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Adaptive stabilizers for the class of m-input m-output minimum phase systems
t=Az+ Bu, y=Cz

with unknown state dimension and definite high-frequency gain, i.e. a(CB) C
C_ or o(CB) C C4, are introduced. These controllers are not based on iden-
tification mechanisms and yield an exponential decaying output and a con-
vergent adaptation gain. The main result is a switching strategy alternative
to the so-called Nussbaum function approach. This adaptation mechanism
can tolerate dynamics in the input and, more importantly, sector-bounded
input-output nonlinearities are allowed for single-input single-output systems.

Nomenclature

Ry (R_): the set of non-negative (non-positive) real numbers.

Cy (C-): the open right- (left-) half complex plane.

a(A): the spectrum of the matrix A € C™**".

llz||p = /(z, Pz) for z € R", P = PT € R™"*" positive.

L,(J): vector space of measurable functions f : J — R”, J C R some interval and
n being defined by the context, such that || f(-)||2,(s) < oo, where

£z, :—-{ s 1 @lpds] 77 for p e [1,00)

ess supgcg|[f(s)|]  for p = oo

1. Introduction

THE PROBLEM of high-gain adaptive stabilization of uncertain systems has been
studied by various authors, see, for example, Willems & Byrnes (1984), Byrnes &
Willems (1984), Martensson (1986), Morse (1987), Ilchmann et al. (1987), Miller &
Davison (1989). In general terms, this problem can be regarded as the construction
of an output feedback mechanism driven by a gain adaptation depending nonlinearly
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410 A. ILCHMANN AND D.H. OWENS

on the output and capable of stabilizing any system within a class of systems defined
in terms of structural properties only. In this paper, we study the problem of
adaptive stabilization of multi-input multi-output, minimum-phase, relative-degree-
one systems of the form

z(
y(
More precisely, we study the class ¥ consisting of systems (A,B,C) € R*x" x
R7X™ o R™X™ associated with (1.1), which satisfy the minimum-phase condition

=4
t) = Calt) (1.1)

z(t) + Bu(t), z(0)€R" }

det [ SlgA g ] #0 forallseCy (1.2)

and which have a high-frequency gain of definite sign, i.e. the spectrum fulfils
o(CB)CC_ or o(CB)CCy . (1.3)

Note that neither (A4, B, C) nor the state dimension n need be known.

It 1s well known that such systems can be stabilized by a time-varying output
feedback containing gain adaptation and a Nussbaum-based switching mechanism.
An example of this (see, for example, Nussbaum 1983, Byrnes & Willems 1984) is
the feedback

u(t) = N(k()k(t)y(t) (1.4)
with )
k() = lyOI*,  k(0) = ko € B, (1.5)

where N(-) : R — R is a Nussbaum function, i.e. a pilecewise right continuous
function which satisfies the so-called Nussbaum condition

1t 1
— / = inf — = —00. 1.
21;;()) k/o N(r)Tdr = 400 and gr;t;) k/o N(r)rdr 00 (1.6)

Examples of Nussbaum functions are N(g) = ¢ sin Vg or
1

N(q) = ,n2§|q|<(n+1)2, n even
(@)= 1 ,n?<|g| < (n4+1)% nodd.

Note that the switching times in this approach depend solely on the instantaneous
value of the gain k(t) and, in general, contribute to the total gain N(k)k at any
time and hence to the limit gain.

Alternatively, the feedback law

u(t) = N(s())k(t)y(t), (1.7)

where N(q)/q is a Nussbaum function, permits a wider class of gain evolutions, see
Owens et al. (1987), with switching dependent on the instantaneous value of s(t)
rather than k(t) but the total gain in this case is affected by the switching strategy.
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These switching functions are replaced in this paper by a new class of switching
mechanisms where switching times are decoupled from the magnitude of the instan-
taneous gain and make no contribution to the total control gain in the way that
previous approaches require. The switching mechanisms have all the advantages of
those previously reported but avoid the difficulties described above.

Together with the switching strategy, in this paper we also introduce classes of
adaptive control laws that can tolerate certain state, input and output nonlinearities
of the following form.

