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Adapt ive stabi l izers for  the c lass of  rn- input  m-output  minimum phase systems

i : A r l B u ,  9 : C r

with unknown state d imension and def in i te h igh-f requency gain,  i .e.  o(C B) C
C- or o(C B) C C1 , are introduced. These controllers are not based on iden-

tification mechanisms and yield an exponential decaying output and a con-

vergent adaptat ion gain.  The main resul t  is  a swi tching strategy al ternat ive

to the so-cal led Nussbaum funct ion approach.  This adaptat ion mechanism

can to lerate dynamics in the input  and,  more important ly ,  sector-bounded

input-output  nonl inear i t ies are al lowed for  s ingle- input  s ingle-output  systems.

Nornenclature

R1 (R-): the set of non-negative (non-positive) real numbers.
C+ (C- ): the open right- (left-) half complex plane.
o(A):  the spectrum of  the matr ix  -4 € C" ' .

l l r l lp  = v/@:Fdfor  r  €  R' ,  P = Pr  e lR'x '  posi t ive.
LoQ): vector space of measurable functions f : J - R', / C lR some interval and
n being def ined by the context ,  such that  l l / ( - ) l l l " f r l  {  oo,  where

(  . ^  t l / pil.foil,", = t JJjl$lfifl:il" i:: 3 :':*,
1. Introduction

THe pRogLnu of high-gain adaptive stabil ization of uncertain systems has been
studied by various authors, see, for example, Willems & Byrnes (1984), Byrnes &
Willems (1984), Märtensson (1986), Morse (1987), I lchmann et al. (1987), Mil ler &
Davison (1989). In general terms, this problem can be regarded as the construction
ofan output feedback mechanism driven by a gain adaptation depending nonlinearly
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4 1 0 A. ILCHMANN AND D.H.  OWENS

on the output and capable of stabil izing any system within a class of systems defined
in terms of structural properties only. In this paper, we study the problem of
adaptive stabil ization of multi- input multi-output, minimum-phase, relative-degree-
one systems of the form

( 1  1 )

More precisely, we study the class X consisting of systems (A,B,C) € IR'x, x
Rnxm x R-* ' ,  associated wi th (1.1) ,  which sat is fy  the min imum-phase condi t ion

" r ( t )  =  A t ( t ) +  B u ( t ) .  r ( 0 )  e  R "  I
aU)  =  Cr ( t )  J

0" , t f  " ;o  
| " l ro  ro ra rs€e1 ( 1  2 )

wi th

(  I  4 )

(  i . 5 )

and which have a high-frequency gain of definite sign, i.e. the spectrum fulf i ls

o(C B) C C.-  or  o(C B) C C+ .  (1.3)

Note that  nei ther  (A,B,c)  nor  the state d imension n need be known.
It is well known that such systems can be stabil ized by a time-varying output

feedback containing gain adaptation and a Nussbaum-based switching mechanism.
An example of this (see, for example, N'ssbaum 1g83, Byrnes & wil lems 19g4) is
thc  f cedback

u( t )  =  N(k( t ) )k ( t )y ( t )

ß(r)  = l ls(r)11,,  Ä,(0) = f ro € R,
where N(') : lR - lR is a l{ussbaum functzon, i.e. a piecewise right continuous
function which satisfies the so-called y'{zssöaum condil ion

1  l k  r  r k
: r p ;  /  A ' ( r ) r  d ,  -  + o  a n d  i l l ;  /  , V ( r ) r  d . r  =  _ � q : .  ( l  6 )112o  K  J6  r>o  k  Js

Examplcs of Nussbaum functions are ff(q) = q sin r@ or

n ( q )  =  {  
1 .  ' : : : l t ,  

l <  
( "  +  l ) 2 '  n  e v e n

'  
t  

- l  , n z  _ <  l q l  <  ( n  +  l ) 2 .  n  o d d .

Notc that the switching times in this approach depend solely on the instantaneous
value of the gain k(l) and, in general, contribute to the total gain N(fr)* at any
t ime and hcnce to the l imi t  gain.

Alternatively, the feedback law

z(r )  = N(s(r ) )ß(r )y( r ) ,  (1  7)

where /{(q)/q is a Nussbaum function, perrnits a wider class of gain evolut ions, see
Owens et al.  (1987), with switching dependent on the instantaneous value of s(t)
lather than k(l)  but the total gairr in this case is affected by the switching strategy.



THRESHOLD SWITCHING FUNCTIONS

These switching functions are replaced in this paper by a new class of switching

mechanisms where switching times are decoupled from the magnitude of the instan-
taneous gain and make no contribution to the total control gain in the way that
previous approaches require. The switching mechanisms have all the advantages of

those previously reported but avoid the difficulties described above.
Together with the switching strategy, in this paper we also introduce classes of

adaptive control laws that can tolerate certain state, input and output nonlinearit ies
of the following form.

Let the functions

4tr

g :  IR1 x IR."  *  R ' ,  (1,  r )  *  S( t ,x)
l l s ( t ,  " ) l l  S  0 l l " l l  Y  ( t , r )  €  R1  x  IRn

h  :  IR1  x  IR '  -  R ' ,  ( 1 ,  c )  *  h ( t , x )

l l ä ( r ,  r ) l l  S  t  l l " l l  V  ( r ,  r )  €  IR1  x  R '

be measurable in I for each fixed r and locally Lipschitz in r for each fixed l, and

of  f in i te  gain,  i .e .  (1.8) ,  (1.9)  are sat is f ied for  some (unknown) i i ,h  Z 0.  These
functions are build into the system (1.1) as follows

t ( , )  :  A r ( t )  +  s ( t , 4 t ) )  +  B [u ( t )  +  ä ( , ,  r ( , ) ) ] ,  r ( 0 )  e  R"  
]  ( 1 .10 )

y i t ; = C r ( l )  )  
' " ' " '

The possibil i ty of includi.rg g(-,.) into the system equation, and showing that all
propositions are valid if the l inear bound g is small enough, demonstrates that the
problems are well posed. This, together with the nonlinear disturbance ä(', '), of
bounded gain in the input, shows that the system is robust with respect to some
unmodelled system (and sensor) dynamics.

