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A stability radius for time-varying linear systems

D. Hinrichsen A. llchmann A. J. Pritchard

Notation

Ry = {2z € R|z > 0}

C_ ={z€ C|Rez < 0}

o(A) spectrum of A € C**"

GL,(C) the set of all invertible matrices T € C?*"

l|z|] Euclidean norm of z € C"

{|D|| induced operator norm for D € C™*P

IDOMew = 0 (IDWI} for - D() € PC ((to, 1) ©™7)

La(to,11; C™) space of functions u : (¢g,¢1) = C™ s. t.
t +— ||u(?)||? is integrable over (tg,1;)
PC({to,t1); C**™) set of plecewise continuous matrix functions

D(:) : (to, t1) —» €™

PCy((to,t1); C™*™) set of all bounded matrix functions in
PC((io,tl); Cnxm)

PCY((to,11); GLa(C)) set of all piecewise continuously diffcrentiable
functions D(-) : ({g,1) — GLn(C)

Cl(to,ty; C™™) set of all continuously differentiable
D(\) : (to, 1) - C™*™
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1 Introduction

In recent years problems of robust stability have received a good deal of attention.
Most of the work on time-invariant linear systems — including the successful H>-
approach (see [4], [12]) - is based on transform techniques. However, in [7}, [8] 2
state space approach via the concept of stability radius is proposed. In the present
paper this approach is extended to a time-varying setting.

Consider a nominal system of the form

#(t) = A(t)z(t), t>0 (1.1)

where A() € PC(IR4+,C**™). Assume that (1.1) is erponentially stable, i.e. there
exist M ,w > 0 so that

l6(t, $)|| < Me@(=*)  forallt>s>0 (1.2)

where @(,s) denotes the transition matrix of (1.1). Many authors (see [1], [2],
[3], [5], [10]) have determined bounds 6 > 0 so that exponential stability of the
disturbed system

2(t) = [A(t) + DO)Jx(t) ,1>0 (1.3)

is preserved whenever

IDOllw <& for D() € PCO(Ry, C™"). (1.4)

These bounds are conservative. Qur problem is to determine a sharp upper bound.
We call this bound the (complex)! stability radius and define it by

re(A) = inf {)|DC)|L..|D € PCy(R4, C**™)
(1.5)
and (1.3) is not exponentially stable }

We also consider the case where A is subjected to structured pertubations, so that
the perturbed system is

(1) = [A(1)+ BODOCO] (1), >0 (1.6)

where D(-) € PCy(IRy,C™*P) is an unknown bounded time-varying disturbance
matrix and B(-) € PC(R4,C"*™), C(:) € PC(IR4, CP*™) are given “scaling ma-
trices” defining the “structure” of the perturbation. Then the structurcd stability

IThe real stability radius is defined analogously. In spite of its prime importance it is not
studied here, since even in the time-invariant setup only rudimentary results are available.
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radius is
rc(A; B,C) = inf {||D(- M| |D € PCy(Ry, C™*P)
and (1.6) is not exponentially stable }
(1.7)
In the unstructured case rc(A) is simply the distance of (1.1) from the set of
not exponentially stable systems with respect to the L.,-norm.

Remark 1.1 The following properties are easily obtained:

(a) rc(A)=0 <= (1.1) is not exponentially stable
(b) re{aA) = arc(A) forall a«>0
(c) A() = rc(A) is continuous on PCh(IRy,C™*")

2 Bohl exponent and Bohl transformation
For the stability behaviour of (1.1) the number
kp(A) =inf{-weR|AM, >0:
(2.1)
t2 52 0= l6(t,s)l| < Mye~(t=0) }

introduced by Bohl [1] is useful. We call kp(A) the Bohl erponent of (1.1). It is
possible that kg(A) = +o0. The following properties are easily seen.

Proposition 2.1 Let A(-) € PC(IR4+,C"*™). Then

(a) kp(A) <0 <= (1.1) is exponentially stable
(b) If A(:) = A € C"*" then

kp(A) = meax ReMi(A), where X;(A) are the eigenvalues of A.
(¢) In the scalar case, i.e. n = 1, we have
Tc(A) = —kB(A)

(d) For the matrix case only an inequality is valid:

re(A) < —kp(A)
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Remark 2.2 We want to emphasize that kg(A) may be a bad indicator for the
robustness margin of (1.1). Consider

3
A,,:_[’S ’2] Dk:k“[_} (1)] for kecIN

Then klim kp(Ax) = —oco. However,o(Ax+Dyi) = {1, £ —2k} although klim 1Dkl =
0. Thus klim re(Ax) = 0.
The following properties of the Bohl exponent can be found in [3].

