0) (2.34). In the numerical study (Seyfarth et al.,

2002), we empirically found a different estimate for the stiffness-angle-relationship

k(α0) ≈ 1600N
`0(1−sin α0) , and the question arises in how far both relationships relate to

each other.

Considering that, for α0 → π
2 , the minimum system energy Ẽmin

s approaches

a value of 1.5, in the numerical study this corresponds to a system energy of

Es = mg`0Ẽs ≈ 1200J (m = 80kg, g = 9.81m/s2, and `0 = 1m). As the initial

apex height was fixed to y0 = `0 therein, this is equivalent to an initial speed of

ẋ0 =
√

2
m(Es −mg`0) of about 3.3m/s, which is slightly less than the initial speed

23



2.4 Stability of spring-mass running

the empirical k-α0-relationship is derived from (ẋ0 = 5m/s, Fig. 2A in Seyfarth

et al. (2002)). However, the general shape of the stable domain does not change

much for initial running velocities below ẋ0 = 5m/s (the domain only narrows,

Fig. 2B,C in Seyfarth et al. (2002)) and, hence, from an energetic point of view

both relationships should be comparable.

A similar argument holds for the restriction to the special case a = 0. As

in Seyfarth et al. (2002) running stability is scrutinized for all possible parameter

combinations, certainly more than the steady-state solutions belonging to this special

case are identified. Actually, the stable domain forms a single volume in the k-α0-ẋ0

space (Geyer, 2001; Seyfarth et al., 2002), which, due to the restriction to the

special case a = 0, cannot be obtained from (2.33). Here, only a surface element

of this volume can be derived (dark area in Fig. 2.3). However, for ẋ0 ≤ 5m/s the

stable parameter domain is rather narrow (for steep angles of attack the angular

range is limited to 2◦) and, although we do not expect exactly the same result, both

the empirical relationship and (2.34) should qualitatively be equivalent for α0 → π
2 .

Using that for α0 → π
2 , 1

1−sin α0
→ 2

(π
2
−α0)2

, and taking the body mass used in

the numerical study (m = 80kg) into account, the empirical k-α0-relationship can

be written as k̃α0→π
2
≈ 4

(π
2
−α0)2

. In the same limit (2.34) reads k̃min
α0→π

2
= π2/4

(π
2
−α0)2

,

which indeed confirms that the qualitative behavior of (2.34) is consistent with the

empirically found stiffness-angle relation. In addition to this mere comparison, (2.33)

emphasizes the change of the stiffness-angle relation with increasing system energy,

introducing a quality observed but not formulated in the numerical study.

2.4.4 Quality of approximate solution

Considering the steep angle assumption (2.2), the valid range of the approximate

solution is always bound to a spring stiffness exceeding physiologically reasonable

values. For instance, taking the example α0 = 85◦ and Ẽs = 1.503 of the last

section, the dimensionless stiffness k̃(α0, Ẽs) is k̃ = 326. Scaled into absolute values,

for a human with a body mass of m = 80kg and a leg length of `0 = 1m, the

required stiffness k = mg
`0

k̃ approaches 260kN/m. Compared to experiments, where

typical stiffness values are in the range of k = 10−50kN/m (e.g. Arampatzis et al.,

1999), the predicted stiffness is far above the biological range, which, however, is

no contradiction since humans do use flatter angles of attack in running (speed

dependent, e.g. α0 = 60− 70◦, Farley and Gonzalez (1996)).

At this point, the question arises of how applicable the approximate solution is

to biological data, or, more technically spoken, how restrictive are the assumptions

24



2.4 Stability of spring-mass running

made? To gain a quantitative judgement, the quality of the approximation shall

be demonstrated by the following example: Still considering a human subject with

m = 80kg and `0 = 1m, the running speed is set to be ẋ0 = 5m/s at the apex

y0 = `0, and a leg stiffness k = 11kN/m and an angle of attack α0 = 60◦ are

assumed. The contact phase of the resulting steady-state motion is characterized

by a maximum spring compression of 20%, which corresponds to a relative spring

amplitude ρ = −0.2. At this configuration, the accuracy (i.e. the maximum error)

of the analytically predicted center of mass trajectory (2.21 and 2.22) is better than

1% in spring compression and 0.6◦ for the angle swept during stance (|∆ϕ| = 60◦)

compared to the numerical counterpart.

This indicates that, even for configurations with reasonable angles of attack, the

approximate solution well describes the dynamics of the stance phase. However, it

cannot be concluded with such a single example whether the quality of the solution

satisfies the demands of a specific application. To illustrate its predictive power

in the context of self-stability, in Fig. 2.5 the parameter combinations leading to

self-stable movement trajectories (Fig. 2.5A-C) are compared to numerical results

(Fig. 2.5D-F, after Seyfarth et al. (2002)) throughout the parameter space. Al-

though, for the stability of steady-state trajectories, it would suffice to compare the

analytically predicted with the numerically calculated apex return maps for each

single parameter combination, in Fig. 2.5 the investigation of the number of suc-

cessful steps is adopted from Seyfarth et al. (2002). This not only allows a direct

comparison to the numerical and experimental results presented in Seyfarth et al.

(2002), but, starting from disturbed apex conditions, also scrutinizes the perfor-

mance of the approximate apex return map (2.26) if consecutively applied, hereby

addressing the influence of the arbitrary energy correction following each stance

phase (section 2.4.2) on the quality of the approximate solution. For angles of at-

tack α0 ≥ 60◦, the predicted region matches the simulation results surprisingly well.

This holds not only for the general shape, but also for the subtle details (e.g. the

sharp edges in the stability region close to the level of ẋ0 = 5m/s in Fig. 2.5B

and C, E and F, respectively). Again, a quantitative comparison shall be provided:

For α0 = 60◦, the range of spring stiffness resulting in stable running narrows from

2kN/m (10.5 − 12.5kN/m, Fig. 2.5D) to 1.6kN/m (10.6 − 12.2kN/m, Fig. 2.5A).

Complementary, for a given spring stiffness of k = 11kN/m, the angle of attack

range narrows from 2.7◦ (58.0− 60.7◦) to 1.7◦ (58.6− 60.3◦).
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2.5 Discussion

Figure 2.5. Comparison of the stability region for spring-mass running predicted
by the analytical approximation (A-C) with the results from a previous simulation
study (Seyfarth et al., 2002) (D-F). Starting from the initial condition y0 = `0
and ẋ0, the number of successful steps is predicted by iteratively applying the
return map function (2.26) (A-C), or obtained through numerical integration of
the spring-mass system (D-F). The movement is interrupted if (i) the vertical or
horizontal take-off velocity becomes negative, or (ii) the number of successful steps
exceeds 24 (scale on the right). In each subplot (A-C, or D-F, respectively), one
of three parameters (k, α0, ẋ0) is held constant. Additional parameters: m=80kg,
g=9.81m/s2, `0=1m, and Es=m

2 ẋ2
0 + mg`0.

2.5 Discussion

In this chapter, we addressed the stability of spring-mass running within a theoret-

ical framework. We derived an analytical solution for the stance phase dynamics

assuming steep spring angles and small spring compressions, and investigated the

return map of the apex height. The analysis confirms the previously identified self-

stabilization of spring-mass running. Moreover, the stability prediction surprisingly
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well matches the numerical results throughout the parameter space (leg stiffness

k, angle of attack α ≥ 60◦, and system energy Es or, adequately, initial forward

speed ẋ0), suggesting that, within this range, the approximate solution sufficiently

describes the dynamics of the center of mass during the stance phase of spring-mass

running. The solution is not restricted to the parameter setups used in this study,

but also holds in dynamically similar situations (Blickhan, 1989).

2.5.1 Closed form representations of the stance phase dynamics

As mentioned in the introduction (section 2.1), the stance phase dynamics of the

spring-mass model are non-integrable (Whittacker, 1904) and, thus, approximate

solutions are in demand when seeking parametric insights into the properties of the

system. A common approach to this issue is to simply ignore the gravitational force.

The resulting central force problem allows a closed form solution in the formal math-

ematical sense, which, however, involves elliptic integrals (Schmitt and Holmes,

2000) and, therefore, lacks a representation in elementary functions hampering the

desired parametric insight. At this point, one either proceeds by resuming to numer-

ical studies (e.g. Ghigliazza et al., 2003), or further simplifications are introduced.

For instance, in Schwind and Koditschek (2000) the mean value theorem is ap-

plied to circumvent elliptic integrals yielding a good approximation of the modified

system dynamics in stance, especially, when the spring compression is close to its

maximum.

However, in these studies it is also demonstrated that the effects of gravity

can hardly be neglected in general locomotion (Schwind and Koditschek, 2000)

or when using physiologically motivated model parameters (Geyer, 2001). The

resulting approximate solutions clearly deviate from numerical calculations for the

spring-mass model incorporating gravity (e.g. in Schwind and Koditschek (2000)

mean errors as high as 20% for the radial velocity at take-off are observed). Although

these solutions may be used for qualitative assessments (Ghigliazza et al., 2003),

any quantitative result seems highly questionable. Bearing in mind that the spring-

mass model is employed to devise general control schemes for running machines

(Raibert, 1986; Saranli and Koditschek, 2003) and to investigate animal and

human locomotion (He et al., 1991; Farley et al., 1991, 1993; Seyfarth et al.,

2001), this leaves a rather unsatisfactory state.

To surmount the discrepancy, in Schwind and Koditschek (2000) a general

approach similar to Picard iterations is introduced that iteratively fits the solution

without gravity in stance to the complete system. The algorithm does not depend
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on the particular spring law, and changes of angular momentum as observed in the

complete spring-mass system are taken into account. Again, this approach best

approximates the solution for the instant of maximum spring compression, although

it seems that, with an increasing number of iterations, the result for the subsequent

apex condition also improves (in Schwind and Koditschek (2000) the ’bottom-

to-apex map’ from maximum spring compression to apex position is investigated).

The authors report a reduction of the largest mean errors from 20% for the zeroth

iterate (solution without gravity) to 7% for the first iterate and to 3.5% for the

second iterate. Yet with increasing number of iterates, the algebraic tractability

of the approximate solution decreases. However, it should be noted that, although

most of the model parameters in Schwind and Koditschek (2000) are human-

like, a body mass of m = 1kg is used, and the correct assessment of accuracy in the

physiological parameter domain requires re-investigation for this approximation.

Similar to existing approaches, the approximate solution derived in this study is

based on a simplification of the stance-phase dynamics to a central force problem

rendering the planar spring-mass model integrable. But instead of ignoring grav-

ity, the gravitational force vector is realigned from the vertical to the spring axis.

This approach is motivated by the assumption of steep spring angles during stance.

By introducing the further assumption of small spring amplitudes, a Taylor series

expansion allows to rewrite the resulting differential equation for the radial motion

into an integral equation of familiar type (
∫ dx

ax2+bx+c
). Although the dynamics of

the central force system could have been obtained by consequently solving ellip-

tic integrals, this approach avoids the difficult quadratures that typically remain

even when gravity is ignored (e.g. Schmitt and Holmes, 2000; Ghigliazza et al.,

2003). Hence, the radial and angular motions can be extracted in terms of elemen-

tary functions. But, more importantly, the approximation error introduced by using

the Taylor series expansions in part compensates for the error made by converting

the planar spring-mass model into a central force system (see appendix). In con-

sequence, the exemplified approach combines a comparatively simple solution with

surprising accuracy well extending into the physiologically motivated parameter do-

main (compare Fig. 2.5). Although a Hooke’s law spring has been considered in this

study, the applied ideas might be transferable to other spring potentials as well.

However, it should not be overlooked that, for any approximation based on the

central force system approach during stance, the conservation of system energy is

inherently violated for asymmetric contact phases (take-off height unequal to touch-

down height). A pragmatic solution to this is to simply restore the preset system
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energy at take-off, for instance, by artificially manipulating the vertical and/or hori-

zontal take-off velocity (Saranli et al., 1998; Ghigliazza et al., 2003). We resolved

this discrepancy in the same manner (by forcing Es to be constant, the horizontal

velocity is automatically adapted in the next flight phase), but would like to em-

phasize that, in a formal mathematical sense, there is not yet any justification of

such a method guaranteeing the exact same qualitative behavior of approximate

solution and complete spring-mass model. The only confidence we can reach is that

(i) steady-state solutions are characterized by symmetric contact phases, where the

conservation of system energy equally holds for central force approximations, and

(ii) in a small neighborhood of such an equilibrium state the change in system energy

seems negligible compared to the system energy itself.

Without doubt, if flat spring angles are considered, the quality of the solution

decreases, and further approximation refinements are required incorporating the ef-

fects of the accurate alignment of the gravitational force during stance. For instance,

it could be tested whether the derived approximate solution would provide a better

zeroth iterate for the algorithm suggested in Schwind and Koditschek (2000). As

gravity has been taken into account except for the exact alignment with the vertical

axis, the iterative solution might converge faster to a result within a certain, small

error tolerance compared to numerical calculations. On the other hand, since the

misalignment of gravity only causes rather small changes for steep spring angles,

classical perturbation theory might be applicable, possibly yielding better results

for a larger angular range.

2.5.2 Self-stability and control of spring-mass running

Before investigated in sagittal plane running, the self-stabilizing property of the

spring-mass system could be demonstrated when modeling the alternating tripod

of six-legged insects in the horizontal plane (Schmitt and Holmes, 2000). As

gravity is not interfering in this case, the authors benefitted from the mean value

approximation of Schwind and Koditschek (2000) (compare last section) replac-

ing the numerical computation of the angle swept during stance with an analytical

expression.

In a simulation study, it could later be shown that, by simply resetting the

spring orientation (angle of attack) during the flight phase, the spring-mass model

can also exhibit self-stable behavior in sagittal plane running in the presence of

gravity (Seyfarth et al., 2002). By mapping the model behavior throughout the

parameter space (spring stiffness, angle of attack, and initial running velocity), the
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required parameter combinations for self-stable spring-mass running were compared

with data from human running. It was found that biological systems seem well

to adapt to the predicted parameter domain. Subsequently, in Ghigliazza et al.

(2003) this model was investigated within a more theoretical framework. Apart from

the angle swept during stance, which was still calculated by numerical integration,

the authors derived an explicit expression for the return map of spring-mass running

by neglecting gravity during stance. By not aiming at quantitative comparisons with

specific animals or machines, they could (i) clarify some of the general observations

made in Seyfarth et al. (2002) (e.g. minimum running speed), and (ii) illustrate

key behaviors of the derived return map (e.g. bifurcation and period doubling).

In contrast to other approaches, the stability analysis performed in this study is

based on the apex return map derived from an approximate solution of the stance

phase dynamics including gravity. For a special case (a = 0), we could show the

existence of stable fixed point solutions in spring-mass running without having to

recourse numerical integrations. We hereby confirmed the qualitative behavior of an

empirically found parametric dependency for stable running between spring stiffness

and angle of attack, and extended it it by the system energy. Furthermore, by

comparing the predicted parameter combinations for stable running with numerical

results, we observed a quantitative agreement far beyond the valid range of the

approximate solution, suggesting that, whether in biomechanics or robotics, if the

stability of bouncing gaits is of concern, the presented solution may well serve as an

analysis tool.

For instance, it could be investigated to what extent the stability of movement

trajectories can be manipulated when incorporating leg swing policies other than the

fixed leg orientation (Seyfarth et al., 2002; Ghigliazza et al., 2003) during flight.

In a recent investigation (Altendorfer et al., 2003), a necessary condition for

asymptotic stability could be derived when incorporating specific leg recirculation

schemes relevant for the robot RHex (Saranli et al., 2001). Based on the factor-

ization of return maps, in this special application, the condition was formulated as

an exact algebraic expression without having to resort to the actual stance-phase

dynamics.

However, no information about the system’s behavior could be obtained from

this condition when applied to a retracting swing leg policy. Here, recent simulation

studies (Seyfarth and Geyer, 2002; Seyfarth et al., 2003) suggest that the sta-

bility of running can largely be enhanced. In particular, it could be demonstrated

that a simple feedforward kinematic leg-angle program α(t− tapex) during flight can
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enforce the movement trajectory of spring-mass running to a ’dead beat’ (Saranli

et al., 1998) behavior: independent of the actual apex height yi, the next apex height

yi+1 resumes to a preset steady-state height ycontrol, guaranteeing ’maximum’ stabil-

ity yi+1(yi) = ycontrol. Of course, this can only be achieved if a critical apex height

ymin = `0 sinαapex is exceeded. Different initial apex heights can also be considered

as alternating ground levels with respect to one absolute apex height and, thus, the

kinematic leg program allows to choose a high level of running safety (ycontrol far

above ymin, bouncy gait as observed in kangaroos). As the model is conservative,

such a ’secure’, bouncy movement would exhaust the energy available for forward

locomotion, which might not be required in flat, predictable terrain. Accordingly,

by selecting an apex height ycontrol close to the minimum height ymin, the kinematic

leg program allows to maximize the energy efficiency (the share of system energy

spent for forward locomotion). Such a flexibility, strongly reminiscent of animal

behavior, could largely enhance the repertoire of movement patterns available to

legged machines.

Despite these progresses, whether the observed self-stabilizing behavior has been

ascribed to ’angular momentum trading’ (Schmitt and Holmes, 2000) or ’enforced

energy distribution among the systems degrees of freedom’ (Geyer et al., 2002),

we still lack a comprehensive understanding of the key features responsible for its

emergence. What properties of the system dynamics during stance allow a proper

interaction with the gravitational force field during flight yielding self-stability in the

regime of intermittent contacts? And, further on, in how far can we manipulate these

properties? Intensifying theoretical approaches seems desirable at this point since

they might not only support suggested control strategies, but could also disclose

further and maybe not obvious alternatives.

2.5.3 Conclusion

Considering this lack of knowledge and comparing the ease and maneuverability

distinguishing animal and human locomotion with the skills of legged machines, the

investigation of gait stabilization in biological systems seems to be a substantial re-

search direction. Here, the planar spring-mass model served as an efficient analysis

tool in the past. Benefitting from its parametric simplicity, its stabilizing behavior

could well be investigated by purely numerical means (dependence on three param-

eter groups only). Yet the situation rapidly changes if more complex models of loco-

motion are addressed, for instance, when incorporating leg recirculation strategies

during flight and/or investigating the stability of locomotion in three dimensions.
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(1+ρ)2

At this point, numerical approaches become more difficult and tractable analytical

descriptions more important. In the simplest case, approximate solutions could sub-

stitute the numerical calculation of the stance phase dynamics significantly reducing

the computational effort. In the best case, they could provide the parametric insight

themselves (e.g. as exemplified by equation 2.33). In that sense, the relevance of the

presented approximate solution may be seen in its simplicity and predictive power

within the physiological parameter domain, which allows to experimentally validate

further control strategies of biological systems likely to be disclosed in more complex

models of legged locomotion than the simple planar spring-mass system.

2.6 Appendix: Mixed accuracy approximation of 1
(1+ρ)2

The central force approximation of the stance phase dynamics captures an impor-

tant feature of the planar spring-mass model: the presence of the centrifugal force

Fc = mrϕ̇2er accelerating the compression-decompression cycle of the spring. In

consequence, the oscillation frequency ω̂0 of the planar system is increased when com-

pared to the frequency ω0 =
√

k/m of the corresponding one-dimensional system

(vertical spring-mass model). To account for such an increase, the Taylor expansion

of 1
(1+ρ)2

must be performed to at least second order in ρ (9). Otherwise, ω̂0 would

equal ω0 and the radial motion (12) or (21) would represent the motion of a vertical

spring-mass system hardly resembling the planar dynamics.

