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Abstract. Märtensson's result "The order ofa stabilizing regulator is sufficient a priori information for adaptive

stabilization" is proved to be valid also fora class ofnonlinear, time-varying systems and the feedback strategy

is simplified.
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Nomenclature

C - open left-half comPlex Plane

ll"l l  Euclidean norm

l l 1 { l l  : sup1; ,117s  f f i# ,  K€IR- 'P

o(A) the spectrum of the matrix A € C"^"

ß , ( K o )  : { K € R . ' . ' p l l l f  - K 1 1 l l  < e }  f o r  e  > 0

Lr(I) the vector space of measurable functions / : 1 - IR', 1 C IR an

interval, n being defined by the context, such that l l /( ') l lr"trl <

oo, where

r /p

l l / ( ' ) l l r , i r r  :
f o r  p € [ 1 , o o )

for  p:  x ;

/(,)ll'o,lil

l. Introduction

Since more than a decade, questions relating to minimal a priori information for adaptive

stabilization and existence of universal controllers for various classes of (uncenain) dy-

namical systems are studied. In 1985, Märtensson [6] published his famous result "The

order of any stabilizing regulator is sufficient a priori information for adaptive stabilization"

and in 1993, Märtensson and Polderman [7] published a "correction and simplification" of

Märtensson's [6] proof.
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In the present note, it is proved that Märtensson's result is also valid for a class of nonlinear,
time-varying systems and, in addition the adaptation taw i(r) : l l9(r)l l , + l lz(t)l l2 is
simplif iedandgeneralizedto k(f) : l lg(r)l lq, forarbitrary q ) 1.

An anonymous referee brought to my attention that the paper by Pomet [9] is closely
related to the present one. Pomet considers full state feedback and similar conditions on
the right hand side of the given unknown system.

Our result is as follows. Consider the class of nonlinear systems

i ( t )  :  f ( t , r ( t ) )  +  s( t , r ( r ) )u( r )  \
a ( t )  :  h ( t , r ( t ) ) ,  I

( l )

where
,f , [0, oo) x IR" - IR'

9 : 10, oo) x lR' =- IR"-
h : 10, oo) x IR' - IRP

are assumed tobe Carathöodoryfunctions, i.e. a : IR x IRq * IR is called a Carathdodory
function,if a(., r) ; tr--+ a(t,r) ismeasurableon IR for each n € IRq, o(t,.) : r '-
a(t,r) iscontinuouson IRq forall f € IR, andforeachcompactset S C IRx lRq there
existsanintegrabletunct ion ms( l )  suchthat  l la( t , r ) l l  !  ms( t )  fora l l  ( t , r )  e  S.

Roughly speaking, systems of the form ( I ) are supposed to satisfy that the input u ( . ) enters
linearly, the actuator function g(., .) is globally bounded, the sensor function h(t, r) is
uniformly linearly bounded in z and, most importantly, there exists a time-invariant, linear
output feedback u(t) : KoA(t) such that the system is globally uniformly exponentially
stable. Note that all of these assumptions are only structural, no bounds need to be known.

To be more precise, the following conditions are assumed.

Class of systems:

o there exist some g,i, > O such that

l l s ( t , r ) l l  <  O
l lh.(r , r ) l l  < Äl l ' l l

o there exists a Ko € [lmxp such that

i(t)

fo( t ,n( t ) )

for all (t, r) e [0, oo) x IR"
for all (t, z) e 10, oo) x lR' ,

fo(t,  rt(t)),

f  ( t ,n( t ) )  +  s( t ,n( t ) )  K0h( t ,q( t ) )

(2)

(3)

possesses a continuously differentiable Lyapunov-function

V : 10, oo) x IR' --+ [0, oo)

with constants ct1, d2, e3, d4 ) 0, p ) 1 such that, for all f > 0

atll"ll ' < V(t,r) 3 a2llrlle

and all r € IR",

(4)
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(5 )

(6)

