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Chapter 4

On Stability Radii of Slowly
Time-Varying Systems

Achim Ilchmann!
Iven M.Y. Mareels

ABSTRACT We consider robustness of exponential stabilily of time-vary-
ing linear systems with respect to structured dynamical nonlinear perturba-
tions. Sufficient conditions in terms of L?-stability are derived. It is shown
that the infimum of the complex stability radii of a family of time-invariant
linear systems provides a good estimate for the stability radivs of a linear
time-varying system if time variations are sufficiently slow.
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4.1 Introduction

In this chapter we investigate the robustness of uniformly exponentially
stable time-varying systems

i(t) = A(t)z(t), t >0, (4.1)

where A(-) € €,y bad(R>0; K™*") is assumed to be piecewise continuous
and bounded.

Definition 4.1.  The system (4.1) is called uniformly exponentially stable if
and only if there exist L, X > 0 such that ils transition matriz d(-, ) satisfies

1Ot to)]) < Le™ 7" forall ¢ >ty and all to > 0. (4.2)

We investigate the robustness of the stability of systems described by
(4.1) with respect to additive nonlinear perturbations:

() = A(t)z(t) + B(t) D(C()z())(t). (4.3)

The structure of the perturbation is represented by piecewise continuous
and bounded matrix valued functions

B() € Cpwpdd(R0; K™*™),  C() € Cpuw pad(Rsg; KPX™), (4.4)
and by the nonlinear causal dynamical perturbation operator
D(:) : L*(R>0; KP) — L2(Rso; K™).

Observe that we allow for infinite-dimensional perturbation systems. Pre-
cise definitions of the perturbation classes and global existence of the solu-
tion of the possibly nonlinear system (4.3) are given in Section 4.2.

In Section 4.3 we investigate several stability concepts — such as (global
uniform) exponential, L?, L%-output, and asymptotic stability — for non-
linear systems of the form (4.3). These concepts are nested and the main
results in this section are sufficient conditions for (global uniform) expo-
nential stability of the zero solution.

In Section 4.4 we recall the concept of structured stability radius. Loosely
speaking, the (complex) stability radius 7 & is the sharp bound for the norm
of the perturbation operator D so that the global L%-stability of the per-
turbed system (4.3) is preserved as long as |D| < r - and might be lost
if |DI = i~ See Definition 4.5. The main result is thdr the structured
stability radius of the time-varying system is close to the infimum of the
structured stability radii of all “frozen” systems; that is, for fixed 7 >0,

Bt = A(r)z(t) + B(r) D(C(r)z())(t), ¢ >0, (4.5)

if the time-variations of A(-), B(),C(-) are sufficiently small.

Section 4.5 contains a useful lemma on the convolution of LP-functions
and another lemma collecting smoothness properties of the solution of the
algebraic Riccati equation.
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Perturbation Classes

In this section we introduce three different perturbation classes; we then
define what we understand as a solution of the perturbed system. For the
perturbation classes considered, it turns out that the solutions are well
defined into the future and unique.

Definition 4.2.  We consider, for time-varying scaling matrices as in (1.4),
the following three classes of the perturbed system (4.1),

where

()

(i)

(iii)

() = A(t)x(t) + B(t) At) C()x(t), (4.6)
ity = A(Dax(t) + B@) D (t,C()x(t)), (4.7
() = A()z(t) + B(t) D(C()z(-))(t), (4.8)

A(-) € L% (R>0; K™*P) is a time-varying linear perturbation and
IACH L 0.00) = esssup,so | A@D)]5

D(-,+) : Ryo x KP — K™ is a lime-varying nonlinear perturbation with:
D(t,0) =0 for allt >0,

t— D(t,y} is measurable for almost all y € KP,

y — D(t,y) is Lipschitz continuous uniformly in ¢ on compact intervals;
that is, for every T > O there exists some Lt > 0 such that

1Dt y) = D)l < Lrlly = gl for all y, 5y € K? and all t € 0,7,
and D(-,-) is of finite gain; that is,
1DC, M :=inf {y > 0] Vt > 0,Vy € K" : | D(t,y)|| < 7llyl|} < oo
D(-) : L*(R>0;KP) — L*(Rx0; K™) is a dynamical perturbation satisfying
causality; that is,
mDry = mD forall t>0;

weakly L*-Lipschitz continuity, that is, for every (to,xo,(-)) € Rug x
K™ x L?(0,t0;KP) there exist r > 0,t1 > to and L > 0 such that for all
y1(-),y2(-) € L?(0,1;KP) satisfying y1(7) = y2(1) = @(7) for almost all
7€ [0,t0] and ||y:(-) — ()= (a,0) <7 fori=1,2, we have

D)) = D)l ez ey 0y ) < Lllya () = w20) 2000 500
and D is of finite gain; that is,

Vy(-) € L*(Rz0; KP)

\
[POllayn = int {” DGO sy < WOl e ) } <o
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These three classes of linear time-varying, nonlinear time-varying, and dynam-
ical perturbations are denoted P1,(K), Pne(K), and Payn(K), respectively.