On the other hand, the central force approximation also introduces a substantial

drawback: the conservation of initial angular momentum PTD = m`2
0ϕ̇TD through-

out stance. Although the net change in angular momentum is zero for symmet-

ric (time-reflection symmetry about midstance tmid = tc/2) contacts of the planar

spring-mass system, the mean angular momentum

P̄ =
1
tc

∫ tc

0
P (t)dt (2.40)

changes (P̄ 6= PTD). Expressing P (t) by the initial value and the rate of change

P (t) = PTD +
∫ t
0 Ṗ (t′)dt′, and using Ṗ (t′) = −mgr(t′) cos ϕ(t′) = −mgx(t′) for the

planar spring-mass system, we obtain

P̄ = PTD − mg
tc

∫ tc
0

∫ t
0 x(t′)dt′dt

= PTD − mg
tc

[∫ tmid
0

∫ t
0 x(t′)dt′dt

+
∫ tc
tmid

∫ tmid
0 x(t′)dt′ +

∫ tc
tmid

∫ t
tmid

x(t′)dt′dt
]
.

(2.41)
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Using that, for symmetric contacts, at midstance the horizontal position x switches

from negative to positive values, (2.41) can be written as

P̄ = PTD + mg
tc

[∫ tmid
0

∫ t
0 |x(t′)|dt′dt +

∫ tc
tmid

∫ tmid
0 |x(t′)|dt′dt

−
∫ tc
tmid

∫ t
tmid

|x(t′)|dt′dt
]
.

(2.42)

The time reflection symmetry about midstance yields
∫ tc
tmid

=
∫ tmid
0 , and (2.42)

simplifies to

P̄ = PTD +
mg

tc

∫ tc

tmid

∫ tmid

0
|x(t′)|dt′dt = PTD +

mg

2

∫ tmid

0
|x(t′)|dt′. (2.43)

The mean angular momentum is increased compared to the initial value, which,

however, means that the amount of mean angular momentum decreases |P̄ | < |PTD|
since the initial value PTD is negative (according to the definition of the coordinate

system in Fig. 2.1 the angular velocity ϕ̇ is defined negative for forward motion).

The miscalculation of angular momentum in the central force approach (P ≡
PTD) has a more profound effect on the angular motion (P ∼ ϕ̇) than on the radial

(P ∼ r2). Considering that, due to the alignment of the gravitational force with

the radial axis (−mg sinϕ → −mg in (3)), the spring compression is increased, this

leads to a clear overestimation of the angular velocity.

Here, an approximation of the central force system dynamics with an error de-

creasing this inherent overestimation may result in a better performance when com-

pared to the actual spring-mass dynamics. Considering 1
(1+ρ)2

, the Taylor expansion

to the n-th order about ρ = 0 is given by

1
(1 + ρ)2

∣∣∣∣
ρ=0

=
n∑

i=0

(−1)i(i + 1)ρi. (2.44)

Since ρ ≤ 0 during contact, this simplifies to

1
(1+ρ)2

∣∣∣
ρ=−0

=
∑n

i=0(i + 1)|ρ|i

= 1 + 2|ρ|+ 3|ρ|2 + . . . + (n + 1)|ρ|n
(2.45)

showing that the approximation of angular velocity ϕ̇ = ω
(1+ρ)2

increases with each

expansion term. Hence, it might be advantageous to cancel this expansion earlier

than second order. In fact, it turns out it is. Comparing different order (zeroth to

second) approximations of 1
(1+ρ)2

for ϕ̇ with numerical computations of the actual

spring-mass dynamics, the first order approximation performs best.
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Chapter 3

From running to walking: the

smooth gait transition model

In the previous chapter, we derived a comparably simple approximate solution for

the planar spring-mass model, which allowed us to verify the self-stabilizing behav-

ior of spring-mass running observed in numerical simulation studies. Moreover, we

could identify a parametric dependency required for stable locomotion as an explicit

expression hereby extending an empirically suggested relationship. Naturally, the

question arises whether this method in gaining parametric insights into legged loco-

motion would similarly be applicable to the walking gait. However, the feasibility

of the approach heavily depends on the prior identification of a sufficiently sim-

ple mechanical template capturing the salient features of the whole body dynamics

during stance (ground reaction forces). And the simplest walking model known,

the stiff-legged inverted pendulum model, produces ground reaction force patterns

inconsistent with the experimental findings (see general introduction).

Motivated by experimental observations revealing significant stance-limb com-

pressions not only in running but also in walking (Lee and Farley, 1998; Gard

et al., 2004), in the subsequent two chapters, we pursue the idea that in contrast to

the traditional distinction between stiff and compliant legs in walking and running,

for both gaits the observed whole body dynamics might essentially be determined by

compliant leg behavior. Following the idea, in this chapter we at first ask whether

the predictability of the walk-run transition speed, which is generally derived from

limits of the inverted pendulum motion, can similarly be obtained from a running

constraint.
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3.1 Introduction

The inverted pendulum model idealizes the body to be a point mass m that is

supported by a massless rigid leg of length `0. The vaulting motion then introduces

the centrifugal force mv2

`0
acting upon the COM, which, at a critical speed vmax =

√
g`0, equals the counteracting gravitational force mg (g: gravitational acceleration)

suggesting an upper speed limit of the walking gait. Any excess velocity threatens

the system to get airborne indicating that legged systems are obliged to leave the

walking pattern when approaching this limit. To compare different species and

gravitational environments, this relationship is conveniently stated in terms of the

dimensionless Froude number Fr = v2

g`0
(Alexander and Jayes, 1983) with Frmax =

1 corresponding to the critical speed vmax.

Experiments investigating the walk-run transition support this mechanical inter-

pretation inasmuch as the transition speed vtrans indeed seems to follow a functional

dependency given by the square root of leg length `0 and gravitational accelera-

tion g. This not only holds for species as different as birds and humans (Hayes

and Alexander, 1983; Thorstensson and Roberthson, 1987; Gatesy and

Biewener, 1991; Hreljac, 1995a), but also applies to the same individual ex-

periencing reduced gravity environments (Kram et al., 1997). Yet although these

experiments demonstrate a qualitative agreement, they equally disclose a quantita-

tive discrepancy. Instead of at the maximum Froude number Frmax derived from the

inverted pendulum model, bipeds prefer to change their gait at a Froude number of

approximately 0.5. Hence, the attentional focus on the origin of the gait transition

has shifted from a global mechanical interpretation to more local and physiological

constraints in recent years, and factors as diverse as metabolic costs (e.g. Margaria,

1938; Cavagna et al., 1977; McMahon, 1985; Alexander, 1989; Minetti and

Alexander, 1997), kinematic constraints (Minetti et al., 1994; Hreljac, 1995a),

rate of perceived exertion (Noble et al., 1973; Hreljac, 1993) and force attenu-

ation limits (e.g. Biewener and Taylor, 1986; Farley and Taylor, 1991) are

discussed for potential triggers. Nevertheless, a conclusive explanation for the differ-

ence in number still remains elusive (for an overview: Raynor et al., 2002; Saibene

and Minetti, 2003).

In this chapter, we return to a global mechanical interpretation by exploiting the

fact that although bipeds prefer to switch their gait at about the same Froude num-

ber, they seem to employ two different kinematic strategies. Whereas humans and

flying birds preferably change from walking to running or hopping with an abrupt

change in the kinematics rendering the transition distinct (Hayes and Alexander,
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1983; Thorstensson and Roberthson, 1987; Minetti et al., 1994; Hreljac,

1995b; Verstappen and Aerts, 2000), especially the multitude of ground-dwelling

birds ranging from 50g quails to 90kg ostriches exhibits an alternative gait transi-

tion where running emerges as a more gradual shift from walking without a clear

difference in the kinematics and with an initial lack of an aerial phase (Gatesy

and Biewener, 1991; Verstappen and Aerts, 2000; Rubenson et al., 2004).

Although running without aerial phases seems contradictory, based on the char-

acteristic motion of the COM and its respective mechanical paradigms, the latter

indeed represents a walk-run transition (McMahon, 1985; Gatesy and Biewener,

1991).

Such a gradual shift implies that, at transition, the kinematic differences of both

gaits ideally disappear, which, in a more abstract picture, means that the COM

neither lifts above (walking) nor falls below (running) the landing height during

stance, but rather remains close to a horizontal line (Fig. 3.1). We cannot, however,

explore the smooth transition using the inverted pendulum model. Due to the

idealization of a rigid leg, it always yields a vaulting motion of the COM never

approaching a horizontal line. But the walk-run transition concerns both walking

and running, and the mechanical template for running, the spring-mass model, allows

to investigate more or less bouncy motions.

Figure 3.1. Schematic characterization of the COM kinematics in the stance
phase of walking and running with the gait transition as intermediate solution not
belonging to either gait.

Consequently, we follow the hypothesis that the smooth walk-run transition is

governed by the necessity to minimize the difference in the kinematics using a sim-

plified version of the spring-mass model, and ask whether there is a lower speed

limit for contact phases with nearly horizontal COM kinematics. Furthermore, we

investigate what implications the result may have for running at slower speeds and,
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by means of an experimental study on treadmill walking and running, scrutinize in

how far these implications apply to human locomotion.

3.2 Minimum walk-run transition speed

3.2.1 Simplified stance kinematics and dynamics

During stance, the average running speed v is given by

v =
xc

tc
(3.1)

where xc is the distance the COM travels in the horizontal direction and tc is the

contact time. As an idealization characterizing the walk-run transition, the COM is

assumed to describe a horizontal trajectory at the landing height level (Fig. 3.2A).

Thus, xc simplifies to

xc = 2 `0 cos α0 (3.2)

where `0 represents the landing leg length and α0 is the angle of attack.

Figure 3.2. Simplified model of the COM kinematics and dynamics in running at
the smooth walk-run transition. (A) The kinematics are reduced to a straight line
at the landing height level. (B) The dynamics are approximated by the dynamics
of a one-dimensional spring-mass system in the radial direction r of the COM. See
text for abbreviations.

To estimate tc, we consider the radial stance phase dynamics. But instead of

investigating the radial motion of the planar spring-mass system, we use the approx-

imation of a one-dimensional spring-mass model under the influence of gravity

mr̈ = k (`0 − r)−mg (3.3)
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3.2 Minimum walk-run transition speed

where k is the spring stiffness, and, due to the constrained kinematics, assume a

maximum spring compression ∆rmax = ∆`hor with

∆`hor = `0 (1− sinα0) (3.4)

at midstance (Fig. 3.2B). Solving (3.3) for the initial condition r(0) = `0 and ṙ(0) =

ṙ0 with ṙ0 ≤ 0 yields

r(t) = `0 +
ṙ0

ω0
sinω0t +

g

ω2
0

(cos ω0t− 1) (3.5)

where ω0 =
√

k/m is the natural frequency of the spring. The midstance time t1/2

can be calculated by differentiating (3.5) and then solving ṙ(t1/2) = 0 yielding

t1/2 =
1
ω0

[
π + tan−1

(
ω0ṙ0

g

)]
. (3.6)

Substituting (3.6) back into (3.5) leads to

∆rmax =
g

ω2
0

1 +

√
1 +

ω2
0 ṙ

2
0

g2

 (3.7)

linking the rebound dynamics with the kinematic constraint imposed by the transi-

tion condition. Applying ∆rmax = ∆`hor and using (3.4), the natural frequency ω0

required for the appropriate rebound dynamics can be derived to

ω0 =

√
2g

`0 (1− sinα0)
+

ṙ2
0

[`0 (1− sinα0)]
2 . (3.8)

Finally, by expressing ω0 in (3.6) with (3.8), the contact time tc = 2 t1/2 resolves to

tc =
2`0 (1−sinα0)√

2g`0 (1−sinα0) + ṙ2
0

π + tan−1


√

2g`0 (1−sinα0) + ṙ2
0

g`0 (1−sinα0)
ṙ0

 . (3.9)

In (3.9), the initial velocity ṙ0 is unknown. However, the contact time is maximized

for zero initial velocity ṙ0 = 0

tc ≤
2`0 (1− sinα0) π√
2g`0 (1− sin α0)

. (3.10)

Although (3.3) and (3.4) do not correctly describe the radial dynamics of the pla-

nar spring-mass template for running, (3.10) provides an upper limit of the actual
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3.2 Minimum walk-run transition speed

contact time (see appendix) allowing to estimate a lower limit for the average speed

at the assumed walk-run transition.

3.2.2 Minimum transition speed prediction

With (3.2) and (3.10) the minimum transition speed can be derived from (3.1) to

vmin =

√
2 (1 + sinα0)

π2
g`0 . (3.11)

Next to the gravitational acceleration g and the leg length `0, the predicted transition

speed depends on the angle of attack α0. However, for a considerable angular range

the pre-factor described by the fraction in (3.11) changes only marginally (e.g. 5%

for α0 from 65◦ to 90◦). Neglecting the angular variation by assuming sinα0 ≈ 1,

(3.11) can be written in the more general form

vmin =
√

Fr g`0 , (3.12)

which is identical to the known expression for the maximum walking speed (see

introduction). But in contrast to Fr = Frmax = 1, the model predicts that the

smooth walk-run transition necessitates a minimum Froude number of Frmin =
4
π2 ' 0.4 surprisingly well matching the experimentally observed transition speed

(Fr ≈ 0.5). Bearing in mind that vmin represents a lower speed limit, this close

alignment of predicted and observed smooth transition suggests that instead of being

forced to leave the walking motion, bipeds opt for the running pattern as soon as

it becomes accessible, which in turn indicates running to offer some locomotory

advantage over walking.

Interestingly, recent experimental studies support the notion of such a locomo-

tory advantage in terms of the control effort required to maintain a gait pattern. For

instance, by investigating the first two weeks of maturation in chicks, Muir et al.

(1996) found that although newly hatched birds need several days to develop the

ability to walk in a controlled and efficient manner, they can run as able as an adult

animal within a few hours suggesting the latter to be the less demanding gait than

the former. A similar control advantage has also been observed in humans. By mea-

suring the post reaction time of a secondary auditory task during treadmill walking

and running, Abernethy et al. (2002) could show that when subjects are asked to

maintain a single gait pattern throughout a range of speeds covering the gait tran-

sition, running is not more attentional demanding than walking below the preferred
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3.3 Mechanical limitations in running

transition speed, but walking occupies significantly more attentional resources than

running above this speed.

These experimental findings are additionally supported by theoretical investi-

gations on gait stability. Several studies establish that both walking (e.g. Garcia

et al., 1998) and running (e.g. Seyfarth et al., 2002; Ghigliazza et al., 2003;

Seyfarth et al., 2003; Geyer et al., 2005, compare also Chapter 2) can be me-

chanically self-stabilizing reducing the actual control effort. However, whereas the

running pattern can rely on this control advantage throughout the range of all speeds

(Seyfarth et al., 2003), mechanically self-stable walking is restricted to comparably

slow speeds by the threat of losing contact in single support (compare Chapter 4).

3.3 Mechanical limitations in running

If running offers such a control advantage over walking, why should bipeds wait until

this gait can be accessed from walking in a smooth manner? Certainly, the wealth of

experimental investigations mentioned in the introduction, which demonstrate that

a particular physiological quantity (e.g. metabolic costs, rate of perceived exertion

or experienced force) is minimized near or at transition could also be invoked in

reply to this question. However, we here return to our model, and ask whether it

can reveal a mechanical limitation of the running pattern towards slower speeds.

3.3.1 The transition model revisited

The walk-run transition model developed in the last section predicts that, viewed

from running, a smooth walk-run transition with a nearly horizontal COM trajectory

represented by ∆rmax = ∆`hor requires a minimum speed vmin corresponding to

Frmin ' 0.4. This, on the other hand, means that, below the speed vmin, larger

leg compressions ∆rmax > ∆`hor cannot be avoided in spring-like running. In fact,

reconsidering equations (3.7) to (3.11), for an arbitrary relative leg compression

λ ≥ 1, with

λ =
∆rmax

∆`hor
, (3.13)

a minimum speed

vλ =

√
Frmin

λ
g`0 (3.14)

is required. Consequently, by rewriting (3.14), this yields a lower limit of relative

leg compression

λmin =
Frmin

Fr
(3.15)
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3.3 Mechanical limitations in running

present at a given Froude number Fr ≤ Frmin (compare Fig. 3.3).

Hence, the model predicts that the relative leg compression must increase towards

slower speeds in spring-like running (note, however, that an increase in relative leg

amplitude does not require an increase in the absolute leg compression; see below),

which may have a twofold implication for bipedal running. First, it indicates that,

at slow speeds, an increasing share of the mechanical system energy must be spent

for the vertical movement instead of being put into the intended forward locomotion.

Assuming a similar amount of metabolic energy required to maintain a spring-like

leg behavior, this would result in an unfavorable growth of the cost of transport

(metabolic energy per traveled distance) towards slower speeds in running. Although

it is generally found that the relationship between the cost of transport and the

running speed has a neutral or weakly positive correlation when considered over

the normal range of running speeds (e.g. Margaria et al., 1963; Brisswalter

and Mottet, 1996; Roberts et al., 1998), experimental investigations particularly

focusing on slow running speeds indeed report a negative slope (Hreljac, 1993;

Minetti et al., 1994; Hreljac et al., 2002).

Furthermore, the emphasis on the vertical bouncing movement may also point

to a loss of mechanical comfort. This, however, requires that the inevitably larger

relative leg compression λ at slow running speeds is accompanied by an amplified

absolute vertical excursion ∆z. The latter is not obvious as the relative leg com-

pression λ is inversely proportional to the term 1− sinα0 (3.4), and a steepening of

the angle of attack (α0 → 90◦) towards slower running speeds might cause a rapid

growth of the relative leg compression λ without necessarily reflecting an increase

in the vertical amplitude ∆z.

3.3.2 Experimental comparison

To elucidate in how far the limitations of the running pattern suggested by the

model are mirrored in biological locomotion, and to what extent the walking pat-

tern might compensate for these limitations, we asked 9 subjects (5 male and 4

female, mean ± s.d. of age = 28± 9 years, body mass = 66.5± 9.3kg, body height

= 1.75 ± 0.09m) first to run and then to walk on a treadmill (Woodway, equipped

with Kistler force sensors measuring the vertical GRF Fy on each belt separately,

sampling rate 2kHz1) at 11 different speeds (vbelt = 0.6 − 3.6m/s, speed increment

0.3m/s). The leg kinematics (left and right leg: hip, ankle, and toe marker position)

were measured using a motion capturing system. The COM was estimated as the
1Although the GRF is not required within the context of this chapter, it is used in Ch. 4.
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mean of left and right hip marker position (plus 10cm vertical offset). The actual

leg length is described as the sagittal plane distance between the COM and the

foot point. The latter was assumed to be at the treadmill level and its horizontal

position was approximated by the mean of the horizontal toe and ankle marker posi-

tion. Additionally, the subjects’ preferred walk-run transition speeds were measured

(velocity ramp from 1.5 to 2.5m/s down to 1.5m/s with a speed in-/decrement of

0.1m/s).