In the single-input single-output case, the adaptive stabil izers tolerate the fol-
lowing large class sector-bounded nonlinearit ies.

LeL [] ) a ) 0. T'he sel of sector-bounded funclzons Sß(a,p) consists of all
functions

/  :  lR1  x  IR ,  (1 ,  o )  *  f  ( t , r )

which satisfy, for all I € R+,

a u < f ( t , u ) < [ i "  y , ! * * ]  t r . r r ia u )  f ( t , u ) >  l J u  V o € 1 R . -  J

For (, 4 € SB(a, p), *" consider the system

i ( t )  =  Ar( r )  +  e(r ,  r ( r ) )  +  Bfu( t )  +  Ä( t ,  r ( t ) )1 ,  r (0)  e  R"  
' l

y ( l Q = C r ( l )  l  ( 1 . 1 2 )
u( t )  :  €(1,  t ( l ) ) ,  ! r ( t )  - -  n( t ,a( t ) )  )

i l lustrated in the following Figure 1.

(  1 . 8 )

(  1 .e )
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T - - -  _ _ _ _ _ . 1
r  Nominalsystem: min imum phase;  o(CB) C C_ or  o(CB) C C+ ;
L - - -  

- - - - J

Frc.1 Open_loop system with nonlinearit ies

As mentioned above, a primary purpose of this paper is to introduce a new
class of bounded threshold switching operations g.n".ulir ing that introduced in
Ilchmann and owens (1ggl). Together with the advantages previousry mentioned,
this switching strategy is able to cope with nonlinear p"erturbations of the state
space equations (as described above) and a large class of nonlinear input-output
ch aracterist i cs.

A second contribution of the paper is the use of a multi- input rnulti-output trp,
p > l, formulation of the stabil ity analysis that extends the previously .uailaile guin
adaptation mechanisms. Finally, the paper allows the use of exponential weight_
ings in the manner of l lchmann and owens (1gg0) to permit the developm"ni of
exponentially stabil izing feedback schemes.

In Section 2, some properties of the class of systems under consideration are
stated. The main result is given in Section 3, that is, a switching function based
on a switching decision function and an exponentially weighted gain adaptation
which yield a universal adaptive stabil izer in the presln." Jf nonlinearit ies. This
result is extended in Section 4, where it is shown ihut th" adaptive stabil izer can
tolerate sector-bounded nonlinearit ies in the input and output if the system class
is restricted to single-input siirgle-output systems. Finally, some srmulations are
prr-serr le t l  in  Sect ion 5.

2. The system class

In this section we establish fundamental properties of the class r, that, is, systems
of  the form (1.1)  which sat is fy  (1.2)  and (1. : ) ) .

The following lemma shows a convenient form into which every system with
d'et(cB) t '  0 can be converted by a suitable state space transformation.

Lpuua 2.7.  Consider  lhe.  saslem

r ( t )  =  A r ( t )  +  Bu ( t ) ,  r ( t o )  _  ro  €  lRn  I
a(t)  = c4t)  i  (2 1)

w i t h  ( A ,  B , C )  e  R Q X n  x  R n x n  x  i R - x ' -
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( t )  I f  c le t (CB) 10,  the.n the coordinale l ransformat ion S- t ,  = lyr ,  zr fT,  uhere
S = l B ( C I l ) - t ,  y ]  e  G / , , ( l R . )  a n . d V  € R , x ( n - ' n )  i s a b a s i s m a t r i x o f  k e r C , c o n a e r l s
the sys lent  (2.1 )  tn to lhe form

( )  ) \

where A1 , . . . ,  A+ are real  malr ices of  aTtpropr tate forrnals .
( t t )  I f  ( A , B , C l ) € ] j , t h e n A a i n ( 2 . 2 ) i s a s y m , p l o t i c a l l y s l a b l e , t h a l i s , o ( A s ) C C - .

The proof of Lemnra 2.1 is straightforward and is omitted for brevity.
In order to include the possibil i ty of exponential stabil ization in the manner of

I lchnrann and Owcns (1990),  we int roduce the fo l lowing notat ion:
Let  0 (  lo  < l  t t  <  oo,  ) ( ' )  :  lR -  lR 'be cont inuously d i f ferent iable and o( ' )  :

IR. - IR", r € N, be a vect,or-valued function. Then uq(.) wil l be defined by

r ' 1 ( 1 ) : = . ' t ( t ) t 1 , ( 1 ) ( 2 . 3  )

f inntanx 2.2. Suppose )(') : lR1 - IR+ is continuously differentiable. Consider
(1.10)  where i t  is  assunred that  ( ,4 ,  B,C) e X is  subjected to the per turbat ions (1.8)
a n d ( 1 . 9 ) .  T h e n , b y L e m m a 2 . 1 , t h e r e e x i s t s a s t a t e s p a c e t r a n s f o r m a t i o n S € l R ' x '
such that  fa ' . r ' ) '=  S-1r  and the new coordinates y^,  z1 sat is fy

3/ . \ ( r )  :  [ -Ar  +  ( ) ( t )  +  ) ( t ) t )1 - ]u1( t )  +  A2z1( t )  +  C Buy( t )
+ g t  ( t  , 3 / 1 ( l  ) ,  z 1 ( l  )  )  +  C  B  h ( t ,  y ; ( t ) ,  z { t ) )

(2.4a)

: ^ ( r )  =  -4s3 l . \ ( l ) *  [Äq  +  ( ) ( l )  +  ) ( l ) 1 )1 " - - ] : r ( l )  +  a2 (1 ,  y1 ( l ) ,  z i ( ü ) )  ( 2 .4b )

where  a ( ,4a )  c  c - ,  and  91  ( t , a ,  4  €  R - ,  92 ( t , a , z )  €  R ' - -  a re  such  tha t

l l g ' ( r ,  v . ,  ) l l  s  g l l , s l l l l l v r , . ' l ' '  \  v
lnti, i , 'yi i ; i iäf f r l ioä ,, ')"l l  j  o r ' '  a' z) e rR1 x R- X R'--' (2 5)

f o r  g ,  h  g i ven  i n  (1 .8 ) ,  ( 1 .9 )  and  i  =  1 ,2 .  r

The fo l lowinginequal i ty  bounds the output  of  the system (1.10)  at  t imeJ in terms
of  u( . ) l1o,r ;  and y( . )11s,11.  This is  an important  impl icat ion of  the min imum-phase
property and is fundamental to the proof of the main results of the paper.

