
 

 

On the relationship between biotic and abiotic habitat diversity and 

genetic diversity of Ranunculus acris L. (Ranunculaceae), Plantago 

lanceolata L. (Plantaginaceae), and Anthoxanthum odoratum L. (Poaceae) 

within and between grassland sites 
 
 
 
 
 

Dissertation 

 

 

zur Erlangung des akademischen Grades  

doctor rerum naturalium  

(Dr. rer. nat.) 

 

 

vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät 

der Friedrich-Schiller- Universität Jena 

 

 

 

 

von 

Nidal Odat 

Geboren am 18. Januar 1974 in Hatem, Jordanien 
 
 
 
 
 
 

Jena, 2004 
 
 



 

 II 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gutachter: 
 
1.:  ------------------------------------------------------------------------------ 

2.:  ------------------------------------------------------------------------------ 

3:  ------------------------------------------------------------------------------- 

Tag der Doktorprüfung:  ---------------------------------------------------- 

Tag der öffentlichen Verteidigung:  --------------------------------------- 



 
 

TABLE OF CONTENTS 
 

 
CHAPTER ONE   General introduction               1 
 

Objectives and structure of thesis           11 
 

CHAPTER TWO   The use of random amplified polymorphic DNA (RAPD) 
and amplified fragment length polymorphism (AFLP) DNA  
markers in studying genetic diversity          16 
  
Article one: Nidal Odat 

 
CHAPTER THREE Genetic diversity of Ranunculus acris L. (Ranunculaceae) 

populations in relation to species diversity  
and habitat type in grassland communities        35 

 
Article two: Nidal Odat, Gottfried Jetschke, Frank H. Hellwig 

 
CHAPTER FOUR  On the relationship between plant species diversity  

and genetic diversity of Plantago lanceolata (Plantaginaceae)  
within and between 15 grasslands sites         53 
 
Article three: Nidal Odat, Frank H. Hellwig, Markus Fischer; Gottfried Jetschke

  
 
CHAPTER FIVE   The effects of biotic and abiotic habitat heterogeneity  

on the genetic diversity of Plantago lanceolata L.  
and Anthoxanthum odoratum L. (Poaceae)        68 
 
Article four: Nidal Odat, Frank H. Hellwig, Ansgar Kahmen; Gottfried Jetschke 

 
CHAPTER SIX    General discussion                84 
 

Conclusions                  88 
 
Future investigations               88 

 
Summary                           93
  
 
Deutsche Zusammenfassung                     95
  
 
Acknowledgements                        97
                           
Curriculum vitae (Lebenslauf)                    98
  



CHAPTER ONE 
General Introduction 

 1 
 

 
CHAPTER ONE  

General Introduction 
 
Biodiversity  
 

"Biodiversity" can be defined as the variety of all forms of life, from genes to species, 

through to the broad scale of ecosystems (Gaston 1996). Biodiversity is typically studied at 

three levels - genetic diversity, species diversity and ecosystem diversity. Genetic diversity 

is the variety of genes within a species. Each species is made up of individuals that have 

their own particular genetic composition. This means a species may have different 

populations, each having different genetic compositions, in terms of both allele type and 

frequency. Species diversity is the number of different species (species richness) in a given 

community weighted by some measure of abundance such as number of individuals or 

biomass, e.g. species evenness, (Smith & Wilson 1997). Ecosystem diversity can be 

defined as the variety of communities of organisms in a given landscape, their interaction 

with each others and with their physical environment.  

 

In recent years ecology and population genetics have contributed greatly to the 

advances in biodiversity research. Ecology seeks to understand the patterns of variation in 

habitats and their importance in maintaining ecosystem functions and process, while 

population genetics especially seeks to understand the forces that generate genetic 

variation, particularly the intraspecific variation, which can be regarded as the ultimate 

source of species and ecosystem diversity.   

 

Biodiversity is researched for various reasons. It can be studied for its sake in order 

to better understand how different organisms live together and operate to perform certain 

functions. Importantly, biodiversity can be studied because of conservation reasons: by 

studying diversity at various levels (genes, species, and ecosystems), we can better 

understand which type of diversity level is likely to decline and could lead to extinction 

under particular conditions, thus we can know the best strategy to protect and save 

variability in ecosystems (Frankham 1995).  
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Levels of Biodiversity  
 

Although most studies on biodiversity have been mainly focused on species diversity in 

communities, particularly because it is easy to assess and measure, biodiversity is 

composed of three fundamental levels: genetic, species, and ecosystem. Although these 

three levels are fundamentally different and can be studied separately, they interact to 

regulate ecosystem functions and processes. 

 

Genetic Diversity 
 

Genetic diversity provides the basis for all other levels of biodiversity, mainly species and 

ecosystem diversity. Genetic diversity can be defined as the range of genes within a species 

and can be studied at the individual, population and species level. (e.g. Nei 1987; Lowe et 

al. 2004). Genetic diversity can be characterised by the set of possible alleles (different 

variants of the same gene) and their frequencies, by entire genes, or by even units larger 

than genes such as structures on chromosomes.  

 

Populations of all organisms in their habitat contain an abundant variation in 

morphology, physiology, and behaviour. Much of this abundant variation may be reflected 

in the genetic diversity of organism, which often interact with habitat variation and thus 

produces the phenotypic variation of organism (e.g. Lowe 2004).  

 

Genetic diversity is typically measured by estimating the allelic diversity which 

involves measuring the number of alleles per locus or the number of polymorphic loci (e.g. 

Nei 1987). Genetic diversity of a species, the clay of evolution, is constantly created by 

mutation and at the same time eroded by selection and genetic drift (e.g. Hedrick 2000).  

 

Genetic diversity of a species is often influenced by environmental variability and 

stress conditions (e.g. Mitton 1997; Nevo 2001). If the environment changes, different 

alleles will have an advantage at different times or places. In this situation genetic diversity 

remains high because many alleles are in the population at any given time. If the 

environment does not change, then the small number of genes that have an advantage in 

that unchanging environment spread at the cost of the others, causing a decrease in genetic 

diversity.  
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Genetic diversity of a species may also increase with the increase in diversity of species 

(e.g. Mitton 1997; chapter 4 of this thesis). How much it increases depends not only on the 

number of species, but perhaps also on how closely related the species are and also on the 

environmental conditions at sites. For example, species that are closely related to each 

other may have similar genetic structure and makeup and therefore do not contribute much 

additional genetic diversity. An increase in species diversity can also affect the genetic 

diversity, and can do so differently at different levels. If there are many species in a given 

community, the genetic diversity at that level might be larger than when there are fewer 

species. On the other hand, genetic diversity within a species can decrease with the 

increase in species diversity of communities. This can happen if higher species diversity 

results in more complete niche filling, and thus decreased genetic diversity in the local 

constituent populations. However, studies linking either species diversity or genetic 

diversity within a species to niche characteristics are scarce in the literature.  

 

Genetic diversity within and between local populations species may also be related 

to selection pressures imposed via variation in habitat characteristics. The majority of 

genetic markers used to investigate the influence of habitat variation to infer the role 

selection affecting genetic diversity of a species can be considered as selectively neutral 

(e.g. Nevo 2001). However, some supposedly neutral markers (e.g. allozyme, RAPD-PCR, 

AFLP) have been shown to have adaptive significance or be closely linked to genes under 

selection (Lowe 2004).  For example, adaptive characteristics have been demonstrated for 

the allozymes variation (e.g. Watt 1977; Koehn & Hilbish 1987). Additionally, 

comparisons of genetic variation derived from coding versus non-coding genomic regions 

of Crassostrea virginica (Karl & Avis 1992) and Passerella iliaca (Zink 1986; 1994) have 

revealed different levels of population genetics differentiation. Significant population 

heterogeneity in DNA markers was not reflected in allozyme variation, implying that 

markers located within the coding regions may not be subjected to selection (Lowe 2004). 

Moreover, interaction of marker loci with other regions of the genome that are subject to 

selection can also influence genetic diversity of neutral markers (Charlesworth et al. 1997).        

 
Furthermore, genetic diversity in plant species may be influenced by other 

processes which affect species’ population, such as size and historical events like habitat 

modification by agricultural practices (Gray 1996; Young et al. 1998). Random changes in 

genetic diversity within a species may be related to the population size: the smaller the 
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population size, the more likely chance events are to change allele frequency of 

populations (e.g. Lowe et al. 2004). This random change in genetic diversity in small 

populations is called genetic drift, and it is a result of random sampling of gametes (e.g. 

Nei 1987). At its most extreme case, genetic drift can lead to the extinction of alleles and 

the loss of genetic polymorphism such that a locus becomes fixed for a single allele (e.g. 

Hedrick 2000; Lowe et al. 2004). However, genetic drift is believed to be independent of 

natural selection and thought to be of less importance in large populations (e.g. Mitton 

1997).  The relationship between genetic diversity and population size has been studied in 

various organisms. For example, Nevo et al. (1984) found that in a sample of 717 species 

of plants and animals, genetic diversity increased with the number of individual in the 

species. Moreover, Soulé (1976) estimated the population size of a wide diversity of 

lizards, fish, mammals, marine invertebrates, and Drosophila and found increase in genetic 

diversity with the increase in population size. However, in some case genetic diversity is 

not always increases with the increase in population size (Mitton 1997). 

 
Species Diversity  
 

Species diversity can be defined as the number of different species (species richness) 

weighted by some measure of abundance such as number of individuals or biomass 

(species evenness) (e.g. Smith & Wilson 1996).  

 

Species have very important roles in communities. Sustainable efforts from several 

biodiversity projects have indicated the role of species diversity in maintaining ecosystem 

function and processes (e.g. Loreau et al. 2001). Some biodiversity studies have focused on 

altering and manipulating experimentally species diversity across several trophic levels 

(Naeem et al. 1994, Roscher et al. 2004); others on the effects of plant taxonomic diversity 

and plant functional-group diversity on primary production in grassland ecosystems (e.g. 

Tilman et al. 1996). Several of these biodiversity studies have shown that primary 

production exhibits a positive relationship with plant species and functional-group 

diversity (Loreau et al. 2001). DIVA, a biodiversity project described below, used a 

different approach in which natural grasslands with a gradient of species diversity was used 

(Perner et al. submitted) to study various level of diversity in relation to grassland 

productivity and ecological processes.   
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Ecosystem Diversity 
 

In recent years our knowledge about the role of species diversity in ecosystems has 

increased dramatically. Yet less is known about the role of intraspecific genetic diversity 

and even less is know about ecosystem diversity and it consequences on function and 

processes in ecological systems. Ecosystem diversity focuses on species abundance and 

distributions, community patterns, the role of different functional groups in communities, 

and the interaction between various organisms and their habitats. In other words, 

ecosystem diversity deals with all diversity levels higher than the species. This includes 

different communities and their interaction with the physical environment. 

 
 
Estimating Diversity  
 

To detect variation in biodiversity we need ways to measure and estimate diversity at 

various levels. Estimating and quantifying biodiversity is not a straightforward task and it 

depends on the viewpoint and the aim of the study. Often it is less informative to express 

biodiversity only as a single measure or number. Several measures of biodiversity have 

been suggested over the past years, these include:  

 
A) Simple measures such as numbers: 
 

The use of simple measures of diversity is perhaps the oldest approach and the simplest 

developed. To measure species diversity one might use only the number of different 

species present in a given area (also can be expressed in unit of mass, or other units), while 

measuring genetic diversity can be also done simply by measuring the number of different 

alleles for a single locus. For ecosystem diversity one can simply quantify the number of 

taxonomic groups (which are higher than species) present in a community. Numbers are 

obviously simple measure of diversity and easy to measure, but over different scales one 

has to standardise such measures.    

 
B) Diversity measures and indices  
 

In some cases simple numbers are not good representation of diversity. For example, a 

community with many individuals of the same species will have a low diversity although it 

might have many species present. To take into account the relative abundance of various 



CHAPTER ONE 
General Introduction 

 6 
 

species in a community, evenness measures have been developed to measure to what 

extent individuals are evenly distributed among species in a community (Smith & Wilson 

1996).  

 

Species number and species evenness are the most common measures used to 

characterise species diversity in a community. In recent years a large number of different 

abundance measures and evenness indices have been suggested (Magurran 1988; Smith & 

Wilson 1996). Some of these measures include:  

 
 
 
1. Shannon Diversity Index  
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Species diversity in a community can also be expressed as species evenness; which 

is based on the variance in species abundance and is independent of species richness. 

Several evenness indices have been suggested, amongst the most common and robust index 

according to Smith & Wilson (1996) is:  
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where S is the number of species in a community and Xk is the abundance of the kth 

species. 

 

Other different measures of diversity have been suggested recently such as the one 

suggested by Ganeshaiah et al. (1997), which is called “Avalanche index”. This index uses 

not only species numbers and frequencies but also the biological and ecological differences 

among species comprising a community. The index attempts to integrate over all possible 
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species combinations, the biological differences among the species in proportion to their 

frequencies in the community.  

 

 

DIVA- A BIODIVERSITY PROJECT IN JENA 

“The relationship between Biodiversity and Ecosystem Functioning in Grassland 

Ecosystems” 

General overview of the project 
 

With the daunting threat of humans to natural ecosystem properties and function, 

biodiversity research has received a high profile among ecologists and in the public media. 

In Central Europe, where in recent years human impact on natural ecosystems is 

accelerating through for example habitat fragmentation and changes in agriculture use, 

government and funding agencies recognize the importance of biodiversity loss. Therefore, 

a number of biodiversity projects have been approved and funded by various funding 

agencies. In Germany, the Federal Ministry of Research and Education 

(Bundesministerium für Bildung and Forschung, BMBF), is funding a number of projects 

that dealing with biodiversity and ecosystem function. DIVA is a BMBF funded project in 

Jena which is part of BIOLOG-Europe (http://www.biolog-europe.de) which aims to 

promote research in the context of global change and increasing the loss of biodiversity. 

DIVA is a collaborative research project conducted by scientists from Friedrich-Schiller-

University and Max-Planck-Institute for Biogeochemistry in Jena, and the Bureau for 

Ecological Studies in Bayreuth. The research sites of the project are the grassland systems 

located in Thüringer Schiefergebirge/Frankenwald in Central Germany (Figure 1). The 

project is conducted in two phases, the first phase from 2001 to 2003 and the second phase 

continuing in the period 2004 to 2006. The aim of DIVA project is to investigate the 

relationship between biodiversity and ecosystem processes such as carbon and nitrogen 

fluxes. Various research groups in the areas of plant physiology, biogeochemistry, 

entomology, mathematical modelling, plant taxonomy, mycorrhizal biology, and landscape 

ecology are cooperating to use experimental and theoretical approaches to investigate the 

importance of biodiversity for the stability and functioning of ecosystems. The project 

consisted in the first phase of four main subprojects:  

 

http://www.biolog-europe.de/
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(1) STOFF, which is designed to (i) determine causal relationships between biodiversity 

and selected ecosystem functions and (ii) to assess the effect of disturbance on these 

relationships. Therefore, the carbon and nitrogen fluxes are quantified in relation to plant 

diversity within the experimental plots. By manipulating the water regime and the 

abundance of insects, resistance and resilience of the studied grasslands system is 

investigated.  

 

(2) ENTO, which aims to manipulate the presence of herbivorous insects in grassland 

plots in order to study the relationships between plant diversity, insect herbivory and 

ecosystem processes. The manipulation of insect herbivory can also help to determine the 

role of insects in ecosystem responses to stress (e.g. drought). ENTO also aimed to assess 

insect diversity in the experimental plots to study the relationship between various level of 

diversity and compositions, i.e., the relationship between the compositional structure of the 

insect, plant diversity and composition, and plant productivity.  

 

(3) GENMOD is the topic of my thesis and it has been designed to investigate the hidden 

component of biodiversity, i.e. genetic diversity within a species. The major aims of 

GENMOD are to determine and quantify the genetic diversity among and between 

grassland populations at different spatial scales and different levels of diversity. Moreover, 

to study the relationship between genetics diversity between these selected plant species 

and other level of biodiversity particularly species diversity, and in relation to other 

features such as habitat type and nutrient characteristics.  

 

(4) RAUM subproject aims to estimate the structural and taxonomic diversity in grassland 

ecosystems expected to be varied in management regimes, and to develop an indicator 

system for ecosystem function using easily estimated structural and taxonomic parameters 

of plant biodiversity. In the first phase of the project, in 2001, 78 different grasslands sites 

(Figure 1A) of differential plant species diversity, were surveyed in a collaborative effort 

of the members of the subprojects. The results of this survey were used to select 19 

grassland sites (Figure 1B) of different levels of diversity in which experimental 

manipulations were carried out (Kahmen et al. submitted). 
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Figure 1 A) The 78 study sites in Central Germany surveyed in 2001 and B) the 19 sites that have 
been selected based on the gradient in species diversity for the manipulation experiments for the 
subsequent years (2002-2003).      