In Fig. 3.3A, the obtained relationship between relative leg compression λ and

Froude number Fr = v2
belt
g`0

is shown for the 11 different speed levels. In contrast to the

model assumption, the ’ideal’ value of λ = 1 is not approached near the transition

speed (shaded area close to Fr = 0.4) in running (filled circle). This, however, was

expected. As mentioned in the introduction, the human gait transition displays a

distinct change in the kinematics and the smooth transition model does not exactly

apply. It has been discussed in literature why humans prefer a more bouncy motion

to the smooth running gait, and the ability to generate spring-like leg behavior

in an effective manner might here play an important role since, at best, humans

can save only 40% of the stride energy using elastic components of the musculo-

skeletal system (Ker et al., 1987). The remainder must be provided by active

muscle contributions. Consequently, the reduced mechanical advantage (Biewener,

1989) of a more crouched and smooth running style as observed in ground-dwelling

birds (Gatesy and Biewener, 1991) would require muscle activations consuming

comparably large amounts of metabolic energy. In fact, it has been shown that, in

humans, the crouched running style entails an increase in metabolic energy costs of

up to 50% when contrasted to normal running at the same speed (McMahon et al.,

1987).

Since the transition model does not scrutinize the generation of spring-like leg

behavior but rather explores the mechanical consequences, it cannot address this

potential explanation for the different running patterns used by ground-dwelling

birds and humans at the transition. Nevertheless, the more general prediction of

larger relative leg compressions λ towards slower speeds for spring-like leg behavior

(3.15) should equally affect human running and, as can be seen in Fig. 3.3A (filled

circles), indeed does. Moreover, whereas λ increases only moderately towards slower

speeds above the preferred gait transition (λ : 2.5 → 5 for Fr : 1.3 → 0.4), it

rapidly grows below the transition (λ : 5 → 50 for Fr : 0.4 → 0.04, note the

logarithmic scale). Considering that within the investigated range of running speeds,

the absolute leg compression remains almost constant at about 10% of leg length
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3.3 Mechanical limitations in running

Figure 3.3. Relative and absolute leg compression (mean ± s.d.) during running
and walking at different Froude numbers Fr = v2

belt

g`0
(mean ± s.d.; due to the

individual leg lengths, the subjects’ Froude numbers are different at the same
speed level vbelt with vbelt ranging from 0.6 to 3.6m/s; contacts for each level:
n > 130). (A) The relative leg compression λ is determined as the ratio between
the maximum leg compression ∆` and the leg compression ∆`hor required for
virtual straight COM kinematics. In running, this ratio cannot be smaller than
1. The dashed line λ = λmin indicates the minimum relative leg compression
derived from the model (eq. 3.15). (B) The absolute leg compression ∆` equals
the maximum leg compression in (A) and is normalized to the leg length `0. The
shaded area indicates the range (mean ± s.d.) of the preferred transition speed.
For higher speed levels (Fr > 0.7, indicated by the asterisks), the ’walking’ pattern
approached a running style known as ’Groucho-running’ (McMahon et al., 1987,
see text).

(filled circles, Fig. 3.3B), the experimental finding of a rapidly growing relative leg

compression supports the hypothesis that below the transition speed most of the

mechanical system energy is spent for the vertical bouncing movement and not for

forward locomotion.

43



3.4 Conclusion

Compared to running, in walking, the relative leg compression shows a different

dependency on locomotion speed. Below the preferred gait transition, λ remains

close to the ’ideal’ value of 1 (between 0.8 and 1, open circles in Fig. 3.3A) indicating

that the COM is balanced at about the landing height level throughout stance. As

this is accompanied by a clear reduction in the absolute leg compression (from 7%

of leg length at transition down to 3% at the lowest speed level, Fig. 3.3B), walking

seems to more efficiently direct the system energy into forward progression at this

speed range. By contrast, above the preferred transition speed, both the relative

and absolute leg compressions increase and approach similar values as in running

at higher Froude numbers (λ: 0.8 → 2 and ∆`/`0: 7% → 10% for Fr: 0.4 → 1.3)

indicating no mechanical advantage over the running gait at higher speeds. In fact,

based on the characteristic COM motion, the ’walking’ pattern changed to a running

pattern similar to ’Groucho running’ (McMahon et al., 1987) at higher speed levels

(Fr > 0.7, indicated by the asterisks), although the subjects were asked to maintain

walking and no flight phases were observed.

The results suggest that walking may be preferred to running at slow speeds

because it can guarantee sufficient locomotion comfort. This becomes even more

apparent when comparing the vertical stance phase amplitudes ∆z of the COM

(Fig. 3.4): they reach similar magnitudes for walking (about 5% of leg length, open

circles) and running (about 7%, filled circles) at higher speed levels (Fr > 0.4).

However, below the walk-run transition (Fr < 0.4), the amplitudes clearly diverge

in both gaits. Whereas in running ∆z increases towards slower speeds (7% → 9.5%)

reducing the mechanical comfort, in walking a considerable decrease is observed

(5% → 2%).

3.4 Conclusion

In this chapter, we resumed the dynamics based perspective on the walk-run tran-

sition, however, instead of focusing on speed limitations of walking, investigated

to what extent the gait transition may be induced by a speed limitation of run-

ning. In particular, we followed the assumption that a smooth walk-run transition

as observed in ground-dwelling birds (Gatesy and Biewener, 1991; Verstappen

and Aerts, 2000; Rubenson et al., 2004) is governed by the necessity to minimize

the difference in the COM kinematics at transition (Fig. 3.1). The analysis of a

simplified spring-mass model revealed that, idealized by a virtually straight COM

motion during contact, this kinematic constraint imposes a minimum running speed
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3.4 Conclusion

Figure 3.4. Vertical amplitude (mean ± s.d.) during walking and running at
different Froude numbers (mean ± s.d). The vertical amplitude is calculated as
difference between the highest and lowest point of the COM during contact, and is
normalized to the leg length `0. The shaded area indicates the range (mean ± s.d.)
of the preferred transition speed. For the asterisks compare Fig. 3.3

vmin =
√

Frmin g`0 leading to the same fundamental relationship as known for the

maximum walking speed vmax derived from the inverted pendulum model for walk-

ing. But in contrast to Frmax = 1, the minimum transition speed is characterized

by the dimensionless Froude number Frmin = 4
π2 ' 0.4 surprisingly well matching

the experimental results (Fr ≈ 0.5: Hayes and Alexander, 1983; Thorstensson

and Roberthson, 1987; Gatesy and Biewener, 1991; Hreljac, 1995a; Kram

et al., 1997). It should, however, be noted that as the model was derived assuming

a smooth transition, it does not exactly apply to the human gait change. Future

research is needed at this point to clarify to what extent the distinct change of hu-

mans may be coupled to the smooth transition. Furthermore and more generally, the

model predicts that, below the minimum transition speed (Fr ≤ Frmin), spring-like

running inevitably leads to increased relative leg compressions with λmin = Frmin

Fr .

The similarity between predicted minimum and experimentally observed tran-

sition speed suggests that bipeds prefer running to walking as soon as the first

becomes accessible in a sufficiently smooth manner. Such a preference would indi-

cate a locomotory advantage of running over walking, which, in terms of the control

effort required to maintain a single gait pattern throughout the range of locomotion

speeds, is supported by recent experimental (Muir et al., 1996; Abernethy et al.,

2002) and theoretical investigations (Seyfarth et al., 2003, Chapter 4). Below the
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minimum transition speed, however, the increase in relative leg compression may

prevent bipedal animals and humans from switching to running as the emphasis

on the vertical bouncing movement suggests an unfavorable growth of the cost of

transport as well as a reduced mechanical comfort. Although the increase in the

cost of transport (Hreljac, 1993; Minetti et al., 1994; Hreljac et al., 2002) and

a perception of discomfort (Noble et al., 1973; Hreljac, 1993) are known for slow

running speeds from literature already (with the latter itself being suggested as a

possible trigger for the gait transition), the derived model allows to interpret both

effects as a consequence of the underlying dynamics of the mechanical system.

In the presence of these mechanical limitations, the experimental comparison be-

tween human running and walking revealed that the walking gait may be preferred

at slow locomotion speeds since it can guarantee sufficient mechanical comfort, pos-

sibly, even at the expense of an increased control effort. From that perspective, the

gait transition of biological systems seems to mediate between locomotion advan-

tages and disadvantages based on more than a single movement criterion such as

metabolic costs, comfort or control effort (gait stability), and disclosing the effective

movement criterions could help improving the understanding of the gait transition

in particular as well as biological legged locomotion in general.

3.5 Appendix: One-dimensional approximation of the

radial stance phase dynamics

The equations of motion of the planar spring-mass model are given by (for notation

see Fig. 3.2)

mr̈ = k(`0 − r) + mrϕ̇2 −mg sin ϕ (3.16)

and

mrϕ̈ = −2mṙϕ̇−mg cos ϕ (3.17)

describing a non-integrable system. Although approximate solutions exist (e.g.

Geyer et al., 2005, compare also Chapter 2), we here seek a simple estimate of

the contact time tc providing a lower limit of the transition speed. Hence, only the

radial component (3.16) is considered.

For symmetric contacts, the conservation of momentum yields

∫ tc

0
mr̈ dt = −2mṙ0 (3.18)
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where ṙ0 is the initial radial velocity. This general expression must be fulfilled

for all rebounding systems. But dependent on the developed force, the contact

time may vary. Thus, each simplification (∗) of (3.16) that retains the rebounding

characteristic and produces smaller forces mr̈∗ ≤ mr̈ guarantees that the contact

time can only be increased. Approximating the radial dynamics with

mr̈ = k(`0 − r)−mg (3.19)

meets both requirements (ϕ ∈ [0, π]). Here, the centrifugal force accelerating

the compression-decompression cycle of the planer spring-mass system is ignored

mrϕ̇2 → 0 and the counteracting gravitational force is considered to be fully present

throughout stance −mg sinϕ → −mg.

The radial dynamics (3.19) describe a more compliant system resulting in larger

spring compressions for identical initial velocities ṙ0. Consequently, smaller values ṙ0

have to be assumed to restrict the maximum spring compression to ∆rmax = ∆`hor

given by the kinematic constraint (Fig. 3.2A). However, reducing the initial velocity

can only further increase the contact time tc (as can be seen in (3.6)).
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Chapter 4

The spring-mass walking model

In Chapter 3, we could demonstrate that the predictability of the walk-run transition

is not constrained to a speed limitation of the walking motion as described by the

inverted pendulum model, but can equally be obtained from a running perspective

using the spring-mass model as gait template. In addition, with Fr ' 0.4, the

derived transition speed more accurately predicts the Froude number at which the

gait transition actually occurs, supporting the notion that a compliant leg behavior

could contribute to general biological legged locomotion more substantially than

traditionally expected. In pursue of a gait template for walking, in this chapter we

address whether such a compliant leg response may indeed suffice to obtain whole

body dynamics similar to those observed in walking.

4.1 Introduction

On the mechanical level, the inverted pendulum (Fig. 1.2, p. 3) is employed as sim-

ple paradigm of the walking gait. Yet although this model represents the simplest

walking model conceivable, it produces GRF patterns inconsistent with experimen-

tal observations (Full and Koditschek, 1999; Pandy, 2003). Correlated to this

difference in the GRF, experimental studies also demonstrate that the COM displays

much less vertical excursion than expected by the vaulting motion of the model and

the stance-limbs experience significant compression-decompression cycles (Lee and

Farley, 1998; Gard et al., 2004, compare section 1.2).

Hence, introducing leg compliance when addressing walking seems a natural

consequence and, in fact, earlier simulation studies already suggest that such a

leg behavior may indeed contribute to a functional walking gait. By employing

higher-dimensional models incorporating segment masses and/or spring and damper
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terms in the legs (Siegler et al., 1982; Pandy and Berme, 1988), it could be

demonstrated that the characteristic double-peak pattern of the vertical GRF in

walking can be enforced if adequate initial conditions and model parameters are

selected.

However, besides the increased model complexity hampering the desired para-

metric insights, these simulation studies focus on incomplete step cycles (either

single-support from opposite toe-off to opposite heel-strike, Pandy and Berme

(1988), or a sequence of single- and double-support from heel-strike assuming the

opposite leg to be swinging to opposite heel-strike to toe-off, Siegler et al. (1982)),

and hereby neglect the full contribution of the opposite leg in stance on the actual

COM dynamics. In consequence, the periodicity and stability of the identified force

patterns in a sequence of steps (as investigated for the inverted pendulum walking

model, e.g. Garcia et al., 1998) cannot be addressed.

In contrast to these studies involving more complex models, in the present chap-

ter we restrict ourselves in two ways when addressing leg compliance in walking.

First, we employ the simple spring-mass model (Blickhan, 1989; Seyfarth et al.,

2002) merely extended by a second idealized leg spring. Secondly, rather than en-

forcing certain GRF patterns, we first seek stable periodic locomotion and then

scrutinize the inherent steady-state dynamics.

4.2 Methods

4.2.1 Walking model

Walking is modeled as a sagittal plane movement (Fig. 4.1). The body is reduced to a

point mass m at the COM. During the gait cycle, the gravitational force Fg = mg (g:

gravitational acceleration) is acting on the COM. Additionally, the COM trajectory

is influenced by forces originating from the alternatively contacting legs, which are

idealized by two independent, massless springs attached to but freely pivoting around

the COM (left and right leg: black and white spring, respectively). For symmetry,

the springs are characterized by equal values of stiffness k and rest length `0.

A single leg remains in stance as long as the corresponding spring is compressed

(spring length ` is smaller than rest length `0) exerting the force Fs = k(`0−`) on the

COM. If the spring exceeds its rest length `0 during decompression, the leg switches

into the swing phase where a purely kinematic constraint is assumed. Initiated at

the apex, the highest point (ẏ = 0) of the COM during the single support phase of

the stance leg, the swing leg is set to a virtual length `0 and orientation α0 with
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Figure 4.1. Spring-mass model for walking (for abbreviations see text).

respect to gravity, predefining a distinct landing height yTD = `0 sinα0. When

the leg strikes the ground (yCOM = yTD), it returns to the freely rotating spring

representation of the stance phase. Again, to attain symmetry, α0 is equal for both

legs.

For instance, in Fig. 4.1, the model starts at the apex of the left leg single

support phase. Although largely decompressed (` close to `0), the left leg spring

(black) remains in contact (please note that the instant of apex is not necessarily

characterized by an upright position of the contacting spring as depicted in the

figure, it merely requires ẏ = 0). In contrast, the right leg spring (white) resembles

the kinematic constraint of the fixed leg orientation during the swing phase. Since

the gravitational force exceeds the counteracting force developed by the left leg

spring, the COM height reduces (dotted line) while compressing the spring. When

the right leg touches the ground (’right TD’, Fig. 4.1), the system enters the double

support phase. The vertical COM movement soon reverses as a consequence of the

additional vertical push of the right leg. If the COM had sufficient horizontal speed

beforehand, the forward motion continuous and eventually reaches a position where

the left leg spring reaches its rest length `0 again. Consequently, the left leg takes off

(’left TO’, Fig. 4.1) and the system switches into the right leg single support phase.

4.2.2 Stability analysis

The previous example presumes a well distributed force generation among the leg

springs balancing the COM in the vertical direction when counteracting gravity

while maintaining the forward motion. But the walking pattern may also fail if (i)
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the horizontal movement is reversed (backward falling), (ii) the landing height of

the swing leg is larger than the actual apex height (foot below ground level), or (iii)

the vertical leg forces are too large and the stance leg takes off before the swing leg

lands, i.e. the system gets airborne.

To investigate whether such a model can exhibit stable walking patterns for a

given set of parameters, a return map analysis of the COM system state (x, ẋ, y, ẏ) is

performed. Due to the symmetry of the model, it suffices to analyze the state of two

subsequent single support apices (x, ẋ, y, ẏ)i and (x, ẋ, y, ẏ)i+1 defining a single step

(Fig. 4.1). Since the vertical velocity vanishes at each apex (ẏ = 0), the state vector

can here be reduced to (x, ẋ, y)i. Furthermore, as a consequence of the leg swing

policy, the absolute x-position of the COM has no direct influence on the periodicity

of the walking pattern. Only the relative position xrel,i = xi− xFP,i contributing to

the actual spring length `i =
√

x2
rel,i + y2

i is of relevance where xFP represents the

absolute x-position of the foot point (FP) of the contacting leg spring. Still further,

as the model is conservative, i.e. the system energy Es is constant, the horizontal

velocity at apex ẋi is given by ẋi =
√

2Es
m − k

m (`0 − `i)
2 − 2gyi. In consequence, the

systems periodic behavior is uniquely determined by the reduced apex state vector

(xrel, y)i defining the apex return map

R : (xrel, y)i → (xrel, y)i+1 . (4.1)

For stability, it suffices that two conditions are fulfilled. First, that a steady-state

solution exists with
xrel,i+1 = xrel,i

yi+1 = yi

(4.2)

and, secondly, that within a small neighborhood of this solution, the eigenvalues

λ1,2 =
DR11 + DR22

2
±

√
(DR11 + DR22)

2

4
+ DR12DR21 −DR11DR22 (4.3)

of the Jacobian matrix

DRab =

( ∂xrel,i+1

∂xrel,i

∂xrel,i+1

∂yi
∂yi+1

∂xrel,i

∂yi+1

∂yi

)
(4.4)

lie within the unit circle, i.e. |λ1,2| < 1.
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4.2.3 Systematic parameter scan

The dynamics of a single step are influenced by eight individual constants, the

model parameters m, g, k, `0, α0, and Es, and the initial apex position xrel,i and

yi, which can, however, be reduced to only five independent parameters: angle of

attack α0, dimensionless stiffness k̃ = k`0
mg , dimensionless system energy Ẽs = Es

mg`0
,

and dimensionless initial apex position x̃rel,i = xrel,i

`0
and ỹi = yi

`0
(see appendix 4.5).

To ensure dynamic similarity in general, all five of these parameters would have to be

considered. However, we do not seek general similarity, but confine our investigation

to stable periodic locomotion. Here, the initial apex position is already taken into

account by analyzing whether the return map admits stable fixed point trajectories

(see section 4.2.2). Hence, the systematic parameter scan characterizing the model’s

ability for stable locomotion reduces to the remaining parameters α0, k̃, and Ẽ.

4.2.4 Simulation environment

The model is implemented in Matlab 6 using the Simulink 4 toolbox (Mathworks

Inc., Natick MA, USA). The forward dynamics simulation is performed with the

embedded variable step integrator ode113 with a maximum step size of 10−2 and an

absolute and relative error tolerance of 10−6. The results of the numerical integration

are checked using a tenfold higher accuracy.

4.2.5 Experimental comparison

In order to evaluate to what extent the model’s stability prediction compares to the

strategies used in biology, the parameter combinations (α0, k̃, and Ẽs) characterizing

human walking were estimated from the data obtained in the experimental study

described in Ch. 3.3.2.

The leg rest length `0 and angle of attack α0 are calculated from the leg kine-

matics at touch-down detected by the rise of the corresponding vertical GRF Fy

(force threshold: 20N, compare Ch. 3.3.2) . The leg stiffness is estimated by the

mean stiffness k of the leg force-length trace F`eg(`) during contact, where F`eg is

approximated by F`eg ≈ Fy

sin α using the measured vertical force Fy and the leg angle

α. The system energy Es is estimated at the stance leg apex position (ẏCOM = 0)

by assuming that the leg compression at this position applies to a spring with the

calculated stiffness k: Es = m
2 ẋ2

COM + mgyCOM + k
2 (`0 − `)2.
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4.3 Results

To avoid the restriction to certain parameter combinations, the results are presented

in dimensionless form.

