ilmedia (B

ILMENAU

llchmann, Achim :

Universal adaptive control of nonlinear systems

Zuerst erschienen in:
Dynamics and Control 7 (1997), Nr. 3, S. 199-213
DOI: 10.1023/A:1008297214946



http://dx.doi.org/10.1023/A:1008297214946

Dynamics and Control, 7, 199-213 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Universal Adaptive Stabilization of Nonlinear
Systems

ACHIM ILCHMANN ilchmann@maths.exeter.ac.uk
Department of Mathematics, University of Exeter, North Park Road, Exeter Ex4 4QF UK.

Received February 14, 1995; Revised December 19, 1995
Editor: E. Ryan

Abstract. Martensson’s result “The order of a stabilizing regulator is sufficient a priori information for adaptive
stabilization” is proved to be valid also for a class of nonlinear, time—varying systems and the feedback strategy
is simplified.
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Izl Euclidean norm
K| = SUP|| 2|0 “ﬁ(xﬁ“ , KeR™*P
o(A) the spectrum of the matrix A € C™*"
B.(Ky) ={KeR"P||K-Ko|<e} fore>0
L,(I) the vector space of measurable functions f : I — IR",I C Ran

interval, n being defined by the context, such that || f ()|, 1) <
oo, where

1/p

s)||Pds fi 00
1Oy = /"f< g or pello)

esssup || f(s)|! for p=o0
sel

1. Introduction

Since more than a decade, questions relating to minimal a priori information for adaptive
stabilization and existence of universal controllers for various classes of (uncertain) dy-
namical systems are studied. In 1985, Martensson [6] published his famous result “The
order of any stabilizing regulator is sufficient a priori information for adaptive stabilization”
and in 1993, Martensson and Polderman [7] published a “correction and simplification” of
Mirtensson’s [6] proof.
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In the present note, it is proved that Martensson’s result is also valid for a class of nonlinear,
time—varying systems and, in addition the adaptation law k(t) = ||y(¢)||2 + ||u(t)||? is
simplified and generalized to k(t) = [y(t)||%, for arbitrary ¢ > 1.

An anonymous referee brought to my attention that the paper by Pomet [9] is closely
related to the present one. Pomet considers full state feedback and similar conditions on
the right hand side of the given unknown system.

Our result is as follows. Consider the class of nonlinear systems

e(t) = ft,z(t) + g(t, 2(t)) u(t) }
y(t) = h(t,z(t)),

M

where
f i [0,00) x R — R"
g : [0,00) x R® — R™™
h : [0,00) x R®" — R?

are assumed to be Carathéodory functions,i.e. & : RxIR? — IR is called a Carathéodory
function, if «(-,z) : t— «a(t,z) is measurable on R foreach z € RY, a(t,) : z+—
a(t,z) is continuous on R? forall ¢ € IR, and for each compact set S C IR x R? there
exists an integrable function mg(t) such that ||a(t, z)|| < mg(t) forall (¢,z) € S.
Roughly speaking, systems of the form (1) are supposed to satisfy that the input u(-) enters
linearly, the actuator function g(-,-) is globally bounded, the sensor function h(t,z) is
uniformly linearly bounded in = and, most importantly, there exists a time-invariant, linear
output feedback u(t) = Ky y(t) such that the system is globally uniformly exponentially
stable. Note that all of these assumptions are only structural, no bounds need to be known.
To be more precise, the following conditions are assumed.

Class of systems:

e there exist some g, h > 0 such that

A

lg(t, 2|l

< g forall (t,z) €[0,00) x R” @
[h(t, )| < hlz] forall (¢,z) € [0,00) x R™,
e thereexistsa Ky € R™*P such that
n(t) = fo(t,n(t)),
(3)

folt,n(t)) = f(&,n(t) + g(t,n(t)) Ko h(t,n(t))
possesses a continuously differentiable Lyapunov-function
Vi [0,00) x R" — [0,00)

with constants «;, a2, as,a4 >0, p > 1 suchthat, forall ¢t >0 andall z € R",

arfzl]” < V(t,z) < oozl (4)
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] o .