The above perturbation classes were introduced by Hinrichsen and Pritchard
[9] for time-invariant systems; it was shown by them that D(-,-) € P, (K)
can be identified with D(-) € Payn(K) by setting

Dy(N(E) == D(t,y(t))  fort >0 and y(-) € L*(R>0; K?)
and the following chain of norm-preserving embeddings holds
K™P C P (K) € Pre(K) C Pyyn(K). (4.9)

Since D(y(-))(t) depends not only on y(t) but on the whole “past”
y()lj0,¢ of y(-), Hinrichsen and Pritchard [9] introduced the following initial
value problem, which we extend to the time-varying case in a straightfor-
ward manner.

Definition 4.3.  Suppose (4.1) is perturbed by D() € Payn(K) with scaling
matrices as in (4.4) so that we consider

&(t) = A(t)z(t) + B(t) D(C(-)a()) (1) (4.10)
Then
:c() = .’E(~;to,xo,¢(~)) I - K", I = [to,h), t1 > to,

is said to be a solution of (4.10) with initial data (to, o, #(-)) € Ryo x K™ x
L2(0,t0;K?) if and only if x(-) is absolutely continuous on I, z(to) = xo, and,
Jor almost all t € 1,

i(t) = A®)(t) + B() D(ICa]? (1)) (1), (4.11)
where
Lp(’r)l TE [07 tO)
[Cz]?(1) = ¢ C(n)x(r), 7€ [to,t1)
0, T E [tl,OO).

Note that the perturbed system (4.8), and therefore also the less general
ones (4.6) and (4.7), preserve the zero solution.

It turns out that the smoothness assumption on the dynamical pertur-
bation operator D as defined in Definition 4.2(%3) is sufficient to guarantee
existence, uniqueness, and that finite escape time does not exist for the
initial value problem. One reason for this is, roughly speaking, that the
perturbations are assumed to be linearly bounded; see in particular the
definition of || D(-,)||nt-
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Theorem 4.1.  For any D(-) € Puya(K) and any wmitial data (Lo, z0,¢(+)) €
Roo x K™ x L?(0,t0;KP), the initial value problem (4.10) possesses a solution
z(;to, o, ¢(+)); and this solution is unique and exists on the whole of [to,00).

The proof of Theorem 4.1 is given for constant matrices (A(-), B(+),C(-))
= (A, B,C) € K"*™ x K"™™ x KP*" by Hinrichsen and Pritchard [9]. The
extension to the time-varying case is straightforward and omitted here.

4.3 Stability of Nonlinearly Perturbed Linear
Systems

We are interested in seeing to what extent the stability properties of the
unperturbed system (4.1) are inherited by the perturbed systems {(4.6) to
(4.8). To this end we introduce the following different concepts of stability
and investigate how they are related.

Definition 4.4.  The origin of the initial value problem (4.10) is called
(1) globally uniformly exponentially stable of and only if
(i to, o, ()] < Me Wt H|T0“ + ”‘P(')HL'Z(OJ\.)] )
(i) globally uniformly L2-stable if and only if
lz(t; o, 2o, o( N < M [[laolf + le( 20,y Yt > to,
leCito, 2o, (Dl 2itgoer < M [lzoll + 12 L2000y »

(1it) globally uniformly L2-output stable if and only if

C)z(tto,zo, o (NI < M [lzol + 1) r20.0)] ¥ £ > to,
||C(')-’K('§tovfovw('))nwm,,m) < M [HTOH + ”‘/’(')“L%o,n,)] ,
(iv) globally uniformly asymptotically stable if and only if

lz(t:to, zo, o (D < M [llzoll + 0Ol 200.0y] ¥ E> to,

I

tlim x(ti to, zo,o()) 0,
holds for some M,w > 0, and all initial data {to, o, 9(-)) € Roox K" x L?(0, to; KP),

respectively; “globally” refers to all (to, o, (")) and “uniformly” refers to the in-
dependence of M and w from (to, o, ¢(-)).
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Remark 4.1.  Let B(:) =0 and C(:) = I, in (4.10); that means we consider
the time-varying linear systems (4.1) only. Then all of the stability concepts in
Definition 4.4 coincide; the equivalence between (i) and (iv) is well known (see,
e.g., Rugh [16]), and the equivalence between (i) and (i) is proved by Daleckit and
Krein (2, Theorem 11 6.2]; it even holds true for LP-stability, where p € [1,00)
is arbitrary.