4.3.1 Stable walking

First, it is addressed whether the walking model can display stable periodic move-

ments by analyzing the apex return map of a single step. As representative examples,

the results for three different parameter combinations are depicted in Fig. 4.2. Start-

ing with the parameter set α0 = 69◦, k̃ = 17.8, and Ẽs = 1.04 (Fig. 4.2A), the return

map R : (x̃rel, ỹ)i → (x̃rel, ỹ)i+1 shows a vortex curling around a fixed point (close

to x̃rel = 0 and ỹ = 0.975). The calculation of the eigenvalues λ1,2 of the Jacobian

matrix DRab reveals that it is a stable fixed point (|λ1,2| < 1, shaded areas). Con-

sequently, within a sufficiently small neighborhood of this point, disturbed initial

conditions are attracted in subsequent steps leading to stable periodic locomotion of

the model (example tracing, Fig. 4.2A). The steady-state apex condition is charac-

terized by a vertical stance leg position (x̃rel = 0), which is referred to as ’symmetric

solution’.

By steepening the angle of attack to α0 = 73◦, two changes are observed in

the return map (Fig. 4.2B). First, the position of the identified stable fixed point

shifts towards a forward leaned leg orientation at apex (x̃rel > 0) characterizing

an ’asymmetric solution’. Moreover, a second, lower fixed point emerges (around

x̃rel = 0 and ỹ = 0.96). However, with |λ1,2| > 1 it proves to be unstable. The

two selected example tracings in Fig. 4.2B demonstrate the model behavior near the

two critical points. Starting close to the unstable one, the apex states of subsequent

steps (small circles) steadily drift away from the initial state. Although the system

achieves several steps, it finally collapses. In contrast, starting in the neighborhood

of the stable fixed point, the following apex states approach this point. It requires

a considerable number of steps until the steady-state is assumed.

Further steepening the angle of attack finally leads to the disappearance of sta-

ble solutions (α0 = 76◦ , k̃ = 17.8, not shown in Fig. 4.2). However, by addition-

ally increasing the spring stiffness (k̃ = 25.5), stable locomotion is again obtained

(Fig. 4.2C). But, instead of the upper fixed point, which does no longer exist, the

lower fixed point has now turned into a stable one yielding another symmetric solu-

tion.
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Figure 4.2. Apex return map. The single support apex state is limited by the
stumbling condition (ỹ > sinα0) and the contact constraint (x̃2 + ỹ2 < 1). The
arrows point into the direction of the state vector flow R : (x̃rel, ỹ)i → (x̃rel, ỹ)i+1.
No direction is given for initial states i not resulting in subsequent states i+1.
The shaded areas indicate regions of potential local stability (|λ1,2| < 1). The
traces start in the neighborhood of fixed points and follow subsequent apex states
(small circles). (A) One stable fixed point can be identified with x̃rel = 0. (B)
At increased angle of attack, the stable fixed point shifts into a forward apex
position x̃rel > 0 and a lower, unstable fixed point with x̃rel = 0 appears. (C)
At further increased angle of attack and increased spring stiffness, the upper fixed
point disappears and the lower fixed point becomes stable. Additional parameter:
Ẽs = 1.04. Scan resolution: 60× 30.

4.3.2 Characteristic steady-state patterns

The results of the apex return map analysis show that the walking model can exhibit

stable periodic locomotion. But how do the corresponding COM dynamics and

54



4.3 Results

Figure 4.3. Steady state movement patterns for the investigated examples in
Fig. 4.2 (A-C). The vertical (F̃vert) and horizontal component (F̃horiz) of the
ground reaction force, the vertical displacement ∆ỹ = ỹ − sinα0, and the spring
compression ∆˜̀= 1− ˜̀ are shown for the left spring stance. The vertical displace-
ment ∆ỹ is compared to the displacement of an inverted pendulum (∆˜̀= 0) and
to a COM movement at landing height level. Double support phases are indicated
by the shaded bars at the time axes. The lengths of the time scales reflect the
different absolute contact times. Additional parameter: Ẽs = 1.04.

kinematics of the system look like? In Fig. 4.3, for the three examples introduced in

the last section (A, B, and C, respectively), the steady-state patterns of the ground

reaction force F̃ = k̃(1 − ˜̀) with F̃ = F
mg and ˜̀ = `

`0
, the vertical displacement

∆ỹ = ∆y/`0 = ỹ − sinα0, and the spring compression ∆˜̀ = ∆`/`0 = 1 − ˜̀ are

shown for the left leg spring (due to parametric symmetry, the patterns are identical

between left and right spring).

For the solutions A and C, the dynamics and kinematics are symmetric with

respect to midstance. The vertical component F̃vert of the ground reaction force

is characterized by two equal force peaks indicating two compression cycles of the

spring during the stance phase (compare ∆ỹ and ∆˜̀). The horizontal component

F̃horiz has an odd symmetry with respect to midstance (50% of stance time) rep-

resenting a deceleration-acceleration cycle in the forward direction. Whereas, for
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the upper symmetric solution (A), the vertical displacement ∆ỹ almost reaches the

spring rest length at midstance (depicted by the ’inverted pendulum’ trajectory), it

remains close to zero (’landing height’ line) for the lower symmetric solution (C).

Correspondingly, the stance spring undergoes a significant oscillation in the first case

(∆˜̀, A), and nearly remains in a resting position during the contact in the last case

(C).

In contrast to the symmetric examples, the asymmetric solution (B) has a larger

first peak of the vertical ground reaction force F̃vert (accordingly, an increased initial

spring compression ∆˜̀) and a reduced take-off height (∆ỹ negative), the latter

representing an asymmetry of the leg angle between touch-down and take-off.

Figure 4.4. Robustness in leg parameter adjustment. The shaded areas depict
regions in the (k̃, α0)-plane for stable walking (Ẽs = 1.04) indicating that, to a
certain extent, the system can tolerate parameter disturbances maintaining the
locomotor goal of periodic movements. The arrows point to the parameter com-
binations A, B, and C investigated in section 4.3.1 and 4.3.2. These examples
are representative for the model behavior within the three separate parameter re-
gions (1-3, region 1 and 2 separated by the white dotted line). Scan resolution:
256× 256.
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4.3.3 Robustness in parameter adjustment

So far, the model behavior has been scrutinized for three distinct parameter exam-

ples. To investigate how the stabilizing behavior relates to the model parameters in

more detail, the apex return map analysis is applied throughout the (k̃, α0)-space

(system energy still fixed at Ẽs = 1.04). The result is shown in Fig. 4.4. Three

regions can be identified (1-3, region 1 and 2 separated by the white dotted line),

within which adjacent parameter combinations equally lead to stable periodic move-

ments, although different steady-state solutions are assumed (not shown in Fig. 4.4).

Consequently, to a certain extent, the system is robust with respect to parameter

disturbances.

The regions differ from each other by the characteristic location of the cor-

responding fixed point at apex. Whereas parameter combinations from the first

region (1) yield upper symmetric solutions, in the second region (2) the system has

asymmetric fixed points, and in the third region (3) lower symmetric solutions are

assumed as shown by the three representative examples of the last two sections (A,

B, and C, respectively). Other fixed point locations could not be identified.

4.3.4 ’Exotic’ walking patterns

In the last section, the system energy has been fixed while investigating the influence

of the parameters spring stiffness k̃ and angle of attack α0 on the model’s stabilizing

behavior. To complete the parameter scan, the analysis is now extended by sys-

tematically exploring all three parameters α0, k̃, and Ẽs (Fig. 4.5).1 For a spring

stiffness k̃ within a range of about 6.4 to 64, stable locomotion is obtained for angles

of attack α0 approximately ranging from 55◦ to 80◦. However, the required k̃-α0-

adjustment is strongly modulated by the actual system energy Ẽs (ranging from 0.9

to 1.11).

Moreover, instead of a single connected parameter domain, there exist multiple,

separate domains in the (α0, k̃, Ẽs)-space enabling different parameter adjustment

policies to ensure stability with increasing locomotion speed (system energy). How-
1To reduce the computational effort, instead of the apex return map analysis, a faster algorithm

is employed to identify stable steady-state solutions. For each parameter combination, the system
behavior is tested by counting the number of successful steps the model walks for 50 equally dis-
tributed initial apex heights ỹi ∈ (sin α0, 1) while x̃rel,i is fixed at xrel,i = 0, i.e. the model starts
in an upright spring position at the initial apex. If the system converges to a steady-state solution,
an infinite number of steps would result. Hence, the simulation is stopped as soon as 99 steps are
reached. The algorithm is based on the assumption that the upright position lies within the basin of
attraction for stable solutions. Whereas this assumption may not be justified for asymmetric fixed
points, preliminary parameter scans showed no differences when comparing this faster algorithm
with the return map analysis.
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Figure 4.5. Exotic walking. The parameter combinations (k̃, α0, Ẽs) leading
to self-stable walking patterns are depicted. Next to the domain characterized by
force patterns with two peaks in the vertical component, further domains with
multiple peak patterns are observed (indicated by the small icons). Due to the
limited scan resolution, only regions with up to five force peaks are resolved, and
the last two domains misleadingly seem to overlap. To facilitate the orientation,
again the three example parameter sets of the last sections (A, B, and C) are
indicated by the open circles. Scan resolution: 129 × 129 × 129 (data smoothed
for visualization).

ever, as indicated by the adjoining icons in Fig. 4.5, only the largest domain corre-

sponds to steady-state walking patterns with two force peaks (compare examples in

Fig. 4.3, corresponding parameter combinations shown as A, B, and C in Fig. 4.5,

respectively). The other domains belong to steady-state solutions having more than

two force peaks. As the distance between the individual domains shortens with in-

creasing number of force peaks, only regions with up to five peaks are resolved in

Fig. 4.5 (the scan resolution is restricted to 129× 129× 129; furthermore, the data

is smoothed for visualization).
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4.3.5 Experimental results

The estimates for α0, k̃, and Ẽs in human walking are shown in Tab. 4.1. Starting

in an upright position at zero treadmill speed, in the initial six speed levels (vbelt =

0.6− 2.1m/s, Ẽs = 1.00− 1.15) the subjects converged from a steep angle of attack

(α0 = 75.3±2.4◦) and a high leg stiffness (k̃ = 34.8±11.1) to a flatter angle of attack

(α0 = 67.1±1.4◦) with smaller leg stiffness (k̃ = 22.7±4.8). For the subsequent speed

levels (vbelt = 2.1−3.6m/s, Ẽs = 1.15−1.25), the angle of attack stabilizes and even

shows a tendency to re-steepen for the highest speeds. In contrast, although to a

smaller amount, the decrease in leg stiffness continuous (from k̃ = 22.7 to k̃ = 17.3).

vbelt[m/s] n α0 [deg] k̃ Ẽs

0.6 165 75.3 ± 2.4 34.8 ± 11.1 1.00 ± 0.01
0.9 206 73.0 ± 2.2 31.2 ± 6.3 1.01 ± 0.01
1.2 201 70.9 ± 2.1 27.8 ± 5.1 1.03 ± 0.01
1.5 152 69.1 ± 2.0 25.5 ± 4.4 1.06 ± 0.01
1.8 182 67.8 ± 1.5 24.5 ± 4.1 1.10 ± 0.01
2.1 176 67.1 ± 1.4 22.7 ± 4.8 1.15 ± 0.02
2.4 182 67.1 ± 1.5 18.9 ± 4.7 1.19 ± 0.02
2.7 164 68.5 ± 2.7 16.7 ± 4.1 1.22 ± 0.05
3.0 247 70.3 ± 4.0 16.9 ± 3.7 1.22 ± 0.07
3.3 321 70.3 ± 3.4 16.8 ± 3.3 1.22 ± 0.08
3.6 359 69.9 ± 3.4 17.3 ± 3.4 1.25 ± 0.08

Table 4.1. Experimental results. For each treadmill speed vbelt, the mean ± s.d.
of angle of attack α0, dimensionless stiffness k̃, and dimensionless system energy
Ẽs are shown where n indicates the number of collected left and right leg stance
phases across all 9 subjects.

4.4 Discussion

In this chapter, we addressed to what degree purely elastic leg behavior may con-

tribute to the whole body dynamics observed during walking. Therefore, we ex-

tended the planar spring-mass model for running and hopping by introducing a sec-

ond idealized leg spring. The analysis reveals that walking on elastic legs can lead

to stable and robust periodic locomotion if the parameters leg stiffness, angle of

attack, and system energy are properly chosen. Moreover, the resulting steady-state

dynamics yield GRF patterns including the characteristic double-peak structure ob-

served in animal and human walking. The model suggests limb compliance to play a

functional role not only in bouncing gaits but also in walking and, hence, for legged

locomotion in general.
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4.4.1 Double support is key to force pattern

Modeling the stance leg dynamics by a simple spring-mass system has already been

attempted in 1987. Based on the observation that, in walking horses (where the

characteristic double-peak force pattern is also present, Merkens et al. (1986)),

the hindlimb revealed only small changes in the knee, tarsal and proximal digital

joint angles during stance (Wentink, 1978), Gurp et al. (1987) suggested that,

within this phase, the total limb behavior can be described by a rigid element,

which is slightly compressed. Consequently, the authors modeled the stance leg by a

single spring-mass system, but, to account for the load bearing contributions of the

other legs, the mass acting upon the spring was time dependent with the time course

m(t) following a trapezoid function. From heel strike (t = 0) to a time instant t1

marking the end of an assumed double support phase, m(t) increased linearly with

time m(t) = t
t1

m0, then remained constant at m(t) = m0 until, from t2 on, the mass

decreased linearly to zero m(t) =
(
1− t−t2

t1

)
m0 in the assumed next double support.

Here, the length t1 of the double support contribution and the mass m0 loading the

stance leg in single support were taken from experimental data. Although this model

is not a feedforward dynamic model (next to the explicit time dependence m(t) the

angular motion was assumed to be a linear function α(t) = ct + α0), Gurp et al.

(1987) demonstrated that the characteristic double-peak pattern of the vertical GRF

can be enforced.

Whereas it seems that this work has not drawn large attention subsequently, it

already indicates that the COM dynamics during walking may well be described

by purely elastic leg operation with the double support phase having an essential

contribution. In fact, considering a complete stance phase of one spring leg of the

spring-mass walking model, the effective load (mass) on this spring only gradually

increases after touch-down as the opposite spring still is partially supporting the

COM. Due to sufficient stiffness, the spring quickly reaches its peak compression

leading to a corresponding initial force peak in the vertical GRF. In contrast to

running, the spring does not relax completely afterwards since, following take-off of

the opposite spring, the stance spring has to bear the full body weight. Consequently,

the stance spring starts to oscillate and further force peaks occur until the ongoing

rotational motion allows the opposite spring again to contact the ground initiating

the next double support. From this instant on, the effective load on the spring under

consideration gradually decreases (as the opposite spring takes over in supporting

the COM) and, finally, the spring leg completely relaxes terminating the stance

phase.
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Without rotation of the stance spring, i.e. with zero forward speed (low system

energy), the stance spring would oscillate indefinitely. However, with increasing

speed (increasing system energy), less and less oscillations (force peaks) can be real-

ized before the opposite leg again touches the ground. Finally, the highest walking

speed (system energy) can only be obtained with just one additional compression-

decompression cycle yielding the double-peak pattern of the vertical GRF (compare

Fig. 4.5).

4.4.2 Self-stable walking: similarities and differences to spring-

mass running

Spring-mass walking differs from spring-mass running (Seyfarth et al., 2002) by

introducing a second spring. Nevertheless, both springs operate independently and

follow the same swing leg policy as investigated in the running model, i.e. assume

the fixed orientation α0. Hence, it might not surprise that, similar to spring-mass

running, stable and robust locomotion patterns can be obtained. Moreover, as the

parameter space available for adjustments in attaining stable locomotion remains

identical (α0, k̃, and Ẽs), one might even expect comparable parametric dependen-

cies. And indeed, a similar k̃-α0-adjustment within a stable domain can be observed

(compare Fig. 4.4 with Fig. 2A in Seyfarth et al. (2002)) indicating that the be-

havior of the single spring-mass system can at least in part be inherited by more

complex locomotion models.

However, there are also substantial differences. For instance, instead of a single

stability region as in spring-mass running, multiple separate domains can be identi-

fied in the parameter space (Fig. 4.5). These regions differ by the number of force

peaks the according steady-state GRF patterns attain. Here, the limitation in lo-

comotor speed (see 4.4.1) admissible for domains characterizing GRF patterns with

more than two force peaks might explain why these ’exotic’ multi-peak solutions are

not observed during normal walking. We are not aware of experiments scrutinizing

especially slow walking speeds (close to stand still). The spring-mass walking model

suggests that if the leg behavior entirely relies on elasticity, for the lowest speeds

(system energies) only multi-peak GRF patterns can be used.

Even within the parameter domain characterizing stable double-peak GRF pat-

terns differences to self-stability in spring-mass running occur. Whereas for the

running model only one class of fixed point solution exists, the double-peak domain

is clustered into three distinct types of steady-state trajectories (Fig. 4.4). Next to

upper and lower symmetric solutions with equal force peaks, asymmetric solutions
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with a larger initial force peak can be found (Fig. 4.3) suggesting a greater flexibility

in the available COM dynamics. Interestingly, in experiments on human walking a

change in the (vertical) GRF pattern is indeed observed. Although the double-peak

structure is maintained, with increasing speed the pattern changes from a pattern

close to the lower symmetric solution to a pattern rather resembling asymmetric so-

lutions with a larger initial force peak (Keller et al., 1996). Whereas it is generally

assumed that the amplified initial peak is caused by larger impacts at touch-down,

the spring-mass walking model offers an alternative explanation when considering

the experimentally obtained parameter adjustments for k̃ and α0 with increasing

speed (Tab. 4.1):

Starting from an upright position at stand-still, for slow walking speeds the sub-

jects selected steep angles and a large leg stiffness. The model indicates that for such

configurations only the lower symmetric solution leads to stable walking (Fig. 4.4).

With increasing speed (system energy), the subjects changed their adjustments to

flatter angles of attack and smaller spring stiffness following the k̃-α0 dependency

of the stability domain (Tab. 4.1 and Fig. 4.4). However, for these stiffness-angle

adjustments, the lower symmetric solution vanishes, and only the upper symmetric

and the asymmetric solution prevail (Fig. 4.5). Hence, the experimentally observed

change in the force pattern might not only be caused by the impact at touch-down

but could also reflect a functional necessity when aiming at the self-stability offered

by the mechanical system.

A further difference in self-stability between the running and the walking model

concerns the strength of attraction of the stable fixed point solutions. In spring-

mass running, the system returns to the steady-state within few steps following

disturbances (Seyfarth et al., 2002). By contrast, for spring-mass walking, it

takes considerably more steps to recover (e.g. traces in Fig. 4.2). Correspondingly,

the strength of attraction of the fixed points appears to be weaker suggesting that if

biological gaits are driven by mechanical stability, due to the inevitable irregularities

in a real world environment, the walking pattern should possess larger variability

than the running pattern when comparing a sequence of steps.

4.4.3 Accessible range of walking speed and limits of elastic walking

For physiologically plausible values of spring stiffness, the range of system energy

accessible by stable walking is limited from Ẽs = 0.99 to Ẽs = 1.11 (Fig. 4.5).

Applying the human-like parameters m = 80kg, `0 = 1m, and g = 9.81m/s2, this

corresponds to a speed range of about 0.8m/s to 1.5m/s. Although indicating that,
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in accordance with animal and human locomotion, the walking gait is bound to

slower speeds than running (for the same parameter set, in Seyfarth et al. (2002)

a minimum running speed of about 3.5m/s is observed), the covered range clearly

underestimates walking speeds achieved in biology (humans walk at speeds smaller

than the walk-run transition speed of about 2m/s).