 

 

A 

B 
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Characteristics of the study sites 
 

The study was conducted in the Thüringer Schiefergebirge/Frankenwald, a plateau-like 

mountain range at the Thuringian/Bavarian border in central Germany which reaches a 

near maximum height of 870 m (Perner et al. subm.). The bedrock material in the 

investigated area produces a carbonate-poor, nutrient-poor soil. Average annual 

precipitation is above 1000 mm with a slight summer maximum (Perner et al. subm.).  

Annual average temperature is 5 °C.  Sites were a minimum of one hectare in size, and 

only sites with comparable elevation, edaphic and climatic factors were selected (Perner et 

al. subm.).  Grasslands were uncut by the time of the survey, with the exception of very 

intensively managed grasslands with more than three cuts per year. A more detailed 

description of the studied plant communities can be found in Kahmen et al. (subm.). The 

selected grassland sites studied can be classified into two types: “semi-natural; Bergwiese” 

and “agriculturally improved; Fettwiese” (Figure 2). Semi-natural sites are typically 

dominated by Trisetum flavescens, while agriculturally improved sites are dominated 

Arrhenatherum elatius. All grassland sites are of good quality and not fragmented or under 

human impact. 

 

 

 

 

 

 

 

 
 
 
Figure 2 The studied grasslands of Thüringer Schiefergebirge/Frankenwald in Central Germany: 
(A) “Bergwiese” site and (B) “Fettwiese” site. (Photos by A. Kahmen).  

 

In the period between 28th May and 9th June 2001, 78 sites were visited and all 

abiotic and vegetation structure parameters were sampled within a 2 m x 2 m quadrat.  At 

each site edaphic parameters were determined: soil moisture, topsoil pH, total 

concentrations of soil nitrogen (Ntotal), soil carbon (Ctotal), extractable phosphorus (Ptotal), 

and extractable ion concentrations of potassium (K+), calcium (Ca2+), magnesium (Mg2+), 

B  A  
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and sulphate (SO4
2), as well as the amount of mineralized nitrogen (Nmin) and the carbon-

nitrogen ratio (C:N) (Perner et al. subm.).  

 
Objectives and structure of the thesis 
 

With the increasing threat from human activities on biodiversity, most biodiversity 

research is focused mainly on the species diversity in communities and the role species 

play in maintaining ecosystem function. This is partly because it is easy to work with and 

to manipulate in controlled experiments. Also species diversity is relatively inexpensive to 

measure, requiring less complex methodology than that used to estimate and study genetic 

and ecosystem diversity. Estimating genetic diversity requires special technical instruments 

and chemical reagents and it is generally time demanding and costly. On the other hand, 

estimating ecosystem diversity requires special devices that enable researchers to study not 

only the number and the abundance of various species in a community but also the 

interactions between organisms and their physical environment.      

 

The central issue of the thesis is to study the pattern and distribution of genetic 

diversity within and between three selected plant species in relation to plant community 

diversity (e.g. species number and species evenness, relative abundance of species) in 

grassland systems in central Germany. The three selected plant species (Ranunculus acris, 

Plantago lanceolata and Anthoxanthum odoratum) were chosen because of their difference 

in a number of characteristics such as breeding system and dispersal mechanism. In 

addition, the three plants species studied are common and typical of central Germany.   

Specifically, the thesis aimed to assess the following hypotheses:  

 

(1) Genetic diversity (AFLP; Vos et al. 1995) of these species varies within and between 

grasslands sites.  

 

(2) This variation in genetic diversity is correlated with the diversity of plant species in 

grassland communities, and with variation in the abiotic characteristics of sites. 

 

(3) Genetic diversity within the three species is correlated with the relative abundance of 

these species in grassland communities.  
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(4) Genetic diversity across local populations is influenced by the geographical proximity 

of sites.      

 

The results of the thesis are important for both biodiversity research and conservation 

purposes. For example, it is important to know whether conservation efforts implemented 

to positively affect one level of diversity are likely to also positively affect the other levels, 

or whether there are conservation conflicts between both of these diversity levels. 

 

The thesis is structured in six chapters. Chapter 1 gives a general introduction about 

the theme of the thesis. Mainly, I have briefly given an introduction about the defintion and 

overview about biodiversity levels, some of the ways by wich diversity at various level 

(genetic, species, and ecosystem) can be measured and quantified. Chapter 2 contains 

information about the methodology of amplified fragment length polymorphisms (AFLP) 

that I have used for measuring genetic diveristy in the three plant species studied.  

 

In Chapter 3 I use AFLPs to assess the genetic diversity within and between ten 

populations of Ranunculus acris in relation to species diversity (richness and evenness) of 

grassland communities of two different habitat types, ‘semi-natural’ and ‘agriculturally-

improved’. Correlations between genetic diversity, at the levels of within and between 

populations of Ranunculus acris and the plant species richness and species evenness are 

tested. Moreover, I test whether populations from the two habitats are genetically different.  

 

Chapter 4 aimed to investigate the genetic diversity of a particular plant species, 

Plantago lanceolata, which is wind pollinated, in relation to grassland species diversity 

and environmental variation within and between sites. Specifically, I addressed the 

following questions: (i) is genetic diversity within and between populations of P. 

lanceolata correlated with grassland species diversity? (ii) are the genetic diversity of 

populations of P. lanceolata and species diversity within and between grasslands 

correlated with environmental variables? and (iii) if so, is the relationship between genetic 

and species diversity mediated by environmental variation rather than being causal via 

ecological niche diversity?. 

 

Chapter 5 is aimed to examine the influence of biotic and abiotic habitat variability 

on the genetic diversity of the two plants Plantago lanceolata and Anthoxanthum 
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odoratum. Particularly the chapter aimed to study the relative importance of habitat 

heterogeneity, both biotic and abiotic on genetic diversity of P.  lanceolata and A. 

odoratum. The following questions were asked: (1) what is the level of genetic diversity 

within and between local populations of P. lanceolata, (2) is this genetic diversity 

correlated with biotic and abiotic characteristics of sites, (3) does habitat heterogeneity 

influence the local abundances of P. lanceolata, and therefore, (4) is genetic diversity 

influenced indirectly by population size or directly by habitat characteristics. 

 

Chapter 6 presents general discussions of the thesis and presents the conclusions 

that I draw from the study and I finally give recommendations and prospective for future 

investigations.      
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ABSTRACT 
 

Genetic diversity is a fundamental component of biodiversity as it forms the basis of 
species and ecosystem diversity. Studying genetic diversity within and between local 
populations of a species is important not only to improve our scientific knowledge in 
population genetics and evolution but also it necessary to manage and conserve 
populations which experience large anthropogenic disturbances. In recent years various 
molecular methods have been developed and used for studying the genetic variations of 
diverse taxa of organisms. These methods differ in the type of marker they generate, 
discrimination power, reproducibility, the ease of generation, and cost. Amongst the 
molecular methods that are used extensively to study genetic diversity in plants are RAPD 
and AFLP. After the introduction of these methods a wealth body of information about the 
genetic variation of different organisms have become available and thus more insights 
about the spatial distribution of genetic variation have been amassed. This minireview 
describes the principles, advantages and disadvantages, and the mode of inheritance of 
AFLP and RAPD. Moreover, estimates of population genetic diversity parameters and 
statistics based on AFLP and RAPD data are also presented. Information about some 
common computer packages that used to analyse AFLP and RAPD genetic data are given.    
 
Keywords: AFLP, RAPD-PCR, genetic diversity, genetic distance, advantages, software 
packages 
 
 
INTRODUCTION 
 

Genetic diversity is a fundamental component of biodiversity as it is the basis of species 

diversity and ecosystem diversity. Studying genetic diversity within and between local 

populations of a species is important not only to improve our scientific knowledge in 

population genetics and evolution but also it is necessary to manage and conserve 

populations which experience some anthropogenic disturbances (e.g. Frankham 1995).  
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Moreover, studying the genetic diversity using molecular markers is important to assess 

ecological conditions that influence important population parameters (Parker et al. 1998). 

For example, characterization of the geographic structure or connectivity of populations is 

critical to ecological assessments and can be done effectively with molecular markers (e.g. 

Haig 1998). Because habitat fragmentation, which is common nowadays, reduces genetic 

diversity primarily through the effects of selection and genetic drift, a reduction in genetic 

diversity is indicative of deteriorating environmental conditions (Hoffmann et al. 1995).  

 

In the past scientists surveyed the population genetics of various species using the 

variation in proteins, allozymes, as an estimate of the variation in the DNA sequence that 

determines the amino acid sequence of these proteins (Lewontin & Hubby 1966; Harris 

1966).  However, after the introduction of Polymerase Chain Reaction (PCR; Saiki et al. 

1985; 1988) various molecular methods have been developed and used for studying the 

genetic variations of diverse taxa of organisms. These molecular methods differ in the type 

of marker they generate, the discrimination power, reproducibility, the ease of the 

procedure, cost and the time of generation of data. Amongst the molecular methods that are 

commonly used to study genetic diversity in plant species are AFLP (Vos et al. 1992) and 

RAPD (Williams et al. 1990). After the introduction of these methods a wealth body of 

information about the genetic variation of different organism have become available and 

thus more insights about the spatial distribution of genetic variation of different plant 

species have been amassed.  

 

This minireview describes the principles, advantages and disadvantages, and the 

mode of inheritance of AFLP and RAPD. Moreover, description of some population 

genetic diversity parameters is also presented with some common computer packages that 

used to analyse genetic data obtained by AFLP and RAPD. Detailed descriptions of other 

techniques and type of data yielded by each marker type are not presented here but can be 

found elsewhere (Bruford et al. 1992; Avise 1994; Olmstead & Palmer 1994; Weising et 

al. 1995; Jarne & Lagoda 1996).  
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PRINCIPLE OF AFLP AND RAPD 
 
AFLP 
 

Amplified fragment length polymorphism-polymerase chain reaction (AFLP-PCR) is a 

relatively new method (Vos et al. 1995). AFLP is regarded as a relatively cheap, easy, fast 

and of high reproducibility (e.g. Powell et al. 1996: Jones et al. 1997). AFLP markers can 

be generated for DNA of diverse taxa of organisms, and no initial investment in 

primer/probe development or sequence analysis is required (Vos et al. 1995). Partially 

degraded DNA can be used, but DNA typically should be highly purified and free of 

polymerase chain reaction (PCR) inhibitors. A very small amount of DNA (about 200ng or 

even less) are digested with combinations of restriction enzymes such as EcoRI, PstI, 

HindIII, ApaI with MseI or TaqI (Vos et al. 1995; Savelkoul et al. 1999) and the AFLP 

adaptors are joined (ligation) to the digested ends (Figure 1). Adaptor ligations are 

performed in the presence of restriction enzymes so that any fragment-to-fragment 

ligations are immediately recleaved by the restriction enzyme. The adaptor is designed so 

that ligation of a fragment to an adaptor does not reconstitute the restriction site (Figure 1). 

The end sequences of each adapted fragment consist of the adaptor sequence and the 

remaining part of the restriction sequence. These known end serve as priming sites in the 

subsequent AFLP-PCR. Depending on genome size, restriction-ligation generates 

thousands of adaptors of adapted fragments. For visualization after electrophoresis, only a 

subset of these fragments is amplified. To achieve selective amplification of a subset of 

these fragments, primers are extended into the unknown part of the fragments, usually one 

to three arbitrarily chosen bases beyond the restriction site (Baker & Parkin 2000). By using 

combinations of primers with different extensions, a series of AFLP amplifications can 

thus screen a representative fragments dispersed throughout the whole genome (Vos et al. 

1995). 

 

AFLP-PCR products can be separated using simple agarose or polyacrylamide gel 

electrophoresis. Polyacrylamide gel electrophoresis provides maximum resolution of AFLP 

banding patterns to the level of single-nucleotide length differences (Jones et al. 1997), 

whereas fragment length differences of less than ten nucleotides are difficult to score on 

agarose gels (Jones et al. 1997; Vos et al. 1995).     
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The main disadvantage of AFLP is the difficulty in identifying homologous markers 

(alleles), rendering this method less useful for studies that require precise assignment of 

allelic states. Nevertheless, because of the rapidity and the ease with which reliable, high-

resolution markers can be generated (Vos et al. 1995), AFLPs are established as a powerful 

method for studying genetic diversity of many organisms (Vos et al. 1995; Mueller & 

Wolfenbarger 1999). For example, AFLP has been used in genome mapping applications 

and ecological genetics (e.g. Mueller & Wolfenbarger 1999), conservation biology (e.g. 

Zhu et al. 1998; De Riek et al. 1999), parentage analysis (Gerber et al. 2000), and 

population genetics (e.g. Powell et al. 1996). Figure 1 shows the major steps of AFLP 

method.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Schematic diagram shows the steps of amplified fragment length polymorphism AFLP 
(after Baker & Parkin 2000) 
 
 
RAPD 
 

RAPDs are random segments of DNA that amplified by the PCR using arbitrary 

oligonucleotide primers (see Figure 2). PCR products, which are scored for presence or 

absence in each individual, represent genomic polymorphisms that appear to be inherited in 
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a dominant Mendelian fashion (Williams et al. 1990). Absence of an amplified product of 

DNA in an individual or population can be caused by loss of priming site due either to 

point mutations or deletion or insertion of DNA (Jones et al. 1997). When introduced, the 

acquisition of RAPDs markers was considered as a quick, simple process because the 

technique requires no nucleotide-sequence information for the production of primers. 

Although a number of researchers have used RAPDs as their methods of investigating 

genetic diversity, there are some disadvantages that limit its use. Reliable amplification of 

specific DNA segments from the same template may be difficult to achieve due to extreme 

sensitivity to reaction conditions (PCR temperature profile, concentration of ions etc.), and 

reproducibility may be a problem (Jones et al. 1997). However, it was reported that if 

condition, reagent, purified degree of template DNA were strictly controlled, results could 

be reproducible. Moreover, the dominant mode of inheritance of RAPD markers requires 

the assumption of random mating and Hardy-Weinberg equilibrium in order to calculate   

allele frequencies and population genetic statistics.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Schematic diagram of randomly amplified polymorphic DNA (RAPD) which 
demonstrates the presence and absence of polymerase chain (PCR) products. For extract 1 there is 
one PCR product, for extracts 2 & 3 there are two products (after Baker & Parkin 2000).  
 
 
ANALYSIS OF RAPD AND AFLP MARKERS AND INTERPRETATION 
 

To study the pattern of genetic variation within and between local populations of a species 

and the influence of evolutionary processes such as, selection, inbreeding, genetic drift, 

gene flow, and mutation acting on species we need ways to quantify the genetic diversity 
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in populations. Genetic diversity carried by local populations can be characterised in two 

levels (i) genetic diversity within populations, i.e. between different individuals of a 

population and (ii) genetic diversity (genetic differentiation) between populations.   

 
 (I) Genetic diversity within population 
 

Several measures have been used to describe the AFLP and RAPD genetic variation at a 

single locus and on a number of loci, these include: 

 
1. Heterozygosity 
 

The amount of heterozygosity is the most widespread and most biological informative 

measure of genetic variation in a population because individuals in diploid organisms are 

either heterozygous or homozygous at a particular locus (Hedrick 2000; Nei 1987). 

Because AFLPs and RAPDs are dominant genetics markers heterozygosity can not be 

calculated.  Nonetheless, two measures are commonly used to estimate genetic diversity 

within a population using dominant markers:  

 

1) Nei gene diversity index (HE) Nei (1987): 

 

∑−= 21 iE PH ,  

where Pi is the population frequency of each allele (1 and 0) at locus i. The average genetic 

diversity is then calculated as the average of this quantity across all loci studied.  

  

Nei (1973; 1987) called this measure gene diversity and recommended it for 

organisms with different reproductive systems and ploidy levels. More information about 

this measure of genetic diversity and its applications for different organism is detailed by 

Nei (1987).   

 

2) Shannon’s index: 

∑−= )ln( ii PPH , 

where Pi is the proportion of the ith allele in the population.  
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2. The proportion of polymorphic loci 
 

Genetic polymorphism is a term used often to describe the amount of genetic diversity 

present within a population. According to Ford (1940) genetic polymorphism can be 

defined as “the occurrence together in the same habitat of two or more discontinuous forms 

in such proportion that the rarest of them cannot be maintained by recurrent mutation.” 

