<u>ilmedia</u>

Hinrichsen, D.; Ilchmann, Achim; Pritchard, A. J.:

A stability radius for time-varying linear systems

Auc.

The mathematics of control theory: based on the proceedings of a Conference on Control Theory / organized by the Institute of Mathematics and Its Applications and held at the University of Strathclyde in September 1988. Ed. by N. K. Nichols .. - Oxford: Clarendon Press, 1992. (The Institute of Mathematics and its Applications conference series; N.S., 37). - ISBN 0-19-853640-2, S. 281-290.

A stability radius for time-varying linear systems

D. Hinrichsen

Notation

 $C^1(t_0,t_1;\mathbb{C}^{n\times m})$

A. Ilchmann

A. J. Pritchard

```
{\rm I\!R}_+ = \{z \in {\rm I\!R} | z \ge 0\}
\mathbb{C}_{-} = \{ z \in \mathbb{C} | Rez < 0 \}
\sigma(A) spectrum of A \in \mathbb{C}^{n \times n}
GL_n(\mathbb{C}) the set of all invertible matrices T \in \mathbb{C}^{n \times n}
||x|| Euclidean norm of x \in \mathbb{C}^n
\|D\| induced operator norm for D \in \mathbb{C}^{m \times p}
||D(\cdot)||_{L_{\infty}} = \sup_{t_0 < t < t_1} \{||D(t)||\}
                                                          D(\cdot) \in PC\left((t_0, t_1); \mathbb{C}^{m \times p}\right)
       L_2(t_0,t_1;\mathbb{C}^m)
                                              space of functions u:(t_0,t_1)\to\mathbb{C}^m s. t.
                                              t \mapsto ||u(t)||^2 is integrable over (t_0, t_1)
       PC((t_0,t_1);\mathbb{C}^{n\times m})
                                              set of piecewise continuous matrix functions
                                              D(\cdot):(t_0,t_1)\to\mathbb{C}^{n\times m}
       PC_b((t_0,t_1);\mathbb{C}^{n\times m})
                                              set of all bounded matrix functions in
                                              PC((t_0,t_1); \mathbb{C}^{n\times m})
       PC^1((t_0,t_1);GL_n(\mathbb{C}))
                                              set of all piecewise continuously differentiable
```

functions $D(\cdot):(t_0,t_1)\to GL_n(\mathbb{C})$

set of all continuously differentiable

 $D(\cdot):(t_0,t_1)\to\mathbb{C}^{n\times m}$

1 Introduction

In recent years problems of robust stability have received a good deal of attention. Most of the work on time-invariant linear systems – including the successful H^{∞} -approach (see [4], [12]) – is based on transform techniques. However, in [7], [8] a state space approach via the concept of *stability radius* is proposed. In the present paper this approach is extended to a time-varying setting.

Consider a nominal system of the form

$$\dot{x}(t) = A(t)x(t), \quad t \ge 0 \tag{1.1}$$

where $A(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times n})$. Assume that (1.1) is exponentially stable, i.e. there exist M, w > 0 so that

$$\|\phi(t,s)\| \le Me^{-w(t-s)} \quad \text{for all } t \ge s \ge 0$$
 (1.2)

where $\phi(t,s)$ denotes the transition matrix of (1.1). Many authors (see [1], [2], [3], [5], [10]) have determined bounds $\delta > 0$ so that exponential stability of the disturbed system

$$\dot{x}(t) = [A(t) + D(t)]x(t) \quad , t \ge 0$$
 (1.3)

is preserved whenever

$$||D(\cdot)||_{L_{\infty}} < \delta$$
 for $D(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times n})$. (1.4)

These bounds are conservative. Our problem is to determine a *sharp* upper bound. We call this bound the (complex)¹ stability radius and define it by

$$r_{\mathbb{C}}(A) = \inf \{ \|D(\cdot)\|_{L_{\infty}} | D \in PC_b(\mathbb{R}_+, \mathbb{C}^{n \times n})$$
 and (1.3) is not exponentially stable \}

We also consider the case where A is subjected to structured pertubations, so that the perturbed system is

$$\dot{x}(t) = [A(t) + B(t)D(t)C(t)] x(t), \quad t \ge 0$$
 (1.6)

where $D(\cdot) \in PC_b(\mathbb{R}_+, \mathbb{C}^{m \times p})$ is an unknown bounded time-varying disturbance matrix and $B(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times m})$, $C(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{p \times n})$ are given "scaling matrices" defining the "structure" of the perturbation. Then the structured stability