The discrepancy becomes even more obvious when comparing the predicted

change in angle of attack and spring stiffness for increasing speed (system energy,

Fig. 4.5) with the experimental findings (Tab. 4.1). Both coincide for system energies

of Ẽs ≈ 1.06, but the tendencies are quite contrary. Whereas the model suggests a

change to steep angles and larger values of spring stiffness with increasing speed, the

experimental data showed that humans start with steep angles and high leg stiffness

and adapt to increasing speeds with flatter angles and lower stiffness values.

This difference in the stiffness-angle adjustment might not totally be conflicting.

Lacking a template for the actual swing leg motion in biology, the assumption of

a fixed leg orientation in the presented walking model provides a least parameter

approach to investigating stability. However, in an earlier work on spring-mass

running (Seyfarth et al., 2003) we could demonstrate that locomotion stability

can largely be enhanced by introducing a proper feedforward kinematic leg program

α(t) during swing. Backed by the observation that the walking model inherits part

of the stability adjustments from the single spring-mass model (section 4.4.2), we

hypothesize that similar swing leg policies will also enlarge the range of parameters

accessible for stable spring-mass walking, especially at low speeds.

Nevertheless, walking on purely elastic legs will still be limited by a maximum

speed. As mentioned in section 4.2.2, the walking model requires a force distribution

among the leg springs balancing the COM in the vertical direction. In particular,

mediated by the stance spring compression-decompression cycle following touch-

down, part of the horizontal motion is redirected into the vertical, and the apex

position is reached in the single leg support. With increasing (horizontal) speed,

this apex position gradually shifts upwards. Up to a critical speed (system energy),

the shift is tolerated (for symmetric fixed points ỹapex ∈ [sinα0, 1]). Above this

speed, however, it threatens the stance spring to relax completely (i.e. the model

gets airborne). To avoid such a complete rebound in the single support phase, the

angle of attack must be steepened and, following the stiffness-angle relation for stable

locomotion inherited from the single spring-mass model (section 4.4.2), the spring

stiffness considerably increased (Fig. 4.5).

This shift in the k̃-α0-adjustment demanded by the speed limitation of elastic
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Figure 4.6. Walking speed dependent change in leg behavior of a single subject.
For eleven different treadmill speeds vbelt = 0.6 − 3.6m/s, the mean leg force-
length traces Fleg(∆`) with ∆` = `0 − ` are shown. The leg force and leg length
are derived from GRF and kinematic data as described in section 4.2.5. The leg
force is normalized to the body weight (m = 64.6kg). The number of contacts
collected at each speed level is indicated in parentheses.

walking is not reflected in the experimental results (Tab. 4.1). By contrast, above

a treadmill speed of vbelt = 1.5m/s (were both model prediction and experimental

results meet), no steepening in the angle of attack can be observed with increasing

speed (α0 between 67◦ and 70◦), and the leg stiffness (estimated as mean stiffness

of the force-length trace of the contacting leg) decreases (from k̃ = 23 down to

k̃ = 17), suggesting that purely elastic leg behavior is discarded at higher speeds.

As an representative example, in Fig. 4.6 the mean leg force-length trace Fleg(∆`)

of a single subject is depicted at different treadmill speeds vbelt. Whereas for slower

speeds (vbelt = 0.6 − 1.5m/s) the leg behavior may well be regarded as spring-like,

at higher speeds (vbelt = 1.5 − 3.6m/s) it certainly cannot. Rather it seems that

an initially elastic leg behavior is interrupted at the instant of maximum leg force

and replaced by a supporting leg behavior (almost constant leg compression) around

midstance preventing large vertical excursions. Eventually, the leg function resumes

to a behavior, which can be described by elasticity, at the end of the stance phase

(the late leg shortening could be an artefact of the estimation of the actual foot

point as mean of ankle and toe marker position).
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4.4.4 Summary

The ’bipedal’ spring-mass system put forth in this chapter is probably the simplest

forward dynamic model exhibiting force patterns similar to those observed in animal

and human walking. In comparison to the single inverted pendulum model, spring-

mass walking establishes two new qualities. First, it emphasizes the functional

importance of the double support phase. Secondly, it considers the experimentally

observed motion along the leg axis as an additional degree of freedom. Moreover, as a

derivative of the simple spring-mass model for running, the proposed model allows a

unified description of the two fundamental gait patterns of legged locomotion within

a single framework. At higher speeds, however, walking on purely elastic legs is

limited by the ability to balance the COM during the support phases indicating that

biological systems can no longer rely on the attractive behavior of the mechanical

system. Here, an increased control effort seems necessary as supported by the more

complex leg operation observed in the experiments.

In conclusion, the spring-mass walking model might serve as a simple gait tem-

plate, which could encourage and guide future research directions towards a more

detailed understanding of the actual leg function during walking, and in legged lo-

comotion in general.

4.5 Appendix: Dimensional analysis

4.5.1 Initial single support

Starting at the apex (ẏ = 0) of step i, the dynamics of the single support phase are

described by the governing equations of motion

mẍ = k

(
`0√

x2+y2
− 1

)
x

mÿ = k

(
`0√

x2+y2
− 1

)
y −mg

(4.5)

and the initial conditions

x(0) = xrel,i, ẋ(0) = ẋi,

y(0) = yi, ẏ(0) = 0.
(4.6)

where the co-ordinate origin resides at the foot point FPi (compare Fig. 4.1). As

the system energy is conserved (Es = const), not every initial condition is ad-

missible. Conveniently, we can substitute the initial horizontal velocity by ẋi =
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√
2Es
m − 2gyi − k

m

(
`0 −

√
x2

rel,i + y2
i

)2
. Hence, the system is characterized by the

seven individual parameters m, g, k, `0, Es, xrel,i, and yi. The dimensions of these

parameters can be expressed by the three fundamental quantities length, time, and

mass. Applying Buckingham’s π-theorem Buckingham (1914), only 7 − 3 = 4 in-

dependent parameter groups exist. As pertinent units we choose `0 for the length,√
`0
g for the time, and m for the mass.2 The independent parameter groups can be

found by either forming dimensionless combinations of the pertinent units and each

remaining parameter (k, Es, xrel,i, and yi) or by forming the according dimension-

less equations when substituting the variables x, y, and t with their non-dimensional

counterparts x̃ = x
`0

, ỹ = y
`0

, and t̃ = t
√

g
`0

, i.e.

x̃′′ = k`0
mg

(
1√

x̃2+ỹ2
− 1

)
x̃

ỹ′′ = k`0
mg

(
1√

x̃2+ỹ2
− 1

)
ỹ − 1

(4.7)

and

x̃rel,i = xrel,i

`0
, x̃′i =

√
2Es
mg`0

− 2ỹi − k`0
mg

(
1−

√
x̃2

rel,i + ỹ2
i

)2
,

ỹi = yi
`0

, ỹ′i = 0
(4.8)

with [̃ ]
′

= d[̃ ]

dt̃
=

˙[ ]√
g`0

. Hence, the four independent parameter groups can be

identified as dimensionless stiffness k̃ = k`0
mg , dimensionless system energy Ẽs = Es

mg`0
,

and dimensionless initial position x̃rel,i = xrel,i

`0
and ỹi = yi

`0
.

4.5.2 Remaining step

As soon as the touch-down condition yTD = `0 sinα0 is achieved during single sup-

port, the system enters the double support phase and the governing equations of

motion (4.5) are extended by a second spring term to

mẍ = k

(
`0√

x2+y2
− 1

)
x − k

(
`0√

(d−x)2+y2
− 1

)
(d− x)

mÿ = k

(
`0√

x2+y2
− 1

)
y + k

(
`0√

(d−x)2+y2
− 1

)
y −mg

(4.9)

where d = FPi+1 − FPi = xTD + `0 cos α0 is the distance between the foot points

of the two springs. Except for the swing leg orientation α0, which adds an inde-

pendent parameter, all other system parameters are given by the preceding single

support: the touch-down state results from the single support dynamics and the
2The pertinent units ar not unique. The choice may depend on the aimed question. For instance,

in Blickhan (1989) length and time are selected as g
ω

2 and 1
ω

with ω =
√

k
m

.
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spring parameters are the same for both springs.

The same applies to the subsequent single support phase. Initiated by the take

off condition x2 + y2 = `2
0, the dynamics are governed by

mẍ = − k

(
`0√

(d−x)2+y2
− 1

)
(d− x)

mÿ = k

(
`0√

(d−x)2+y2
− 1

)
y −mg

(4.10)

and no further system parameters have to be introduced. In consequence, the dy-

namics of one step are characterized by the five independent parameters α0, k̃, Ẽ,

x̃rel,i, and ỹi.
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Chapter 5

Positive force feedback in

bouncing gaits?

By employing variations of the spring-mass model, in the last three chapters, we

investigated the contribution of compliant leg behavior to animal and human loco-

motion, and could demonstrate that this functionally simple leg response suffices

to describe the different whole body dynamics observed in walking and running.

On this global level of discussion, however, we omitted the question of how this

remarkable unique functional leg response is realized internally when incorporating

the neuromechanical properties of biological muscles and muscle actuation into the

leg function. In the present chapter, we approach this question parsimoniously by

modeling the neuro-musculo-skeletal locomotor apparatus with a largely simplified

two-segmented leg system and by restricting the investigation to bouncing gaits.

5.1 Introduction

In bouncing gaits, animals and humans use a spring-like leg behavior during stance

(Cavagna et al., 1964, 1977). In this phase, passive compliant structures such

as muscle tissue, tendons, and ligaments store and release elastic energy reduc-

ing the metabolic costs of locomotion (Cavagna et al., 1977; Alexander, 1988).

For instance, in some animals tendons preserve up to 70% of the stride energy

(Alexander and Vernon, 1975; Biewener, 1998). The exploitation of passive

elasticities is, however, compromised by viscous properties of the muscle-skeleton

system. For example, in humans only 40–50% of the stride energy can be stored

elastically (Cavagna et al., 1964). In order to maintain a cyclic motion (e.g. running

at constant speed), the energy losses due to dissipation must be ’refilled’ during the
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rebound, requiring positive muscles work. But how do biological systems organize

the proper muscle activation? Besides the necessity of muscle force regulation to

withstand the tendon strain, the energetic refill requires an adequate control mech-

anism. Such control schemes should be scalable, for instance, to achieve a higher

running speed (increased stride energy). Although this could be realized using cen-

tral motor commands (e.g. higher centers), a control based on afferent information

tracking the muscle state may relax the supervisory effort.

On the muscular level, for instance, it could be demonstrated that the stretch-

reflex amplifying muscle force during lengthening can control the muscle stiffness

(Nichols and Houk, 1976; Hoffer and Andreassen, 1981). However, it is not

clear whether this particular reflex modulation would suffice to generate the ob-

served bouncing leg behavior. Here, alternative reflex schemes might even more

appropriately shape the muscle activation. In a hopping simulation, Gerritsen

and Nagano (1999) investigated vestibulospinal and long-latency stretch reflexes.

They found that the afferent modulation of the extensor activity yielded slow peri-

odic knee-bending movements. Although flight phases were not considered and the

movement patterns were unstable, they demonstrated the potential contribution of

reflex mechanisms to the generation of cyclic locomotion.

In this chapter, we investigate whether continuous afferent inputs based on single-

loop muscle reflexes could generate an appropriate extensor muscle activity during

bouncing tasks. Therefore, we employ a two-segment leg model with one extensor

muscle and focus on human hopping in place. The utilized sensory information is

motivated by signals from muscle spindles and Golgi tendon organs. The bouncing

capacity is assessed using three movement criteria: hopping performance (maximum

hopping height, i.e. stride energy), and stability and elasticity of the hopping pattern.

5.2 Model

5.2.1 Mechanical system

Running is considered a planar (Fig. 5.1A) and hopping a vertical movement (not

shown in Fig. 5.1A). Both are characterized by subsequent stance and flight phases.

The body is idealized to a point mass m at the COM. The COM trajectory is

determined by the gravitational force ~FG = m~g and, during stance, additionally by

the leg force ~FLeg

m~̈r = ~FG +
[
~FLeg

]
stance

. (5.1)
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Figure 5.1. Hopping and running model. (A) The body is reduced to a point
mass m. In stance, the leg is modeled by a two-segment system with one Hill-
type extensor muscle. In flight, a fixed leg length `F and angle of attack αF are
assumed. (B) The muscle tendon complex (MTC) consists of a contractile (CE)
and a series elastic element (SE). (C) The single sensory signal P (t) ≥ 0 is time
delayed (∆P ) and gained (G > 0), before added to or subtracted from a constant
stimulation bias STIM0 at the α-motoneuron (αMN) corresponding to a positive
(EPSP) or negative feedback (IPSP). The resulting muscle stimulation STIM(t) is
restricted to be within 0 and 1. The excitation-contraction coupling (ECC) delays
the muscle activation ACT (t) about 30 to 40 ms. `Leg: leg length in stance; ϕ:
joint angle; `S : segment length; d: moment arm of the extensor muscle; FP : foot
point; EPSP/IPSP: excitatory/inhibitory postsynaptic potential

In contact the leg is modeled as a two-segment system with one Hill-type extensor

muscle acting on the intersegmental joint (stance phase, Fig. 5.1A). The segments

(equal length `S) and the muscle are massless. The muscle length `MTC is related

to the joint angle ϕ

`MTC = `ref − d · (ϕ− ϕref ) , (5.2)

where ϕref is the joint angle at which the muscle reaches the reference length `ref ,

and d is the constant moment arm of the muscle. The leg force ~FLeg acting parallel
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to the leg axis (foot point FP to COM) is linked to the muscle force FMTC with

∣∣∣~FLeg

∣∣∣ = d√
`2
S −

(
`Leg

2

)2
· FMTC , (5.3)

where `Leg is the instantaneous leg length defined as the actual distance between

FP and COM.

The touch-down occurs if the COM reaches a certain landing height correspond-

ing to an assumed, fixed leg length `F in flight. For running, additionally, a constant

angle of attack αF defines a leg orientation during flight (flight phase, Fig. 5.1A).

The take-off occurs if the leg force vanishes, at latest when the initial landing length

of the leg is reached during leg extension.

5.2.2 Muscle tendon complex (MTC)

The MTC consists of a contractile element CE and a series elastic element SE

(Fig. 5.1B). The generated CE force depends on the muscle activation state ACT ∈
[0, 1], the maximum isometric force Fmax, and the force-length (f`) and force-velocity

(fv) relationships (based on Aubert, 1956)

FCE (ACT, `CE , vCE) = ACT · Fmax · f` (`CE) · fv (vCE) (5.4)

with

f` (`CE) = exp

c ·
∣∣∣∣∣`CE − `opt

`opt · w

∣∣∣∣∣
3
 (5.5)

and

fv (vCE) =


vmax−vCE

vmax+K·vCE
, if vCE < 0

N + (N − 1) · vmax+vCE
7.56K·vCE−vmax

, if vCE ≥ 0
. (5.6)

In the force-length relationship, `opt is the optimum CE length (maximum force

production), w describes the width of the bell shaped f`(`CE) curve, and c is ln(0.05)

fulfilling f`(`opt · (1 ± w)) = 0.05. The force-velocity relationship follows the Hill-

equation (Hill, 1938) for muscle shortening (vCE < 0), where vmax < 0 is the

maximum contraction velocity, and K is a curvature constant. Muscle lengthening

(vCE ≥ 0) is characterized by an equation based on Aubert (1956), where N is

the dimensionless amount of force FMTC/Fmax reached at a lengthening velocity

vCE = −vmax.

The SE is characterized by a nonlinear, elastic force-length relationship (e.g.
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Ingen Schenau, 1984)

fSE(ε) =

 (ε/εref )2 , if ε > 0

0, if ε ≤ 0
(5.7)

using the tendon strain ε = (`SE − `rest)/`rest, where `rest describes the tendon rest

length and εref is the reference strain with fSE(εref ) = 1.

Since CE and SE are arranged in series, they have equal forces matching the

MTC force FMTC . Using this equilibrium, FMTC(t) is uniquely determined for a

given MTC length `MTC(t) and an activation state ACT (t) (e.g. van Soest and

Bobbert, 1993).

5.2.3 Neural reflex pathway

The activation state ACT (t) relates to a neural input STIM(t) with a first order

differential equation describing the excitation-contraction coupling

τ dACT (t)/dt = STIM(t)−ACT (t), (5.8)

where τ is a time constant. The neural input STIM(t) consists of a constant

stimulation bias STIM0 and a feedback component ±G · P (t−∆P )

STIM (t) =

 STIM0 t < ∆P

STIM0±G · P (t−∆P ) t ≥ ∆P

,STIM(t) ∈ [0, 1] , (5.9)

where P is the sensory information, G > 0 the gain factor, and ∆P the signal-

propagation time delay (Fig. 5.1C). Three possible sensory signals P are investi-

gated separately: CE length `CE and velocity vCE , and MTC force FMTC . Signal

combinations are not considered.

The signals are physiologically motivated by afferent information from muscle

spindles and Golgi tendon organs (GTO). To account for a γ-adjustment of muscle

spindle activity, the length and velocity signals are biased with a constant offset

value (P = `CE − `off and P = vCE − voff , respectively). The ’±’ sign defines a

positive or negative feedback with an excitatory or inhibitory postsynaptic potential

at the α-motoneuron. Although this definition may deviate from other approaches

in literature, it provides a uniform assignment among the investigated feedbacks.

Corresponding to the mechanism of signal transduction in neurons, the sensory signal

is restricted to positive values P (t) ≥ 0: Varying spike rates can alter the magnitude

of postsynaptic potentials. However, the quality (excitatory or inhibitory) remains
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constant.

5.2.4 Model parameter identification

parameter value
body weight m 80 kg
gravitational constant g 9.81 m/s2

assumed flight leg length `F 0.99 m
segment length `S 0.5 m
moment arm d 0.04 m
MTC reference length `ref 0.5 m
corresponding reference joint angle ϕref 110◦

maximum isometric force Fmax 22 kN
optimum length `opt 0.1 m
width w 0.4 `opt

maximum shortening velocity vmax -12 `opt/s
eccentric force enhancement N 1.5
curvature constant K 5
rest length `rest 0.4 m
reference strain εref 0.04 `rest

excitation-contraction coupling constant τ 0.01 s
feedback time delay ∆P 0.015 s

Table 5.1. Model parameters

The model parameter values used in the simulation are summarized in table 5.1.

They reflect data from literature (Winters, 1990; van Soest, 1992; Herr, 1998;

van Leeuwen, 1992), yet partially are compromised by the simplified leg represen-

tation: (i) The maximum isometric force Fmax = 22kN accounts for both knee and

ankle extensor muscles to provide proper thrusting. (ii) The constant moment arm

d of the extensor muscle would lead to exaggerated leg forces at erect leg positions

(eq. 5.3) for muscle activations ACT > 0 (eq. 5.4). This is compensated for by the

reduced width w = 0.4 of the force-length relationship (values from literature: e.g.

w = 0.56 Winters, 1990). (iii) The signal propagation delay ∆P = 15 ms can be

approximated by the time shift between M- and H-wave in H-reflex experiments.

