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Why is warrant
important to knowledge?
In part because
true opinion
might be reached by
arbitrary, unreliable means.

Peter Railton1

1Explanation and Metaphysical Controversy, in P. Kitcher and W.C. Salmon (eds.), Scientific Explanation,
Vol. 13, Minnesota Studies in the Philosophy of Science, Minnesota, 1989.
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Chapter 1

Introduction

The prefix nano- has become one of the attention getters in the public and political perception of
science. The background of the strong interest is the modification of many of the properties of
any given material by the spatial confinement in nanostructures which enables many interesting
and hitherto impossible applications. In many cases it is also possible to observe textbook-like
effects in reality, like for instance two-dimensional confined electrons in a square-well potential
created by thin layers of different materials.

On the other hand, many things are not easily understood. Especially the effect of spatial
confinement on the electronic states of a system has been in the focus of investigation. Subse-
quently, the co-acting effects producing the overall behavior of a nanostructured system have
become important. Among them are the interplay of alloying effects and confinement as well as
of structural relaxation and the electronic states. Due to the complexity of the physical systems,
a close connection between theory and experiment is needed in order to advance the physical
understanding.

Two steps are necessary for the development of applications: First, an understanding of
the relevant effects and the physics behind must be achieved, and a model must be developed,
before second the effects can be functionalized effectively. The present work hopes to contribute
to the understanding of the different mechanisms and effects prevailing in the experimental
samples. We refrain from listing all the accomplished and the targeted applications ranging
from sensors [1], optical devices like quantum-dot lasers or porous-Si diodes [1] to quantum-
computing and bio-functionalized materials.

It is ambiguous to speak of “Si nanocrystals” without further specification. The reason is
not so much a lack of good results or suitable models, but it is the diversity of structures that
have been investigated experimentally. No one would be considered serious today who spoke of
silicon surfaces without specifying the direction. Yet the present state of nanocrystal research
is similar to this. Many different methods have been devised to create nanostructures, each of
them resulting in a different structure with necessarily distinct properties: porous Silicon con-
sists of Si NCs and filaments [1]; very small, nearly spherical Ge nanocrystals with diameters
down to 0.9 nm can be created by radio frequency (rf) cosputtering of Ge and SiO2 [2], as
colloidal NCs [3, 4], or by ion implantation in SiC and subsequent annealing [5]. Ion beam
cooling techniques with size selection lead to well-defined structures [6]. Larger NCs can be
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8 Chapter 1. Introduction

made using molecular-beam epitaxy or related techniques where the transition to the Stranski-
Krastanov growth mode [7] and possibly subsequent overgrowth creates NCs. Well oriented and
arranged but large NCs are produced by lithographic methods. Differences in crystal structure,
defects, surface termination or reconstruction result for different fabrication methods. Defects,
non-radiative centers (dangling bonds), and the chemical variations influence the material’s
properties strongly. Nonetheless, most of the nanocrystalline material retains its tetrahedral co-
ordination down to very small sizes [3], albeit possibly with modifications like stacking faults
and faceting of the surfaces [5].

A discrepancy exists which, in general, is the following. Experimental work struggles to
obtain very small, well-defined structures with a uniform size-distribution. Theoretical work
or simulation, on the other hand, has a hard time describing the imperfections and the sample
composition of entities of different type, surface reconstruction, etc. Especially the treatable size
proves a challenge. When this work started, there was little overlap between the size ranges of
experimental characterization and simulation. This has decisively changed; today this gap is
about being closed.

Yet the present state of the field is characterized by serious uncertainties about the meaning
of available experimental and theoretical results and especially of the connection between them.
There is frequently speculation and over-interpretation of fortuitous coincidences. This com-
plexity of the situation is also reflected in the diverse terminology. We have here adopted the
view that a nanocrystal (NC) is a very small crystalline structure of a size intermediate between
the quasi-molecular regime of clusters and the larger quantum dots.

The theoretical methods also differ for the different size ranges. For “very large” quan-
tum dots (diameters of, say, 5 through 100 nm) barrier and transport effects are important, but
there are no strong modifications due to spatial confinement. In this regime, the empirical-
pseudopotential method [8] and the semi-empirical tight-binding approach [9] yield reliable
results, while the present ab initio approach is incapable of dealing with the necessary number
of atoms. It is also here where empirical and classical descriptions of the atomic interaction are
used with a great deal of success for the determination of structural properties [10]. One disad-
vantage of the latter methods is that they do not provide an electronic structure. On the other end
of the size range, very small NCs are well defined again, being molecules rather than crystal-
lites. Here one can look at deeper physical problems like the description of excitations. For the
smallest sizes, full ab initio structure optimization is possible, cf., for instance, Refs. [11–14].
However, both total-energy and kinetic effects contribute to a given experiment [15]. Moreover,
not necessarily all the NCs of a sample contribute to a given measured quantity [6].

For the intermediate and larger crystallites, the structures are less well defined, and the mod-
eling is necessarily different. The “educated guesses” for starting structures are either bulklike
structures with modified surfaces, or could be amorphous or similar [15]. Recently it has been
demonstrated that icosahedral structures can be energetically favorable [16]. It seems that in
the future hybrid techniques are going to be used: Repeated melting and cooling in terms of
molecular-dynamics schemes [17], possibly connected with thermodynamical considerations,
will lead to better structures. Model building using neural-network and similar approaches
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might also be promising. In any case, the future models of NCs or nanostructures in general
will have to take into account the growth process.

Silicon accounts for the largest part of the total semiconductor production, and silicon tech-
nology is highly advanced compared to the fabrication techniques for most other materials.
Germanium and silicon NCs are especially interesting in view of their potential for Si-based
optoelectronics. The effects due to spatial quantization promise to overcome the limitations of
these indirect-gap semiconductors for light-emission applications. This is very interesting from
the technological point of view because the two group-IV materials can be easily integrated
into existing Si technology. Promising results have been obtained. In fact, even optical gain has
been achieved in Si nanocrystals [18].

Ge is chemically similar to Si. Moreover, both elements are miscible at arbitrary compo-
sition x. However, their bulk bandstructures are decisively different. In Ge the indirect gap is
between Γ and L, and the direct gap Γ-Γ is very close in energy. In Si, the indirect gap is between
Γ and a point along the Γ-X line, while the band separation at Γ is much larger. The electronic
states in a NC are derived from those states represented by the bulk band structures. They are
modified by the spatial confinement as well as by the inhomogeneous strain, as it develops in
the NCs. This will influence their energetic position and their charge density distribution. Thus
there is the open question as to what is the main contribution to the lowest unoccupied state in
the Ge NCs, and if there are strong transitions at the bottom of the absorption spectrum. In the
language of experiment: Are Ge NCs direct? or: Will the k selection rule be broken such as to
enable strong transitions?

The choice of the quantities of interest is determined in part by the potential applications, in
part by the accessibility of the latter within the respective experimental and theoretical methods.
This can be exemplified for the field most interesting to optical device applications: photolumi-
nescence (PL). Excitation energies are especially interesting because their manipulation enables
the controlled change of the emission wavelength of light-emitting devices. They are easily ex-
perimentally accessible. Moreover they present both challenge and promise for theory. The
same problems as in the description of bulk spectra are found here [19], while the confinement
causes further effects. This incites the work for further development of the theoretical de-
scription, at present primarily along the lines of the GW approximation and the Bethe-Salpeter
equation (BSE). For photoluminescence the transition probabilities of the lowest transitions are
also very important. Thus the excitation energies and the transition probabilities are two of the
principal targets of the present work. A basic problem here is that – unlike in the bulk – there is
no confirmed experimental accurate reference (except for well-defined molecules or molecule-
like structures). On the other hand, time-resolved techniques yield useful information about the
dynamics of the PL [20].

As most spectral optical properties (absorption/transmission, reflectivity, etc.) are directly
connected with the dielectric function of the material, the latter quantity has been chosen, be-
sides the energy and transition probability, as the key quantity to be investigated. The ex-
perimental characterization is usually done using techniques like ellipsometry or reflectance,
absorption, or transmission spectroscopy [1, 21].
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In addition, many other quantities are helpful for the understanding of the NC systems. For
instance, the relaxation patterns and the bond lengths, as accessible for instance by means of
Raman scattering [22] or transmission-electron microscopy [5], help in the discussion of the
interdependencies between confinement and strain. Further techniques include scanning probe
microscopy, and X-ray scattering. The Stokes shift, i.e., the red-shift of PL emission with
respect to absorption, is an example of a quantity which at the same time is easily measurable
and gives a great deal of information about the structural changes in the NCs upon excitation.

At the beginning of the present work, the majority of the existing theoretical calculations
on Si nanocrystals was semiempirical [23–26], being based on the knowledge of the electronic
structure of bulk silicon. However, the transferability of bulk electronic interaction parameters
to a nanocrystalline environment cannot be assumed a priori. This holds for both the tight-
binding approximation and the empirical-pseudopotential approaches. By now, calculations
have also been performed using an ab initio technique based on density-functional theory (DFT)
and the local density approximation (LDA) [27] or using time-dependent LDA [14]. Many-
body effects like self-energy corrections and excitonic effects have also been taken into account
[28, 29]. However, there is still a controversy about the correct treatment of the many-body
effects in the calculation of the electron-hole pair excitation energies [30, 31]. Calculations
of optical absorption spectra including many-body effects were rather rare and restricted to
Si clusters with a small number of Si atoms [32]. Semiempirical tight-binding approaches
[33,34] allow the treatment of larger clusters. The maximum number of Si atoms handled in an
empirical pseudopotential approach was much higher [8, 23]. Using ab initio pseudopotentials
and a minimum sp3 basis for the expansion of the wave functions, Noguez and Ulloa had [11]
calculated absorption spectra for Si clusters of up to 70 atoms. On the other hand, optical
characterizations had been done by reflectance and absorption spectroscopy in a wide frequency
range of oxidized Si nanocrystallites [35] and Ge nanocrystals of varying size embedded in an
insulating sapphire matrix [36–38]. Recent developments which have influenced the course of
the present work will be briefly commented on in the Conclusions.

When this work started, the interest was mostly on a general description of the intrinsic
properties of NCs. Therefore our starting point are free, hydrogen-terminated NCs as both a
model of NCs embedded in a wide-gap semiconductor or insulator, and of really free NCs. This
yields information about their intrinsic properties: What are the effects of confinement on Ge
and Si? Well-suited simple structural models like ours have been used by many groups [14,39].
They lead to important results and produced many starting points for ensuing work.

This thesis is located somewhere between physics and computational materials science,
trying to draw information from, and to contribute to, both – the focus of the methods being on
the first, the focus of the content being on the latter. The aim of the present work was to answer
some of the important open questions of the time, which included in particular:

• Possibility of a change of Ge NCs to “direct” material suitable for luminescence applica-
tions? That is, the question if Ge NCs would be governed by quasi-direct contributions
or by the indirect nature of Ge.

• Influence of the confinement on the higher spectral features;
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• Refinement of the description of excitation energies beyond DFT-LDA energy differ-
ences; inclusion of electron-hole interaction and quasi-particle effects;

• Extension of the applicability of ab initio techniques of optical-spectra calculation to the
treatment of NCs of intermediate size embedded in a crystalline matrix;

• Influence of the confining matrix on the structure and the properties of NCs;

• Influence of ionic relaxation for the modeling of NCs;

• Effect of spin-polarization on the excitation energies.

• Finally, in many cases explanations of experimental results have been possible after a
theoretical understanding was achieved, as in the case of the composition dependence of
the properties of GeSi alloy NCs.

In the course of the work, a number of additional points got into the focus of our investigation:

• The question about the mutual interdependence of alloying and confinement;

• Influence of pressure or compressive strain;

• Influence of electronic excitation and the resulting ionic relaxation, yielding the lumi-
nescence Stokes shift. Especially this quantity will probably remain amenable to fully
quantum-mechanical methods only.

At the same time, it must be stressed that the field of NC or quantum dot physics is extremely
diverse and not well separated from adjacent fields like quantum chemistry. For that reason
a large number of effects has not been considered. These include in particular the questions
of surface saturation which have since the beginning of the present work been found by other
groups to change the optical properties of NCs very strongly [40–46]. Neither did we consider
questions of non-linear response, the modeling of the growth processes, the phonon-assisted
transitions in NCs, or in general temperature effects. Moreover, the discussion is focused ex-
clusively on the group-IV materials Ge and Si, in a way disregarding the direct-gap materials
like the popular CdSe [47]. A more comprehensive discussion can be found for instance in the
reviews of Yoffe [47] or Zunger [8].

The following topics have been part of the work but are not described for lack of space
due to the formal lengths restrictions: Effective-medium treatment of embedded NCs [48]; GW
description of the electronic structure and the optical properties of embedded NCs [49]; Our
recent attempts to establish a combined approach of classical relaxation of NCs and ab initio
electronic-structure calculation [50]; Embedment of Ge in Si, and of GeC in SiC (unpublished).

The structure of the present work is as follows. After the discussion of the theoretical foun-
dations in Chapter 2, Chapter 3 presents the details of the numerical treatment of our model
systems. After that, we present in Chapter 4 the Results, along with a discussion of relevant
experimental as well as other theoretical findings. Conclusion and Prospectives complete the
thesis.
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Chapter 2

Theoretical Foundations

2.1 Density-Functional Theory

2.1.1 The Hohenberg-Kohn Theorem

We assume that the Born-Oppenheimer separation of the electronic and the ionic degrees of
freedom has been carried out [51, 52] and start from the non-relativistic time-independent
Hamiltonian of the many-electron system

Ĥ = T̂ + Û + Ŵ (2.1)

with the kinetic energy

T̂ = −
~

2

2m

∑

α

∫

d3r Ψ̂†α(r)∇2Ψ̂α(r) (2.2)

and the one-particle contribution

Û =
∑

α

∫

d3r Ψ̂†α(r)vext(r)Ψ̂α(r) − µ0

∑

αβ

∫

d3r Ψ̂†α(r)Bext(r) · ~σαβΨ̂β(r) (2.3)

due to a scalar external potential vext(r) and an external magnetic field Bext(r).1 Ψ̂†α(r) is the field
operator for spin α, which describes the creation of an electron at the point r. The potential
of the fixed ions is contained in vext(r). Ŵ is due to the longitudinal two-particle Coulomb
interaction w(r, r′) = e2/4πε0|r − r′|,

Ŵ =
1
2

∑

αβ

∫

d3r
∫

d3r′ Ψ̂†α(r)Ψ̂†β(r
′)w(r, r′)Ψ̂β(r′)Ψ̂α(r). (2.4)

1For the present work we need to include spin polarization. In the presence of a magnetic field B(r), the
magnetization is an independent variable. In the case of spin-polarization and zero magnetic field, however, the
magnetization itself becomes a functional of the density; it is then no independent variable [53]. Nonetheless, the
resulting spin-polarized formalism in the presence of zero magnetic field proves advantageous for the introduction
of the local spin-density approximation, which is the reason why we introduce the magnetic field at this point. The
introduction in this way treats the coupling of the magnetic field only with the electron spins, not however, with
the orbital motion [53]. For the purpose of the present discussion this is sufficient.

13
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In this Hamiltonian, spin-orbit as well as spin-spin coupling have been neglected. Basic to this
approach are now the density operator

n̂(r) =
∑

α

Ψ̂†α(r)Ψ̂α(r) (2.5)

and the magnetic moment density operator

m̂(r) = −µ0

∑

αβ

Ψ̂†α(r)~σαβΨ̂β(r) (2.6)

with the vector of the Pauli matrices ~σαβ. For the stationary eigen-states |Ψ 〉 of the Hamiltonian
(2.1) there is evidently a unique mapping

D : {|Ψ 〉} →
{(

n(r),m(r)
)}

, (2.7)

i.e., any non-degenerate ground state |Ψ 〉 leads to a unique set of density and magnetization2
(

n(r) = 〈 Ψ| n̂(r) |Ψ 〉 ,m(r) = 〈 Ψ| m̂(r) |Ψ 〉
)

. Considering two different ground-state expecta-

tion values Egs = 〈Ψ|Ĥ|Ψ〉 and E′gs = 〈Ψ
′|Ĥ′|Ψ′〉, where Ĥ differs from Ĥ′ only through Û ′ , Û,

i.e., by different external potentials, one obtains by virtue of the Ritz principle

Egs = 〈 Ψ| Ĥ |Ψ 〉 < 〈 Ψ
′| Ĥ |Ψ′ 〉 = 〈 Ψ′| Ĥ′ − Û ′ + Û |Ψ′ 〉 (2.8)

and, likewise,

E′gs = 〈 Ψ
′| Ĥ′ |Ψ′ 〉 < 〈 Ψ| Ĥ − Û + Û ′ |Ψ 〉 . (2.9)

Hence

E′gs + Egs < Egs + E′gs +

∫

d3r
{

n′(r)
(

vext(r) − v′ext(r)
)

+ n(r)
(

v′ext(r) − vext(r)
)

−m′(r)
(

Bext(r) − B′ext(r)
)

−m(r)
(

B′ext(r) − Bext(r)
)

}

. (2.10)

The integral vanishes for n(r) = n′(r) and m(r) = m′(r), which turns eq. (2.10) into a con-
tradiction. No two different non-degenerate ground states may lead to the same density and
magnetization, the mapping D is invertible. This is the Hohenberg-Kohn theorem for a spin-
polarized system: Density and magnetization determine the ground state uniquely. Conse-
quently, a ground-state total-energy functional (for the external fields vext and Bext)

Evext,Bext [n,m] = F [n,m] +
∫

d3r [vext(r)n(r) − Bext(r) ·m(r)] (2.11)

exists where

F [n,m] = 〈 Ψ [n,m] | T̂ + Ŵ |Ψ [n,m] 〉 (2.12)

2The densities are here assumed to be v-representable [53]. This is a restriction on the considered densities,
but it is not relevant at the level of the present discussion. The restriction applies also to the density variations, cf.
(2.28) below.
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is a universal functional of n and m, i.e., it does not depend on the external field. The argument
as given so far is restricted to the ground state because the Ritz principle has been used. Another
immediate consequence of eq. (2.8) is that the minimum of the functional Evext,Bext [n,m] is
attained for the ground state density and magnetization.

From now we treat the case of zero magnetic field. In the limit Bext → 0 we have a purely
scalar external potential and V̂ =

∑

α

∫

d3rΨ̂†α(r)vext(r)Ψ̂α(r) instead of Û. Assuming the exis-
tence of a V̂ ′ , V̂ + const. leading to the same ground state |Ψ 〉 as V̂ , one arrives at an evident
contradiction:

(

T̂ + Ŵ + V̂
)

|Ψ 〉 = Egs|Ψ 〉 (2.13)

and
(

T̂ + Ŵ + V̂ ′
)

|Ψ′ 〉 = E′gs|Ψ
′ 〉 (2.14)

are inconsistent with the assumption of equal ground states, Ψ = Ψ′, because in that case adding
eqs. (2.13) and (2.14) results in

(

V̂ − V̂ ′
)

= Egs − E′gs = 0. (2.15)

Thus also the mapping of the possible external potentials onto the ground states,

C : {V̂} → {Ψ} (2.16)

is invertible.3 Thus, for a non-degenerate system with scalar external potential, the density
determines both the ground state and the external potential uniquely, and vice versa.

The second statement of the Hohenberg-Kohn theorem is that the ground-state density may
be determined by minimization of the functional Evext,Bext[n,m]. By virtue of the Ritz principle
we have

Evext,Bext[n0,m0] < Evext,Bext[n,m] for any n , n0,m(r) , m0(r). (2.17)

Consequently, the ground-state energy is

E0 = Evext,Bext[n0,m0] = min
n,m

Evext,Bext[n,m]. (2.18)

As mentioned before in footnote 1, the Hohenberg-Kohn theorem can be derived for the density
alone. However, for the practical application, the present form is more convenient [53].

2.1.2 The Kohn-Sham scheme

We consider the case of zero external magnetic field. The Kohn-Sham (KS) formalism rests
upon the central assumption that for any interacting N-particle system with ground-state den-
sity n(r), a local single-particle potential vs(r) exists that results in the density ns(r) of non-
interacting particles which is equal to n(r),4 i.e.,

ns(r) = n(r). (2.19)
3Note that this is not necessarily true for B , 0 [53].
4The validity of this assumption is discussed in detail in [53], as well as the question of v-representability of

the densities.
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For non-degenerate ground states, the lowest N single-particle eigenfunctions of the Schrödinger
equation

(

−
~

2m
∇2 + v(α)

s (r)

)

φ(α)
i (r) = ε(α)

i φ(α)
i (r) (2.20)

provide a unique representation of the density,

n(r) =
∑

α

Nα
∑

i=1

|φ(α)
i (r)|2. (2.21)

In order to obtain a practical scheme one has to determine the auxiliary potential vs. The
spin polarization is accommodated for by splitting the density into a spin-up and a spin-down
density,

n(α)(r) =
Nα
∑

i=1

|φ(α)
i (r)|2; α ∈ {↑, ↓} (2.22)

with n(r) = n↑(r) + n↓(r) and N = N↑ + N↓.
N↑ and N↓ are the number of spin-up and spin-down electrons, respectively. Both densities

and, hence, the magnetization, are themselves functionals of the total density. This can be easily
inferred from the fact that the argument of the Hohenberg-Kohn theorem remains valid if in eq.
(2.10) the term containing the magnetization is omitted. Moreover, it should be noted that the
introduction of a spin-up and a spin-down component distinguishes a certain direction along
which the spin polarization is determined.

