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Abstract

Tracking of a reference signal (assumed bounded with essentially bounded derivative) is considered in the context of a
class of nonlinear systems, with outgyidescribed by functional differential equations (a generalization of the class of linear
minimum-phase systems of relative degree one with positive high-frequency gain). The primary control objective is tracking
with prescribed accuracy: giver 0 (arbitrarily small), determine a feedback strategy which ensures that for every admissible
system and reference signal, the tracking eerer y — r is ultimately smaller thar (that is, |e(r)|| < 4 for all t sufficiently
large). The second objective is guaranteed transient performance: the evolution of the tracking error should be contained in a
prescribed performance funnél. Adopting the simple non-adaptive feedback control struatire= —k(r)e(r), it is shown
that the above objectives can be attained if the gain is generated by the nonlinear, memoryless fegedbagks (¢, e(z)),
wherek # is any continuous function exhibiting two specific properties, the first of which ensurestha(if)) approaches the
funnel boundary, then the gain attains values sufficiently large to preclude boundary contact, and the second of which obviates
the need for large gain values away from the funnel boundary.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

By way of motivation, consider the well-studied (see, for examplgg,9] class of finite-dimensional, real,
linear, minimum-phaseéyi-input (x(¢)), M-output (v(¢)) systems of relative degree one having high-frequency gain
B € RM*M with B + BT > 0. Systems of this class can, in suitable coordinates, be expressed in the form of two
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Fig. 1. Performance funnef .

coupled subsystems

(1) = A1y(0) + Agz(t) + Bu(),  y(0) =)", )
2(1) = Azy(t) + Aaz(t), 2(0) =29,

with y(1), u(r) € R™, z(r) e R¥N=M and whered4 has its spectrum in the open left half complex plane. Introducing
the linear operatof given by

t
(Ty)(®) == Ary(1) + Az/O exp(As(r — 5))Asy(s) ds 2

and the functiorp given by p(¢) := A» exp(A4t)z°, system (1) can be interpreted as
¥(6) = p(6) + (Ty) () + Bu(r),  y(0) =»°. 3

In a precursof2] to the present paper, (1) formed a prototype subclass of a considerably more general class of
nonlinear systems described by functional differential equations of the form

3 = F(p@), (TY)@),u@®),  yi-no =",

where, loosely speaking, the parameier0 quantifies system “memoryfy may be thought of as a (bounded)
disturbance term, anflis a nonlinear causal operator. Whilst a full description of the system class is postponed to
Section 2, we remark here that diverse phenomena are incorporated within the class including, for example, diffusion
processes, delays (both point and distributed) and hysteretic effects. For this general system class, the problem of
output tracking with prescribed asymptotic accuracy and prescribed transient output behaviour was forni@lated in

in terms of a performance funnél determined by the graph of the set-valued map F(r) ={e|o(®)]|le]l <1} C

RM for suitably chosew; the goal was a control structure which, for every admissible system and reference signal,
ensures that the graph of the tracking eer@y is contained inZ (Fig. 1). This goal was achieved by the simple
control structure«(t) = —k(t)e(¢) with the gain generated by a nonlinear, memoryless feedback law of the form
k() = K#(t, e(t)), whereK # is a continuous function such that, loosely speaking, the reciproddl-1z, )

provides a particular measure of distancdrot) from the boundary# of the funnel# (with the effect that if

the error approaches the boundary, then the gain increases which, in conjunction with a high-gain property of the
underlying system class, precludes contact with the boundgigy)3). The purpose of the present paper, vis-a-vis its
precursof?2], is to extend the choice of admissible gain functiéhs, allowing for greater flexibility in the choice

of measure of the distance to the funnel boundary. Colloquially speaking, the controll2fdank “vertically”

in the funnel in the sense that, at tiheonly the instantaneous funnel informatiét(¢) is used. This approach



A. lichmann et al. / Systems & Control Letters 54 (2005) 655-670 657

i H w=Ty
i w System
HE{ y=fwy

H u(t) = —Kg(t.e(t) eft)

Error feedback

Fig. 2. Universal error feedback control.

is typified by a gain functiork 5~ determined by the reciprocal of the vertical distance to the funnel boundary

e 1
1—o@) el diste, F (1))’

Kzt e)= 4)

with the convention that, ip(1) =0, then diste, 0 F (r)) := oo (in which case&k # (¢, ¢) =0). By contrast, the present

paper exploits the freedom to also look “forward” in the funnel in the sense that, at, tiheefunnel information

{F(t)|t >t} is available for use. This approach has the potential to mitigate large excursions in control values by
sensing, in advance, rapid changes in the funnel geometry and adjusting the control gain accordingly. The approach
is typified by a gain functiork = determined by the reciprocal of the forward or future distance to the funnel:

Kz (t,e) = i, ds(t,e) := inf \/(r —1)? + (dist(e, 0F(1)))°. (5)
df (t,e) : >t

Furthermore, to facilitate implementation, we also study a numerical future distance (essentially a numerical ap-

proximation to (5)).