Let the functions

g: R+XR”——>RH’ (t,l’)n—»g(tyx) (1 8)
lott, =) < gllell ¥ (4,2) € Ry x B7 -

h: Ry xR —R" (tz)— h(t,z) (1.9)
[h(t, 2)] < hllz]] ¥ (t,2) € Ry x R™ '

be measurable in t for each fixed z and locally Lipschitz in z for each fixed ¢, and
of finite gain, i.e. (1.8), (1.9) are satisfied for some (unknown) g,h > 0. These
functions are build into the system (1.1) as follows

0 = A2 o0, () PO RO O R

y(t) = Cx(t)

The possibility of including g(-,-) into the system equation, and showing that all
propositions are valid if the linear bound § is small enough, demonstrates that the
problems are well posed. This, together with the nonlinear disturbance h(-,-), of
bounded gain in the input, shows that the system is robust with respect to some
unmodelled system (and sensor) dynamics.

In the single-input single-output case, the adaptive stabilizers tolerate the fol-
lowing large class sector-bounded nonlinearities.

Let 8 > a > 0. The set of sector-bounded functions SB(a, 3) consists of all
functions

FRy xR, (tv)— f(t,v)
which satisfy, for all ¢t € Ry,

IVAA

VU€R+}

Bv
fv YvevelR_ (1.11)

t,v)
av > f(t,v)

For £, n € SB(«, ), we consider the system

-
—~
o~
~—
I

= Az(t) + g(t, z(t)) + Blu(t) + h(t, 2(t))], «(0) e R
y(t() = Cx(1) (1.12)
a(t) = €L a(t)),  §(t) = n(t, y(1)

illustrated in the following Figure 1.
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Fic.1 Open-loop system with nonlinearities

As mentioned above, a primary purpose of this paper is to introduce a new
class of bounded threshold switching operations generalizing that introduced in
llchmann and Owens (1991). Together with the advantages previously mentioned,
this switching strategy is able to cope with nonlinear perturbations of the state
space equations (as described above) and a large class of nonlinear input-output
characteristics.

A second contribution of the paper is the use of a multi-input multi-output Ly,
p > 1, formulation of the stability analysis that extends the previously available gain
adaptation mechanisms. Finally, the paper allows the use of exponential weight-
ings in the manner of Hichmann and Owens (1990) to permit the development of
exponentially stabilizing feedback schemes.

In Section 2, some properties of the class of systems under consideration are
stated. The main result is given in Section 3, that is, a switching function based
on a switching decision function and an exponentially weighted gain adaptation
which yield a universal adaptive stabilizer in the presence of nonlinearities. This
result is extended in Section 4, where it is shown that the adaptive stabilizer can
tolerate sector-bounded nonlinearities in the input and output if the system class
iIs restricted to single-input single-output systems. Finally, some simulations are
presented in Section 5.

2. The system class

In this section we establish fundamental properties of the class ¥, that is, systems
of the form (1.1) which satisfy (1.2) and (1.3).

The following lemma shows a convenient form into which every systermn with
det(C'B) # 0 can be converted by a suitable state space transformation.

LEMMA 2.1. Consider the system

z(t) = Az(t) + Bu(t), =z(ty) = 2o € R” }
y(t) = Ca(t)

with (A, B,C) € R*Xn x Rnxm 5 gmxn_

(2.1)
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(i) If det(CB) # 0, then the coordinate transformation S~'z = [y7, 2717, where
S=[BCB), V]IeGL(R)andV € R*(n=m) g 4 basis matriz of ker C, converts
the system (2.1) wnto the form
y(t) = Ay(t) + Azz(t) + CBu(t)
z(t) = Asy(t) + Aqz(2)
where A1, ..., Ay are teal matrices of appropriate formals.
(i) If (A, B,C) € %, then Ay in (2.2) is asymplotically stable, that s, 0(Aq) C C_.

(2.2)

The proof of Lemma 2.1 is straightforward and is omitted for brevity.

In order to include the possibility of exponential stabilization in the manner of
Ilchmann and Owens (1990), we introduce the following notation:

Let 0 <ty <t < oo, A(-) : R — R” be continuously differentiable and v(-) :
R — R7, r € N, be a vector-valued function. Then vy (-) will be defined by

va(t) := 6/\(t)t1>(f,). (2.3)

REMARK 2.2. Suppose A(-) : Ry — R4 is continuously differentiable. Consider
{(1.10) where it is assumed that (A, B, C) € ¥ is subjected to the perturbations (1.8)
and (1.9). Then, by Lemma 2.1, there exists a state space transformation S € R®*"
such that [y7,zT]T = S~ 'z and the new coordinates y,, z) satisfy

da(t) = [A1 + (M0 + MOOLnJyr () + Avza(t) + CBua(1)

+91 (t, ya(1), 2a(2)) + CBA(t, ya(t), 22(1)) (2.4a)

) = Asyn () + [Ad + Q@) + MO Limm]aa(t) + g8, yalt), 2a(t))  (2.4b)
where o(A44) C C_, and g'(¢,y,2) € R™, ¢*(t,y,2) € R"™™ are such that

lg (4,21l < alISHly" =")"
IA(t,y. )i < RISIIGT =17

for g, h given in (1.8), (1.9) and i = 1, 2. .