The non-interacting kinetic energy is a unique functional of the density as well, which fol-
lows from the Hohenberg-Kohn theorem: The argument in the previous chapter made no as-
sumption about the interaction w(r, r′) of eq. (2.4) and is, therefore, also valid for the case
w(r, r′) = 0. Inserting the latter into eq. (2.12) shows that in this case

F [n,m] = 〈 Ψ [n,m] | T̂ |Ψ [n,m] 〉 = Ts [n,m] (2.23)

which implies that also T s must be a functional of the density and magnetization,

Ts =
∑

α

Nα
∑

i=1

φ∗(α)
i (r)

(

−
~

2m
∇2

)

φ(α)
i (r) = Ts [n,m] . (2.24)

However, while the dependence of Ts on the φi is known, the functional dependence on n(r)
and m(r) is not. Note that in the interacting case the ground state cannot be represented by the
lowest eigenstates of a single-particle equation. Rather it will contain contributions of Slater
determinants involving higher eigenstates, if one wants to keep the idea of single-particle states
at all. This is exploited in the “direct diagonalization” or configuration-interaction approach,
cf. section 2.1.4 below. In particular, the kinetic energy of the interacting particles is different,
Ts [n] , T [n] [53].
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The ground-state energy functional becomes

Evext

[

n↑; n↓
]

= F
[

n↑; n↓
]

+

∫

d3rvext(r)n(r)

= Ts
[

n↑; n↓
]

+

∫

d3rvext(r)n(r) +
1
2

∫

d3r
∫

d3r′n(r)w(r, r′)n(r′) + EXC
[

n↑; n↓
]

,

(2.25)

where Ts is the kinetic energy of the non-interacting particles (depending only on n↑ and n↓
which are the same for the true and the auxiliary system) and the exchange-correlation func-
tional

EXC
[

n↑; n↓
]

= F
[

n↑; n↓
]

− Ts
[

n↑; n↓
]

−
1
2

∫

d3r
∫

d3r′n(r)w(r, r′)n(r′). (2.26)

Variation with respect to nα : α ∈ {↑, ↓}, i.e., calculation of the expression δEvext/δn(r) in
compliance with the requirement that n(r) + δn(r) be v-representable [53], yields the auxiliary
potential

v(α)
s (r) = vext(r) +

∫

d3r′w(r, r′)n(r′) + v(α)
XC(r) (2.27)

with

v(α)
XC(r) =

δEXC
[

n↑; n↓
]

δnα(r)
. (2.28)

Eqs. (2.20), (2.21) and (2.27) represent the Kohn-Sham scheme for a non-degenerate spin-
polarized system. Spin enters the scheme only via v(α)

XC(r), because the Hamiltonian eq. (2.1)
does not couple the spatial and spin degrees of freedom.5

2.1.3 Transition to system without spin-polarization

The original Hohenberg-Kohn theorem and Kohn-Sham scheme have been given for a spinless
system. This is recovered from the above equations by considering zero magnetization, i.e.,
only paired electrons and n↑(r) = n↓(r). From equation (2.28) it is evident that in this case
v↑XC(r) = v↓XC(r). Hence φ↑i (r) = φ↓i (r) in eq. (2.20). The equations without spin-polarization are
now obtained by representing the respective sums by factors of 2.

2.1.4 Physical interpretation by comparison to Hartree-Fock

The whole argument thus far does not contain any approximations beyond those contained in
the initial Hamiltonian. It is instructive to compare the results with those of the Hartree-Fock
approximation (HFA). Unlike in the HFA, due to the mapping of the interacting problem to
a non-interacting auxiliary problem, the ground state density is exactly given by that of the

5This is similar to the Hartree-Fock approximation where the spin dependency rests in the exchange term. In
the HFA the correlation is completely neglected.
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auxiliary problem, albeit at the price of the unknown exchange-correlation potential. Approxi-
mations are entered only later, e.g., the local density approximation (LDA).

The HFA, by contrast, limits the space of wave functions from the beginning by restricting
its ground states to being single Slater determinants of single-particle wave functions calculated
for some effective potential of the other electrons.

Comparison of the Kohn-Sham ground-state energy functional eqs. (2.25) and (2.26), which
can be written

Evext

[

n↑; n↓
]

= Ts
[

n↑; n↓
]

+ H [n] + EXC
[

n↑; n↓
]

+

∫

d3rvext(r)n(r), (2.29)

with the Hartree term in eq. (2.25),

H [n] =
1
2

∫

d3r
∫

d3r′n(r)w(r, r′)n(r′), (2.30)

and the corresponding quantity of the Hartree-Fock scheme

EHFA = Ts

[

ΨHFA
]

+ H
[

nHFA
]

+ EX

[

ΨHFA
]

+

∫

d3rvext(r)nHFA(r) (2.31)

brings out two differences. EXC contains the correlation which is missing in the HFA. Second,
while the expression Ts

[

ΨHFA
]

looks very similar to the kinetic energy of independent Kohn-
Sham particles Ts as written in terms of the orbitals, cf. eq. (2.24), its meaning is different:
ΨHFA is the ground state of uncorrelated electrons, unlike the true ground state whose density
is represented by the Kohn-Sham orbitals according to eq. (2.21).

This is due to the fundamentally different approaches. Kohn-Sham stipulates that the ground
state density be exactly represented and then constructs the necessary potentials, deferring the
difficulty to the exchange-correlation potential vXC. Hartree-Fock, on the other hand, first con-
structs the potential and then looks for the ground state in a subspace of the possible many-
electron wave functions.

Under the assumption that the orbitals of the remaining electrons do not change when one
electron is taken from (or added to) the system (i.e., in frozen-orbital approximation), the energy
eigenvalues of the Hartree-Fock equations represent excitation energies. This is the content of
Koopman’s theorem.

The shortcomings of the HFA can, in principle, be remedied by application of the scheme
not to a single Slater determinant of the lowest single-particle wave functions, but to the infi-
nite sum over all such determinants, now including the higher single-particle states. This sum
exhausts the Hilbert space of N-electron wave functions, which means that this so-called con-
figuration interaction (CI) approach is exact. No approximation is done to the Hamiltonian in
HFA.6 Ts becomes the kinetic energy of correlated particles, and EX

[

ΨHFA
]

is complemented
by the correlation contribution. In this sense, correlation are those quantum effects which are
not accounted for by the kinetic, the Hartree, and the exchange energies. In the Kohn-Sham
approach, this corresponds to the definition of the exchange-correlation energy eq. (2.26) which
is the difference between the full expectation value of the Hamiltonian and the non-interacting
kinetic energy, the Hartree energy, and the contribution due to the external potential.

6This statement refers to the derivation of the Hartree-Fock equation using the full Hamiltonian and a Slater
determinant for the wave function.
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2.1.5 LDA and LSDA

In the Kohn-Sham scheme the many-electron system is described by a Schrödinger-like single-
particle equation with a local potential. However, the difficulty of the initial many-electron
problem has now been transferred to the task of finding the exchange-correlation part of this
potential. Using the spin-polarization parameter

ζ(r) =
n↑(r) − n↓(r)

n(r)
, (2.32)

the exchange-correlation energy can in general be written as

EXC
[

n↑; n↓
]

=

∫

d3r n(r) eXC([n; ζ], r) (2.33)

with the exchange-correlation energy per particle eXC. For the homogeneous electron gas, eXC is
only a function of the constant electron densities n0↑ and n0↓ or, alternatively, of n0 and ζ0. The
basic assumption of the L(S)DA is that for a system with a slowly varying density, replacement
of eXC by that of the homogeneous electron gas, ehom

XC , for the given density and magnetization
provides a reasonable approximation. In practice, the exchange-correlation energy per particle
of the homogeneous electron gas ehom

XC is used in the replacement [54]

EXC
[

n, ζ
]

≈ ELDA
XC

[

n, ζ
]

:=

∫

d3r n(r) ehom
XC (n0, ζ0)

∣

∣

∣

∣

n0→n(r),ζ0→ζ(r)
. (2.34)

The exchange-correlation potential of the Kohn-Sham scheme eq. (2.28) is then given by the
respective functional derivatives with respect to n↓(r) and n↑(r),

v↑↓xc(r) ≈
∂

∂n↑↓(r)

{

n(r)ehom
xc (n(r), ζ(r))

}

:= v↑↓LSDA
xc (n(r), ζ(r)). (2.35)

The exchange-correlation energy is mostly interpolated between the paramagnetic (ζ = 0) and
the saturated ferromagnetic (ζ = 1) case according to the “standard interpolation” due to von
Barth and Hedin [55]. For the density dependence of these two cases, the interpolation of
Perdew and Zunger [56] of the Monte-Carlo results of Ceperley and Alder [57] is used in the
present work. Evidently, the LDA, for non-spin-polarized systems, follows simply for ζ = 0.

Surprisingly, the L(S)DA turned out to work much better than expected even for systems
with strongly varying densities, be it solids, molecules, or even atoms. The reasons for this suc-
cess lie probably in the correct representation of the spherically averaged exchange-correlation
hole, and in a subtle cancellation of errors [53]. Note that the L(S)DA does not, as sometimes
wrongly stated, consist in neglecting correlation.

2.1.6 Forces in DFT

For molecular dynamics calculations and relaxations one needs to calculate the forces acting on
the ionic cores of the system. Neglecting electron-phonon interactions as well as the vibrational
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energy of the lattice of ions at the positions Rs with charges Zs, one can write the total energy
of the system as

Etot =
1
2

∑

s,s′

′

v(Rs − R′s) + Evext

[

n↑, n↓
]

(2.36)

where the first term is the classical ion-ion interaction energy (which makes sense since after
introducing the Born-Oppenheimer approximation the fixed cores are described classically) and
the electronic term depends implicitly on the Rs via vext = vext({Rs}). The forces on the indi-
vidual nuclei s are found as the derivatives of the energy with respect to the ionic coordinates
Rs,

Fs = −∇Rs Etot = e2
∑

s,s′

′

ZsZs′
Rs − Rs′

|Rs − Rs′ |
3
−

∫

d3r
[

∇Rsvext(r)
]

n(r). (2.37)

They are called the Hellmann-Feynman forces [58,59] and correspond to the force on a nucleus
due to the classical electrostatic potential of the other nuclei and the electrons [59]. In eq.
(2.37) an additional term of variational forces has been omitted. These are zero in the ground
state [60].

By means of the forces of eq. (2.37), molecular-dynamics calculations or relaxations of
the ionic positions can be carried out according to a number of different algorithms [61]. One
can also, unlike in the present work, minimize the electronic and ionic degrees of freedom
simultaneously [62].

2.2 Excitation Energies

2.2.1 Quasiparticles

We are primarily interested in optical properties. Any optical process such as absorption or
radiative recombination involves excited states. Hence it is necessary to consider in detail the
relation between the ground-state theory and the excited states.

The text-book-like Schrödinger equation of one particle in a fixed external potential gives
energy values which do not depend on whether or not the respective state is occupied. If the
same were the case for an electron in the solid, a discussion of different band structures would
not be necessary and optical calculations would be easy. However, in the solid the electron of
the independent-particle approach is subjected to the effective field of the other particles which
is not independent of the electron under question itself. If the respective electron is excited (or,
which for this discussion is equivalent, removed, which means that a hole is created), the other
electrons will rearrange according to the many-particle Schrödinger equation (2.1) whose self-
consistent potential contains the wave function of the excited electron. Consequently, the energy
values which can be assumed by the excited electron are different from the values calculated for
the unoccupied states using the ground-state charge density in the self-consistent potential of
the still exact one-particle description as given by the Kohn-Sham scheme. Moreover, the Kohn-
Sham, i.e., local, description of the exchange contribution can only be correct for a single state
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(HOMO). Thus one is lead naturally to the concept of quasiparticles representing one electron
(or hole) “dressed” by the reaction of the rest of the system [63, 64].

In addition, if both an electron and a hole are present in the system, they must be described
simultaneously in order to account fully for their interaction. A one-particle approximation
cannot, therefore, provide a complete description of the excited system.

In the one-particle description one asks at what possible energies a particle can be added or
removed from the system. These are the energies of the so-called quasiparticles of the system
which are described by the Schrödinger-like quasiparticle equation containing the non-local
energy-dependent self-energy in lieu of the exchange-correlation potential of the Kohn-Sham
scheme. It is the quasiparticle band structure one is generally interested in (as opposed to, e.g.,
the LDA band structure). The addition and removal energies can be measured by photoemission
and inverse photoemission, respectively [19]. These processes leave a charged system behind;
the number of electrons changes.

Absorption processes and, likewise, the subsequent luminescence are different in that they
do not change the number N of electrons in the system. The inferred continuum edge of the
optical spectrum is taken as the difference between quasiparticle energies of the conduction and
the valence bands or, more strictly speaking, as the difference between ionization energy and
electron affinity [65–68]. Hence this so-called quasiparticle gap involves excitations and is not
directly amenable to the ground-state theory DFT. Thus it is necessarily different from the gap
of even the exact-DFT band structure.

Any DFT band structure is calculated for a fixed particle number. However, the exchange-
correlation potential eq. (2.28) has been shown to exhibit a discontinuity when the number of
electrons is changed [65, 68, 69]. The role of this can be understood from Fig. 2.1 which has
been reproduced from Ref. [65]. The measured quasiparticle gap is the difference between the
LUMO (lowest unoccupied molecular orbital) energy of the (N + 1)-electron system and the
VB edge of the N- electron system. The quasiparticle gap EQP

g differs from the DFT-KS gap by
the discontinuity ∆ = v(N+1)

XC (r) − v(N)
XC(r) (independent of r) [65] with the exchange-correlation

potential of the N- and the (N + 1)-electron system. Hence the “LDA band-gap underestimate”
is a misnomer and not giving due consideration to the two different effects; the first being the
general need of an excited-state description, the second being the error incurred by the local
approximation of the vXC for fixed particle number. However, the relative importance of these
two effects is not immediately obvious. Godby et al. [65] showed for a bulk semiconductor that
about 80% of the “LDA gap error” is in fact due to the missing discontinuity in the exchange-
correlation potential and therefore inherent in any DFT calculation for fixed particle number.
Only the rest is due to the representation of vXC by its counterpart of the homogeneous electron
gas. For this reason we distinguish here the superscripts LDA and DFT.

This means that any DFT band structure that is calculated for constant particle number will
suffer a serious gap underestimate, no matter which approximation of VXC is used. This is a
serious problem not only from the fundamental point of view but also qualitatively: The DFT-
LDA band gap of silicon is about 50% too small, the band gap of germanium is even 0 – the
valence and conduction bands overlap.
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Figure 2.1 Schematic DFT band structure for an N-electron system
and an N+1-electron system [65]. Indicated are the DFT gap EDFT

g , the

quasiparticle gap EQP
g , and the self-energy correction ∆.

In the following we give a brief account of the different approaches to excitation energies
and locate the method used in the current work among them.

2.2.2 Self-energy corrections

As mentioned before, the Kohn-Sham scheme Eqs. (2.20), (2.21) and (2.27), provides the exact
ground-state density and total energy. The Kohn-Sham eigenvalues εi are not, however, a pri-
ori endowed with physical meaning as excitation energies. Nonetheless, comparison with the
quasiparticle equation (Dyson equation) derived from Green’s functions theory [70],

[−
~

2

2m
∆r + vext(r) + vH(r)]φQP

i (r) +
∫

dr′ΣXC(r, r′, εi)φ
QP
i (r′) = εiφ

QP
i (r) (2.38)

where the εi are really single-(quasi-)particle excitation energies and i includes the spin index,
shows a close formal similarity between the two equations. The only difference is that the (un-
known) local exchange-correlation potential v(α)

XC(r) of the Kohn-Sham scheme is replaced by its
counterpart in the quasiparticle equation (2.38), the non-hermitian, non-local, energy-dependent
self-energy integral operator ΣXC. This similarity itself should be viewed as an indication that
the Kohn-Sham scheme, despite its lack of formal justification as a description of excitation
energies, and in spite of the problems discussed above, bears at least some merit for the descrip-
tion of excitations. In fact, the KS energies have been shown to be well-defined approximations
to the excitation energies [71].

This is exploited in the approach of self-energy corrections. It consists in considering KS as
a zeroth approximation to be corrected by a self-energy correction,

δΣ(r, r′, εi) = Σxc(r, r′, εi) − vxc(r)δ(r − r′) (2.39)

which can be formally defined from the difference of the KS and the Dyson equations. One
possible approach is Hedin’s GW approximation [19, 70] which approximates the self-energy
operator as the product of the Green’s function G and the screened Coulomb interaction W ,
i.e., ΣGW

xc = G ·W . If then the LDA exchange-correlation potential is used in the KS equation,
vxc(r) = vLDA

xc (r), the self-energy correction is given as [72]

δΣ(r, r′, ω) =
i

2π

∫

eiδω′G(r, r′, ω′) ·W(r, r′, ω − ω′)dω′ − vLDA
xc (r)δ(r − r′). (2.40)
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As the DFT-LDA eigenfunctions are fairly close to the GW wave functions [19], δΣ can be
considered as a perturbation. This form of the self-energy approach is, therefore, a perturbative
approach. One calculates shifts for the band edges ∆HOMO = 〈 HOMO| δΣ |HOMO 〉 and
∆LUMO = 〈 LUMO| δΣ |LUMO 〉 with respect to the corresponding DFT values [73]. The gap
correction to the LDA gap ELDA

g is then given by ∆ = ∆LUMO − ∆HOMO.
One can now calculate corrections iteratively. In a first step, the KS wave functions {φLDA}

are kept, and the energy correction is calculated [19]. This is, at present, the customary thing to
do. In a second step, the wave functions can be updated [32, 74]. The methods yields single-
quasiparticle energies and gaps EQP

g . These quasiparticle energies reflect the insertion of one
electron (or hole) in the system. In physical terms, when the additional electron is put into the
LUMO state, the corresponding energy is the electron affinity A = EN − EN+1. Likewise, when
an electron is removed from the HOMO, the ionization energy I = EN−1 − EN is obtained. EN

is the energy of the N-electron system, EN±1 is the energy of the negatively/positively charged
system.
The quasiparticle gap of the system is given by the difference of I and A [68],

EQP
g = I − A (2.41)

and can thus be measured by combining photoemission and inverse-photoemission experiments.
With respect to this QP gap, the optical (or: “excitonic”) gap, i.e., the gap as measured in an
optical absorption experiment, is reduced by the electron-hole Coulomb interaction Ee-h,

Eopt
g = EQP

g − Ee-h. (2.42)

Using LDA we have ELDA
g instead of EDFT

g . The quasiparticle gap becomes

EQP
g = ELDA

g + ∆ (2.43)

with a QP gap correction ∆ = ∆LUMO − ∆HOMO [73] and, consequently, the optical gap

Eopt
g = ELDA

g + ∆ − Ee-h. (2.44)

In this equation, Eopt
g and Ee-h are physical quantities independent of the nature of any approx-

imation, unlike ELDA
g . For that reason, ∆, cf. eq. (2.39), is also defined relative to the LDA

and should, strictly speaking, also be superscripted by “LDA”. This is not, however, commonly
done.

In order to correctly account for the electron-hole interaction, one has to go to a two-particle
description and describe the simultaneous presence of electron and hole. This can be done by
simultaneous solution of BSE and Dyson equation which follow from Green’s functions theory.
However, this requires high numerical efforts [19]. Therefore, an alternative approach has been
pursued in the present work [75], which will be discussed in the following section.

The independent calculation of the quasiparticle correction and the Ee-h enables a compar-
ison in the case of NCs, which has been carried out by Delerue et al. [29] using a combined
approach of tight-binding wave functions, model screening, and BSE. While compensation ef-
fects have been known before [19,76], they found that over a wide size range of Si nanocrystals
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Figure 2.2 Exciton Coulomb energy Ee-h = Eopt
g − EQP

g [29] versus size in
Si nanocrystals (Plus: full GW + Bethe-Salpeter calculation; continuous line:
classical electrostatics calculation with effective-mass wave functions). Differ-
ence between the self-energy correction ∆ − ∆bulk and Ee-h (squares: Delerue
et al., full tight binding [29]; triangle up: Delerue et al., LDA approximation
of vXC, cf. Ref. [29]; ×: ab initio results of Ref. [32]). The figure has been
reproduced from Ref. [29].

the Coulomb energy and the self-energy correction cancel up to a constant which Delerue et al.
suggest to represent the bulk self-energy correction,

∆ − Ee-h ≈ const.
?
= ∆bulk. (2.45)

The “constant” (or, better: weakly R-dependent contribution) will be discussed in more detail
below in section 2.2.3.2

From this finding it can be concluded that in this size regime of NCs the LDA eigenval-
ues present very reasonable approximate excitation energies. In particular their R-dependence
reproduces the exact values very well,

Eopt
g (R) = ELDA

g (R) + const. (2.46)

This fortuitous fact calls for an explanation. The physical reason for the cancellation over a
wide size range can be understood, at least qualitatively, when eq. (2.42) is rewritten with the
NC radius as a parameter,

Eopt
g (R) = ELDA

g (R) + ∆(R) − Ee-h(R). (2.47)

It has been shown for the GW approximation of the self-energy that in the limit of strong lo-
calization but radii larger than the screening length given by the inverse Thomas-Fermi wave
vector, for both the electron and the hole the R-dependent part of the quasiparticle correction
goes like 1/εeffR [73],

δΣ(R) ∝
e2

εeffR
. (2.48)

This is the same R-dependence as that of the Coulomb contribution,

Ecoul(R) ∝
e2

εeffR
(2.49)

Here the radius of the NC is taken as the localization radius of the respective wave functions.
The screening constant εeff is, of course, also R-dependent, but this cancels out as far as eqs.
(2.48) and (2.49) are concerned. This means that the cancellation over a wide range of sizes is
explicable in term of the size dependence of the different quantities.
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The expression (2.48) does not yield the correct bulk limit ∆bulk for R → ∞ where it van-
ishes. For large radii, ∆ must go over into ∆bulk. This will be discussed below. Moreover, the
Coulomb energy eq. (2.49) is also given only for NC radii smaller than the localization radius
of the free exciton in the respective material. If larger NCs are considered, the NC radius looses
its meaning for the localization of the electron and hole wave functions.