The control strategy, investigated[2] and the present paper, is essentially applicable to the same system class
widely studied in high-gain adaptive control. Loosely speaking, the system class encompasses nonlinear counterparts
of the class of linear relative degree one systems with stable zero dynamics and high-frequency gain of known sign.
The main differences between the approach of the present paper (and its prijiesat adaptive control strategies
in the literature (sefl] and the reference therein) are: (i) prescribed transient behaviour is guaranteed, (ii) the gain
t — k(t) is notamonotonically non-decreasing function, (iii) the gain is not adaptively tuned by a dynamical system
(cf. k = |le||? in the adaptive context) but is simply a static, nonlinear (albeit time-varying), though memoryless
feedback, and (iv) growth assumptions on the system nonlinearities are obviated.

Miller and Davison[5] have introduced a controller which guarantees the “error to be less than an (arbitrarily
small) prespecified constant after an (arbitrarily small) prespecified period of time, with an (arbitrarily small)
prespecified upper bound on the amount of overshoot”. However, their controller is adaptive with monotonically
non-decreasing gain, invokes a piecewise constant switching strategy, and is less flexible in its scope for shaping
transient behaviour.

The paper is organized as follows. In Section 2, we make precise the underlying system class and provide some
examples. The control problem is formulated in Section 3, wherein the class of reference signals and the performance
funnel are described. Section 4 elucidates the proposed output feedback control and, in the main result (Theorem
2), establishes the requisite transient and asymptotic behaviour of the closed-loop system. Finally, in Section 5, the
flexibility in the choice of gain functionX 4, alluded to above, is illustrated via diverse examples determined by a
variety of measures of distance to the funnel boundary.

We close this section with some remarks on notation. Througlidylg, := [0, 00), R-¢ := (0, 00), the inner

product onRY is (x, y) = xTy, the Euclidean norm o™ is given by |x|| := +/xTx, andBs(¢) = {x €
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RM||lx — &|| <4} is the open ball of radiué > 0 centred at € RM. The Euclidean distance afe RY from a
non-empty seft ¢ RY is dist(x, A) := inf,ca|lx — al|. The space of continuous functiofis> R is denoted by
C(S; RM), L>°(I; RM) is the space of measurable essentially bounded functieasRY (I c R aninterval), with
norm ||x|leo := €ss sup, [lx(®)|l, Liy.(; RM) is the space of measurable, locally essentially bounded functions
I — RY, and finally W (R o; RM) denotes the space of bounded locally absolutely continuous functions

r: R>o — R with essentially bounded derivative and nof||1.0o := [1x[loo + [1% ]l co-

2. System clasg

Consider the clasg of infinite-dimensional, nonlineaM-input u, M-outputy systems(p, f, T), given by a
controlled nonlinear functional differential equation of the form

FO) = Fp@), Ty, u@®),  yno=»° h=0, y°eC(-h,05:RY) 6)
having the following properties for sonfe, Q € N:

1. p e L®(Rso; RP);
2. f e C(RY x R2 x RM; RM);
3. for every non-empty compact subgett R” x R and every sequence,,) in R\ {0}, the following property
(akin to radial unboundedness or weak coercivity) holds:
(una f(va wv uﬂ))

lupll > 0o asn— oo = min —22 - """ 5 asn — 00;
(v,w)e € [lun |l

4. T : C([—h, 00); RM) — L (R>0; R?) denotes an operator of clags that is, an operator with the following
three properties:

(a) for allé > 0 there exists! > 0 such that, for alk € C([—h, c0); RM),
[Xlloo <0 = |Txlleo<4;
(b) forallz>0and allx, ¢ € C([—h, o0); RM)

Xl=n =E€li=n,n = Txlpon=TS¢lon;

(c) forallt >0 and alll € C([—h, t]; RM) there existr, 3, ¢ > 0 such that, for alk, ¢ € C([—h, co); RM)
with x|(—p..) = { = &Elj—n.np @andx (s), &(s) € Bs({()) forall s € [z, t + 1],

I(Tx)(s) = (TOGI< ¢ sup lx(s) — <)l

selt,t+1]

Remark 1.

(i) The functionpin (6) may be thought of as a (bounded) disturbance term; the non-negative corgiantifies
the “memory” of the system.
(iiy Property 3 generalizes the positive “high-frequency gain” concept in linear systems of relative degree one.
(i) It is straightforward to show that a necessary and sufficient condition for Property 3 to hold is that, for
SM=1.— (u e RM||ju| = 1} and for every compact se¥ c R’ x R?, the continuous function, :
R>0 — R, defined below, has the following property:

min (u, f(v,w,su))=":7y4(s) > oo ass — oo. @)
(v,w,u)e(gXSMfl
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(iv) Property 4(a) is a crucial “bounded-input, bounded-output” assumption on the ope(tiisrgeneralizes the
role of the minimum-phase condition in the context of linear systems).

(v) Property 4(b) is an assumption of causality and Property 4(c) is a technical assumpfiaof arflocally
Lipschitz” nature.