* ' u ,ü  *  ( * V(t , r ) ,  f r | ,ü)  < -or l l " l lo

t a  l l

l l *  
u , t  , , i l  .  aa l r r l l r - t

By Lyapunov's direct method, see e.g. [10], p. 173, (4) and (5) ensure thar (3) is globally
uniformly exponentially stable, i.e. for some (unknown) M, ^ > 0 the solutions of
(3) satisfy

l i l ( r ) l l  <  11" - \ ( t - to ) l lq ( r . ) l l  fo ra i l  t )  t t ) ,  t0

and for all \(to) €

) 0 ,
(7)

IR" ,

Conversely, i f (7) issat isf i .d,  l l# /o(t ,") l l  isglobal lyuniformlybounded,and /rr( . ,0) =
0, then by the Inverse Lyapunov theory, see e.g. !01, p. 244, (4H6) hold true.

For the class of systems ( I f{6) we present a universal adaptive stabilizer of the form

u ( t ) :  ( K " / o k ) ( t ) y ( t )

k ( t ) :  l l y ( t ) i l n  ,  k ( 0 )  : k o > 0 , q ) 1 .

(8) is universal in the sense: Whenever the single controller (8) is applied to any system
(1) which satisfies (2H6), then the closed-loop nonlinear system

, ( t )  - -  / ( r , r ( t ) )  +s ( t , r ( t ) ) (K "A  ok ) ( r )h ( t , r ( t ) )  ,  r (0 )  :  r n  I
) (e)

i ' ( t )  :  l l h ( r , r ( t ) ) l l q  ,  k (0 )  :  ku  )

possesses the properties:

o finite escape time does not occur,

o all states are bounded,

o k(t) converges to a finite value as , + oo,

r  l iml- -  r ( t )  :  0  and r ( . )  e  L i (Q,oo)  for  a l l  i  €  lq ,  -1.

Note that (8) is of striking simplicity. The crucial part plays the timrvarying feedback
matrix (K o B o k) (l), where

K (') , (0. m) - lR-'p is a dense curve in lRrnxp

(8)

and

k  -  t o g t ( k + 2 )
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o i / o A ) ( 1 , 1 1 )

( / i

Figure l.

is strictly, but extremely slowly, increasing. I depends on q and needs to be positive and

smal ler  rhan l l  +  3ql2 l  r .  see Example 2.7.
The intuition behind the control strategy (8) is as follows: Rewrite the first equation in

(9) as

i ( . t ) :  f ( t , r ( t ) ) + e ( r , , 0 ( r ) )  K g h ( t , r ( t ) )  
' 0 )

+s ( t , r ( t ) )  l (K  .  0  o  k )  ( l )  -  KO l  h ( t ,  r ( t ) )  .

Then global uniform exponential stability of a(t) : fo(t,4(t)) together with a pertur-

bation result yields exponential decay ofthe solution of (10) on intervals over which the

perturbation in (10) satisfies

l l e ( t , r ( t ) )  l (K .0ok ) ( r )  -  Ko lh ( t , " ( t ) ) l l  <  s  l l (K  o f  o , k ) ( r )  - l ( 0 l l h  l l r ( t ) l l

5 e eÄ11r1r111

for E > 0 sufficientlysmall.
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As long as the solution component z(t) of (9) resp. (10) (for sake of simplicity, we do
not bother about finite escape time) does not tend to 0, the gain k(t) : fto * -6 lly(r)llq dr
is increasing, therefore B(k(t)) is increasing as well and density of K((0, oo)) in IR-xp
ensuresthat  (K oBok)  ( t )  wi l l  comecloseto K0.  Hencethereexistsaninterval  f t i , t /o)
such that

(K " 0 o ,k) ( t )  e ß,(K1)\ß,p(Ko) for al l  I  e l t i , t ' i )  .

See Figure l.