Proposition 2.3 Let A(-) € PC(IR4,C"*"). Then

(a) kp(A) is finite if A(") is bounded.
(b) kp(A)isfinite iff  supog),_g<1 l6(, )| < oo
(c) If kp(A) < oo then

kp(A) = limsup M.

s t—s—o0 t—s
We now analyse the effect of time-varying linear coordinate transformations

«(t) = T(1)~'x(t), T()€ PCY(IRy,GLn(C)) (2.2)

on the system (1.1) which yields

i(t) = A(t)z(t), where A=T"'AT —T"'T (2.3)

These transformations will not, in general, preserve exponential stability. There-
fore we introduce the set of  Bohl transformations B, ,i.e. the set of all

T(:) € PC'Y(IR4,GL,(C)) such that

inf {e € MI3M, > 0:Vt,5 > 0= ||T(W)" - (IT(s)]| < Meeslt=¥1} = 0 (2.4)

Remark 2.4 Tt is obvious that

(a) the set B, forms a group with respect to (pointwise) multiplication

(b) B, contains the group of Lyapunov transformations, i.e. all
T(-) € PCYIR4+,GLn(C)) so that T'(-), T(-)~1,T(-) are bounded,

(c) kp(A) = kp(T~'AT —T-'T) forall T € B,
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The following proposition shows that even in the time-invariant case a similarity
transformation may drastically change the stability radius.

Proposition 2.5 [7] Il A € C"*" with ¢(4) C C_ then {r¢(T-'AT); T €
GL,(C)} is equal to the interval (0,-—n_1€ax Re);(A)] with possible exception of

the right extremum.
In the scalar case we can prove

Proposition 2.5 If

#(t) = a(t)z(1), a(-) € PC(Ry,C) (2.5)

has a sirict Bohl exponent, i.e.

kg(a) = lim I_O.M

s, t—3—00 t—s

then there exists © € By so that =(t) = ©(t)~'z(t) converts (2.5) into

(1) = kp(a)z(1)

3 The perturbation operator

In the time-invariant setup, where (A, B,C) € C**"* x C"*™ x CP*", the structured
stability radius can be characterized via the convolution operator

Lg : L2(0,00; C™) —  L5(0,00;CF)

t (3.1)
u(-) —  (t— [ CeAt=%) Bu(s)ds)
0

as follows

Proposition 3.1 [8] If ¢(A) C C_ and G(s) := C(sI, — A)~' B then

—~1
e B.0y= | 10l = [mlcon] it a#o
00 if G=0

In order to explore the possibility of obtaining similar results for time-varying sys-
tems, we consider the parametrized family of perturbation opcrators (Ligﬂ)tuelfq

defined by
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LE : La(tg, 00; C™) —  La(to,00;CP), 1 >0
t (3.2)
u(:) (¢ '—*th(t)d’(i,S)B(S)"(S)dS)

associated with

¥ = (4, B,C) € PC(R4,€"*") x PCy(IRy4, C* ™) x
(3.3)

x PCy(IR4, CP*™), kp(A) < 0

Basic properties of LE) are summarized in the following

Proposition 3.2 [6]

(a) LE is a bounded operator

(b) o~ [|LE || is monotonically decreasing on IRy

(c) NLE = LE|| for all to,t; € Ry if A, B, C are periodic with a common
period

(d) ILEI7" < re(4; B, C)

(e) For the unstructured case, i.e. B(:) = C() = I, if M,w > 0 satisfy
(1.2) then

- . ATES
a SR < tim Ll < re(4)

As opposed to the time-invariant case ||LE||~! or tlim IILE||~* do not necessarily
0—+00

coincide with r¢(A; B,C). Even in the simple case when a(-) € PC(R;,IR) is
periodic and b = ¢ = 1, we have worked out an example in [6] for which

||Lt23]||_1 = ||L331||_1 < rcla) forall to,t; € IRy

However note that scalar Bohl transformations © € I3, do not change the stability
radius but will change the norm of the perturbation operator. Let

To := (4 - &I,; B,C)
By using Proposition 2.5 and 3.1 one can show

Proposition 3.3 Suppose a(-) € PC(IR4, C) has a strict Bohl exponent kg(a) < 0
and b,c € C. Then there exists a O € B; such that

re(a;b,e) = ||Lff’||‘1 for all t, > 0.
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For the matrix case we have the following

Conjecture 3.4 Suppose £ = (A, B, C) satisfies (3.3), then

re(A4; B,C) = sup {tlim |]L:‘E}9]|_1}
GEBl 0—00

4 The associated parametrized differential Ric-
cati equation

In the time-invariant setup another useful characterization of r¢(A; B, C) is possible
via the parametrized algebraic Riccati equation, ARE,

A*P+PA-pC*C-PBB*P=0, pclR

Proposition 4.1 [8] Suppose (A, B,C) € C**"* x C**™ x C**™ and o(A) C C_.:

(a) If - oo < p < r&(A;B,C) then there exists a unique stabilizing
Hermitian solution P, of ARE,, thatisasolution P, = Py
which satisfies
o(A-BB*P,)C C_.

If p = r% then there exists a unique Hermitian solution Pr% of ARE,E
having the property o(A — BB* P,%) cC_.

(b) Tf there exists a Hermitian solution P, of ARE, then necessarily

p < re(4;B,C).