} V(tyz) Ry xR xR, (2.5)

The following inequality bounds the output of the system (1.10) at time ¢ in terms
of u(-)|[o,ey and y(-)|jo,s). This is an important implication of the minimum-phase
property and is fundamental to the proof of the main results of the paper.

PROPOSITION 2.3. Let P € R™*™ be positive definite, 0 < tg <t/ < o0, p > 1.

Suppose that u(-) : [0,t') — R™ is continuous and A(-) : [0,t') — R is continuously
differentiable and satisfies lim; . A(t) = 0. Define

_y
i Y70
0 L,y=0

Then the system (A, B,C) € ¥ subjected to the disturbances (1.8),(1.9) in the form
(1.10) satisfies for g > 0 sufficiently small, suitable M = M(xzo) > 0 and for all
t e [to,il)

wmmakﬂyHmw:{ (2.6)

ﬂwﬁm%SNHJC/Mﬂﬂﬂ@+/ﬂw@m$WMw@»PCBw@»®(ZU
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Proof.  The proof is an extension of the single-input single-output case presented
in Ilchmann and Owens (1991a) and of the multivariable case for ¢ = 0 in Ilchmann
and Logemann (1991). We omit it for brevity. o

3. Adaptive stabilization using threshold switching

In order to use the gain adaptation class of exponential weightings similar to
those defined in Ilchmann and Owens (1990) which ensures exponential decay of
the output we introduce the following conventions.

Let w(:) : Ry — R be a continuously differentiable function which satisfies the
conditions

w(k) is non-increasing in k € R
w(k) >0 forall keR; if w(-)#0 (3.1)
limy oo w(k) = 0

Suppose f : Ry x R*™ . R is a Carathéodory function such that for every
absolutely continuous y : [0,2) — R™, t' € (0, o0], there exists a unique absolutely
continuous solution k(-):[0,¢') — R, of

HO) = (b @ok)(0), (1), k(0) =k € (3.2)
so that
k(1) >0 and non-decreasing in t € [0, )
Ywok(:) € Li(0,¢') for all i € [p,oo] = k(-) € Loo(0,t') } (3.3)
k() € Leo(0,8) = yuok(-) € Ly(0,1)

A simple example of w(-) and k(-) satisfying (3.1)-(3.3) is, for p’ > p > 1,

wb) = oo kO = D llwear I, k(0) > 1.

Given w(-) and k(-) satisfying (3.1)-(3.3), the adaptive control is completely defined
by

u(t) = S(t)k(t)y(?) (3.4)
once the switching function S(t) is defined. This will be done in the next definition.

DEFINITION. Suppose p > 1, w(-) satisfies (3.1), and y(:) : Ry — R™ is a p-
integrable function. Let 1 < S; < Sy < ... be a sequence of ‘thresholds’ so that
lim; o S; = co. Let k(-) : Ry — R be a continuous and non-decreasing function
with k£(0) > 0. Then the switching function

S() IR.'_ — {—1,1}
is defined via the switching decision function
£(0), if fo ly(lPdr =0

s f S(r)k(r)ﬂywokmnpdr/{t ook (FIPdr, it fi ly(r)iPdr # 0
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and the real-time algorithm

=0, ,tp:=0, S0):=1

(*) liy1 = mf{t > til S(tl)(p(t) = SZ'_+_1k(t0)}
S(t) ;= S(t;) forallt et tiy1)
S(ti_*_l) = ——S(ti)
=1+ 1
go to (x)

(3.5)

REMARK 3.1.
(i) Note that ©(0) = k(0) which ensures correct initialization of the algorithm.
(i1) ¢(t) is monotonic on every interval where S(-) is constant.

(iii) In the case of p = 2, the above algorithm is similar to that of llchmann and

Owens (1991).

(iv) The switching function S(-) switches at each time ¢; if the switching decision
function, which is a stability indicator, reaches the new ‘threshold” S; 1 k(to).
]

Stability of the adaptive scheme requires stability of the state, convergence of the
gain adaptation and the presence of only a finite number of sign changes in 5(t).
The proof of stability requires the analysis of the situation if the final sign of the
switching function is incorrect, i.e. S(1) = sgn(CB). This is discussed in the
following lemma. We use the following notation.

, (41 ifo(CB)CCy
sgn (C'B) '—{ ~1  ife(CB)CC.