¹The real stability radius is defined analogously. In spite of its prime importance it is not studied here, since even in the time-invariant setup only rudimentary results are available.

radius is

$$r_{\mathbb{C}}(A; B, C) = \inf \{ ||D(\cdot)||_{L_{\infty}} | D \in PC_b(\mathbb{R}_+, \mathbb{C}^{m \times p}) \}$$
 and (1.6) is not exponentially stable \} (1.7)

In the unstructured case $r_{\mathbb{C}}(A)$ is simply the distance of (1.1) from the set of not exponentially stable systems with respect to the L_{∞} -norm.

Remark 1.1 The following properties are easily obtained:

- (a) $r_{\mathbb{C}}(A) = 0 \iff (1.1)$ is not exponentially stable
- (b) $r_{\mathbb{C}}(\alpha A) = \alpha r_{\mathbb{C}}(A)$ for all $\alpha \geq 0$
- (c) $A(\cdot) \mapsto r_{\mathbb{C}}(A)$ is continuous on $PC_b(\mathbb{R}_+, \mathbb{C}^{n \times n})$

2 Bohl exponent and Bohl transformation

For the stability behaviour of (1.1) the number

$$k_B(A) := \inf \left\{ -w \in \mathbb{R} | \exists M_w > 0 : \atop t \ge s > 0 \Longrightarrow ||\phi(t,s)|| < M_w e^{-w(t-s)} \right\}$$

$$(2.1)$$

introduced by Bohl [1] is useful. We call $k_B(A)$ the Bohl exponent of (1.1). It is possible that $k_B(A) = \pm \infty$. The following properties are easily seen.

Proposition 2.1 Let $A(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times n})$. Then

- (a) $k_B(A) < 0 \iff (1.1)$ is exponentially stable
- (b) If $A(\cdot) \equiv A \in \mathbb{C}^{n \times n}$ then

$$k_B(A) = \max_{i \in \underline{n}} Re\lambda_i(A)$$
, where $\lambda_i(A)$ are the eigenvalues of A .

(c) In the scalar case, i.e. n = 1, we have

$$r_{\mathbb{C}}(A) = -k_B(A)$$

(d) For the matrix case only an inequality is valid:

$$r_{\mathbb{C}}(A) \leq -k_B(A)$$

284 D. Hinrichsen et al

Remark 2.2 We want to emphasize that $k_B(A)$ may be a bad indicator for the robustness margin of (1.1). Consider

$$A_k = -\begin{bmatrix} k & k^3 \\ 0 & k \end{bmatrix}, \quad D_k = k^{-1} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad \text{for } k \in \mathbb{N}$$

Then $\lim_{k\to\infty} k_B(A_k) = -\infty$. However, $\sigma(A_k + D_k) = \{\frac{1}{k}, \frac{1}{k} - 2k\}$ although $\lim_{k\to\infty} ||D_k|| = 0$. Thus $\lim_{k\to\infty} r_{\mathbb{C}}(A_k) = 0$.

The following properties of the Bohl exponent can be found in [3].

Proposition 2.3 Let $A(\cdot) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times n})$. Then

- (a) $k_B(A)$ is finite if $A(\cdot)$ is bounded.
- (b) $k_B(A)$ is finite iff $\sup_{0 \le |t-s| \le 1} \|\phi(t,s)\| < \infty$.
- (c) If $k_B(A) < \infty$ then

$$k_B(A) = \limsup_{t \to -\infty} \frac{\log ||\phi(t,s)||}{t-s}.$$

We now analyse the effect of time-varying linear coordinate transformations

$$z(t) = T(t)^{-1}x(t), \quad T(\cdot) \in PC^1(\mathbb{R}_+, GL_n(\mathbb{C}))$$
(2.2)

on the system (1.1) which yields

$$\dot{z}(t) = \hat{A}(t)z(t), \quad \text{where } \hat{A} = T^{-1}AT - T^{-1}\dot{T}$$
 (2.3)