ET Vt,z)+ < 5 Vit,x), jo(t,:c)> < —asl|z||P (5)
2 vt < ade? 6
P , T < a4liT . (6)

By Lyapunov’s direct method, see e.g. [10], p. 173, (4) and (5) ensure that (3) is globally
uniformly exponentially stable, i.e. for some (unknown) Af, A > 0 the solutions of
(3) satisfy

In(t)l < Mem 2=t ln(to)||  forall ¢ >to, to > 0,

n (N
and for all n(ty) € R™.

Conversely, if (7) issatisfied, || 2 fo(t,z)]| is globally uniformly bounded, and f;(-,0) =
0, then by the Inverse Lyapunov theory, see e.g. [10], p. 244, (4)+6) hold true.
For the class of systems (1)+6) we present a universal adaptive stabilizer of the form

u(t) = (Kopok)(t)y(t)

8
ly(2)]]9 L k(0) = ko 20, g>1. ®)

Poall
—~

o 3
=

(8) is universal in the sense: Whenever the single controller (8) is applied to any system
(1) which satisfies (2)+(6), then the closed—loop nonlinear system

#(t) = f(t,z(t) +g(t,2(t)) (Ko Bok)(t)h(t,z(t) , z(0) = Io}

)
At z(E)]| » K(0) = ko

.
—

o~
~—

possesses the properties:

¢ finite escape time does not occur,

e all states are bounded,

e k(t) converges to a finite value as ¢t — oo,

o lim; .o () = 0 and z(-) € L;(0,00) forall i € [g,00].

Note that (8) is of striking simplicity. The crucial part plays the time—varying feedback
matrix (K o 3o k) (t), where

K(-) : (0,00) = R™*P isadense curve in R™*?

and
B() :+ [ko,00) = (0,00),  k + log'(k+2)
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Figure 1.

is strictly, but extremely slowly, increasing. [ depends on ¢ and needs to be positive and
smaller than [1 + 3¢/2]"!, see Example 2.7.

The intuition behind the control strategy (8) is as follows: Rewrite the first equation in
(9) as

p(t) = f(t,z(t)) + g(t, z(t)) Ko h(t, x(t))

(10)
+9(t, (1)) [(K 0 B o k) (t) — Kol h(t, (1))

Then global uniform exponential stability of 7(t) = fo(t,n(t)) together with a pertur-
bation result yields exponential decay of the solution of (10) on intervals over which the
perturbation in (10) satisfies

lg(t, z(1)) [(K 0 Bo k) (t) — Ko h(t,z()] < § (K 0 Bok) () = Kol b |=(b)]

IA

IN

e ghllz(0)]

for £ > 0 sufficiently small.
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As long as the solution component z(t) of (9) resp. (10) (for sake of simplicity, we do
not bother about finite escape time) does not tend to 0, the gain k(t) = ko + fOt ly(m)||4 dr
is increasing, therefore 3(k(t)) is increasing as well and density of K ((0,00)) in R™*P
ensures that (K o 8ok) (t) will come closeto Kp. Hence there exists an interval [t;, t%)
such that

(KofBok)(t) € Be(Ko)\B.j2(Ko) forall ¢ € [t),t)).

VRS

See Figure 1.

Now, by the perturbation result, z(t) is exponentially descreasing as long as t € [t;, ).
However, ftjo ly(T)||¢ dT 4 k(t;) may be too large so that (K oGok) (t) leaves B.(Ky)
for some ¢ > ¢;. Then the perturbation result is no longer valid and z(¢) goes unstable
again. But density of K(0,c0) ensures that the same procedure as described above occurs
again. (K ofBok)(t) willstay in B:(Ko)\ Bej2(Ko) for another interval [t;41,t}, ;).
This time, (K o 8o k)(t) stays within B.(Ko)\ B./2(Kp) for a longer period, since
B(k) has become slower. Finally, for some interval [t,,t;), B(k) is sufficiently slow so
that the system has enough time to settle down.