Before we prove relationships between the different stability concepts,
we present the following simple but useful proposition and some formulae
and inequalities for the initial value problem (4.10).

Proposition 4.1. Consider a time-varying uniformly ezponentially stable sys-
tern (4.1) and B(-),C(-) as in (4.4). Then the so-called perturbation operator

Ly, : L2(to, 00, K™) — L*(to,00; KP), u(-) — C(*) / (-, 7)B(r)u(r) dr

is well defined for any to > 0. Moreover to v [|Ly, || is nonincreasing on Rxo,
and

tlim‘Ltl,(u(-))(t) =0 for every u(-) € L*(to,00; K™).

Proof: Since B(:) and C(-) are uniformly bounded and ®(-,-) satisfies an
inequality of the form (4.2), it follows from the general result of Lemma 4.1 in
Section 4.5 that the convolution of two L2-functions is itself an L?-function and
moreover tends to zero as t tends to infinity. Monotonicity of to — |[|L¢,]| is
straightforward; see Hinrichsen et al. {10]. This completes the proof.

Applying Variation-of-Constants to (4.11) yields, for every ¢ > {o,

z(t) = P(¢, to)xo + / ®(t, 7)B(T)D (|[Cx|?) (1) dr, (4.12)

to

and if the unperturbed system (4.1) is uniformly exponentially stable, then taking
norms in (4.12), invoking (4.2), and applying the Cauchy-Schwarz inequality
gives, for all t > to,

()l

i
Le™ 71 | +L||B(~)|ln/ e M D ([Ca]?) (Nl dr - (4.13)

o

IA

L
V2

A

Le 20|zl + IBO L= IDACZ) ) 22 0.0y (4.14)
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Since D(-) is causal we have, for all ¢ > to,

1D ([C2)?) (M2 10,0y < IIDHﬁyn/ l[Ca}? (7)) dr (4.15)

<1 Pllaya [leOlz200.0) + 1COTOF2000]  (4.16)

and thus

2Ol < Le™ 7" Jaof

L

+ mllB(')lelDden [eOlzz 0.0 + ICOZO L2, 0] - (4.17)

Taking L*-norms in (4.13) and applying Cauchy-Schwarz and (4.16) yields, for
all t > to,
L LIBO =D layn
()|l L < —= (-
f ()”LZ(u.,t) > \/ZX' m [Hsc( )HLZ(O.t“)]
HICC) 2l L2 (1.0)- (4.18)

lzofl +

Multiplying (4.12) by C(t) and using the perturbation operator yields, for all
t > to,

C(8)2(t) = COD(t, to)ao + La, (D((C]?) (2), (4.19)

and taking norms and invoking (4.2), Cauchy-Schwarz, and (4.16) again gives,
for all t > o,

L

ICEzO e, < IC(~)H1»CmllroHJrHDlldynHLt‘.ll HeON 20,00
+“(j(')$(')“Lz(t“,t)} . (4.20)

0]

Now we are in a position to prove the following relationships between
the stability concepts.

Proposition 4.2.  The stability concepts in Definition 4.4 are related as fol-
lows exponentially

= [} = L2~output = asymptotically,

where each stability concept holds globally uniformly.

Proof:  “exp. = L’ is trivial. “L? = L%-output” follows from the bound-
edness of C(-). “L? <= L*-output” is a consequence of (4.17) and (4.18). To see
“L*-output = asymptotically”, note that D([Cx]?())(-) € L*(0,00;C™), and
therefore Lemma 4.1 applied to (4.12) yields the result.
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The equivalence between L? and L2-output stability has also been ob-
served by Jacob [13] in a slightly less general context.

Remark 4.2. It might be worth noticing that the exponentially stable system
(4.10) can be viewed as an inpul-to-state stable system in the sense of Sontag.
Set w(-) = C()z(-;to, To, ¢(+)) and consider

@(t) = A()z(t) + B(t) D (w(-)) (t). (4.21)

Then by a little algebraic manipulation (4.18) yields, for some L > 0,

t

/ le(M)I? dr < L [zoll + ()l 12000, 0] + / Lljw(r)|? dr,

ty to

and hence by Theorem 1 in Sontag [18] the system (4.21) 1s input-to-state stable.

In the following theorem we present sufficient conditions for the different
stability concepts.