For the triceps surae this difference is about 20 . . . 25 ms (e.g. Knikou and Rymer,

2002; Stein and Capaday, 1988). For the quadriceps femoris, a smaller delay occurs

due to shorter afferent pathways (estimated to 5 . . . 10 ms from signal transduction

difference to spinal cord between deep peroneal and femoral nerve, Meunier et al.,

1990). Taking these deviations and uncertainties into account, the robustness of the

model results is checked for changes in MTC parameters (w, N , vmax, and εref ) and

feedback time delay (∆P ).
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5.2.5 Simulation environment

The model is implemented in Matlab 6 using the Simulink 4 toolbox (Mathworks

Inc., Natick, MA, USA). The forward dynamic simulation is performed with the

embedded ode45 integrator with a maximum step size of 1e-3 (absolute and relative

error tolerance 1e-8). The results of the numerical integration are checked using a

10 times higher accuracy.

5.2.6 Movement criteria

Three movement criteria are addressed to evaluate the model’s bouncing behavior.

(i) The hopping performance defined as maximum hopping height hmax is investi-

gated with genetic algorithm optimization exploring the feedback parameter space

(population of 500 individuals, 150 generations, recombination probability of ’fit-

ter’ individuals 75%, mutation rate 0.5%, single-point cross-over rate 75%; results

checked by 3 times repetition, Goldberg, 1989).

(ii) For given feedback setups, the stability of the hopping pattern is investigated

with the apex return map yi+1(yi). At apex, the system state is uniquely determined

by the apex height yapex since ẏapex = 0 and the neuro-muscle-skeleton dynamics

are re-initiated at each touch-down. The systems periodic behavior can therefore be

addressed by analyzing the relationship yi+1(yi) of two subsequent apices i and i+1

(index ’apex’ omitted here). Fixed points yi+1(yi) = yi represent periodic solutions.

Stable periodic solutions require a slope dyi+1/dyi ε (−1, 1) in the neighborhood of

fixed points.

(iii) For stable hopping patterns, the elasticity of the leg force-length relationship

is evaluated by introducing the elasticity coefficient CEL

CEL =
(

1− A

Amax

)2

, (5.10)

which describes the ratio between the area A enclosed by the force-length trace

of the leg and the area Amax = Fmax · ∆`max given by the maximum leg force

Fmax = max(FLeg) and leg displacement ∆`max = max(`F − y) in stance. In con-

trast to the total work done during contact (work loop equals zero in steady-state

movements), for the calculation of A the absolute values of the difference of positive

and negative work are added. The coefficient CEL provides a measure of how close

the leg resembles a perfectly elastic behavior (CEL = 1), independent of nonlineari-

ties in the actual spring law. The corresponding spring stiffness is approximated by

k = Fmax/∆`max.
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To elucidate what elasticity coefficient is required for spring-like human hopping,

an experimental study was conducted with 12 healthy subjects (mean ± S.D.: body

mass 72kg±10kg, age 32yrs±6yrs). CEL was measured for each contact during

hopping on a force-plate over a total time period of 60 seconds at a frequency of 2Hz.

The leg displacement was calculated by twice integrating the vertical acceleration.

The study will be published elsewhere. The preliminary results yielded CEL =

0.92± 0.03. The mean value is defined as reference value.

5.3 Results

5.3.1 Hopping performance – optimal stimulation vs. reflexes

At first, the maximum hopping performance of the model is assessed by optimizing

the muscle stimulation STIM(t). Hereto, the population of the genetic algorithm

comprises individuals with 36 values determining the interpolated stimulation pat-

tern STIM(t) at every 20 ms following touch-down (total duration 700 ms). These

patterns are applied to single step simulations (Fig. 5.2A). Starting at an initial

apex height y0, the simulation stops at the subsequent apex y1. To ensure an op-

timization towards periodic hopping patterns, the individuals are judged by (i) the

achieved hopping height h = y1 − `F and (ii) the increase in height ∆y = y1 − y0

(optimization function f = 0.9h+0.1∆y). Hereto, y1 is reused as initial apex height

y0 in the subsequent generation. The leg force FLeg(t) and muscle activation ACT (t)

corresponding to the optimized stimulation pattern STIM(t) are shown in Fig. 5.2B

(’OPT’) yielding a maximum hopping performance of hmax = 19.6 cm.

Secondly, the influence of the different reflex pathways on the hopping perfor-

mance is investigated using the same single-step simulation and optimization goals.

Instead of stimulation patterns, the population now consists of different feedback

parameter combinations (stimulation bias STIM0, gain G, and – for length and

velocity feedback – offset value `off or voff ). The stimulation pattern STIM(t) is

generated by the acting reflex pathway. All three afferent signals can stabilize the

model in the stance phase, but only positive length (L+) and force feedback (F+)

generate appropriate muscle activation pattern ACT (t) resulting in aerial phases

(’L+’ and ’F+’ in Fig. 5.2B). For the maximum hopping height, positive force feed-

back (hmax = 16.3 cm) clearly outperforms positive length feedback (hmax = 9.3 cm)

reaching almost 85% of the model’s maximum hopping performance.
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Figure 5.2. Maximum hopping performance. (A) Single step simulation applied
to each individual of the genetic algorithm optimization (see text). (B) Leg force
FLeg (solid line) and muscle activation ACT (dashed line) during contact for max-
imum hopping performance hmax employing the optimized stimulation pattern
(’OPT’), positive length (’L+’, STIM0 = 0.01, G = 125, `off = 0.08) and posi-
tive force feedback (’F+’, STIM0 = 0.01, G = 2.64/Fmax). The asterisks indicate
suppressed signal output due to the offset value (see discussion).

5.3.2 Stabilization of the movement pattern

The performance results suggest positive force feedback as the most appropriate

reflex scheme for extensor muscles in bouncing tasks. However, a functional relevance

of this feedback during cyclic locomotion further requires the stabilization of the
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Figure 5.3. Stabilization of periodic hopping. The apex height return maps
yi+1(yi) for three different force feedback gains G are shown (stimulation bias
STIM0 = 0.05). The intersections of the return maps with the diagonal yi+1 = yi

represent periodic solutions (fixed points, denoted by small circles). The slope
dyi+1/dyi ε (−1, 1) within the neighborhood of the fixed points guarantees stable
hopping. Starting from disturbed initial apex heights yi the system converges to
the steady state height after a few steps (indicated by the arrow tracings for the
return map with feedback gain G = 1.20/Fmax).

movement pattern. Therefore, the return map yi+1(yi) of the apex height is analyzed.

For a given stimulation bias (STIM0 = 0.05), the apex return maps for three

feedback gains (G = 1.07/Fmax, 1.2/Fmax, and 2/Fmax are depicted in Fig. 5.3. In

all three cases stable solutions exist (denoted by the small circles in Fig. 5.3). With

increasing gain the movement pattern stabilizes at increasing hopping heights (h =

5, 7.9, and 11.4 cm, respectively). After a disturbance the system returns to the

steady-state condition within a few steps (arrow tracings in Fig. 5.3).

5.3.3 Elastic leg operation

In experiments on human hopping, spring-like leg operation with varying leg stiff-

ness k is observed. To investigate the elasticity of stable hopping patterns achieved

with positive force feedback, the model behavior is mapped throughout the feed-

back parameter space (STIM0, G; Fig. 5.4). For feedback adjustments lead-

ing to stable hopping (shaded area in Fig. 5.4A), the elasticity coefficient CEL is

calculated (eq. 5.10). Different parameter combinations result in stable hopping
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Figure 5.4. Elastic leg behavior. The model behavior using positive force feed-
back is mapped throughout the feedback parameter space (STIM0, G). (A) The
elasticity coefficient CEL for stable hopping patterns (shaded area) is shown. The
intersection of the dashed lines refers to the parameters used for sensitivity analysis
(STIM0 = 0.145, G = 1.84/Fmax; see Fig. 5.5). (B, C and D) In the reference
region the elasticity coefficient exceeds the reference value of CEL = 0.92 (see A).
Here, the corresponding leg stiffness (B), hopping frequency (C), and hopping
height (C) are shown. The arrow indicates the maximum hopping height within
the reference region (STIM0 = 0.065, G = 1.32/Fmax).

(STIM0 < 0.2, G > 1/Fmax) with largely varying elasticities (0.7 < CEL < 0.97).

Only within a smaller region (STIM0 < 0.2, 1/Fmax < G < 3.5/Fmax) the elasticity

coefficient exceeds the reference value of CEL = 0.92 (’reference region’ in Fig. 5.4A).

In the reference region, with increasing stimulation bias and feedback gain the

leg stiffness k and the hopping frequency f shift from 9 to 27 kN (Fig. 5.4B) and

from 1.4 to 3 Hz (Fig. 5.4C), respectively. The range of hopping height from 0 to

8.8 cm (Fig. 5.4D) allows of different control strategies. For instance, starting with

the parameter set of the largest height (STIM0 = 0.065, G = 1.32/Fmax, indicated
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by the arrow in Fig. 5.4D), the hopping height decreases while the leg stiffens if

bias and gain are increased. Alternatively, the hopping height decreases with hardly

affecting the leg stiffness if merely the gain is decreased.

To test the reliability of the elastic leg regime (CEL ≥ 0.92), a sensitivity analysis

is performed for the setup STIM0 = 0.145 and G = 1.84/Fmax guaranteeing the

largest feedback parameter tolerance within the reference region (intersection of

dashed lines in Fig. 5.4A, leg force and muscle activation during contact as well as

leg force-length relation shown in Fig. 5.5). The tolerance range fulfilling CEL ≥ 0.92

covers a considerable range of physiologically motivated values for the investigated

muscle parameters reference strain ε (1 . . . 6.5 %), eccentric force enhancement N

(1.4 . . . 1.6), maximum shortening velocity vmax (−10.6 . . .− 13.4 lopt/s), and width

of the force-length relationship w (0.33 . . . 0.45 lopt). Similarly, the model behavior is

robust with respect to changes in the signal propagation delay ∆P (tolerance range:

13 . . . 18 ms).

Figure 5.5. Example of the hopping pattern using positive force feedback. The
leg force (solid line) and muscle activation (dashed line) (A), and the leg force-
length curve (B, ∆` = `F − y) of the steady-state hopping pattern used for the
sensitivity analysis are shown (STIM0 = 0.145, G = 1.84/Fmax). The shaded
area enclosed by the force-length curve depicts the area A used for the calculation
of the elasticity coefficient CEL (eq. 5.10).

5.4 Discussion

In this chapter, we investigated the potential role of single-loop muscle reflexes in

periodic bouncing tasks. Although a rather simple approach addressing human reflex

pathways is applied, a surprisingly successful strategy could be identified: positive

muscle force feedback can generate and stabilize hopping patterns within a large

range of hopping heights (hmax = 16.3 cm, up to 85% of the model’s maximum
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hopping height). Moreover, for moderate hopping heights (up to 8.8 cm) spring-like

leg behavior is achieved with a leg stiffness ranging from 9kN/m to 27kN/m.

The identified feedback is probably the simplest decentralized control strategy

for bouncing tasks. Replacing a predefined (’voluntary’) stimulation pattern with an

adaptive control based on the actual muscle-skeleton dynamics, it could serve as an

efficient and reliable alternative to a central motor control. Among the investigated

reflex pathways, positive length feedback could also generate periodic hopping, but

its hopping performance was clearly limited (hmax = 9.3 cm). However, due to

our simplified approach, we can not exclude that other feedback signals (e.g. joint

position) or signal combinations (e.g. fibre length and velocity), or reflex structures

may also succeed in bouncing tasks.

5.4.1 Comparison of optimal stimulation and reflexes

If subjects are asked to jump as high as possible, a countermovement jump is ob-

served. Starting in stance, the subjects bent their legs prior to an extension with

largely activated extensor muscles providing proper thrusting (e.g. Bobbert and

van Ingen Schenau, 1988). This implies that the achieved minimum leg position

ymin strongly influences the maximum hopping performance hmax, which indeed is

observed among the applied control schemes (see Fig. 5.2B). However, a complete

leg flexion would exceed the ascending limb of the extensor force-length relation-

ship (eq. 5.5), and the system would fall down due to insufficient force generation.

Since large hopping heights result in high impact velocities, proper braking forces

have to be applied in the early stance phase. Here, the eccentric operation of the

extensor force-velocity relationship (eq. 5.6) provides adequate force to solve this

issue. For instance, the optimized stimulation pattern (OPT) is characterized by an

initial activation (force) peak sufficient to redirect the movement at the minimum

position ymin = 59 cm. Similar force peaks are known from drop jump experiments

(e.g. Voigt et al., 1995). Hereafter, full muscle activation is required to reach the

maximum steady-state hopping height hmax = 19.6 cm.

But how closely can the considered feedbacks imitate this control strategy? The

shape of the feedback based activation patterns is largely constraint by the avail-

able sensory information. For instance, the stretch-shortening cycle of the extensor

muscle during the rebound leads to a negative slope of the CE-velocity time series.

To achieve an increasing muscle activation during leg flexion (P = vCE − voff ),

velocity feedback requires a negative feedback scheme (V-). Although applicable at

a first glance, this feedback inherently destabilizes periodic hopping patterns. For
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instance, an increased hopping height leads to larger eccentric velocities vCE (in-

creased impact). Instead of damping, the negative feedback delays the development

of increasing muscle activation. Initially, this results in a larger hopping height (as

muscle activity is shifted towards the concentric phase). However, a self-amplifying

cascade is induced further increasing the impact velocity as well as delaying the

muscle activation growth. Inevitably, exceeding a critical impact velocity, the leg

collapses during stance.

Both the length (P = lCE−loff ) and force signal (P = FMTC) increase during leg

bending. Here, positive feedback schemes with small initial stimulation bias result

in an increasing muscle activation during stance. Positive length feedback (L+) is

characterized by a rapid increase of P (t), which still produces considerable breaking

forces. To delay this fast build-up and, therefore, to reach a lower position ymin

during stance, the offset value `off is used. The length of the contractile element

CE at touch-down is `CE,TD. During leg compression the muscle lengthens and

an offset value `off > `CE,TD suppresses any signal output until `CE = `off is

reached (left ’∗’ in Fig. 5.2B). However, as the `CE-signal is almost symmetric with

respect to midstance, the suppression is equally present during late stance (right

’∗’ in Fig. 5.2B). Consequently, the amount of positive work is limited and only

moderate maximum hopping heights are achieved (hmax = 9.3 cm).

Positive force feedback (F+) has no sensory offset. Here, a different mecha-

nism prolongs the activation build-up. The proprioceptive signal P = FMTC(t) de-

pends on the instantaneous muscle activation ACT (t), the normalized force-length

fl(t) and force-velocity relationships fv(t), and the maximum isometric force Fmax

(eq. 5.4). The activation itself depends on the stimulation history according to the

excitation-contraction coupling (eq. 5.8), which has a characteristic delay ∆ECC .

Thus, the contribution of the gained and time delayed feedback signal P (t−∆P ) to

the muscle stimulation STIM(t) is proportional to the preceding stimulation signal

STIM(t−∆P −∆ECC) and to the muscle state M(t−∆P ) = fl(t−∆P ) ·fv(t−∆P ).

Assuming M = const the activation development is characterized by an exponential

growth (see appendix). Although modulated by the muscle dynamics M(t), the

adjustment of the feedback gain G allows variable initial slopes of the activation

build-up, and the maximum activation can be delayed until leg extension. As a

result, positive force feedback yields an almost twofold better hopping performance

than positive length feedback. The exponential growth of muscle activation is an

appropriate response to the breaking in the eccentric phase of periodic bouncing.

An initial suppression of the sensory signal, to a certain extent, improves the
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hopping performance for positive feedbacks. For each reflex, the suppression can

be tuned with the signal propagation delay ∆P . For both positive length and force

feedback this allows to almost reach the model’s maximum hopping height. The

required ’optimal’ delay is larger for length (∆P ∼ 60 ms) than for force feedback

(∆P ∼ 25 ms). This suggests that length feedback could manage hopping tasks

using longer latency reflex loops. However, the longer the signal delay is, the more

sensitive the system gets with respect to external disturbances. Here, additional

control effort would be required. In contrast, positive force feedback represents

an autonomous, rapidly adapting control scheme well-suited for the short contact

periods in bouncing gaits.

5.4.2 Task variability of positive force feedback

Positive force feedback has been investigated previously in an experimental study.

By converting the measured ground reaction force into extensor muscle stimulation,

Prochazka et al. (1997b) showed that this reflex successfully operates in load

compensation tasks. In a simulation study they further demonstrated that the

muscle’s force-length relationship provides an inherent feedback gain adaptation

(Prochazka et al., 1997a), which – if opposing forces are present (e.g. antagonist

muscle forces, gravity) – prevents the traditionally observed destabilizing effect of

positive force feedback (van Helm and Rozendaal, 2000).

In our study we observe a similar behavior. For sufficient gains (0 < G <

1/Fmax) hopping does not occur (Fig. 5.4A), but the system stabilizes in stance at

leg positions characterized by the equilibrium of muscle and gravitational force (not

shown in Fig. 5.4A). Any further leg extension reduces the muscle force (due to the

force-length relationship of the shortening extensor muscle) and the resulting net

force restores the equilibrium position. The opposite holds for leg bending.

With increasing gain (G > 1/Fmax), positive force feedback leads to periodic hop-

ping at different steady-state apex heights (examples shown in Fig. 5.3). Although

the same reflex is applied, the stabilization here bases on a different mechanism.

Instead of the muscle’s force-length relationship, the force-velocity relationship be-

comes crucial. For instance, an increased apex height results in a larger landing ve-

locity. Due to the amplified muscle response (force-velocity relationship), the force

build-up is accelerated without affecting its decrease (feedback gain remains con-

stant), which shifts the muscle operation towards the eccentric phase. The system

compensates the disturbance through damping until the steady-state apex height

is restored within the next ground contacts (the opposite holds for decreased apex
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heights). Consequently, the stability of hopping is unaffected even if no force-length

dependency f`(`CE) = 1 is assumed.

This suggests that the proposed muscle-reflex system represents an adjustable,

biological actuator suited to more than a single movement task. The flexibility

ranges from load compensation over elastic leg operation to maximum performance

hopping, and clearly benefits from the muscle properties – elucidating these prop-

erties from an integrative perspective, which may help to design technical actuators

adapted to legged locomotion.

5.4.3 Leg stiffness as emergent property

Since the observation that, during bouncing gaits, the legs of animals and humans

behave in a spring-like manner, ’leg stiffness’ has become a key parameter in in-

vestigating these gaits. For instance, it could be demonstrated that leg stiffness is

hardly affected by running speed (He et al., 1991; Farley et al., 1993), indicating

passive elastic elements (e.g. tendons, ligaments) as the likely origin of spring-like leg

operation. However, humans adapt their leg stiffness if subjected to constraints (e.g.

hopping frequencies or height, Farley et al. (1991); Seyfarth et al. (2001); run-

ning stride frequencies, Farley and Gonzalez (1996)) or environmental changes

(e.g. surface stiffness, Kerdoc et al., 2002; Ferris and Farley, 1997; Ferris et al.,

1998). Consequently, this posed the question on how leg stiffness is controlled at the

muscle-skeleton level? Here, experimental and simulation studies suggested ankle

joint moment generation to play an important role (Farley and Morgenroth,

1999). Although this indicated the participation of neural control in the adjustment

of leg stiffness, evidences of what the appropriate control resulting in bouncing gaits

could actually be remained elusive.

In the present chapter, positive force feedback of the extensor muscle(s) is sug-

gested as an appropriate control scheme. For certain feedback parameters (’reference

region’, Fig. 5.4A), it enables elastic leg operation within a considerable range of leg

stiffness (between 9 and 27 kN/m, Fig. 5.4B), hopping frequency (from 1.4 to 3 Hz,

Fig. 5.4C), and hopping height (up to 8.8 cm, Fig. 5.4D). Experimental studies on

human hopping at different frequencies (1.5 . . . 3 Hz) report a similar correspondence

to the leg stiffness (10 . . . 30 kN/m; Farley et al., 1991; Seyfarth et al., 2001).