2. Universal adaptive stabilization

In the following theorem we present a universal adaptive stabilizer for the class of nonlinear,
time—varying systems which satisfy (2)(7). The same comment as in [6] is valid here: “The
regulator [. . .] is absolutely useless for every practical purpose, and its value is only on the
level of existence proofs, to show that the adaptive control with a certain amount of a priori
information is possible.”

If the class of systems to be stabilized is more restrictive, e.g. minimum phase, then the
search in the parameter space IR™*? can be chosen more efficiently. This is the topic of
a large field of research over the last decade, see e.g. the references in [4].

2.1. Theorem

Let ¢ > 1 and suppose



204 A. ILCHMANN
(A1) B() : [ko,00) — (0,00) is a differentiable, monotonically increasing and
unbounded function,
(A2) K():(0,00) = R™? isa Lebesque integrable matrix—valued function,
{K(8)[8 € (v,00)} isdensein R™ P forevery ~ >0,
and for every compact set * C IR *? there exists some § = 3(K) such that

IK(B1) = K(B2)|| < B |51~ Ba] forall fy, 5, € {8>0|K(B8) K},

(A3) limp_ k- SUPy>k ‘ﬁ /3(“)‘ " SUPje(o,k] (K o f) (’{)Hq = 0.

Then, the adaptive control strategy (8) applied to any system (1) satisfying (2)+6) yields
a closed—loop system (9) such that there exists a solution (z(-), k(-)) : [0,w) — R™*?
and every solution has on its maximal interval of existence [0,w) the properties:

(1) w = o0
(i) limy_ o k(t) = koo €IR;

(i) lm¢— z(¢) = 0, and x(-) € L;(0,00) forall i € [q, o).

2.2. Remark

The assumption on the system class that there exists an exponentially stabilizing, time—
invariant, linear output feedback u(t) = Kjy(t) can be weakened to the existence of a
dynamic, exponentially stabilizing compensator of the form

2(t) Fz(t) + Gylt)
u(t) = Hz(t) + Jy(t)

I

forsome (F,G, H,J) € R x R*P x R™F x RP*P where ¢ must be knowr. See[7]
where is it shown how to rearrange the system equations so that Theorem 2.1 can be applied.



UNIVERSAL ADAPTIVE STABILIZATION OF NONLINEAR SYSTEMS 205

2.3. Remark

(i) The growth conditionon K(-) stated in (A2)is exactly what Polderman and Martensson
meant in their definition (), see [7] p. 466. (Private communication with Jan Willem
Polderman.)

(ii) The growth condition in (A3) on (k) related to (K o Sok) and k is similar to
(IV) on p. 466 in [7]. In case of ¢ = 2, the additional term .
suP,efo.xy 1K ©B(k)||* is due to the simplification of k = [y||2+||u|? to k = |jy||*.

(iii) That the adaptation law & = |y + |[ul|> can be simplified to £ = [y|| is a
consequence of a general result stated by Morse [8] (the text below Ex.3). However it
1s not said how to do this and how the feedback law, here the assumption on the growth
of 3(-), has to be modified.

For the proof of Theorem 2.1 a perturbation result on global uniform exponential stable
stystems is needed and proved in the following lemma. It can be viewed as a substitute of
the Variation-of-Constants formula for linear systems and may be of independent interest.