2.2.3 Excitation energies from total energies

2.2.3.1 Conventional ∆SCF method: EQP
g = I − A

Alternatively to the self-energy approach, there is the conceptionally much simpler so-called
∆SCF approach which uses the total energies of different Self-Consistent Field calculations,
as for instance in DFT or HFA. In this approach, the quasiparticle gap as defined in terms of
ionization energy I and electron affinity A in eq. (2.41) [66, 67, 69, 77] is used,

EQP
g = I − A

= EN−1 + EN+1 − 2EN (2.50)

where EN signifies the total energy of the system with N electrons (i.e., the ground state), and
EN±1 signifies the total energy of the positively/negatively charged system. One problem of this
approach is that the electron and the hole of the excitation are never simultaneously present in
the NC. In order to obtain the optical gap, Ee-h has to be inserted by hand: This has been done
by Öğüt, Chelikowsky, and Louie [28] using

Eopt
g = EN−1 + EN+1 − 2EN −

∫

|ψe(r1)|2|ψh(r2)|2

ε(r1, r2)|r1 − r2|
dr1dr2. (2.51)

For Ecoul they used the intuitive expression under the integral to approximately calculate the
electron-hole interaction energy Ee-h. ψh(r2) and ψe(r1) are here the HOMO and the LUMO
state of the N − 1 and the N + 1-system, respectively.

2.2.3.2 Discussion of the ∆SCF method EQP
g = I − A

Equation (2.50) has been given in the original publication of Sham and Schlüter for electron
numbers in the limit of N → ∞ [68]. This limitation is not mentioned by Öğüt et al. [28].
However, one could still take eq. (2.50) as the definition of the respective energies. From the
quasiparticle energies, Öğüt et al. calculate the optical gap simply by means of eq. (2.42), with
the Coulomb energy calculated as in eq. (2.51).

However, this is only an approximation for optical absorption energies, i.e., energies of
neutral excitations. In those, the electron and the hole occur simultaneously in the system. The
remaining N − 1 electrons will rearrange according to the excitation, i.e., in the approximation
of the excitation of Öğüt et al. according to the N−1 and the N+1 system. After an absorption,
however, they react according to the presence of the electron-hole pair. As the effect of the
electron and of the hole on the remaining electrons will tend to cancel in a zeroth approximation
[19], the calculated optical gaps of Öğüt et al. will be overestimated.
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This can also be expressed in the following sense: The ∆SCF method of Öğüt et al. starts
from the LDA wave functions of the N − 1- and the N + 1-electron system and calculates, as an
approximation, an energy correction according to eq. (2.51). But it does not allow for a mixing
of electron and hole states due to the electron-hole interaction. However, such a mixing has
been found to be important [32].
The QP gap EQP

g as calculated by means of eq. (2.50) is known to reduce to the DFT (LDA, if
LDA is used) gap in the bulk. As for the additional contribution to be added to the self-energy
corrections as calculated by means of the ∆SCF method eq. (2.51), conflicting views have been
expressed in the literature [28, 30, 31, 78, 79].

Godby and White commented [30] the following on the paper by Öğüt et al. [28]: The
∆SCF method of Öğüt et al. (which they term “∆LDA”) includes electrostatic relaxation effect
and the corresponding relaxation in the LDA exchange-correlation potential. Both go to zero
for large sizes, where the QP gap of in LDA reduces to the LDA gap [68, 69]. Here, the non-
zero band-gap correction can be calculated using many-body perturbation theory in a suitable
approximation. It is not reproduced by the LDA, in particular due to the missing discontinuity
with changing electron number. Godby and White suggest that there is no reason to assume that
the contribution of the latter will be negligible in the smaller clusters, and they claim that an ex-
tra contribution should be added to the optical gaps calculated by Öğüt et al. which corresponds
roughly to the bulk self-energy correction. They support their claim by a fit of the calculated
self-energy correction from Öğüt et al. [30].

Öğüt et al. answer [79] that the extrapolation from the crystallite size regime to the bulk is
not feasible. This seems to be a valid criticism, in particular because the confinement mech-
anism changes when the NC radius is of the order of the free-exciton radius. Öğüt et al. use
comparison to experiment [80] to show that this extra contribution would not have to be added.
However, the agreement with experiment could also be due to a cancellation of the following
two effects:

• The overestimate of their optical gap as discussed above; and

• the missing extra contribution as discussed by Godby and White.

What Öğüt et al. appear to have called the QP gap in the reply [79] to Godby and White, is in
fact the ionization potential of SiH4 [80] (cf. p. 4869). Moreover, this is only cited from an older
paper, Pullen et al. [81]. If this is really what has been done, it would imply that the electron
affinity is zero. However, we found that for instance for Si5H12, there is no bound LUMO
state.7 This will be similar for SiH4 and Si2H6. It is, therefore, unlikely that the description
by Öğüt et al. using LDA total energies will yield valid results for the affinity and, therefore,
EQP
g according to eq. (2.50). Moreover, given the fact that there are two experimental values for

the ionization potential of Si2H6, viz. 10.4 and 10.8 eV [80], it is apparent that the error bar of

7In LDA the LUMO is localized for the N-electron system, but if we calculate the system for (N+1) electrons,
the additional electron is not localized at the cluster [82]. Rinke et al. [83] calculated the energies for Si5H12 in
LDA and GW and found that in LDA there is a bound LUMO state, while with quasi-particle effects in GW the
LUMO lies above the vacuum level.
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these measurements is fairly large, and that probably the accuracy is not really sufficient to draw
the conclusion they draw in the reply: That there is no additional contribution to their values
to be added. The latter is even more serious as there are different experimental values of the
ionization potential of 11.00 eV for SiH4 and 9.74 eV for Si2H6 [84]. The conclusion of these
points is that the refutation of the criticism of Godby and White is not necessarily stringent.

A second indication of the same point is the following: In their reply to the comment of
Franceschetti, Wang, and Zunger [31], Öğüt et al. assume for a counterfactual argument that
the additional contribution of roughly 0.68 eV (corresponding to ∆bulk) would have to be added.
From that they derive that the effective dielectric constants of dots between 2.3 and 3 nm diam-
eter would have to be around 1.5, which they call unrealistic. However, this is roughly the value
that they calculate in a newer publication [85] (without, however, mention of this contradiction.)
Thus this argument is, in fact, another indication that the extra contribution should be added.

The third indication would be that the TB BSE result of Delerue et al. [29] shows a can-
cellation between the self-energy effects minus the bulk self-energy correction and the exciton
Coulomb energy, (∆ − ∆bulk) − Ee-h ≈ 0. While it is not clear how well the TB description
reproduces the effects, this also suggests the adding of a “constant.” For very small sizes,
(∆ − ∆bulk) − Ee-h ≈ 0 becomes smaller than zero, which is consistent with the fact that Preuß
et al. [86] found good agreement between vertical ionization energies and LDA eigenvalues for
molecules, and on the other hand requiring to add the “constant” for intermediate sizes and in
the bulk limit.

Finally, comparison of our excitation energies eq. (2.55) with the experimental results [75]
would not be incompatible with an added approximately .6 eV, especially if the extra contribu-
tion would be smaller for smaller sizes. This will be discussed below on page 66.
In general, the main drawbacks of the ∆SCF method eq. (2.51) are that

• The method is inherently focused on single-particle excitations. Therefore it misses the
electronic reaction to the simultaneous presence of electron and hole, or, in other words,
the mixing of states due to the electron-hole interaction apart from the approximate treat-
ment of the electron-hole interaction using the Coulomb integral in eq. (2.51).

• It requires three self-consistent calculations, unlike the method described below which
needs only two.

• The system is charged, which necessitates a compensation charge when a supercell ge-
ometry is used; connected with this, convergence with respect to cell size is expected to
be slower than for neutral crystallites [82].

• The negatively charged cluster may not have a bound LUMO state, as for instance in the
case of Si5H12 [82, 83]. Spurious localization of the electron due to the fact that the LDA
brings the LUMO – wrongly – below the vacuum level may compromise the validity of
the method, although error cancellation appears possible. The localization due to DFT-
LDA might mimic the localization due to the presence of the hole.

• The evaluation of the Coulomb energy Ecoul remains intricate.



28 Chapter 2. Theoretical Foundations

2.2.3.3 ∆SCF with occupation constraint

The approach employed in the present work is different. It goes beyond the single-particle
description and targets directly the pair excitation. We use the ∆SCF method with occupation
constraints which effectively introduce an electron-hole pair into the NC [87, 88].

Due to the use of the Ritz principle, the DFT/Kohn-Sham formalism provides only a de-
scription of the ground states. However, as shown by Perdew and Levy [89], all the extrema
of the ground-state (!) functional Evext of eq. (2.25), i.e., the solutions of the Euler-Lagrange
equation

δEvext

δn(r)
= λ (2.52)

represent the density and the energy of a stationary state8. One way of finding these excited
states is to specify occupation numbers accordingly. In the Kohn-Sham scheme, these enter
only into the density, eq. (2.21), which is now modified to

n(r) =
∑

α∈{↑,↓}

Nα
∑

i=1

γ(α)
i |φ

(α)
i (r)|2 (2.53)

with occupation numbers γ(α)
i ∈ {0, 1}. Eqs. (2.20), (2.53) and (2.27) are formally identical to

the original Kohn-Sham scheme. They can be used for a non-degenerate spin-polarized system
with prescribed occupation numbers. Obviously, for

γ(α)
i = 1 : i ≤ Nα (2.54)

the ground-state equations are recovered. An electron-hole excitation can be described by “un-
occupying” one of the occupied states by choosing γ(α)

j = 0 and inserting the electron into one

of the higher states, γ(β)
k = 1. It should be noted that at this point the total magnetization is

now no independent variable, but is specified by the fixed numbers of spin-up and spin-down
electrons, see also section 2.2.5. However, the LSDA is not able to describe pure multiplets, cf.
section 2.2.5 below.

In our calculation of the lowest pair excitation energies, the occupation constraint stipulates:
HOMO → empty; LUMO → e−. Ee+h

N is now the excited-state total energy of the N-electron
system. This quantity includes the Hartree relaxation of the electronic system when the electron-
hole pair is present, and it also includes the electron-hole Coulomb interaction9. Correlation

8These stationary states provide a subset of the excited states of the system [89].
9A practical remark is in order. While the Coulombic electron-hole interaction is, in fact, accounted for in a

confined system, the situation in bulk calculations is different. Usually the primitive cell (or a different relatively
small cell, compared to the localization radius of the exciton) is used which by its boundary conditions makes a
description of excitons impossible: Electron and hole are forced to be distributed throughout the crystal. In other
words, the method as described by (2.50) will work only when the principal influence on the distribution of the
wave functions is the confinement – unlike in the bulk, where a localization in terms of (rel − rh) is brought about
mainly by the Coulomb interaction and correlation. In this case, the singly ionized systems’ wave functions are
drastically different from those of the electron-hole pair [90].
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effects far beyond the frozen-orbital approximation are taken into account by performing the
self-consistent calculation of the N-electron system with the electron-hole pair present. The
pair excitation energy is now simply its difference to the ground-state total energy,

Eopt
g = Ee+h

N − EN . (2.55)

There are advantages of this approach over the “conventional” ∆SCF method of eqs. (2.50) and
(2.51) described in the previous section. First of all, only two self-consistent calculations are
necessary. Moreover, the Coulomb energy does not have to be calculated after the calculation
but is naturally included. This alleviates also the problem of unbound LUMO states, because
the electron-hole pair is bound much stronger due to the attractive Coulomb interaction. Both
methods describe a pair excitation, but in the first method the electron-hole interaction is only
partially introduced via the Coulomb integral of equation (2.51). Only for that reason is it
possible to write the pair-excitation energy as the sum of two one-particle excitation energies I
and A. Due to the numerous advantages, eq. (2.55) is the basic equation for the calculation of
the pair-excitation energies in the present thesis.

However, the problem of the LDA which does not exhibit the discontinuity of the exchange-
correlation potential also prevails here. For that reason, in the bulk limit eq. (2.55) also yields
just the LDA gap. This leads to the question as to which parts of the self-energy are described
correctly. As the method is, so to speak, a better version of the ∆SCF method eqs. (2.50), (2.51),
the discussion about the added constant or R-dependent contribution as given in section 2.2.3.2
is also valid here. In view of the results of Delerue et al., cf. Fig. 2.2, and of the discussion in
section 2.2.3.1 this means that for the larger crystallites a contribution corresponding roughly
to the bulk self-energy correction should be added, whereas for the smallest crystallite of 5 Si
atoms the calculated value should be correct. This can be understood heuristically by consider-
ing that the effect of the spatial quantization is much stronger than the many-body effects when
the NC radius is much smaller than the free-exciton radius. In the large-crystallite limit, on
the other hand, the discontinuity of the exchange-correlation potential is needed. This will be
discussed with respect to our calculated excitation energies in the results section 4.1.2.

2.2.4 Other methods to calculate excitation energies of nanostructures

The solution of the many-body problem has been targeted with a number of other methods.
Simple approaches to the electronic structure (and, subsequently, optical properties) of NCs in-
cluded the effective-mass approximation (EMA) which calculates electronic states for electrons
and holes with an effective mass in a model confinement potential [8, 91, 92]. This method is
accurate in the bulk limit, while for small systems the representation of the true situation is
poor. This is easily understandable merely from the fact that the EMA has been derived for
slowly varying potentials10, which is not valid down to the small sizes of nanostructures where
the nanostructure size becomes comparable to the interatomic spacing [8, 93, 94].

10Slowly varying in this context means that the wave functions can be separated into an envelope function which
is smooth at the level of the extension of the structure, and a part which represents the variations on the atomic
length scale. For nanostructures, measuring a few or dozens of atoms across, this is not the case.
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The same can be said, in general, about the empirical-pseudopotential approaches. Here, in-
stead of deploying the full formalism of ab initio pseudopotential theory, potentials are created
by fitting procedures to bulk properties [95]. Again, the bulk limit is necessarily reproduced
well. The method has also been applied to quantum dots with a great deal of success, see, e.g.,
Ref. [8]. In particular, the calculated single-particle wave functions can be used to calculate
physical properties like the exchange splitting in excitons using Coulomb integrals [96, 97] or
the influence of correlation [97]. However, when scaled down to the smallest sizes, the results
become questionable. E.g., the pressure dependence of the gaps in Ge NCs is not in agreement
with the results from the present ab initio calculations [98, 99].

Another widely used approach is the tight-binding (TB) description of the electronic struc-
ture [9]. For small sizes, the transferability of the bulk atomic interaction parameters is, how-
ever, not immediately obvious. While the method fares much better than the EMA, its results
in the smallest size range must be taken cum grano salis [100].

Conventional DFT is basically a ground state theory. This limitation is no longer there for
the Time-Dependent DFT (TDDFT) [19, 101, 102] where the response of an electron to a time-
dependent external potential is derived by searching the extrema of the quantum-mechanical ac-
tion functional, which leads to a time-dependent Kohn-Sham equation [19]. In general, TDDFT
in the adiabatic local-density approximation (TDLDA) seems to fare well for excitation ener-
gies in confined systems like Na4 clusters [103] as well as for electron energy-loss spectra of
solids, but it improves only slightly upon the RPA absorption spectra of solids [104].
The Hartree-Fock approximation, applied on the single-particle level, neglects correlation ef-
fects. (In fact, correlation is defined as the difference between the exact and the HF result for
the ground-state configuration.) If the full Hamiltonian (2.1) is applied to a trial wave function,
this is due to the use of a single Slater determinant. However, if instead a sum over all Slater
determinants is used, i.e., determinants including excited states, the resulting equation is the ex-
act description of the system because the linear combination of Slater determinants is the most
general form of a function compatible with the Pauli principle. The practical implementation
of this approach, popular especially among chemists, is called Configuration Interaction (CI).
Appealing though it is, CI is limited to very small particle numbers due to its unfavorable ex-
ponential scaling [19]. In fact, full CI can hardly be done for more than five electrons [105].
However, partial inclusion of the correlation effects is possible for a limited number of Slater
determinants. For instance, correlation has been included via CI into the calculation of HF
excitation energies of Si crystallites [33]. Moreover, CI has also been used starting from the
single-particle wave functions obtained from empirical-pseudopotential calculations [97].

Finally, Quantum-Monte-Carlo (QMC) methods [106] have been applied successfully to the
problem of excitation energies of crystallites [107].
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2.2.5 Spin: singlet vs. triplet excitons

Optical excitation usually creates singlet excitons due to the spin selection rule, which after-
wards recombine without change when exchange is weak. However, in strongly confined Si sys-
tems there are many (indirect) observations of triplet excitons due to the electron-hole exchange
interaction [22, 108–110]. Since the corresponding optical transitions are spin-forbidden they
have been termed “dark” excitons in contrast to the ‘bright’ spin-allowed singlet excitons [39].
Usually the triplet excitons are slightly lower in energy. The splitting can be determined from
fitting measured life times using a model [108] that accounts for both singlet and triplet exci-
tons [22, 108–110].

The spin-density is given as the expectation value of the spin-density operator. Its z compo-
nent is (cf. eqs. (2.3) and (2.22))

sz(r) =
~

2

∑

αβ

〈 Ψ| Ψ̂†α(r)σz
αβΨ̂β(r) |Ψ 〉 (2.56)

=
~

2
[n↑(r) − n↓(r)]. (2.57)

The total electronic spin integrates to

S z =

∫

d3r sz(r) =
~

2
[N↑(r) − N↓(r)], (2.58)

where for the last step we assume that only integer occupations γ(α)
i are used, cf. eq. (2.53). In

the present work we describe, in this way, excitations of electron-hole pairs with S z = 1 (triplet)
and S z = 0 (singlet), by setting the occupation accordingly.11 The spin or exchange splitting of
the exciton energies is given by

∆E = Eopt
g (S z = 0) − Eopt

g (S z = 1) (2.59)

with the excitation energies Eopt
g of eq. (2.55) and the z projection of the spin fixed by setting

the occupation number accordingly, cf. eq. (2.53).
The splitting is given by the electron-hole exchange term

2
∫

d3r1d3r2
e2

|r1 − r2|
ψ∗h(r1)ψ∗e(r2)ψh(r2)ψe(r1) (2.60)

as discussed for confined systems, e.g., in Ref. [39].
However, DFT-LSDA [55] as used here is not able to describe pure multiplets. This is a gen-

eral problem [111]. A rigorous description of multiplets requires symmetry-adapted exchange-
correlation functionals, which are not available [112]. In the spin-polarized approach one can

11In practical terms, in the VASP code [61] we specify occupation numbers for the spin-up and spin-down
electrons, respectively. For N↑ = N↓ = N/2 a singlet exciton is described by occupation numbers γ↑N/2−2 =

1, γ↑N/2−1 = 1, γ↑N/2 = 0, γ↑N/2+1 = 1, γ↑N/2+2 = 0, etc., and γ↓N/2−2 = 1, γ↓N/2−1 = 1, γ↓N/2 = 1, γ↓N/2+1 = 0, γ↓N/2+2 = 0,

etc. Accordingly, the triplet exciton is described by γ↑N/2−2 = 1, γ↑N/2−1 = 1, γ↑N/2 = 0, γ↑N/2+1 = 0, γ↑N/2+2 = 0, etc.,

and γ↓N/2−2 = 1, γ↓N/2−1 = 1, γ↓N/2 = 1, γ↓N/2+1 = 1, γ↓N/2+2 = 0, etc.
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Figure 2.3 Schematic representation of the processes that produce the Stokes
shift. The y-axis is in this representation, strictly speaking, the energy of the
involved valence state (in our case generally the HOMO) and the excited state
(here: the LUMO). The sub- and superscripts are GSG for Ground-State Ge-
ometry, ExSG for Excited-State Geometry, and e+h for electron-hole pair. Etot

is the total energy, cf. eq. (2.36).

only fix the projection MS of the total spin S but not the total spin itself. One describes actually
a high-spin state with S = 1, MS = ±1 (which is a triplet state) and a low-spin state with MS = 0
(which might be a mixture of spin states). Consequently, this approach tends to underestimate
the spin splitting and gives a lower limit to the possible values.

2.2.6 Stokes shifts

Measured PL peak energies of NC samples are red-shifted with respect to the lowest absorption
energies [47]. This shift is influenced by two main contributions. First of all, after thermaliza-
tion of electrons and holes the line width of the PL spectra determines the shifts as discussed in
Refs. [113, 114]. This is an effect of the size distribution of the crystallites. The recombination
probability of the electron-hole pairs is, roughly, inversely proportional to the transition energy.
Consequently, after non-resonant high-energy excitation the larger NCs of a sample with a size
distribution contribute more to the PL signal. In an absorption experiment, on the other hand,
more or less all NCs contribute. We do not consider this contribution to the Stokes shift in
the present work, as this would require knowledge of the size distribution of the experimental
sample.

Second, there is the structural contribution which is determined by the structural relaxation
of the individual NCs after an optical excitation as visualized in Fig. 2.3. This has also been
called Franck-Condon shift [115]. For each of the different electronic states (ground state, ex-
cited state), a total-energy curve exists along a — possibly fictitious — configuration coordinate.
Electronic excitation (or recombination) thus takes place between two such total-energy curves.
For each of them, a total-energy minimum is assumed after the structural relaxation following
the electronic excitation. As the electronic movements are by orders of magnitude faster than
the motion of the cores, the electronic relaxation may be considered instantaneous, whereas the
structural relaxation is slow. An absorption event hence takes place from the minimum of the
ground-state curve EGSG to a state on the excited-state total energy curve, Ee+h

GSG. Here we drop
the index N but instead indicate if they are calculated for the ground-state geometry (GSG) or
the excited-state geometry (ExSG). All the energies here are of the N-electron system. After
that, the structure will relax such that the electron assumes the minimum on the excited-state
total-energy curve, Ee+h

ExSG. This can involve transitions between different vibrational states; this
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will, in general, take place as a non-radiative relaxation. For the emission, i.e., the transition
from Ee+h

ExSG to EExSG, the transition energy is lower. The resulting red-shift

∆Stokes = (Ee+h
GSG − EGSG) − (Ee+h

ExSG − EExSG) (2.61)

is the structural contribution to the Stokes shift.
Finally, another contribution to the Stokes shift is due to the splitting between the singlet and

the triplet exciton [115,116]. This is connected with the selection rules and has to be considered
when experimental data are interpreted. However, the Stokes shifts of the present work have
been calculated mostly for non-spin-polarized systems.