These transformations will not, in general, preserve exponential stability. Therefore we introduce the set of Bohl transformations \mathcal{B}_n , i.e. the set of all $T(\cdot) \in PC^1(\mathbb{R}_+, GL_n(\mathbb{C}))$ such that

$$\inf \left\{ \varepsilon \in \mathbb{R} | \exists M_{\varepsilon} > 0 : \forall t, s \ge 0 \Rightarrow ||T(t)^{-1}|| \cdot ||T(s)|| \le M_{\varepsilon} e^{\varepsilon |t-s|} \right\} = 0 \qquad (2.4)$$

Remark 2.4 It is obvious that

- (a) the set \mathcal{B}_n forms a group with respect to (pointwise) multiplication
- (b) \mathcal{B}_n contains the group of Lyapunov transformations, i.e. all $T(\cdot) \in PC^1(\mathbb{R}_+, GL_n(\mathbb{C}))$ so that $T(\cdot), T(\cdot)^{-1}, \dot{T}(\cdot)$ are bounded,
- (c) $k_B(A) = k_B(T^{-1}AT T^{-1}\dot{T})$ for all $T \in \mathcal{B}_n$

The following proposition shows that even in the time-invariant case a similarity transformation may drastically change the stability radius.

Proposition 2.5 [7] If $A \in \mathbb{C}^{n \times n}$ with $\sigma(A) \subset \mathbb{C}_{-}$ then $\{r_{\mathbb{C}}(T^{-1}AT); T \in GL_n(\mathbb{C})\}$ is equal to the interval $(0, -\max_{i \in \underline{n}} Re\lambda_i(A)]$ with possible exception of the right extremum.

In the scalar case we can prove

Proposition 2.5 If

$$\dot{x}(t) = a(t)x(t), \quad a(\cdot) \in PC(\mathbb{R}_+, \mathbb{C})$$
 (2.5)

has a strict Bohl exponent, i.e.

$$k_B(a) = \lim_{s,t-s\to\infty} \frac{\log ||\phi(t,s)||}{t-s}$$

then there exists $\Theta \in \mathcal{B}_1$ so that $z(t) = \Theta(t)^{-1}x(t)$ converts (2.5) into

$$\dot{z}(t) = k_B(a)z(t)$$

3 The perturbation operator

In the time-invariant setup, where $(A, B, C) \in \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{p \times n}$, the structured stability radius can be characterized via the convolution operator

$$L_0: L_2(0, \infty; \mathbb{C}^m) \longrightarrow L_2(0, \infty; \mathbb{C}^p)$$

$$u(\cdot) \longmapsto (t \mapsto \int_0^t Ce^{A(t-s)} Bu(s) ds)$$

$$(3.1)$$

as follows

Proposition 3.1 [8] If $\sigma(A) \subset \mathbb{C}_{-}$ and $G(s) := C(sI_n - A)^{-1}B$ then

$$r_{\mathbf{C}}(A, B, C) = \begin{cases} ||L_0||^{-1} = \left[\max_{w \in \mathbb{R}} ||G(iw)|| \right]^{-1} & \text{if } G \neq 0 \\ \infty & \text{if } G = 0 \end{cases}$$

In order to explore the possibility of obtaining similar results for time-varying systems, we consider the parametrized family of perturbation operators $(L_{t_0}^{\Sigma})_{t_0 \in \mathbb{R}_+}$ defined by

$$L_{t_o}^{\Sigma}: L_2(t_0, \infty; \mathbb{C}^m) \longrightarrow L_2(t_0, \infty; \mathbb{C}^p), \quad t_0 \ge 0$$

$$u(\cdot) \longmapsto (t \mapsto \int_{t_0}^t C(t)\phi(t, s)B(s)u(s)ds)$$
(3.2)

associated with

$$\Sigma = (A, B, C) \in PC(\mathbb{R}_+, \mathbb{C}^{n \times n}) \times PC_b(\mathbb{R}_+, \mathbb{C}^{n \times m}) \times \times PC_b(\mathbb{R}_+, \mathbb{C}^{p \times n}), \ k_B(A) < 0$$
(3.3)

Basic properties of $L_{t_0}^{\Sigma}$ are summarized in the following

Proposition 3.2 [6]

