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Abstract

Error feedback control (in the presence of input constraints) is considered for a class of exothermic chemical reactor
models. The primary control objective is regulation of a setpoint temperature T∗ with prescribed accuracy: given �¿ 0
(arbitrarily small), ensure that, for every admissible system and reference setpoint, the regulation error e = T − T∗ is
ultimately smaller than � (that is, ‖e(t)‖¡� for all t su4ciently large). The second objective is guaranteed transient
performance: the evolution of the regulation error should be contained in a prescribed performance funnel F around the
setpoint temperature T∗. A simple error feedback control with input constraints of the form u(t)=sat[u; 6u](−k(t)[T (t)−T∗]+
u∗), u∗ an o9set, is introduced which achieves the objective in the presence of disturbances corrupting the measurement.
The gain k(t) is a function of the error e(t) = T (t) − T∗ and its distance to the funnel boundary. The input constraints
u; 6u have to satisfy certain feasibility assumptions in terms of the model data and the operating point T∗.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this note, error feedback control is considered for a class of nonlinear systems which arise as prototype
models for controlled exothermic chemical reactions. The output T of the system is the reaction temperature,
while the control u is the rate of change of reaction temperature. The primary control objective is regula-
tion of a setpoint temperature T ∗ with prescribed accuracy: given �¿ 0 (arbitrarily small), ensure that, for
every admissible system and reference setpoint, the regulation error e = T − T ∗ is ultimately smaller than
� (i.e., ‖e(t)‖¡� for all t su4ciently large). The second objective is guaranteed transient performance:
the evolution of the regulation error should be contained in a prescribed performance funnel F around the
setpoint temperature T ∗. The control is objected to input constraints and the measurement is corrupted by
disturbances. The controller is simple in its design: it is a time-varying proportional error feedback controller
u(t) = sat[u; 6u](−k(t)[T (t) − T ∗] + u∗), where u∗ denotes an o9set. The gain k(t) is a function of the error
e(t) = T (t) − T ∗ and its distance to the funnel boundary. The structural assumption on the system class (note
that the system data need not be known explicitly) is a mild feasibility assumption in terms of the model data
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versus the input constraints u; 6u and the operating point T ∗. Moreover, some chemically motivated assumptions
have to be satis@ed.

In chemical engineering, the analysis and control of exothermic continuous stirred tank reactors originates
in the work [2]. They have subsequently been used extensively as models in several industries including
continuous polymerization reactors, distillation columns, biochemical fermentation and biological processes.
More recently, for the prototype class of chemical reaction models used in this note, various adaptive and
non-adaptive control theory approaches have been developed for the setpoint control of temperature: In [10]
a state feedback controller with observer was proposed for globally stabilizing the temperature of exothermic
continuous stirred tank reactors. In [9] (adaptive) dynamic output PI-type controllers were derived, and similar
stabilization results were obtained in [1], however they require exponentially stable zero dynamics. In [7] an
adaptive controller, based on the concept of �-tracking, see e.g. [5], which obeys input constraints has been
introduced. However, this controller does not guarantee any transient behaviour and the time-varying gain of
the proportional feedback is monotonically non-decreasing, albeit bounded. The controller of the present note
circumvents these two drawbacks by adapting the two approaches of the “funnel controller”, as introduced in
[6], and of the �-tracking concept, as applied to chemical reactor models in [7]. Of particular interest is the
interplay between the input constraints, the speci@c nature of the nonlinearities in chemical reaction models,
and the setpoint to be tracked. It is shown that arbitrary prespeci@ed transient behaviour is guaranteed in
the presence of input constraints and noise corrupting the output measurement. As opposed to many existing
control strategies, in our set-up the gain t �→ k(t) is not monotone and may actually decrease.

In the following sub-sections we introduce and discuss the system class, the control objectives, the prespec-
i@ed funnel, and the gain function. The main result, i.e. adaptive regulation within the prespeci@ed funnel, is
discussed and proved in Section 2. Finally, in Section 3, we illustrate the Iexibility of the control mechanism
by some simulations and discuss the di9erent e9ects of the parameters in the control law.