2.3 Optical Properties

2.3.1 Dielectric function

In order to calculate the optical properties of a material, the response to an external potential
must be determined. We are, in the present work, interested in the influence of the confine-
ment on the optical properties. These are restricted to linear response and described in the
independent-particle approximation, neglecting local-field effects.

We use the supercell method, cf. chapter 3 below. Therefore we have, despite the fact that
we treat localized structures, a system with translational symmetry. Consequently the eigen-
functions of the Hamiltonian eq. (2.1) are Bloch functions. Thus the following treatment is
written in terms of Bloch functions, in particular because the meaning of the wave vector is
then easily apparent.

We need to calculate the response of the system to an external perturbing potential V pert(r, t).
To this end, we write the total potential V(r, t) as the sum of the external potential V pert(r, t) and
the potential V ind(r, t) induced by Vpert(r, t):

V(r, t) = Vpert(r, t) + V ind(r, t). (2.62)

The inverse dielectric function ε−1(r, r′, t) is now introduced after Fourier transformation,

V(q +G, ω) =
∑

G′
ε−1(q +G,q +G′, ω)Vpert(q +G′, ω) (2.63)

where G and G′ are reciprocal lattice vectors and q is the wave vector of the external perturbing
potential. It connects the latter with the total potential V(r, t). Due to the spatial inhomogeneity,
cf. (2.62), the dielectric function is a matrix with respect to G and G′.

In the independent-particle approximation and after Fourier transformation the dielectric
matrix is given by

ε(q +G,q +G′;ω) = δGG′ −
4πe2

|q +G|2V
P(q +G,q +G′;ω) (2.64)

with the polarizability [117]

P(q +G,q +G′, ω) =
∑

n,n′

∑

k,k′
Bk,k′

n,n′ (q +G)Bk,k′∗
n,n′ (q +G′)

f (εn(k)) − f (εn′(k′))
~ω + εn(k) − ε′n(k′) + iη

(2.65)
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containing the Bloch integrals

Bk,k′

n,n′ (q) =
∫

d3rφ∗nk(r)e−iqrφnk′(r) (2.66)

and the Fermi functions f (ε(k)) which determine the γi in eq. (2.53). The φ∗nk(r) are Kohn-Sham
Bloch wave functions.

The off-diagonal elements of the dielectric matrix describe the local-field effects, i.e., the
difference between the microscopic and the macroscopic induced fields due to the atomic struc-
ture of the solid. In the present work, local-field effects are neglected throughout. It is apparent
from eq. (2.63) that in this case all the Fourier components of the perturbation are screened
independently.

The dielectric function eq. (2.64) has been derived here for a longitudinal perturbation, i.e.,
a perturbation resulting from an external charge. In the optical limit q→ 0 one can demonstrate
the equality of the longitudinal and the transverse (resulting from an external vector potential)
dielectric function lim

q→0
εl(q, ω) = lim

q→0
εt(q, ω) [118, 119]. Hence we do not distinguish between

the symbols of the longitudinal and the transverse dielectric function.12

For practical calculations, interband transition matrix elements of the form [120]

lim
q→0
〈ck|eiqr|vk′〉 = lim

q→0
iq〈ck|r|vk′〉 (2.67)

have to be calculated, which has to be done with care. Otherwise, ill-defined quantities like
matrix elements of the dipole operator appear [162]. Instead, use is made of the relation

〈ck|[eiqr, Ĥs]−|vk
′
〉 = [εv(k

′) − εc(k)]〈ck|eiqr|vk′〉, (2.68)

Ĥs being the single-particle Hamiltonian of the independent particles [121]. As the two con-
cerned bands are different, the transition matrix elements can be related to matrix elements of
the velocity operator v̂ which now assumes the role of the optical transition operator,

lim
qα→0

1
~qα

[eiqαrα , Ĥs]− =
i
~

[rα, Ĥs]− = −v̂α.

Consequently we do not have to carry out the transition q→ 0 explicitly. Instead, we have now
the requirement k = k′; only transitions between states with equal k contribute.
In the present work we use all-electron wave functions obtained using the projector-augmented-
wave method (PAW) as described in section 2.4 below. For that reason, the simple relationship

v̂ =
p̂
m

(2.69)

is valid [121], introducing the momentum operator p. This replacement leads to a modified
Ehrenreich-Cohen formula for the dielectric function

εαβ(ω) = δαβ +
16πe2

~
2

Ωm2

∑

k

∑

cv

1
[εc(k) − εv(k)]

〈

ck
∣

∣

∣p̂α
∣

∣

∣ vk
〉 〈

vk
∣

∣

∣p̂β
∣

∣

∣ ck
〉

[εc(k) − εv(k)]2 − ~2(ω + iη)2
, (2.70)

12In cubic materials, the dielectric function is diagonal, εαβ(ω) = ε(ω)δαβ; only one independent component
exists. Consequently, the equality of longitudinal and transverse dielectric function holds for arbitrary directions
of q. Moreover, in the present work we use ε(ω) without indicating the tensorial character, except where necessary
as for instance in the case of hexagonal material.
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which here is written including the tensorial nature of the quantity. For systems of cubic sym-
metry, the tensor has just one independent component; the response is isotropic.

Without damping, i.e., for η = 0, the imaginary part of the dielectric function

Im εαβ(ω) =
8π2e2

~
2

Ωm2

∑

cv

∑

k

〈ck|p̂α|vk〉
〈

vk|p̂β|ck
〉

[εc(k) − εv(k)]2
δ[εc(k) − εv(k) − ~ω] (2.71)

and its real part

Re εαβ(ω) = δαβ +
16πe2

~
2

Ωm2

∑

cv

∑

k

〈ck|p̂α|vk〉
〈

vk|p̂β|ck
〉

[εc(k) − εv(k)]
[

[εc(k) − εv(k)]2 − (~ω)2
] (2.72)

are obtained. Eq. (2.71) has been used in the present work for the practical implementations of
the theory presented here.

2.3.2 Radiative recombination

The derivation of eq. (2.71) shows that it is just Fermi’s golden rule in the dipole approximation
and the one-electron picture [122,123]. In order to describe photoluminescence — the quantity
of prime interest for the nanostructures intended for optoelectronics — one has to calculate the
radiative lifetimes averaged over the relevant transitions. Assuming that the thermalization is
faster than the radiative recombination, the electron-hole pairs will be thermalized according to
the temperature T of the system. In this case, the averaged recombination rate determining the
radiative life time – again in independent-particle approximation – is given by [124, 125]

τ−1 = 4 neff
e2

~2mc3

∑

k
∑

c,v f ααcv (k) (εc(k) − εv(k))2exp
(

−
εc(k)−εv(k)

kT

)

∑

c,v exp
(

−
εc(k)−εv(k)

kT

) , (2.73)

where neff is the effective refractive index and the f ααcv (k) are the oscillator strengths [126]

f αβcv (k) =
1
m

〈 kc| pα |kv 〉 〈 kv| pβ |kc 〉 + 〈 kc| pβ |kv 〉 〈 kv| pα |kc 〉

εc(k) − εv(k)
(2.74)

for the optical transition between a conduction state c and a valence state v. In our case, these
are Kohn-Sham states. The peak energies of PL spectra correspond roughly to the energy of the
lowest optically allowed transition in the excited system, see also section 2.2.6. The measure-
ment of Stokes shifts and radiative lifetimes can, therefore, give valuable information about the
structure and the processes in the NCs.

2.4 Projector-Augmented-Wave Method and Matrix Elements

The Kohn-Sham equation contains the potential of the atomic nuclei as the “external” potential.
All electrons are contained as individual particles. However, the bonding and optical properties
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of solids are primarily determined solely by the valence electrons, and here, in turn, in the
interatomic regions. This is exploited by the pseudopotential approaches in two ways [127].

First, one creates an ionic core from the nucleus and the inner shells of electrons. The as-
sumption of the “frozen core approximation” [128] is that this ionic core is unchanged when
the chemical situation of the valence electrons is changed. The distinct advantage of this is that
the deep Coulomb potentials at the atomic positions are replaced by much “softer” screened
Coulomb potentials. Moreover, the number of electrons to be treated is reduced.13 The pseu-
dopotential creation now simplifies the wave functions of the valence electrons by removing the
oscillations in the core region whose description is only of minor importance for the sought-for
quantities. This can be done because now the core electrons are part of the inert core, and the
valence wave functions do not have to be orthogonalized with respect to them. However, in
certain cases a so-called “non-linear core correction” has to be added. In the present work this
is important for Ge due to its 3d electrons.

In the construction of the pseudopotential, the removal of the core-region oscillations of the
valence wave functions is done for the atom. There is a great deal of freedom how this can be
done, and many different schemes have been conceived by, e.g., Phillips and Kleinman [130],
Bachelet, Hamann, and Schlüter [131, 132], Troullier and Martins [133], and Vanderbilt [134].
The basic idea is to take the wave functions and construct some well behaved “pseudo”-version
of it which inside some cut-off radius is smooth. Outside, however, it must be identical with
the true wave functions which in this context are called “all-electron wave functions”.14 In the
initial pseudopotential idea, a projection procedure by means of the core states was used [130].
While initially the norm of the wave functions inside the cut-off radius was required to be equal
to that of the original wave function, this requirement has been shown to be dispensable [134],
leading to “softer” potentials and hence reduced numerical efforts [135].

Subsequently, the Schrödinger equation (or, for a better description, its relativistic counter-
part [136]) is inverted. In this manner, a “screened” pseudopotential is created. The construction
yields potentials for different angular momenta; the pseudopotentials are, in general, nonlocal.
For the technical treatment, an “unscreening” procedure yields the ionic pseudopotential which,
like the pseudo-wave-function, is much smoother than its all-electron counterpart [136]. More-
over, for numerical convenience, the pseudopotential can be transcribed into a fully nonlocal
form which in k space factorizes and thus facilitates the calculations [137].

In general, the scattering properties of the pseudopotentials have to be the same as those
of the corresponding all-electron potential, which must also hold in different chemical environ-

13While in some cases like the group-IV elements, the choice of the valence electrons is hardly any issue, in
other cases this can be different, as in the case of extended d-electrons. In general, a higher number of valence
electrons will result in deeper core potentials and, hence, in much higher cut-off energies. In the case of Ge, the
cut-off for a decent band-structure calculation with norm-conserving pseudopotentials is about 4 Hartree for a
4-valence-electron potential, while it is increased to about 150 Hartree when 22 valence electrons are used [129].

14We mention that the term “all-electron” as used attributively for the wave functions or the potentials is some-
how misleading. It does not refer to the number of electrons considered for the valence states. [There are also
frozen-core all-electron calculations.] Instead, it signifies that – unlike in the pseudopotential approximation – the
whole one-particle wave function of any valence electron is considered.
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ments. The respective tests are dealing with this problem under the name “transferability” and
“chemical hardness” [136].

The effect of introducing the pseudopotentials is a modified Kohn-Sham equation which
neglects effects of the core regions but is much more tractable numerically. Especially for a
plane-wave expansion of the KS wave functions, the numerical effort is drastically reduced.
The description of the properties, lattice constants, bulk moduli, and even optical properties
(see, e.g., Ref. [138] and references therein, as well as Ref. [139], reproduces the true quantities
rather well – iff well-constructed pseudopotentials are used. For large systems like ours, usually
non-norm-conserving pseudopotentials are used. However, due to the relaxation of the norm-
conservation condition, the method does not yield wave functions in the core region as it is
necessary for the for the calculation of the transition matrix elements of eq. (2.69).

This can be solved by means of the projector-augmented-wave (PAW) method [140] which
is, in its philosophy, slightly different from the pseudopotential method. While it also seeks
to construct smooth valence-electron wave functions, it does not rely on the negligibility of
their core regions for the description of the desired properties. Instead, a transformation T is
introduced between the space of all-electron (AE) wave functions |ψ 〉 (which can – but do not
have to – be the Kohn-Sham wave functions of equation (2.20)) and of smooth, numerically
convenient pseudo-wave-functions (PS) |ψ̃ 〉,

|ψ 〉 = T |ψ̃ 〉 ⇔ |ψ̃ 〉 = T †|ψ 〉 (2.75)

and consequently for operators

A = T ÃT † ⇔ Ã = T †AT . (2.76)

We want to determine the transformation

T = 1 +
∑

R

TR (2.77)

such that it is unity apart from local, atom-centered transformations TR which act only inside an
augmentation region ΩR around each atom. Only within this augmentation region – similar to
the core region of the pseudopotential approach – are |ψ̃ 〉 and |ψ 〉 different. The TR are defined
inside the augmentation region by the specification of a set of target functions |φi 〉 of TR or AE
partial waves, and a set of initial functions |φ̃i 〉 or pseudo-partial-waves which is complete in
the augmentation region and orthogonal to the core states. The name partial waves stems from
the fact that the solutions of the radial Schrödinger equation multiplied by spherical harmonics
present a natural choice for these functions. Outside the augmentation region, the PS partial
waves are identical to the AE partial waves.

One finds that the general form of the transformation is

T = 1 +
∑

i

(

|φi 〉 − |φ̃i 〉
)

〈 p̃i| (2.78)

with the projector functions |p̃i 〉 which must be dual to the PS partial waves,

〈 p̃i|φ̃ j 〉 = δi j. (2.79)
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The freedom in the construction of the pseudo-wave-function is now contained in the construc-
tion of the projector functions. Following a suitable choice of these, the PAW method has a
direct relationship with the ultrasoft-pseudopotentials [134, 141].

The linear transformation (2.78) now connects the AE- and the PS-wave-function according
to eq. (2.75). This rests on the assumption of completeness of the projector functions inside
the augmentation sphere. Unlike in the pseudopotential approach, which is an approxima-
tion, one can now transform the original all-electron Kohn-Sham equation into a numerically
more convenient PS-Kohn-Sham equation by transforming all operators and the wave functions
by means of T . This equation can be solved, e.g., using the usual plane-wave expansion of
the Hamiltonian’s H̃ eigenfunctions. The desired quantities are then obtained using a back-
transformation via the inverse of T . Expressions for the transformed quantities are given in the
references [140, 141]. For a local operator A, the result is

Ã = T †AT = A +
∑

i j

|p̃i 〉
(

〈 φi|A|φ j 〉 − 〈 φ̃i|A|φ̃ j 〉
)

〈 p̃ j|. (2.80)

The target quantities of the present work contain momentum-operator matrix elements, as
shown in eqs. (2.71), (2.72), and (2.73). The matrix element of p between the AE wave func-
tions n and m within the PAW description is then naturally given, according to the inversion of
eq. (2.80), by [139]

pnm = TpnmT
† = 〈 Ψ̃n| p |Ψ̃m 〉 +

∑

i j

〈 Ψ̃n|p̃i 〉
(

〈 φi| p |φ j 〉 − 〈 φ̃i| p |φ̃ j 〉
)

〈 p̃ j|Ψ̃m 〉 . (2.81)

The first term on the right-hand side of eq. (2.81) corresponds to the usual pseudopotential
description (identifying the |Ψ̃ 〉 with the pseudo-wave-functions) which simply neglects the
effect of the pseudo-description of the core region. The additional terms follow naturally from
the PAW method and correct the result for this omission. They are formally identical to the
core repair term that has been introduced independently by Kageshima and Shiraishi [142]. It
has been shown [139] that for materials with rather localized core states, like C, Si, or SiC,
this description is roughly equivalent to standard pseudopotential calculations of the optical
spectra. However, in the presence of extended shallow core orbitals, the PAW method improves
distinctly over the pseudopotential description.

Furthermore, as the PAW method yields all-electron wave functions, the simple relation eq.
(2.69) connects the velocity and the momentum operator. This means that one does not have
to take into account the cumbersome additional contribution due to the non-local terms in the
one-particle Hamiltonian [121] as it has to be done for the conventional pseudopotentials.



Chapter 3

Model, Method, and Numerical
Implementation

3.1 Model

Two distinct model systems have been treated: Free, hydrogen-terminated group-IV crystallites
and crystallites embedded in a crystalline matrix. The H-saturation is used to model the high
potential barrier for electrons and holes of a NC embedded in a wide-gap or insulating matrix. It
prevents surface effects and dangling bonds. At the same time, these structures are a model for
hydrogenated NCs in porous silicon. On the other hand, the embedment of NCs in a crystalline
matrix seeks to investigate directly the relevant effects including interface and strain. Moreover,
the partial localization of electrons or holes is investigated in these structures.

3.1.1 Free crystallites

We construct NCs by starting from one atom and adding its nearest neighbors, thereby assuming
the tetrahedral coordination as well as the interatomic distances of the respective cubic bulk ma-
terials. Successively adding the nearest neighbors of the surface atoms shell by shell we obtain
NCs of N = 5, 17, 41, 83, 147, 239, and 363 atoms. The remaining dangling bonds are satu-
rated by H atoms. Thereby N denotes the number of atoms in the NC, disregarding the hydrogen
atoms. Similar construction procedures have been applied by different groups [14,39,143,144].
The system is illustrated in Fig. 3.2. The point group of the resulting NCs is Td, i.e., inversion
is the only missing point-symmetry operation compared to the initial diamond-structured bulk
material. Inspection of the model NCs reveals that they are not precisely spherical but exhibit
small facets at the surface due to the construction procedure. Basically, their shape is a cube
with cut-off corners in such a way that triangular faces arise which connect the midpoints of the
rectangles that touch at the respective corner. They have six rectangular faces corresponding to
a 〈001〉 orientation as well as eight faces corresponding to a 〈111〉 orientation. However, the
construction procedure results in two different situations, alternating with increasing number of
shells: Either the six {001} faces are quadratic, in which case the {111} facets are of the same
size. This is the case for the NCs of N = 17, 83, 239, etc. atoms. Alternatively, for the NCs of

39
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Figure 3.1 HRTEM image of cubic GeSi
nanocrystal in hexagonal SiC [5, 145]

Figure 3.2 Example of model structures: NC of 83 Ge or Si atoms, surrounded by
108 H atoms for the free NC (left panel), or by a matrix containing Si (yellow) and C
(grey) atoms (right panel).

N = 41, 148, 363, etc. atoms, the six {001} faces are rectangular with edge lengths differing
by one atom. In these cases, two different kinds of triangular {111} facets arise. Even in the
first case of equal edge lengths of the {111} facets, they are inequivalent due to the construction
procedure.

The Td symmetry is always kept in the present work except in those cases where the effects
of lowered symmetry have been studied, which is then indicated in the text.

We consider simple-cubic supercells, both for simplicity and because in this case the number
of nearest-neighbor supercells is smallest. When no symmetry is broken the IBZ is itself a
tetrahedron. A simple-cubic supercell is constructed by basis vectors a1 = Na0(1, 0, 0), a2 =

Na0(0, 1, 0), and a3 = Na0(0, 0, 1). Here N gives the length of the supercell in multiples of the
cubic lattice constant a0 of the underlying diamond structure. Correspondingly, the reciprocal
lattice vectors are shortened by a factor of N. Applying N = 1, 2, 3, and 4 in each of the three
Cartesian directions, one obtains supercells of 8, 64, 216, 512, and 1000 atoms, respectively.
Thus, for Ge we use edge lengths of 16.9, 22.6, and 28.2 Å. For the radius of the NCs we take
the radius of the sphere of equal volume according to the volume per atom in the bulk.

3.1.2 Crystallites embedded in a crystalline matrix

The second situation dealt with is that of NCs embedded in a crystalline matrix. For most of
the calculations, the model system of Ge (or Si) NCs in a SiC matrix has been chosen. The
geometry of the NCs is chosen in analogy with the free NCs. The NC atoms now replace the
atoms of the host material on a one-to-one basis. Therefore, all bonds at the NC-host interface
are saturated. As a starting point, the lattice constant of the host is assumed. Due to the different
lattice constants of SiC and Si or Ge, this procedure results in rather strongly strained systems.
The system is illustrated in Fig. 3.2. Again, the system’s symmetry is Td.

As a consequence of the construction procedure, the interface bonds between the NC and
the matrix are either all Ge-C, or all Ge-Si.
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3.2 Electronic-Structure Calculations

3.2.1 Supercell method and description of NCs

Bulk semiconductors have a small primitive cell (2-atomic in the case of cubic Ge and Si) and
a correspondingly large Brillouin zone (BZ). A preliminary step towards the supercell method
is the construction of a large cell. To this end, the primitive cell of the material is repeated ni

times along the lattice vectors ai, leading to cells of n1 × n2 × n3 × N0 atoms, where N0 is the
number of atoms in the primitive cell. Accordingly, the BZ is reduced by a factor of ni in the
respective directions. The bands which are now outside the (supercell-) BZ are translated back
(or, more strictly speaking, are equivalent to bands inside the BZ) into the BZ in such a way as
to present a band folding.

This is a redundant description of the bulk material. However, insertion of a perturbation like
a defect or a nanocrystal into this cell makes it the primitive cell of the supercell system. The
bands within the new BZ are less dispersive, in absolute terms, but their number has increased
by a factor of n1 × n2 × n3 due to the band folding.

Localization results in weakly dispersive bands. In the case of the strongly confined states
in the hydrogen-terminated NCs dispersion is minimal. For the embedded structures one has a
large number of bands representing the folded bulk band structure of the host as well as states
localized to different degrees, which show still a sizable dispersion due to the interaction of the
NCs in adjacent supercells.

By means of the supercell method, the localized structure has been transformed into a new
translationally invariant lattice. Consequently all the useful “tools” of solid-state physics can be
applied. This concerns especially the plane-wave expansion of the wave functions.