Theorem 4.2. Let 0 < p < ||Lo||™! and consider the restricted perturbation
class Payn (K) with [ Dl]ayn < p. Then the zero solution of the initial value problem
(4.10) is:

(1) globally uniformly L*-stable;

(ii) globally uniformly exponentially stable, if (t) = A(t)z(t), y(t) = C(t)x(t)
s uniformly observable; that is, there exist 8o, 01,0 > 0 such that

t
Boln < / D(s,t —0)" C(s)" C(s)P(s,t —0)ds < 1, forallt > o;
t—o
(1i3) globally uniformly exponentially stable, if there exists some * > 0 such
that for alle € (0,€*), £ > 0, and ¥(-) € LIQOC(IREO;]KP) we have

1e"D (779 () Olzz0.emm) < IDNEnlle()I72 (0. m0);

(iv) 1t is globally uniformly exponentially stable if the perturbation class is fur-
thermore restricted to nonlinear time-varying perturbations Pqy (K).

In the assumption of Theorem 4.2 we could have assumed alternatively
that 0 < § < [|Cy ||, but then the stability concepts would only be
considered for tq > ¢'.

Proof:  (i): This statement follows from the well-known small gain theorem,
but can readily be established in our context as follows. Since 1D llayn <
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B < |[Loll™" < |ILe, |7}, there exists a € (0, 1) such that || D||aynl|Le, || < o for
all [ Dlayn < p and all to > 0. Now (4.20) yields, for every ¢ > to,

(1= ) ICO2( Y L2000y < nc<->||mo.x>7%||xon + allp(H 20,

and hence L%-stability follows from Proposition 4.2.

(#): We proceed in several steps.

Step 1: Let p € (p, [[Loll™").
By Lemma 8.1 in Ilchmann [12, p.145] there exists some n > 0 such that p <
(1La] ™", where L7, denotes the input-output operator of the “shifted” system

LZ; :LQ(tOVOO;Km) - LQ(tU»OO; Kp)v u() = (J()/ Pa ‘r’]l('v T)B(T)U(T) dr,
a0

and ®44n1(-, ) denotes the transition matrix of the uniformly exponentially sta-
ble system #(t) = [A(t) + n/]z(t). Now by Theorem 5.11 in Hinrichsen et al.
{10] there exists a unique stabilizing, positive-definite, continuously differentiable
Hermitian solution

P() = P()" € L¥(0,00,C™")
of the differential Riccati equation
P(t) + [A() + nl)" P(t) + P(t) [A(t) + nl,]
= p°C(t)"C(t) + P(t)B(t)B(1)" P(t), forall t >0 (4.22)
and stabilizing means that
i(t) = [A(t) - BOB()" P(8)] (1)
is uniformly exponentially stable.

Step 2: The nonpositive definite matrix function P(-) serves as a Lyapunov func-
tion candidate

Vit,z) := —z"P(t)x

in the following. Differentiating V along the solution of the perturbed system
(4.10) yields, for all ¢t > tq, by invoking (4.22) and omitting the argument ¢ for

simplicity,
%V(t,x(t))
—[Az + BD ([Cz]*)|" Pz —a"P[Az + BD (|[Cz]*)] - «* Pz
-p*||Call® ~ || B Px|
—(D([Cz]®), B*Pz) — (B" Pz, D (|Cxz)*)) + 22" Pz
=2V (t,x) ~ p*l|Cz|* + | D ([C2]?) |* ~ | B* Pz + D ([Cx]*) |2
=29V (t,z) - p*||Cx||* + ||D ([Ca]*) | (4.23)

Il

i

IN
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Step 3: Set ¢* 1= p* — | D3, > 0.
Then integration of (d/d7) V(7,z(7)) over [to,t] and invoking (4.23) yields, for
all t > {g,

V(t,x(t)< V(to, z(to)) — 277/ Vi(r,z(r))dr

ty

t
- ¢ /HC(T)-T(T)H2 d7 + [ Dl dynll e 72(0.00)
ty

t

<V (to,z(to)) — 277/ Vi(r,z(r)) dr + |

to

Dlfiynlle ()

D20y (4.24)

Step 4: Applying the Bellman-Gronwall Lemma to (4.24) gives, for all t > to,
V(t,z(t)) < [V(to,2(t0)) + D dyalle () 2 0.0,] €25 (4.25)

Note that the transition matrix of @(t) = [A(#) +nl}z(t) is given by ®(¢, s)e™ =),
and hence it is easy to see that &(t) = [A(t)+nl]z(t), y(¢) = C(t)z(¢) is uniformly
observable, too. Therefore, by Theorem 6.11(iv) in llchmann [12, page 137] there
exist some p; > p2 > 0 such that

—pily < P(7) < —p2I,, forall 7>0. (1.26)
Now substitution of the bounds in (4.26) into (4.25) yields, for all t > to,
palle®1* < V(& 2() < [pall(to)l” + 1Dl n e (N Z2c0.0,] € 57",

This proves global uniform exponential stability of (4.10) and completes the proof

of (i3).