Although this definition is not precise, it has been commonly used because it based on 

population genetic theory (Hedrick 2000). Moreover, with the introduction of the neutrality 

theory, which assumes that mutation and genetic drift are major forces that affect the 

population genetic diversity, this definition is not generally appropriate (Hedrick 2000). 

Another definition and more useful one of the genetic polymorphism is introduced by 

Cavalli-Sforza and Bodmer (1971) which is “genetic polymorphism is the occurrence in 

the same population of two or more alleles at one locus, each with appreciable frequency. “  

  

To estimate the proportion of polymorphic loci (P) for a population where a number 

of loci have been collected, the following equation is used:  

 

m
xP = , 

where x is the number of polymorphic loci in a sample of m loci. A locus is considered to 

be polymorphic if there are at least to individuals differ at this locus. However, some 

suggest that this measure is more appropriate for allozyme loci but not for highly variable 

loci in which a high proportion of the loci are polymorphic in most populations (Hedrick 

2000; Nei 1987).  

 
 
(ii) Genetic diversity (genetic differentiation) between populations 
 

When genetic data is collected from a number of populations or different species by using 

a number of genetic markers, one may therefore wish to estimate the extent of genetic 

diversity between the local populations of a species or the degree of genetic differentiation 

between populations. Estimating the level of genetic diversity between local populations of 

a species may be used in order to test hypothesis about the effect of some factors such as 

gene flow, isolation by distance and the influence of habitat variability that might influence 

the genetic structure of populations of a given species. Estimating the genetic 
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differentiation between populations can be achieved using standard similarity and/or 

dissimilarity (distance) measures. A number of genetic similarity and distance measures 

have been introduced and used to evaluate the amount of genetic variation shared between 

populations (for detail see Nei 1987). 

 
Similarities or dissimilarities in the genetic diversity between populations can be 

the result of on or several forces (Hedrick 2000). For example if two populations said to be 

genetically similar, this may indicate that (1) they recently separated into two populations, 

or (2) gene flow occurred between them, or (3) similar selection pressures affected loci 

similarly in both populations. Similarly, if two populations are different, then this could 

indicate (1) they have been isolated for a long time and there has been no gene flow 

between them, or (2) genetic drift has generated large differences between them. 

 

Several measures of genetic distances have been introduced in recent years. Ideally, 

different measures suppose to be highly correlated with each other (Hedrick 2000). Here, 

three most widely used genetic distances are described: 

 

1. The standard genetic distance (DS) of Nei (1972, 1978) 

 

The standard genetic distance of Nei (1972, 1978) is one of the most commonly used 

genetic distances (Kalinowski 2002). For populations X and Y with r loci and m alleles per 

locus, the standard genetic distance is defined as: 

 

 

( )YYXXXYS JJJD ln−= , 

 

where  

 

∑∑
= =

=
m

i

r

j
ijiyXY ryxJ

1 1

,).(  ∑∑
= =

=
m

i

r

j
ijXX rxJ

1 1

2 / , ∑∑
= =

=
m

i

r

j
ijYY ryJ

1 1

2 /  

 

xij is the frequency of the ith allele at the jth locus in population X, and yij is the frequency of 

the ith allele at the jth locus in population Y. 
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2. The DA distance of Nei (Nei et al. 1983) 

 

In many studies of genetic diversity of natural populations a relatively small number of 

individuals are collected as a sample. This mainly because of the limitation of money to 

survey a large number of individuals and the time needed to study large numbers of 

samples. Nei et al. (1983) has introduced a formula to calculate unbiased estimate of the 

genetic distance D by a correction for the homozygosity estimates of Jx and Jy, in which 

unbiased estimate of DA is calculated as: 

 

 ∑∑
= =

−=
m

i

r

j

ijij
A r

yx
D

1 1

.
1 , 

where m and r are the numbers of loci examined in populations X and Y respectively. This 

distance is a modification of the original Cavalli-Sforza distance (1967). DA takes a 

maximum value of 1.0 which occurs when two populations share no alleles at any locus. 

The DA distance has proven to be useful for reconstructing phylogenetic trees (Takezaki & 

Nei 1996).  

 

Wright’s FST is also another common genetic distance used to measure the 

population genetic structure (Kalinowski 2002). Analogous distance measures (e.g. θ, β, 

and GST) have also been developed to describe the genetic distance (differentiation) 

between local populations of a species (Excoffier 2001). These measures have different 

statistical characteristics (Nei & Kumar 2000; Excoffier 2001) and represent distinct but 

related concepts (Kalinowski 2002). For more details about these distance measures see 

Weir 1996 and Nei 1987.  

 

Generally, the genetic distances and similarities between the studied populations 

are visualised using phenetic trees and thus making the relationships between the studied 

populations better to understand. Moreover, the effect of some factors, e.g. environmental 

characteristics (Cooper 1998; Odat et al. 2004), on the pattern of the relationship between 

populations can be assessed. Presumably, populations that have many similar alleles are 

closely related, and those have different alleles are distantly related (Hedrick 2000). 

Several methods of constructing phylogentic trees from genetic data such as those of 

RAPD and AFLP have been introduced. For good reviews about various methods and 
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explanatory examples see (Felsenstein, 1988; Nei 1996; Nei & Kumar 2000). Amongst the 

most common methods are: (1) the unweighted-Pair-Group Method (UPGMA) which was 

developed originally by Sokal and Sneath (1963) and was used first to analyse 

morphological data. UPGMA is an easy method to understand but it assumes a constant 

evolutionary rate of time for all lineages (Hedrick 2000), (2) the neighbor-joining method 

(NJ), developed by Saitou and Nei (1987) which based on the minimum evolution 

principle (Hedrick 2000; Nei 1987). These two methods are called distance matrix methods 

because they depend on the measure of the genetic distance between all the pairs of 

populations under investigations (Nei 1987).  

    

SOFTWARE PACKAGES USED IN DATA ANALYSIS OF AFLP AND RAPD 
 
In recent years with the advance in computer technologies several software packages have 

been developed for analysis of genetic diversity within and between local populations of a 

species (e.g. Labate 2000). These softwares have increased the efficiency for calculating 

various parameters of population genetics. Within few hours one can achieve a large 

number of genetic data statistics using appropriate software. Fundamentally, most of these 

available software packages are offer the same genetic parameters and do the same analysis 

(Labate 2000). However, it seems that the choice of particular software depends on the 

ease and friendly of using particular software (Mohammadi & Prasanna 2003). Most of the 

softwares available are provided free of charge through the World Wide Web. Table 1 

gives some of the most common software packages that are used for estimating genetic 

diversity parameters.  
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Table 1. Computer packages and various population genetic parameters analysis of AFLP, RAPD 
and other genetic markers (modified from Labate 2000).   

 

 

 
 
The following software packages are amongst the most common used for data analysis 

of both AFLP and RAPD markers:  
 
1. POPGENE 

POPGENE (Yeh et al. 1997) is a widely used package which can be used to analyse data 

from haploid or diploid genomes and is useful for both dominant and codominant markers.  

Amongst the statistics that are implemented by the software and can be used to analyse 

   Software    
Statistics TFPGA Arlequin GDA GENEPOP GeneStrut POPGENE
       
Diversity       
Observed 
heterozygosity 

Yes Yes Yes No Yes Yes 

Expected 
heterozygosity  

Yes Yes Yes No Yes Yes 

No. alleles/locus No Yes Yes No Yes Yes 
Effective no. 
alleles 

No Yes No No Yes Yes 

% polymorphic 
loci 

Yes Yes Yes No Yes Yes 

Shannon-Weaver No No No No No Yes 
Population 
structure 

      

F-statistics Yes Yes Yes Yes Yes Yes 
G-statistics No No No No Yes Yes 
AMOVA No Yes Yes No No No 
Isolation-by-
distance 

Yes Yes No Yes No No 

Genetic 
distances 

      

Nei's Yes Yes Yes No Yes Yes 
Rogers' Yes Yes Yes No No No 
Pairwise FST Yes Yes Yes No No No 
Clustering 
methods 

      

Neighbor-
Joining 

No No Yes No No No 

UPGMA Yes No Yes No Yes Yes 
Neutrality tests No Yes No No No Yes 
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RAPD and AFLP data are: allele frequency, number of alleles, and effective number of 

alleles, percent polymorphic loci, expected heterozygosity, and Shannon index. The 

software can give estimate for the population structure using F-statistics and G-statistics 

(for formulas see Nei 1987). Two genetic distances and two genetic similarities those of 

Nei (1972, 1978) are implemented in the software. These genetic distance and genetic 

identities can be visualised as tree using a UPGMA dendrogram. Test for neutrality can be 

done using the statistics of Ewens-Watterson (Ewens, 1972; Watterson, 1978). The 

software is a user-friendly and can be downloaded from (http://www.ualberta.ca/~fyeh).  

 

2. TFPGA 
 

TFPGA (Miller et al. 1997) can be used to estimate genetic diversity statistics for haploid 

and diploid data and can be used to give statistics for dominant and codominant genetics 

markers. The software is easy to work with and data files can be prepared using simple 

editor files. The software is provided with a pdf help file that describes the analysis 

implemented by the program and some general introduction about the genetic statistics 

given. For RAPD and AFLP genetic data the analysis include allele frequency that is 

calculated based on the square root of the frequency of recessive genotype or by Taylor 

expansion approach (Lynch and Milligan 1994). The software also gives estimates of the 

observed and expected heterozygosity (Nei 1987), percentage of polymorphic loci and 

Shannon index. These statistics are given under a subheading in the analysis menu as a 

descriptive statistics. The statistics can be done for the entire data set or for each 

population or for a group of populations. F-statistics can be also estimated for each allele, 

each locus, and over all loci studies following (Weir and Cockerham 1984). Several 

genetic distances and genetic identities are implemented in the software. These include: 

Nei’s minimum (original and unbiased, Nei 1972, 1978), Rogers’s (1972) and modified 

Rogers’ (Wright 1978) and coancestry (Reynolds et al. 1983). A UPGMA dendrogram 

with bootstrap values is provided. Others statistics such as Mantel test (Mantel 1967) and 

exact tests for population differentiation (Raymond & Rousset 1995) can be done. TFPGA 

is very easy to work with and the input file can be prepared very easily. The software can 

be downloaded free of charge under http:/herb.bio.nau.edu/~miller. 

 

 
 
 

http://www.ualberta.ca/~fyeh
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3. ARLEQUIN 
 

Arlequin (Schneider et al. 2000) is a very comprehensive software package that can be 

used to analyse haploid and diploid data. The software can be used to calculated diversity 

indices, disequilibrium test, neutrality tests, and population structure. Diversity indices 

include allele frequency, observed and expected heterozygosity, observed homozygosity, 

number of polymorphic loci, and number of alleles per locus. Various methods to estimate 

genetic distances between populations and individuals are implemented. Population 

structure by Analysis of Molecular Variance (AMOVA; Excoffier et al. 1992) which based 

on an analysis of variance of gene frequencies is provided by Arlequin (see the manual for 

more description about the AMOVA). AMOVA analysis can be conducted at various 

levels such as diversity within and between populations and within and between groups of 

populations. Pairwise FST values can be estimated and these can be given in the form of 

pairwise data matrix. The significance of the pairwise genetic distances between 

populations can be obtained by permutation. Several neutrality tests are also provided by 

Arlequin. The software utilise specific format for the input file (project file) that can be 

prepared using any text editor or use the program’s (project outline wizard). It is also 

possible to convert by the software various data files to and from other genetic softwares 

including GENEPOP, PHYLIP, MEGA and WinAmova. The manual given with Arlequin 

describe in details the software features.       

 

4. NTSYSpc 

 

NTSYSpc (Numerical Taxonomy System; Rolf 1993) is a software that originally 

developed to analyse multivariate statistics in the context of ecology and other areas of 

biology and systematic. Various multivariate statistics are implemented in this system. It 

appears that the use of this software for genetic data is mainly to conduct cluster analysis 

and some ordination statistics. Clustering by UPGMA and NJ methods using various 

methods of distance and similarity coefficients are implemented in this software. Among 

the ordination methods that are possible in this software are Principle Components 

Analysis (PCA) and Principal Coordinates Analysis (PCOORDA). Nonmetric 

multidimensional scaling and matrix comparison using Mantel test are also possible with 

this software. The input file can be an Excel file which can be saved and imported as 

normal text editor file. Unfortunately, NTSYSpc is not available free of charge for users. 
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Other software commonly used for data analysis of dominant markers such as AFLP and 

RAPD include: GDA, GENEPOP and GeneStrut (Labate 2000).    

 
 
COMPARISONS OF AFLP AND RAPD WITH OTHER TECHNIQUES 
 

Although they are dominant markers by which less information can be obtained about the 

level of heterozygosity level, AFLP and RAPD are comparable and in some case 

preferable over other genetic methods that are currently available. Table 2 gives a 

summary of comparison of AFLP and RAPD with other genetic markers available to study 

genetic diversity within a species with respect to reproducibility and robustness, 

discrimination power, operational aspects and the cost of development.   
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Table 2 Comparison of techniques commonly used for measuring population genetic diversity 
(modified from Engel et al., 1996; Storfer 1996; Mallet, 1996. Yang et al. 1994; Jones et al. 1997; 
Powell et al. 1996). 
 

Feature  Isozymes RFLP SSR RAPD AFLP 

 

Data gathered 

 
Protein 
variation 

 
Genotype 
fragment 
variation 

 
Genotype 
fragment 
variation 

 
Dominant 
multilocus 
genotypes 
fragment 
variation 

 
Dominant 
multilocus 
genotypes 
fragment 
variation 

 

Reproducibility 

 

Very high 

 

High to 
very high 

 

Medium to 
high 

 

Low to 
medium 

 

Medium to 
high 

 

Amount of 
sample required 
per sample 

 

Several mg 
of tissue 

 

2-10 mg 
DNA 

 

10-20 ng 
DNA 

 

2-10 ng 
DNA 

 

200 ng DNA 

 

Ease of 
development 

 

Moderate 

 

Difficult 

 

Difficult 

 

Easy 

 

Moderate 

 

Ease of assay 

 

Easy to 
moderate 

 

Difficult 

 

Easy to 
moderate 

 

Easy to 
moderate 

 

Moderate to 
difficult 

 

Equipment 
needed 

 

Inexpensive 

 

Moderate 

 

Moderate 
to 
expensive 

 

Moderate 

 

Moderate to 
expensive 

 
 
Resolution  

 

Moderate 

 

Moderate 

 
 
Very high 

 

High  

 
 
Very high 
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ABSTRACT 

Correlates between genetic diversity at intra– and interpopulation levels and the species 
diversity in plant communities are rarely investigated.  Such correlates may give insights 
into the effect of local selective forces across different communities on the genetic 
diversity of local plant populations. This study has employed amplified fragment length 
polymorphism (AFLP) to assess the genetic diversity within and between ten populations 
of Ranunculus acris in relation to species diversity (richness and evenness) of grassland 
communities of two different habitat types, ‘semi-natural’ and ‘agriculturally-improved’, 
located in central Germany. Within-population genetic diversity estimated by Nei’s 
unbiased gene diversity (He) was high (0.258 – 0.334), and was not correlated with species 
richness (Pearson’s r = – 0.17; P = 0 .64) or species evenness (Pearson’s r = 0.15; P = 
0.68) of the plant communities. However, the genetic differentiation between R. acris 
populations was significantly correlated with the difference in species evenness (Mantel’s r 
= 0.62, P = 0.02), but not with difference in species richness of plant communities (r = – 
0.17, P = 0.22). Moreover, we also found that populations of R. acris from ‘semi-natural’ 
habitat were genetically different (AMOVA, P < 0.05) from those in ‘agriculturally-
improved’ habitats, suggesting that gene flow between these habitat types is limited. The 
results reported in this study may indicate that habitat characteristics influence the genetic 
diversity of plant species. 
 
Keywords: genetic diversity, species diversity, species evenness, localized selection, 
genetic differentiation, AFLP 
 

INTRODUCTION  

Correlates between genetic diversity at intra– and interpopulation levels and the species 

diversity in plant communities are rarely investigated.  Such correlates may give insights 

into the effect of local selective forces across different communities on the genetic 

diversity of local plant populations (Nevo 1988). Several studies have provided evidence 
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that environmental, and mainly habitat, variability has the potential to influence the genetic 

differentiation between local populations (Antonovics 1971; Linhart and Grant 1996; 

Mitton 1997; Gray & Sork 2001). Among the processes through which habitat variability 

can influence genetic diversity are localized selection processes (Hamrick & Allard 1972; 

Zangerl & Bazzaz 1984; Owuor et al. 1999), and differential gene flow by seed or pollen 

dispersal (Schaal 1975; Waser 1987).  