The change of hopping height within the reference region reveals a simple con-

trol strategy for the stride energy. If the feedback stimulation bias is fixed to

STIM0 = 0.065, an increased gain leads to an increased steady-state stride energy

(hopping height) while the leg stiffness almost remains constant. Reconsidering the
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experimental results showing that leg stiffness is hardly affected by speed (i.e. sys-

tem energies) (He et al., 1991; Farley et al., 1993), this might indicate that the

stride energy is the parameter to be controlled in animal and human locomotion.

Here, leg stiffness itself rather emerges from the muscle-reflex dynamics managing

external constraints.

5.4.4 From hopping to running

In a previous work (Seyfarth et al., 2002, compare also Ch. 2), we could identify a

movement criterion for running with elastically operating legs: a proper adjustment

of the landing angle of attack to the leg stiffness results in self-stabilized and robust

running. Using this criterion, only two conditions have to be fulfilled for running

based on a muscle-skeleton system: (i) elastic leg operation and (ii) stabilization of

the stride energy. Positive muscle force feedback meets both requirements. Hence,

the movement criterion can be successfully applied by selecting an angle of attack

appropriate to the emergent leg stiffness (Fig. 5.6). This suggests that the identified

muscle-reflex mechanism might also be an efficient and powerful concept for running.

To our knowledge it is the first model describing running within such a framework.

Figure 5.6. Robust running (ground irregularities ±0.5 cm) using positive force
feedback (STIM0 = 0.185, G = 1.4/Fmax). The stick figures correspond to time
intervals of 20 ms. The arrows denote the apices, at which the virtual leg with
the length `F = 0.99 m and an angle of attack αF = 65◦ (mean leg stiffness
16.5kN/m) is introduced during flight.

5.4.5 Reflex generated motor control

The control of locomotion can be distinguished between (central) feedforward com-

mands and (decentralized) feedback responses. It is assumed that the feedforward

component generates a time-varying, cyclic muscle activation pattern (referred to as

’background activity’) resulting in basic locomotor functions (e.g. as found in par-

tially deafferented cats, Goldberger, 1977). The identification of central pattern

generators (CPG) in animals as diverse as invertebrates and mammals supports this
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hypothesis (for review: Orlovsky et al., 1999). Reflex responses can modulate this

feedforward activation pattern. However, the functional relevance of this modulation

in undisturbed locomotion remains largely unclear (Zehr and Stein, 1999).

For instance, experimental studies addressing extensor muscle activities in hu-

man hopping and running could identify a short-latency (35 . . . 45 ms) stretch-reflex

response following touch-down (Melvill Jones and Watt, 1971; Dietz et al.,

1979; Voigt et al., 1998). This reflex is mainly attributed to proprioceptive infor-

mation from muscle spindles (Ia-afferents), although contributions from Golgi tendon

organs (GTO, Ib-afferents) can not be ruled out. Such rapid responses are likely to

reduce extensor lengthening (’muscle yield’) after landing and, consequently, could

enhance the loading of the corresponding tendons. Hence, it is suggested that the

observed stretch-reflex is of functional importance for the generation of leg stiffness

during bouncing gaits. However, further contributions of this reflex (e.g. at longer

latencies) to the stance phase (∼ 200 . . . 400 ms) are not observed. It is supposed

that here the overlap with the (centrally initiated) background activity may conceal

the direct observation (Voigt et al., 1998; Funase et al., 2001).

Further information about potential reflex contributions can be obtained by evok-

ing the H-reflex (the electrically elicited analogue to the stretch-reflex). Comparing

standing with the stance phase of walking and running, such experiments indicate

a progressive inhibition of the stretch-reflex activity from standing to walking to

running (Capaday and Stein, 1987; Ferris et al., 2001). Sinkjaer et al. (2000)

suggested that this reflex could have little or no contribution to the muscle activity

during normal walking, although compensatory reflex responses to large disturbances

may still occur (Morita et al., 1998). For hopping and running, this could explain

the extensor stretch-reflex response following touch-down (a large disturbance) with-

out the observation of later contributions, suggesting that, for the remaining stance

phase, the centrally thought background activity would be essential. Experiments,

where extensor muscles fatigue, further motivate this hypothesis. For instance, dur-

ing marathon running the stretch-reflex response significantly decreases (Avela and

Komi, 1998). However, the subjects still can run.

The findings obtained in this chapter suggest that the muscle activity usually as-

sociated with the background activity is not just a central contribution, but is largely

shaped by positive force feedback. In contrast to the understanding of feedbacks as

mechanisms reacting to disturbances, here the reflex organizes the muscle activation

pattern. The result is a task specific, uniform leg force pattern as observed across

species and individual morphologies. This reflex based force generation is, however,
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restricted to the stance phase and may require other structures such as CPG trig-

gering the phases of the gait cycle. In fact, load receptor reflexes themselves may

be involved in the initiation of phase transitions (Pearson, 1995). Although we

did not address a possible influence of reflex schemes on the flight phase, it seems

that the self-organizing dynamics of the neuromechanical system may significantly

contribute to the coordination of legged locomotion. Synchronized and supervised

by central commands including CPG, this could largely simplify the required control

effort.

But in how far can positive force feedback be motivated by experimental obser-

vations? Although traditionally associated with negative feedback schemes, experi-

mental studies on leg extensor muscles could show a reflex reversal to positive force

feedback in quadruped standing and during the stance phase of quadruped walking

(Pearson and Collins, 1993; Gossard et al., 1994; Pratt, 1995). Subsequent

investigations suggested a similar reflex reversal during the stance phase of human

walking (Stephens and Yang, 1996). Although there is an increasing experimental

evidence for positive force feedback as homonymous sensory pathway, its functional

contribution to the stance phase of the locomotor cycle remains controversial. Some

studies suggest that this reflex might appropriately modify the extensor muscle force

during stance depending on the carried load (Pearson and Collins, 1993; Pratt,

1995; Prochazka et al., 1997a). However, it is still unclear, whether afferent in-

formation from GTO serves this function (Fouad and Pearson, 1997; Sinkjaer

et al., 2000). Experimental investigations addressing this reflex pathway in bouncing

gaits are unknown and remain for future research.

5.4.6 Summary

In our understanding, biological locomotor systems are highly redundant systems,

which likely have various control strategies at their disposal to manage a distinct

movement objective. In the final instance, central motor commands will solve the

issue. However, the more a movement task becomes routine, the more the evolu-

tion of decentralized, largely autonomous solutions embodied in morphology seems

plausible. Positive force feedback represents such a local control strategy. Whether

it will be verified in experiments or not, we feel the consideration of muscle reflexes,

not only as disturbance responses but also as integrated part of biological actuation,

an important view on the control of locomotion of animals and humans.
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5.5 Appendix: Time course of muscle activity using F+

The comparison of the proprioceptive signals P = `CE − `off , vCE − voff , FMTC

(see 5.2.3) indicates that they all are influenced by the muscle dynamics (time series

of force-length- and/or force-velocity-relationship, due to eq. 5.4, 5.5 and 5.6). In

contrast to the muscle fiber length or velocity feedback, the muscle force signal is

further influenced by the dynamics of the muscle activation A, which itself is related

to the history of the stimulation signal STIM (eq. 5.8).

Assuming that (i) the stimulation does not exceed the saturation level (STIM(t) ≤
1), and (ii) the muscle activation instantaneously follows the stimulation (A ≡
STIM), for positive muscle force feedback the time series of the stimulation sig-

nal (5.9) simplifies to

STIM (t) =

 STIM0 t < ∆P

STIM0 + GF ·M(t−∆P ) · STIM(t−∆P ) t ≥ ∆P

, (5.11)

with M(t−∆P ) = fl(lCE(t−∆P )) ·fv(vCE(t−∆P )) describing the muscle dynamics

and GF = G · Fmax representing the normalized gain factor.

Using (5.11), the stimulation STIM(t) at time t can be constructed by dividing

the time scale into equal intervals of the feedback delay ∆P . Beginning at the

last interval which includes t, the actual stimulation is iteratively substituted with

the corresponding stimulation of the preceding interval. This procedure yields the

expression

STIM(t) = STIM0

[
1 +

n∑
k=1

{
Gk

F

k∏
l=1

M(t− l ∆P )

}]
, n ≥ 0

n∆P ≤ t < (n + 1)∆P (5.12)

for the time series STIM(t). From this equation, the change in muscle stimulation

between two subsequent intervals derives to

∆STIM = STIM(t)− STIM(t−∆P )

= STIM0 + [GF M(t−∆P )− 1] STIM(t−∆P ). (5.13)

As shown in (5.13), the development of the muscle stimulation STIM(t) compares

to a modulated natural growth or decay function. Provided that GF M(t−∆P ) is

larger than one, the stimulation rises exponentially with each interval ∆P . But, as

soon as the muscle dynamics enforces a negative value on the right side of (5.13),
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the stimulation decreases.

88



Chapter 6

General Conclusion

Is it possible to understand legged locomotion to a degree that we can device dex-

terous legged robots or offer patients artificial limbs replacing lost appendages in a

truly functional manner? Perhaps in future, but at present it seems that we hardly

grasp the principles underlying legged locomotion – principles that biological sys-

tems master with such a compelling ease. Nevertheless, there has been significant

progress in identifying some essentials over the past decade. And, on the mechanical

level, this progress primarily stems from the exploitation of simple models addressing

animal and human walking and running.

Among those models, the inverted pendulum and the spring-mass model cer-

tainly rank as the most prominent. Both advanced the understanding of legged lo-

comotion in two principal ways. First, they have inspired scientists to build legged

robots that profit from the natural dynamics of the underlying mechanical system

either to minimize the required actuation power (e.g. passive dynamic walkers based

on the inverted pendulum motion pioneered by T. McGeer), or to largely simplify

the control effort (e.g. the spring-like acting dynamically stable hopping robots in-

troduced by M. Raibert, see also Ch. 1).

Secondly, extending on this concept of exploiting the natural system dynamics

eventually led to a transition from merely utilizing these basic models for describing

biological gaits (e.g. by virtual model control in robotics), to investigating analyt-

ically their intrinsic behavior and predicting explicit parametric dependencies that

not only can be verified in experiments on animals and humans, but have a strong

potential to advance technical realizations in robotics as well as applications in re-

habilitation and prosthetics.
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6.1 Change of walking gait paradigm

Although both the inverted pendulum and the spring-mass model have largely

shaped our principal understanding of legged locomotion in the past, they rank dif-

ferently when assessing their value as basic gait templates encoding parsimoniously

the characteristic whole body dynamics as identified by the corresponding GRF

patterns. In this respect, only the spring-mass model for running prevails and the

inverted pendulum must be refuted as template for walking. Consequently, the

identification of a walking template represents one of the major challenges in biome-

chanics.

The thesis addresses this issue by hypothesizing that in contrast to the traditional

assumption of a stiff gait, walking is largely dominated by a leg behavior which, like

in running, is functionally based on limb compliance. Following this hypothesis, in

Chapter 3 it is demonstrated that the predictability of the walk-run transition can

not only be motivated from limits of the vaulting motion as described by the inverted

pendulum, but can equally be derived from the compliant spring-mass model when

imposing the kinematic constraint of a virtually horizontal motion of the COM

at transition (Fig. 3.1). Moreover, with Fr ' 0.4 the predicted transition speed

reproduces the speed at which animals and humans indeed prefer to switch from

walking to running (Fr ≈ 0.5) with surprising accuracy, clearly improving on the

result of Fr = 1 obtained from the traditionally taken inverted pendulum approach.

This outcome not only supports the hypothesis of the more general importance

of compliant leg behavior in legged locomotion pursued in this thesis. It likewise

suggests a solution to the fundamental question of whether it is the underlying

mechanics that triggers the gait transition and the physiological properties (e.g.

metabolics, attentional demands) that have adapted to this change over the evo-

lutionary process, or it is the other way around, i.e. that physiological constraints

trigger the transition enforcing the mechanics to respond by modified system dy-

namics to maintain the physiological parameters within acceptable ranges. Although

the inverted pendulum model correctly predicts the transition speed to be solely a

function of gravitational acceleration and leg length, which suggested the underlying

mechanics as driving mechanism early on, its quantitative discrepancy by a factor of

two soon led to favoring physiological constraints as the more likely candidates trig-

gering the transition. However, no conclusive physiological factor could be identified

over the past and the origin of the gait transition still remains elusive. Here, the

transition speed (eq. 3.11) derived in Chapter 3 resolves this controversial subject

in favor of the underlying mechanics.
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In a second step, in Chapter 4 a bipedal spring-mass model (Fig. 4.1) is intro-

duced to investigate in how far compliant limb behavior can indeed describe the

characteristic whole body dynamics in walking. It is demonstrated that the bipedal

spring-mass model produces stable periodic locomotion with the M-shaped GRF

patterns typical for biological walking (Fig. 4.3). Here, the double support phase is

identified as key determiner in obtaining this M-shaped GRF patterns, without the

necessity of a functional separation of the leg behavior into early braking and late

push-off in the single-leg stance phase, which is frequently fostered in more complex

models of biological walking. Moreover, it turns out that in contrast to the general

belief that legs should be stiff in walking, the actual spring stiffness required to

obtain the walking motion is rather low, i.e. comparable to that in running or even

smaller.

Hence, the results of Chapter 3 and 4 together suggest a shift of the gait paradigm

for walking: rather than the inverted pendulum, the bipedal spring-mass model

should be employed as basic mechanical model for this gait, since it more closely re-

sembles the natural whole body dynamics observed in biological legged systems and,

due to its parametric simplicity, even has the capability to serve as gait template.

6.2 Uniting two fundamental gaits – generality of limb

compliance in biology

But the results obtained in Chapter 4 suggest more. In Fig. 4.5 the parameter

domains leading to stable periodic locomotion of the walking model are shown. Next

to the domain resulting in the M-shaped GRF pattern, there exist a multitude of

domains representing steady-state locomotion with more peaks in the GRF than the

characteristic double peak known from experiments on animal and human walking.

In fact, as discussed in section 4.4.1, without rotation of the stance spring (zero

forward speed equivalent to low system energy), this spring would oscillate indef-

initely producing an infinite number of force peaks in the GRF. However, with

increasing speed (system energy) the spring rotation sets in, and less and less oscil-

lation cycles can be completed before the opposite leg touches the ground ending the

single leg stance phase. Due to the coupling of both legs via the COM, this cancela-

tion of the single support phase requires a precise timing leading to the observation

of parameter domains with discreet numbers of force peaks only. And the highest

walking speed can only be obtained with just two compression-decompression cycles

yielding the known double-peak pattern of the GRF (Fig. 4.5).
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But what would happen if the locomotion speed (system energy) is further in-

creased? As has been discussed in section 4.4.3, the stance spring would produce

too large a rebound after the initial compression in single-support and relax com-

pletely, and the system would get airborne. Hence, this single rebound in stance

would result in a GRF pattern equivalent to the contact phase in running, i.e. the

bipedal spring-mass model can likewise describe running. To demonstrate this, in

Fig. 6.1, the model’s parameter domains for stable walking are expanded by the

domain leading to stable running (single force peak).

Interestingly, the large speed gap between 2 and 3m/s separating the parameter

domain for stable running and the double-peak walking domain (Fig. 6.1), reflects

the experimental observation that although humans display a preferred transition

speed at about 2.2m/s if instructed to walk or run on a treadmill at different speeds,

they immediately switch from walking at about 1.85m/s to running at about 2.3m/s

during spontaneous overground progression (Saibene and Minetti, 2003), which

more closely resembles the natural situation.

In contrast to the general belief that walking and running represent two distinct

phenomena of legged locomotion, the bipedal spring-mass model identified in this

thesis suggests that they rather represent two out of an indefinite number of discreet

oscillatory modes of the same fundamental, compliant leg behavior as identified by

the number of force peaks in the characteristic GRF patterns. Here, the locomotion

speed (system energy) operates as the key determiner of the actual mode, which

in turn enforces the observation of ’different’ gait patterns in animal and human

locomotion with increasing velocity.

6.3 From templates to theory

Another major challenge for the science of legged locomotion is to put this field on

a sound mathematical basis. Ideally, there would be axiomatic rules at the top from

which a detailed understanding could be derived in successive steps that allows to

predict the properties and functionalities of legged systems at increasing level of

integration. Although we are far from such an understanding at present, it seems

that gait templates could serve as suitable starting points, as they can describe the

characteristic whole body dynamics observed in legged locomotion without getting

lost in the overwhelming complexity that often denies an analytical access in more

detailed model representations.

Here, research on the spring-mass model has already proven the value of such an
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Figure 6.1. Parameter domains for stable locomotion of the bipedal spring-mass
model. The figure is modified from Fig. 4.5 by including the stable parameter
domain for running. Moreover, to facilitate the comparison with human locomo-
tion, the parameters are presented in absolut values for a human-like model with
m = 80kg, `0 = 1m, and g = 9.81m/s2 and the average forward speed vx at apex
is depicted instead of the system energy (note the logarithmic scale).

approach. For instance, by the numerical identification of parametric dependencies,

a control scheme for legged systems could be derived that allows to freely distribute

the available system energy into forward progression (efficiency) or vertical bounc-

ing (safety), without requiring explicit knowledge about the ground irregularities.

However, even for the simple spring-mass model an analytical access is hampered

by the non-integrability of the system (compare section 1.3).
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The work presented in Chapter 2 of this thesis provides an analytical approxima-

tion of the spring-mass model’s stance-phase dynamics, which combines simplicity

with surprising accuracy. By comparison with numerical calculations it could be

shown that this approximation leads to accurate predictions of the system’s sta-

bility behavior for parameter combinations highly relevant to animal and human

locomotion. Moreover, based on the simplicity of the solution, an explicit para-

metric dependency could be derived that identifies spring-mass model parameters

relevant for stable locomotion hereby extending an empirically found relationship.

Hence, due to both the accuracy and simplicity, the solution might well serve as

analytically tractable tool that can be expanded upon in future works approaching

the mathematics of legged locomotion.

Particularly, since the bipedal version of the spring-mass model is suggested as

walking template in this thesis, the identified solution can immediately be applied as

approximation for the single-support phase in walking. And only the double-support

phase remains to be described analytically to obtain a mathematical representation

of both fundamental gait patterns.

6.4 From templates to morphological embodiment

The successful interpretation of the two basic gaits using the bipedal spring-mass

model indicates that the concept of limb compliance in legged locomotion reaches

far wider than generally assumed. Nevertheless, mechanical spring legs cannot be

found in biology. In animals and humans, muscle-tendon units comprising passive

tendons in series with active muscle fibers span the joints of articulated legs. The

active fibers are controlled by the nervous system and the question arises of how the

neuromechanical interplay ensures the remarkable uniform, spring-like behavior at

the global leg level.

Some researchers infer that this behavior is generated entirely by the passive

tendons of the leg extensor muscles with the muscle fibers acting isometrically. But

unless the muscle fibers can be locked mechanically, this assumption leads inevitably

to a contradiction between cause and effect. Arranged in series, the muscle fibers

could maintain a constant length only if they would generate exactly the same force

as the tendon, which implies that the nervous system is always pre-informed about

the extensor muscle’s force development in forthcoming stance phases. Perhaps this

strategy could work in a predefined environment. The irregularities and uncertainties

of natural movements and terrains, however, deny such an approach. Rather, they
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require the nervous system reacting continuously to unpredicted load situations to

correct the muscle fiber strain. But a correction can only be applied after the

disturbance took place. Thus, the muscle fibers cannot be forced to act isometrically

and delegating the generation of the spring-like leg behavior to the passive tendons

alone does not resolve the problem.