(#1):  First proceed as in Steps 1 and 2 of the proof of (i1). Note that a differ-
ence from (i) is that we do not assume uniform observability, and so it is not
necessarily true that P(t) satisfies uniform bounds in (4.26). We have to proceed
differently. By (4.23) we may conclude that

4

o (7Y (L2(1) < " (=IO + 1D ([C217) (0]1%)

and hence by integration over [to, {]

3

MVt x(1) < eV (to, z(to))

+ / e [P C(n)(n)IF + 1D ((Ca)?) ()] dr. (4.27)

Lo
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Since n > 0 may be chosen smaller than €*, an application of the assumption in
(iii) yields, for all t > o,

t

/ 7D ((C]?) ()| dr

to

t
< IDI3,. / e () ()] dr
0
< 1D Wgn (1€ 0O 20y + " COEO g ] (4:28)

and this applied to (4.27) gives

0 < eznt“V(to,I(to))
= 0% = IDIyn] le" COTONT2 1) + IDUasalle™ eI 2200

whence, since §° — ||Df|;2,yn > p% — p% forall t > to,

le” COEM L2 10.0) (4.29)

[Pt lzoll® + 1D 3y lle™ ()72 0.0] -

ﬁ2_ﬁ2

Without restriction of generality we may assume that 7 € (0,A). Applying the
Cauchy—Schwarz inequality to (4.13) and applying (4.28) and (4.29) we arrive at,
for all t > tg,

e (t)|

t
< Le—(/\fn)(t—tu)”x()““}_ LB L= fc‘(/\*'fl)(t—T)677(T—t(>)D([(]1.]9’3)(7.) dr

ty
< Le~(z\*n>(t—tu)“x0“

Ly

1/2
t
+ LI B> [f e’“‘"”"’dT] ™D ([C2)?) ()l p2(h 1)

< Le—(k‘n)(htn)”acon
LIBOl L~ .~ . :
+ f/—z(&;l_‘f?)—e TN Dllayn [lle” (Ml 20,0 + ll€ COx(L2tg.0)]

< Le—(’\_")(t't“)H.ToH

LIB{ o< - t
+ 42002 Dy {0

eMta

t e [IIP(to)Il”2 llzoll + HDden\Iw(-)ltmm,m]} '
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Finally multiplication by e "=t yields, for all ¢ > tg,

—ate—t) LIIBO) 2= HDIIdyn

V2(Z=1n) Vp?

lz@)] < |Le Mt e

=[P (to )HW} l[zofl

,—nl{t—ty) L”B()“Lx

1Dllave | o
+e m 1+ \/E—} eI 20,00

and since P(-) is uniformly bounded from above and ||D|layn < p, the initial value

[ Dllayn

problem (4.10) is globally uniformly exponentially stable. Thus (iii) is complete.

(#v):  This result has already been proved in Hinrichsen et al. [10, Theorem 6.1].
This completes the proof. D

Remark 4.3.  Note that uniformity in Theorem 4.2 (i) to (iv) is due to the
assumption || Dllayn < p < [[Lol| ™" If we assume || Dllayn < [|Lo, || instead,
then by inspection of the proof we readily see that the statements in Theorem 4.2
(i) to (iv) hold true apart from “uniform,” that means M and w in Definition 4.4
depend on the initial data.

Related results as in Theorem 4.2 have been achieved for time-varying
infinite-dimensional systems by Jacob et al. [14]. However, in their setup
they do not use any Lyapunov functions but use operator-theoretic meth-
ods. The proof of Theorem 4.2(%) with the use of a Lyapunov function
as presented here is crucial for deriving properties of slowly time-varying
systems in Section 4.

In the present chapter we are only interested in L?-stability since we use
Riccati equations later on, but the proof of Theorem 4.2 also goes through
for LP-stability, p > 1, which is defined analogously. As a consequence,
the class of LP-stable systems considered by Jacob [13] is also globally
asymptotically stable.

4.4 Stability Radii of Slowly Time-Varying
Systems

We are now in a position to formulate the concept of the stability radius for
exponentially stable systems (4.1) with respect to the different perturba-
tions (4.6) to (4.8). Loosely speaking, in the case of dynamic perturbations
we are interested in a sharp number 7 such that all perturbations of the
class Pgyn (K) preserve global L?-stability of the origin of the perturbed sys-
tem (4.11) as long as || D(-)|layn < %, and there exists some D(-) € Pyyn(K)
with [D(-)[layn = 7, such that the origin of (4.10) is not globally L?-stable.
More formally we define the stability radii as follows.
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Definition 4.5.  The (structured) stability radius of the ezponentially stable
system (4.1) with respect to dynamic perturbations of the class Payn(K) and the
structure (B(-), C(-)) as given in (4.4) is

D() € jjdyn(]:K), the OT’ngn
ﬁ(A,,y,,(A(-);B(),C(-)) = inf S D) llayn |  of (4.10) is not globally
uniformly L*-stable

The stability radii with respect to the perturbation classes K**™, Py (K), and
Pui(K) are defined analogously and are denoted by 1 (AG); B(),C())
T, (A(); B(-),C(+)), and ﬁk.m,(A(')? B(-),C(")), respectively.