 

In addition to habitat variability, genetic diversity in plant is influenced by other 

processes which affect species’ population, such as size and contemporary events like 

habitat modification by agricultural practices (Gray 1996; Young et al. 1998).  In central 

Europe human interference of plant communities and their natural habitats through, for 

instance, the use of intensive management practices for agricultural purposes has led to the 

isolation of many plant populations and to the reduction in their sizes. This eventually can 

result in a decrease in genetic diversity and in an increase in the genetic divergence 

between local plant populations (Frankham 1996).  

 

As part of an interdisciplinary project focussing on the relationship between 

biodiversity and ecosystem function of grassland communities in central Germany, we 

aimed to study the genetic diversity of several plant species in relation to the species 

diversity of plant communities. For this purpose we used amplified fragment length 

polymorphism (AFLP; Vos et al. 1995) to assess the genetic diversity of the plant 

populations (Powell et al. 1996; Kölliker et al. 1998, Mueller & Wolfenbarger 1999). 

Based on a large survey of 19 investigation areas, where we investigated R. acris 

populations, we found that the grassland communities can be classified into two types 

based on differences in plant species composition (see Results). These differences seem to 

originate from difference in habitat properties mainly the intensity of management and the 

history of land use in the past (Ellenberg 1988). Therefore, habitats less subjected to 

fertilisation and mowing were called ‘semi-natural; Bergwiese’, whereas intensively 

fertilised and mown habitats in the past were called ‘agriculturally-improved; Fettwiese’. 

 

In this study, we particularly aimed to investigate the genetic diversity within and 

between ten populations of Ranunculus acris (Ranunculaceae) in relation to the species 

diversity of these grassland communities. Additionally, we aimed to see whether 

populations of R. acris of ‘semi-natural’ and ‘agriculturally-improved’ habitats are 
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genetically different. Species diversity of a community consists of two components: 

species richness – the number of plant species in a given community, and species evenness 

– a measure of how relative abundances are distributed between species. Previous studies 

showed that species evenness explains a larger proportion of the variance (53%) of 

diversity in plant communities than does species richness (6%) (Stirling & Wilsey 2001), 

and determines the intensity of plant–plant interaction in a community (Polley et al. 2003). 

We correlate within-population genetic diversity of the studied populations of R. acris with 

both species richness and species evenness.  We also correlated, using a Mantel test 

(Mantel 1967), the genetic differentiation (genetic distances) between R. acris populations 

with the pairwise difference in species diversity (richness and evenness) between sites. 

This enabled us to test whether the diversity in plant species across sites, through possibly 

different selection forces, influence the genetic differentiation of R. acris populations. For 

this study, we chose R. acris because it is abundant in all our sites and it grows frequently 

in mown and managed areas (Grime et al. 1988). This allowed us to see whether there is a 

substantial gene flow in R. acris between the two habitat types. 

 
MATERIAL AND METHODS 
 
Species and population description  
 

The meadow buttercup Ranunculus acris L. (Ranunculaceae) is a perennial herbaceous 

plant with a wide distribution throughout Europe and Western Siberia (Hegi 1982). The 

species grows in dry and wet meadows, and frequently inhabits grazed and mown habitats 

(Grime et al. 1988). Flowering time is between May and September and seeds are set from 

June onwards (Hegi 1982). The five-petaled, yellow flowers are self-incompatible and 

insects of the families Muscidae and Anthomyiidae are the main pollinators (Totland 1993, 

1994b). 

 

The study sites were located in central Germany with altitudes ranging from 580 to 

730 m. Ten populations of R. acris from both habitat types (semi-natural and agriculturally 

improved) were chosen (Table 1). A preliminarily study of 19 sites in our investigation 

areas showed that the two habitats are different in plant species composition (Figure 1). 

The populations of R. acris were separated by forests and agricultural fields and the 

geographical distances between populations ranged from 1 to 16.5 km. At each of the study 
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sites from which R. acris individuals were sampled, we established four 3x3 m2 plots and 

recorded the number of plant species and their relative abundance (percentage cover). We 

then randomly sampled leaves of R. acris from seven to twelve individuals per population, 

and the leaves were immediately placed in drying silica gel prior to DNA extraction. 

 

Table 1 Characteristics of the studied populations of Ranunculus acris. ‘A’ denotes populations 
from agriculturally improved habitat, ‘S’ denotes populations from semi-natural habitat. Species 
richness is measured as number of species and species evenness as Evar index in four 3x3 m² plots, 
see Materials and Methods. Sample size is the number of individuals use in AFLP. Refer to Fig. 1 
for the classification of the two habitats. 

 
 

 

Habitat types Population 
Longitude 

(east) 

Latitude 

(north) 

Species 

richness 

Species 

evenness 

Sample 

size 

Gene 

diversity 

(He) 

Agriculturally-improved  A1 
 

20◦35′41″ 
 

11◦27′08″ 31 0.278 9 0.327 

 A2 20◦35′56″ 11◦27′28″ 33 0.234 9 0.281 

 A3 20◦34′47″ 11◦28′42″ 41 0.282 9 0.333 

 A4 20◦33′27″ 11◦28′30″ 31 0.205 12 0.297 

 A5 20◦29′51″ 11◦27′49″ 21 0.195 10 0.334 

Semi-natural         

 S1 20◦26′47″ 11◦23′57″ 33 0.397 7 0.310 

 S2 20◦22′52″ 11◦24′16″ 36 0.228 7 0.271 

 S3 20◦23′29″ 11◦24′36″ 37 0.269 8 0.258 

 S4 20◦24′26″ 11◦26′37″ 36 0.259 7 0.318 

 S5 20◦24′35″ 11◦26′43″ 47 0.314 8 0.313 
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Figure 1 Ordination of the relative abundances of plant species based on a preliminarily survey 
of 19 sites of our investigation areas by Principal Coordinates Analysis using Bray-Curtis 
distance matrix. ‛A’ denotes agriculturally-improved habitat, ‛S’ denotes semi-natural habitat, 
and numbers indicate the ten populations of Ranunculus acris used in this study (see Table 1).  

 

DNA extraction and AFLP protocol 

 

Fifty milligrams of dried leaf material from each individual plant was used for DNA 

extraction using a rapid method (Hellwig et al. 1999), which is described in detail in 

Krüger et al. (2002). The AFLP procedure was performed according to Shiemann et al. 

(1999), using the AFLP Core Reagent Kit (Life Technologies, Inc.). Genomic DNA (25 

ng/μl) was digested with a pair of restriction enzymes (EcoRI/MseI) and then ligated to 

doubled stranded EcoRI/MseI adapters. The ligate was preamplified with the 

nonselective primers (EcoRI E00, E-A and MseI M00, and M-C). For the final selective 

AFLP amplifications five selective primer pairs (E-AAC/M-CCT, E-AGA/M-CCG, E-

AGA/M-CTA, E-AAC/M-CTG, E-AGC/M-CTC) were used. Products from the final 

selective amplification were separated on a 8% polyacrylamide gel and the amplified 

AFLP bands were visualized and collected using GeneReader 4200 (version 3.52, LI-

COR). 
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Data Analysis 

 

A data matrix of presence/absence (i.e. 1/0) of amplified loci was produced for each 

individual from each population and for all selective primers with the help of 

RFLPscanTM version 2.0 (Scanalytics). We used gene diversity, He, as a measure of 

within-population genetic variability following Nei (1987). The genetic differentiation 

between populations of R. acris based on all AFLP loci was calculated according to 

Nei’s (1978) genetic distance. A cluster analysis using an unweighted pair-group 

method with arithmetic averaging (UPGMA; Sneath & Sokal 1973) was performed 

using the software POPGENE 1.32 (Yeh et al. 1997). The cluster generated by UPGMA 

was evaluated by a bootstrap analysis with 1000 iterations (Felsenstein 1985) using the 

software TFPGA (Miller 1997). We used the analysis of molecular variance (AMOVA; 

Excoffier et al. 1992) to partition the total genetic variation among individuals within 

populations, between populations within a habitat, and between habitat types 

(agriculturally-improved vs. semi-natural). AMOVA was made using WINAMOVA 

version 1.55 (Excoffier 1992), with the input files prepared by AMOVA-PREP (Miller 

1998). We quantified species diversity by calculating species richness (the number of 

species present at each site), and species evenness using the Evar index, which is based 

on the variance in abundance of species and is independent of species richness (Smith & 

Wilson 1996): 

 

Evar = 1 – (2 ⁄ π) arctan 
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where S is the number of species in a community and Xk is the abundance of the kth 

species. Correlations between within-population gene diversity (He) of R. acris, species 

richness, and species evenness at each site were tested by Pearson correlation coefficient 

using SPSS statistical package version 11.0 (SPSS Inc. 1989–99). Pairwise differences 

in species diversity (richness and evenness) between sites were calculated using 

Euclidean distance and they were compared, using a simple Mantel test, with genetic 

distances between R. acris populations. We also tested whether genetic distances 

between pairs of populations were significantly correlated with corresponding 
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geographical distances. Analyses of Mantel tests were achieved using the software zt 

(Bonnet & Yves 2002).  

 

RESULTS 

Genetic diversity estimated by AFLP 
 

Large numbers of AFLP loci were obtained by each of the five primer combinations; 

however, for the final analysis a total of 258 AFLP loci that were unambiguous and 

easily scored were used. Of all loci analysed, 79.5% were polymorphic and 20.5% 

monomorphic within or between populations. Table 1 gives the values of within-

population genetic diversity estimated by Nei’s gene diversity He (1987). The gene 

diversity averaged over all loci ranged from 0.258 to 0.334. Table 2 shows the genetic 

differentiation (Nei’s 1978 genetic distance) between R. acris populations. The genetic 

distances did not correlate significantly with the corresponding geographical distances 

(Mantel test; r = 0.11, P = 0.18). 

The partitioning of total genetic variation of R. acris by AMOVA is shown in Table 3. 

Most genetic variation occurred between individuals within populations (89.03%) rather 

than between populations (10.97%).  

 
Within-population genetic diversity of R. acris in relation to species diversity 
 

Within-population genetic diversity of R. acris (Nei’s gene diversity; He) was neither 

significantly correlated with species richness (Pearson’s r = – 0.17; P = 0 .64), nor with 

species evenness of the plant communities (Pearson’s r = 0.15; P = 0.68).  
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Table 2 Pairwise genetic distances (below diagonal) and geographical distances (in km, above 
diagonal) between the populations of Ranunculus acris studied. 
 

 

 

 

 

 

 

 

 

 

 

Table 3 Analysis of molecular variance (AMOVA) for 86 individuals of 10 Ranunculus acris 
populations. Nested analysis was done on the two groups of populations based on their habitat 
type (agriculturally-improved vs. semi-natural). 
 

 

 

 

Pop A1 A2 A3 A4 A5 S1 S2 S3 S4 S5 
A1 − 1.0 3.0 3.5 7.0 12.0 16.0 15.0 13.5 13.0 
A2 0.129 − 2.5 3.5 7.5 13.0 16.5 15.5 14.0 13.5 
A3 0.042 0.145 − 1.5 6.0 13.0 16.5 15.3 13.0 12.5 
A4 0.064 0.134 0.099 − 4.5 11.5 15.0 14.0 11.5 11.0 
A5 0.043 0.116 0.065 0.034 − 8.0 10.5 10.0 7.0 6.5 
S1 0.147 0.221 0.092 0.233 0.174 − 4.5 4.0 5.5 5.5 
S2 0.121 0.034 0.146 0.131 0.108 0.210 − 1.0 5.0 5.0 
S3 0.145 0.036 0.177 0.124 0.117 0.249 0.038 − 4.0 4.0 
S4 0.088 0.059 0.103 0.118 0.083 0.165 0.038 0.066 − 1.0 
S5 0.111 0.084 0.089 0.123 0.091 0.161 0.080 0.089 0.087 − 

Source of variation d.f. Sum of Squares Variance % Total Significance 

Between populations 9 817.56 5.442 10.97% P < 0.001 

Within populations 76 3358.48 44.190 89.03%  

Total 85 4176.05    

Nested analysis      

Between habitat types 1 158.84 1.821 3.56 P  = 0.02 

Between populations/ habitat  8 658.73 4.447 8.81 P < 0.001 

Within populations 76 3358.48 44.191 87.58 P < 0.001 

Total 85 4176.05    
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Between-population genetic differentiation of Ranunculus acris in relation to 
difference in species diversity  
 

Between-population genetic differentiation (genetic distances) of R. acris was 

significantly correlated with the differences in grasslands species evenness (Mantel’s r = 

0.62, P < 0.02; Fig. 2), but was not correlated with differences in species richness 

(Mantel’s r = – 0.17, P = 0.22). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Association between the genetic differentiation (pairwise Nei’s genetic distances) and 
difference in species evenness (measured as Evar index, see Materials and Methods) among the 
studied populations of Ranunculus acris. Mantel’s r = 0.62; P < 0.02. 
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Genetic diversity in relation to habitat type 
 

Within-population genetic diversity of R. acris was higher in agriculturally-improved 

populations (mean 0.314, SD 0.024) compared with populations from semi-natural habitats 

(mean 0.294, SD 0.027), although the difference was not significant (pooled t-test: P > 

0.2). However, the UPGMA dendrogram based on the genetic distances between 

populations showed two main clusters of populations that may be related to habitat type 

(Fig. 3). Moreover, nested AMOVA analysis of the two groups of populations (i.e. 

agriculturally-improved vs. semi-natural habitats) showed significant genetic 

differentiation between these habitat types (AMOVA, P < 0.05; Table 3).  
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Figure 3 UPGMA dendrogram based on Nei’s (1978) genetic distance of Ranunculus acris 
populations of agriculturally-improved (A1-A5) and semi-natural (S1-S5) habitats. Bootstrap 
percentages are given on each node (1000 replications). 
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DISCUSSION 

Genetic diversity  
 

To our knowledge this is the first study attempting to assess the genetic diversity of a 

particular plant species in relation to the species diversity (richness and evenness) of the 

local plant communities.  Initially, random amplified polymorphic DNA markers (RAPD; 

Williams et al. 1990) were tested for estimating genetic diversity of R. acris populations. 

However, we were unable to obtain a sufficient number of unambiguous, polymorphic and 

reproducible RAPD loci. In contrast, AFLP proved to be an excellent molecular technique 

for the analysis of the genetic diversity of R. acris populations in this study. We obtained 

many polymorphic loci per primer combination that enabled us to describe the genetic 

diversity within and between populations of R. acris. Within-population genetic diversity 

values were high (Table 1), suggesting that individuals within populations display a large 

proportion of genetic loci of high allelic variation. The characteristics of R. acris as a 

geographically wide-spread, outbreeding, long-lived perennial plant species (Loveless & 

Hamrick 1984; Karron 1987; Hamrick & Godt 1990; Richter et al. 1994) may contribute to 

the high within-population genetic diversity we observed. Moreover, the populations of R. 

acris we studied are very large and their habitats are stable and not fragmented; such 

characteristics may also contribute to high within-population genetic diversity (e.g. Young 

et al. 1996).  

 
Species diversity effects 
 

Our results demonstrate a significant correlation between the genetic differentiation of R. 

acris populations and the differences in species evenness of plant communities (Fig. 2). 

The higher the difference in species evenness of plant communities between two given 

sites, the higher the genetic differences of R. acris populations at these sites. As species 

evenness explains a larger amount of the variance in communities (Stirling & Wilsey 2001) 

and defines the identity of species (Polley et al. 2003), we propose that this aspect of a 

community is a good measure to study the effect of community diversity on the genetic 

diversity of plant species. According to Linhart and Grant (1996) association between 

genetic differentiation, as those we found in R. acris populations, and differences in 

species evenness may be explained by two processes: firstly, different communities 

produce different selective forces, and these, in turn, shape the genetic heterogeneity 
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between local populations. Secondly, habitat variation often generates ecological barriers 

against gene flow and thus enhances genetic differentiation between local populations. If 

migrants move from their source population to an area with different habitat 

characteristics, they will be perhaps poorly established to the new habitat and thus may be 

less likely than residents to pass their genes on to the next generation (Cooper 1998). As 

the localized selective forces and gene flow are operating synergistically on genetic 

diversity in natural populations (Linhart & Grant 1996), it is difficult to conclude, 

however, to what extent community diversity represents a barrier against gene flow in R. 

acris populations. Studies linking seed or pollen movements with the diversity of 

communities are lacking in the literature. It is known, however, that diverse communities 

are less invaded by other species (Stirling & Wilsey 2001). 

 

Finally, our results did not detect a significant correlation between the within-

population genetic diversity of R. acris and species diversity (species evenness species 

richness), or between the genetic differentiation of R. acris populations and the difference 

in the species richness. This could be either due to reduced statistical power, or it could be 

that such associations are absent in R. acris populations.  Other plant species in our plant 

communities however might show such associations.  