1.1. System class

The following model of exothermic chemical reactions is considered (see also [10]):
ẋ1(t) = C1r(x(t); T (t)) + d[xin

1 − x1(t)]; x1(0) = x0
1 ∈Rn−m

¿0 ;

ẋ2(t) = C2r(x(t); T (t)) + d[xin
2 − x2(t)]; x2(0) = x0

2 ∈Rm
¿0;

Ṫ (t) = bTr(x(t); T (t)) − qT (t) + u(t); T (0) = T 0 ∈R¿0;

x(t) = (x1(t)T; x2(t)T)T;




(1)

In (1) it is assumed that n; m∈N with 0¡m¡n and the variables and constants represent:

x1(t) ∈Rn−m
¿0 concentrations of the n−m chemical reactants at time t¿ 0

x2(t) ∈Rm
¿0 concentrations of the m chemical products at time t¿ 0

T (t) ∈R¿0 temperature of the reactor at time t¿ 0
u(t) ∈R¿0 control of the temperature at time t¿ 0

xin =
(

xin
1

xin
2

)
∈R(n−m)+m

¿0 constant feed concentrations

C =
(

C1
C2

)
∈Rn×m stoichiometric matrix with C2 ∈Rm×m and

C1 ∈R(n−m)×m
60 stoichiometric matrix of the reactants and therefore all entries are non-positive

b∈Rm
¿0 coe4cients of the exothermicity

d¿ 0 dilution rate
q¿ 0 heat transfer rate between heat exchanger and reactor
r(·; ·) :Rn

¿0 × R¿0 → Rm
¿0 model of the reaction kinetics.
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The function r(·; ·) is assumed to be locally Lipschitz continuous and to satisfy

r(0; T ) = 0 ∀T ¿ 0: (2)

The condition (2) models the assumption that without any reactants or products a reaction cannot take place.
In the context of chemical reactions, practical considerations lead to the assumption that the control input u(·)
is constrained, i.e. there exists u; 6u∈R¿0 so that

0¡u¡ 6u and ∀t¿ 0 : u6 u(t)6 6u: (3)

Since (1) models exothermic reactions, the following assumptions may be justi@ed for some given reference
temperature T ∗ ¿ 0 and u; 6u satisfying (3):

(A1) Rn
¿0 × R¿0 is positively invariant under (1) for any continuous u :R¿0 → [u; 6u].

(A2) ∃�∈Rn
¿0 ∀i ∈ {1; : : : ; m} : �Tci6 0, where [c1; c2; : : : ; cm] = C.

(A3) ∃ 6T ¿T ∗ ∃�1; �2 ¿ 0:

0¡u + �1 ¡qT − bTr(x; T )¡ 6u − �2 ∀(x; T ) ∈�(�; xin) × [T ∗; 6T ];

where

�(�; xin) := {x ∈Rn
¿0 | �Tx¡�Txin}:

Remark 1. (i) The assumption (A1) reIects the fact that concentrations of the reactants should not be negative
and temperature should be positive.

Note that only continuous control inputs u with values between u and 6u are allowed, which is weaker than
(A1) assumed in [7].

(ii) (A2) holds if (1) satis@es the law of conservation of mass, which means that there exists �∈Rn
¿0

with �TC = 0. This can be found implicitly in [4], and it is also assumed in [10]. If C does not represent
exactly the stoichiometric relationships between all species, then conservation of mass need not be satis@ed.
Nevertheless, the reaction model might still be relevant provided that all essential reactions are obeyed. This
approach was adopted in [3,8]. In [8] a concept of non-cyclic process was developed and shown to ensure
dissipativity of mass and hence that (A2) is satis@ed.

(iii) (A3) is a feasibility assumption arising because of the saturation of the input u. It is a weaker
assumption then (H2) in [10]. Similar to (A3′) in [7], the values �1; �2 and 6T are explicitly introduced, they
are essential for the main results of this note.

Remark 2. The dynamics of the temperature as described by the third equation in (1) can directly be controlled
by u, provided the concentrations remains in a bounded region and the input constraints are not “too tough”.
More precisely, assumption (A3) ensures that if x(t) ∈�(�; xin) for some t¿ 0, then[

u(t) = u ∧ T (t) ∈ [T ∗; 6T ]
] ⇒ Ṫ (t)¡ − �1; (4)[

u(t) = 6u ∧ T (t) ∈ [0; T ∗]
] ⇒ Ṫ (t)¿�2: (5)

This is seen as follows: If u(t) = u and T (t) ∈ [T ∗; 6T ], then (A3) yields,

Ṫ (t) = bTr(x(t); T (t)) − qT (t) + u¡ − �1:

Suppose u(t) = 6u and T (t) ∈ [0; T ∗]. Note that ri(x; T )¿ 0 = ri(0; T ∗) for all (x; T ) ∈Rn
¿0 × R¿0 and all

i ∈ {1; : : : ; m}. Now q¿ 0, b∈Rm
¿0 and (A3) gives

Ṫ (t) = bTr(x(t); T (t)) − qT (t) + 6u¿ bTr(0; T ∗) − qT ∗ + 6u¿�2:
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1.2. Control objective

For every solution T : [0; !) → R¿0 of (1) with !¿ 0 de@ne the (measured) error as

e : [0; !) → R; t �→ e(t) := T (t) − T ∗ + �(t); (6)

where � :R¿0 → R represent a disturbance signal satisfying certain bounds in terms of the funnel as speci@ed
in (11).