’

The stability radius was introduced for time-invariant systems by Hin-
richsen and Pritchard [6;7], for time-varying systems by Hinrichsen et al.

110}, and for time-varying systems with multiperturbations by Hinrichsen
and Pritchard [8].

Theorem 4.3.  Consider the exponentially stable system (4.1) and (B(.), C(-))
as given in (4.4). Then for K =R or K = C we have

Tﬁ( 2 7&(‘11 Z ”K.n’ Z ﬁ(.«lqn’ (430)

where for the sake of notation we omitted the arguments (A(-); B(-),C(:)), and

e (AC) B(),C() 2 1, (AC) B(),C()) = sup [|L4]I 7", (4.31)

ty20
and if (A("), B(-),C(")) = (A, B,C) are constant matrices, then
i _ . o e R e
{4, B,C) = %..1y,.(A’ B,C) = min |Cliwl,, — A)” " B|| . (4.32)

The inequality in (4.31) is strict.

Proof:  (4.30) is immediate from the inclusions (4.9). The inequality in (4.31)
is a repetition of (4.30) and strictness is proved by a scalar periodic system in
Example 4.4 in Hinrichsen et al. {10]. The left equality in (4.32) is proved in
Theorem 3.12 by Hinrichsen and Pritchard [9], while the right equality is proved
in Hinrichsen and Pritchard [7]. It remains to prove the equality in (4.31). To
this end we need the nice result due to Jacob [13] where she shows that for every
a > Sup,, g IL¢, ]I 7" there exists a linear causal operator D(-) € Payn(K) such
that || D(-)|layn <  and the origin of (4.11) is not globally L?-stable. We therefore
have

T (O BO),CO) 2 sp L0, 7 > 1 (AC) BO),CO),

where the left inequality follows from Theorem 4.2(i). This completes the proof.

UJ
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It is well known (see, e.g., Rugh [16, Theorem 8.7] and the references
therein) that a time-varying system i(t) = A(t)x(t) with bounded A()
is uniformly exponentially stable if all real parts of the eigenvalues are
uniformly bounded away from the imaginary axis (i.e., Re \,(A(7)) < —p
for all 7 > 0 and some x> 0) and the time-variation of A(-) is sufficiently
slow (i.e., [[A(7)]| is small uniformly in 7).

In the remainder of this section we prove an analogous statement for
the stability radius. If the stability radii of the “frozen” systems T (A(T) +
nln; B(1),C(7)) are uniformly larger than p > 0 for some arbitrarily small
1 > 0, then the stability radius 7. . (A(-); B(-),C(")) of the time-varying
system is — provided the time-variation of the matrices A(),B(),C()
is sufficiently small — at least “close” to p. More precisely, we have the
following theorem.

Theorem 4.4. Consider (4.1) and scaling matrices (4.4) with absolutely con-
tinuous (A(-), B(-),C(-)). Assume that there ezist p,n > 0, such that the stability
radit of the “shifted frozen” systems (4.5) satisfy

P (A(7) + nl.; B(7), c(r)) forall 7>0. (4.33)

Suppose that (A(7),C(7)) is an observable matriz pair for every T > 0. Then
there exists a § > 0 such that

TAIN+IBE +IC(H)| < & for almost all 7 >0 (4.34)

yields

P S L (A B(),C()). (1.35)

Moreover, the zero solution of the initial value problem (4.10) is globally uniformly
exponentially stable, if we restrict the class of dynamical perturbations D() €
Payn(K) to |D()llayn < p.

Certainly, the assumptions (4.33) and (4.34) need only be satisfied “at
infinity”; that means 7 > 0 could be replaced by 7 > 7, for some 70 > 0.

Before proving Theorem 4.4, we give some intuition on the “frozen” Sys-
tems. First note that for any bounded set K ¢ K™*" we have

/}25{7&(14) >0 — jlél}){ Re Amax(4) < 0. (4.36)

Sufficiency follows immediately by contradiction. Necessity also follows by
contradiction. Assume there exist sequences {Ar}ren C K and {D;},en C
K™*™ guch that

lim ReApax(A; + D;) =0 and lim D, =0.

T—00 T—00
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Then boundedness of X yields lim,_, . Re Apax (A;) =0, and this is a con-
tradiction.