- (a) $L_{t_0}^{\Sigma}$ is a bounded operator
- (b) $t_0 \mapsto ||L_{t_0}^{\Sigma}||$ is monotonically decreasing on \mathbb{R}_+
- (c) $||L_{t_0}^{\Sigma}|| = ||L_{t_1}^{\Sigma}||$ for all $t_0, t_1 \in \mathbb{R}_+$ if A, B, C are periodic with a common period
- (d) $||L_{t_0}^{\Sigma}||^{-1} \leq r_{\mathbb{C}}(A; B, C)$
- (e) For the unstructured case, i.e. $B(\cdot) = C(\cdot) = I_n$, if M, w > 0 satisfy (1.2) then

$$\frac{w}{M} \leq \|L_{t_0}^{\Sigma}\|^{-1} \leq \lim_{t_0 \to \infty} \|L_{t_0}^{\Sigma}\|^{-1} \leq r_{\mathbb{C}}(A)$$

As opposed to the time-invariant case $||L_{t_0}^{\Sigma}||^{-1}$ or $\lim_{t_0\to\infty}||L_{t_0}^{\Sigma}||^{-1}$ do not necessarily coincide with $r_{\mathbb{C}}(A; B, C)$. Even in the simple case when $a(\cdot) \in PC(\mathbb{R}_+, \mathbb{R})$ is periodic and b=c=1, we have worked out an example in [6] for which

$$||L_{t_0}^{\Sigma}||^{-1} = ||L_{t_1}^{\Sigma}||^{-1} < r_{\mathbb{C}}(a)$$
 for all $t_0, t_1 \in \mathbb{R}_+$

However note that scalar Bohl transformations $\Theta \in \mathcal{B}_1$ do not change the stability radius but will change the norm of the perturbation operator. Let

$$\Sigma_{\Theta} := (A - \frac{\dot{\Theta}}{\Theta} I_n; B, C)$$

By using Proposition 2.5 and 3.1 one can show

Proposition 3.3 Suppose $a(\cdot) \in PC(\mathbb{R}_+, \mathbb{C})$ has a strict Bohl exponent $k_B(a) < 0$ and $b, c \in \mathbb{C}$. Then there exists a $\Theta \in \mathcal{B}_1$ such that

$$r_{\mathbb{C}}(a;b,c) = ||L_{t_0}^{\Sigma_{\Theta}}||^{-1}$$
 for all $t_0 \ge 0$.

For the matrix case we have the following

Conjecture 3.4 Suppose $\Sigma = (A, B, C)$ satisfies (3.3), then

$$r_{\mathbf{C}}(A; B, C) = \sup_{\Theta \in \mathcal{B}_1} \left\{ \lim_{t_0 \to \infty} ||L_{t_0}^{\Sigma_{\Theta}}||^{-1} \right\}$$

4 The associated parametrized differential Riccati equation

In the time-invariant setup another useful characterization of $r_{\mathbb{C}}(A; B, C)$ is possible via the parametrized algebraic Riccati equation, \mathbf{ARE}_{ϱ}

$$A^*P + PA - \rho C^*C - PBB^*P = 0, \quad \rho \in \mathrm{I\!R}$$

Proposition 4.1 [8] Suppose $(A, B, C) \in \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{p \times m}$ and $\sigma(A) \subset \mathbb{C}_{-}$:

(a) If $-\infty < \rho < r_{\mathbb{C}}^2(A;B,C)$ then there exists a unique stabilizing Hermitian solution P_{ρ} of \mathbf{ARE}_{ρ} , that is a solution $P_{\rho} = P_{\rho}^*$ which satisfies

 $\sigma(A - BB^*P_{\rho}) \subset \mathbb{C}_{-}$.

If $\rho=r_{\mathbb{C}}^2$ then there exists a unique Hermitian solution $P_{r_{\mathbb{C}}^2}$ of $\mathbf{ARE}_{r_{\mathbb{C}}^2}$ having the property $\sigma(A-BB^*P_{r_{\mathbb{C}}^2})\subset\overline{\mathbb{C}_-}$.

(b) If there exists a Hermitian solution P_{ρ} of \mathbf{ARE}_{ρ} then necessarily $\rho < r_{C}^{2}(A; B, C)$.

Guided by this result we study, in the time-varying setting, the parametrized differential Riccati equation, \mathbf{DRE}_{ρ}

$$\dot{P}(t) + A^*(t)P(t) + P(t)A(t) - \rho C^*(t)C(t) - P(t)B(t)B^*(t)P(t) = 0, \quad t \ge t_0$$

associated with the system

$$\begin{aligned}
\dot{x}(t) &= A(t)x(t) + B(t)u(t), & x(t_0) &= x_0 \in \mathbb{C}^n \\
y(t) &= C(t)x(t), & t \ge t_0 \ge 0
\end{aligned}$$
(4.1)

Throughout this section we assume $\Sigma = (A, B, C)$ satisfies (3.3).