LEMMA 3.2. Suppose p> 1,t' > 0,k(:) : [0,¢') — Ry is absolutely continuous, w(-)
satisfies (3.1), and the feedback law

u(t) = sgn (C'B)k(t)y(t)
is applied to (A, B,C) € ¥ subjected to the nonlinearities (1.8),(1.9). If one sets
A=wok, then, by Remark 2.2, the closed-loop system can be wrilten in the form

ix = [A1+ (A + M) Inlya + Aszx +sgn (CB)C Bkya

. . (3.6a)
+g'(t,yn, 2x) + CBA(L, yx, 22)

2y = Agya + [Aa + (0 + M) Lasm]za + 6%(t ya, 22) (3.6b)

If k(") ¢ Loo(0,t') and the linear bound § is small enough, then for every ¢ > 0
there exists t € (0,1") such that

lzwok M| < €llywor (DI for all & € [te,t') 3.7
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Proof. Since g, h, k are Carathéodory functions and g, h are linearly bounded in z,
1t follows that [0,#') is the maximal interval of existence of (3.6). Now we proceed
in several steps.

Step (i). Let P,Q > 0 denote the unique solutions of
(CB)'P + PCB = sgn (CB)I,y (3.8)
ATQ+ QA1 = ~Inim (3.9)
Step (i1). Let S be given as in Lemma 2.1 and R = diag (P, Q). Then we want
to show that the function

llyr (D1l

Y = 5T 0l

€ [0,1]

has the property
Iim V(¢t) = 1. (3.10)

t—t!
It then would follow that for any ¢’ > 0 there exists ¢, € (0,#') such that for all
€ [t ), we have [[ua[[3 > (1= YIS~ aallh = (1— Y1zl + lyals). Now a
simple rearrangement yields (3.7).
Step (iii). The set

J = {t €[0,t') | ;2(t)is not differentiable or [z(t) = 0 and z(t) £ 0]} (3.11)

is of measure zero, see lichmann and Logemann (1991).
Step (iv). Differentiation at ¢ € [0,#')\ J yields

di'l, (15~ aa()|51) = — S 2a(0), RS as(1))

15~ ()l
_ (@), Pya(t)) + (aa(t), Q2 (1))
IEEREN G}
d _ (@), Pin(t))
R PXOTE
We simplify the notation by introducing
v =l @lle, 2@) = lla®lle, =(t) :=[1S""2A(t)||r

Step (v). Differentiation of V(¢) at t € [0,2')\ J along (3.6) and using (iv) yields,

omitting the argument 1,
22
. Z . ~
Vo= pens {(yxn, PArya + PAszy +sgn (CB)kPCBy, + Plg' + CBh))

Yz
- %g (22, QAsyr + QA42) + Qg?) .

Note that the coefficients of (A 4+ At) cancel. Using the linear bounds of g, h and
(3.8), (3.9) we obtain the following lower bound for some M > (

22 Y

. . . R . 1 Yz
2 5 o 5 N — (s 7 5 = i
Vz—MI;—,g[y +yz+y(z+y)] MI3[2(2+y)+y~]+2(k+1) 3
2z §2? .
-3 —3—2A4;?+§(k+1) 5 (3.12)
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Step (vi). Consider first all points ¢ € [0,¢) such that
V(t)e[6,1 —¢é] where 0<6<1/2

Then it follows that

8:=V8 220 §o V=¥ (3.13)

89 <2< 8y whe —
o0y <z <0y where T-s 5

Therefore we conclude from (3.12) that for all ¢t € {[0,¢')\ J|V(¢) € [6,1 — 6]}
- _ 1
V) > —TMs + 675 (k(t) + 1)(1 - 6)°. (3.14)

Since lim;_../ k(t) = oo it follows that there exists some tg € (0,t') such that

V()>0 forall te{[to,t)\J|V(t)€[61- 6]}

Since § is arbitrary small and J is of measure zero, this implies lim,_,» V() € {0, 1}.