Note that necessity does not hold true in general if X is bounded. To
this end consider

T o7 11-1 0
Ar "[0 r}’ Dy = _FL -1}*

spec (A;) = {—71}, spec (A; + D) ={-2r+1/7, 1/7}.

This shows that the spectrum of A(7) might be bounded away from the
imaginary axis (in the above example it even tends to —oc), but the sta-
bility radius tends to 0.

which satisfy

The following example shows that even if the stability radii of the frozen
systems are bounded away from 0, the time-varying systems might not be
exponentially stable. Set

—1 1
a(t) = s b(T):1+T, er)y =1 for all 7 > 0.
Then a straightforward calculation gives
1
T 7 = Amax(a(7)) < r{a(r);b(r),1) = 1 for all + > 0,
and 7.(a(-)) = 0 since the solution of &(t) = —(1 + t)~'z(t) is z(t) =
(1+t)~"), which is not exponentially decaying.

One might think (as we erroneously did in an earlier version?) that
(4.33) can be replaced by p < 1.(A(7); B(r),C(1)) for all 7 > 0, since
T = 1 (A(7); B(7),C(7)) is continuous and A(-), B(-),C(-) are bounded.
However, as the above example shows, the map 7 +— . (A(7); B(7),C(1))
is not uniformly continuous and therefore n > 0 as in (4.33) does not
necessarily exist.

Proof: (of Theorem 4.4) We proceed in several steps.

Step 1. By Lemma 4.2 in Section 5, there exists an absolutely continuous map
7 = P(7), where P(1) = P(r)* < 0 is the unique Hermitian solution of the
algebraic Riccati equation

[A(T) + nln]” P(T) + P(1) [A(T) + nl,]
— p*C(r)"C(1) = P(1)B(T)B(r)"P(1) = 0  (4.37)

2We are indebted to Fabian Wirth (Bremen) for pointing out the example and error
to us.
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such that the “frozen” closed-loop systems
#(t) = A(r)x(t), where A(r) := A(7) + 7, — B(r)B(7)"P(r), (4.38)
are uniformly exponentially stable for all 7 > 0.
Step 2. We show that P(T) is the unique solution of the Lyapunov equation
A(r)" P(r) + P(r)A(r) = R(r) for almost all r >0, (4.39)
where
R(r) = =[ A7) = B B(r) P P(r) — P [Adr) - B(r)B(r) P(7)]
+ p° [C‘(Tyc(f) + G(T)*C(T)} . (4.40)

Differentiability of 7 —» P(7) for almost all 7 > 0 follows from Lemma 4.2, and a
straightforward differentiation of (4.37) yields (4.39).

Step 3. We show that there exists some r > 0, independent of T > 0, such that
IR(T)|| < ré for almost all 7 > 0. (4.41)

P(-) is uniformly bounded by Lemma 4.2. Since A(+), B(:),C(-) are uniformly
bounded in 7, the statement readily follows from (4.34) and (4.40).

Step 4. We show that there exists some p’ > 0, such that
1P| < p'6 for almost all T > 0. (4.42)

Note that A(-) is uniformly bounded and hence, by continuity of A r 7 (A4;0,0),
there exists some w > 0 such that

O0<w = rrnzl(r)%:(A(T);0,0) < - min max Re Ai(A(T)).

.....

Now we are in a position to apply Proposition 3 of Coppel (1, p.4] to conclude
that there exists some M > 0, independent of 7, such that, for all 7 >0,

AT < Me @Dt oy > o) (4.43)

Since the solution of (4.39) satisfies
P(r) = ﬁ/eA(T)‘SR(T)eA(T)S ds for almost all + > 0, (4.44)
0

an application of (4.41) and (4.43) to (4.44) yields (4.42).
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Step 5. Since A(-) + nln, B(-), and C(:) are uniformly bounded and (A(r) +

nl,, C{7)) is observable for every 7 > 0, there exist by Lemma 4.2 pi>p2 >0
such that

0<paln < —P(7) <1, for all 7> 0. (4.45)

We show that the derivative of the time-varying positive-definite Lyapunov func-
tion candidate

V(t,z) := —2"P(t)x

along the solution of the time-varying system (4.10) satisfies, for any D(.) €
Payn(K) with |D(-)|layn < p and for almost all ¢ > 0,

%V(t,w(t)) < V(L) - p’lIC®z®))® + D ((C]7) (1)), (4.46)

Set & in (4.34) to 6 = np;/p’. Now differentiation of V' along (4.10) and invoking
(4.37) and (4.42) yields, where we omit the argument ¢ for simplicity,

#V(Lx(t)) = —[Az+ BD([Cz]*)]" Pz — 2" P|Az + BD ([Cz]%)] — ¢ Pz

I

a* Pr — 2" Pe — p*||Ca|f* + || D ((Ca]#) ||?
—IB" Pz + D ([Cz]?) ||?