3.2.2 Algorithms and potentials

The optical properties are calculated in the present work within the independent-particle approx-
imation. They are based on the one-particle wave functions calculated using DFT as presented
in chapter 2. We employ the Vienna ab initio Simulation Package (VASP) [61, 146] with the
projector-augmented-wave method (PAW) [139–141], cf. section 2.4. The PAW data sets have
been created by J. Furthmüller. The calculation of transition matrix elements eq. (2.81) elements
has been incorporated into the VASP package, also by J. Furthmüller. The supercell approach
is taken in order to use the plane-wave expansion of the eigenfunctions. The electron-electron
interaction is described within the parameterization of Perdew and Zunger [147] of the results
of Ceperley and Alder [57]. Nonlinear core corrections are taken into account [148].

In order to obtain an independent reference, two norm-conserving Ge pseudopotentials have
been created using the fhi98pp code [136]. The calculations for these potentials have been done
using the ABINIT package [149]. In Fig. 3.3, we compare the two norm-conserving pseudopo-
tentials of 4 and of 22 valence electrons. In the latter, the whole 3-shell is treated as valence
electrons. Obviously the band structures coincide very well, apart from very small differences.
This means that the choice of the 4s and 4p electrons as the valence is well justified. Second,
we present in Fig. 3.4 the spectra of two H-terminated NCs. While there are certain differences
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Figure 3.3 Comparison of Ge band structures ob-
tained for two norm-conserving pseudopotentials
with 4 and 22 valence electrons, respectively.

Figure 3.4 Comparison of Ge NC spectra ob-
tained by means of the present method with the
PAW data sets, compared to spectra obtained for
norm-conserving pseudopotential constructed for
comparison, and using the ABINIT package. NCs
of 83 and 41 Ge atoms have been used.

in the energetic positions of some of the peaks, all the structures correspond very closely to
each other, including good agreement of the intensities. In particular the fact that the lowest
transitions are very strong is reproduced by both potentials. The latter is a particularly valuable
corroboration of our results because the order of the band gaps in Ge is notoriously problematic
for pseudopotential calculations in DFT-LDA where the Γ-Γ gap becomes practically zero.

The algorithms used for the electronic-structure calculations by means of VASP are based on
the conjugate gradient scheme [150,151], or, most frequently, a residual minimization scheme -
direct inversion in the iterative subspace (RMM-DIIS) [152, 153]. For the mixing of the charge
density an efficient Broyden/Pulay mixing scheme [153–155] is used.

The large calculations have been done on RS6000 workstations (with 1, 2 or 4 processors
POWER 3 - II, 375 MHz). The treatment of the smaller supercells (up to the 216-atom cells)
has also been carried out using standard LINUX PCs with memory between 500kB and 2GB.

3.2.3 k points and cell size

In the supercell approach as described in section 3.2.1, electronic-structure calculations involve
integrals (or sums, depending on whether the k points are considered discrete) of functions
of the k points over the Brillouin zone. As the number of k points treatable in a practical
calculation is necessarily limited, an approximation has to be found. There are a number of
special-point methods which chose a certain number of k points to represent the mean values
as best as possible [156–158]. In the case of the large supercells, the band dispersion inside the
BZ is rather small; in terms of the bulk supercell description the effective number of k points
is much higher. It turns out that for the large supercell used in the present work, one k point is
sufficient for a reasonable description of the system.

For the free, hydrogenated NCs which are separated by vacuum, the band structure of the
relevant bands is practically dispersionless, only the higher bands are slightly influenced. This
is illustrated in Fig. 3.6: In the case of a 83-atom Si NC, the cell corresponding to 216 atoms
of bulk material is not yet sufficient, so for this system, the cell corresponding to 512 atoms of
bulk was used. Now the question of the k-point sampling is rendered irrelevant. In fact, for
these isolated structures it is only a remnant of the artificial translational symmetry which has
been introduced for numerical convenience.
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Figure 3.7 Spectra for different cell
sizes for two NC sizes and the ideal ge-
ometry. The respective spectra are al-
most indistinguishable.

For the embedded crystallites, the situation is different. If convergence with respect to cell
size had been reached, the energy levels due to states localized at the NC should show no
dispersion, while the states representing the bulk band structure of the matrix will of course be
dispersive. Nonetheless, also here it proved possible to use just one k point for the NC-host
supercell system. As Γ is a high-symmetry point, it does not exhibit any mean-value properties
and is not suitable. We have chosen to work with a Monkhorst-Pack mesh [157] of 2x2x2 k
points along the coordinate axes, which for the Td systems reduces to one k irreducible point,
viz.

k222 =

(

1
4
,

1
4
,

1
4

)

. (3.1)

In order to check the convergence of the electronic-structure calculation with respect to the
number of k points, Fig. 3.5 shows test spectra for a 5-atom Ge NC embedded in SiC in a 64-
atom supercell: The electronic structure calculation has been done using 2x2x2 = 1, 4x4x4 =
4, and 6x6x6 = 10 k irreducible points. The resulting charge density was then used to calculate
the spectrum using only k222. While this is of course not converged with respect to the number
of k points used for the spectrum (see below, section 3.4), it shows that the electronic structure
calculation is rather well converged: The three spectra are virtually indistinguishable. For the
larger cells which have been used in the present work, the situation will be even more favorable
due to the higher number of band foldings.

For consistency we have used the same k point for the calculations treating the free NCs,
even though here, due to the practically vanishing dispersion, the Γ point would have been
acceptable as well. A fortuitous fact is indicated in Fig. 3.7: Even in those cases where the
band structure shows dispersion, the spectra prove very insensitive to this. The spectra for the
83-atom NC as calculated for the two different cell sizes used also in Fig. 3.6 do not show any
distinct differences. The spectra have been scaled as discussed in section 4.1.6. This finding is
also another indication that – as expected – the description of the system using just one k point is
sufficient. For the free NCs this holds also for the calculation of the spectra. For the embedded
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Figure 3.8 Convergence of total energy for SiC
bulk with increasing cut-off energy.

Figure 3.9 Convergence of spectra of Si5H12

with increasing cut-off energy.

NCs, a more powerful method is necessary which will be discussed in section 3.4.2. In any
case, the chosen cell sizes were sufficient for the free crystallites to ensure reliable results.

3.2.4 Cut-off energies

In general, the “default cut-off” indicated in the PAW data sets has proven sufficient for the
treatment of the respective materials. The values are 174 eV for Ge, 202 eV for C, and 207 eV
for Si, i.e., 15 Ry, and 208 eV for H. Tests have shown that further increase did not result in any
significant change in the spectra. An exception are the spin-polarized calculations which were
done for the exchange splitting between the singlet and triplet excitons. Here, the cut-off was
increased by 25 % to insure convergence of the very small energy differences. The quality of
the cut-off is illustrated in Fig. 3.8. As can be seen, at the energies used in the present work, the
calculation was well converged. A note of caution is in order, as also indicated by Fig. 3.8: An
uncritical increase of the cut-off energy will not automatically lead to an increase of the quality
of the results. Beyond 300 eV the results become questionable because of the PAW construction
procedure. As for the spectra, the sufficiency of the chosen cut-off is demonstrated in Fig. 3.9.

3.3 Ionic Relaxations

The dependence of the total energy on the ionic coordinates discussed in section 2.1.6 enables
the determination of the minimum-energy structure. The process is called ionic relaxation and
can be done by means of three different methods. The choice depends on the system and on
the progress of the relaxation. The methods we use are conjugate gradient, damped molecular
dynamics [61], or, most frequently, the direct inversion in the iterative subspace (RMM-DIIS)
[152, 153].

The choice of the relaxation algorithm depends on the system and also on the progress of the
relaxation. Excited-state relaxations prove particularly difficult. This is illustrated in Fig. 3.10
where the excited (one electron-hole pair, spin neglected, no symmetry constraint) 41-atom Si
cluster is treated. As can be seen, the choice of the algorithm is crucial. In the worst case,
different algorithms may lead to different pathways on the Born-Oppenheimer surface and can
lead into different local minima. This is seen in Fig. 3.10 as well.

The ionic relaxations are usually carried out until the target quantity of the calculation is
converged. For this, it is not sufficient to stipulate a certain maximum residual force per atom.
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Figure 3.10 Non-spin-polarized calcu-
lation of Si41H60 with an electron-hole
pair and no symmetry constraint. Per-
formance of different relaxation algo-
rithms, using the terminology of VASP
tags [61]: IBRION=1: RMM-DIIS, 2:
Conjugate gradient, 3: damped molecu-
lar dynamics.
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Figure 3.12 Same as Fig. 3.11, but for
ground-state relaxation. Note the much
lower number of ionic steps.

In particular, towards the end of the relaxation, the change in the HOMO-LUMO gaps can be
much larger than the respective change in the total energy, as shown in the insets of Fig. 3.11.

However, the ground-state relaxations of our Td systems proved relatively easy to accom-
plish and insensitive to technical parameters. This is, among other factors, due to the fact that
the charge distribution is naturally also Td. The number of relaxation steps is much smaller, as
can be seen comparing Figs. 3.11 and 3.12.

3.4 Calculation of the Dielectric Function

In this section we describe the numerical details of the calculation of the dielectric function eq.
(2.71), the density of states (DOS)

g(ε) =
∑

νk

δ
(

ε − εν(k)
)

(3.2)

and the joint density of states, (JDOS)

j(ε) =
∑

cvk

δ
(

ε −
(

εc(k) − εv(k)
)

)

. (3.3)

For the hydrogenated NCs, the sum over all k points in the supercell system’s BZ can be trivially
replaced by a multiplicative factor due to the absence of energy dispersion. The δ peaks can then
be broadened to obtain spectra comparable to their experimental counterparts. The situation for
the embedded systems is described in section 3.4.2.
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Figure 3.13 Contribution of transitions
between single band pairs to spectra. (a)
Transitions from the highest valence band
into the first, second, third, and fourth CB
(black), from the second highest VB etc.
(b) Summed transitions into the lowest four
CBs from the first VB (black), the sec-
ond VB (red), etc. The converged refer-
ence spectrum has been calculated using
100 cbs. All spectra calculated using the
tetrahedron method with 89 tetrahedra in
the IBZ.

3.4.1 Number of conduction bands

The numeric calculation of the dielectric function according to eq. (2.71) is done by truncating
the sum over the conduction bands at a certain number. As no local-field effects are included, the
dielectric function eq. (2.64) is simply a sum over all transitions. It turns out that already with
a relatively small number of bands the spectra are relatively well described. In Fig. 3.13 a) the
contribution of different band pairs is shown. As shown in Fig. 3.13 b), the lowest 4 conduction
bands are already sufficient to account correctly for the spectrum of bulk SiC up to 12 eV. For the
large supercells this number corresponds to a much higher number of bands. In general, we use
for the calculation of the spectra as many valence bands as we use conduction bands. The total
number of bands for the 216-atom bulk cell is 864, for the 512-atom bulk cell 2048. Yet even
though this number of bands allows the calculation of the absorption spectrum, the calculation
of integral properties which are sensitive to the whole spectral range is not necessarily equally
satisfactory. An increase in the number of bands, however, would have been out of the range
of the numerical resources available for the present work. It is for this reason that we have not
considered any of the sum rules.

3.4.2 BZ integration: Tetrahedron method

For the embedded NCs, the calculation of the spectral properties, especially of the dielectric
function according to eq. 2.65, the density of states (3.2), and the joint density of states (3.3),
includes sums over all the k points in the BZ. Unlike the electronic-structure discussed in section
3.2.3, where a relatively small number of k points is sufficient, the spectra are very sensitive to
the k point sampling because they are determined primarily by the joint density of states (JDOS)
and, therefore, by the band structure. Special-point techniques [156–158] can be used also here,
but the number of k points required to obtain converged results is rather high.1

1In the case of DFT-LDA, Ge bulk, at 2048 (shifted) k points convergence is not yet reached [129].
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For every k point used, the electronic-structure calculation has to be carried through which
leads to high numerical efforts. The problem is alleviated by the use of the tetrahedron method
[159–161] which reduces the necessary number of k points by about a factor of 10 [162, 163].
The method, which has been developed independently by Gilat and Raubenheimer [159] and
Lehmann and Taut [160], is one of a group of methods which reduce the k-space integrals to
sums over surfaces of constant energy. Extrapolative [159, 164] and interpolative versions have
been discussed [160,161,165–169]. The method can be used in 2 [170], 3, or 4 [171] dimensions
and be modified when a Fermi surface is present [172]. Apart from the band structure, also the
matrix elements of the integrand can be included [173].

The task to be accomplished is the calculation of an integral of the form

F(ω) =
∫

BZ
f (ω,k) d3k. (3.4)

The volume element in k space can be written

d3k = dS
dε(k)
|∇ε(k)|

, (3.5)

where S is a surface of constant energy. This treatment can equally well be used for energy
differences, ε(k) ←→ εcv(k) =

(

εc(k) − εv(k)
)

, as they are needed in the dielectric function
(2.71), where in addition f involves a sum over all valence-conduction-band pairs. Now the BZ
is divided up into tetrahedra. Hence the integral (3.4) becomes a sum over all the tetrahedra γ,

F(ω) =
∑

γ

∫

dε
∫

S γ

dS
dε(k)
|∇εk|

f (ω,k). (3.6)

Two approximations are now made. First, the band energies are linearized inside each tetra-
hedron,

ε(k) := ε(k0) + ∇ε(k)
∣

∣

∣

∣

∣

(k0)
· (k − k0) (3.7)

with a suitably chosen k0 and

∇ε(k)
∣

∣

∣

∣

∣

(k0)
= ∇ε(k)

∣

∣

∣

∣

∣

γ

(3.8)

constant for the tetrahedron γ. The gradient is obtained from the k points and energies at the
tetrahedron corners. The surfaces of constant energy are now planes.2 Second, we assume that
f in eq. (3.4) depends on k only via ε(k). In the case of the dielectric function this amounts
to approximating the matrix elements as constant over any given tetrahedron. This turns the
integral over S γ into

∫

S γ

dS
|∇ε(k)|

=
A(S γ)

|∇ε(k)|γ
, (3.9)

2The linearization is convenient but not necessary. A quadratic version of the tetrahedron method has been
worked out by Methfessel and coworkers [174].



48 Chapter 3. Model, Method, and Numerical Implementation

Figure 3.14 Schematic of one tetrahedron, with the cor-
ners k0 through k3 and the respective corner energies εi.
The three possible positions of the surfaces Si are shown.

where A is simply the area of S in the tetrahedron γ. Thus the dS γ integral is reduced to the
geometrical task of determining the surface area of the plane S γ(ε(k)) in the tetrahedron γ.
Assuming a numbering of the corner k points as indicated in Fig. 3.14 one finds that three
situations have to be distinguished, as S γ(ε(k)) can be in any of the three positions S1, S2, and
S3. The respective areas are given by

S0(ε(k)) =
[ε(k) − ε0]2 V |∇ε(k)|

2(ε1 − ε0)(ε2 − ε0)(ε3 − ε0)
, (3.10)

S1(ε(k)) =
[ε(k) − ε1]2 V |∇ε(k)|

2(ε1 − ε0)(ε3 − ε1)(ε2 − ε1)
, and (3.11)

S3(ε(k)) =
[ε(k) − ε3]2 V |∇ε(k)|

2(ε3 − ε0)(ε3 − ε2)(ε3 − ε1)
. (3.12)

The relevant S2 is evidently given by S2 = S0 − S1. The dS integration has now become
an analytical expression only involving, besides ε(k), the energies εi = ε(ki) at the corners of
the tetrahedron.3 The constant gradient is determined by the corner energies and the k points
themselves. V is the k-space volume of the tetrahedron γ.4 All that’s left now is to perform
the energy integral in eq. (3.6). In the cases of interest for the present work, this is particularly
simple because all three, the DOS (3.2), the JDOS (3.3), and the expression for the imaginary
dielectric function (2.71) contain an “energy-conserving” δ function. Using an index function

IIl =















1 if ε(k) in region l,

0 else
(3.13)

and the above-mentioned replacement ε(k)→ εcv(k) the final result for Imε(ω) is

Imε(ω) = 48
e2
~

2

2π

∑

γ∈IBZ

∑

cv

m̄cv
γ

∫

dεcv(k)
∑

l

IIl
Sl (ε(k))
|∇ε(k)|

δ(εcv(k) − ~ω)

[εcv(k)]2
(3.14)

= 48
e2
~

2

2π

∑

γ∈IBZ

∑

cv

m̄cv
γ

∑

l

IIl
Sl (ε(k))
|∇ε(k)|

1
(~ω)2

(3.15)

3The formulae are modified when degenerate tetrahedron corners are considered, cf. section 3.4.4.
4Customarily, the volumes of all the tetrahedra are chosen to be equal. This is not, however, a requirement of

the method.
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Figure 3.15 Test of matrix elements by
comparing the gradient from the matrix
elements eq. (3.18), to one calculated
from band energies at close k points.
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Figure 3.17 Spectra obtained using lin-
ear and quadratic extrapolation accord-
ing to eq. (3.17).

where averaged oscillator strengths
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1
4

4
∑

i=1

















1
3

3
∑

idir=1

∣

∣

∣

∣

∣

f cv
ii (k)

∣

∣

∣

∣

∣

















(3.16)

have been introduced, cf. eq. (2.74). The first sum averages over the 4 tetrahedron corners,
while the second sum yields the invariant for the cubic case. Hence we do not calculate the
tensor εαβ(ω) of eq. (2.71) but its invariant trace

∑

α
1
3εαα(ω),α ∈ {x, y, z} [175]. The factor 48 in

eq. (3.14) has been introduced here because we can in the cubic system restrict the integration
to the irreducible part of the BZ (cf. section 3.4.4).

3.4.3 Extrapolation

It is obvious from the above formulae that the method relies on the allocation of the band
energies at different k points to individual bands. However, the electronic-structure calculations
do not yield bands but merely stacks of energies at single k points. While this problem is already
present in the calculations for bulk materials using small unit cells, it is drastically aggravated
when very large cells are used as in the present work. This is for two reasons: First, there are,
after the multiple band foldings, many bands per energy interval, and band crossings are not
uncommon. Second, due to the large cells and the high number of bands, any increase in the
number of k points is numerically very costly, independently of the fact that the calculations
do not have to be carried out simultaneously.5 The tiny separations of the energy values due to
the huge number of bands within the supercell description and the occurrence of band crossings
and anticrossings make apparent that the idea of band allocation at different k points and, hence,
also any interpolative methods have to be abandoned.

We have developed, in the present work, an approach to both solve this problem and at the
same time require the minimal number of k points possible, viz., just one. An extrapolative

5This holds for the band-structure calculations and the accompanying matrix element calculations only, not for
the determination of the charge density.
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version of the tetrahedron method [159, 166, 176, 177] has been implemented [178]. To obtain
the energy values of the bands for one tetrahedron we start from some k0 and extrapolate,
essentially by means of k · p perturbation theory. Basically the formula we use is

εν (k) = εν (k0) +
3

∑

α=1

∂

∂kα
εν(k)

∣

∣

∣

∣

∣

∣

k0

(kα − k0α)

+
∑

α,β

(kα − k0α)
(

kβ − k0β

) ∂2

∂kα∂kβ
εν (k)

∣

∣

∣

∣

∣

∣

k0

, (3.17)

with the gradients of the energy bands represented by the intraband matrix elements of the
momentum operator at k0,

∂

∂kα
εν(k)

∣

∣

∣

∣

∣

∣

k0

=
~

m
〈 νk0| pα |νk0 〉 , (3.18)

calculated according to eq. (2.81). The second derivatives are given by

∂2

∂kα∂kβ
εν(k) =

~
2

m















−
∑

ν′

′

f αβνν′ (k) + δαβ















(3.19)

with the oscillator strengths f αβνν′ (k) of equation (2.74). Due to the use of nondegenerate k · p
theory we have to use a k0 point that does not give rise to degenerate states. Thus k0 must
not lie on a symmetry plane or line. For this reason, in the simple-cubic case the Baldereschi
point [156] cannot be used. We use the center of gravity of the IBZ, which is itself a tetrahedron,
as the k0 point. In reciprocal coordinates this is the point k0 = (.250, 0.125, 0.375).

The quality of the calculations depends sensitively on the accuracy of the intra- and inter-
band momentum matrix elements used within the extrapolation procedure. In order to demon-
strate the precision of the calculations within the PAW method [139, 141] we study the nu-
merical fulfillment of the relation between the intraband momentum matrix elements and the
gradient of the corresponding Bloch band in k space, eq. (3.18). A comparison of derivatives
obtained from these gradients to derivatives from energy differences at two k points in close
vicinity is shown in Fig. 3.15. The test has been performed for the center of gravity of the
tetrahedron, k0 = (0.25, 0.125, 0.375), lying between k1 = (0.25073, 0.12514, 0.37536) and
k2 = (0.4927, 0.12486, 0.37464), in units of the reciprocal basis vectors of the 8-atom simple-
cubic SiC cell which has been used. Obviously the quality of the intraband matrix-element
calculation is excellent.

3.4.4 Resampling – tetrahedron mesh

After we have availed ourselves with an approximate band structure as calculated by means of
eq. (3.17), the usual procedure can be employed. In principle, the quadratic representation of
the band structure around some k0 allows the application of the analytic quadratic tetrahedron
method [174]. However, in view of the errors incurred from our extrapolation, the effort nec-
essary to implement the quadratic method, and the existence of a code and expertise about the
linear method we retain the linear method.
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In order to diminish the obvious problem of committing the systematic error of linearly
interpolating a quadratic function between two fairly distant points in k space we introduce
a resampling procedure. We divide the irreducible part of the BZ into smaller tetrahedra by
choosing the midpoints of the tetrahedron edges and connecting them to obtain smaller tetra-
hedra. Successive application of this method yields tetrahedron meshes of 1, 8, 64, 512, and
4096 tetrahedra. The energies at their corners are calculated according to expression (3.17).
The matrix elements according to eq. (3.4.2) are calculated at k0 and held constant for all the
IBZ for any pair of bands {c, v}. For a refinement of this procedure see section 3.4.7. Resulting
spectra are shown in Fig. 3.4.4 for SiC in a 216-atom cell. There is clearly an improvement of
the absorption spectrum with increasing number of tetrahedra. The use of 512 tetrahedra pro-
duces already a converged result. Further subdivision of the tetrahedra does not lead to further
improvement. Apart from the finestructure of the two main absorption peaks, the 512-tetrahedra
result already approaches the reference spectrum. It should be noted that the “sampling” using
just one tetrahedron – crude though it is – leads already to qualitatively correct results because
due to the folding it is equivalent to many more tetrahedra in the corresponding smallest sc-
supercell (8 atoms). For the 512-atom cell, the IBZ corresponds to 64 tetrahedra in the 8-atom
cell.