P R o p o s r r r o N  2 . 3 .  L e l  P  €  R m x m  b e p o s i t r u e  d e f i n i l e , 0  S  t o  < t ' < u L , p )  I .

Suppose  tha t  u ( ' ) :  [ 0 , t ' )  -  iR -  i s  con l i nuous  and  \ ( ' ) :  [ 0 , t ' )  -  ]R  i s  con l i nuous l y
drfferenliable and satisf,es l iml*1,.\(l) : 0. Def,ne

ü( t )  =  A ty f t ) - r  A2z( t )  +  CBu( , )  \
, ( t )  :  Asa( t )  +  A4z( t )  I

J : R - * l R ' ' ,  a - { J \ y ) = {  d O  o + 2
I  o  , v : u

(2  6 )

Then the sgstem (A,B,Cl)  €E subjected to the d is lurbances (1.8) , (1.9)  zn lhe form
(1.10)  sat is f ies for  g )  0 suf f ic ient lg  smal l ,  su i lab le M = M(r6)  )  0  and for  a l l
t  € [ t o , t t )

j t t r^t,) l lä s
,, ,f

M + M /  I lv . r ( " ) l läas+ /  l ly l (s) l lo i '  (0(yx(s) ) .  P C Bu; , (s) )ds
. t J
t s  l q

(2  7 )
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Proof. The proof is an extension of the single-inprrt single output case presented
in I lchmann and Owens ( t99ia)  and of  the mul t ivar iablecase for  g:0 in  I lchmann
and Logemann (1991). We omit it for brevity. tr

3. Adaptive stabil ization using threshold switching

In order to usc the gain adaptation class of exponential weightings similar to
those defined in Ilchmann and owens (1990) which ensures exponential decay of
the output we introduce the following conventions.

Let, o(') :R1* R1 be a continuously differentiable function which satisfies the
conditions

o(k) is non-increasing in ft € lR.n
,(k) > 0 for all ß e R1 if c..,(.) I 0
l imr--  ! r (* )  -  0

Suppose ,f '  R+ x IRz*m * R is a Carathdodory functi
absolutely continuous y : l0,t ') - IR-, t '  € (0, oo] , there ex
cont inuous solut ion ß( . ) :  [0 ,  ] ' )  -  ]R+ of

k( t )  :  f ( t , (u  o  k )  ( t ) ,a ( t ) ) ,  k (0 )  =  ßo €  R

so that

k(t) > 0 and non decreasing in I € [0, r/) 
' l

a .o t ( ' )  €  L i . ( 0 ,1 ' )  f o r  a l l  i  €  [ p ,oo ]  a  ß ( . )  €  t - ( g , f ' )  ]
ß ( . )  e  r - (0 ,  r , )  -  e ,o r ( . )  €  Lp (0 , t , )  )

A s imple example of  u. , ( . )  and , t ( . )  sat is fy ing (3.1)- (8.3)  is ,  for  p,  )  p)  I ,

(3  2 )

(3  3 )

I
)  ( 3  l )
)

on such that for every
ists a unique absolutely

p '

L t t t  -  \ -  r r ^ .  / ! \ t it u r r ,  -  )  t u . . t ^ b t L t r t  ß f 0 ) > - l
/ 2 t t r q w ^ \ - ' t t  

\  ' " \ " t  '

; - -

Given r,-,( ') and ß(.) satisfying (3.1)-(3.3), the adaptive control is completely defined
Dy

u( l )  = s( t )k( t )y( t )  (3 4)

once the switching function S(t) is defined. This wil l be done in the next definit ion.

Dnplxtrl lor'r. Suppose p > I, c.. '(.) satisfies (3.1), and g(.) : R.r. - IR- is a p
in teg rab le func t i on .  Le t  1<  S r  < ,Sz  ( . . .  be  asequence  o f  ' t h resho lds ' so  t ha t
l im;-- S, = oo. Let *(.) : JR1 * IR. be a continuous and non-decreasinA function
with *(0) > 0. Then the switchrng function

S ( . )  : 1 R a  -  { - 1 ,  1 }

is defined via the swttching decision function

i f  /o' l ls(r) l lp dr - o

if  f ;  l le(?)l lP dr l  o
I
t

ß(0) ,
t t

/ s(r)r(r)l l  u,o*(r)l lp dr I f l la,"o(")l lo a,
0 0

, a (  | \  . -
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and the real-t ime algori thm

415

i  : =  0 ,  , 1 6  : :  0 ,  S ( 0 )  : :  1
( * )  t t + t ' . :  i n f { t  >  t i l  S ( t i ) p ( t )  =  $+1* (10 )J

S(t )  := s(1,1 for  a l l  t  € l t i , t i1v)
5' ( t ;+r )  '=  -S(r r )
i : = i l I
go to (* )

Rnuanx  3 .1 .

( i )  Note that  9(0)  :  k(0)  which ensures correct  in i t ia l izat ion of  thc a lgor i thm.

(i i) ,p(l) is monotonic on every interval where SO is constant.

(i i i) In the case of p - 2, the above algorithm is similar to that of I lchmann and
Owens  (1991 ) .

(iv) The switching function S(.) switches at each time l; i f the switching decision
funct ion,  which is  a s tabi l i ty  ind icator ,  reaches the new ' threshol , l '  ,s ;+1[(10) .