(vi) LetT € 7 andr >0.Givenx € C([—h, 1); RY) letx¢ denote an arbitrary extensionxao C ([, 00); RM).
By virtue of Property 4(b)7x°|j0,,) is uniquely determined by the functionin the sense that the former
is independent of the extensiafi chosen for the latter. Expanding on this observation, we will adopt the
following notational convention. For € [0, 7), we simply write(Tx)(s) in place of(Tx¢)(s) (wherex¢ €
C([—h, o0); RM) is any continuous extension Bf.

In the remainder of this section, we present some examples of systems belonging to the class

The linear prototypeWith reference to finite-dimensional, linear, minimum-phase systems of the form (1)—(3),
positivity of B + BT ensures Property 3, and the assumption thatis Hurwitz (minimum phase) ensures
Property 4.

Infinite-dimensional linear systemBhe class of finite-dimensional systems considered in (1) can be extended
to an infinite-dimensional setting by reinterpreting the operatars .., A4 in the system representation (1) as
the generating operators of a regular linear system (regular in the sef&g. df particular, in this settingd4
is assumed to be the generator of a strongly continuous semi§reu(®, ), - o of bounded linear operators on a
Hilbert spaceX with norm|| - || x. Let X1 denote the space ddr,) endowed with the graph norm aid_; denotes
the completion ofX with respect to the normiz||_1 = ||(so/ — A4) " z||x, Wheresg is any fixed element of the
resolvent set ofi4. ThenAs is assumed to be a bounded linear operator fRfrto X_1 and A2 is assumed to be
a bounded linear operator froiy to R™. A1, B € R™*™.

If we assume that the semigroas exponentially stable and that the operaterextends to a bounded linear
operator (again denoted b4p) from X to R™, then the operato(Ty) () := A1y(t) + A2 fé S _sA3y(s)ds has
Property 4 (for details, s€&]).

Nonlinear delay elementket functions¥,, : R x R" — R? : (¢, y) — ¥, (t,y),n=0,..., N, be measurable
in t and globally Lipschitz iny uniformly with respect td: precisely, (i) for each fixed, ¥, (-, y) is measurable
and (ii) there exists a constansuch that, for almost atland ally, z € R™, |V, (¢, y) — Y., 2| <c |y — zl.
Assume further tha?, (-,0)=0. Forn=0, ..., N, leth,, >0 and definé := max, h,. Fory € €([—h, c0); R™),
the operatofl, defined, for alk >0, by (Ty)(¢) := ff’ho Yols, y(t+s)) ds + Zflvzl Y, (t, y( —hy)), has Property
4 (for details, se¢r]).

Systems with hysteresfsgeneral class of nonlinear operat@réR > o; R) — C(R>0; R), which includes many
physically motivated hysteretic effects, is defined viaassumptions (N1)—(I[\8)R¢ction 3] These assumptions are
covered by Assumption 4 of Section 2. Examples of such operators, including relay hysteresis, backlash hysteresis,
elastic—plastic hysteresis and Preisach operators, are detaifedSiection 5]

ISS systemd$zurther examples of interconnected nonlinear systems with opefatdrthe allowable class
generated by input-to-state stable subsystem dynamics can be foah&ecttion 2.3]

3. Problem formulation
3.1. The performance funnel

Let @ denote the class of functiogse W1’°°([RR>0; R) which are positive-valued of®, co) and bounded away
from zero “at infinity”, that is,

b= [q) IS Wl"x’(R>o; R)|p(s) >0 foralls > 0, Iiplggf @(s) > 0] .
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With ¢ € @, we associate a set-valued map (definedorn)
t > F(1) :={e € RM|p@) el <1},

the graph of which we refer to as the performance funnel
F = graph(F) := {(t,e) € R0 x RM|e € F(1)}.

Observe that (i)p(0) = 0 is permissible, in which case(0) = R, and (ii) for everyp € ® andz > 0, there exists
u> 0 such thatp(z) > p for all £ > 7, and soF (t) C B1/,(0) forall 1 > 7.
As a concrete example, fdr> 0, 7 > 0 ande € (0, 1), the choice
t
([1—¢lt +e)h
yields an associated performance fungewhich reflects an overall objective of attaining tracking accuragy
prescribed time.

t— @)=

3.2. Class of reference signals and control objective

As reference signals, we allow bounded locally absolutely continuous functions with essentially bounded
derivative, i.er € W-* (R~ 0; RM) with norm given VI 11,00 := 17 loo + 17 ]lco-

Giveng € @ and its associated performance fun#elthe control objective is a single feedback strategy ensuring
that, for each reference signak W1 and every system of clagg the tracking erroe = y — r has a graph in
Z (equivalentlye(r) € F(¢t) for all t >0), and all variables are bounded.

4. Output feedback control

Let ¢ € @ determine a performance funnél and letr € le°°(lR>o; RM). We seek to achieve the above
control objective via the simple proportional time-varying output error feedback

u(t) =—k®e(), k@)=Kgz(t e@), el)=y) —r(), (8)

whilst ensuring boundedness of the gkitdere,K 5 : # — R>¢ is a continuous function chosen to confirm the
intuition underlying the control structur&. is such that, ifz, e(z)) approaches the boundary of the fungelthen

the gaink(r) = K# (1, e(t)) increases at a rate sufficient to preclude—via an implicit high-gain stability property
of underlying system class—boundary contact, thereby maintaining the error evolution within the performance
funnel. Next, we elucidate two properties which, when imposed on the gain furikcggreconfirm this intuition.