Now, by the perturbation result, r(t) is exponentially descreasing as long as t e lt,t'r).
However, I i Wfdllt dr +k(t1) maybetoo large sothat (K o pok) (f) leaves B,(Ko)
for some t > ti. Then the perturbation result is no longer valid and r(t) goes unstable
again. But density of K(0, oo) ensures that the same procedure as described above occurs
again. (K o B o k) (t) wil l stay in B,(Ko)\ß,p(Ko) for another interval lt j*r,t ' j*r).
This time, (K " 0 o k) (t) stays within B,(Ko)\ß,n(Ko) for a longer period, since
p(k) has become slower. Finally, for some interval ltt,ti), p(fr) is sufficiently slow so
that the system has enough time to settle down.

2. Universaladaptivestabil ization

In the following theorem we present a universal adaptive stabilizer for the class of nonlinear,
time*varying systems which satisfy (2f{7). The same comment as in [6] is valid here: "The

regulator [. . .] is absolutely useless for every practical purpose, and its value is only on the
level of existence proofs, to show that the adaptive control with a certain amount of a priori
information is possible."

If the class of systems to be stabilized is more restrictive, e.g. minimum phase, then the
search in the parameter space lR-'p can be chosen more efficiently. This is the topic of
a large field ofresearch over the last decade, see e.g. the references in [4].

2.1. Theorem

Let q > 1 andsuppose
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(Al) d(') , lko,oo) - (0,oo) is a differentiable, monoronically increasins and
unbounded function,

(A2) K(') : (0, oo) + lpmxr is a Lebesque integrable matrix-valued function,

{K (P) Ld e (f , -)} is dense in IR- rp for every ? ) 0 ,

and for every compact set K c lRm'xp there exists some p : Etrcl such that

l lK (P )  -  K (32 ) l l  <  J  l h  -  Jz l  f o ra l l  t 3 t , 0z  €  {d  >  0 lK (g  e  r c \ ,

(A3)  l imr. - -  k  .supo>6 
l *  pt" ; l  .sup6€10, f r1 l i ( r .  fJ)  ( " ) l l , '  :  0 .

Then, the adaptive control strategy (8) applied to any system (l) satisfying (2f{6) yietds
aclosed- loopsystem(9)suchthat thereexistsasolut ion ( r ( . ) ,k(  ) )  :  [0 , " , ; )  + IRn+1
and every solution has on its maximal interval of existence 10, r,;) the properties:

(i) r"' : co:

(i i) l iml-- k(t) : k- e IR;

( i i i )  l im l - -  x ( . t )  : 0 ,  and  r ( . )  e  t r ; (O ,oo )  f o ra l l  i  e  [ q , - ] .

2.2. Remark

The assumption on the system class that there exists an exponentially stabilizing, time-
invariant, linear output feedback u(t) : Koy(t) can be weakened to the existence of a
dynamic, exponentially stabilizing compensator of the form

2( t )  :  Fz( t )  +  Gaf t )

u(t) :  H z(t) + Jy(t)

f o r some  (F ,G ,H ,J )  €  R . l ' l xR l "px lR - ' px lRp 'p  whe re  I  mus tbeknown .  See [7 ]
where is it shown how to rearrange the system equations so that Theorem 2. I can be applied.
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2.3. Remark
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(i) The growth condition on 1((.) stated in (A2) is exactly what Polderman and Märrensson
meant in their definition (I), see l7l p. a66. (Private communication with Jan Willem
Polderman.)

(i i) The growth condition in tA3) on O1f; related to (K o p o k) and A is similar to
(IV) on p. 466 in [7]. In case of q : 2, the additional term
supne [0,k ]  l lK o p(n) l lz  is  due to the s impl i f icat ion of  k  :  a l l '  + l l " l l2  to  Ä :  119; ; r .

t i i i t  That  the adaptat ion law Ä :  l ly r l2  *  tu l l2  can be s impl i f ied ro i r  :  11y1;2 is  a
consequence of a general result stated by Morse [8] (the text below Ex.3). However it
is not said how to do this and how the feedback law, here the assumption on the growth
of /3(.), has to be modified.