Step (vii). It remains to consider the case lim;_.p V(t) = 0. If this holds true,
then for every € > 0 there exists t* = t*(¢) € (0,t') such that |lyx(t)||% < ellza()||%
for all t € [t*,t'). Therefore for

ro ( € 1z Umar(Q)
CFA\1IC e) Omin(P)’

where 0,02 (Q) (Fmin(P)) denotes the maximal (minimal) singular value of @ (P),
we obtain

lin (@l < llaat)l] forall € [t7, ). (3.15)
Since k() & Loo(0,t'), it follows that limy_ A(t) = 0, and therefore
5(t) = [Ag + (M) + A Lo ]o(t)
is exponentially stable, i.e. there exist M, u > 0 such that
llo(0)|| < Me#C=t)|lu(te)i| for all to € [0,¢'),t € [to,t). (3.16)

Using variation of constants for (3.6b) and applying (2.5),(3.15) and (3.16) yields
forallt! >t >ty >t"

za (Ol < Me =102 (k)] + [|As[|M [ e=# = ljya(s)llds
+glISIM [ e # = [lyn(s)]] + l|za ()] ds
< Mem R0z (to)]| + M || Aslle’
+glISIL+ €] f,L e =] |zx(s)]ds

(3.17)

Since

1
u@umwﬂuwww0HQH/fWMWMW)
to
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is well defined and || Ly, ||z ,(10,er) < [|Lol|L,(0,00) = L < 00 (see Vidyasagar 1978,
p-250), taking L,-norms in (3.17) yields for some K > 0 and all t € [t*,¢)

IOl < ME||2a(t0)ll + M1 Aslle’ + gISIQL + LAz pery (318)

Now for ¢’ and g small enough it follows from (3.18) that 2x(-) € Lp(0,t'). Conse-
quently ya(-) € Ly (0,¢') and hence k(-) € Lo (0,¢') which is impossible by assump-
tion. This completes the proof. o

It is now possible to prove a new adaptive (exponential) stabilization result incor-
porating the defined switching strategy (3.5) and the L,-based adaptive gain k(t)
and exponential weighting.

THEOREM 3.3. Suppose p > 1,w(-): Ry — Ry is continuously differentiable and
satisfies (3.1), 1 < Sy < S < ... is a sequence of ‘thresholds’ with lim;_ ., S; =
oo, and k(-) satisfies (3.2),(3.3). If (A, B,C) € X is subject to the disturbances
(1.8),(1.9) and if the linear bound § of g is sufficiently small then the feedback law

u(t) = S()k(t)y(t), S() defined in (3.5) (3.19)
applied to (1.10) yields:

(i) the absolutely continuous solution of the closed-loop system (1.10), (3.2),
(3.19) exists on R;

(1) lime_co k(1) = koo < 0o and, if w(-) £ 0, then limy_ (w0 k)(t) = weo > 0;
(111) Yook (), Yoo () € Lp(0,00);
(1v) fw(-) £ 0, then there exist M, > 0 such that
[lz(t)]| < Me ™ for all t >0,
fw() =0, then lim,_. o, 2(t) = 0;
(v) only a finite numbers of switches occur and limy_q (1) = poo < 0.

Proof. Due to the discontinuity of S and to the nonlinearity of the right hand
side of the closed-loop system (1.10),(3.2),(3.19),(3.5), the proof requires a certain
number of technicalities. For brevity, we omit in the following proof to take into

account the discontinuity of S. This can be done in a similar manner as in Ilchmann
and Logemann (1991).

Let [0,¢'), ¢ € (0,00], be the maximal interval of the unique solution z(-) of
(1.10), (3.2),(3.19) and suppose P > 0 satisfies (3.8).

(a) We first prove that k() € L(0,¢'). Suppose otherwise, then by (3.1)
lim;_.;/(w o k)(t) = 0 and Proposition 2.3 yields for some My > 0and all t €[0,¢)

oot (I < My + M [ flguor(s) s
: 0 (3.20)
480 (CB) [ SO ok (P W) - WAk ()
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or, equivalently,
t
1 1
—Nywor (O < M1+ [ |lywor(s)lIPds | My + Ssgn (C'B)g(t) (3.21)
p 2
0

It follows from (3.21) that ¢(-) € L. (0,t') since otherwise the right hand side
of (3.21) takes both positive and negative values, contradicting (3.21). As ¢(-) is
bounded and monotonic on each interval {t;,#;41) it has a finite imit lim,_;+ p(t) =
oL, and hence a finite number of sw1tch1ng times t; < ... < tp < t' occur. In
particular, S(-)|y,, ./ is constant with value +1 or —1.

If S(-)itar,ery = —sgn (C'B), then (3.20) yields for some M> and Mj

t

%Hywok(z)u% < M+ M, / ok (5)|1Pds — M / F() ook ()P (3.22)

Choose T € (0,t') sufficiently large so that Ms — M3k(?) < 0. Then it follows from
(3.22) that

7
sltwor (O < My + [ [Ma — Mak(5)] [|ywok (s)|I” ds
0 t (3.23)
+ (M, k(D] [ ok (s)]IPds
1

If Ywor () & Lp(0,¢'), then the right hand side (3.23) becomes negative which is a
contradiction. Therefore y,ox(-) € Ly(0,t') and (3.23) yields yuox(-) € Lo (0,1').