 

Habitat type effect 
 

The meadow buttercup R. acris grows in different meadow types and inhabits grazed and 

mown habitats (Grime et al. 1988). We aimed also to test whether populations of R. acris 

that grown in agriculturally improved habitats are genetically different from those grown in 

semi-natural habitats. The observed difference in the genetic differentiation between these 

habitats (Table 3, Fig. 3) may suggest that there is no substantial gene flow between these 

habitat types. As we pointed out, these two habitat types differ in both abiotic (e.g. the 

intensity of management and the land use in the past) and biotic factors such as plant 

species composition (see Fig. 1). These factors may act as ecological forces against a 

success exchange of seed or pollen (gene flow) between these habitat types. Management 

regimes and frequent mowing have been shown to influence the genetic variability of some 

plant species (Snaydon & Davies 1982; Snaydon 1987; Kölliker et al. 1998). Moreover a 

study of genetic variation among little bluestem (Schizachyrium scroparium) populations 
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suggested that local site differences in soil characteristics and ecological history can 

promote genetic differentiation (Huff et al. 1998). 

 

We conclude that local selection processes have influenced the genetic diversity of 

R. acris populations. Habitat variability is correlated with apparent genetic differentiation. 

The factors that influence population genetic diversity will become more evident when the 

use of genetic markers are used in parallel with studies that entail the physiological 

characterisation of each genetically distinct types. In turn, causation and the impact of 

distinct traits of individuals must be assessed using experiments that manipulate and 

measure genetic succession in model plant communities.  
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ABSTRACT 
 
The relationship between genetic diversity within a species and species diversity of 
ecological communities is of fundamental importance for biodiversity research and 
conservation biology. We studied the relationship between plant species richness at a site 
and AFLP genetic diversity of populations of Plantago lanceolata in 15 grasslands in 
Central Germany. Within-population AFLP diversity was positively correlated with both 
plant species richness and abundance of P. lanceolata. However, all three variables were 
higher at nutrient-poor sites, and partial correlation analyses indicated, that the relationship 
between plant species richness and genetic diversity of P. lanceolata was indirect through 
ecological site characteristics rather than causal via niche width. Moreover, because higher 
species richness automatically reduces mean abundance per species, such a positive 
relationship may be the exception rather than the rule. In addition, genetic diversity 
between P. lanceolata populations, estimated as ФST genetic distances, was positively 
correlated with the pairwise differences in plant species composition between sites. This 
relationship was best explained by the pairwise differences in ecological conditions across 
sites, which may affect gene flow of P. lanceolata and migration by other grassland 
species in similar ways. We conclude that positive relationships between species diversity 
of ecological communities and genetic diversity of a species can exist both within and 
between sites, and that such relationships do not necessarily indicate causal effects of 
species diversity on ecological niche diversity. 
 

Keywords: AFLP genetic diversity, genetic differentiation, plant species diversity, 
environmental variables, conservation, Plantago lanceolata 
 

INTRODUCTION 

 

The relationship between genetic diversity within a species and species diversity, e.g. 

species richness, of ecological communities is of fundamental importance for biodiversity 
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research and conservation biology. So far, biodiversity at the species level and at the 

genetic level were studied separately. However, diversity at one level may feedback on 

diversity at the other level. For example, if genetic diversity within a population is reduced, 

the population is likely to be at high risk of extinction (Newman and Pilson 1997), which 

in turn may lead to reduction in species diversity of ecological communities. On the other 

hand, higher species diversity at a site may affect the niche space available for a 

constituent population (Whelan 2001), which in turn may influence its genetic diversity. 

For conservation biologists it is important to know whether diversity effects of human 

impacts on habitat quality, e.g. via land use changes, and on habitat quantity, e.g. via 

habitat fragmentation, affect the genetic and species levels of diversity in the same or in 

opposite directions. Moreover, it is important to know whether conservation efforts 

implemented to positively affect one level of diversity are likely to also positively affect 

the other level, or whether there are conservation conflicts between both of these diversity 

levels. 

 

The niche-variation hypothesis suggests that higher habitat diversity results in 

wider ecological niches and therefore may allows genetic diversity within species to 

increase (Dobzhansky 1970). In plants, the geographical range of species has been used as 

indirect measure for ecological niche width (Mitton 1997). Across hundreds of plant 

species, genetic diversity was found to increase with broader geographic and habitat ranges 

(e.g. Hamrick & Godt 1990), which seems to support the niche-variation hypothesis. If 

higher species diversity brings with it higher habitat diversity for constituent populations 

(Whelan 2001), this would suggest that genetic diversity should be higher in sites with 

higher plant species diversity. 

 

Nevertheless, the relationship between genetic diversity and habitat diversity is not 

always found to be positive and related to niche width. Johnson (1973) found a negative 

relationship between allozyme variation and the abundance of sympatric species in 48 

species of Drosophila. Similarly, a negative relationship between species diversity and 

genetic diversity was reported in a study of populations of Plethodontid salamanders, 

Desmognathus fuscus (Karlin et al. 1984). Perhaps higher numbers of closely related 

sympatric species might indicate that the niche is more completely filled, leaving less niche 

space available for genetically variants of a species. Because of the lack of studies directly 

relating plant species diversity to measures of niche diversity or genetic diversity, the 
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relevance of niche variation in the context of the species diversity–genetic diversity 

relationship is not clear.  

 

Moreover, correlation between species and genetic diversity could also be driven 

indirectly via ecological conditions of habitats. Habitats of low productivity may cause an 

increase in species richness and abundance of specialised plants, which may lead to an 

increase in the genetic diversity of specialist populations. On the other hand, an increase in 

species richness may also decrease genetic diversity within a species, because higher 

species diversity is confounded with lower average abundance of a species. 

 

Also between sites, genetic diversity between local populations of a species, i.e. 

population genetic differentiation, may be related to species diversity, i.e. differentiation in 

species composition. Such a relationship can come about if ecological differences similarly 

affect the composition of plant communities and genetic diversity of local populations (e.g. 

Linhart & Grant 1996; Mitton 1997). Moreover, it may come about if ecological 

differences between sites affect both gene flow within species (e.g. Cooper 1998; Lugon-

Moulin et al. 1999) and the rates of extinction and recolonisation of species in similar 

ways. 

 

Here, we studied the relationship between the genetic diversity of Plantago 

lanceolata and plant species diversity within and between 15 grasslands in Central 

Germany. The grasslands all belonged to the phytosociological taxon of the Arrhenaterum, 

but nevertheless varied in species richness and other ecological conditions. We selected 

Plantago lanceolata for this study because it is a typical species of such grassland habitats 

(e.g. Grime 1988; Kuiper & Bos 1992). We measured genetic diversity by using amplified 

fragment length polymorphism (AFLP; Vos et al. 1995), which offers a high resolution 

(Mueller & Wolfenbarger 1999). Specifically, we addressed the following questions: (i) is 

genetic diversity within and between populations of P. lanceolata correlated with grassland 

plant species diversity? (ii) are genetic diversity of populations of P. lanceolata and 

species diversity within and between grasslands correlated with environmental variables? 

and (iii) if so, is the relationship between genetic and species diversity mediated by 

environmental variation rather than being causal via ecological niche diversity? 
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MATERIALS AND METHODS 

 

Study species, study sites, and plant material 

 

Plantago lanceolata L. (Plantaginaceae) is a common rosette perennial herb that 

commonly inhabits base-rich meadows and waysides. Its distribution covers most of 

Europe and Northwestern Asia (Rothmaler 1996). Plantago lanceolata is self-

incompatible, wind-pollinated, and flowers from May through early September (Grime 

1988).  

 

Our study populations of P. lanceolata were randomly selected in a plateau-like 

montane range of the Thuringer Schiefergebirge/Frankenwald in Central Germany. 

Pairwise geographical distances between the populations ranged from 1 to 28 km. The 

vegetation of the semi-natural grasslands varied in plant species composition and richness 

(Odat et al. 2004).  

 

At each of the 15 study sites with P. lanceolata populations, we recorded the 

presence and relative abundance of all higher plant species in an area of 6 x 6 m2 composed 

of four randomly placed separate quadrats of 3 x 3 m2. In some of our study sites the 

abundance of P. lanceolata was so low that it was not present in the recording plots. In 

these cases we scored the abundance of P. lanceolata as zero, although it was of course 

present at the site (see Table 1).   

 

At each site we randomly sampled leaves of 5 to 27 (mean 9) flowering P. 

lanceolata plants and immediately placed them in drying silica gel for transportation to the 

DNA extraction lab. 
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Table 1 Plant community diversity, abundance and gene diversity of Plantago lanceolata and 
means of the Ellenberg indicator values for nutrients and soil reaction for the 15 studied grassland 
sites. Species richness and evenness of higher plants were obtained from records of plant species 
presence and abundance in four randomly selected 3x3 m² plots per site. Genetic diversity of 
Plantago lanceolata was measured by using AFLP (see Methods for details).  

 

 

AFLP diversity 
 

Template genomic DNA from individual plants was prepared as described in detail by 

Krüger et al. (2002). The AFLP procedure was performed according to Vos et al. (1995) 

using the AFLP® Core Reagent Kit (Invitrogen Life Technologies, Karlsruhe, Germany), 

with a few modifications as outlined in Odat et al. (2004). After a survey of 40 plants from 

five populations with 26 primer pairs we used four selective primer pairs (EcoRI-

AAC/MseI-CCT, EcoRI-AAG/ MseI-CCG, EcoRI-AGG/ MseI-CAA, EcoRI-AAG/ MseI-

CGA) (MWG Biotech AG, Ebersberg, Germany) to screen all 142 plants.  

 

 

 

 

 
Site 

 
Plant 
species 
richness 

 
Plant 
species 
evenness 

 
Abundance 
of Plantago 
lanceolata 

 
Gene 
diversity of 
Plantago 
lanceolata 
(SD) 

 
Nutrients - 
N 

 
Soil reaction 
- R  

       
1 26 0.238 0.00 0.191 (0.203) 6.265 5.880 
2 24 0.215 0.00 0.190 (0.211) 6.406 6.566 
3 33 0.234 9.50 0.221 (0.209) 6.348 5.418 
4 31 0.205 0.00 0.156 (0.206) 6.869 6.449 
5 21 0.195 0.00 0.188 (0.212) 7.139 6.091 
6 38 0.292 13.00 0.221 (0.206) 3.946 4.343 
7 33 0.397 11.25 0.208 (0.205) 4.251 4.829 
8 38 0.249 14.25 0.230 (0.205) 4.498 4.910 
9 36 0.228 2.25 0.312 (0.167) 3.642 4.143 
10 37 0.269 17.50 0.256 (0.197) 5.165 4.736 
11 36 0.260 11.75 0.214 (0.207) 4.912 4.459 
12 24 0.220 0.00 0.235 (0.203) 6.176 5.393 
13 33 0.210 0.00 0.207 (0.208) 5.971 4.876 
14 31 0.240 21.25 0.245 (0.207) 3.859 4.439 
15 28 0.227 5.50 0.218 (0.206) 3.566 4.289 
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Statistical analysis 

 
Genetic diversity of Plantago lanceolata within and between populations 
 

We established the presence-absence (1/0) matrix of amplified AFLP bands for each of the 

142 plants with the help of RFLPscanTM version 2.1 (Scanalytics, Inc.). We estimated 

within-population genetic diversity of P. lanceolata as gene diversity HE after Nei (1973) 

with the software POPGENE (Yeh et al. 1997).  

 

To estimate genetic differentiation between populations of P. lanceolata we 

calculated pairwise genetic distances ФST (an analogue of FST) with analysis of molecular 

variance (AMOVA; Excoffier et al. 1992).  

 

Plant community diversity within and between study sites 
 
We quantified species diversity at each site as species richness and species evenness. We 

estimated evenness (Evar), which is based on the variance in species abundance and is 

independent of species richness, according to Smith & Wilson (1996) as 

 

Evar = 1 – (2 ⁄ π) arctan 
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where S is the number of species in a community and Xk is the abundance of the kth 

species. With the software PC-ORD, we calculated a Bray-Curtis coefficient used as 

distance measure in a pairwise 15 x 15 matrix of grassland communities based on the 

difference in relative abundances of all species across sites (Faith et al. 1987).  

 

Ecological conditions at sites and differences between sites 
 

To characterise ecological conditions at each study site, we calculated means of 

Ellenberg´s indicator values for light, temperature, continentality, moisture, soil reaction 

and nutrient levels (Ellenberg et al. 1992). To describe ecological conditions between pairs 

of sites we calculated a 15 x 15 Euclidian distance matrix based on the six-dimensional 

space spanned by the Ellenberg coordinates. 
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Relationship between genetic diversity of Plantago lanceolata and plant community 

diversity  

 

To test for a relationship between genetic diversity of P. lanceolata within populations and 

plant community diversity (species richness and species evenness) within sites we used 

Spearman's rank coefficient (Table 1). To test whether such a relationship is likely to be 

causal, we also tested whether gene diversity was related to the abundance of P. 

lanceolata, and whether it was related to any of Ellenberg’s indicator values. We used 

partial correlations to test how the observed relationship between AFLP diversity and 

species diversity changed after correction for these potential determinants of AFLP genetic 

diversity. 

 

To test for a relationship between genetic diversity of P. lanceolata between 

populations and plant community diversity between sites we did Mantel tests (Mantel 

1967) with the software ZT (Bonnet & Van de Peer 2002). First, we tested the relationship 

between the 15 x 15 matrix of pairwise genetic distances (ФST) between P. lanceolata 

populations and the 15 x 15 matrix of pairwise distances in plant community composition 

(Bray-Curtis coefficient) with a simple Mantel test (Mantel 1967). To test whether this 

relationship could have been due to geographical distances or to ecological differences, we 

also tested the relationships of pairwise genetic and community distances with geographic 

distances and with ecological distances with Mantel tests. Finally, to test the relationship 

between genetic and plant community distances independent of possibly confounding 

effects of geographic or ecological distances, we performed partial Mantel tests (Manly 

1997). 

 

RESULTS 

 
Genetic diversity of Plantago lanceolata within and between populations 
 

The four selective primer pairs enabled us to score 259 AFLP loci, of which 59.79% were 

polymorphic. Gene diversity HE within the studied populations of P. lanceolata ranged 

from 0.156 to 0.312 (Table 1). 
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Analysis of molecular variance AMOVA revealed significant genetic differentiation 

among populations (9.70% of variance between populations, global ФST = 0.097, P < 

0.0001), although within-population genetic variation (90.30%) was very high.  Pairwise 

genetic distances ФST between populations of P. lanceolata ranged from 0.004 to 0.208. Of 

the 105 pairwise genetic distances between populations 101 were statistically significant 

(Table 2).  