For the proof of Theorem 2.1 a perturbation result on global uniform exponential stable
stystems is needed and proved in the following lemma. It can be viewed as a substitute of
the Variation-of-Constants formula for linear systems and may be of independent interest.

2.4. Lemma

Suppose (3H6) are satisfied. Then every solution of the perturbed system

2(. t )  :  Jo( t ,  z( r ) )  + qr( r ) ,  z( tn)  :  ,o , ( l  l )

where d.'(.) : [0, oo) - IR" denotes some locally integrable function, satisfies for some
M , x >  0  a n d a l l  t )  t s ,  t o  >  0 ,

I

l l " ( t ) l l  < M e-^Q-to) l l r r , l l+ t r  [  " -xr ' - " )  11411r;11ar.  02)
J
t6

Proof: Without loss of generality one might assume that p in (aH6) equals 1: Set
W(t , r )  : :  V( t , r ) I /o  unO (4H6) hold t rue for  W(t , r ) ,  some cr \ , . . . ,  a !  > 0 and

P :  L .
The derivative of V(f, z(t)) along the solution of (11) satisfies

*,  u, z(t))  :  * ,  u, z(t))  + (*,  u,,eD, z(ü>

S *c ie l l z ( r ) l l  +  aa l l r / ( t ) l l

<  -  o 3  
V  \ t .  z ( t ) )  T  o r  r l u ( t )  l l

A 2
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and hence, by using a result on differential inequalities, see e.g. [2], p. 3 l,
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v (t, z(t)) < "-# (t-to) v 1ts, z1t{)ss

Applying (4) once more yields (12) for

6 -  f ;  ' t - " 1  o a l l u ( s ) l l  d s .

M : o ' +
A I

A4
a n o  A  :  ^ 3 / a 2 .

A 1

ProofofTheorem2. l :  Weproceedinseverals teps.  (a) isageneral resul tontheexistence
of a solution. In (b), we derive three upper bounds on the state r(.) by using only the
bounds (2) on g(t, r) and h(t, r), and the existence ofan exponentially stabilizing feedback
u(t) : Ko a(t). In (c), we show that the inequalit ies in (b) already yield (if{ i i i) i f k(.)
is bounded. The difficult part of the proof is to show that unboundedness of k(.) yields a
contradiction to the growth condition (A3). To this end, in (d) we derive an upper bound
on lly(.)l lr"tro,r; in case that the search of (1{ o [) o k)(r) is in a neighbourhood of the
stabilizing matrix Ks. This is a disturbance result, not based on (A1f{A3). Only in the
final step (e) we use the growth assumption (A1HA3) on K(.) and p(.).
(a): Since the right hand side of(9) is a Carath6odory function, there exists a solution

("( ' ) 'k ( ' ) )  :  [0 , r , - , )  + Rn+'  forsomemaximal  o € (0,oo]  .

This is a consequence ofthe classical theory ofordinary differential equations, see e.g. [1].
(b) :  Apply ingLemma2.4to(10)y ie lds, forsome A, [ ,^> 0 andarbi t rary 0 < to <

t < a ,

l l r ( r ) l l  <  Me-^t t - to)  l l " ( tn) l l

+ i l l ( l (  o  pok ) ( . )  - l ( 0 l l r -  
a " r t l t r " - ) ( t - s ) l l s ( s ) l l ds .  