The permanent need of reacting to unforeseen load situations indicates that

the nervous system monitors the muscle-tendon unit’s current state using sensory

feedback and employs this information in the control of the muscle fiber activation.

Due to the long time delays when using central feedback loops (∼ 100ms), the

information about the muscle state is more likely to be processed at the spinal cord

level. This, however, excludes a central command of all the control tasks in biological

legged locomotion. Here, the spring-mass gait template reveals an elegant solution.

As global strategies leading to self-stable locomotion could be identified, the control

of legged locomotion can hierarchically be decomposed if the system can rely on

compliant limb behavior in contact. Hence, the spring-mass model motivates the

investigation of local feedback control strategies for the neuromechanical interplay

generating spring-like leg behavior in biology.

By addressing single-loop muscle reflexes, in Chapter 5, only a small group of all

the potential local control schemes is investigated. Nevertheless, with positive force

feedback of the extensor muscles, a powerful strategy could be identified producing

spring-like leg behavior as a subset of a more general, compliant limb response rang-

ing from load bearing to high-performance hopping (compare Fig. 5.4). Moreover, by

consequently applying the hierarchical control concept suggested by the spring-mass

gait template, the first neuromechanical running model could be derived (Fig. 5.6).

Hence, the identification of positive force feedback strongly suggests that although

leg stiffness is treated as a key parameter in biomechanics, the spring-like behavior

is not embodied directly as ’control plant’ in biology, but rather emerges from the

inherent muscle-reflex dynamics capable of producing a wider behavioral spectrum

than merely emulating springs.1

The work presented in Chapter 5 exemplifies how gait templates can advance

a deeper understanding of the neuromechanical organization in animal and human

locomotion. Although positive force feedback has not yet been scrutinized experi-

mentally for running or hopping, evidence is mounting for this reflex scheme to play

an important role for leg extensor muscles in the stance phase of walking (compare
1When exploring the global system dynamics in models, however, implementing spring-legs rep-

resents a convenient way to express such a more general, compliant response parsimoniously as only
one parameter, the spring stiffness, has to be introduced.
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section 5.4.5). Considering the results of this thesis suggesting the spring-like leg

behavior to be of similar importance in walking as in running, the identification of

positive force feedback could point to a basic neuromechanical principle of generating

this leg behavior not only in bouncing gaits but in legged locomotion in general.

Admittedly, the model employed in Chapter 5 (Fig. 5.1) is itself a largely simpli-

fied representation of the morphological complexity found in animals and humans.

And it remains to investigate in detail in how far this principle based on positive force

feedback can be realized, for instance, in a multi-articulated and multi-actuated leg.

However, in the same way as gait templates can help to reveal basic neuromechan-

ical principles, these basic principles may in turn guide the identification of their

detailed realization in morphologically more plausible representations.

Thus, the obscurity of the organization of legged locomotion in biology that

is induced by shear morphological complexity, might be resolved following such a

step-by-step embodiment approach.

6.5 Application to robotics

In the previous sections, compliant limb behavior has been suggested as principle

of legged locomotion in biology. This suggestion is based on the observation that

although a large variety of legged systems evolved in the animal kingdom, when

considering the whole body dynamics, only two fundamental gait patterns prevailed

that can well be described by the compliant bipedal spring-mass model. Naturally,

the question arises whether the observed functional uniformity among animals and

humans reflects a solution to legged locomotion that is constrained by the material

and drivers available to biological systems, or it represents an even more general

principle that concerns technical legged systems as well.

Frequently, the importance of the compliant leg response is credited to the fact

that passive elastic components store and restore a considerable amount of the stride

energy in the stance phase of running. During walking, however, it is thought to

be of no significance in this respect. By contrast, the ’passive dynamic walking’

robots established that the energetic requirements can be minimized by adopting the

inverted pendulum motion. Hence, energetics seems not to distinguish the compliant

leg behavior as a general principle in legged locomotion.

But there might be a different reason for favoring compliant legs. An inherent

characteristic of legged locomotion is the occurrence of impact forces at touch-down.

This characteristic is well known to many scientists working in the field of robotics,
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not least since impacts jeopardize that very control concept which still dominates

in legged machines; namely, following prescribed kinematic trajectories for all the

degrees-of-freedom in the system. As this concept requires to measure precisely the

positions of all those degrees-of-freedom, rigid structural elements and tightly con-

nected actuators and sensors are implemented avoiding unpredictable play. However,

for legged locomotion, such a construction is especially impact-prone, which in turn

produces erroneous sensory information compromising the whole concept of kine-

matic control. Holding on to this concept, legged robots are often pre-programmed

to touch the ground with virtually zero foot-point velocity reducing the impacts as

much as possible. Although this strategy might work in a known environment at

slow speeds, it proves fatal in natural terrain or at higher speeds.

Adding to this control matter, and perhaps more importantly, the impacts

threaten to inflict damage on the rigid bearing structures and the stiffly connected

actuators. Hence, impact avoidance certainly ranks as one of the most prominent

concerns in legged systems. In fact, this issue is very familiar to us from wheeled

systems already. Cars and bikes have inflated tyres and are suspended by shock

absorbers. Exactly due to their compliant properties, these elements are able to

diminish impacts to a considerable extent. This not only comforts our ride. It also

prevents structural damages from driving into holes in the road. However, as roads

are generally flat to fit wheeled locomotion, shock absorption may be deemed supple-

mentary in this case. But for legged systems that are intended to move swiftly across

natural, and thus rough terrain, the compliant behavior could prove an indispensable

strategy for averting damage.

Although this general advantage of compliant limbs is well known in principle,

it is seldom exploited in legged robots, since it requires to abandon the traditional

concept of kinematic control in favor of a control that is based on the inherent system

dynamics. Yet, at present, it is unclear how the latter should be achieved. The

hierarchical decomposition of control as suggested by the spring-mass gait template,

could indicate a solution to this problem. Taking advantage of the self-stabilizing

behavior of the global system dynamics, the legs have merely to produce a spring-like

leg response.

Some hopping robots that have been developed over the past two decades, point

towards such a decomposition of control. Implementing hardware springs, they

rely on the spring-leg behavior and successfully balance the motion of the center of

mass by proper leg placement during flight (compare section 1.3). This placement,

however, is based on feedback control. In consequence, the hopping robots’ inherent
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self-stability, and hence the strength of the control decomposition, is not exploited

to its full potential.

For walking robots, as for walking itself, the concept of compliant leg behavior

is quite new. In our laboratory, we are currently pursuing this idea by building

a nearly passive walker that is actuated at the hip joints only, and has springs

spanning the knee and ankle joints of its two legs (Fig. 6.2). Thus far, it shows that

a walking-like gait can indeed be obtained without the traditional control approach

of prescribed kinematic joint trajectories. Additionally, and in stark contrast to the

passive walkers that are based on the inverted pendulum motion, the whole body

dynamics as measured by the GRF, more closely resembles that observed in biology.

Figure 6.2. Walking robot based on the concept of compliant limbs developed
at the Locomotion Laboratory of the Jena University by Y. Minekawa under su-
pervision of F. Iida and A. Seyfarth. The robot is actuated at the hip joints only.
Mostly biarticular springs span the passive joints of the segmented legs.

The robots just discussed strongly suggest the feasibility of this hierarchical

control concept. But to build legged systems that echo the versatility, and sudden-

ness, of animal and human movements, passive mechanical springs will have to be

extended, or perhaps even replaced, by active components. Hence, technical legs

should be able to generate the spring-like response on demand. The identified pos-

itive force feedback might serve as an inspiration for solving this task. The muscle

reflex demonstrates how an actuated leg can guarantee spring-like operation in a

largely decentralized and autonomous manner, without restricting the system to

this behavior. For instance, simply altering the feedback parameters forces the leg

to balance a load, or to accelerate or decelerate.

Whether such a reflex loop would work in a technical leg, may depend on the
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specific actuator properties. For positive force feedback, the asymmetric shape of

the muscle’s force-velocity relationship turns out to be essential for stabilizing peri-

odic hopping or running. By contrast, its force-length relationship has no influence

on the leg’s rebounding behavior, but is required for load bearing tasks. Certainly,

programming current motors to imitate muscle properties could enforce the func-

tionality of such a reflex loop. However, it might be more important to investigate to

what extent biological actuators, and their neuromechanical interplay, are particu-

larly suited to match legged locomotion; and then to reconsider the appropriateness

of their technical pendants.

6.6 Application to rehabilitation and prosthetics

While in robotics we enjoy the freedom of exploration, the situation is changed in

rehabilitation and prosthetics. Since here we do not have the privilege of arguing

about alternative approaches to legged locomotion using biology as a mere con-

venient source of inspiration, but must relate our efforts in understanding legged

systems, to a single, the human system. In particular, two fields of application are

attached to these research efforts: gait rehabilitation for patients whose ability to

walk and run is impeded temporarily following, for instance, spinal cord injury or

stroke; and the development of prosthetic legs that restore part of the functionality

of lost appendages.

The concept pursued in gait rehabilitation of human locomotion is comparable

to the kinematic control approach taken in robotics. The identification of central

pattern generators (CPG) that are located in the spinal cord of animals and rhyth-

mically excite their leg muscles during locomotion, soon suggested a similar decen-

tralization of neural control in humans. Following the observation that decerebrate

cats can even ’re-learn’ to walk when subjected to treadmill training, the latter was

suggested as therapy in human gait rehabilitation. Hereto, in early attempts, the

patient was stationed on a split-belt treadmill with a therapist holding him upright

from behind. While the treadmill belts moved the patient’s legs backward simulating

the stance phases in walking, two more therapists moved his legs forward imitating

the swing phases.

Although an increased re-learning rate of the patients indicated the potential

of the therapy, the rapid exhaustion of the therapists limited its applicability. To

release them from their strenuous activity, and to prolong the training significantly,

orthotic devices have been developed that suspend the patient’s body and move
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his legs automatically (Fig. 6.3). In these devices, the actuated joints are pre-

programmed to follow kinematic trajectories recorded from healthy subjects walking

at a moderate pace. The patient’s sole objective is to learn supporting his own weight

as the mechanical body suspension is gradually withdrawn in consecutive training

sessions.

Figure 6.3. Example of orthotic device for gait rehabilitation. The ’Lokomat’
has been developed at the ParaCare Research Laboratory (Prof. V. Dietz) of the
University Hospital Balgrist, University of Zurich, Switzerland, in collaboration
with the Institute for Automatization (Prof. M. Morari) of the Swiss Federal In-
stitute of Technology (ETH), Zurich, Switzerland, and is now commercialized by
the HOCOMA AG (picture courtesy of the ParaCare Research Laboratory).

It is currently unclear to what extent the kinematically constrained motion ham-

pers the therapeutical success. However, a patient-adaptive and function-specific

control concept that not only reduces the body suspension, but also delegates part

of the walking effort to the patient himself, is considered a substantial improvement

on the rehabilitation training.

Towards this goal, in the actual devices, the kinematic joint trajectories are

overlaid with an impedance control where, proportional to the deviation of a joint

from its target trajectory, a restoring force is applied. Although this solution enables

the patient to depart from the prescribed motion to some degree, it does not really

adapt to the progress in functionality the patient’s legs make during the course of

the therapy; nor can it account for his natural locomotion pattern.

The latter may immediately become apparent when considering that body weight
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suspension influences the natural dynamics of human locomotion similar to a reduced

gravity environment. For example, recalling from Chapter 3 that humans prefer to

switch from walking to running at a speed vtrans ∼
√

0.5 g`0, at full body suspension

(geffective = 0), the patient would naturally prefer to run at the moderate ’walking

speed’ applied in the training.

Hence, similar to robotics, the intended control concept may require a transi-

tion from prescribed kinematics to dynamics based solutions. Here, the identified

spring-mass gait template could serve as a suitable control substitute for predefined

trajectories in the stance phases. For instance, the suspension system could alter the

load on the stance legs according to the whole body dynamics observed in natural

walking, or perhaps even running, using the gait template as a functional, virtual

control model. However, existing suspension systems are designed to apply a con-

stant lift force only and lack the dynamic response necessary to implement such a

template based control. To test the latter, we are currently developing a system

that fulfils the required specifications.

In contrast to the situation in gait rehabilitation, for the development of pros-

thetic legs we cannot rely on a patient’s own leg apparatus, but must devise artificial

replacements that literally recover the functionality of the lost appendages, by tech-

nical means. However, present-day leg prostheses lack far behind the envisioned

goal. Although advances in materials and methods have pushed their cosmetic ap-

pearance, the underlying functionality is largely restricted to mimicking specific leg

kinematics. This is mainly achieved by altering the behavior of prosthetic knees

using programmable variable dampers (as in Endolite Intelligent Plus, Otto Bock

C-Leg, and Seattle Power Knee). Foot prostheses still remain mechanically passive

elements with visco-elastic properties emulating an elastic ankle joint behavior (e.g.

carbon-fiber leaf springs in Flex-Foot prostheses, Flex-Foot Inc.) and the human

heel pad (e.g. solid-ankle cushioning heel feet known as SACH feet). As a result,

current leg prostheses are far from displaying the versatility of natural limbs. By

contrast, their motion repertoire is largely restricted, and in fact, there is no artificial

leg that allows an amputee to walk and run.

Different reasons may account for this unsatisfactory state of development. On

one hand, available hardware technologies barely meet the requirements for pros-

thetic legs. Here, one problem is the onboard power supply in autonomous systems,

the lack of which prevented early implementations of active force generation in pros-

thetic legs. Another technological difficulty that has to be overcome is the insufficient
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torque production of existing actuators. A number of research efforts are made to

develop new devices ranging from the in-series arrangement of traditional actuator

and spring elements imitating muscle-tendon units, to the conception of novel high-

density linear actuators, to the utilization of modified and artificially maintained

muscle tissue.

On the other hand, it is currently unclear, given the prospect of sufficient power

supply and actuators in near future, what general control concept should be applied

to a powered leg prosthesis; and it seems that, similar to applications in robotics and

rehabilitation, a deeper understanding of the principles underlying human locomo-

tion, as well as the identification of their morphological embodiment, could have a

profound impact on the development of artificial limbs. Here, the thesis results not

only suggest that it is possible to devise prosthetic legs which allow an amputee to

walk and run in a natural and comfortable manner based on the same fundamental

principle of compliant limb behavior. They also demonstrate how the control of this

global leg response could be realized at the local joint levels using positive force

feedback.

However, as discussed earlier, the model employed in Chapter 5 largely simplifies

the morphology of the human leg. As such it merely exemplifies how the step-by-step

embodiment approach can complement physiological methods elucidating the neural

control of human locomotion. It remains to continue with this line of research to

obtain a more detailed picture of the neuromechanical organization for morphologi-

cally more plausible leg architectures. Nonetheless, the exploitation of this approach

for leg prosthetics seems to have a strong long-term potential, since developing ar-

tificial replacements using the same general principles and control structures that

operate the human leg, may also lead to man-machine interfaces linking the tech-

nical controller with the nervous system. Not only would this give the command

of a prosthesis over to the amputee, but it might convey him the feeling of a truly

natural limb.
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General

Symbol Definition First Appearance

α0 leg/spring angle of attack at touch-down Fig. 1.2, p. 3

COM body center of mass Ch. 1.2, p. 3

Es system energy Ch. 2.2.2, p. 11

g gravitational acceleration Fig. 1.2, p. 3

GRF ground reaction force Ch. 1.1, p. 2

i index denoting initial apex event Ch. 2.2.2, p. 11

i + 1 index denoting subsequent apex event Ch. 2.2.2, p. 11

k spring stiffness Fig. 1.2, p. 3

`0 spring rest length Fig. 1.2, p. 3

m body mass Fig. 1.2, p. 3

tc contact time p. 16

TD touch-down Ch. 2.3.1, p. 12

TO take-off Ch. 2.3.1, p. 12

Chapter 1

Symbol Definition First Appearance

ẋ0 forward speed at initial apex Fig. 1.3, p. 6
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Chapter 2

Symbol Definition First Appearance

∆ϕ angular sweep during stance Fig. 2.1, p. 11

Ẽs dimensionless system energy eq. 2.28, p. 18

ϕ angular position Fig. 2.1, p. 11

ϕ̇ angular velocity eq. 2.3, p. 12

k̃ dimensionless spring stiffness eq. 2.28, p. 18

P angular momentum p. 12

r radial distance Fig. 2.1, p. 11

ṙ radial velocity eq. 2.3, p. 12

ρ relative spring amplitude eq. 2.6, p. 12

ω angular touch-down velocity eq. 2.8, p. 13

ω0 natural spring frequency eq. 2.8, p. 13

ω̂0 planar spring-mass system oscillation fre-

quency

eq. 2.12, p. 13

Chapter 3

Symbol Definition First Appearance

ϕ angular position Fig. 3.2, p. 37

∆` maximum leg compression (experimen-

tally)

Fig. 3.3, p. 43

∆`hor maximum leg compression imposing hori-

zontal COM kinematics during stance

eq. 3.4, p. 38

∆rmax maximum leg compression (calculated) eq. 3.7, p. 38

∆z vertical COM amplitude p. 3.3.2

λ relative leg compression eq. 3.13, p. 40

Fr Froude number p. 35

r radial distance Fig. 3.2, p. 37

ṙ radial velocity Fig. 3.2, p. 37

v forward locomotion speed p. 35

ω0 natural spring frequency eq. 3.5, p. 38
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Chapter 4

Symbol Definition First Appearance

∆y vertical displacement Fig. 4.3, p. 55

∆` spring compression Fig. 4.3, p. 55

DR Jacobian matrix of the return map R eq. 4.4, p. 51

Ẽs dimensionless system energy p. 52

Fhoriz/vert horizontal/vertical component of GRF Fig. 4.3, p. 55

FP foot point Fig. 4.1, p. 50

k̃ dimensionless stiffness p. 52

λ eigenvalue of the Jacobian matrix DR eq. 4.3, p. 51

R return map eq. 4.1, p. 51

vbelt treadmill speed Tab. 4.1, p. 59

xrel relative horizontal position p. 51

x̃rel dimensionless horizontal position p. 52

y vertical position p. 51

ỹ dimensionless vertical position p. 52

Chapter 5

Symbol Definition First Appearance

A area enclosed by the leg’s force-length re-

lationship

eq. 5.10, p. 74

Amax maximum area eq. 5.10, p. 74

ACT muscle activation Fig. 5.1, p. 70

CEL elasticity coefficient eq. 5.10, p. 74

CE contractile element Fig. 5.1, p. 70

F+ positive force feedback Fig. 5.2, p. 76

Fmax maximum isometric force

FMTC muscle force eq. 5.3, p. 71

G feedback gain Fig. 5.1, p. 70

GTO Golgi tendon organs p. 72
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h hopping height Fig. 5.2, p. 76

L+ positive length feedback Fig. 5.2, p. 76

`CE CE length eq. 5.4, p. 71

`off CE offset length p. 72

P proprioceptive signal Fig. 5.1, p. 70

SE series elastic element Fig. 5.1, p. 70

STIM muscle stimulation signal Fig. 5.1, p. 70

STIM0 stimulation bias Fig. 5.1, p. 70

vCE CE velocity eq. 5.4, p. 71

voff CE offset velocity p. 72
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