Stabil ity of the adaptive scheme requires stabil ity of the state, .on.,".r"n." o,,nl
gain adaptation and the presence of only a finite number of sign changes in S(t).
The proof of stabil ity requires the analysis of the situation if the final sign of the
switching function is incorrect, i.e. .9(r) = sgn (C-:B). This is discussed in the
following lemma. \Me use the following notation.

i f  a(CB) c C1
i f  o(C B) c  C*

Lnnaua  3 .2 .  Suppose  p )  I , t ' >  0 , , t ( ' ) :  [ 0 , ] ' )  -  IR+  t s  abso lu te l y  con t i nuous ,  u ( ' )
saltsf.es (3.1), and lhe feedback law

u(t )  = sgn (CB)#( t )y( t )

is  appl ied to (A,B,C) € t  subjected to the nonl inear i l ies (1.8) , (1.9)  I f  one sets
.\ = c,,, o k, lhen, by Remark 2.2, the closed-loop syslem can be wril len r,n lhe form

1,,,,

sgn (cB) ,= {  
* l

L  
- r

ü>, = lAr + () + \t)I*1y1, * A2z7 * sgn (C B)C Bkvl

+s t (1 ,  u> , ,  zx )  +  c  Bh$,  a> , ,  z t )

2s = AsgT * lAn + ( l  + i t l f , - -)zx + s2(t ,a^, z^)

(3 .6a )

(3 .6b )

I f  kO # L*(0, t ' )  and lhe l rnear  bound Q is  smal l  enough,  then for  euery e )  0
lhere et is ls  r .  €  (0,  t ' )  such lhat

l l r . " r ( i ) l l  <  . l ly , " r ( t ) l l  for  a l l  t  e l t€ , t ' ) (3  7 )
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Proof . since g, h, k are carath6odory functions and g, ä are l inearly bounded in r,
i t f o l l ows tha t [0 , ] / )  i s t hemax ima l i n te rva l  o f  ex i s tenceo f  (3 .6 ) .  Nowweproceed
in several steps.

Step (i). Let P, Q > 0 denote the unique solutions of

Q qr P + PC B = ssn (CB)I- (g.8)
eTQ +  QAq :  - I n - ^  (3 .9 )

step ( i i ) .  Let  s  be g iven as in  Lemma 2.1 and r? = d iag (p,e) .Then we want
to show that the function

v r \  _  l l s ^ ( l ) l l p  c  r n  r l
l l S -  ' r 1 ( t ) l l P  I  r . " )  ' r

has the property

l i m  Y ( r )  =  1 .  ( 3 . 1 0 )

It then would follow that for any e, > 0 there exists l. € (0, r,) such that for all
,  €  [ t . , t ' ) ,  we  have  l l s l l l ]  >  (1 -  e , ) l lS - r c l l l l  =  (1 - . , ) ( l l r . r l l ]  +  11s^111 ; .  Now a
simple rearrangement y ie lds (3.7) .

Step ( i i i ) .  The set

J := { t  €  [0,  ] ' )  |  ; r ( t ) is  not  d i f ferenr iable or  [ r ( r )  = 0 and r ( r )  I  0 ] ]  (3.11)

is of rneasure zero) see Ilchmann and Logemann (1991).
Step (iv). Differentiat,ion at I € [0, t,) \ .r yields

d  , , , " - l  , . . r r r r - l \  -  ( S - t . r 1 ( 1 ) '  R , s - ' t . l ( 1 ) )
d . !  \ t t "  " ^ \ ' / l l R / - - W

_ _ (yr( t ) ,  Psr(r))  + (zr(r) ,  err(r))
l l s -12Ä( r ) l l l

f irtta^tt)l lp)= t#6#U
We sirnplify the notation by introducing

, i1 f t )  :=  l ly^( t )11" ,  2( t )  :=  l l ' ^ ( r ) l lq ,  x( t )  :=  l lS-111(r ) l l6
Stcp (v) .  Di f lcrent ia t ion of  l / ( t )  a t  r  e  [0, r / ) \ . /  a long (3.6)and using ( iv)y ie lds,

omit , t ing the argurnent  l ,

. 7 2
V = 

, r ,  
(ax,  PAg>,  *  PA2zs + sgn (CB)ß PC BAt I  P[gt  + C Bi) )

- 
f i  {r^,QAzax * QAazT + Qs2) .

Not,e that thc coefficients of (,1 + ,lf ) cancel. Using the l inear bounds of g, ä and
(3.8) ,  (3.9)  we obta in the fo l lowing lower bound for  some M > 0

. :.2

v  >  - . r I  
n  n *y .  +  y ( :  +  y ) l  -  u  4V tz  - r  u )  -+  y , l+  ; f t  +  t )4

- t r + - r " ; - 2 M  . + f , r - + t t 4  ( 3 1 2 )
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Step (v i ) .  Consider  f i rs t  a l l  po ints I  €  [0, t ' )  such that

417

(3  14 )

V ( t )  e [ 6 , 1 - 6 ]  w h e r e  0 <  6  < I l 2

Then it follows that

(3  13 )

Therefore we conclude f rom (3.12)  that  for  a l l  I  €  { [0 , ] ' )  \  / ly ( r )  €  [ö, I  -  6 ] ]

Since l imr*r' k(t) = oo it follows that there exists some lo € (0,1') such that

ü ( r )  r  0  f o r  a l l  I  e  { [ t 6 , ] ' ) \ /  I  v ( t )  € [ 6 , 1  * r ] ]

Since 6 is arbitrary small and ,.I is of measure zero, this implies l iml-,, V(t) e {0, 1}.
Step (vii). It remains to consider the case limr*r, V(t) = 0. If this holds true,

then for  every € )  0 there ex is ts  l *  :  t * (e)  € (0, t ' )  such that  l lgr ( t ) l l?  !  e l l r l ( t ) l l f i
for  a l l  t  €  [ r - ,1 ' ) .  Therefore for

,  I  t  \ ' / ' o ^ o , ( Q )t  '=  
\ '  '  )  " , " "Jn

where o-o"(Q) @*r"(P))  denotes the maximal  (min imal)s ingular  va lue of  Q (P) '

we obtain

l l y ^ ( t ) l l  <  e ' l l z 1 ( t ) l l  f o r  a l l  t  e f t * , t ' ) ( ; r . 15 )

Since k( . )  #  L*(10, t ' ) ,  i t  fo l lows that  l imr*r ,  Ä( l )  = 0,  and therefore