The question arises which supercell sizes our method is applicable to. The larger the real-
space cell, the smaller is the BZ, and, consequently, the shorter are the extrapolation distances
in k space. The SiC results are shown in Fig. 3.22 for supercells containing 8, 64, 216, and 512
atoms, respectively. In all cases a 64-tetrahedra resampling has been employed. It is apparent
that for the 8-atom cell the extrapolation distances are as large as to only allow a representation
of the main features of the optical absorption spectrum in a crude manner. The method works
much better in the 64-atom cell, although in this case it is still rather far from convergence.
For the two largest cells under consideration the method gives a more or less well converged
absorption spectrum. In the largest cell with 512 atoms the spectrum is in excellent agreement
with the reference result, apart from a small underestimate of the heights of the main absorption
peaks.

The subdivision of k space into tetrahedra needs to be done with some care. Very often –
and also in the present work – one takes simply the IBZ and introduces some convenient sub-
division. However, it has been pointed out by Kleinman [179] that this necessarily results in
giving uneven weights to different k points. Subsequently, several publications have discussed
ways of solving this problem [179–182]. Jepson and Anderson [180] suggested to divide not the
IBZ but the whole BZ into tetrahedra, using the same k points as before (and points equivalent
to them). While this approach solves the weight problem, it introduces a new complication,
which is not, apparently, discussed in the literature: The tetrahedron mesh now necessarily in-
cludes tetrahedra with symmetry-equivalent corners. These can be treated using the limits of
Ren and Harrison [183] of the expressions (3.10), (3.11), and (3.12) for corners of equal en-
ergies. However, while these limits are useful for the case of accidentally degenerate corner
energies, the solution of the problem is unsatisfactory for equivalent-cornered tetrahedra which
will have many occasions of multiple degeneracy (or approximate degeneracy). We demonstrate
this problem for the use of just one tetrahedron, the simple-cubic IBZ itself.
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Figure 3.18 Spectra for the different tetrahedra using the whole BZ
as described in the text. The fact that the results for the different
tetrahedra are different in general is due to the fact that the single
tetrahedra here do not comprise the whole IBZ but rather parts of it
(and some of them more than once).
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Figure 3.19 Spectra for different values of the parameter used for
carrying out the principal-value integral. For SiC, 512-atom cell
bulk, the spectra do not appreciably change over the range .0001
through 1.

The smallest possible number of inequivalent tetrahedron corners for the simple cubic BZ
is four, viz. Γ (1), the midpoints of the faces (2), the midpoints of the edges (3), and the corners
(4). In order to get a correct weight for every k-point and to cover the whole BZ one has to
consider the four tetrahedra 1234, 1223, 2334, and 2233. The problem occurs most strongly for
the 2233 tetrahedron with its two doubly degenerate corner energies. The energy ε(k) always
lies between the second and the third corner energy. The formula for S2 for degenerate ε3 and
ε2 is [183],

S2 ∝
(ε(k) − ε0)

(ε2 − ε0)(ε3 − ε0)

(

ε2 − ε(k)
ε2 − ε0

+
ε3 − ε(k)
ε3 − ε0

)

. (3.20)

For the tetrahedron which has a second pair of degenerate corners, and looking at the contribu-
tion at ε(k) = 1

2 (ε2 − ε1) this reduces to a term proportional to 1/[ε2 − ε1]. If ε2 and ε1 happen
to be close in energy as well, the contribution of this tetrahedron becomes very large within a
small energy range.

The consequence of this is shown in Fig. 3.18. While the tetrahedron representing the IBZ
fares well because it does not have symmetry-degenerate corners, there are spikes in the curves
of the others which also translate into the mean which should represent the “true” result.

The physical explanation of this behavior is that the tetrahedron is intersected by symmetry
planes. There the band gradients have to vanish in the direction perpendicular to the plane.
However, in the case of the degenerate tetrahedron corners the linear interpolation maps this be-
havior by bands running parallel in the direction connecting the two degenerate points. For the
case of two pairs of degenerate corners where also the separation of these becomes very small,
this is tantamount to smearing a critical point out onto the whole plane within the tetrahedron.
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Figure 3.20 Influence of the number of
bands considered in the k·p expression.
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been changed only for the extrapolation;
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Figure 3.22 Spectra calculated using the ex-
trapolation & tetrahedron method developed in
the present work and applied to the different
simple-cubic cell sizes.

Thus the problem is caused by the linearization of the band energies inside each tetrahedron,
and it cannot be solved without changing this.

The weight problem due to the use of just the IBZ is limited to the k points at the surface
of the IBZ because all points inside occur just as many times as there are symmetry operations.
Thus the problem vanishes in the limit of large tetrahedron numbers. Moreover, our tests have
shown that the number of tetrahedra needed in order to reproduce the reference spectrum is not
very large, cf. section 3.4.4. For that reason we have, after due consideration of this weight
problem, chosen to keep using a subdivision of only the IBZ.

A comparison of the results after linear and quadratic extrapolation of the band energies is
shown in Fig. 3.17. The poorer quality of the results after only linear extrapolation may be un-
derstood by the fact that at critical points the bands’ gradients are zero. The linear extrapolation
starting from a general k0 overshoots here.

The method could be improved by starting from more than just one k point in the BZ and
extrapolate the bands to the different tetrahedron corners of a particular resampling mesh. For
the purposes of the present work extrapolation was deemed sufficient. Besides, it should be
noted that in this case, the bands used for the integration will not be continuous inside the IBZ.
If the improvement just mentioned were to be implemented, a thorough test of the influence of
that on the final results would be necessary.

3.4.5 Band kissing / Anticrossing correction

For the large-supercell systems the energies lie so dense that the sum over bands in the the
second-order expansion of the energy bands (3.17), (3.19) and (2.74) effectively becomes an
integral. In fact, the energy separations are frequently smaller than the precision of the energies.
The sum can be replaced by an integral in the sense of the Riemann definition. The principal
value is computed in practice by adding a small imaginary part iη to the energy nominator
and considering the real part. It turns out that the method is fairly insensitive with respect
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to the choice of the parameter η. Between the two extremes where either the second-order
energy terms scatter strongly due to a too small η, or the result starts loosing structures due to
a too large η, there is a rather wide region for the broadening parameter over which the result
does not change appreciably. Our experience indicates that it is best to chose the parameter
as small as possible but without a singular tail arising towards ~ω = 0 due to a scatter of
the extrapolated energies. The latter effect is due to the small energy differences between the
band energies that enter in eq. (2.74), which are frequently smaller than the accuracy of the
electronic-structure calculation. Reliable values of η are η = 0.001eV − 0.1 eV for 216-atom
cells and η = 0.00001eV − 0.01 eV for 512-atom cells. For embedded NCs, the values have to
be chosen somewhat larger. An example of the procedure is shown in Fig. 3.19.

The accuracy of the second-order expansion of the energy bands (3.17) and (2.74) depends
on the number of conduction bands as well. Apart from the influence on the spectra as discussed
in section 3.4.1, the number of bands influences the convergence of the perturbation series in
expression (3.19). The “repulsion of the bands” due to their interaction requires, for each band
considered, the inclusion of a reasonable number of bands above. Consequently, for the higher
bands the second-order energy correction will be less accurate than for the lower ones, and the
resulting error will be systematic. Figure 3.20 shows that this is really the case. The same
calculation has been done for different numbers of conduction bands taken into the perturbation
sum in eq. (3.19). However, for the calculation of the absorption in both cases the same number
of bands were used. For the higher number of included bands the high-energy absorption peak
slightly changes its location towards the reference value.

There is another point of importance. Perturbation theory requires the energy corrections
to be smaller than the difference of the involved unperturbed energy levels. For the large ex-
trapolation distances (k − k0) that we have to deal with, this condition is poorly fulfilled, at
best. In this sense we have to state clearly that by means of equation (3.17) we do not, strictly
speaking, calculate a well-defined perturbative expansion but rather a geometrical extrapolation
from the first and second derivatives of the energy bands at k0. Thereby we do heavily rely
on the smooth behavior of the bands. In other words, viewed as a perturbative calculation the
convergence properties could not be assured. However, our results clearly indicate the viability
of extrapolation in the face of this problem. Nevertheless, we have to discuss the question as to
how well even exact second-order extrapolation can describe the bands, i.e., how dangerous is
it for a particular band to drop the basic requirement of perturbation theory? This problem is
exemplified by what Pickard and Payne call "band kissing" [176], also known as anticrossing.
The effect occurs when two bands which would truly intersect each other are "repelled" by their
interaction. This repulsion causes extreme values of the second-order energy derivatives for
the respective two bands which are limited to the immediate vicinity of the anticrossing. If k0

happens to be very close to such a point, the second-order energy corrections to the two bands
will be much too large, similar in value, and have opposite signs [176]. This can be seen in
Fig. 3.17 where the second-order energy correction is plotted as a function of the band index.
In the simplest possible case of just two bands, the problem can be solved by using k·p theory
for almost degenerate bands [184] and crossing the bands "by hand" by an assignment of the
new energy values such that smooth, crossed bands are obtained. We found that it is possible to
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look for extreme values of the second-order energy terms which are close in terms of the band
indices and similar in size but have different signs. We only check those for the direction of
highest curvature and apply the method of Pickard and Payne [176] to them: First, the direc-
tion is found in which the second-order energy term is diagonal. The system is then rotated,
and new energies are calculated using second-order perturbation theory for nearly degenerate
states [184]. Now the bands are crossed “by hand”. Finally the system is rotated back into the
original coordinate system.

The result of such a treatment is also demonstrated in Fig. 3.17. However, at least in the
cases we considered, the band-kissing effect on the overall result is negligible. Within the
precision of our calculations the correction can safely be neglected.

As a further demonstration of the quality of the extrapolation method starting from only one
k0 point we calculate the DOS of SiC in the 512-atom cell with a 64-tetrahedra resampling.
This is a very good indicator of the quality of the energy extrapolation because it involves only
the energies, but not the transition matrix elements. It is clearly demonstrated in Fig. 3.2 that
our method of using only one k0 point in the IBZ is capable of yielding excellent results for
spectral properties.

3.4.6 Spurious transitions

In general, as a consequence of the fact that states belonging to different k points in the BZ of
the initial structure are folded onto the same k point, spurious optical transitions occur. These
transitions are, however, strictly forbidden in the BZ of the ideal crystal. The number nspurious of
spurious transitions in relation to the real ones nreal is easily seen to be nspurious/nreal = ncbnvb16N3

where ncb and nvb = 4 are the numbers of conduction bands and valence bands related to the
initial primitive cell of the fcc structure. Although the respective transition probabilities van-
ish, there had been some concern whether the numerically non-zero transition probabilities due
to inaccuracies might create a computational problem. We found that the values of the transi-
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tion matrix elements of a typical spurious transition is smaller by a factor of 10−6 than those
representing real transitions. Thus, for the supercells considered in the present work one can
ignore the influence of spurious transitions. However, it should be kept in mind for the future
application of the method to even larger supercells.

This has been supported also by a discussion of the JDOS which allows us to separate the
influence of the matrix elements and energies. While the meaning of the DOS is and remains
clear, the JDOS incurs arbitrariness in the case of large supercells, i.e., a nonprimitive unit cell.
Depending upon how often the BZ has been folded, the JDOS fully counts the spurious transi-
tions, i.e., seemingly direct transitions which, however, represent transitions between states at
different points of the BZ before folding. They do not influence the computation of the dielec-
tric function because the contribution of each optical transition in eq. (2.72) is weighted by the
oscillator strength f ααcv (k) of expression (2.74). On the other hand, the spurious transitions count
fully for the JDOS. Therefore, as long as one does not restrict the treatment to primitive unit
cells, one is faced with ambiguity in the JDOS treatment. The problem persists as long as one
considers supercell arrangements without any disturbance of the ideal crystal structure. While
the physical properties approach those of the pure bulk material, the JDOS obviously does not.
It is clear from that argument that the JDOS is not to be counted among the observable quantities
like the DOS and the dielectric function.

This raises the question if there is a way to recover the original "true" JDOS of the ideal
crystal from the supercell description. To achieve this, one has to disregard those spurious
transitions. As the parameter to decide whether or not a contribution of an electron-hole pair
at a certain k point is to be counted for the JDOS we insert the requirement that the oscillator
strength of a given transition is larger than some cutoff strength f0. Results for SiC are shown in
Fig. 3.3 where the JDOS calculated for a two-atom cell is compared to that from the 512-atom
cell. Evidently the procedure has at least some merit. There is a broad region of the cutoff
parameter for which the spectra do not change remarkably.

3.4.7 Matrix element extrapolation

Until now, we have taken the transition matrix elements according to eq. (2.81) at k0 and as-
sumed them constant over the IBZ for a fixed band pair. To refine this treatment we need the
matrix elements at all the tetrahedron corners. According to the k·p-perturbative representa-
tion, the wave functions at k can be extrapolated using only the momentum matrix elements at
k0. These are the same matrix elements which occur in the equation of the dielectric function
eq. (2.71) and in the energy extrapolation eq. (3.17) and have been calculated anyway. Thus we
can calculate the matrix elements of the momentum operator at the tetrahedron corners using
the first-order k · p-perturbed states

|νk 〉1 = |νk0 〉 +
~

m
(k − k0) ·
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µ,ν
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In this way (neglecting second-order terms in k) the first-order matrix elements at the corners
are expressed as sums of momentum matrix elements at k0,

1 〈 νk| p |µk 〉1 = 〈 νk0| p |µk0 〉

+
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m
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Again the sum over the bands has to be treated as a principal-value integral as discussed in
section 3.4.5. The variation of the matrix elements can now be included into the method using
the formulas of Ren and Harrison [183] or by using different averaged values for the different
tetrahedra after the resampling procedure. Otherwise, the advantage of the better description at
the corners is lost because the linear inclusion of matrix-element variations amount to averaging
in the case when k0 lies at the center of the region under consideration.

We included the matrix elements in this way but found that this does not change the results
for the optical absorption appreciably. Since it is very time consuming (due to the triple sum
over all bands), and in view of the quality of the results without it, we conclude that for practical
purposes it is reasonable to dispense with the extrapolation of the matrix elements. Any further
effort to refine the method should be directed at the band structure, not at the matrix elements.

3.5 Results for Constituents

In order to relate the results of our NC calculations to the properties of the NC’s constituents
we review briefly the results that our numerical setup yields for the pure materials of which we
compose our nanostructured systems. Using the PAW data sets we obtain theoretical lattice con-
stants as indicated in table 3.5. At the theoretical lattice constants the band structures as shown
in Fig. 3.26 and 3.27 are obtained with the gaps as indicated in table 3.5. The lattice constants
are, as usual in LDA, slightly underestimated. The gaps exhibit the DFT-LDA underestimate as
discussed in section 2.2.1.

The calculations treating the nanocrystals rely necessarily on the relaxed structures. For
that reason, and unlike in the treatment of bulk spectra, there is no possibility to decide between
using the theoretical or the experimental lattice constants. The values given here are, conse-
quently, obtained for the bulk materials at their theoretical lattice constants. Apart from the
closing of the gap, germanium is particularly interesting because the small difference between
the experimental and the theoretical lattice constant can – in LDA – induce the change between
direct- and indirect-gap behavior [129].

In Fig. 3.26 and 3.27 the band structures of the materials which the nanostructures are
composed of are shown. Two situations are treated: The theoretical lattice constant and, for
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Figure 3.26 Band structure of Ge ob-
tained with the present numerical set-
up. Shown are the bands at the theo-
retical lattice constant (black), as well
as at the SiC lattice constant (red), cor-
responding to very high compressive
strain.
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Figure 3.27 Same as Fig. 3.26 for Si.
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Figure 3.28 Band structure for SiC ob-
tained using the theoretical lattice con-
stant.

Lattice constants Indir. gap Γ-Γ gap
LDA-PAW Experiment LDA-PAW Experiment LDA-PAW Experiment

Ge 5.647 Å 5.658 Å 0.31 eV (Γ-L) 0.76 eV 0. 0.80 eV
Si 5.404 Å 5.431 Å 0.47 eV (Γ-∆) 1.17 eV 2.54 eV 4.18 eV
SiC 4.330 Å 4.360 Å 1.55 eV (Γ-X) 2.42 eV 6.74 eV 6.00 eV

Table 3.1 Theoretical values compared to experimental results from Ref. [185]
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Figure 3.29 Imaginary part of the dielectric function of the materials which have been used for the modeling of the NCs. Shown are again the
results calculated using the equilibrium lattice constant (black) and, second, the spectra of the material compressed to the SiC lattice parameter
(red). Experimental results (green) are from Ref. [21] (Ge) and (Si), and Ref. [186] (SiC).
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comparison, the SiC lattice constant. This is due to the fact that both the Si and the Ge are
treated embedded in SiC, which in our model (see. section 3.1) means that they are strongly
compressed.

Similarly, in Fig. 3.29 the spectra obtained for the respective bulk materials are shown along
with experimental results. For a thorough discussion of the differences see Refs. [162] and [139]
which present results obtained by roughly the same numerical “set up”. It should be noted that
the shift between the DFT-LDA spectra and the experimental spectra is smaller than the shifts
expected due to the quasi-particle correction ∆ as discussed in section 2.2.1. According to
Ref. [162] this may be attributed to the neglect of excitonic effects as well as to the use of the
theoretical lattice constants. Moreover, the strong underestimate of the E1 peak especially in Si
is due to neglecting excitonic effects. Further effects contributing to the differences are local-
field effects which are neglected in our theoretical results, as well as the limited resolution of
the measurements.
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Chapter 4

Results

4.1 Free, H-terminated Nanocrystals

4.1.1 Structure and importance of relaxation

Relaxation starting from the ideal bulk fragments as described in section 3.1 changes the bond
lengths and bond angles; no bonds are broken. The average bond lengths are shown in Fig. 4.1
as a function of the NC diameter. Here and in the following we focus on the Ge-Ge and Si-Si
bonds but disregard the Ge-H and Si-H bonds of the hydrogen saturation. For the ground-state
geometry, the average bond lengths are consistently shorter than the respective bulk values.
Similar contraction effects have been observed experimentally in porous silicon [187] and in
Ge NCs [188]. The theoretical study of Pizzigalli et al. [189] agrees roughly with our findings.
However, under oxygen exposure this contraction turns into an expansion [187]. The effect is
obviously dependent on the surface saturation. Annealing of porous silicon also leads to nanos-
tructured Si with shortened bonds [190]. It has traditionally been explained as a consequence
of the surface stress [187], but our results show that this cannot fully account for the effect. The
effect is much stronger in the Ge than in the Si NCs. While the average Si interatomic distances
have already reached their bulk limit for NCs with diameters of about 20 Å, the bond-length
reduction is still substantial (0.35%) for Ge NCs of the same size.

For the excited-state geometry calculated with an electron-hole pair in the crystallite but
keeping Td symmetry, the situation is more complex. The picture suggests that there might be
two mutually counteracting effects on the bond lengths in Fig. 4.1. The first one is the general
bond-length reduction as for the ground state. The second, however, is a tendency of increasing
bond lengths with electronic excitation, increasing with decreasing NC size. For the Ge NCs,
this leads to a consistent picture. For Si, however, the results with respect to the excitation
effect are not so uniform. This might be partly due to the stronger bonds in Si as compared to
Ge. Moreover, the symmetry of the LUMO state in the Si NCs is different from that of the Ge
NCs, reflecting the strong contributions from the X points of the bulk Si band structure. Thus
the symmetry of the lowest pair excitation and, hence, its effect on the structural relaxation,
is different in Ge and Si NCs. Special care has to be taken in the discussion of the results
for the smallest NCs of 5 and 17 atoms. These represent molecule-like structures rather than
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Figure 4.1 Interatomic distances in the Ge (triangles)
and in the Si (circles) NCs. Filled symbols: ground-state
results, empty symbols: results of the (Td) relaxation with
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NCs and might be governed by completely different mechanisms [189] which can change their
symmetry entirely [191]. In the present work we have always kept the Td symmetry constraint,
except where indicated otherwise.

The complexity of the bond-length distribution of the NCs as shown in Fig. 4.2 cannot be
represented by the average values of Fig. 4.1. In general, the bond lengths are longest near the
center of the NC, while they decrease further away from the center. Surprisingly, the bonds at
the center are longer than the respective bulk interatomic distances, i.e., there is an expansion of
the material inside the NC. Near the surface of the NCs, the bonds are shorter than the respective
bulk lengths. While the latter compression might be caused by surface-tension-like effects, the
expansion at the center cannot. The latter expansion has been related to the Si-H bonds [1],
but this does not appear to provide a complete answer. For oxidized Si particles, Hofmeister
et al. [192] find from their TEM studies an expansion for small sizes, while for larger particles
they report a contraction. It is thus conceivable that the overall situation is a combination of the
surface-stress-like effect inducing contraction, while another effect causes the expansion at the
center or the expansion of the whole NC when the surface-stress is reduced, e.g., by oxidation.
This is corroborated by the fact that many groups have found strong influences of the surface
saturation on the NC properties [43, 44, 46, 187].