It remains to consider the case S(- )| [tar,¢) = 58N (CB). Suppose the system is of
the form (3.6) with u(t) = sgn (CB)k(t)y(t) and lim;_ ¢ k(t) = co. Then, for ¢ > 0,
by Lemma 3.3 there exists a {, € (fpr,t') such that for all t € (¢.,t')\ J, J defined
in (3.11), we obtain

1_17 (%Hywok(t)ll’}) = 3wor (D5 (B(sor (2)): PArYwok (1) + PAzzuok(t)
+sgn (CB)k(t) PCByuox (t) + Plg* (t) + CBhuok(t)])

> loar O Ma [ Ms = e+ 140

for suitable choice of My, Ms > 0. This proves arbitrary fast exponential growth of
y(-) on [t,#’). However, this contradicts boundedness of (-) and so k(-) € Lo (0,1').

(b) Since g and h are linearly bounded on z, and since k() is bounded on [0, t') it
follows, from the theory of ordinary differential equations, that ¢’ = oo (and so z(-)
does not have a finite escape time). Assertions (1)-(iit) and (v) follow immediately.

(c) We assume that (1.10), (3.19) is of the form (3.6). Assertion (iv) is proved
only for the case w(-) # 0 (the case w(-) = 0 is simpler and uses the same argument).
We know that y,(-) € L,(0,00) for all g € [0,we]. Consider (3.6) and choose
i, > 0 small enough so that (3.6b) yields z,(-) € Ly(0,00), this can be shown by
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using a similar techniques as in Vidyasagar (1978), pp.258. Since k() is bounded
and g and h are linearly bounded, it follows from (3.6) that 2,(-) € L,(0,00). Now
2u(+), 2u(+) € Ly(0, 00) implies lim,_ o 2,(2) = 0, which completes the proof. O

REMARK 3.4.

(i) Note that the gain adaptation y — k is achieved using an exponentially
weighted output and hence involves multiplication by an unbounded func-
tion if w(-) # 0. If w(-) = 0 in Theorem 3.4 the results still hold true with
the modification that only asymptotic stabilization of z(t) is ensured. The
unboundedness property is avoided in this case at the expense of guaranteed
exponential stabilization.

(i1) If only asymptotic stabilization is of interest and we put w(-) = 0, then the
adaptive stabilizer (3.5), (3.19) rejects every disturbance d(-) € L,(0,00) in-
corporated into the system state equation as follows

2(t) = Az(t) + g(t, 2(1) + d(t) + Blu(t) + h(t, 2(t))]

For brevity a proof of this is omitted.

4. Robustness with respect to input-output nonlinearities

In the single-input single-output case, a suitable extension of the switching strat-
egy presented above can also tolerate arbitrary sector bounded actuator and sensor
nonlinearities as defined (1.11). This has been considered by Logemann and Owens
(1988) using a Nussbaum based switching strategy and without taking into account
the nonlinearities ¢ and h. However it is necessary to find a different proof in this
case. Only sector-bounded actuator (not sensor) nonlinearities have been consid-
ered in Ilchmann and Owens (1991a), without allowing the inclusion of ¢ and A
perturbations to the systems dynamics.

If we allow sector-bounded actuator and sensor nonlinearities, then only y(t) =
n(t,y(t)) and a(t) = ~S(t)k(t)y(t) are available but not y(t) and u(t) = £(¢, u(t)).
We have to introduce certain indicator functions to act as the basis for switching
decisions in the absence of information on y(t) and precise knowledge of what u(t)
will be as a consequence of our decision. For w(-) and k(-) as defined in (3.1)-(3.3),
the switching decision function proposed is

£(0), it [y lg(r)lPdr =0

B A (P

(which contains only measurables) and the thresholds will be replaced by quantities
related to the function

k(0), it [y lla(r)lpdr =0

- meMMMWMQMMHWw,H S la(lrdr £ 0
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Clearly, ¢(t) is positive and non-decreasing since k(t) is positive and non-decreasing.
Moreover
(i)

(1) o)

Let tg > 0 be such that () < ()| < ¢(1o) and consequently

e [-1,1] (4.1)

C(t) € (~1,1) forall t>to. (4.2)

This can always be achieved by application of a random sequence of switches in
an interval 0 < t < ty. Note that ((t) is monotonic on any interval where S(t)
is constant. The suggested switching algorithm for ¢ > t; 1s as follows: after the
initialization phase of random switching,