IN

~ |20~ £o] & (=P)z - p?)Cal? + D (Ca)?) |2
This proves (4.46).

Step 6. (4.46) is of the type (4.23). Now proceeding exactly as in Steps 3 and 4
of the proof of Theorem 4.2 yields global uniform exponential stability of (4.10).
As a consequence, we have (4.35) and the proof is complete. O

4.5 Two Lemmas

Although the following lemma on the asymptotic behavior of the convo-
lution of LP-functions is a consequence of the much more general result
of Gripenberg et al. [5, Theorem 2.2, p.39], we present a simple proof for
completeness.

Lemma 4.1. If f(-) € L*(R»0,R) and g(-) € LY(R>0,R) for p,q € (1,00)
with 1/p+1/q =1, then

t—00

lim /0 ft—="7)g(rydr = 0.
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Proof:* An application of Holder’s inequality yields

t/2

/0 f(t = )g(r)dr fe-mgar+ [ s mgtr)ar

0

IA

I ler ez lglinao.eszy + 1F 1 Lro.s2 19l Lae2.0

IA

1A e 2000191 200,00y + 1 F e 0,00y 191 L4 (/2000 -

This proves the claim, since by assumption the right-hand side of the last in-
equality converges to 0 as t — oo. il

The following lemma is on the existence of Hermitian solutions P — P*
of the nonstandard algebraic Riccati equation

A*P+ PA — p*C*C — PBB*P = 0. (4.47)

The result is known, but we are not aware of a comprehensive presentation,
and since it is crucial in our analysis, we present a proof.

Lemma 4.2. Let p> 0 be fized, K =R or K = C, and define

5= {(A, B,C) g Knx{ntmp)

p<(4B,C)}.
Then the map

Y b N %:{PEKnxan:P*}
(A,B,C) — P, where P solves (4.47) and o(A-BB*'P)CcC_

ts well defined; that is, for every (A,B,C) with p < 7I’R(A;B,C) there exists
a solution of the algebraic Riccati equation (4.47) which is unique among all
exponentially stabilizing solutions, and

(1) ¢ is analytic if K = C, respectively, real analytic if K = R,

(i) P = (A, B,C) satisfies
P=- / e [pPCTC 4 PBB P e ds (4.48)
0

and is hence nonpositive. If (A, C') is observable, then P is negative definite.
Proof:  Hinrichsen and Pritchard [7] proved the existence and uniqueness of

P =¢(A, B,C). Their proof is only for K = C, but carries over if K = R.

3We are indebted to Hartmut Logemann (Bath) for pointing out to us this simple
proof.
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We prove analyticity of ¢ by using the Implicit Function Theorem; this idea
is due to Delchamps (3] who used it for the standard Riccati equation; that is,
—p>C*C in (4.47) is replaced by +C*C.

The map

w . Knx(n+n1+p) x K N K
(A, B,C,P) — AP+ PA—p’C"C - PBB*P

1s certainly analytic and its differential with respect to P is given by
¥p(A,B,C,P) : H— [A—BB'P|"H + H{A — BB"P).

Let (A, B,C) € % and P = ¢(A4,B,C). Then ¥(A,B,C, P) = 0 and since
o(A - BB*P) C C_ it follows that ¢p(A, B,C,P) is regular. Thercfore, (i)
is a consequence of the Implicit Function Theorem.

It remains to show (7). (4.48) follows from (4.47) and thus
o0
P<—p? /e"‘sc*c)ef“ ds < 0. (4.49)
0

If (A, C) is observable, then an application of the observability Gramian to (4.49)
yields that P is negative-definite. ]

4.6 Conclusions

This chapter deals with the problem of estimating the stability radius of
time-varying linear systems with respect to L? finite gain perturbations.
Sufficient conditions for uniform exponential stability are given. A conser-
vative but workable bound is presented in terms of the stability radii of
the frozen systems, provided the time-variation is sufficiently slow. Thus
numerical computations of the stability radii of time-invariant systems (see
Hinrichsen et al. [11], Filbir [4], and Sreedhar et al. [19]) might be used to
compute a bound of the stability radius of time-varying systems.

The result presented here has implications for the study of gain scheduled
control systems. It is generally accepted that for sufficiently slowly sched-
uled controllers the performance of the frozen system is a good indicator
of what to expect in the gain scheduled case. See, for example, Shamma
and Athans [17] and Lawrence and Rugh [15]. Quantifying “slow” and the
extent to which this folklore is acceptable will be investigated in a separate
paper.
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