The control objective is, that the temperature evolves within a prespeci@ed neighbourhood of a setpoint
(that will be the funnel F described in Section 1.3), which should be achieved by saturated proportional error
feedback

u(t) = sat[u; 6u](−k(t)e(t) + u∗); (7)

where k(·) is a time-varying gain function, u∗ ∈ [u; 6u] is a constant o9set and

sat[u; 6u](s) :=




u if s¡u;

s if s∈ [u; 6u];

6u if s¿ 6u:

Remark 3. Remark 6 in [7] shows that the closed-loop system (1), (7) satisfying (A1) and (A2) with any
continuous k :R¿0 → R¿0 has, for every (x0; T 0) ∈Rn

¿0 ×R¿0, a unique solution (x; T ) : [0; !) → Rn
¿0 ×R¿0

for some !∈ (0;∞], and ! may be maximally extended. Furthermore, it is shown that �(�; xin) × R¿0 is
positively invariant under (1) and (7).

1.3. The prespeci6ed funnel F

De@ne

� := {�∈C(R¿0;R¿0)|� is Lipschitz continuous; bounded and inf
t¿0

�(t)¿ 0}:

For 6T ; T ∗ as in (A3), let �1; �2 ∈�. Then, the funnel F is de@ned as (see Fig. 1)

F := {(t; e) ∈R¿0 × R|e ∈ (−�2(t); �1(t))} (8)

Fig. 1. The funnel F .
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and

Ft := {e ∈R | (t; e) ∈F} = (−�2(t); �1(t)) ∀t¿ 0:

Let

� := min
{

inf
t¿0

�1(t); inf
t¿0

�2(t)
}

¿ 0;

Li ¿ 0 a Lipschitz constant of �i; i = 1; 2;

Li ¡ 0 a lower Lipschitz constant of �i; i = 1; 2:1




(9)

1.4. The gain function k(·)

Let

KF :F → R¿0; (t; e) �→ KF(t; e)

be a locally Lipschitz continuous function satisfying

Property 1. ∀K¿ 0 ∃ ¿ 0 ∀(t; e) ∈F :
[
dist(e; @Ft)6  ⇒ KF(t; e)¿K

]
.

Property 2. ∀ ¿ 0 ∃K¿ 0 ∀(t; e) ∈F :
[
dist(e; @Ft)¿  ⇒ KF(t; e)6K

]
,

where ‘dist’ denotes the usual distance function

dist(e;M) := inf{|e − m| :m∈M} for M ⊂ Rn and e ∈Rn:

For the closed-loop system (1), (7) and the error e(·) as in (6), the gain k(·) is set to

k(t) = KF(t; e(t)) ∀t ∈ [0; !): (10)

The Properties 1 and 2 are essential: @rst, to relate the distance between the error and the funnel boundary to
the size of the gain, and secondly to allow for a great Iexibility in the design of the gain. Property 1 prevents
that e(·) leaves the funnel: If e(t) is “close” to @Ft , then k(t) is large and so the input saturates. Property 2
ensures that the gain k(t) is not unnecessarily large if e(t) is away from the funnel boundary.

A simple example for KF is KF(t; e) = 1=dist(e; @Ft), and so for �1 = �2 = �∈� a feasible error feedback
is

u(t) = sat[u; 6u]

( −e(t)
�(t) − |e(t)| + u∗

)
:

2. Main result

We are now in a position to state the main result of this note. The proof is delegated to Section 4.