ü ( / )  =  [ , 4 a  +  ( ) ( l ) +  ) ( / ) 1 ) 1 , - , , ] u ( t \

is exponentially stable, i.e. t,here exist M,pr > 0 such that

l l r ( r ) l l  S  Me-pA- t " ) l l a ( t o ) i l  f o r  a l l  t s  €  [ 0 ,  t ' ) , t  €  [ l o ,  t ' ) .  ( 3 .16 )

Using var iat ion of  constants for  (3.6b)  and apply ing (2.5) , (3.15)  and (3.16)  y ie lds

f o r a l l l ' ) l ) 1 6 ) l *

|  |  zr  ( r )  |  |  1  ty [  s-  u( t  -  t " )  
|  lz r ( lo)  |  I  +  l lz{3 l lM f ]  "  e , -  uG - ' )11e1 (s) l lds

,+t l ls l lM fr l . r " - ' l ' - ' t l l lyr( ' ) l l  + l lz1(s) l l ]ds (3 12)
{  Nr  e_r t ( t_ t " ) l l z1 ( ro ) l l  +  Mi l l ,a3 l l r ,

+t l ls l l ( l  + t ) )  J, ' "€-p( ' -s)  l lz^(s) l lds

( ,  -  
l :  "e-p( i - " )  

|  lu(s)  |  lds)

Since

L 1 "  :  L o ( t o , l , ' )  -  L p ( t o , t ' ) ,  o ( . )  *
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is wel l  def ined and l l l ,1" l l1"( ro, r , )  (  l l lo l l r , fo , - l  = :  L < oo (see Vidyasagar 1978,
p.250),  tak inglo-norms in (3.17)  y ie lds for  some 1{  )  0  and a l l  t  €  [ t . , r / )

l  l ' .r O l l r,r,., t1 < M K llzl (to) l l  + M |ltulle' + tl lsl l  ( l + e' )l Lll z 7Oll r,1,",,7 (3. 1s)

Now for r ' and g small enough it follows from (3.18) that z1(.) e Lp(0,1/). Conse_
quent ly  y^( ' )  €  Lp(0, t t )  and hence ß( . )  e  I - (0,1 ' )  which is  impossib le by assump-
tion. This completes the proof. D

It is now possible to prove a new adaptive (exponential) stabil ization result incor-
porating the defined switching strategy (3.b) and the .Lo-based adaptive gain *(t)
and exponential weighting.

THpoRsNl 3.3.  Suppose p > I ,u , , ( . )  :R.1 -  IR+ is  cont inuousty d i f ferent table and,
sattsfies (3.1), r < sr < sz < . .. is a sequence of 'thresholds' with l irr,,-*-,s; -
cxt, and k(') salisfies (3 2),(3 3) If (A,B,c) € x rs subject to the drsturbances
(1 8),(1.9) and if the l inear bound g of g is sufficzenrly small, then the feedback law

u(t )  = S( t )k( t )s( t ) ,  S(- )  def ined in (3.5) (3 .  le)

applied to (1.10) yields:

(z) the absolutelg conlinuous solution of the. closed-loop syslem (1.10), (s.L),
(3 .19 )  eds ts  on  IRa ;

(m) l iml-* k(t) = A- ( oo and, if u(.) t '  0, then l iml*-(c,., o k)(r) = a,,o > 0;

( t t t )  v ,op ( ' ) ,  y . - (  )  €  Lo (0 ,  oo ) ;

(iu) rf u( ) f 0, then there edst M, p > 0 such that

l l " ( t ) l l  1  Me-P '  f o r  a i l  I  >  0 ,

i f  u ( . )  =  0 ,  t hen  l im r * -  z ( t )  =  6 ;

(u)  only  a f in t te numbers of  swrtches occur  and l imr_-  p( t )  = p_ {  oo.

Proof. Due to the discorrtinuity of S and to the nonlinearity of the right hand
side of  the c losed- loop systenr  (1.10) , (3.2) , (g. rg) , (8.5) ,  the proof  requi res a cer ta in
number of technicalit ies. Fbr brevity, we omit in the following proof to take into
account the discontinuity of ,9. This can be done in a similar manner as in Ilchmann
a n d  L o g e m a n n  ( 1 9 9 1 ) .

Let  l } , t ' ) ,  t '  €  (0,oo] ,  be the maximal  in terval  of  the unique solut ion r ( . )  o f
(1 .10 ) ,  ( 3 .2 ) , (3 .19 )  and  suppose  P  >  0  sa t i s f i es  (3 .8 ) .

(a)  We f i rs t  prove that  * ( . )  e  L*(0, t , ) .  S 'ppose otherwise,  then by (3.1)
l iml-1, ( ru o f t ) ( l )  = 0 and Proposi t ion 2.3 y ie lds for  some Mt > 0and a l l  I  €  [0, ] , )

|llu." r,(t)ll 'r { M t + M 1 j lly," 1,1s1llprds
r  (3 .20)

+ ]sgn (c B) I s (r)k (r) l ly_". (,) I  l?- '  I  lv-"n 1r1 1 1 l l  p(y_ " 1, (r)) l ldr
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or, equivalenl, ly,

1l l ,u . "o( r ) l lä
p

j l lu,".(r)l l '"

1 Mt r I llu-"r(4ll,a,lu,+ j,s' C:a;rplf ( 3  2 1 )

(3 .23)

I t  fo l lows f rom ( l ) .21)  that  rp( ' )  €  , - (0,1 ' )  s ince otherwise the r ight  hand s ide
of  (3.21)  takes both posi t ive and negat ive values,  contradic t ing (3.21) .  As 9( . )  is
bounded and monotonic on each interval ltt,to+t) it has a finite l imit l imr*r, p(t) =

g/- and hence a finite number of switching times lr ( . .. 1 tm < l '  occur. In
par t icu lar ,  .9( . ) l t r -  , , ' ,  is  constant  wi th value f  1  or  -1.