(13 )

Anapplication ofHölder's inequality, for ] + ] 
: t and q > 1, ro (13) yields

l l " ( t ) l l  <  Me-^ t t - t . )  11 r1 ts ) l l

+Msl l (K o B o k)  ( . )  -  1{0 l l r_1t" , r1  ( r ) ) -1 l ,  l la( . ) l l r "a , , , t ;  (14)

and hence, by using the second equation in (8) and the fact that for positive constants A, B
we have (A + A]r0 < 2q(As + B'1), see [5], p. 3l 1,

l l " ( r ) i ln  <  2s  Mq e-^q( t - to )  l l r ( ro ) l ln

+2s  Mq sn  i l6  o  p  o  k )  ( . )  -  1 {0 l l? ,_ t ,o , , r  ( r . \1 - f  6111.  (15)

+ l
.l
ts
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l f  q :1 ,  r ep lace  ( r \ ) - L / '  i n  (14 )  by  1 .
(c): We shall show that ,k(') e I-(0, uu) implies (iHii i) '

Suppose k( . )  e  I - (0,a. , ) .  I f  ( ,  < oo,  then r ( ' )  €  r - (0,cu)  by(1a)and(8) '  However,

k( . )  e  I_(0,cu)  andr( . )  e  I - (0, r , ' )  contradic tsmaximal i tyof  cu.  Therefore,o:x) .

This proves (i), and (ii) follows since k(i) is monotonically increasing and bounded'

It remains to prove (iii). The left hand term in the sum of (14) tends, for arbitrary t0, to

0 as t  goesto oo;  s ince /c( ' )  e  I - (0,oo)  isequivalent to g( ' )  e  Lq(o,oo) ,  ther ight

hand term can be made arbitrarily small as to * oo. Therefore, Iimt-- r(t) :0' This

proves the first statement in (iii). Since g(') e Lq(0,oo), we know that the convolution

t  -  I r l  "  ) ( t  s)  
l ly (s) l lds belongs to -Ln(0,  oo) ,  as wel l ,  see e.C.  [5] '  p .374'  Hence,

bV (l i i , r( ) e In(0, -;. No* the second statement is a trivial consequence of r( ') e

L , , ( 0 . o o )  r  I - ( 0 . o o ) .

i 'O l ,  I no rde r top roveboundednesso f  k ( . )  on  [ 0 , c , . , ) ,  i tw i l l bep roved tha t the

inequality

20'7

l lE( ') l l?."r," , ,r

holds true if

(K  o  0o  k ) ( r )  e  ß , (Ko)  fo ra l l  7  €  [ ig , t )  and €  =  - -+  - '  (17)
2 q Q M h

To prove this, note that (2) and (17) applied to (13) gives, for all r e [i6, t),

l l " ( ' ) l l  !  M  " - s ( ' - " )  l l " ( i o ) l l  +  geMh

or, equivalentlY,

" -Ä( r -s )  l l r (s ) l l  ds

l le )  
"  r ( r ) l l  5  nf  l leÄ 

t '  r ( to) l l l l e ^ ' r ( s ) l l a s ,

and hence, by the Bellman-Cronwalllnequality,

l l " ( " ) l l  <  x4 " l -x+f i1  { ' - to)  l l r ( to) l l  :  M e=# )  ( r - t6)  
11"( to) l l  ,

,n

l l y ( r ) r l n  d r  <  h q  A t q  |  , t  ^ ( r - l u r l l r ( f 0 ) l l q d r
.l
t r r

and (16) follows.
(e): Seeking a contradiction' suppose now 'k(') ( L*(O,a)' Let e be defined

as'in (17). Then, by assumption (Al) and (A2), (K " 0 o k)(t) wil l travel through

(  l 6 )

T

I
.t
ts

) r
+ ;  I

zt1 J
t 6

I
.l
t g
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B:!^a\.ß,tz(Ko) again and again as t + a. More precisely, there exisrs a sequence
of intervals

( 1 8 )

( l e )

( t i , t l )  w i t h  0 < t i l t j K t i , 1  . - t t i a 1 ,  J € N

with limr-- tj :, and

(K "  0  o  k )  ( r )  €  B , (K1) \B ,p(Ko)  fo r  a l l  r  e  ( t , , t , )  .