Theorem 4. Suppose the exothermic chemical reaction model (1) satis6es, for some constants u, 6u, �1, �2,
T ∗, 6T , the assumptions (A1)–(A3). Let a funnel F, as de6ned in (8), be given by some �1; �2 ∈� and
assume that a locally Lipschitz continuous function KF :F → R¿0 satis6es Properties 1 and 2. Suppose

1A constant L6 0 is deemed a lower Lipschitz constant of a function f :R → R, if and only if, f(t) − f(s)¿ L(t − s) for all
s; t ∈R and all t¿ s.
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further, that a disturbance � :R¿0 → R of the temperature measurement is di<erentiable and satis6es, in
terms of the funnel constants de6ned in (9), the inequalities

‖�‖∞6 �=2; −(L2 + �2)¡�̇(t)¡L1 + �1 and �(t)¿�1(t) − ( 6T − T ∗) ∀t¿ 0: (11)

Then for every initial data (x0; T 0) with (x0; T 0−T ∗+�(0)) ∈�(�; xin)×F0, T 0 ¿ 0, the output error feedback
(7) with some constant o<set u∗ ∈ (u; 6u) and gain (10) applied to (1) yields the closed-loop system

ẋ(t) = Cr(x(t); T (t)) + d[xin − x(t)];

Ṫ (t) = bTr(x(t); T (t)) − qT (t) + sat[u; 6u](−KF(t; e(t))e(t) + u∗);

e(t) = T (t) − T ∗ + �(t);

x(0) = x0; T (0) = T 0;




(12)

which has a unique solution (x; T; e) :R¿0 → Rn+2 and this solution satis6es:

(i) ∀t¿ 0: (x(t); T (t)) ∈�(�; xin) × R¿0;
(ii) ∀t¿ 0: e(t) ∈Ft ;
(iii) ∃ ¿ 0 ∀t¿ 0 : dist(e(t); @Ft)¿  ;
(iv) ∃kmax ¿ 0 ∀t¿ 0: k(t) = KF(t; e(t))6 kmax.

Remark 5. If the temperature measurement is not corrupted by any disturbance, i.e. � ≡ 0, then the inequalities
in (11) simplify to

L1 ¿ − �1; −L2 ¡�2 and �1(t)6 6T − T ∗ ∀t¿ 0:

The @rst two inequalities ensure that the change of the funnel boundaries �1; �2, which is bounded by
the Lipschitz constants, is not faster than the change of the error e by saturated input u as speci@ed in (4)
and (5).

Remark 6. The control in Theorem 4 is local in the sense that the initial temperature T 0 is constrained in
the interval (0; 6T ). If this constrained is waved or the feasibility assumption does not hold for 6T , then the
controller (7) does, in general, not work (see the thermal runaway in the simulations of [7]).

To overcome this problem, [7,10] have introduced an additional input action which has a cooling e9ect if
the temperature is too large. The overall model (1) is then replaced by

ẋ1(t) = C1r(x(t); T (t)) + d[v(t) − x1(t)];

ẋ2(t) = C2r(x(t); T (t)) + d[xin
2 − x2(t)];

Ṫ (t) = bTr(x(t); T (t)) − qT (t) + u(t): (13)

In [10] the additional input v is

v(t) =

{
xin
1 if T (t) ∈ (0; 6T );

0 if T (t) ∈ [ 6T ;∞);

and in [7] v is chosen as a piecewise linear and continuous control

v(t) =




0 if '(t)e(t) ∈ (−∞; u − u∗];

['(t)e(t) + u∗ − u]xin
1 =( if '(t)e(t) ∈ (u − u∗; u − u∗ + ();

xin
1 if '(t)e(t) ∈ [u − u∗ + (;∞);

for some (¿ 0 and ' is determined adaptively.
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However, if the model is (13), then the cooling action v ≡ 0 gives only

ẋ1(t) = C1r(x(t); T (t)) − dx1(t)

and there is no way to speed up the decrease of x1. One may use an adaptive or non-adaptive cooling action
as suggested in [7,10], resp., and once e(t) is within the funnel the controller of the present note can take
over to ensure transient behaviour.

3. Simulations

We consider a prototype model for a single exothermic chemical reaction as suggested by Viel et al. [10].
Speci@cally the reaction kinetics of (1) with n=2, m=1 are modelled by the Arrhenius law r(x; T )=k0e−k1=T x1.
As in [10] and [7] (where in the latter contribution �-tracking has been considered in the presence of input
constraints, but not obeying any transient behaviour), the system parameters are set to

C1 = −1; C2 = 1; k0 = e25; k1 = 8700 K; d = 1:1 min−1;

q = 1:25 min−1; xin
1 = 1 mol=l; xin

2 = 0; b = 209:2 Kl=mol:

As observed by Viel et al. [10], system (1) has, with the above parameters, exactly three open-loop steady
states: two of which are locally stable and the unstable one is approximately (T un ; xun