I f  .9(  ) lp- , r ,1  :  -sgn (CB),  then (3.20)  y ie lds for  some M2 and M3

f t
t  M z  l l l y * " 6 ( s ) l l p d . '  -  M t  l f r ( s ) l l u . " r ( s ) l l P d "  ( 3 . 2 2 )

. t  J
0 0

Choose 7 e (0,1') sufficiently large so that M2 * M3k(l) < 0. ' l 'hen it follows from
(3 .22 )  t ha t

I l lv-"r(r) l lor
0

t

+ lM, * Wk(l) l  /  l ly.. i(s)l lpds

I f  y .o, t ( . )  /  Lo(0,1 ' ) ,  then the r ight  hand s ide (3.23)  becomes negat ive which is  a
contradic t ion.  Therefore 9,or( . )  e  Lo(O,1 ' )  and (3.23)  y ie lds a,o*( . )  €  r - (0, r ' ) .

It remains to consider the case S(-)lfr-,r,1 : sgn (CB). Suppose the system is of

the form (3.6)  wi th u( t )  = sgn(CB)A(t )y( l )  and l imz*r ,  f ( r )  = oo.  Then,  for  e > 0,
by Lemma 3.3 there ex is ts  a t ,  €  ( tu , l ' )  such that  for  a l l  I  €  (1. ,1 ' )  \  , / ,  " I  def ined
in  (3 .11 ) ,  we  ob ta in

l / n  \
i  (  l l l v - "0 ( l ) l l ä  )  =  l l v . "n111 ; ; ; t  ( g@. "x ( t ) ) ,  PA ta -ob ( t )  a  PA2z ,o1 , ( t )
p  \ d t  

'  
/

*sgn (CB)f r  ( t )PC 8y."1, ( l )  + P[e l ( l )  + C Bh."k( t ) ) )

)  l l v , " r ( r ) l lä  u^ lu , - ,  +  j r t r l l

for suitable choice of Ma, Ms ) 0. This proves arbitrary fast exponential growth of
y( . )  on f t , , t ' ) .  However,  th is  contradic ts  boundedness of  g( . )  and so f r ( ' )  e  I - (0,  t ' ) .

(b) Since g and Ä are l inearly boundetl on r, and since ß(') is bounded on [0,t ') i t
follows, from the theory of ordinary differential equations, that l '  : oo (and so c(')
does not have a finite escape time). Assertions (i)-(i i i) and (v) follow immediately.

(c)  We assume that  (1.10) ,  (3.19)  is  of  the form (3.6) .  Asser t ion ( iv)  is  proved

only for the case ,( ) * 0 (the case ,( ') = 0 is simpler and uses the same argument).
We know that gr(.) € Lp(0,oo) for all p € [0,r-]. Consider (3.6) and choose
p,g > 0 smal l  enough so that  (3.6b)  y ie lds tp( ' )  € .Lo(0,oo) ,  th is  can be shown by
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usrng a s imi lar  t ,echniques as in  v idyasagar (1gzg) ,  pp.2bg.  s ince ß( . )  is  bounded
and .g and ä are l inearly bounded, it follows irom (3.6) that ir(.) € Lp(O,oo). Now
, r ( . ) , i r ( . )  e  Lp (O ,oo )  imp l i es  l im r_ -  r r ( t )  -  0 ,  wh i ch .o -p t " t " ,  t he  p roo i .  D

RsNaanx 3.4.

(i) Note that the gain adaptation y * A is achieved using an exponentially
weighted output and hence involves multiplicatio.r by .n unbounded func-
tion if ,O f 0. If ar(') : 0 in Theorem 3.4 the results sti l l  hold true with
the rnodification that only asymptotic stabil ization of z(r) rs ensured. The
unboundedness property is avoided in this case at the expense ofguaranteed
exponential stabil ization.

(i i) If only asymptotic stabil ization is of interest and we put u,,(.) : 0, then the
adapt ive stabi l izer  (3.5) ,  (3.19)  re jects every d is turbance d( . ) 'e  Lp,(O,oo)  in-
corporated into the system state equation as follows

r ( l )  :  k ( t )  +  s ( t , r ( t ) )  +  d ( r )  +  B [u ( t )  +  ä ( r ,  c ( r ) ) ]

For brevity a proof of this is omitted.

4. Robustness with respect to input-output nonlinearit ies

In the single-input single-output case, a suitable extension ofthe switching strat-
egy presented above can also tolerate arbitrary sector bounded actuator and sensor
nonlinearit ies as defined (1.11). This has been considered by Logemann and owens
(1988) using a Nussbaum based switching strategy and without taking into account
the noril inearit ies g and ä. However it is necessary to find a different proof in this
case' Only sector-bounded actuator (not sensor) nonlinearit ies have been consid-
ered in Ilchmann and owens (1gg1a), without allowing the inclusion of g and ä
perturbations to the systems dynamics.

If we allow sector-bounded actuator and sensor nonlinearit ies, then only g(t) =
T$,a( t ) )  and ü( t )  :  -S( t )e(r )y( t )  are avai lable bur  not  y( r )  anj  uQ):  { ( r ; r ( ; ) ) .
We have to introduce certain indicator functions to act as ih. b*i. for switching
decisions in the absence of information on y(t) and precise knowledge of what u(t)
w i l l beasaconsequenceo f  ou rdec i s i on .  Fo ru , , ( . )  and* (  )asde f i neJ rn (s . r ) - (a . i i
the switching decision function proposed is

I r.tot. ir d llO(,)llPd, = slp1) := 
\ j ryp1")ll0."o(r)llpdr/j l l!,"1,(r)lPdr, if 1.]11y1,11Ya,7 o( ö  o

(which contains only measurables) and the thresholds wil l be replaced by quantit ies
related to the functiorr

f ttol, ir ,t llO(,)llpd, = s
Q\t) := 

\ j rol|8,,1,(r)|pdr/i rg.,t,(r)|pdr, if fi11g1ry1oa, s o( ö  r )
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Clearly, /( t)  is posit ive and non-decrea^sing since ß(l) is posit ive and tron-decrea^sing

Moreover
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( ( t \  : :  
t  ( / )  

e  t - l  l l\ \ . . ,  
ö ( )

Let  16 )  0 be such that  0 < l l ( to) l  < d( to)  and consequent ly

( 4  1 )

(4  2 )C( t )  €  ( -1 ,  1 )  f o r  a l l  t  )  t o .