See Figure 1. Therefore, by (A2), there exists some D : E@,6ü) > 0, such thar
€  , ,
t  < l l (K "  0 "  k)  ( t ' j )  -  (K o 0.  n)  ( r i ) l l

< Bl@ o k) ( t ' , )  -  @ "k) (r ; ) l

l , ' ,  ,  i
= l l  0  |

: 0 t l  ,  ( 0 o k 1 1 r 1 d r l
l l  dr  

I
t"

l , l  I  fs  D; : l  
lnu ,n ,1  J  k t r ta ,

t i

where

I  j  : :  (k( t i ) ,  k( t  j ) )  ,  J  € I l \ , r  .

Since (17) is satisfied by (l S), applying (16) to (19) yields

F  -  |  ' l  |  , l l , t | t ( l

;  s  ; : up  l ;  J ( k ) l  # - ; *  l l r ( 1 , ) l t , i  e0 )z  k e t ,  ) d K  )  l z q  _  I ) ^

whence, by (l 5),

t  32.1 ' t  Mq |  ( l  I
2  

-  ( 2 q  -  l 1 ) ,  p a j ,  t d k  
I

I.  
l l t " lo l l ln + sn (r) ,s-*  l l@ " g.  ,k)  (  )  -  1{nl l?,_ru. , ,  )  k(r j  ) ]  e l l

Since A(') e L-(O,r), by assumption (A3) the right hand side of (21) tends to 0 as
.i - x:, which contradicts that it is greater or equal than ! . Therefore, k(.) e r- (0, c,,)
is proved and the proof of the theorem is complete. n
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2.5. Example (SISO)

If m: p:1., i.e. in case of single--input single-output systems, functions K(.) and
p(.) which satisfy the assumptions (AlHA3) in Theorem 2.1 are given by

t | (k)  ' :  \ / t "s(k + r )  and K(ü , :  /J*  s in I i .

In order to present an example for the multivariable case, the following technical lemma
is needed.

2.6. Lemma

Set
N

? ( J )  , :  I  s i n 2 1 n  u E  J l  .
?::  I

where p1 : 1, and p2, . . . ,pN denote the i-th prime, resp. Then, for any a ) 2, we
have

}YY v@) 0" - o" '

Proof: It suffices to prove the claim for -l/ : 2, however this does not simplify the proof.
Suppose the contrary of the statement, i.e. the existence of some c > 0 and a sequence

{0'},ew with p' I 1n+t, I im'-* l |n: x such that

,p(13.) {Jft

Choose a decomposition

gn : 9nl €n for 9, € N , en € l-+,+) ,

t / w g . : 1 n l 6 n  f o r  1 n € N ,  6 n €  ( - + , + )

From the proof of Liouville's Theorem as given in Hardy and Wright [3], p. 161, we
conclude that there exists a constant A, depending on JN, such that

l Ä  |  |  .  I  a

l : l  l l w  -  : l
l 9 n l  |  9 , 1  9 ;

and hence

It

9n

209
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Since, by assumption (22),

.  , ,  )  C
s ln - (716n  )  :  s l n -  l t  t /P r  l J , )  S  P ( . J , \

it follows that lim,-- €n : 0. Hence, the inequality

. ,  t  C
sln-  {7r  t /pN A" )  :  s tn-  (7r  Ö, ,  + r  r /px e r )

yields as well lim,-- 6, : 0. This gives, for some n0 € IN sufficiently large,

n . [ i

, l e  
, l  <  s i n ( r ' l e " l )  <  : ;  f o r a l l  n  )  n o  Q 4 l

P N

and

7r - , i r

, l b , + t / p v t , , l  
<  s i n  ( \ n 6 , + n r / p 1 y e  , l \  <  

f r  
f o r a l l  n  ) n r t .

yn

Therefore,

l ^ , "  -  p r 2 _ l  , 2 / V
I '17, ' '  0 ,  +  \ /p i  J i ' -  € ,1 a ;  for  a l l  n  )  no .  Q5)

However, consider the sum in (25): The right term is, by Q\, bounded. An application of
(23) yields

0 . / 2 l ö , 1  >  B l z  
e  

O ( 9 ' * t ' ' 1 " / 2
9n 9,,

Since lim,- q gn : oo and a > 2, the left term is unbounded, which contradicts (25).
Hence the proof is complete. [l

In the following example, it is shown that for multi-input, multi-output systems (l) be-
longing to the class (2H6) there actually exists a feedback sarisfying (A I HA3), and hence
the statement ofTheorem 2.1 is non-vacuous.