1:=0 ,S(to) =1

(*) tiyq 1= inf{t > i | S(tl)C(t) =1- gi-&—l}
S(t) = S(t;) forall te[titit1)

4.3
Sltis) = —S(t) 43
=141
go to (%)
where 1 —((tg) > S; > S > ... > 0 is a sequence converging to zero. Note

that, with n(-,y) = y, the algorithm (4.3) is that of (3.5) with adaptive thresholds
S; = k(to) (1 — S;) and (t) = ¢(t). It is based on measured quantities only.
The technical problem is that these quantities do not have a precise known relation
to the inputs and outputs of the (nonlinearly perturbed) internal linear part of
the plant. In the following useful bounds and relationships between the important
quantities are derived.

The input-output nonlinearities are assumed to be sector bounded, i.e. £(-,-) €
SB(a, B), for some 3 > o > 0, and 5(-,-) € SB(a’, '), for some §' > o' > 0, see
(1.11). Introducing the notation

- a B
= and =
A T
<. [ =B if S(t) = +1
S) '—{ & if S(t) = -1

(@ if S@) = +1
20 ‘_{ if S@t) = -1

then, for k(t) positive, it is easily checked that for y(t) # 0
SOEMIBF < & SOR®HM) -yl < SOEOIIOF  (4.49)

and furthermore

[SOROere

W) = , = e+
[ li(r)pdr

B+

) (49)
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with

e
Yty = o — = _5;a¢(t)+ﬂ;’"w(t) (4.6)
Oflgw(T)lpdT
Since @ < B, it follows that
w) < Py < G (47)
and
_B+a [ p-a oy o Bta [B-a
w0 =552 [ L2 co] o, wna T =257 [E22 ]

(4.8)
This sets us in a position to prove the following lemma which is crucial for the main
result of this section.

LEMMA 4.1. Suppose p > 1,8 > a > 0, 8 > o > 0,¢ > 0,k(:) : [0,¢) —
R4 is absolutely continuous and w(-) satisfies (3.1). Let the single-input single-
output system (A, b,c) € ¥ be subjected to the disturbances (1.8),(1.9), &(-,") €
SB(a, B), n(-,-) € SB(a', 8'). Apply the feedback law

u(t) = SOkOn(t, y(t)) (4.9)

to (1.12) where S(-) s a switching function defined via the algorithm (4.3) and
its inttialization phase on [0,t9] with tg > 0 to ensure thal ((to) € (—1,1). If the
solution of (1.12), (4.9) ezxists on (0,t) for some t' € [0,00) and lim,_, k(t) = 0o
then

(1) Yook () € Li(0,t')  for all i€ [p, ool

Proof. Suppose ¢(-) & Lo, (0,1).
(a) If the switching algorithm (4.3) switches an infinite number of times ( —
to <ty <...<t', then by construction this implies

b

limsup{(t) = +1 and litm infd(t) = -1 (4.10)

t—t/ —t!

From (4.8) this gives

limsupy(t) = oo and liminfe(t) = —oc. (4.11)
=t/ towt!
As k(-) is unbounded lim,_ 4 (w o k) (t) = 0, and applying (4.9) to Proposition 2.3
yields for some M > 0 and 8 as defined in (2.6)

ook (OF < M+ M [ [gon(s)Pds
t 0 (4.12)
el [ 1ot (5)7 Btk ()05 (s, S(5 (55, u(5)) s
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Suppose cb > 0. Then, by using (4.4),

cbjas,S(s)k(s)n(s,y(s))ew“’)’ﬂ(ywok(s))lywok(sw—lds

(1) <

( ’)p 0fth/wolc('s)lpds

whence

(a’) P(t) < T ) P(t) (4.13)
Equation (4.11) together with (4.13) yield that the right hand side of (4.12) takes
arbitrary large positive and negative values as ¢ tends to t'. This contradicts the
positiveness of the left hand side and therefore only finitely many switches occur.
If cb < 0 then the definitions of S(-) and S(-) have to be modified which gives a
similar inequality to (4.14) and the identical arguments are valid.
(b) If there is only a finite number of M of switches then
lim (1) = Co € (=1,41)

t—t!
However, the unboundedness of ¢(-) yields the contradiction
tar

1 S o (PP dr + S(tar) [ k() wor ()P
lim¢(t) = lm il

t—rt! t—t! M

/ k<r>|ywok(r)1pdr+tf E()iwor (PP dr

S(ta) = +1. (4.14)
Therefore (a) and (b) prove ¢(-) € Loo(,1').
(¢) The boundedness of %(-),%(-), and ¥(-) now follows from (4.8) and (4.7).
This proves (i).
(d) For all T'> 0 and t € (T,t) we have

T ¢
Ofk("')|@wok(T)|pdr+k(T 7[ wok(T)|PdT

f : < o) (4.15)
[ lsor(Pdr + [ luni (Dl d7

If Yok (-) € Lp(0,¢') then guok(-) € Lp(0,,t') and thus the limit of the left hand side
of (4.15) would be k(7). Since k(T) is arbitrary, this contradicts the boundedness
of ¢(-). Hence yuok(-) € Lp(0,1).