' I 'his can always be achieved by application of a random sequence of switches in

an interval 0 < I < 16. Note that ((t)  is monotonic on any interval where S(l)

is constant. The suggested switching algori thm for I  )  l0 is as fol lows: after the

init ial izat ion phase of random switching,

i : = 0  , 5 ( 1 6 )  : : 1

( * )  t t + t  ' . =  i n f { f  >  l i  I  S ( l r x ( t )  =  I  -  S ,+ r l
S ( l )  : :  S ( to )  f o r  a l l  t  € l t i , t i + r )
S ( l ; + t )  : =  -S ( l ; )

i : = i * l
go to (* )

w h e r e  1 - ( ( f o )  )  S r  )  S r > . . .  >  0  i s a s e q u e n c e c o n v e r g i n g  t " o z e r o .  N o t e
that ,  wi th n( ,y)  = g,  the a lgor i thm (a.3)  is  that  of  (3.5)  wi th adapt ive thresholds

S,  = k(r0)-1(1 -  g)  and ( ( t )  = p( t ) .  I t  is  based on measured quant i t ies only .

The technical problem is that these quantit ies do not have a precise known relation

to the inputs and outputs of the (nonlinearly perturbed) internal l inear part of

the plant. In the following useful bounds and relationships between the important
quan t i t i es  a re  de r i ved .

The input-output nonlinearit ies are a^ssumed to be sector bounded, i.e. (( , )e
SB(a,p) ,  for  some p )  r r  )  0 ,  and ?( ,  )  €  S6(a ' ,  l3 ' ) ,  for  some p '  )  a '  > 0,  see
(1.11) .  In t roducing the notat ion

ß
d l l ( l  u  - -  -'  

l t t )n-  
L

i f  S( l )  = 11
i f  .9( r )  = -1

if s(r) = -1-1
if s(r) = -1

then, for ß(t) positive, it is easily checked that for aQ) + 0

s(r)ß(r)ls(,)lp < {(r,s(t)ß(t)i(r)) s(t)ls(t)lp-' < s1t1r,1t)10(t)lp (44)

and furthermore

t

I lo.G)|,a,
0

] ( 4 3

s(r) :: { 
-z

t

j3(r)k(r) l i1-(r) lP dr
0,1,$) :=

B - a  ß + o= +ö( t )  + : ,1 ( , )  (4  5 )' 2 2
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I

{  S( r )k ( r ) l y . ( r ) lndr
04,\t) := t

f 10.1"110 6,
0

,1,(t) S

(4 .6 )

(4 .7 )

I+ ((,)l d(r)
(4  8 )

Since a < 13, it follows that

and

P t a , , . ,
^ tP\t )z

D - + O
and  t b ( l . l  -  '

2

This sets us in a position to prove the following lemma which is crucial for the main
result of this section.

Lpn lua  4 . I  .  Suppose  f )  >  7 ,13  >  o  >  0 ,  ß ,  )  o ,  >  0 , t , >  O , f r (  )  :  [ 0 , ] , )  _
R1 is  aösolu le lg cont inuous and u( . )  sar is f ies (s , r ) .  Let  the stngle- inpui  s ingle-
output  sgstem (A,b,c)  € X öe subjected to the d is turbances (1.5) , (1.g) ,  { ( . ,  J  e
56(o,  ß) ,  n( . , . )  e  56(a ' ,  g ' ) .  Appty the feedback law

ü( t )  =  S( t )k( t )q( t ,a !D (4 e)
to (1 12) where s(') zs a surrchtng function defined uia the argorrrhm (/.s) and
t ls  inzt ta l izat ion phase oa [0,  t6 ]  wi th to )  0 to ens,u, re that  ( ( to)  € (_1,  l ) .  

' I f  
the

solu l ion of  (1.12) ,  ( / .9)  ex is ts  on[0, t , )  for  some t ,  €  [0,  crc)  o, r i  l imr*r ,ß( f )  _  oo,
l hen

@  0 ( . ) , 1 (  ) , , / (  ) , 1 (  )  €  r _ ( 0 , t , )
( i r )  a . " r (  )  e  L i (O , t , )  f o r  a l l  i  e  [ p , cn ] .

Proof .  Suppose öO q L*Q,t , ) .
(a) If the switching algorithm (4.3) switches an infinite number of t imes 0 =

t s 1 t 1

l imsup ( ( t )  -  * l  and  l im i l f ( ( r )  =  _ t  ( 4 .10 )

From (4.8)  th is  g ives

l im sup l ( l )  = oo and l im i1f  f ( r  )  = -oo.  (4.11)

As *( . )  is  unbounded l iml*1, (c , , ,  o  k)( t )  = 0,  and apply ing (a.g)  to  proposi t ion 2.3
yields for some M ) 0 and B as defined in (2.6)

I lu . "o( t )P
t  (4 .12)

i  cb I  ly-  "  u 14lp 
-  r  0(a_ "*(s))e' ," t ("  ) '  4(s,  S(s)ß(s)17(s, y(s))ds

o

|  #+c(,)]  d(,),
f ^
t t J - a

Lli + (t
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Suppose c0 > 0. Then, by using (4.4),
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ah
, " - , u b ( l \
( a / ) n : '  

-

whence

1

cö / ( (s, ̂ 9(s) ß(s) a( s, y( s) )e'oe(' )" g @. " r (t))ly,or (s) lr 
- t 4t

I  l y .op(s ) l rds
0

cb  cb  - .

1*y ut, l  s @)e'!@
(4 .13)

Equation (4.11) together with (a.13) yield that the right hand side of (4.12) takes

arbitrary large positive and negative values as I tends to l'. This contradicts the

positiveness of the left hand side and therefore only finitely many switches occur.