2.4. Lemma

Suppose (3)+6) are satisfied. Then every solution of the perturbed system

2(t) = folt,=(1)) +¥(t), z(to) = 20, (11)

where () : [0,00) — IR™ denotes some locally integrable function, satisfies for some
Af,)\ >0 andall ¢ > to, tg > 0,

i

Izl < M e iz + M / e M7 [l (s)ll ds - (12)

to

Proof: Without loss of generality one might assume that p in (4){6) equals 1: Set
W(t,x) := V(t,2)}/P and (4)~«6) hold true for W (¢, z), some al,...,af >0 and
p=1

The derivative of V (¢, z(t)) along the solution of (11) satisfies

d d 7] .
pr Vit 2(t)) = Y V(t, z(t)) + <% V(t, z(t)), z(t)>

—ag|lz(D)] + asllP @)

IA

IN

_Z_z V(t,z(t) + aslfp(®)]]
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and hence, by using a result on differential inequalities, see e.g. [2], p. 31,
t
V(t,2(1)) < ez T V(tg 2(ty)) + / e” a2 ) ayffap(s)]| ds .
to

Applying (4) once more yields (12) for

(83 [87
M= 22422 ad )= ag/as .
(03] (23]

Proof of Theorem 2.1: We proceed in several steps. (a) is a general result on the existence
of a solution. In (b), we derive three upper bounds on the state z(-) by using only the
bounds (2) on g(t, z) and h(t,z), and the existence of an exponentially stabilizing feedback
u(t) = Ko y(t). In (c), we show that the inequalities in (b) already yield (i)iii) if k(-)
is bounded. The difficult part of the proof is to show that unboundedness of k(-) yields a
contradiction to the growth condition (A3). To this end, in (d) we derive an upper bound
on [|y(:)llz,(t0,¢) in case that the search of (K o 5o k)(7) is in a neighbourhood of the
stabilizing matrix Kg. This is a disturbance result, not based on (A1)+(A3). Only in the
final step (e) we use the growth assumption (A1}(A3) on K(-) and S(-).

(a): Since the right hand side of (9) is a Carathéodory function, there exists a solution

(z(-),k(:)) : [0,w) — R™' for some maximal w € (0, 0] .

This is a consequence of the classical theory of ordinary differential equations, see e.g. [1].
(b): Applying Lemma 2.4 to (10) yields, for some M, A > 0 and arbitrary 0 < t3 <
t<w,

[zl < M e =) iz (ty)

¢ (13)
+g (Ko Bok) () = Koll,_ (1, /M e X[y (s)|ds.
to

An application of Holder’s inequality, for % + % =1 and ¢ > 1, to(13) yields
le@®)l < Me ) ||z (to) |

+MG|[(K 0 Bok) ()= Koll,_ 0y OV lyOlligon — (14)

and hence, by using the second equation in (8) and the fact that for positive constants A, B
we have (A4 B)? < 29(A7 + BY), see (5], p. 311,

lz(D)]7 < 29 M0 g (2) |4

+29 M9 [(K 0 Bok) (1) = Koll} 1y (PN k(1) (15)



UNIVERSAL ADAPTIVE STABILIZATION OF NONLINEAR SYSTEMS 207

If ¢ =1, replace (rA\)™Y/" in(14)by 1.

(©): We shall show that k{-) € L(0,w) implies (i)—(iii).
Suppose k(+) € Loo(0,w). If w < oo, then z(-) € Loo(0,w) by (14) and (8). However,
k() € Loo(0,w) and z(-) € Loo(0,w) contradicts maximality of w. Therefore, w = oo.
This proves (i), and (ii) follows since k(t) is monotonically increasing and bounded.
It remains to prove (iii). The left hand term in the sum of (14) tends, for arbitrary #g, to
0 as t goesto oo; since k(-) € Loo(0,00) is equivalent to y(-) € Lqg(0,00), the right
hand term can be made arbitrarily small as to — co. Therefore, lim¢ .o z(t) = 0. This
proves the first statement in (iii). Since y(-) € Ly(0,00), we know that the convolution
t— f(: e~ Mt=3) ||y (s)|| ds belongs to Lg(0,00), as well, see e.g. [5], p. 374. Hence,
by (13), z(-) € Ly(0,00). Now the second statement is a trivial consequence of z(-) €
L,(0,00) N Ly (0, 00).