(e) Since Ywor(-) € Ly(0,1'), a rough estimate applied to (4.12) yields yuox(-) €
Loo(0,¢'). This completes the proof. o

THEOREM 4.2. Suppose p > L w(:): Ry — Ry s continuously differentiable and
satisfies (3.1), k(-) satisfies (3.2), (3.3). The switching function S(-) 1s defined as in
algorithm (4.3). If the single-input single-output system (1.12) is considered under
the assumptions as given in Lemma 4.1 then the feedback law (4.9) applied to (1.12)
yrelds:



424 A. ILCHMANN AND D.H. OWENS

(1) the solution z(-) ezists on [0, 00);

(1) limy o k(t) = koo <00, limy_eo(w o k) (1) = weo > 0,
hmy oo Y1) = Yoo €R, limioo ¢(t) = ¢oo ER;

(112) there are only a finite number of switches;

(1) Yook (), Yoo (-) € Lp(0, 00);
(v) ifw(-) Z0, then there exist M, pu > 0 such that

He@®)]] < Me ™™ for all t>0;
fw(-) =0, then limy— o z(t) = 0

Proof. As in Theorem 3.4 we ignore, for brevity, the discontinuity of S. Let [0,t")
be the maximal interval of existence of z(-) of (1.12), (4.9).

(a) Suppose k(-) € Loo(0,t'). Then Lemma 4.1 (ii) yields together with (3.3)
that k(-) € Loo(0,¢'). This is a contradiction.

(b) Since k(-) € Lo (0,¢'), it follows as in part (b) of the proof of Theorem 3.4
that t/ = oo.

(¢) Now (iv) follows from (3.3). This implies that (iii) is valid by definition of
#() and ().

(d) To prove (ii) denote the intervals where S(-) in constant by [t;,¢;11). Then,
since Yuok(-) € Lp(0,1'),

. tagy
Eizo(—l)l tf k(T)Ywor (T)|PdT
tlgr;/((t) - tllr?o tit € (-LD)
Zizo tf k(r)mwok(r)lpd‘r

and (ii) follows from the switching algorithm.
(e) Assertion (v) can be shown by using similar arguments as in Theorem 3.4.
This completes the proof. o

The analogous remark as in Remark 3.5 holds for Theorem 4.2.

5. Simulations

Consider the system described by the state space model

2(t) = Az(t) + bu(1), 2(0) = zg
y(t) = ca(t)
where
2 1 1 1 1
A=|1 -1 3/4 |, b=cl = , zg=10
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The system 1s obviously of relative degree 1 with ¢b = 1 and also minimum phase
since

det[SI;A 8]:(5+1)2+(3/4)2

To illustrate the effect of the choice of p,we consider the following adaptive stabilizer
with p=1,24

u(t) = S(OK(Du(t)
O = yOF,  k(0)=0

where S(-) is determined in (3.5) with the modification S(¢;)e(ti41) = A1 [k(to)+1]
defining the switching times.

Three different "threshold sequences’ {A;} are considered and no input—output
nonlinearities are included. The form of the threshold sequences are indicated on
the relevant figures.

Note that the system reacts much faster if p is larger due to the increase in the
rate of change of the gain whenever y(t) increases above unity. This has the effect
that the transient behaviour of y(t) improves as p becomes larger. More precisely,
in Fig.2, the peaking of the output response is removed with increases in p, this
behaviour being seen also in Figs. 3 and 4. The effect of p on the limit gains has
no pattern other than that the case of p = 1 leads to in all the cases described to
the highest value. In all cases the number of switches is the same as p increases
but the switches occur more rapidly and at lower gain values suggesting that the
use of ’large’ p will tend to reduce peaking phenomena. The general form of the
responses seems to be relatively insensitive to the choice of threshold sequence, no
real pattern being discerned from these results.

These results are for one initial condition only. Changes in initial conditions
show similar results although the number of switches can increase considerably.
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