If cö < 0 then the definit ions of 3('; and S(') have to be modified which gives a

similar inequality to (4.14) and the identical arguments are valid.
(b) If there is only a finite number of M of switches then

, t * r , ( ( r )  
=  ( -€ ( -1 ,+1 )

However, the unboundedness of d( ) yields the contradiction

1 y

I  S(r)k(r)1iy,"1,(r) lpdr + S(tM) [  k1r11i1."y(r)Ydr

,t$,((l) 
= 

,tT,
0 t M

t v  t

I  t ' ( r) l i i , "n(r) lp d, + [  k(r) ly,"r(r) lp dr
O  t v

=  S ( l y )  =  j l .

Therefore (a)  and (b)  prove d( ' )  €  r - ( ,1 ' ) .
(c)  The boundedness of  , / ( ' ) ,  { r ( ' ) ,  and Tl r ( ' )  now

This proves (i).
(d)  For  a l l  7 '> 0 and I  €  (T, t ' )  we have

T 1

{ t ' (r) l i ,"n(r) lp ar + ß(T) I ly.,kj) lp dr
o ' I

s ö( t )  (4 .15)

I lv'"n1'11' ar + [ li'"k(r)le dr

I f  y ,or( . )  4  Lo(0, t ' )  then ! ,ox( : )  Q Lo(0, ,1/ )and thus the l imi tof  the le f t  hand s ide

of (a.15) would be k(T). Since ,t(T) is arbitrary, this contradicts the boundedness

"f  d(  )  Hence y.o6( . )  €  ,p(0,  t ' ) .
(e)  Since 9.or( . )  €  Lp(0,1 ' ) ,  a  rough est imate appl ied to (4.12)  y ie lds y,o6( ' )  6

t r* (0,1 ' ) .  This  completes the proof .  t r

THoonpu 4.2.  Suppose p )  1, r . . ' ( . ) :1R1 -  R+ is  conl inuouslg d i f ferent iable and

salzsfies (3.1), k(.) satrsfies (3.2), (3.3). I 'he switchzng funclzon S( ) is def,ned as tn

algorithm (/,.3) If the stngle-input stngle-oulput system (1.12) is considered under

lhe assumpl ions as gxaenrn Lemma / . l  lhenthe feedback law ( / .9)  appl iedlo (1.12)

uzelds:

(4.r4)

follows from (4.8) and (a.7).
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(i) the solulion x(.) ezrsls oz [0, oo);

(rz) l iml-* k(t) = ß- ( @, l iml*-(c,,, o ß) (r) = c,;- ) 0,
l imr*-  , l t ( t )  = l -  €  JR,  l imr*-  ö( t )  = d-  e R;

(i i i) there are onlg a finite number of switches;

( ia)  y-"n( . ) ,  y ._( . )  €  t ro(0,  oo) ;

(a) if u(.) f 0, then there exist M, p ) 0 such that

l l " ( t ) l l  <  Me-P t  f o r  a l t  t  >  0 ;

r f  u( . )  = 0,  then l iml*-  c( t )  -  0

Proof. As in Theorem 3.4 we ignore, for brevity, the discontinuity of s. Let [0,1r)
be the maximal  in terval  of  ex is tence of  r ( . )  o f  (1.12) ,  (a.g) .

(a)  Suppose kO e r* (0,1/ ) .  Then Lemma 4.1 ( i i )  y ie lds togerher  wi th (3.3)
that  f r ( . )  €  r - (0, t / ) .  This  is  a contradic t ion.

(b) Since ß(') e r-(0,r'), i t follows as in part (b) of the proof of Theorem 8.4
that l/ : oo.

(c) Now (iv) follows from (3.3). This implies rhar (i i i) is valid by definirion of
/ (  )  and r / (  ) .

(d) Toprove (i i) denote the intervals where S(.) in constant by [l;,1;r.1). Then,
s ince  g ,o1 ( - )  €  Le (o , t ' ) ,

, r l r

Io ro ( -1 ) ,  [  * ( r ) l t , "o ( r ) lpdr
l i m  ( ( / )  =  l i m  

I '
t - t t  

"  
t - @  l , * r €  ( - 1 , 1 )

Lozo [ ,  k( r ) l ! . "p(r ) lndr

and (i i) follows from the switching algorithm.
(e) Assertion (v) can be shown by using similar arguments as in Theorem 3.4

This completes the proof.

The analogous remark as in Remark 3.5 holds for Theorem 4.2.

5. Sirnulations

Consider the system described by the state space model

i ( t )  =  Ar ( t )  +  bu( t ) ,  r (0 )  -  ca
a(t)  = cr( t)

' = f i - i r , { l  ]  b :c r= [ i ]  " .= l i ]
where
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The syst,em is obviously of relative degree 1 with cb = | and also minimum phase
since

, . f  s 1  A  6 l, t , t l " ' ;  ö  l = , " *  
r ) ' +  ( 3 1 4 ) 2

To il lustrate the eflect of the choice of p,we consider the following adaptive stabil izer
w i t h  p  :  1 , 2 , 4

z ( t )  =  S ( t ) k ( t ) a ( t )

k ( t )  =  l y ( r ) l p ,  ß (0 )  =  0

where S( . )  is  deterrn incd in  (3.5)  wi th the modi f icat ion S( t ; )gQa1) :  ) ,+r  [k( tg)+1]
def in ing t ,he swi tch ing t imes.

Three different 'threshold sequences' {);} are considered and no input output
nonlinearit ies are included. The form of thc threshold sequences are indicated on
the relevant f igures.

Note that the system reacts much faster if p is larger due to the increase in the
rate of change of the gain whenever y(l) increases above unity. This has the effect
that the transient behaviour of y(l) improves as p becomes larger. More precisely,
in Fig.2, the peaking of the output response is removed with increases in p, this
behaviour being seen also in Figs. 3 and 4. The effect of p on the l imit gains ha^s
no pattern other than that the case of p : I leads to in all the cases described to
the highest value. In all cases the number of switches is the same as p increases
but the switches occur more rapidly and at lower gain values suggesting that the
use of ' large' p wil l tend to reduce peaking phenomena. The general form of the
responses seems to be relatively insensitive to the choice of threshold sequence, no
real pattern being discerned from these results.

These results are for one init ial condition only. Changes in init ial conditions
show similar results although the number of switches can increase considerably.
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