Kalman [9] and Reghis and Megan [11] among others, have studied differential Riccati equations, however their results cannot be applied to \mathbf{DRE}_{ρ} if $\rho > 0$.

Just as in the time-invariant case we consider the parametrized optimal control problem OCP_{ρ} :

Minimize over $u \in L_2(t_0, t_1; \mathbb{C}^m)$

$$J_{\rho}(x_0,(t_0,t_1),u(\cdot)) = \int_{t_0}^{t_1} [\|u(s)\|^2 - \rho \|y(s)\|^2] ds$$

where $y(\cdot)$ is defined via (4.1) and $\rho \in \mathbb{R}$. If $\rho < 0$ this is the usual linear quadratic regulator problem LQR, whereas in our situation $\rho > 0$, so that the state penalty is negative. To consider a cost functional with negative state penalty is quite natural in this context since we are concerned with a minimum norm destabilization problem while the classical LQR problem is concerned with stabilization.

The analysis of the DRE_{ρ} and its relation to the OCP_{ρ} is quite involved, details may be found in [6]. Here we only state the main results.

Proposition 4.2 (finite time) If $\rho < \|L_{t_0}^{\Sigma}\|^{-2}, \ 0 \le t_0 < t_1 < \infty$, then

- (a) there exists a unique Hermitian solution $P^{t_1}(\cdot)$ of \mathbf{DRE}_{ρ} on $[t_0, t_1]$ with $P^{t_1}(t_1) = 0$
- (b) $P^{t_1}(t) \leq 0$ (resp. ≥ 0) for all $t \in [t_1, t_0]$ if $\rho \geq 0$ (resp. $\rho \leq 0$).
- (c) the minimal cost of OCP_{ρ} is

$$\inf_{u \in L_2(t_0,t_1;\mathbb{C}^m)} J_\rho(x_0,(t_0,t_1),u(\cdot)) \ = \ < x_0, P^{t_1}(t_0)x_0 >$$

(d) the optimal control is given by

$$u(t) = -B^*(t)P^{t_1}(t)x(t)$$

where $x(\cdot)$ solves $\dot{x}(t) = [A - BB^* P^{t_1}](t)x(t), \ x(t_0) = x_0.$

The next proposition is obtained by studying what happens if $t_1 \to \infty$.

Proposition 4.3 (infinite time) If $\rho < ||L_{t_0}^{\Sigma}||^{-2}$, $t_0 \ge 0$, then

- (a) $P^+(t) = \lim_{t_1 \to \infty} P^{t_1}(t)$ exists for all $t \ge t_0$ and yields a bounded Hermitian solution of \mathbf{DRE}_a ;
- (b) $P^+(\cdot)$ is the only solution so that $k_B(A BB^*P^+) < 0$;
- (c) for any other bounded Hermitian solution $Q(\cdot) \in C^1(t'_0, \infty; \mathbb{C}^{n \times n})$, $t'_0 \geq t_0$ of \mathbf{DRE}_{ρ} we have $Q(t) \leq P^+(t)$ for all $t \geq t'_0$;
- (d) the minimal cost is

$$\inf_{u \in L^2(t_0,\infty;\mathbb{C}^m)} J_{\rho}(x_0,(t_0,\infty),u(\cdot)) = \langle x_0, P^+(t_0)x_0 \rangle;$$

(e) the optimal control is

$$u(t) = -B^*(t)P^+(t)x(t), \quad t \ge t_0$$

where $x(\cdot)$ solves

$$\dot{x}(t) = [A - BB^*P^+](t)x(t), \quad x(t_0) = x_0, \ t \ge t_0$$

As a partial converse of Proposition 4.3 we have

Proposition 4.4 If $Q(\cdot) \in C^1(t_0, \infty; \mathbb{C}^{n \times n})$ is a bounded Hermitian solution of \mathbf{DRE}_{ρ} on (t_0, ∞) then necessarily $\rho \leq \|L_{t_0}^{\Sigma}\|^{-2}$.