4.1. Requisite properties of the gain function

Let ¢ € @, with associated map — F(r) and performance funne¥ = graph F). For eaclv € R>q, we
denote the boundary of the s&tr) by 0F (¢). LetK# : # — R be a continuous function. We impose only the
following additional properties oR .

Property A. VK >03¢>0:V(t,e) € &
dist(e, 0OF (1)) <¢ = Kz (t,e)=>K.

Property B.Ve>0Vd>03K >0:V(r,e) € &

dist(e, 0F (1)) >¢ and t >0 = Kz (t,e)<K.
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The essence of these properties is as follows. Property A ensures that, in (8), if the trackiag ersarlose to
the funnel boundary, then the associated gain valgis large. Property B, loosely speaking, obviates the need
for large gain values away from the funnel boundary.

4.2. The main result

We now arrive at the main result, the essence of which is the assertion that the control objective is achieved by
the feedback (8) provided th&ts has Properties A and B; moreover, the functign is bounded.

Theorem 2. Let (f, p, T) € X. Let ¢ € ® with associated map F and performance fungelk= grapi F). Let
Kz : F — Rx>q be continuous with Properties andB.

Foranyr € W2 (R~ o; RM) and initial datay® e C([—h, 0]; RM) such thaty®(0) — r(0) € F(0), there exists
a solution of the closed-loop initial-value probld), (8),i.e.

y@) = f(p@), (Ty)®), =Kz, y(t) —r()[y@®) —r@®)), } ©)

y(t) —r(t) € F(t), yli-no =»°.

Every solution can be extended to a maximal solusion[—%, ) — R" and every maximal solution has the
following properties

(i) w=o0,
(i) t — k(t)=Kz(t, y(t) —r(t)) is bounded orfiR > o,
(iii) there existg > 0 such thadist(y(r) — r(¢), 0F (t)) >¢eforall t € R>o.

Proof. Let (p, £, T) € 2, r € Wh®(R>0; RY) andy® e C([—h, 0]; RM) with y°(0) — r(0) € F(0). By

a solution of the feedback-controlled initial-value problem (9), we mean a fungtianC ([—h, w); RM), with
0<w< oo andy_x.0 = ¥°, such thaty|o,., is absolutely continuous and satisfies the differential equation in (9)
for almost all € [0, w) andy(z) — r(¢t) € F(¢) forall t € [0, w); yis maximal if it has no proper right extension
that is also a solution.

Stepl: We show existence of a solution of (9) and establish that every solution can be extended to a maximal
solution.
Writing e(t) := y(t) — r(¢), introducing the artifact(¢) = ¢, extending to [—h, co) by definingr(¢) := r(0)
for all r € [—h, 0], and writingx® := (0, y° — rl—n,01), system (9) may be expressed in the equivalent form
() =1,
e(t) = f(p), (T(e+r)t), =Kk, (), e(t))e(r)) — 1 (1),
@), en) € 7 :={(z,e) e R x RM|e € F(z]),
(z.0)_no =x° € C([—h,0]; R x RM), x%0) ¢ 7, (10)

which, on writingx (1) = (z(1), (1)), (Tx)(t) = (T (z, €))(t) := (T'(e + r))(t), and

G:R;oxc)ﬂxRQ—) RM+1L,
(t,x,w) > G(t,(z,e),w) := (1, f(p), w, —Kk,(|z],e) e) — (1)),
can be interpreted as the initial-value problem
xX(t)=G(t,x(1), (f"x)(t)), x(1) € F
| 11)

xl—noy =x° € C([~h, O RM 1) | x00) € 7.
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NowZ# c RM*lisa non-empty open sdt,is a causal operator of clags (for M replaced by +1) andGis locally
essentially bounded and is a Carathéodory funétiand so we may applf2, Theorem 5}to conclude that (11)

has a solution and every solution may be extended to a maximal salution, ) : [—h, w) — . Furthermore,

if w < o0, then, for every compact C Z, there exists’ e [0, w) such thatx (') ¢ €. Since (9) and (10) are
equivalent representations of the same initial-value problem, it follows that (9) has a solution and every solution can
be maximally extended. If : [/, w) — R is a maximal solution of (9), then graph— r) ¢ % = graph F);
moreover,

w<oo = VYcompactd Cc.Z At [0, w): ',y —r{t') =", el')¢E. (12)

Lety : [—h, w) - RM, 0< w< 0o, be a maximal solution of (9) and write= y — r (with graphe) c %).

Step2: We highlight an essential inequality.