The straight lines in Fig. 4.2 are linear fits of the respective data. However, two remarks are
in order. First, due to the symmetry of the NCs, each of the data points in Fig. 4.2 represents
many bonds of the same length. No attempt has been made to show this multiplicity in the
figure. Second, even though we use a linear fit, we do not claim that the dependence is in
fact linear. We merely demonstrate the general trend. The slope of the lines decreases with
increasing NC size. However, the results show that the bulk limit (zero slope at the bulk bond
lengths) has not even nearly been reached for even the largest Si crystallites. That means that
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(a)

(b)

Figure 4.3 (a) Schematic view of the NC
of 239 Ge atoms. The direction of the
displacement during the relaxation is indi-
cated as shown in the legend. (b) Differ-
ence of the electron densities before and
after the relaxation. Electron transfer takes
place from the grey (negative difference) to
the black (positive difference) regions.

Figure 4.4 Plots of the electronic states close to the HOMO-LUMO gap for the
ideal (upper panels) and the relaxed (lower panels) Ge crystallite of 83 atoms (d=15.2
Å). The notation v1−3 means that the highest three valence states are degenerate and,
therefore, represented by their average. Partly transparent isosurfaces of the proba-
bility density are shown. The resulting shape has been sectioned along the midplane
through the NC and is viewed from the z-direction. Thus, besides the contour plot
of the values in the midplane, the parts of the distribution below that plane are also
shown. A triply degenerate state crel

2−4 for the relaxed crystallite has not been shown.

the apparent convergence towards the bulk interatomic distance of the larger Si NCs of Fig. 4.1
is an effect of the averaging rather than real convergence.

For the excited-state relaxed systems, the situation is not very different. The slope of the
decrease of the bond lengths with increasing radial distance becomes steeper. However, the gen-
eral effects found for the ground-state geometries are not changed. We note that the discussion
of only the average bond lengths can be misleading. For instance, the 41-atom Si NC which
does not show any change in the average bond length with the excitation, exhibits changes in
the individual bond lengths comparable to the changes in the other NCs. The influence of the
Td symmetry for the excited system will be discussed in section 4.4.2.

The rectangular facets of the largest NC of the present work consist of 20 atoms (cf. section
3.1). In general, the atoms along the edges and at the corners move outward (though not neces-
sarily radially) with respect to the ideal positions, whereas the atoms on the surface facets move
inward or, for the larger NCs, move hardly at all. The relaxation thus increases the deviations
from the spherical shape which indicates that surface stress alone cannot be responsible for the
surface relaxation. The displacements are shown in Fig. 4.3 (a) where a schematic view of the
239-atom Ge NC is presented.

The atomic relaxation is accompanied by a change of the electrostatic energy. In Fig. 4.3 (b)
the difference between the total electron densities for the ideal and the relaxed NCs is plotted.
Electron transfer takes place from the gray to the black areas. It can be seen that the largest
changes take place at the surface, and, especially, along the edges of the facets.
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Figure 4.5 Pair excitation energies of Ge
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tor strengths of lowest transitions.

The conclusion that electrostatic forces play some role for the surface relaxation, in par-
ticular the inward relaxation on the facets, is supported by analogies to free surfaces. Inward
relaxation effects have been found for both Ge and Si (111):H-2x1 surfaces [193, 194] and for
many low-index surfaces of metals, e.g., the W(100) surface [195]. By analogy to H-saturated
surfaces [193] it is conceivable that a charge transfer towards the H atoms in the Ge-H and Si-H
bonds causes a repulsion between the now positively charged Ge or Si atoms, thus contributing
to the outward relaxation of the edge and corner atoms.

The effect of the structural relaxation on the lowest pair excitation energies is shown in Fig.
4.5. The energies have been calculated according to eq. (2.55). The results themselves will
be discussed in section 4.1.2. The pair excitation energies shift to higher energies when the
ionic relaxation is taken into consideration. They do so stronger for Ge than for Si. This is
probably connected to the lesser overall reduction of the average bond lengths in Si (cf. Fig.
4.1). As the wave functions spread over the entire crystallite (see Fig. 4.4) it is very likely
that they experience such an average effect. It will be shown in section 4.4.1 below that the
band gap of Ge NCs increases with increasing hydrostatic pressure, i.e., with shortened bonds,
which is consistent with the above interpretation. However, test calculations showed that this
is not the case for Si where an increase of hydrostatic pressure causes an decrease in the gap
energy, cf. section 4.4.1. Thus the increase in the pair excitation energies for the Si NCs cannot
be explained simply by the average reduction of the bond lengths. Surprisingly, the excitation
energies for the (relaxed) Ge and the Si NCs are almost equal.

The atomic relaxation influences the energetic ordering of the single-electron states. We
consider the corresponding one-particle states near the HOMO and the LUMO states of the 83-
atom Ge NC. Their respective probability densities are plotted in Fig. 4.4 for the ideal and the
relaxed geometry. The HOMO-LUMO transitions of the unrelaxed Ge NCs are forbidden [144].
However, just above the HOMO-LUMO gap, there are very strong optical transitions. In the
83-atom Ge NC they correspond to a transition between the states videal

4−6 and cideal
1 with oscillator

strength 0.22 and between the states videal
4−6 and cideal

2 with a value of 0.38. The notation means that
the state videal

4−6 is triply degenerate (without spin) and comprises the 4th-, 5th-, and 6th-highest
valence states. Accordingly, cideal

1 is the (non-degenerate) lowest unoccupied state. In addition,
each state is doubly degenerate because of the spin.
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For the relaxed NC, the energetic ordering is changed. While the electronic states are not,
strictly speaking, the same as for the unrelaxed system, at least some of them change only
very little. Comparison shows that the triply degenerate second-highest state videal

4−6 of the unre-
laxed system becomes the HOMO state vrelaxed

1−3 of the relaxed system, thereby remaining almost
unchanged. Moreover, the former second-lowest unoccupied state cideal

2 becomes, with slight
modifications, the LUMO state crelaxed

1 . We mention that there is a state crelaxed
2−4 (not shown)

which is not among those shown for the ideal system.
The situation for the other Ge NCs is very similar. In contrast to the ideal geometries, strong

HOMO-LUMO transitions have been found for all the relaxed Ge NCs. Test calculations treat-
ing a non-Td Ge NC of somewhat arbitrary shape, which have reproduced the strong transitions
at the HOMO-LUMO gap, will be discussed on page 76.

The strong HOMO-LUMO transitions in the relaxed Ge NCs reduce the radiative lifetimes
drastically compared to those of the ideal structures. This effect is shown in Fig. 4.6. The life-
time τ has been calculated using eq. (2.73) which assumes completely thermalized distributions
of the excited electrons and holes [125]. Consequently, due to the occupation, the lifetimes (or
their inverse, the radiative transition probabilities) are governed by the lowest few transitions.
For Ge NCs with their change in the energetic order of the states this manifests an extreme
influence of the structural relaxation on the lifetimes, changing them by more than two orders
of magnitude. For all the larger NCs, beginning with the 41-atom NC, this result is consistent.
Fig. 4.7 shows the strengths of the lowest transitions.

For Si NCs, on the other hand, the result is not as uniform. In contrast to Ge, Si NCs have
no single strong transitions of particular importance. Therefore we did not attempt to identify
individual transitions before and after the relaxation. However, also here substantial changes
are found. Figure 4.6 shows that they are smaller than for the Ge crystallites. Moreover, unlike
for the Ge crystallites, the lifetimes are not always reduced. In general, apart from the smallest
crystallites of only a few atoms, the radiative lifetimes of the Si NCs are much larger than those
of the Ge crystallites. This is in agreement with the trend of measurements of the radiative
lifetimes for Si1−xGex alloy NCs [22, 196].

4.1.2 Excitation energies

In Fig. 4.8 and 4.11 we present the pair-excitation energies Eopt
g calculated according to eq.

(2.55) for the ground-state geometries along with other theoretical and with experimental re-
sults. For both Si and Ge the calculated pair excitation energies show the well-known approx-
imate 1/d (d-diameter) dependence [23, 144]. For small crystallite sizes (. 1 nm) our results
for Si NCs in Fig. 4.8 agree well with the pair excitation energies obtained within the time-
dependent local density approximation (TDLDA) [14]. In the intermediate range of crystallite
diameters of 1 – 2 nm the ∆SCF energies lie below the TDLDA results. It seems that the ver-
tex corrections, i.e., the direct Coulomb attraction of electrons and holes, are underestimated
in the XC kernel of the TDLDA whose validity is recognized in particular for confined sys-
tems [19]. For larger NCs (>2 nm) there is an indication that both the TDLDA and the ∆SCF
approach yield excitation energies which are too small because the crystallites are already too
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Figure 4.8 Lowest electron-hole-pair excitation energies of Si NCs.
The empty symbols are theoretical results while the filled symbols in-
dicate experimental values. Besides the present results we show the
results of absorption measurements of Itoh et al. [80] and Furukawa
et al. [197], PL of Wolkin et al. [46], and the combined photoemis-
sion and core-level absorption spectra of van Buuren et al. [198].
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of Delerue et al. [29], cf. eq. (2.2), along with a numerical fit. Green
circles and fit: The same quantity but without subtracting δΣbulk.
This is added to the present results (red circles) to get the “corrected”
values (blue circles), yielding fits according to eq. (4.1) with fixed
bulk limit (blue, solid) or free parameter a2 (blue, dashed). This is
compared to the PL data of Wolkin et al. [46] and fits according to eq.
(4.1) with fixed bulk limit (green, solid) or free parameter a2 (green,
dashed). The optical gaps as calculated by Öğüt et al. are shown as
well as the corrected data using the Coulomb energy of Delerue et
al. [29].

large. As mentioned in section 2.2.3.1, in the bulk limit neither theory gives the correct exci-
tation energies. The energies resulting from a solution of the Bethe-Salpeter equation [14] are
somewhat larger and, hence, probably indicate a weaker effective electron-hole attraction. The
energies obtained by Öğüt et al. using the other ∆SCF method eq. (2.50) and reduced by their
screened Coulomb energy [28], cf. eq. (2.51) are larger. As the two approaches are similar in
their interpretation, we compare EQP

g − Ecoul of Öğüt et al. and E(e+h)
N − EN of the present work

in Fig. 4.9. The fact that Öğüt et al.’s values are larger throughout is, at first sight, surprising.
However, analysis of the data shows that it seems to be caused mainly by a deficiency of the
approximate Coulomb term employed in eq. (2.50): If starting from the quasiparticle gaps of
Öğüt et al. one calculates the optical gap not using their Coulomb energies but the energies of
the BSE calculations of Delerue et al. [29], a much better agreement is obtained, as shown in
Fig. 4.9. This indicated that the problematic part is the Coulomb term, not so much the calcula-
tion of EQP

g . This again shows the superiority of the present method, because here the Coulomb
interaction is included en passant; see also section 2.2.3.1). Two semi-empirical calculations
are available: Tight-binding of Niquet et al. [199] and semi-empirical pseudopotential results
of Reboredo et al.Owing to their construction, both lead to the correct result in the large-NC
limit. Consequently, they agree well in this range. However, with smaller radii the justification
becomes less and less strict. The fact that our values lie below these results is not surprising
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after the above discussion. Recent Quantum Monte Carlo results [107] differ distinctively from
all the other results in the intermediate size range.

The comparison with experimental data is difficult, despite the huge amount of excitation en-
ergies measured in photoluminescence and absorption experiments. The majority of these data
sets does not describe quantized electronic states localized in the interior of the NCs. Many
data sets are related to defect states or interface states localized in the interface region between
crystallite and matrix material. There is now agreement in the literature that the surface termi-
nation, in particular oxidation, changes the excitation energies decisively [41–46]. The data of
diverse experiments involving oxygen are, therefore, only indicated collectively by the green
stars. However, the PL peak positions measured by Wolkin et al. [46] for the samples without
oxygen are certainly due to confinement effects. Moreover, they have been shown to change
strongly after exposure to oxygen [46] which indicates that the results reproduced in Fig. 4.8
are due to largely oxygen-free samples.

Similar conclusions hold for the absorption data of Furukawa et al. [197]. The agreement of
our calculated pair energies and the experimental data, in particular with the PL values [46], is
good. The difference for the largest NCs considered may indicate that the validity of the ∆SCF
method underestimates the excitation energy for the larger radii [30]. On the other hand, the gap
energies inferred from the measurements of van Buuren et al. [198] fall below the calculated
and measured values. This may be essentially a consequence of the large core-exciton binding
energies occurring in the X-ray absorption of the underlying combined experiments [39]. At
the other end of the size range, our values are in excellent agreement with the absorption data
of Itoh et al.

In general, compared to all the other results our values seem to be correct for the intermedi-
ate and small size range, while they are slightly too small for the largest crystallites. In order to
check the suggestion Godby and White [30] of the additive, weakly d-dependent contribution
and the finding of Delerue et al. in Fig. 2.2, we take the latter values of ∆ − ∆bulk − Ee-h and fit
some convenient function to get a representation of all sizes. If our values were correct up to
that correction, and if the latter were correct, adding this quantity should give the correct exci-
tation energies. Fig. 4.9 shows that now the values lie above the experimental values of Wolkin
et al.The small-size limit remains unchanged.

We conclude this discussion with a comparison between the LDA HOMO-LUMO gaps
and the our pair excitation energies in Fig. 4.10. On the energy scale of Fig. 4.8, the two
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quantities are indistinguishable. However, for extreme localization differences occur, as has
also been pointed out by Degoli et al. [200]. In general, for a ground-state calculation, the LDA
HOMO-LUMO gap is smaller than the excitation energy. The contrary holds for an excited-
state relaxation. An explanation has not yet been found.

In conclusion, our results tend to underestimate the excitation energies for the larger crys-
tallites. However, using the correction due to Delerue et al., the values seem to be slightly
overestimated.

In contrast to luminescence from silicon NCs, there are, to the best of our knowledge, no
experimental results for Ge which can be clearly attributed to the recombination of quantum-
confined excitons. Neither the results of Takeoka et al. [22] nor of Maeda et al. [201] show the
expected size dependence for luminescence from quantum-confined systems. For that reason,
our excitation energies for Ge NCs shown in Fig. 4.11(b) are considered a prediction. They
are compared to the tight-binding result of Niquet et al. [199]. Assuming that the cancellation
effects and, therefore, our results for the Ge NCs are similar to those of Si (cf. Ref. [29]) we
conjecture that our values might be too small for the larger sizes, while they should be correct
for the smaller NCs. This would be in agreement with the assumption that the TB results, while
valid in for d → ∞, will not be correct for the smaller sizes. It has been claimed that the excita-
tion energies in Ge NCs are larger than those in Si NCs in the intermediate size range [202,203].
Our results show no indication of such an effect.

Different functional dependencies are conceivable for a description of the gaps. Especially
the limits for d −→ ∞ and d −→ 0 have to be considered. In the following we show that, while
they are useful, fits of the excitation energies can only be considered valid within some limited
range.

Two effects are considered in the d-dependence of the excitation energies. First, there is the
part which is due solely to the confinement. On the other hand, the structural relaxation which
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induces inhomogeneous strains in the NC, will also contribute to the energies. For this reason
it is instructive to consider both the relaxed and the ideal structures.

Effective-mass theory predicts for a 3-d spherical quantum well a diameter dependence of
1/d2 [92]. In Figs. 4.9,4.12, and 4.13 we show the energies along with fits according to

Efit = a0da1 + a2 (4.1)

where a2 can be either fixed to (a) the experimental bulk gap, (b) the DFT-LDA bulk gap, or
else can be (c) considered a free parameter. Along with the very bold assumption that the fits be
valid when going from the NC size range to the bulk limit, this assumes that (a) the self-energy
effects are fully contained in the excitation energies, or (b) that the bulk limit of the fit is the
DFT-LDA gap. However, when used for the energies obtained for a limited number of relatively
small NCs, this assumes the validity of the functional dependence throughout the whole size
range, cf. discussion in section 2.2.3.2. It is this functional dependence which corresponds to
the weakly R-dependent extra self-energy contribution as discussed in section 2.2.3.2. If this
is true, the fit function will vary according to how many of the NCs are considered for the fit,
because the added contribution is going to be smaller or zero for the smallest NCs, cf. Fig. 2.2.
This is actually the case, as shown in table 4.1.

size Si ideal Si relaxedSi range a0 a1 a2 a0 a1 a2 bulk limit

5–239 30.9 -1.05 – 25.6 -0.92 –
ELDA

g =
a0da1 + ELDA

g 17–239 27.9 -1.01 – 47.6 -1.15 –
41–239 45.9 -1.19 – 79.3 -1.33 –

0.47 eV

5–239 48.3 -1.39 – 34.6 -1.18 –
Eexp.

g =
a0da1 + Eexp.

g 17–239 60.0 -1.48 – 150.7 -1.74 –
41–239 189.9 -1.90 – 586.3 -2.22 –

1.17 eV

5–239 29.2 -1.00 0.33 18.5 -0.41 -3.4
a0da1 + a2 17–239 79.8 -0.03 -71.3 17.8 -0.34 -4.5 a2

41–239 27.2 -0.11 -18.0 296.7 -1.93 1.0

size Ge ideal Ge relaxedGe range a0 a1 a2 a0 a1 a2 bulk limit

5–239 29.0 -1.0 – 25.2 -0.86 –
ELDA

g =
a0da1 17–239 21.0 -0.88 – 29.9 -0.92 –

41–239 27.3 -0.97 – 34.7 -0.97 –
0.0 eV

5–239 53.3 -1.42 – 35.2 -1.12 –
Eexp.

g =
a0da1 + Eexp.

g 17–239 49.3 -1.39 – 55.9 -1.30 –
41–239 122.3 -1.71 – 90.8 -1.47 –

0.76 eV

5–239 44.7 -1.3 .6 19.4 -0.58 -1.5
a0da1 + a2 17–239 22.4 -0.11 -0.98 20.1 -0.62 -1.3 a2

41–239 91.3 -1.6 0.67 21.5 -0.67 -1.02

Table 4.1 Fit parameters for different fits according to eq. (4.1), either fixing the parameter a2 to the experimental or the LDA bulk limit, or
else leaving it a free parameter. Included in the respective fits are the NCs as indicated in the column size range. The units of the parameters
are [a0] = Å−1, [a1] = 1, [a2] = eV .

From this table it is clear that the question after the functional dependence of the excitation
energies does not have a clear answer. Independently of the additional complication that the
geometry is not strictly spherical, there is the ill-defined limit of d → 0. While the NC radius
and the localization radius can be considered reasonably equivalent for the NCs, in this limit
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Figure 4.14 Spin-exchange split-
ting between singlet and triplet exci-
ton: (a) Si, (b) Ge. Besides cal-
culated values (circles) we show re-
sults of empirical-pseudopotential cal-
culations of Reboredo et al. [39], the
absorption measurements of Calcott et
al. [108] and the PL data of Calcott et
al. [108], Brongersma et al. [109], Ko-
bitski et al. [110], Kovalev et al. [208]
and Takeoka et al. [22] for oxidized Si
NCs or porous Si.

the localization is that of an atomic or molecular orbital. All the fits suggested above will go to
infinity for d → 0. Thus the fits will be of limited value here for the discussion of the energies.

Moreover, when going from the NC size range to the bulk, the localization mechanism
changes: While for NC radii smaller than the free-exciton radius the confinement is the primary
localization cause, in the bulk the relative localization between electron and hole is caused by
the Coulomb attraction. For that reason it would be surprising if a simple fit comprising both
ranges gave a correct, unified description.

This is evidenced by the values in table 4.1. The fits differ depending on which bulk limit
is chosen, and depending on how many NCs are included. The qualitative conclusion is that in
the intermediate size range, an approximate 1/d-dependence prevails, the exponent of d lying
between a1 = −0.8 and a1 = −1.2. Available experimental data for Si are Wolkin et al.,
a1 ≈ −1.4 [46], Matsumoto et al., a1 ≈ −1.6 [205], and Ledoux et al., a1 ≈ −1.4 [206]. Slightly
smaller values have been measured by Heitmann et al. [207].

No strong differences are found between Ge and Si NCs. This appears reasonable in view
of two simple examples. For a particle in a harmonic potential the diameter dependence is 1/d.
The effective-mass approximation obtains for a particle in a square-well potential a dependency
like 1/d2. It is reasonable to assume that the actual local potential for an electron in the NC has
a shape in between these two examples. Hence the result of a1 ≈ −1.0...−1.4 seems reasonable.

4.1.3 Exchange splitting

Spin-polarized (LSDA) calculations have been carried out to calculate the exchange splitting be-
tween singlet and triplet exciton within the present ∆SCF method as discussed in section 2.2.5.
The LDA-relaxed ground-state geometries have been used. The splitting calculated according
to eq. (2.59) is shown in Fig. 4.14 in dependence on the singlet pair-excitation energy. There
is an approximately quadratic relationship between spin-exchange splitting and pair excitation
energy. The splittings for Ge are similar, perhaps slightly larger.