1 ; xun
2 ) ≈ (337:1; 0:71; 0:29)

with constant input uun ≈ 355:1.
The objective is to regulate the temperature—within a prespeci@ed funnel—to a neighbourhood of T ∗=T un=

337:1 K, corresponding to the temperature of the unstable steady state. The input constraints are chosen to be

u = 295 and 6u = 505:

It is easy to see that in this case the assumptions (A1)–(A3) are satis@ed for

� = (1; 1)T; 6T = 340 K; �1 = 10:1; �2 = 80:1:

The neighbourhood of T ∗ is prespeci@ed to be an interval of length 2�, � = 1:5. If the temperature measure-
ment is not corrupted by noise, i.e. � ≡ 0, then the assumptions in Theorem 4 are ful@lled for the initial
values (x0

1 ; x
0
2 ; T

0) = (0:02; 0:9; 270). As constant o9set u∗ we choose, as in [7] where �-tracking is treated for
the same model, u∗ = 330.

Note that the general result in Theorem 4 allows for a great Iexibility in the design parameters. In the
following simulations, we compare the e9ect of di9erent funnels and gain functions in (7).

Simulations for noise-corrupted measurement is omitted due to space limitation. Our simulations have shown
that noise is tolerated as proved in Theorem 4, but does not show any more interesting features.

3.1. Non-smooth funnel and nominal gain

As prespeci@ed (non-smooth) funnels choose

�1(t) = max{ 6T − T ∗ − 10t; �}; �2(t) = max{T ∗ − 250 − 80t; �};
the (nominal) gain function k is set, as in Section 1.4 suggested to

k(t) = KF(t; e(t)) =
1

dist(e(t); @Ft)
= 1=min{�1(t) − e(t); �2(t) + e(t)} (14)

and the feedback is

u(t) = sat[295;505](−k(t)[T (t) − 337:1] + 330):

For the set of simulations in this sub-section, we have chosen extreme parameters to illustrate the limitation
of the adaptation mechanism. Although the controller still shows a satisfactory behaviour in the sense of the
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Fig. 2. Evolution of temperature T (t), control input u(t), gain k(t)=1=dist(e(t); @F(t)) and concentrations of reactant x1(t), product x2(t)
in presence of non-smooth funnel boundaries.

general result of Theorem 4, i.e. the temperature remains within the funnel and the reactant and the product
tend to a neighbourhood of the unstable steady state (see Fig. 2), there is a signi@cant steepness of u(t) and
k(t) at t ≈ 0:25 and at t ≈ 1:07. The increase at t ≈ 0:25 is due to the fact that the error is approaching the
funnel boundary horizontally, and detecting it vertically too late. From then on until t ≈ 1 the temperature
is close to the funnel boundary and gets closer to the boundary while t increases; which yields the increase
of k(t). At t ≈ 1:07 the funnel boundary is set to a constant so that the large u(t) yields an overshoot of
T (t) (but within the funnel), resulting in a steep decrease of k(t) and u(t). Finally, u(t) settles close to the
component of the unstable steady state, whence all other variables settle, too.

Although the gain k is not actually implemented, but u is, a high k results in a high ampli@cation of
measurement noise. Note that t �→ k(t) is not monotone and actually decreases to a fairly low value k(t) ≈
20. We evaluated by simulations that 6k ≈ 28 is su4cient to ensure that T (t) stays within the non-smooth
funnel when u(t) = sat[295;505](− 6k[T (t) − 337:1] + 330) is applied. These results compare favourably with the
�-tracker introduced in [7]: for the identical set-up, the monotonically non-decreasing gain of the �-tracker
tends to k(t) ≈ 650.
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Fig. 3. Evolution of temperature T (t), control input u(t), scaled gain k(t) = 100=dist(e(t); @F(t)), and concentrations of reactant x1(t),
product x2(t) for non-smooth funnel boundaries.

3.2. Non-smooth funnel and scaled gain

In this sub-section, the gain function is chosen more sensitively by multiplying the reciprocal of the distance
by 100:

k(t) = 100
1

dist(e(t); @Ft)
:

The error e(t) is big over the initial interval [0; 0:2] and therefore the product k(t)e(t) is large, which results
in a saturation of the input u (see Fig. 3). The control input u is less steeper, however there is still a steep
increase of k(t) and decrease of u(t) at t ≈ 1:07. This is due to the e9ect that the funnel boundary at t = 1
has an edge and the distance suddenly becomes very small. The steepness of u(·) is unsatisfactory. In future
research, we will show that the unsatisfactory problem of steepness of u(·) and k(·) can be resolved by
measuring the distance to the boundary of the funnel not only vertically but allows for future values.
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Fig. 4. Evolution of temperature T (t), control input u(t), gain k(t)=1=dist(e(t); @F(t)) and concentrations of reactant x1(t), product x2(t)
in presence of a smooth funnel boundary.