Lett € (0, w). By properties oF, there existg:. > 0 such thatF'(r) C By,,(0) for all > 7. Sincee(r) € F(1)
for all r € [0, w), it follows thate is bounded which, in conjunction with boundedness of the reference signal
implies boundedness ¢f Sincep is essentially bounded arfd € .7 satisfies Property 4a of the system class
there exists a non-empty compact get R” x R2 such that(p(r), (Ty)(t)) € € for almost allz € [0, w). Let
14 be defined as in (7) (and 3g.(s) — oo ass — oo). Then, by Property 3 of the system cla&S&nd essential
boundedness of, there exists a constant >0 (see [2, (30), (31)]) such that

d
a le() 1 = 2(e(r). f(p(1). (Ty)(1), =K 7(t, e(t))e(®))) — F(t)
< —2p4(le@®) | KF(t, e(t))) +c1 foralmostallz € [0, w).

By boundedness ap ande, together with essential boundednesspofve now infer the existence of a constant
¢z > 0 such that

((p(one(r)n)Z = (<p(t))2 ||e(r>|| + 200 o) le)1?
< - 2(/)(t) le@llyglle) | Kz (t, e(t))) + c2 for almost allz € [0, w). (13)

Step3: We show that the functioh : [0, w) — R0, t > A —o@®)|e®)™ 1 is bounded. Choos&e (0, w)
arbitrarily. By continuity,k is bounded ono, J]. Seeking a contradiction, suppdsas unbounded oifd, w). For
eachn € N, defines, := sufr € [0, w)|k(1) = k() + n} andz, := inf{r € [, w)|k(t) = k() + n + 1}. Then

k(t)=n+k(5) Vt € [on, ), Vn € N.

Defineg :=inf; > 5¢(1). By properties ofp € @, it follows thatp > 0 and so we may define a decreasing sequence
(&,) 1IN R>o, with &, \( 0 asn — oo, by

@ln+k(d)]
We now have
1 1 1
dist(e(t), OF (1)) = —— — lle@®) | = — < - (14)
@) P k(t) ~ @ln+k(9)]
<&, Vtelo,, 1], Yn e N. (15)

1Thatis: (j)G(z -) is continuous for each fixede R, (ii) G(-, x, w) is measurable for each fixéd, w) € & x R2, and (iii) for each
compacté C F x RQ there existsc € Lloc([ h,00); R ) such that|G(z, x, w)|| < k() for almost allr € [, co) and all(x, w) € €.
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Next, we claim that the sequencE,) in R> o, given by

K,:= min Kz(,e()) VneN,

1€[0n,Tu]
is unbounded. By Property A of the gain functi&iy-, there exists a sequengg) in (0, co) such that
V(t,e) € F Vk e N distle, 0OF (1)) <& = Kz (t,e)>k. (16)

Since lim,—. ¢, = 0, we may choose, for evekye N, somen; € N such that,, <&. In view of (14) and (16),
it follows that

Kz (t,e(t)) =Ky, =k Vit € [0y, Tn], YkeN, 17)

and so the sequenc¢&,,) has an unbounded subsequence, whence the claim.
By boundedness af, convergence to zero of the decreasing sequéngeand (14), we conclude the existence
of constants'3 > 0 andn € N such that

1
||€(t)ll>m —&nzc3 Vi€ lop, 1y] VR0 (18)

Now by (13), together with (18), (17), unboundednes&kf) and the fact that, (s) — oo ass — oo (recall (7)),
we may choose some> i such that

d
3 (@D)lle)N? < — 20%cavg (le() | K7 (2, e(t)) + c2 <0 for almost all € [a;, 73],

whence the contradiction-k(a;) =k(1;) = (1) le(t7) || < ¢(04) lle(a;) | =k(a;). Thereforek is unbounded.
Stepd: We showr — K 4 (t, e(t)) is bounded o0, ).
Letd € (0, w). By continuity,K # (-, e(+)) is bounded oif0, ¢]. For contradiction, suppose th&ltz is unbounded
on[d, w). Then there exists a sequengg in [J, w) such thatk # (¢,, e(t,)) — oo asn — oo.
We claim that

Iim_)i(gf e, =0, ¢, :=dist(e(t,), 0F (t,)) > 0. (29)

Suppose otherwise; then there exists0 such that, > ¢ for all » € N. By Property B of the gain function, there
existsK >0 such that

Kz (ty,e(t,)) <K forallneN,
contradicting unboundedness of the sequei€e (1,,, e(t,))). This establishes (19). Now, observe that, for all
neN,
1 _ 1 _ 1 < 1
1—@U)lle@)Il @ty diste(t,), OF (tn)) — @(tn)en N@llootn
which, in view of (19), contradicts boundedness:oTherefore, the functiok (-, e(-)) is bounded ori0, ®).

Step5: We show that there exists> 0 so that disie(z), dF (1)) >¢for all 7 € [0, w).
Suppose otherwise. Then there exists a sequepcm [0, w) such that

é(tn) =

dist(e(t,,), 0F (t,))<1/n Vn e N.