 
Table 2 Pairwise distances in genetic diversity of Plantago lanceolata (ФST, measured with 
AFLP, below diagonal) and in plants community composition (measured as Bray-Curtis 
coefficient, above diagonal) between the 15 studied grassland sites. Significant pairwise genetic 
distances are indicated in bold  

 

 
Site 

 
1 
 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
1 

 
— 

 
0.181 

 
0.701 

 
0.607 

 
0.589 

 
0.872 

 
0.886 

 
0.824 

 
0.952 

 
0.754 

 
0.763 

 
0.739 

 
0.564 

 
0.916 

 
0.946 

2 0.140 — 0.711 0.573 0.614 0.884 0.893 0.824 0.958 0.758 0.769 0.759 0.573 0.922 0.955 

3 0.054 0.092 — 0.700 0.706 0.817 0.796 0.711 0.849 0.501 0.675 0.710 0.631 0.809 0.817 

4 0.084 0.158 0.100 — 0.627 0.752 0.857 0.784 0.935 0.764 0.793 0.784 0.719 0.883 0.933 

5 0.116 0.155 0.114 0.087 — 0.875 0.933 0.868 0.963 0.792 0.786 0.741 0.685 0.946 0.971 

6 0.135 0.199 0.144 0.167 0.136 — 0.409 0.402 0.569 0.615 0.567 0.772 0.707 0.413 0.476 

7 0.110 0.186 0.108 0.146 0.132 0.034 — 0.282 0.437 0.595 0.614 0.811 0.646 0.387 0.368 

8 0.131 0.208 0.147 0.156 0.126 0.069 0.032 — 0.491 0.530 0.502 0.705 0.581 0.332 0.386 

9 0.084 0.118 0.075 0.096 0.082 0.064 0.050 0.053 — 0.600 0.586 0.891 0.744 0.414 0.289 

10 0.133 0.151 0.099 0.157 0.127 0.099 0.098 0.115 0.017 — 0.380 0.626 0.550 0.445 0.635 

11 0.150 0.169 0.112 0.170 0.159 0.110 0.120 0.135 0.029 0.004 — 0.551 0.674 0.403 0.575 

12 0.131 0.175 0.124 0.155 0.130 0.097 0.099 0.084 0.051 0.059 0.098 — 0.560 0.788 0.856 

13 0.134 0.208 0.148 0.149 0.133 0.110 0.132 0.102 0.062 0.097 0.113 0.063 — 0.684 0.736 

14 0.134 0.146 0.124 0.144 0.103 0.086 0.113 0.094 0.037 0.030 0.060 0.021 0.048 — 0.321 

15 0.153 0.193 0.138 0.175 0.156 0.092 0.125 0.132 0.059 0.066 0.084 0.032 0.066 0.039 — 

 

Relationship between genetic diversity of Plantago lanceolata and plant community 
diversity within sites  
 

Within-population gene diversity HE of P. lanceolata was significantly positively 

correlated with plant species richness (N = 15, Spearman’s r = 0.516, P = 0.049; Fig. 1a, 

Table 1) and marginally positively significantly with species evenness at a site (N = 15, 

Spearman’s r = 0.486, P = 0.066). HE was significantly higher at sites with lower Ellenberg 

reaction value, with lower Ellenberg nutrient values, and with higher abundance of P. 

lanceolata, and these three measures were highly significantly correlated with each other 

(Table 3). 
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In partial correlations, where we corrected for variation in Ellenberg reaction values, 

Ellenberg nutrient values, or abundance of P. lanceolata the relationship between AFLP 

genetic diversity and species diversity was weak and non-significant.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Relationship between plant community diversity and AFLP genetic diversity of Plantago 
lanceolata within and between 15 grassland sites. (a) Relationship between plant species richness 
and gene diversity (HE) of Plantago lanceolata within 15 grassland sites (Spearman’s r = 0.516, P 
= 0.049). (b) Relationship between pairwise distances in plant community composition (Bray-
Curtis coefficient) and pairwise genetic differentiation ФST (Mantel rM = 0.433 P = 0.0009) between 
study sites. For details on measures of diversity and distances see methods. 

20 25 30 35 40
0.15

0.18

0.21

0.24

0.27

0.30

0.33

A
FL

P 
ge

ne
tic

 d
iv

er
si

ty
 H

E

Plant species richness

a)

0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

0.25

Pa
irw

is
e 

ge
ne

tic
 d

is
ta

nc
e 
Φ

ST

Bray-Curtis distance in plant community composition

b)



CHAPTER FOUR: ARTICLE 3 
Genetic diversity of Plantago lanceolata L. 

 62

Table 3 Spearman’s rank correlations between gene diversity of Plantago lanceolata, species 
diversity (number and evenness), abundance of Plantago lanceolata, and site means of six 
ecological indicator values (Ellenberg 1992) for the 15 study sites in Central Germany. The values 
are correlation coefficients; P-values are given in parentheses. * < 0.05; ** <0.01; *** <0.001   
 

 
 
 
Relationship between genetic diversity of Plantago lanceolata and plant community 
diversity between sites  
 

The matrix of pairwise genetic distances ФST between P. lanceolata populations was 

significantly positively correlated with the matrix of pairwise distances of plant community 

composition (Simple Mantel’s rM = 0.433, P = 0.0009). 

 

Both genetic (Simple Mantel’s rM = 0.641, P = 0.0001) and plant community 

distances (Simple Mantel’s rM = 0.438, P = 0.0029) between sites were significantly 

positively correlated with the matrix of pairwise geographical distances between sites. 

Moreover, matrices both of genetic (Simple Mantel’s rM = 0.470, P = 0.0019) and of 

community distances (Simple Mantel’s rM = 0.846, P = 0.0009) between sites were 

significantly positively correlated with the matrix of pairwise ecological distances between 

sites. When we controlled for the effect of geographic distances using a partial Mantel test, 

the positive relationship between the distance matrices of pairwise genetic ФST and plant 

community (Bray-Curtis coefficient) was maintained (Partial Mantel’s rM = 0.220, P = 

0.031). However, when we controlled for the effect of ecological distance the positive 

relationship between the distance matrices of pairwise genetic ФST and plant community 

was weak and non-significant (Partial Mantel’s rM = 0.074, P = 0.304). 
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Gene diversity of 
Plantago lanceolata 

 
0.300 

(0.277) 

 
-0.483 
(0.068) 

 
-0.298 
(0.280) 

 
0.166 

(0.554) 

 
-0.683 

(0.005)** 

 
-0.651 

(0.009)** 

 
Plant species number 

 
0.460 

(0.084) 

 
-0.290 
(0.295) 

 
0.036 

(0.899) 

 
0.239 

(0.391) 

 
-0.556 

(0.031)* 

 
-0.509 

(0.053)* 
 
Plant species 
evenness 

 
0.286 

(0.302) 

 
-0.418 
(0.121) 

 
0.204 

(0.467) 

 
0.107 

(0.704) 

 
-0.521 

(0.046)* 

 
-0.564 

(0.028)* 

 
Abundance of  
Plantago lanceolata 

 
0.431 

(0.125) 

 
-0.559 

(0.030)* 

 
0.140 

(0.618) 

 
0.275 

(0.322) 

 
-0605 

(0.017)* 

 
-0.620 

(0.014)* 
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DISCUSSION 

Relationship between genetic diversity of Plantago lanceolata and plant community 
diversity within sites 
 

The high proportion of 90.30% of the AFLP genetic variation in P. lanceolata within 

rather than between populations corresponds well with the outcrossing mating system of 

this common and widespread wind-pollinated perennial plant species (Loveless & Hamrick 

1984; Hamrick & Godt 1990; Richter et al. 1994).  

 

Within-site AFLP genetic diversity of P. lanceolata was positively correlated with 

species richness (Fig. 1a), a pattern that has been not reported for plants before. This 

finding contradicts the prediction that in highly diverse communities, ecological niche 

space is filled and does not allow for genetically diverse populations. At first sight, it is 

consistent with the idea that higher species diversity brings with it more variable niche 

space, which in turn might lead to higher genetic population diversity, as suggested earlier 

for higher habitat diversity (Hedrick et al. 1976; Linhart & Grant 1996).  

 

However, we also tested, whether species diversity was confounded with habitat 

quality, and whether habitat quality was likely to affect genetic population diversity. 

Species richness turned out to be higher at more nutrient poor and less acidic sites, as is 

commonly observed in grasslands (Ellenberg 1996). The abundance of P. lanceolata was 

also higher at such sites. Corresponding to the situation in many other species (e.g. 

Frankham 1996), population genetic variation was higher at sites with higher abundance of 

P. lanceolata. This suggests that the correlation between species richness and genetic 

diversity observed in our study appears to be indirect rather than causal. Indeed, when we 

took habitat quality into account in partial correlations, the correlation between species 

richness and genetic diversity disappeared.  

 

In our study, the positive relationship between species diversity and genetic 

diversity of P. lanceolata turned out to be mediated by abundance of P. lanceolata. 

However, only few species may have increased abundance at sites with higher species 

diversity because higher species richness automatically reduces mean abundance per 

species. Thus, in other species also negative relationships may be found. 
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Relationship between genetic diversity of Plantago lanceolata and plant community 
diversity between sites 
 

Between sites, pairwise genetic distances between Plantago populations were positively 

correlated with pairwise differences between sites in species composition (Fig. 1b). 

Moreover, both distance measures were also positively correlated with geographic 

distances between sites and with ecological distances between sites. Partial Mantel tests 

showed, that the positive relationship between genetic distance and community distance 

was best explained by pairwise ecological differences between sites. 

 

As AFLP markers are considered to be selectively neutral it is unlikely that this 

came about because plant community diversity was shaped by forces that simultaneously 

exerted selection on the genetic diversity of P. lanceolata. However, it would be 

interesting to test this interesting hypothesis with quantitative genetic methods rather than 

with selectively neutral markers such as AFLPs (Storfer 1996). Alternatively, ecological 

differences between sites may affect both gene flow, which shapes genetic population 

differentiation (Linhart & Grant 1996; Cooper 1998; Lugon-Moulin et al. 1999), and the 

pattern of local extinctions and colonisations, which shape community differences between 

sites, in similar ways. 
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ABSTRACT 

Habitat heterogeneity has the potential to affect genetic diversity within and between local 
populations of a species. In this study, the effects of biotic and abiotic habitat heterogeneity 
on genetic diversity of Plantago lanceolata and Anthoxanthum odoratum were 
investigated. We particularly asked the following questions: (1) what is the level of genetic 
diversity within and between the local populations of these two species, (2) is genetic 
diversity correlated with biotic and abiotic characteristics of grassland sites, (3) is habitat 
heterogeneity influence the local abundances, and therefore, (4) is genetic diversity 
influenced directly by habitat characteristics or indirectly through local abundance of the 
two species. In both species abundant genetic diversity was present at the level of within 
and between the local populations, reflecting their characteristics such as mating system 
and their ecological distribution. The results also showed that both biotic and abiotic 
habitat variability influence the abundance and the genetic diversity within and between 
the local populations of P. lanceolata but not A. odoratum.     
 

Keywords: genetic diversity, AFLP, habitat heterogeneity, grasslands diversity, Plantago 
lanceolata, Anthoxanthum odoratum 
 

INTRODUCTION 

 

In central Europe human impact on ecosystems nowadays has largely influenced 

biodiversity through changes in land use and habitat fragmentation. Consequently, many 

species become restricted in distribution with small and isolated populations which 

eventually increase the chance of extinction (e.g. Menges 1992; Vitousek 1994).    

 

Such disturbance of natural habitats and the influence of landscape diversity have 

the potential to influence species diversity and eventually the genetic diversity within a 
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species. The loss of genetic diversity and fixation of deleterious alleles by genetic drift is 

most likely to increase by decreasing the population size of a species as a result of habitat 

fragmentation (Barrett & Kohn 1991; Boyce 1992; Ellstrand & Elam 1993; Young et al. 

1996).  

 

Biotic and abiotic habitat heterogeneity often influences the distribution and the 

diversity of species. According to “habitat heterogeneity” hypothesis (e.g. MacArthur & 

Wilson 1967; Lack 1969), complex diverse habitats may provide more niches and diverse 

ways of exploiting environmental resources and thus increase species diversity (Bazzaz 

1997).   

 

The genetic diversity within a species seems to be related to the variability and the 

quality of habitats (e.g. Linhart & Grant 1996; Hedrick et al. 1976). According to the 

“niche-variation” hypothesis increasing habitat variability results in an increase in the 

width of ecological niches and therefore leads to increase in the genetic diversity within a 

species (Dobzhansky 1970). In plants, the geographical range of a species could be used as 

indirect measure for the width of ecological niches (Mitton 1997). Data from hundreds of 

plant species indicated that genetic diversity increases with broader geographic and habitat 

range (e.g. Hamrick & Godt 1990). However, negative correlation between genetic 

diversity and species diversity has been also reported. For example, Johnson (1973) found 

a negative relationship between allozyme variation and the abundance of sympatric species 

in 48 species of Drosophila. A similar negative relationship between species diversity and 

genetic diversity was reported in a study of local populations of Plethodontid salamanders, 

Desmognathus fuscus (Karlin et al. 1984). The number of closely related sympatric species 

here could be considering as one measure of the niche breadth of a species (Mitton 1997).   

 

Although, the relationship between habitat diversity and species diversity is well 

documented (e.g. Tews et al 2004), less attention has paid to the influence of habitat 

diversity on the genetic diversity within a species. In the present study, the relative effects 

of biotic and abiotic habitat heterogeneity on genetic diversity of Plantago lanceolata and 

Anthoxanthum odoratum were investigated. The two species were chosen as they differ in 

life form and other characteristics. Also these two species are common and typical plants 

of grassland systems of Germany and of Europe in general (Grime 1988). We particularly 

asked the following questions: (1) what is the level of genetic diversity within and between 
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the local populations of the two species, (2) is genetic diversity in these two species 

correlated with biotic and abiotic characteristics of grassland sites, (3) is habitat 

heterogeneity influence the local abundances, and therefore, (4) is genetic diversity 

influenced directly by habitat characteristics or indirectly through local abundance of these 

species.    

 
 
MATERIALS AND METHODS 
 
Study species and sites 
 

We studied the genetic diversity of fifteen local populations of Plantago lanceolata L. 

(Plantaginaceae) and nine populations of Anthoxanthum odoratum L. (Poaceae). Plantago 

lanceolata is a perennial herb that commonly inhabits meadows and roadsides. P. 

lanceolata is self-incompatible, wind-pollinated and flowers from May through early 

September (Hegi 1982). A. odoratum is a small perennial bunchgrass and is dispersed by 

wind (Hegi 1982). Both species have a distribution nearly all over Europe and 

Northwestern Asia (Rothmaler 1996). At each study site we randomly sampled leaves of 5 

to 27 (mean 9) flowering plants and immediately placed them in drying silica gel for 

transportation to the DNA extraction lab in Jena. To study genetic diversity we used 

amplified fragment length polymorphisms AFLP (Vos et al. 1995). Information about 

DNA extraction, AFLP protocol, primers and the chemical regents used are given in detail 

in Odat et al. (2004).   

 
Data analysis  
 

To estimate the AFLP genetic diversity within populations we used gene diversity (HE) 

according to Nei (1973): 

∑−= 21 iE PH ,  

where Pi is the population frequency of each allele (1 and 0) at locus i. The average genetic 

diversity is then calculated as the average of this quantity across all loci studied. To 

estimate genetic differentiation between populations of P. lanceolata we calculated 

pairwise genetic distances and calculated analysis of molecular variance (AMOVA; 

Excoffier et al. 1992) for partitioning the total genetic diversity into within and between 

populations levels.  



CHAPTER FIVE: ARTICLE 4 
Habitat heterogeneity and genetic diversity  

 71

 At each site we determined species richness, species evenness, and the difference in 

relative abundances of all species at sites using a Non-Metric Multidimensional Scaling 

(NMDS) ordination technique (Perner et al. submitted), see Table 1. NMDS is an iterative 

search for a ranking and placement of n entities (samples) in k dimensions (ordination 

axes) that minimizes the k-dimensional configuration. NMDS ordination was based on 

square-root-transformed cover data. For the calculation we used the program PC-ORD 

(McCune & Mefford 1997). As a distance measure, the Bray-Curtis coefficient was used 

(also known as Sørensen or Czekanowski coefficient), which is one of the most robust 

measures for this purpose (Perner et al. submitted).  

 
 
Table 1 The grassland study sites at which Plantago lanceolata was collected. Values of species 
richness, species evenness and abundance of Plantago lanceolata were obtained from records of 
plant species presence and abundance in four randomly selected 3x3 m² plots per site. NMDS1 and 
NMDS2 are the ordinations that derived from the Non-Metric Multidimentional Scaling method to 
characterise the variation in plant compositions at sites (see Methods).  

 

 

For abiotic factors at each site, the following soil parameters were determined 

(Table 2): soil pH (pH; mean: 5.5±0.55 SE), total concentrations of soil nitrogen (Ntotal; 

mean: 4.1±0.65 SE mg/g ), soil carbon (Ctotal; mean: 49.5±10.84 SE mg/g), extractable 

phosphorus (Ptotal; mean: 0.04±0.07 SE mg/g), extractable ion concentrations of potassium 

(K+; mean: 0.05±0.05 mg/g), calcium (Ca2+; mean: 1351.2±0.69 SE mg/g), magnesium 

Site NMDS1 NMDS2 Species 
richness 

Species 
evenness

Abundance 
of P. lanceolata 

Genetic diversity  
of P. lanceolata 

1 1.280 0.327 26 0.238 0.00 0.191 
2 1.123 0.230 24 0.215 0.00 0.190 
3 0.683 -0.498 33 0.234 9.50 0.221 
4 1.291 -0.182 31 0.205 0.00 0.156 
5 1.075 1.126 21 0.195 0.00 0.188 
6 -0.781 -0.294 38 0.292 13.00 0.221 
7 -0.947 -0.354 33 0.397 11.25 0.208 
8 -0.669 -0.195 38 0.249 14.25 0.230 
9 -1.586 -0.442 36 0.228 2.25 0.312 
10 -0.384 -0.156 37 0.269 17.50 0.256 
11 -0.299 -0.242 36 0.260 11.75 0.214 
12 -0.117 0.997 24 0.220 0.00 0.235 
13 -0.175 0.642 33 0.210 0.00 0.207 
14 -0.970 -0.558 31 0.240 21.25 0.245 
15 -1.065 -0.554 28 0.227 5.50 0.218 
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(Mg2+; mean: 0.23±0.14 SE mg/g), and sulfate (SO42-; mean: 0.03±0.01 SE g/mg), as well 

as the amount of mineralized nitrogen (Nmin; mean: 3.0±2.93 SE g/mg) and the carbon- 

nitrogen ratio (C:N; mean: 14.0±1.84 SE g/mg). A detailed description of the data 

sampling and the analytical methods is found in Kahmen et al. (subm.). We used Principal 

component analysis (PCA) based on a correlation matrix of all abiotic environmental 

variables to separate and condense variables into orthogonal components. To achieve more 

interpretable results from initial components we used a quartimax rotation to maximise 

separation. Two components (PCA1 and PCA2) were further included as independent 

variables in order to test the best predictor of genetic diversity of the two species (Table 3). 