3.3. Smooth funnel and nominal gain

In this sub-section, we keep the nominal gain (14) but alter the lower funnel boundary to become a
C1-function

�1(t) = max{ 6T − T ∗ − 10t; �}; �2(t) =




T ∗ − 250 − 80t; t ∈ [0; 0:5];

p(t); t ∈ (0:5; 2);

�; t¿ 2;

where p(·) is a real polynomial with degree 3 which interpolates two linear functions (same value and
derivative at the boundary points). As depicted in Fig. 4, the temperature T follows the lower funnel boundary
while the nominal gain k stays on a low level and has no peaks. The input function u is e9ected by the
C1-function choice of funnel: see t = 0:5.
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It is worth noting that the gain is moderate compared to the simulations in Sections 3.1 and 3.2.

4. Proof of Theorem 4

Step 1: We show existence and uniqueness of the solution (x; T; e) : [0; !) → �(�; xin) × R¿0 × R of (12)
on a maximally extended interval [0; !), !∈ (0;∞]. Note that existence yields especially (t; e(t)) ∈F , i.e.
e(t) ∈Ft , for all t ∈ [0; !).

Introducing the artifact z(t) = t and e(t) = T (t) − T ∗ + �(t), the closed-loop system (12) can be written as

ẋ = f1(x; z; e);

ż = 1;

ė = f2(x; z; e);

x(0) = x0 ∈�(�; xin); e(0) = e0 := T 0 − T ∗ + �(0) ∈F0; z(0) = 0;




(15)

where

f1 :Rn
¿0 × R¿0 × R → Rn; (x; z; e) �→ Cr(x; e + T ∗ − �(z)) + d[xin − x]

and

f2 :Rn
¿0 × F → R; (x; (z; e)) �→ bTr(x; e+T ∗ −�(z))−q(e+T ∗ −�(z))+sat[u; 6u](KF(z; e)e + u∗)− �̇(z):

Introducing

f :�(�; xin) × F → Rn × R× R; (x; (z; e)) �→ (f1(x; e)T; 1; f2(x; z; e)T)T;

the initial value problem (15) can be written as

Ẋ = f(X ); X (0) = ((x0)T; 0; (e0)T)T: (16)

Since f is locally Lipschitz continuous, the theory of ordinary di9erential equations ensures that (16) has a
unique solution

X : [0; !) → �(�; xin) × F; t �→ X (t) = (x(t)T; t; e(t)T)T

for some !∈ (0;∞], and ! can be maximally extended. This proves the claim.
Step 2: We show: If !¡∞, then limt→!dist(e(t); @Ft) = 0.
Introduce, for notational convenience,

d : [0; !) → R¿0; t �→ dist(e(t); @Ft):

Note that

dist(e(t); @Ft) = min{�1(t) − e(t); �2(t) + e(t)} (17)

and therefore d(·) is continuous. Since �1(·), �2(·) are Lipschitz and ė(·) is, by (15), bounded on [0; !), the
function d(·) is even Lipschitz continuous.
Step 2a: We show: If !¡∞, then lim inf t→! dist((t; e(t)); @F) = 0.
The supposition !¡∞ implies, by invoking (16),

lim inf
t→!

dist((x(t); t; e(t)); @(�(�; xin) × F)) = 0:
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By Remark 3 and x(0) ∈�(�; xin), the inequality inf t∈[0;!) dist(x(t); @�(�; xin))¿ 0 holds true for !¡∞ and
therefore

lim inf
t→!

dist((t; e(t)); @F) = 0:

Step 2b: We show: If !¡∞, then lim inf t→! d(t) = 0.
In passing by, we note that, for all t ∈ [0; !),

dist((t; e(t)); @F) = min
{

inf
,¿t

‖(,; �1(,)) − (t; e(t))‖; inf
,¿t

‖(,;−�2(,)) − (t; e(t))‖
}

: (18)

Seeking a contradiction, suppose that lim inf t→! d(t)= : d¿ 0.
Since lim inf t→! dist ((t; e(t)); @F) = 0, either there exists, by (18), a sequence (t1n) ∈ [0; !)N with t1n → !