By boundedness ok # (-, e(-)), K := SUR¢(q.,) K7 (t, e(?)) isin R 0. By Property A of the gain functiok s,
there existg > 0 such that, for allz, ¢) € 7,

diste, 0F (1)) <é = Kz(t,e)>K.
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Choosingn € N sufficiently large so that di&t(r;), 0F (¢;)) < 1/n < ¢ yields the contradiction

K7 (t;, e(ty)) > K = sup Kgz(t,e(t)).

te[0,w)

Step6: Seeking a contradiction suppase< co. Letd € (0, w) ande > 0 be as in the claim of Step 5, in which
cases<1/p() forall ¢t €[4, w]. Define

G5 = {(t,e) € [0, w] x RM |e € F(1), dist(e, OF (1)) > ¢}

1
lell<— — 8} :
@(1)

Then% s is compact. Now define the compact Got— {(z,e(®))|t € [0, d]}. Then¥ = AN %5 is a compact subset
of # with (¢, e(r)) € € forall r € [0, w), which contradicts property (12). Therefote = co.
Step7: Finally, Step 6 together with Steps 4 and 5 shows Assertions 1-3.

= {(t,e) €0, w] x RM

The proof of the theorem is therefore completél]

5. Gain functions

In this section we describe various choices of continuous gain fun&tipnwith the requisite Properties A and
B, which are feasible for the feedback (8) and which are based on different “measures” of distance to the funnel
boundary.

5.1. Scaled vertical distance to the funnel boundary

Here, we base the gain function on measurements of the distance of the instantaneeqs &worthe boundary
of the setF (¢): this approach uses only funnel information at current tiraad, in particular, does not anticipate
the future shape of the funnel boundary.

With reference td-ig. 3, for (¢, ¢) € #, we refer to diste, 0F (¢r)) = 1/¢(t) — |le|| (with the convention that
dist(e, 0F (0)) = oo if @(0) = 0) as the vertical distance frofn, ¢) to the funnel boundary: in incorporating this
distance in the design of gain functioksz, we allow for scaling by a suitable functighand refer to the quantity
Y (r)dist(e, 0F (r)) as a scaled vertical distance.

dk (t.e(t)

Fig. 3. The distancé / (t, e(1)) to the future funnel boundary, and the vertical distance«list JF (1)) to the funnel boundary.
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Proposition 3. Letg, y € @ such thatim, o4y (r) p(1) 1= : Y € (0, o0], and letZ be the performance funnel
associated withp. Assume thaf : R.o — R>¢ is continuousunbounded and non-increasing. Then

Py () dist(e, OF (t))), t >0,
Kz : 7 — Rxo, (t,e) > 1 Bo — Y (O)llel), t=0and < oo, (20)
ﬁ* = Iimseooﬁ(s)s t =0and WOZOO

is continuous and has PropertidsandB (as in Sectior#.1).

Remark 4.
(i) The simplest example, covered by Proposition 3, is the unscaled vertical distange=farandp : s — 1/s,

we have, for allz, ¢) € 7,

1 __ 90
diste, 0F (1)) 1—o()lell’
(i) The strategy introduced if?] is also covered by a functioK & satisfying Properties A and B. Ij2], the

control gain is defined, for any € ® and corresponding funnef, as
k(t) =oa(p@)lle@® D,

wherex : [0, 1) — R ¢issome continuous, unbounded injection. Adopting the scgliag and introducing
the continuous, unbounded and strictly decreasing function

pramae oo pw={fg " (SN

Kz(t,e)= (21)

we may interpret the above strategy in terms of a gain function of form (20) as follows:

o -~ ) Bl dist(e, 0F (1)), (t,e) € #, t>0,
=Kt Kptt.oi= | EEOTRETO G020

In this case, the scaling of the vertical distance by the special ciioice is restrictive: Proposition 3 offers
considerably more flexibility in the choice of scaling functions.
(iii) For technical reasons it is convenient to associate Withe “generalized inverse”

BT 2 (P, 00) = Reo, s > min{o € R.o|f(0) = s}
with the properties
BBT(s)=s Vse (B, 00) and
lim B'(s)=0.
§—>00
Proof of Proposition 3. First, we prove continuity ok ~ on.7 . Continuity ofK & at points(z, ¢) € . witht >0
is an immediate consequence of continuity of the functipne and dist, together with the fact thai(r) # 0. It

remains to prove continuity o & at points(0, ¢) € #. Let (0, ¢) € # and let((z,, ¢,,)) be a sequence itF with
(tn, en) — (0, e) asn — oo with (,, e,) # (0, ¢) foralln € N. Define

N°:={neNj,=0}, NT:={neNj,>O0.
If N9 is infinite, then

limy, 0o B0 = (O llexll), %<w1=K%Qd

lim Kz (t,, ep) = {ﬁ*, Vo = 00

n— 00, ne N0
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If NT is infinite, then

W (ty)
o(ty)

lim Kz (ty, en) = lim ﬁ ( - l,b(l‘n)”en ”) =Kz7(0,e).
n—o00, neN*t

n—o00, neN*t

It now follows that
im Kz(t,,e,) =Kz (0,e),
n—0oo

and soK & is continuous at all point&), ¢) € 7.
Next, we establish Property A. L&t > O arbitrary and define, f(ﬁT as in Remark 4(iii),

&= BT(K + B/ IVl > 0.