(d): In order to prove boundedness of k(-) on [0,w), it will be proved that the

inequality
IO, gy < B9 MO s o) (16)
YIlLa(to) = 2q— D 0

holds true if

A
(KoBok)(r)€ Be(Ko) forall 7 € [to,t) and ¢ := ~. (17)
2 M h

To prove this, note that (2) and (17) applied to (13) gives, for all T € [to, 1),

T

lz(r)| < M e |lz(to)]l + geMh / e M a(s)|| ds

to

or, equivalently,
AT At A As
e} a(r)|| < Mlle™™ a(to)ll + % lle** z(s)li ds,
to

and hence, by the Bellman—Gronwall-Inequality,

—2g+1

lz()l| < MelPHENT=) (o) = M7z 2T |la(to)]

whence
t

/ ly(f¢dr < bt M* / e T AT g (t) |2 dr

to

and (16) follows.
(e): Seeking a contradiction, suppose now k(-) & Loo(0,w). Let € be defined
as in (17). Then, by assumption (Al) and (A2), (Ko fo k) (t) will travel through
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B:(Ko)\ B:/2(Ky) again and again as ¢ — w. More precisely, there exists a sequence
of intervals
(tj,t;) with 0 < ¢; < th < tjp < thirts JEN
with lim;_ ¢; =w and
(KofBok)(r) € B:(Ko)\ B:/2(Ky) forall ¢ (tJ,t]) (18)

See Figure 1. Therefore, by (A2), there exists some 5 = 3(B:(Ky)) > 0, such that

€

2

IN

(K oBok)(t)) — (KoBok)(t)|

IA

Bl(Bok) (t)) = (Bok) ()]

d
- (Bok) () dr

} /k (19)

I = (k(t;),k(t),  jeN.
Since (17) is satisfied by (18), applying (16) to (19) yields

I
@l
6 \
|

IA

G sup
kel

where

287 M7

21 [l (t)] (20)

whence, by (153),

3289 Mo
2 T (2¢-1)A k

d
— 9 A4
e d(k)j 29M

[nx< WO+ F (K 0 B0 k) () = Kol g, k(1)] - @D)

Since k(-) € Loo(0,w), by assumption (A3) the right hand side of (2D tends to 0 as
J — oo, which contradicts that it is greater or equal than 5. Therefore, k(-) € Lo (0,w)
is proved and the proof of the theorem is complete. |
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2.5. Example (SISO)

If m =p =1, ie. in case of single-input single—output systems, functions K(-) and
B(-) which satisfy the assumptions (A1)—~(A3) in Theorem 2.1 are given by

B(k) = /log(k+2) and K(B) := 3% sin .

In order to present an example for the multivariable case, the following technical lemma
is needed.

2.6. Lemma

Set
N
p(B) = Y sin®(rpi B),
i=1
where p; = 1, and ps,...,pn denote the i—th prime, resp. Then, for any a > 2, we
have

lim ¢(8) % = oo.

B—o0

Proof: It suffices to prove the claim for V = 2, however this does not simplify the proof.
Suppose the contrary of the statement, i.e. the existence of some ¢ > 0 and a sequence

{Bn}nemw With Bn < Bny1, limy oo Bn = 0o such that
e(Bn) By < ¢ forall ne€N. (22)
Choose a decomposition

Bn = gnten for go €N, e,€[—3

11
2 k)
VPN Gn = Yo+ 6 for 4, €N, 5116(_%;%

).