as n → ∞ and

inf
,¿t

‖(,; �1(,)) − (t1n ; e(t
1
n))‖ = inf

,¿t

√
(, − t1n)2 + (�1(,) − e(t1n))2 ¡

1
n

∀n∈N;

or there exists a sequence (t2n) ∈ (0; !)N with t2n → ! as n → ∞ and

inf
,¿t

‖(,;−�2(,)) − (t2n ; e(t
2
n))‖ = inf

,¿t

√
(, − t2n)2 + (�2(,) + e(t2n))2 ¡

1
n

∀n∈N:

Choose i ∈ {1; 2} such that the inequality with respect to the sequence (tin) is true, then there exists a sequence
(,n) ∈ [0; !)N such that

|,n − tin|¡
1
n

and |�i(,n) ∓ e(tin)|¡
1
n

∀n∈N¿0:

We may choose N ∈N su4ciently large such that |,N − tiN |¡d=(2Li), |�(,N ) ∓ e(tiN )|¡d=2 and d(tiN )¿d.
Then we arrive at the contradiction

d¡d(tiN )
(17)
6 |�i(tiN ) ∓ e(tiN )|
6 |�i(tiN ) − �i(,N )| + |�i(,N ) ∓ e(tiN )|
(9)
6Li|tiN − ,N | + |�i(,N ) ∓ e(tiN )|¡d=2 + d=2 = d:

Therefore

lim inf
t→!

d(t) = 0 (19)

holds true.
Step 2c: Finally, we show: If !¡∞, then limt→! d(t) = 0.
Seeking a contradiction suppose that there exists  ¿ 0 and (tn) ∈ [0; !)N with tn → ! and d(tn)¿ .

By (19) there exists (sn) ∈ [0; !)N with sn → ! and d(sn)¡ =2. Since, !¡∞ we may assume, without
restriction of generality, that |tn − sn|¡ 1=n for all n∈N. Since d(·) is Lipschitz continuous with Lipschitz
constant L¿ 0 we arrive at the contradiction:

 =2¡d(tn) − d(sn)¡L|tn − sn|¡L=n ∀n∈N:

This completes the proof of Step 2.
Step 3: We show ! = ∞ and Assertion (i) and (ii).
Seeking a contradiction, suppose !¡∞. Then, by Step 2, limt→! dist(e(t); @Ft)=0, and since diam(Ft)=

�1(t) + �2(t)¿ 2�¿ 0 for all t¿ 0 we have

either lim
t→!

(�1(t) − e(t)) = 0 or lim
t→!

(�2(t) + e(t)) = 0:

Case A: We show that limt→!(�1(t) − e(t)) = 0 is not possible.
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Choose t0 ∈ [0; !) such that �1(t)−e(t)¡�=2 ∀t ∈ [t0; !). Then e(t)¿�=2 for all t ∈ [t0; !). Set K1 := (u∗−
u)=(�=2). Then by Property 1 in Section 1.4, there exists  1 ¿ 0 such that for all (t; e) ∈F with dist(e; @Ft)6  1
we have KF(t; e)¿K1. Choose now t1 ∈ [t0; !) such that

dist(e(t); @Ft) = �1(t) − e(t)6  1 ∀t ∈ [t1; !);

then

k(t) = KF(t; e(t))¿K1 and − k(t)e(t) + u∗ ¡ − K1
�
2

+ u∗ = u ∀t ∈ [t1; !):

Therefore,

u(t) = sat[u; 6u](−k(t)e(t) + u∗) = u ∀t ∈ [t1; !):

Since e(t) ∈ (�=2; �1(t)) for all t ∈ [t1; !), we conclude

T (t) = T ∗ + e(t) − �(t) ∈ [T ∗ + �=2 − �(t); T ∗ + �1(t) − �(t)]

(11)
⊆ [T ∗; 6T ] ∀t ∈ [t1; !);

and so (4) together with Remark 3 yields Ṫ (t)¡ − �1 for all t ∈ [t1; !). Since limt→! (�1(t) − e(t)) = 0 and
�1(t) − e(t)¿ 0 for all t ∈ [0; !), we may choose s∈ (t1; !) such that

0¡�1(s) − e(s)¡�1(t1) − e(t1);

then, for some ŝ∈ [t1; s],

0¡�1(t1) − �1(s) − (e(t1) − e(s))6− L1(s − t1) − ė(ŝ)(t1 − s):