While the previous two propositions yield a complete characterization of the norm $\|L_{t_0}^{\Sigma}\|$ in terms of the associated parametrized differential Riccati equation, they do not provide a full generalization of Proposition 4.1 to the time-varying case. To find a complete characterization of the stability radius $r_{\mathbb{C}}(A; B, C)$ for time-varying systems is an open problem.

5 Robust Lyapunov functions and nonlinear perturbations

The following proposition shows how solutions of the parametrized differential Riccati equation \mathbf{DRE}_{ρ} can be used to construct *robust* Lyapunov functions for the system (1.1).

Proposition 5.1 Suppose $0 < \rho < \|L_{t_0}^{\Sigma}\|^{-2}$. If $P_{\rho}(\cdot)$ solves \mathbf{DRE}_{ρ} then

$$V(t,x) := -\langle x, P_{\rho}(t)x \rangle, \quad t \geq t_0, \ x \in \mathbb{C}^n$$

is a common Lyapunov function for all perturbed systems

$$\dot{x}(t) = [A + BDC](t)x(t), \quad t \ge t_0, \ x(t_0) = x_0$$

with $||D(\cdot)||_{L_{\infty}}^2 < \rho$.

If (A, B, C) are constant matrices and $\sigma(A) \subset \mathbb{C}_-$ a similar result to Proposition 5.1 holds true for $||D(\cdot)||_{L_{\infty}} < r_{\mathbb{C}}(A; B, C)$, see [8].

Using the above Lyapunov function it is possible to extend our robustness analysis to nonlinear perturbations of the form $\Delta(t) = B(t)N(C(t)x,t)$ so that the perturbed system is

$$\dot{x}(t) = A(t)x(t) + B(t)N(C(t)x(t), t), \quad x(t_0) = x_0, \ t \ge t_0$$
(5.1)

where (A, B, C) satisfy (3.3) and $N: \mathbb{R}^p \times \mathbb{R}_+ \to \mathbb{R}^m$ is continuously differentiable. We assume N(0,t)=0 so that 0 is an equilibrium state of (5.1). The following result shows that no nonlinear perturbation with global gain smaller than $||L_{t_0}^{\Sigma}||^{-1}$ can destabilize the system.

Proposition 5.2 Suppose $\gamma < \|L_{t_0}^{\Sigma}\|^{-1}$ and

$$||N(y,t)|| \le \gamma ||y||$$
 for all $t > t_0, y \in \mathbb{C}^p$

Then the origin is globally exponentially stable for the system (5.1).

It is not clear whether an analogous statement holds (over a suitable time interval (t_0, ∞)) if the gain of the nonlinear perturbation is strictly less than $r_{\mathbb{C}}(A; B, C)$.

References

- Bohl, P. (1913) Ueber Differentialgleichungen; J. Reine Angew. Math. 144, 284-313
- [2] Coppel, W.A. (1978) Dichotomies in Stability Theory; Lect. Notes Math. 629, Springer-Verlag, Berlin et al.
- [3] Daleckii, Ju.L. and Krein, M.G. (1974) Stability of Solutions of Differential Equations in Banach Spaces; AMS, Providence, Rhode Island
- [4] Francis, B. and Zames, G. (1983) Feedback minimax sensitivity and optimal robustness; IEEE Trans. Autom. Control 28, 585-601
- [5] Hahn, W. (1969) Stability of Motion; Die Grundlehren der math. Wissenschaften Bd. 138, Springer-Verlag, New York
- [6] Hinrichsen, D., Ilchmann, A. and Pritchard, A.J. (1989) Robustness of stability of time-varying systems; J. Diff. Eqns Vol 82, 219-250.
- [7] Hinrichsen, D. and Pritchard, A.J. (1986) Stability radii of linear systems; Syst. Control Lett. 7, 1-10
- [8] Hinrichsen, D. and Pritchard, A.J. (1986) Stability radius for structured perturbations and the algebraic Riccati equation; Syst. Control Lett. 8, 105-113
- [9] Kalman, R.E. (1960) Contributions to the theory of optimal control; Bull. Soc. Math. Mexico 5, 102-119
- [10] Perron, O. (1930) Die Stabilitätsfrage der Differentialgleichungen; Math. Z. 32, 703-728
- [11] Reghis, M. and Megan, M. (1977) Riccati equation, exact controllability and stability; Sem. Ecuat. Funct., Univ. Timisoara 42
- [12] Zames, G. (1981) Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms and approximate inverses; IEEE Trans. Autom. Control 16, 301-320