From the proof of Liouville’s Theorem as given in Hardy and Wright [3], p. 161, we
conclude that there exists a constant A, depending on ,/py, such that

A

1)
On > =
9n 95

~
= ‘\/p___“
gn

and hence

— < |baf. (23)
gn
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Since, by assumption (22),

sin(wen) = sin® (11 Ba) < (Ba) < B%’

it follows that lim,, .o £, = 0. Hence, the inequality
. . c
sin? (m /PN B) = sin® (mé0 + 7 /Drnen) < oy

K

yields as well lim,_, ., &, = 0. This gives, for some ng € IN sufficiently large,

i ) ¢
B len] < sin(rle,]) < \:/_2 forall n>ng (24)
and
i ) Nz
5 60 + VPN en] < sin ([Téy + 7PN en|) < ﬂa/z forall n>ng.
Therefore,
2
Bi/? 60 + /PN B3P en| < 2V forall n>ng. (25)
0

However, consider the sum in (25): The right term is, by (24), bounded. An application of
(23) yields
geltis > ot A o gLt e
gn gn
Since limy, .o gn = 0o and a > 2, the left term is unbounded, which contradicts (25).
Hence the proof is complete. O

In the following example, it is shown that for multi-input, multi-output systems (1) be-
longing to the class (2)6) there actually exists a feedback satisfying (A1}«A3), and hence
the statement of Theorem 2.1 is non-vacuous.

2.7. Example (MIMO)

To present an example of functions K'(-) and 3(-) which satisfy (A1)~(A3) in case of
mp > 1, identify R™*? with RY, N := mp, and set
Blk) = log’(k+2),  where fc (o, %5) ,

and

K(B) == (xofou)(B) = | +—— 1| (sina1 8,...,sin ay 8)T
Zsinzaiﬂ

i=1
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and
u(-):  (0,00) — T :=RY/2rZ
3 — (a18mod2r,...,axy8mod2m)T,
§(-): T - [‘LHN
(/‘Lh'-'ﬂ:uN) = (Sin:u’h'“vSin/J’N)Tv
X() =LV AV{0} — RY
1 £
¢ = (i — Nl 77
and a; = m/p; for i =1,..., N arechosen as in Lemma 2.6. Then a;,...,ay are

linearly independent over Q.

The function K(-) has been introduced by [7] and proved to satisfy the density condition
(A2) as follows: By Kronecker’s theorem (see e.g. Theorem 444 in [3]) w©((0,00)) is
dense in RY. |(€op)(B)|| # 0 since aj,...,an are linearly independent. x(-) is

surjective since (IIE_II - ||§1|> takes all values in IR as ||€]| € [-1,1]\ {0}. Since &()
resp. x(-) is surjective, it easily follows that density of 1((0,00)) implies density of
o p((0,00)) resp. x o0& o u((0,00)).

We shall show that the remaining condition in (A2) is satisfied as well:

Using the notation of Lemma 2.6, for every compact set X C RY  there exists some
L1 = L1(K) > 0 such that

1 —
©(8)

w(B)] < Ly forall 3> 0 suchthat K(3)C K.

K@) = }

Therefore, there exists some Lo > 0 such that
Ly < @(3) forall B8 >0 with K(8)eK.
Now the inequality in (A2) is satisfied since

N
2V N Z a;
@(B3)?

|50 <

N
2\/N Z a;
< i=1
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It remains to prove (A3). By Lemma 2.6, we have, for £ = (€opuo ) (k) and k > 0
sufficiently large,

o ®I = (g - ven) iyl < i + el < ot + VF
< Bk)*? + VN
forall k > k.

Therefore, for k > k,

sup [(K o) (m)|7 < @87 + ¢*N¥
K€E[0,k]

and since
d

dk
and /—1+ % g¢ < 0, we may conclude that

1, 1
< — - 2

lim k-sup ||-L B(k)||- sup [|(K oB)(x)|¢
k—oc K>k K€[0,k]

< lim klog"™ (k+2) 145 ¢? [ﬂ(k)%q + N%] ~0.

This proves (A3) and hence 3(k) and K (8) as defined above satisfy (A1)-(A3).
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