Since

ė(ŝ) = Ṫ (ŝ) + �̇(ŝ)¡ − �1 + �̇(ŝ)

and, by (11) (ii), �̇(ŝ)¡L1 + �1, we arrive at the contradiction

0¡ − L1(s − t1) + ė(ŝ)(s − t1)¡ (−L1 + �̇(ŝ) − �1)(s − t1)¡ 0:

Therefore, the case limt→!(�1(t) − e(t)) = 0 is not possible.
Case B: We show that limt→!(�2(t) + e(t)) = 0 is not possible.
As in the @rst case there exists t0 such that �2(t) + e(t)¡�=2 for all t ∈ [t0; !) and therefore e(t)¡− �=2

for all t ∈ [t0; !) and furthermore, we may choose t2 ∈ [t0; !) and  2 ¿ 0 such that

u(t) = 6u ∀t ∈ [t2; !):

Since

T (t) = T ∗ + e(t) − �(t)¡T ∗ − �=2 − �(t)
(11)
6T ∗;

the implication (5) yields Ṫ (t)¿�2 for all t ∈ [t2; !). Choose s∈ (t2; !) such that

0¡�2(s) + e(s)¡�2(t2) + e(t2);

then, as in Case A, there exists ŝ∈ [t2; s] and

0¡�2(t2) − �2(s) + (e(t2) − e(s))6− L2(s − t2) + ė(ŝ)(t2 − s)¡ (−L2 − �2 − �̇(ŝ))(s − t2):

This is a contradiction, because by (11) the inequality −L2 − �2 − �̇(ŝ)¡ 0 holds true.
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Summarizing, Cases A and B yield ! = ∞, and hence Assertion (i) and (ii) follow from Step 1 and
Remark 1.
Step 4: We show (iii).
Set

K := max
{

6u − u∗

�=2
;
u∗ − u
�=2

}
;

choose  ̂¿ 0 such that the implication in Property 1 is ful@lled for K , and let

 := min{�=2;  ̂; dist(e(0); @F0)}:
If dist(e(t); @Ft)6  6 �=2, then, by de@nition of � in (9),

e(t)¿�=2; if e(t)¿ 0 and e(t)¡ − �=2 if e(t)¡ 0;

and hence, by invoking the de@nition of K ,

−k(t)e(t) + u∗ ¡u; if e(t)¿ 0 and − k(t)e(t) + u∗ ¿ 6u if e(t)¡ 0

This shows, that for all t¿ 0 we have

dist(e(t); @Ft)6  ⇒
{

u(t) = u if e(t)¿ 0;

u(t) = 6u if e(t)¡ 0:
(20)

It remains to show

dist(e(t); @Ft)¿  ∀t¿ 0: (21)

Seeking a contradiction to (21), suppose there exists t1 ¿ 0 such that dist(e(t1); @Ft1 )¡ , and set

t0 := max{t ∈ [0; t1) | dist(e(t); @Ft) =  }:
Note that t0¿ 0 is well de@ned, since dist(e(0); @F0)¿  and t �→ dist(e(t); @Ft) is continuous, and further-
more, dist(e(t); @Ft)6  for all t ∈ [t0; t1] and therefore (20) yields u(t) = u for all t ∈ [t0; t1] or u(t) = 6u for
all t ∈ [t0; t1]. With

dist(e(t0); @Ft0 ) − dist(e(t1); @Ft1 ) =

{
�1(t0) − e(t0) − (�1(t1) − e(t1)) if e(t1)¿ 0;

�2(t0) + e(t0) − (�2(t1) + e(t1)) if e(t1)¡ 0;

and similar as in Step 3 together with (4) and (5) we arrive, for some t̂ ∈ [t0; t1], either at the contradiction

0¡ dist(e(t0); @Ft0 ) − dist(e(t1); @Ft1 )6− L1(t1 − t0) − ė(t̂)(t0 − t1)¡ (−L1 + �̇(t̂) − �1)(t1 − t0)¡ 0

or at the contradiction

0¡ dist(e(t0); @Ft0 ) − dist(e(t1); @Ft1 )6− L2(t1 − t0) + ė(t̂)(t0 − t1)¡ (−L2 − �2 − �̇(t̂))(t1 − t0)¡ 0:

Therefore dist(t; e(t))¿  ∀t¿ 0.
Step 5: We show (iv).
Assertion (iii) applied to property 2 in Section 1.4 shows that there exists some kmax ¿ 0 so that Assertion

(iv) holds.
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