 
Table 2 Means abiotic soil characteristics of the study sites. These measures were obtained based 
on four sub samples of soils collected in 20 cm X 50 cm.  

 

 
 
 
 
 
 
 
 
 
 
 
 

site NO3 NH4 Nmin K Mg Na P S Ca C N C/N pH 
1 2.64 4.44 7.08 254.45 310.41 133.15 34.88 13.72 1.51 44.45 4.15 12.48 6.00
2 0.89 5.20 6.09 127.85 291.62 123.28 56.43 13.24 1.57 43.46 4.08 12.42 6.11
3 0.55 4.28 4.83 47.54 256.07 220.81 16.08 17.18 1.10 39.80 3.62 12.80 6.01
4 0.84 5.02 5.86 45.64 326.19 136.57 20.52 18.00 1.14 34.68 3.67 11.00 5.72
5 2.81 4.62 7.43 58.19 495.67 136.39 66.56 18.79 1.58 53.68 5.16 12.11 6.28
6 0.07 4.92 4.99 38.78 316.27 149.71 11.07 13.00 1.31 52.70 4.47 13.75 5.79
7 0.34 3.04 3.38 50.45 89.59 171.11 16.81 23.52 0.81 54.38 4.94 12.83 5.03
8 0.14 3.94 4.08 49.81 81.65 158.17 12.87 15.55 1.35 59.93 5.30 13.19 5.55
9 0.17 4.43 4.60 47.99 75.51 177.27 28.41 34.33 0.43 71.62 6.59 12.68 4.46
10 0.15 5.95 6.09 57.99 142.64 168.49 22.66 33.37 0.78 67.43 6.25 12.59 4.80
11 0.16 3.54 3.70 154.44 113.60 143.18 18.89 23.46 0.66 44.22 4.18 12.31 5.11
12 0.54 3.89 4.43 68.17 111.92 146.95 38.47 25.41 0.61 41.78 4.06 11.98 5.01
13 0.56 3.29 3.85 378.97 94.96 126.13 50.36 23.23 0.81 45.04 3.93 13.32 5.27
14 0.15 3.89 4.04 42.86 88.02 150.50 26.03 21.60 1.12 55.91 4.56 14.29 5.40
15 0.05 2.95 3.01 48.25 66.88 178.56 18.95 33.01 0.64 70.97 5.45 15.19 5.01
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Table 3 Factor loadings of a Principle Components Analysis (PCA) used to separate and condense 
explanatory abiotic variables into orthogonal components. A quartimax rotation method was used 
to maximise separation of variables.      

 

 

RESULTS 

Genetic diversity of Plantago lanceolata and Anthoxanthum odoratum within and 
between grassland sites 
 

For P. lanceolata the four selective primer pairs enabled us to score 259 AFLP loci, of 

which 59.79 % found to be polymorphic. Gene diversity HE within the studied populations 

of P. lanceolata ranged from 0.156 to 0.312 (Table 1). Within population genetic diversity 

of P. lanceolata and its abundance at a site were positively correlated (r = 0.642, P = 0.01). 

For A. odoratum we scored 249 loci using three primer pairs, and the genetic diversity 

within populations ranged from 0.262 to 0.384 (Table 4).  

 

 

 

 

 

 

 

 

 PCA-1 PCA-2 

NO3 0.789 0.178 
NH4 0.456 0.673 
NMIN 0.804 0.540 
K 0.265 -0.553 
Mg 0.877 0.308 
Na -0.543 0.217 
P 0.560 0.063 
S -0.787 0.296 
Ca 0.840 0.109 
C -0.670 0.573 
N -0.558 0.733 
C/N -0.536 -0.133 
pH 0.886 -0.067 
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Table 4 The grassland study sites at which Anthoxanthum odoratum was collected. Values of 
species richness, species evenness and abundance of Anthoxanthum odoratum were obtained from 
records of plant species presence and abundance in four randomly selected 3x3 m² plots per site. 
NMDS1 and NMDS2 are the axes from Non-Metric Multidimensional Scaling (NMDS) 
ordination technique which explain the difference in relative abundances of all plant 
species at sites 

 

 

The analysis of molecular variance AMOVA revealed significant genetic 

differentiation among populations of both P. lanceolata (9.70 % of variance between 

populations, global ФST = 0.097, P < 0.0001), and A. odoratum (5.9 %, ФST = 0.059; P < 

0.001).  Pairwise genetic distances between populations of P. lanceolata ranged from 

0.004 to 0.208, and from 0.022 to 0.119 for A. odoratum. Table 5 gives the distribution and 

diversity of AFLP bands in both plant species. 

 

Table 5 Distribution of population genetic parameters within and between populations of Plantago 
lanceolata and Anthoxanthum odoratum. 
 

 Plantago lanceolata Anthoxanthum odoratum 
Number of populations 15 9 
Number of individuals 142 121 
Number of bands 259 249 
% of Polymorphic bands 59.79 86.64 
% of Monomorphic bands 40.21 13.54 
Genetic variation within 
population 

90.30 94.1 

Genetic variation between 
populations 

9.70 5.9 

 

 

 

 

site Species 
richness 

Species 
evenness 

Genetic 
diversity  

abundance NMDS1 NMDS 2 

1 31 0.2787 0.384 58.750 0.368 -0.226 
2 33 0.234 0.281 62.500 0.683 -0.498 
3 33 0.397 0.262 21.250 -0.947 -0.354 
4 36 0.228 0.356 27.500 -1.586 -0.442 
5 37 0.269 0.319 20.000 -0.384 -0.156 
6 36 0.260 0.330 32.500 -0.299 -0.242 
7 47 0.3146 0.382 22.500 -0.264 -0.092 
8 24 0.220 0.370 10.500 -0.117 0.997 
9 33 0.210 0.333 19.250 -0.175 0.642 
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Effects of biotic and abiotic habitat heterogeneity on genetic diversity within 
populations of Plantago lanceolata and Anthoxanthum odoratum   
 

Within-population gene diversity HE of P. lanceolata was significantly positively 

correlated with plant species richness (N = 15, Spearman’s r = 0.516, P = 0.049) and 

marginally positively significantly with species evenness at a site (Spearman’s r = 0.486, P 

= 0.066). For Plantago lanceolata NMDS1 and NMDS2, which explain differences in the 

relative abundances of plant species between sites were negatively correlated with both 

genetic diversity within populations and with the abundance of P.lanceolata at a site 

(Table 6). Moreover, higher genetic diversity and abundance of P. lanceolata was present 

on the sites with lower NO3, Mg, Na, Ca, Ctotal, Ntotal, and pH (Table 7).  

 

The first two axes of PCA of abiotic variables (Table 2; Figure 2) accounted for 

more than 50% of the total variance. The first axis (46.8%) was negatively correlated with 

both the genetic diversity and the abundance of P. lanceolata (Table 8). Axis 2 was neither 

correlated with genetic diversity nor with the abundance. 

 

Table 6 Correlation between genetic diversity and abundance of Plantago lanceolata and the biotic 
conditions at sites. Values are correlation coefficients and P values are between parentheses, 
boldface indicates significance P values.  
 

 NMDS1 NMDS2 Species 
richness 

Species evenness 

Genetic diversity of 
Plantago lanceolata      

-0.707 -0.443 0.516 0.486 

                     (0.003) (0.098) (0.049) (0.066) 
Abundance of 
Plantago lanceolata   

-0.640 -0.634 0.703  0.804 

  (0.010) (0.011) (0.003)  (0.003) 
 

Table 7 Correlation between genetic diversity and abundance of Plantago lanceolata and the 
abiotic conditions at sites. Values are correlation coefficients and P values are given in parentheses.  
  

 NO3 NH4 NMIN K Mg Na P S Ca C N C/N pH 

Genetic 
diversity of P. 
lanceolata 

-0.6 -0.1 -0.2 -0.3 -0.6 0.6 -0.3 0.47 -0.58 0.5 0.5 0.4 -0.6 

  (0.001) (0.72) (0.38) (0.18) (0.02) (0.01) (0.28) (0.08) (0.02) (0.03) (0.06) (0.14) (0.009) 

Abundance of 
P. lanceolata 

-0.8 -0.1 -0.3 -0.5 -0.4 0.6 -0.7 0.1 -0.1 0.5 0.5 0.5 -0.3 

  (0.001) (0.77) (0.24) (0.06) (0.16) (0.02) (0.001) (0.69) (0.60) (0.06) (0.08) (0.03) (0.30) 
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Figure 2 Ordination of the grassland sites (dots) along the two axes extracted by a PCA analysis 
based on 13 abiotic habitat variables measured at each site.   
 

 

The within-population genetic diversity of A. odoratum was not correlated with the 

species richness (r = -0.119; P = 0.760) and the species evenness (r = -0.100; P = 0.798) of 

plant communities (Figure 3). Additionally, genetic diversity was not significantly 

correlated with the relative abundance of A. odoratum at site (r = -0.017; P = 0.966; Figure 

4) Moreover, variation in the relative abundances of plants at sites as estimated based on 

NMDS1 and NMDS2 did not explain the variation in genetic diversity and the abundance 

of A. odoratum. The genetic diversity of A. odoratum also was not influenced by the 

variation in abiotic characteristics of sites.       
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Figure 3 correlations between the genetic diversity of Anthoxanthum odoratum and (A) species 
richness and (B) species evenness of plant communties.  
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Figure 4 Correlation between the genetic diversity and abundance of Anthoxanthum odoratum.  
 
 
 
 
Table 8 Correlation between the genetic diversity and abundance of Plantago lanceolata and the 
two principle component axes derived based on abiotic factors of study sites. Values are correlation 
coefficient and P value is given in parenthesis. Significant P value is indicated by boldface.    
 
 PCA-1 PCA-2
Genetic diversity of 
Plantago lanceolata 

-0.664 0.150

  (0.007) (0.594)
Abundance of Plantago 
lanceolata 

-0.551 0.118

 (0.033) (0.675)
 
 
 
Relationship between genetic diversity of Plantago lanceolata and Anthoxanthum 
odoratum and plant community diversity between sites  
 

The matrix of pairwise genetic distances between P. lanceolata populations was 

significantly positively correlated with the matrix of pairwise distances of plants 

community composition (Simple Mantel’s rM = 0.433, P = 0.0009) but not with A. 

odoratum (rM = 0.176; P > 0.05). For P. lanceolata both genetic (Simple Mantel’s rM = 

0.641, P = 0.0001) and plant community distances (Simple Mantel’s rM = 0.438, P = 

0.0029) between sites were significantly positively correlated with the matrix of pairwise 
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geographical distances between sites, and with the matrix of pairwise ecological distances 

based on the abiotic factors between sites. For A. odoratum the matrix of genetic distance 

however was correlated with the matrix of geographical distances between site (rM = 0.342; 

P = 0.023). For Plantago when the effect of geographic distances is controlled by using a 

partial Mantel test, the positive relationship between the distance matrices of pairwise 

genetic and plant community (Bray-Curtis coefficient) was maintained (Partial Mantel’s rM 

= 0.220, P = 0.031). Nevertheless, when the effect of ecological distance was controlled 

the positive relationship between the distance matrices of pairwise genetic and plant 

community was weak and non-significant (Partial Mantel’s rM = 0.074, P = 0.304).  

 
 
DISCUSSION 
 

In plants genetic diversity and its spatial distribution within and between populations are 

varied from one species to another and are influenced by several characteristics such as life 

history traits, breeding system, dispersal mechanism and historical events (Hamrick & 

Godt 1990). In chapter 3, it is shown that the variation in plant communities across sites 

affected the population genetic structure of the buttercup plant Ranunculus acris, an insect 

pollinated plant (Odat et al. 2004). However, the relationship between the AFLP variation 

within populations and the species diversity at a site was not found in this particular 

species.  

 

In the present study we tested this relationship using a different plant species, P. 

lanceolata, and show for the first time to our knowledge, at least in plants, that both within 

and between populations AFLP genetic diversity is significantly correlated with the plant 

community diversity. Such positive correlation between the gene diversity within P. 

lanceolata populations and species diversity at a site is may be due to the localised 

selective forces imposed by different plant communities.  This finding seems to be in 

agreement with theoretical and empirical studies suggesting a positive relationship between 

genetic diversity within a species and habitat variability (Hedrick et al. 1976; Linhart & 

Grant 1996; Gram & Sork 2001; Nevo 2001). However, our study is different from 

previous ones in that the diversity of habitats here is measured directly in the field (by 

characterising biotic and abiotic characteristics of sites) at small local scales, rather than 

inferred from the degree of the geographic distribution, successional status, or the degree 

of specialisation (e.g. Hamrick & Godt 1990; Mitton 1997).  
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It is shown also in this paper that the population genetic structure of P. lanceolata is 

significantly correlated with pairwise differences in grassland communities and 

geographical distances across sites. However and interestingly, when the effect of 

geographical isolation is disentangled, the correlation between diversity in plant 

communities between sites and the genetic differentiation of P. lanceolata populations 

remains significant. Two processes may account for the effect of community diversity on 

the genetic structuring of P. lanceolata populations we observed in this study. First, 

different communities may be produce different selective forces, and these, in turn may 

shape the genetic heterogeneity between local populations of a species (e.g. Linhart & 

Grant 1996). Second, ecological variation often creates barriers that probably influence 

gene flow, thereby shaping patterns of population-genetic structuring (Cooper 1998; 

Lugon-Moulin et al. 1999). Direct measure of gene flow in relation to habitat diversity is 

lacking from this debate and merit further investigation.  

 

While we are aware that correlations between genetic diversity within and between 

population and the community diversity such as those we presented in this study do not 

demonstrate cause and effect relationship (Linhart & Grant 1996), our results represent a 

preliminary steps toward investigating the role of biotic and abiotic habitat variation in 

shaping the genetic diversity within plant species.  
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CHAPTER SIX 

General Discussion 
 
Discussion 

 

Although most studies on biodiversity have been mainly focused on species diversity in 

communities, biodiversity is composed of three fundamental levels: genetic, species, and 

ecosystem. Thus far, biodiversity at various levels was studied separately and typically at 

the species level. However, diversity at one level may feedback on diversity at the other 

level. For example, if genetic diversity within a population is reduced, the population is 

likely to be at high risk of extinction (Newman and Pilson 1997), which in turn can lead to 

reduction in species diversity of ecological communities. On the other hand, higher species 

diversity at a site may affect the niche space available for a constituent population (Whelan 

2001), which in turn may influence its genetic diversity.  

 

The three plant species investigated in this thesis differ in several aspects. R. acris 

is a perennial herbaceous plant and insect pollinated (Totland 1993, 1994b), while on the 

other hand, P. lanceolata is a rosette perennial herb and is wind pollinated. The third 

species studied in this thesis is A. odoratum which is a small, perennial bunchgrass and 

wind pollinated (Grime 1988). Ecologically, the three species have a distribution nearly all 

over Europe and Northwestern Asia (e.g. Rothmaler 1996) and they are typical species of 

central Germany (Hegi 1985).  

  

The results of the thesis have shown that the population genetic diversity of the 

three plant species studied within grasslands sites was relatively high. This indicates that 

diverse communities tend to have more genetically diverse local population of a species. 

Such high diversity may suggest that individuals of the three species display a large 

proportion of genetic loci of high allelic variation, which corresponds well with the 

outcrossing mating system of these species. This finding seems to be in agreement with 

other previous studies. For example, it is known that in general outcrossing species 

maintain higher genetic diversity between individuals of local populations compared with 

self-fertilizing species but exceptions are also present (Richter et al. 1994). Moreover, the 

high within population genetic diversity found for the three species may attributed to the 

fact that these three plant species are geographically wide-spread, long-lived perennial 
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which thought to maintain higher genetic diversity compared to the less common and 

narrowly distributed plant species (Loveless & Hamrick 1984; Karron 1987; Hamrick & 

Godt 1990; Richter et al. 1994).  