2.7. Example (MIMO)

To present an example of functions K(.) and p(.) which satisfy (Al){A3) in case of
rrlp > I, identify IR-xp with RN, N i: rltp, and set

lJ(k)  : :  tost (k+2) ,  where Z e (0,  ; " )  ,

and

[ ]
K(P)  : :  (xo€o t ) (P)  :  l . - - - - t -  -  r l  1 rn  a r0 , . . . , s in  o , .7B) "

|  !  s i n ,  a r d  I
L ; : r  J
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and

2tl

H

t l l ') (o' *)
p

€ (  ) ,  T

1 t r , . . . , l t l )

r ( . )  ,  [ - 1 , 1 ] ' \  { 0 }

(

T : :  RN /2 t rZ

(a1p mod2r,.  .  .  ,aw 0 mod2n)T ,

[ - 1 , 1 ] t

( s i n  t r r 1 , . . . , s i n  L ; N ) T ,

RN

(* - lr€r) ffi,

and  a i  :  n  Jp t  f o r  i  :  1 , . . . ,  N  a re  chosen  as  i n  Lemma 2 .6 .  Then  a r , . . . , aN  a te
linearly independent over Q.

The function K(') has been introduced by [7] and proved to satisfy the density condition
(A2) as follows: By Iftonecker's theorem (see e.g. Theorem 444 in [3]) lr((0, oo)) is
dense in  IRN.  l l ( € .p )  U3 ) l l *  0  s i nce  a7 , . . . , oN  a re l i nea r l y i ndependen t .  X ( ' )  i s

. / | \
su r j ec t i ve  s i nce  (ü  -  l l € l l , )  t akes  a l l  va lues  i n  IR  as  l l { r  €  l - 1 .11 \  {0 }  S ince  € ( ' t

resp. X(.) is surjective, it easily follows that density of p((0, m)) implies density of

€  o  p  ( ( 0 , o o ) )  r e s p .  X o {  o p ( ( 0 , * ) ) .

We shall show that the remaining condition in (A2) is satisfied as well:
Using the notation of Lemma 2.6, for every compact set K C IR'u there exists some
L r : L I ( K )  > 0  s u c h t h a t

I r .-l
l lK (B) l l  l - - t  

-  t / v@) l  <  L1  fo ra l l  p>0 suchtha t  K( {J )cK.
l t / P t a t  I

Therefore, there exists some .L2 > 0 such that

L 2 < p @ )  f o r a l l  B > 0  w i t h  K ( P ) e K .

Now the inequality in (A2) is satisfied since

N
.l .,rnr f- - .

/ ' t  \
; - l  I  t  I

3 _ _ _ #  + [ ,  + 1 1
L ^  \ b  /

\-/
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It remains to prove (A3). By Lemma 2.6,we have, for 4 : ({ o po A) (k) and fu > 0
sufficiently large,

| ( K " o ( k ) i l  : l l ( * - i l 4 i l )  f f i l l  = * + i l € i l  s

< B@)t/' + \/ry

F o r a l l  k > f r .
Therefore, for k>8,

.  / *

212

and since

sup l l ( l ( .0)  ( " ) l ln  < s2 0+ + q2 l , t4
rc€  [0 ,4 ]

fiorrt
and !. - I + | Ol ( 0, we may conclude that

l im Ä.sup l l  *  pAl l l  sup l l (n  o p)  ( r ; ) l lq
k - x

S ̂ l IX k tog(- r1r -+zr  #q,  for r#  +ru l l  :  o .

This proves (A3) and hence B(k) and 1{(p) as defined above satisfy (AtHA3).
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