Observe that, if dige, 0F (0)) <¢, thenp(0) > 0 andy(0)dist(e, 0 F (0)) = g — ¥ (0) | e||. We may now conclude
that, for eachz, e) € #,

dist(e, 0F (1)) <& = Y()diste, 0F (1)) < e|Plloo = BT(K + B,)
— K7(1,e) = fop)diste, OF (1)) = BT (K + ) =K, (22)

and so Property A holds.
Finally, we establish Property B. Let- 0 andd > 0 be arbitrary and define

K= Blep) with = inf ).

Let(t,e) € #. Then,
distte, 0F (1)) >2¢ & t>=0 = yY(n)dist(e, OF (1)) = ey
= Kgz(t,e) =B n)diste, F(1))) <K.

This completes the proof.[]
5.2. Distance to the future funnel boundary

As already mentioned, the scaled vertical distance, investigated in the previous subsection, uses only instantaneous
funnelinformation. Itis of theoretical interest, and also of relevance in certain applications, to incorporate anticipation
of the future funnel shape in determining the current gain value. To this end, we next investigate the adoption of the
distanced(z, e) of (¢, ¢) € 7 to the future funnel boundary in the design of gain functi@fs with Properties
A and B. Forp € @, with associated map and performance funnef, this distance is defined, with reference to
Fig. 3, as follows:

df: F — Reo, (t.¢) > inf \/(r — 1)? + (dist(e, 0F (1))
In contrast with the (scaled) vertical distance of the previous subsection (which is infiflteeain cases where

¢(0) =0), the distancé s (z, e) is finite for all (z, e) € 7.

Proposition 5. Letp € @, with associated map F and performance fun#feland letyy € @ be such that/(0) > 0.
Assume thag : R.o — R is continuousunbounded and non-increasing. Then the mappifyjgs # — R.o
and

Kz : 7 — Rzo, (t,e) = Bt)ds(t,e))

are continuous an& 4 has Propertie andB.
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Proof. We first show continuity o .
Define
M(s) :={(r, /@) |r>s} fors=>0,

and note thadl 7 (¢, e) = dist((z, |le|)), M (¢)) for all (¢, e) € #. We will prove continuity ot/ by showing that the
map(z, e) — dist((z, |el), M(z)) is continuous o7 . Let (¢, e) € F be arbitrary. For notational convenience, we
introducey := (¢, |le||) and

0:R20— (0,00, 1> 0(D) i=\ (0(D)(t — D)% + (1 — p(D)le])?.
The following is readily seen:

. 0
Vs>03t>s: (1) >0 dist(y, M(s))z(—r).
@(0)
Now consider the case wheremi0) > 0. Lets >0 ands > 0 be arbitrary. By continuity ap, there exists € (0, ¢/2)
such that

01,02 € (s = 0,5 +0)N[0,00) = [1/p(01) — 1/p(a2)| <&/2.

Leto >0 be suchthgo —s| < 6. Letpg := min{o, s} andp; := maxXa, s}. Lett > py be such that disk, M (pg)) =
0(t)/ (7). SinceM (p1) C M(py), it follows that disty, M (pg)) < dist(n, M (p4)), with equality holding ift > p;
(in which case, we havidist(n, M (o)) — dist(y, M (s))| = |dist(y, M (p1) — dist(y, M(py))| = 0). Moreover, if
T < pq, then|p; — 1| <|o —s| < d and

|dist(n, M (o)) — dist(n, M(s))| = |dist(y, M(p,) — dist(n, M(pg))]
=dist(n, M(p1)) — 0(v)/p(v) <O(p1)/p(p1) — 0(0)/p(7)

<V (o1 — D2+ W(pr) — Vo2 <02 + (/2% <.

This completes the proof of continuity (@& o) of the maps — dist(y7, M (s)) in the case ofp(0) > 0. Next, we

consider the case whereai{0) =0. In this case, the above argument apptiesatis mutandito conclude continuity
of the map dist;, M (-)) on the open interval0, co). It remains only to prove continuity at=0. Lets = 0. Then

there existg > 0 such that, for alb € [0, 1],

dist(, M (0)) = dist(, M(0)) = 0(1)/ p(1)

whence continuity a¢ = 0.
We proceed to prove continuity ef; at (,¢) € Z. Lete> 0 be arbitrary. By continuity of the map —
dist(y, M (s)), there exist91 > 0 such that, for alk >0,

Is —t] <1 = |dist(y, M(t)) — dist(y, M(s))| < &/2.

Since for each >0, the map; — dist(n, M (s)) is globally Lipschitz, with Lipschitz constant 1, it follows that,
for all x € R? and alls >0,

dist(u, M (s)) — dist(n, M (s))| < Ilx — nll.
Now defined := min{d1, ¢/2}. Then, for all(s, v) € Z with ||(s, v) — (¢, ¢)|| < J, we have

[dist((s, [[v]]), M(s)) — dist((z, |le]), M (t))| <|dist((z, |le]]), M (s)) — dist((z, [le]]), M (?))]
+ [dist((s, [[v]]), M(s)) — dist((z, [lel]), M (s))]
<e/2+ 0<e.