Guided by this result we study, in the time-varying setting, the parametrized dif-
ferential Riccati equation, DRE,

P(t) + A*(D)P(1) + PU)A(L) — pC*(1)C(1) — POBWB* (OP(1) =0, (> 1o
associated with the system
(t) = A(t)z(1) + B()u(t), =z{lo)=20€C" }

y(t) = C(1)=(1), t>120

(.1)

Throughout this section we assume T = (A, B, C) satisfies (3.3).
Kalman [9] and Reghis and Megan [11] among others, have studied diffcrential
Riccati equations, however their results cannot be applied to DRE, if p > 0.

Just as in the time-invariant case we consider the parametrized optimal control
problem OCP:
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Minimize over u € La(to,t1;C™)

ty

Jo(zo, (to. t1),u(")) = [(llu(s)II* — plly(s)II*]ds

to

where y(-) is defined via (4.1) and p € IR. If p < 0 this is the usual linear quadratic
regulator problem LQR, whereas in our situation p > 0, so that the state penalty is
negative. To consider a cost functional with negative state penally is quite natural
in this context since we are concerned with a minimum norm destabilization problem
while the classical LQR. problem is concerned with stabilization.

The analysis of the DRE, and its relation to the OCP, is quite involved, de-
tails may be found in [6]. Here we only state the main results.

Proposition 4.2 (finite time) If p < ||L}]|7%, 0 <o < t; < 00 , then

(a) there exists a unique Hermitian solution P''(:) of DRE,

on [to,tl] with Pt‘(tl) =0
(b) P1(t) <0 (resp. > 0) forall t €[ty,t] if p>0 (resp. p <0).
(c) the minimal cost of OCP,, is

inf J(xo, (to, t1),u(-)) = < zo, P (1 >
uEL:e(:l(;]yh;C"') p(-TO (0 1) U( )) o (0)1'0

(d) the optimal control is given by
w(t) = =B (P ()z(t)
where z() solves z(t) = [A — BB* P"](1)z(l), z(ty) = xo.

The next proposition is obtained by studying what happens if {; — oo.

Proposition 4.3 (infinite time) If p < ||LE[|72, to > 0, then

(a) PH(t) = tlim P'1(t) exists for all £ > g and yields a bounded Hermitian
solution of DRE,;
(b) P*(-) is the only solution so that k(A — BB*P*) < 0;

(c) for any other bounded Hermitian solution Q(-) € C*(t}, co; C**™),
ty > to of DRE, we have Q(f) < P*(¢t) for all ¢ > 1;

(d) the minimal cost is

werndNE o (0, (10,00) () = <o, P*(10)z0 >;

(e) the optimal control is
u(t) = =B*()Pr*()z(t), t>1o
where z(+) solves

2(t) =[A - BB* PH()z(t), =z(lo) ==z, 1> 1o
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As a partial converse of Proposition 4.3 we have

Proposition 4.4 If Q(-) € C!(tg,00;C**") is a bounded Hermitian solution of
DRE, on (tg,00) then necessarily p < ||L:‘Z”_2.

While the previous two propositions yield a complete characterization of the
norm ||LE)|| in terms of the associated parametrized differential Riccati equation,
they do not provide a full generalization of Proposition 4.1 to the time-varying
case. To find a complete characterization of the stability radius r¢(A4; B,C) for
time-varying systems is an open problem.

5 Robust Lyapunov functions and nonlinear per-
turbations
The following proposition shows how solutions of the parametrized differential Ric-

cati equation DRE, can be used to construct robust Lyapunov functions for the
system (1.1).

Proposition 5.1 Suppose 0 < p < ||LE||72. If P,(-) solves DRE, then
Vit,z) = —<z,P,()z>, >ty z€C?

is a common Lyapunov function for all perturbed systems
z(t) = [A+ BDC](t)z(t), t>to, z(lo) = 2o

with [DQ)I.. < p-

If (A, B, C) are constant matrices and o(A) C C_ a similar result to Proposition
5.1 holds true for ||D(-)||L.. < r¢(A; B, C), see [8].

Using the above Lyapunov function it is possible to extend our robustness anal-
ysis to nonlinear perturbations of the form A(t) = B({)N(C(t)z,t) so that the
perturbed system is

#(t) = A()z() + BUON(C(0)x(t), 1), z(to) = zo, t > to (5.1)

where (4, B, C) satisfy (3.3) and N : IR” x IRy — IR™ is continuously differentiable.
We assume N(0,?) = 0 so that 0 is an equilibrium state of (5.1). The following re-
sult shows that no nonlinear perturbation with global gain smaller than ||Lfr'3)||‘1
can destabilize the system.

Proposition 5.2 Suppose v < HL};”*1 and
IN(y, Ol <Hllyll  forall t>t,, yeC?

Then the origin is globally exponentially stable for the system (5.1).
It is not clear whether an analogous statement holds (over a suitable time interval
(to,00)) if the gain of the nonlinear perturbation is strictly less than r¢ (A:B,C).
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