 

Genetic diversity within local populations of a species is often influenced by the 

population size and the habitat characteristics, gene flow, genetic drift and historical events 

(e.g. Gray 1996; Young et al. 1998). The populations of the three species studied in this 

thesis are relatively large and their habitats are stable and not fragmented (personal 

observation). Such characteristics may therefore contribute to the high genetic diversity of 

the three species studied in this thesis. The neutral theory of evolution predicts that higher 

population size maintains higher genetic diversity within a species (e.g. Mitton 1997). 

Several empirical studies, however, showed that some species agree with this prediction 

but other do not agree. In the present thesis the correlation between population size 

(measured as population density at a site) and the within-population genetic diversity was 

present in P. lanceolata, but not found in R. acris and A. odoratum.   

 

The genetic diversity of the three species was found to be structured into within- 

and between-populations variability. Such pattern of population genetic structure of a 

species is believed to determine the evolutionary potential of a species (e.g. Loveless & 

Hamrick 1984). The genetic structure of a species is largely thought to be controlled by 

several evolutionary forces such as gene flow and local selection pressures of sites which 

can lead to either local population differentiation or genetic homogeneity (Slatkin 1987). 

The spatial genetic structure found in the three species may reflect habitat selection, but 

may also reflect non-selective process such as population history and restricted gene flow 

(Hamrick 1987; Levin 1988). Indeed, the genetic distances between P. lanceolata and A. 

odoratum plants were significantly correlated with geographical distances between sites, 

indicating that geographical distances between sites allow gene flow between populations, 

but limit a complete one.  

 

The relationship between genetic diversity of a species and the species diversity 

(e.g. species number) of plant communities might be influenced directly through 

characteristics of ecological niches available at a site or indirectly through the population 

size of a species (see Figure 1). 
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Figure 1 The expected relationship between genetic diversity of a species and species diversity 
(species number) which may arise through ecological niche differentiation and population size. 

 

 

Higher species diversity at a site may affect the niche space available for a 

constituent population (e.g. Whelan 2001), which in turn may influence its genetic 

diversity. According to the niche-variation hypothesis, higher habitat diversity offers wider 

niches and therefore may allow genetic diversity within species to increase (Dobzhansky 

1970). In the present thesis a positive correlation between genetic diversity of R. acris and 

P. lanceolata and aspect of habitat diversity of grassland sites was found. This positive 

correlation may reflect the effect of niche on the genetic diversity of the studied species. 

According to some authors the first step to demonstrate whether niche influence the level 

of genetic diversity in local populations is to study associations between genetic diversity 

and habitat diversity (e.g. Hedrick et al. 1976; Ennos 1983: Endler 1986). If there is a 

genetic-habitat correlation, the genetic variation that is due to among habitat variation 

within population can be interpreted in terms of habitat diversity and this seems to support 

the niche-variation hypothesis (Prentice et al. 1995). 
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On the other hand, the relationship between genetic diversity of a species and 

species diversity may also be negative. Such negative correlation may arise if the increase 

in species diversity results in a decrease in average population size of a species (e.g. 

McGrady-Stead & Morin 2000; Valone & Hoffman 2003). In highly diverse communities, 

the size of a typical local population of a species often will be small and therefore genetic 

diversity is likely to be reduced through some processes such as genetic drift and increased 

inbreeding (Figure 1). 

 

Therefore, it seems that genetic diversity of a species and species diversity of 

communities may be related to each other via the effects of species diversity on niche and 

on population size. Based on this I propose a new hypothesis called “genetics-species” 

variation hypothesis to explain the relationship between the genetics diversity within a 

target species and overall species diversity in ecological communities (see Figure 1). This 

hypothesis predicts that the within-population genetic diversity of a species will increase 

with the increase in species number of the community. This will occurs if higher species 

diversity in a community leads to more filling of the ecological niches which in turn may 

lead to a wider variety in selective pressures. Additionally, my proposed hypothesis 

predicts that the within-population genetic diversity of a species may decrease if the effect 

of reduced population size of the target species with increased species number of the 

community will become dominant (Figure 1). 

 

It is also may be expected that the genetic differentiation between local populations 

of a species and variation in species number or alternative measures of community 

diversity, such as species evenness, species compositions, between sites may show a 

similar relationship. In this case, however, other factors in addition to population size and 

niche like gene flow, geographical isolation, and abiotic habitat characteristics may shape 

this relationship. It is found in this thesis that differences in habitat properties, mainly 

mediated through differences in species composition, clearly shaped the observed 

differences in the genetic composition of constituting species. Therefore, species diversity 

alone (such as species number or any diversity index) might be a poor predictor of genetic 

diversity of a member species, if not combined with the species compositional information 

about the community. 
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Conclusions  

 

Based on the results presented in this thesis it may be concluded that positive correlations 

between species diversity (species number) of ecological communities and genetic 

diversity of a species may exist at the levels of within and between sites. From the 

conservation viewpoint this appears relieving, because it does not suggest a conflict 

between the promotion of high species diversity and high genetic diversity of a species.  

  

The results of the present thesis indicate that the two levels of biodiversity, genetic 

and species diversity are largely influenced by habitat characteristics. Given the current 

trend for deterioration of the quality of natural and semi-natural habitats and increased 

similarity of habitats over whole landscapes (e.g. Vitousek 1994; Vergeer et al. 2003) this 

may suggests that diversity will decrease both at the genetic and species diversity level.  

 

It also may be concluded that local selection processes have influenced the genetic 

diversity of P. lanceolata and R. acris populations. Habitat variability is correlated with 

apparent genetic differentiation between the local populations of the two species. This may 

suggest that highly diverse habitats offer more microhabitats in which different genotypes 

might be favored.   

 

Future investigations 

 

Much scientific work in how diversity regulates ecosystem function has been conducted in 

the last years (e.g. Tilman et al. 1996, McGrady-Steed et al. 1997, Naeem and Li 1997, 

Tilman et al. 1997, Hector et al. 1999, Loreau et al. 2002). Obviously, this appears to be 

due to the concern over the increasingly loss of biota because of the intensive land use and 

habitat fragmentation (e.g. Loreau et al. 2001) and their potential influence on ecosystem 

processes and functions (McGrady-Steed et al. 1997).  However, much more studies are 

needed at other diversity levels such as genetic diversity and the effects on ecosystems 

processes.   

 

In natural populations of a species many factors might influence the pattern of 

genetic diversity within and between populations. Therefore, to study the relationship 

between species diversity and genetic diversity independently of environmental variation, 
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this thesis suggests studying it in experiments with controlled manipulations of species 

diversity in otherwise common environments (e.g. Diemer et al. 1997; Roscher et al. 2004) 

with both molecular and quantitative genetic methods. 

 

In the present study AFLP is used to study the genetic diversity of the three plants 

species. Despite the fact that this method is very powerful and offers high resolution 

compared with other genetic markers, it is considered to be selectively neutral thus making 

it difficult to conclude about to what degree selection pressures imposed by the variation in 

plant communities across sites is influencing the pattern of genetic diversity within plant 

species. Therefore, it would be interesting to test this interesting hypothesis with 

quantitative genetic methods (Storfer 1996) rather than with selectively neutral molecular 

markers. 

 

The approach used in this thesis to estimate the genetic diversity and its relation to 

other diversity levels such as species diversity of plant communities is rather general and 

can be applied to any organism and possibly to other ecosystems once the genetic diversity 

is quantified. 
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Summary 

The thesis aimed to research the genetic diversity of three selected plant species 

(Ranunculus acris, Plantago lanceolata and Anthoxanthum odoratum). The genetic 

diversity of these species was quantified at the levels of within and between populations, 

and this variation was tested for correlation with the variations in plant communities and 

abiotic characteristics of grassland sites in central Germany. The results presented in this 

thesis are important to increase our knowledge in biodiversity research and also they are of 

importance for conservation biology. 

 

In the three plant species studied, a high genetic diversity was found within and 

between local populations across different grassland sites. This indicates that diverse plants 

communities tend to contain more genetically diverse local populations of constituting 

species. This high genetic diversity within and between grassland sites may be attributed to 

the intrinsic characteristics of the studied plants (e.g. mating system and dispersal 

mechanism) and/or to the extrinsic characteristics of the habitats (e.g. large and not 

fragmented) at which the three species typically settled.         

  

Moreover, the results indicate that the higher the species richness (number of 

species) of grassland communities, the higher the genetic diversity of P. lanceolata is, but 

no significant relationship was found between the genetic diversity of R. acris or A. 

odoratum and the grasslands species richness. This positive correlation between genetic 

diversity of P. lanceolata and species richness of grasslands seems to support the niche-

variation hypothesis which suggest that high diverse habitats offer more niches and this in 

turn may influence the genetic diversity within a species which constitute communities. 

The absence of correlations between species richness and genetic diversity of both R. acris 

and A. odoratum might be due to the reduced statistical power, i.e. small number of 

populations studied, or it could be that such relationship does not exist in these two species.         

  

It is also found in this thesis that abiotic characteristics of grassland sites affect the 

genetic diversity of P. lanceolata, but this was less evident in R. acris and A. odoratum. 

However, statistical analyses have shown that this influence of abiotic conditions on the 

genetic diversity is indirect through the effects on population size rather direct through 

niches. These results may be explained by the differences in selective forces associated 

with the variation in grassland communities.     
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Additionally, the genetic diversity, i.e. genetic differentiation, between the local 

populations of the three species was found to be small but significant. This significant 

genetic differentiation between populations was found to be correlated with variation in 

plant communities across sites and with the abiotic characteristics such as nutrient contents 

in the soil. The correlation was statistically significant in both R. acris and P. lanceolata 

but was not present in A. odoratum. These results could be explained by two processes: 

firstly, the variations in plant communities and abiotic factors may cause variation in 

selective forces and thus influence the pattern of genetic diversity between local 

populations of a species, and secondly, such ecological variation between sites might form 

a barrier against complete exchange of seed and pollen (gene flow) thus might lead to 

subdivision of the genetic diversity between sites.  

 

Based on the results of the thesis it may be concluded that the association between 

habitat diversity and genetic diversity within a particular species clearly support a genetic-

environment relationship. Both levels of diversity (genetic and species) seem to be 

influenced similarly by the habitat conditions. Given the current modification of habitat 

characteristics, through for instance the shift in land use and habitat fragmentation, this 

might suggest that both diversity levels will be influenced in the same manner.        

 
Studies using experiments with controlled manipulations of species diversity in 

otherwise common environments, accompany with the use of other genetic markers such as 

quantitative genetic methods are recommended. 
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Zusammenfassung 
 
Die Arbeit hat die Untersuchung der genetischen Diversität von drei ausgewählten 
Pflanzenarten (Ranunculus acris, Plantago lanceolata and Anthoxanthum odoratum) 
mittels molekularbiologischer Methoden (AFLP) und deren Zusammenhang zur 
phänotypischen Biodiversität (Artenkomposition) von Bergwiesen zum Ziel. Die 
genetische Diversität der drei jeweiligen Arten wurde innerhalb und zwischen 
verschiedenen Populationen quantifiziert. Weiterhin wurde die genetische Diversität dieser 
drei Arten auf Korrelationen mit der Variation in der Zusammensetzung der 
Pflanzengesellschaften und den abiotischen Faktoren der Wiesenflächen  
Mitteldeutschlands untersucht. Die Ergebnisse dieser Arbeit vermitteln ein tieferes 
Verständnis über die Rolle von Biodiversität und sind deshalb bedeutsam für den Schutz 
der biologischen Vielfalt. 

 
In den drei untersuchten Pflanzenarten zeigt sich eine relativ hohe genetische 

Diversität zwischen und innerhalb lokaler Populationen beim Vergleich verschiedener 
Wiesenflächen. Dies deutet darauf hin, dass verschiedene Pflanzengesellschaften zur 
Aufrechterhaltung genetisch diverser lokaler Populationen von konstituierenden Arten 
tendieren. Die hohe genetische Diversität  innerhalb und zwischen Wiesengesellschaften 
könnte auf die spezifischen Charakteristiken  der untersuchten Pflanzen (z.B. 
Fortpflanzungs- und Verbreitungsmechanismen) und/oder die äusseren Standortsfaktoren 
der Habitate, auf welchen die Pflanzen siedeln, zurückzuführen sein. 

 
Die Ergebnisse zeigen, dass mit steigender Artenvielfalt  in den 

Wiesengesellschaften sich die genetische Diversität von P. lanceolata erhöht. Andererseits 
ist das Verhältnis zwischen der Artenanzahl an Pflanzen in Wiesengesellschaften und der 
genetischen Diversität von R. acris und A. odoratum relativ schwach und auf dem 5%-
Niveau nicht signifikant. Die positive Korrelation zwischen genetischer Diversität von P. 
lanceolata und der Artenvielfalt von Wiesengesellschaften scheint die Hypothese der 
Nischenvariation zu stützen, dass in hochdiversen Habitaten mehr Nischen zu Verfügung 
stehen, welche wiederum die genetische Diversität innerhalb der Anzahl von Arten, die 
diese Gesellschaft bilden, beeinflussen. Eine negative Beziehung könnte jedoch auch 
indirekt durch die bei höheren Artenzahlen tendenziell geringere Populationsgrösse  
entstehen. Andererseits könnte die geringe Anzahl an untersuchten Populationen die 
Ursache dafür sein,  dass eine mögliche schwache Korrelation zwischen der Artenvielfalt 
und der genetischen Diversität von R. acris und A. odoratum noch nicht sicher 
nachgewiesen werden konnte (oder eine derartige Beziehung existiert für beide Arten 
überhaupt nicht). 

 
Desweiteren hat sich in dieser Arbeit gezeigt, dass die abiotischen Bedingungen der 

untersuchten Flächen die genetische Diversität von P. lanceolata deutlich beeinflussen, 
jedoch  die von R. acris und A. odoratum nur schwach. Statistische Analysen haben 
ergeben, dass der Einfluss der abiotischen Faktoren auf die genetische Diversität einzelner 
Arten eher indirekt über die Populationsgrösse wirkt. Diese Ergebnisse lassen sich durch 
die unterschiedlichen selektiven Kräfte erklären, die durch die Variation der 
Artenkomposition der Wiesengesellschaften entstehen. 

 
Zusätzlich zeig sich, dass die die genetische Differenzierung zwischen den lokalen 

Populationen der Arten jeweils klein, aber signifikant ist. Das Muster der genetischen 
Differenzierung ist sowohl mit der Variation der Pflanzengesellschaften auf den 
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untersuchten Flächen als auch mit abiotischen Eigenschaften, wie der Verfügbarkeit von 
Bodennährstoffen, korreliert. Die Korrelation ist statistisch signifikant bei R. acris und P. 
lanceolata, jedoch nicht bei A. odoratum. Diese Ergebnisse können durch zwei Prozesse 
erklärt werden. Erstens, die Variationen in den Pflanzengesellschaften und abiotischen 
Faktoren könnten Variationen in der selektiven Kraft hervorrufen und somit das Muster der 
genetischen Diversität zwischen lokalen Populationen einer Art beeinflussen. Zweitens, 
eine derartige ökologische Variation zwischen den Flächen könnte eine Barriere gegen 
erfolgreichen Austausch von Samen und Pollen (Genfluss) bilden. Diese würde zur 
Unterteilung der genetischen Diversität zwischen den Flächen führen. 

 
Basierend auf den Ergebnissen in meiner Arbeit kann man schliessen, dass die 

Assoziation zwischen Habitatdiversität und genetischer Diversität innerhalb ausgewählter 
Arten auf eine klare Genetik-Umwelt-Beziehung deuten. Dabei ist die Beziehung zu 
Habitatfaktoren und zur Artenzusammensetzung deutlich enger als zur Biodiversität 
schlechthin (d.h. zur Artenzahl oder einem Diversitätsindex). Beide Diversitätsebenen 
(genetisch und artspezifisch) scheinen in ähnlicher Weise durch die spezifischen 
Habitatbedingungen (Qualität und Quantität) beeinflusst zu werden. Gegenwärtige 
anthropogen bedingte Modifikationen der Habitatsmerkmale, wie zum Beispiel 
Veränderungen in der Landnutzung oder Habitatfragmentierung, würden - nach den 
Ergebnissen dieser Arbeit - beide Diversitätsebenen in gleicher Weise beeinflussen. 

 
Künftige Studien, die Experimente mit einer gesteuerten Manipulation der 

Artendiversität in ansonsten gleichen Umweltbedingungen und auch quantitative 
genetische Methoden, wie genetische Marker, einsetzen, sind notwendig, um die 
Zusammenhänge besser zu klären. 
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