This shows continuity off .
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Now continuity of K & is a consequence of continuity ffandd ;.
Next, we prove Property A. L&' be as in Remark 4(iii). Lek > 0 be arbitrary and define.= ﬁT(K+ﬁ*)/ 1/l co-

Let (r,e) € #. Then, we have
dist(e, 0OF (1)) <& = ds(t,e) <& = WY()ds(t,e) < 1K + B,)
= Kz(t,e)=Pap)ds(t.e) =BT (K + B,)) =K,

and so Property A holds.

It remains to prove Property B. Seeking a contradiction, suppose Property B fails to hold. Then there 8xist
0> 0 and a sequendg,, ¢,) in # such that disk,, 0F (t,)) >¢, t, >0 andK # (t,, e,) >n + f, foralln € N.

For eachn € N, define

e =P+ P with = inf /(1) > 0.
- - 120
It now follows that
Kz (1, en) = ﬂ('p(tn)df(tns ep)) >n+ B* == lp(tn)df(tna en) gBT(” + ﬂ*)
= dy(tw.e) <P +B)/W =60 VYneN.

Therefore, for each € N, there existgt,, z,) € R.o x dF(1,), with 7, >1, and|z,|| = 1/¢(z,), such that
| (tns €n) — (Tn, za) |l < 2¢,. Now, sincep € WL, the reciprocal function /lp(-) satisfies a global Lipschitz
condition (with Lipschitz constarit) on [0, co). We now arrive at a contradiction:

. 1
0 <e<disten, 0F (12)) = —— — |leall < ’ + [llznll = llen

@(tn) ot) @ty
<Lty — Tyl 4+ llzn —enll < 2[L + 1]e, — 0 asn — oo.

Therefore, Property B holds. This completes the proof of the propositiah.
5.3. A numerical future distance to the funnel boundary

In applications, the distance functidn of the previous sub-section may prove difficult to realize. The following
distance function is simpler to compute and, loosely speaking, may be regarded as a humerical approximation to
dy (Fig. 4). ForN € N, choose a partition d, 1]

O=ho < h1 < -+ < hy<1l

Let ¢ € @ such thaip(0) > 0, and let# be the associated performance funnel. For notational simplicity, we write
d(t,e) :=dist(e, 0F (1)) <oco forall (z,e) € 7.

The numerical future distance to the funnel boundary is the fundtjipn # — R.o given by
duy(t,e) == ie{rajiﬂN}dist((t, llel), (t + h;d(t, e), 1/p(t + h;d(t, €)))

_ mi . o (Y
= ie{g:].l.TN}\/(hld(t’E)) + <q;(t+h,-d(t,e)) ||€||) . (23)

The numerical future distance calculates, at any tintiee distance to the funnel boundary at finitely many future
pointst + h;d(t, e). Observe that, since dist, |le|), (t + 0, 1/o(¢t + 0)) >0 for all 6 > 0, it is not necessary to
look further into the future than the value of the actual “vertical” distanc&ddi8f (1)) = d(t, e): this observation
justifies the adoption of the intervid, 1] for partition.
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e (1, €(1))

Fig. 4. The numerical distane s to the future funnel boundary.

Proposition 6. Leto, € @ with ¢(0) > 0andy(0) > 0.Let# be the performance funnel associated withnd
assume thaf : (0, co) - Rx¢ is a continuousnon-increasing and unbounded function. Then

Kz :7 — Rxo, (1,0) > Oy (1, €))

is continuous and satisfies PropertidsandB in Sectiord. 1.

Proof. Since(z, e¢) — d(t, e) =dist(e, 0F ()) is continuous o, the functions

(t,e) > (hid(1, e)? + i=01....N

2
(— - IIeII) .
@t + hid(t, e))

are continuous og . Thereforel, s is continuous as a minimum of finitely many continuous functions and continuity
of K & follows from continuity ofd, ¢, y andp.
Next, we establish Property A. Fy3ir as in Remark 4(iii) an& > 0, we have
(t,e)e &, Kgz(t,e)<K
_ B . .
= &= Wi = duy (t, €) <dist((z, [el)), (, 1/ (1)) = dist(e, IF (1)),
o

whence Property A. Finally, we establish Property B. Seeking a contradiction, suppose there €xiét- 0 and
a sequenceé,, ¢,) € 7N such that

dist(e,, 0F (ty))=>¢, t,20, Kgz(t,,e,)>n VneN.
By definition of K &,

B
inf, > s0(1)”

For everyn € N, choose,, € {0, 1, ..., N} such that

Kz (th,en)>n = duyp(ty, ep) <&y := Vn € N.

) 2 _ . 2 1 . 2
(dnf (ty, en))” = (hznd(tns en))” + ((/)(t +hi,,d(tn’ o)) ”en”> .
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Note that

e<dist(e,, OF (t,)) = d(tn, en) = | (hod (tn, €x))? +

1 2
(Q’(f + hod (ty, e,)) a ”en“> -

Since lim,—, o0&, = 0 andd, ¢ (t,, e,) < ¢,, there existé € N such that,, > 1 for alln >7 and so

2
&p > dnf(tn» en) = \/(hi,,d(tnv en))z + ( - ”en”) >hind(tns ep)=hie Vn >n.

o+ hind(tnv en))

This is a contradiction, and therefore the proof of the proposition is complé&te.
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