The calculated splittings are compared in Fig. 4.14 (a) with experimental data [108–110,
208] and calculated values of other authors [39] for Si NCs. For smaller transition energies, i.e.,
for larger sizes, the agreement between the calculated data is good. With increasing transition
energies, however, the ∆SCF values tend to underestimate the spin-exchange splitting. In prin-



4.1. Free, H-terminated Nanocrystals 71

1 2 3 4 5 6
Photon Energy [eV]

0

0.25

0.5

O
sc

ill
at

or
 s

tr
en

gt
h

0

0.25

0.5

0

15

30

0

15

30

  5

 17

 41

 83

147

239

Im
ε(

ω
) d

ot

Ge

1 2 3 4 5 6
Photon Energy [eV]

0

0.25

0.5

O
sc

ill
at

or
 s

tr
en

gt
h

0

0.25

0.5

0

15

30

0

15

30

  5

 17

 41

 83

147

239

Im
ε(

ω
) d

ot

Si

Figure 4.15 Oscillator strengths of the optical transitions (vertical lines) versus the transition energies for Ge and
Si crystallites with varying size. The normalized absorption spectrum Imε(ω)/ f (solid line) is plotted to envelope
the oscillator strengths. The number of atoms is indicated for each crystallite.

ciple, this is also true for the comparison with the experimental data. However, this comparison
is questionable for two different reasons. First, all the experimental samples involve oxygen.
However, unlike for the PL energies [46], so far it seems not clear how the splitting is influ-
enced by the oxygen. Probably, in the experiments the exciton energies are partially related to
defect states or interface states. Second, the DFT-LSDA [55] used here is not able to describe
pure multiplets. This is a general problem [111]. A rigorous description of multiplets requires
symmetry-adapted exchange-correlation functionals, which are not available [112]. In the spin-
polarized approach one can only fix the projection MS of the total spin S but not the total spin
itself. One describes actually a high-spin state with S = 1, MS = ±1 (which is a triplet state)
and a low-spin state with MS = 0 (which is probably a mixture of spin states). Consequently,
this approach tends to underestimate the spin splitting and gives a lower limit.

4.1.4 Transition probabilities

The NC size influences not only the energetic positions of the optical transitions but also their
oscillator strengths as shown in Fig. 4.15. The oscillator strengths f ααcv (k) of eq. (2.74) are
plotted as vertical lines against the transition energies, along with the imaginary part of the
corresponding (normalized) dielectric function. For Si NCs (Fig. 4.15b) with diameters above
1.5 nm a tail of weak transitions appears above the HOMO-LUMO gap. The oscillator strengths
of these transitions are much smaller than the maximum oscillator strengths of about 0.4. This
is due to the fact that the LUMO is primarily determined by states corresponding to the X point



72 Chapter 4. Results

5
−1

0

1

2

3

4

5

6
T

ra
ns

iti
on

 e
ne

rg
y 

[e
V

]

17

0.34x30.38x3 0.47x30.70x30.44x30.37x3 0.49x3

41 83 147 239 363 5
−1

0

1

2

3

4

5

6

T
ra

ns
iti

on
 e

ne
rg

y 
[e

V
]

17 41 83 147 239

0.0005x3

0.42x6 0.05x3 0.005x3 0.000002x90.001x9

Figure 4.16 Level scheme of Ge (left) and Si (right) NCs. The HOMO level defines the energy zero. The lowest
optical transitions are indicated by vertical arrows, the numbers indicate oscillator strength and the degeneracy.

in bulk Si, the HOMO by states corresponding to the zone-center states. Therefore the indirect-
gap behavior of the bulk carries over to NCs down to fairly small sizes. This will be detailed
in section 4.4.1. On the other hand, the large oscillator strengths at energies above 3 eV in the
Si NCs with 83, 147, and 239 atoms correspond to the strong direct high-energy transitions in
bulk silicon.

The behavior near the HOMO-LUMO transitions in Ge NCs is completely different. Very
strong transitions occur close to the absorption edge, even for clusters with a diameter of about
2.2 nm. These transitions appear to be related to the formation of an E0-like absorption feature
in the more extended Ge NCs. The occurrence of these strong transitions might explain the
differences in the luminescence behavior of nm-sized Si and Ge NCs. A strong near-infrared
luminescence has been observed for Ge NCs in a SiO2 matrix [2], although the role of the
oxygen is not clear. In section 4.4.1 below, these differences will be related to the fact that
in bulk Ge the strong direct E0 transition occurs close to the indirect gap. In bulk Si the E0

transition and the indirect gap are separated by about 2.5 eV. As a consequence, the radiative
lifetimes of Ge NCs are much shorter than those in the Si crystallites. This is illustrated by
the level schemes in Fig. 4.16. The oscillator strengths of the lowest transitions in the Si NCs
reduce strongly when the size increases, while in Ge they remain approximately constant. In
general, Ge NCs are predicted to be more suitable for light-emitting devices than Si NCs where
the radiative recombination of electrons and holes must be phonon or defect assisted. Similar
conclusions have been drawn by Kholod et al. [209, 210] for Ge nanosheets.

4.1.5 Radiative lifetimes

The global, spectrally integrated PL behavior is determined by the recombination rate or its
inverse, the radiative lifetime τ. We calculate τ according to eq. (2.73) which assumes com-
pletely thermalized distributions of the excited electrons and holes [125]. Room temperature is
assumed. The calculations are performed for the ground-state geometries. Test calculations for
the 83-atom Ge crystallite have shown that the influence of the modification of the geometry due
to the excitation is weak, at least as long as the symmetry constraint is used, cf. the discussion
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below of the Stokes shifts in section 4.4.2. The radiative lifetime is reduced by about 5 %. Our
results are presented in Figs. 4.17 and 4.19 in dependence on the NC diameter (for Si and Ge)
and on the pair-excitation energy (for Si) in Fig. 4.18. The results for Si and Ge are qualitatively
different. In the size range of 1 − 2 nm crystallite diameter the Si radiative lifetime is changed
by more than five orders of magnitude. For the Ge crystallites this variation is less than one
order of magnitude. The different radiative behavior of Si and Ge NCs is a consequence of the
qualitative differences in their oscillator strengths.

For the Si NCs in Fig. 4.18 we compare our results with experimental results and with results
based on different semi-empirical descriptions of the electronic structure [24,100,211,212]. The
trend of increasing lifetimes with the diameter is reproduced by all the theoretical approaches.
For small diameters the various theories (with the exception of Ref. [24]) seem to approach
extremely small values. On the other hand, for large diameters the ab initio results seem to
approach the lifetimes calculated within the effective-mass approximation (EMA) [212]. All
the other approaches underestimate the radiative lifetime in this size region. Unlike the cal-
culations which assume defect-free crystallites with defined and saturated surfaces, the experi-
mental samples are highly irregular and contain defects, reconstructed surfaces, and interfaces.
Nonetheless, the agreement of our lifetimes with the experimental values is fair, despite the
complications concerning the experimental determination of the diameter and the uncertainty
as to precisely which physical system has been investigated by the measurements. In particular,
the agreement with the measurements of Littau and Brus [4] for colloidal NCs is excellent. The
values measured by Wilcoxon et al. [213] are, however, smaller by orders of magnitude in com-
parison to all theoretical values. It is, therefore, apparent that a different physical mechanism
has been measured.
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There are more experimental data of radiative lifetimes for Si NCs. However, these are data
given in terms of the PL energies rather than in terms of the diameters. The corresponding
comparison for the Si lifetimes given versus PL energies is shown in Fig. 4.18. In general, our
lifetimes agree well with some of the experimental results. The agreement with the data of Heit-
mann et al. [216] is excellent, whereas the other experimental values envelope our theoretical
lifetimes. However, the measurements of Heitmann et al. [216] have been performed at a tem-
perature of 100 K. With the lowering of the temperature one expects an increase of the lifetimes
as also shown experimentally [212]. Moreover, the measurements of Takeoka et al. [22] are not
directly related to quantum-confined states of the NCs. Rather, these authors have measured
luminescence in which different defect or interface states are involved.

Again, there are no experimental data for Ge NCs with different diameters or excitation en-
ergies. Therefore, the results for the Ge crystallites in Fig. 4.18 remain predictive. There is only
another calculation of Niquet et al. [204] based on the electronic structure and optical transition
matrix elements from a semi-empirical tight-binding method. We point out that the lifetimes
calculated within our ab initio method are shorter by two orders of magnitude than the results
obtained from the TB calculations [204]. The main difference, however, is probably related to
the transition matrix elements which are considerably underestimated in the TB method. Single
rough experimental values are also reported which are close to our findings. Takeoka et al. [217]
reported the lifetime of Ge NCs to be shorter than 40 ns. Moreover, the PL intensity variation
of Takeoka et al. [2] is very similar to the (inverse) lifetime dependence of our results in the
same size range. Aoki et al. [20], on the other hand, do not find a ns PL lifetime component.

4.1.6 Spectra

Figs. 4.20 and 4.21 show optical spectra of Ge and Si NCs, calculated using the independent
particle approach, cf., eq. (2.71). The absorption spectrum for the smallest Si cluster of 5 atoms
shows the same basic features as obtained in a more sophisticated calculation [32]. However,
the model atomic structure used is somewhat unrealistic, and important many-body effects are
not included. For that reason, we focus our attention on the larger NCs which, despite their
different numbers of atoms, exhibit similar spectra. The principal spectra resemble those found
within an empirical pseudopotential approach for Si [23].

The spectra in Figs. 4.20 and 4.21 are strongly influenced by quantum confinement effects.
The absorption threshold moves to lower energies with increasing NC size. Different effects
of spatial quantization are observable for the main absorption structures, shoulders or peaks,
for energies below 5 (6) eV for Ge (Si) as NC material. In the case of Ge, the shoulder at
the low-energy side close to the HOMO-LUMO gap shifts strongly towards smaller energies
with increasing crystallite size. This shoulder seems to be a consequence of the strong optical
transitions which develop into the E0 structure in the bulk limit. The first direct E0 transition in
Ge bulk crystals lies energetically only slightly above the indirect energy gap [218]. The first
peak in the 3 eV range, which also varies with the size, develops into the bulk E1 structure.
Its oscillator strength is probably underestimated because excitonic effects are neglected in the
independent-particle approach. The peak shifts from 3.6 eV (41-atom cluster) to 2.6 eV (363-
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atom cluster). The main peak with a maximum around 4 eV shifts much less towards smaller
photon energies and develops into the E2 structure of the bulk spectra. There is a weaker peak or
shoulder at the high-energy side at about 6 eV. In the bulk case it corresponds to a structure that
appears only weakly in the experimental spectra. Commonly it is related to different transitions,
e.g. Λ3v → Λ3c and ∆5v → ∆2′c [219].

The imaginary part of the dielectric function of Si NCs is shown in Fig. 4.20. Only one
broad structure appears with a maximum between 5 and 6 eV. It shifts towards smaller photon
energies with increasing NC size. The structure seems to develop into the bulk E2 peak. In the
case of the largest NCs we considered, the almost complete absence of the E1 structure may be
related to neglecting the excitonic effects. The Coulomb effects enhance the oscillator strength
of the E1 peak but reduce the strength of the E2 peak [90]. The overall shape of the spectra
in Fig. 4.20 is similar to that observed for oxidized Si nanoparticles [35]. We observe that the
spectra calculated for Si using the empirical-pseudopotential scheme [23] or, for Ge, using the
semiempirical tight-binding method [34], are similar.

Until now we have considered the properties of the supercell arrangement, i.e., of the com-
posite medium of NCs and vacuum. In order to extract the dielectric function εnc(ω) pertaining
to the NCs we use the simple superposition formula

ε(ω) = f εnc(ω) + (1 − f )εhost(ω). (4.2)

The quantity εnc(ω) represents the optical properties of an effective bulk material which also
reflects the quantum size effects characterized by a fixed NC radius R. Therefore, εnc(ω) obtains
its meaning only with respect to embedment in surrounding materials with possibly different
filling factors but fixed NC radius. According to the independent-particle expression (2.71) of
the dielectric function, formula (4.2) should be nearly exact as long as the wave functions of
the electrons of the NC and the host material are strongly localized. This should be fulfilled



76 Chapter 4. Results

2.5 3.5 4.5 5.5
Transition energy [eV]

0

0.2

0.4

0.6

O
sc

ill
at

or
 s

tr
en

gt
h

Ge_45_H_70 

0

0.2

0.4

0.6

Im
 ε

(ω
)/0

 / 
10

Si_45_H_70

Figure 4.23 Spectra and transition probabilities:
nonsymmetric Ge and Si NCs. The spectra and
the oscillator strengths have been averaged over
the Cartesian directions.

in the case of vacuum as the host material. In fact, expression (4.2) has been found to yield
excellent and reproducible results. We have tested eq. (4.2) by deriving εnc(ω) for NCs from
different supercells. The corresponding dielectric functions of the composite materials have
been calculated for one and the same NC but using supercells of different size. The crystallite-
dielectric function εnc(ω) has been extracted using expression ((4.2)). We do not present the
spectra because the curves are virtually indistinguishable. This result indicates both the validity
of eq. ((4.2)) and the fact that our supercell treatment’s spectra are converged with respect to
the cell size. Since εhost(ω) = 1, formula ((4.2)) amounts to a simple scaling of the imaginary
parts with the filling factor f .

While for the Si NCs the good agreement with the dielectric function of Koshida et al.
has been found, most experimental spectra for Ge NCs are absorption spectra. We find good
agreement of our results with the absorption of Ge in sapphire of Stella et al., while there
is an energetic difference between these and the spectra of colloidal Ge NCs of Wilcoxon et
al. [3] which exhibit also different relative peak heights. The reasons for this are unknown.
The remaining discrepancy between our result and that of Stella et al. is, in part, due to the
different matrix (instead of vacuum). This can be taken care of by means of effective-medium
theory [48,144] which is beyond the scope of the present presentation. We note that our spectra
closely resemble the absorption spectra of bulk Ge. But the question remains unsolved as to
how much of this might be due to a cancellation between the confinement-related shifts of the
structures and the underestimate of the higher absorption energies. Finally we note that our
results have been corroborated by a later publication of Melnikov et al. who presented similar
absorption spectra [221].

Occasionally, concerns have been raised as to the influence of the Td symmetry on our re-
sults. We have, therefore, calculated the spectra of two highly non-symmetric NCs of somewhat
arbitrary shape, which are shown in Fig. 4.23. From this we conclude that the main quantities,
while modified, do not change qualitatively. In particular the strong transitions at the HOMO-
LUMO gap of the Ge crystallite remain in place, whereas the Si NC shows the typical behavior
of the Si NCs in Fig. 2.74. The excitation energies are included in Fig. 4.13 and do not deviate
strongly from those of the NCs of Td symmetry. The radius has again been chosen according
to the volume, cf. page 40. Finally, a test calculation has been carried out for a free hexagonal
Ge NC. Its excitation energy is also contained in Fig. 4.13. We conclude that the specific shape
and the structure of the NCs is of relatively little importance for the excitation energies, at least
as compared to the confinement.
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The comparison with the experimental results shows that the main features of the absorp-
tion can already be described well, in spite of the simplicity of our structural model and of
neglecting important effects like quasiparticle corrections and excitonic effects. Moreover, we
have not attempted to model the size distribution of the nanoparticles in the samples studied
experimentally.

4.2 Alloying: Germanium and Silicon

The optical properties of alloy NCs depend on the composition x as well as on the particle
size. This has been demonstrated by studies of nanometer-sized Ge1−xSix quantum dots in
mesoporous silica [222] or in an amorphous SiO2 matrix [22]. One observes a redshift of
the PL peak with increasing Ge content. At the same time, the radiative lifetime decreases
dramatically. The peak shift may be related to the nearly linear composition variation of the
interband transitions in bulk Ge1−xSix crystals [218]. However, the substantial shortening of the
exciton lifetime needs a deeper understanding. In general, both properties are influenced by the
unknown interplay of confinement and alloying effects.

Alloying is introduced by randomly replacing Ge atoms by Si. Ionic relaxation is carried
out both for the ground state and the excited state. The majority of the calculations has been
performed for crystallites with 83 group-IV atoms and a diameter of about 1.5 nm. These are
large enough to exhibit the characteristic features of a NC [144], but are still feasible for ab
initio ionic relaxation.

We have studied NCs with 16 Si and 67 Ge atoms for about 10 different atomic configu-
rations. Those with nearly uniformly distributed atoms possess the lowest total energies and
nearly equal excitation energies. Nanocrystals with deliberately clustered Si atoms and, hence,
rather different excitation energies give rise to total energies deviating by up to 10 eV from the
average. According to the quasi-chemical approximation [223], their probability of occurrence
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is small. Consequently, the configurational average has been replaced by the study of one NC
with nearly uniformly distributed Si and Ge atoms for each composition x.

10 test calculations have been performed for smaller crystallites of 41 atoms, for each of
the two compositions x = .29 and x = .73. The variations of the pair-excitation energies for
the ground-state geometry are small; we find ratios of ∆Eopt

g /Ēopt
g = .0065 and 0.02 for the two

compositions, ∆Eopt
g being the standard deviation from the mean value Ēopt

g . The variations for
excited NCs are somewhat larger. The radiative lifetimes are much more sensitive to changes
in the atomic configuration. We find variations of ∆τ/τ̄ = 0.55 and 0.70 for the ground-state.
For larger crystallites they will be smaller. The variations are largest near the pure ends of the
composition spectrum, for the situation there is better characterized as a few impurities inside a
Ge or Si crystallite rather than as an alloy.

The average lengths of the Ge-Ge, Ge-Si, and Si-Si bonds are shown in Fig. 4.24 and
compared with the averages of all bonds. The trimodal distribution of the average lengths of
the chemically different bonds is similar to that observed for bulk crystalline and amorphized
Ge1−xSix alloys [224]. Besides the ground state, also the excited state with one electron-hole
pair is studied. Optical excitation does not change the symmetry significantly within our static
relaxation approach; no bonds are broken. The Ge(Si)-dominated bonds are slightly increased
(decreased) with respect to the ground-state values. The opposite direction of the effect is ap-
parently a consequence of the different symmetry of the wave functions of the electrons in the
excited pairs, as it is known for bulk Ge and Si. The Ge-Ge, Ge-Si, and Si-Si bond lengths
are nearly independent of the composition, corresponding to roughly the sum of the respective
covalent radii. Like the bulk bond lengths, the bond lengths of the alloy NCs are closer to
the Bragg-Pauling limit than to the Vegard limit [224]. However, the average bond lengths are
smaller than the corresponding lengths in the bulk systems. Similar effects have been found
experimentally [187, 192]. The average over the three types of bonds roughly follows Vegard’s
rule with respect to the reduced Ge-Ge and Si-Si bond lengths.

Results for the two types of pair energies are plotted in Fig. 4.25. As expected, the variations
are rather large near the pure ends of the composition spectrum. The composition dependence
of the energy Eopt

g of the ground-state geometry shows an S -shaped behavior resembling the
familiar gap variation of bulk Ge1−xSix [223]. However, the difference between the pure-Ge and
the pure-Si values is smaller than in the bulk, which is probably due to the lattice relaxation,
cf. Figs. 4.12 and 4.13. We interpret this fact as an indication that the confinement does not
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interfere strongly with the alloying effects. Comparison with the known bulk behavior shows
that despite the confinement and, hence, uncertain k vectors, the character of the indirect ΓX
gap on the Si-rich side and the mixed character of the indirect ΓL and ΓΓ gap for small Si molar
fractions persist, as well as a gap crossing near x=0.3 [218]. The difference between the pair-
excitation energies of Ge and Si is smaller than the difference of the bulk gaps, which is related
to the bond-lengths reduction. Unlike for Eopt

g for the ground-state geometry, the composition
dependence of Eopt

g for the excited-state geometries is non-monotonous. The Stokes shift has
a nearly constant value of about 0.4 eV for NCs with a composition x = 0.3...0.8. As in bulk
Ge1−xSix the change from a Ge-like gap to a Si-like situation occurs at about x = 0.3, we
conjecture that the reason for this behavior is a change in the gap character as well. This will be
corroborated in section 4.4.1 below.

The calculated pair energies in Fig. 4.25 can be compared with values measured in absorp-
tion or emission spectroscopy. Composition-dependent PL studies have been done only for
Ge1−xSix NCs with average diameters between 3.8 and 4.7 nm [22]. The presence of oxygen is
not expected to alter the results in this size range [45,46]. In order to compare with experiment,
the PL positions have been rescaled using the approximate 1/d variation of the excitation ener-
gies with the diameter d found for both Ge and Si, cf. section 4.1.2. The rescaled experimental
values agree well with the ground-state excitation energies rather than with the excited-state-
geometry excitation energies due to the strong size dependence of the Stokes shift. While the
latter is appreciable for our crystallites, it should already be negligible for the measured sam-
ples. Several arguments can be given to explain the remaining small discrepancies, in particular
the validity of the assumed 1/d scaling law and the experimental determination of the NC diam-
eter. In any case, the good agreement of the calculated energies and the rescaled measured PL
positions indicates once more that the effects of composition and size are approximately inde-
pendent; the measured redshift of the PL energy with the Ge content reflects the gap narrowing
caused by the alloying [22].

We calculate the radiative lifetime τ, again by means of eq. (2.73). The results are plotted in
Fig. 4.26 for various compositions and room temperature. The calculated values are compared
with those measured for NCs with x = 0.0 ... 0.3 and diameters between 3.8 and 4.7 nm [22].
In order to approximately separate the composition dependence from the size dependence, the
values are normalized to that of the Si crystallite.

As mentioned above, the variations are rather large. Nonetheless, a roughly exponential
behavior can be observed. The lifetime is longest for pure Si crystallites, reflecting the main
contribution of bulk indirect-gap states to the optical transitions near the absorption edge. Con-
sequently, with increasing Ge molar fraction the radiative lifetimes decrease strongly. The main
reason is of intrinsic nature. Strong optical transitions corresponding to the allowed direct E0

transitions in Ge crystals contribute and determine the radiative lifetime. The agreement with
the experimental results is good despite the larger radii of the measured samples. As the ra-
diative lifetime is strongly size-dependent, this is another indication that the size effect and the
effect of the alloying act independently, at least in the range of Si molar fractions between x =
0.0 and 0.3. Takeoka et al. [22] conjecture that the decrease in the PL lifetime is caused by
either an increasing density of defects or by the Ge-Si alloying. The agreement with our re-
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Figure 4.29 a) Band structure of the 41-atom Si
NC in a 216-atom cell, b) that of the same NC in
a 512-atom cell. The host material is cubic SiC.

sults indicates that the alloying is the dominating effect. Nonetheless, additional effects have to
be discussed. The ratio of the lifetimes of Ge and Si is strongly size dependent for diameters
between 5 Å and 25 Å. The end points of the lifetime curve are expected to be further apart
for bigger crystallites, making the curve steeper. On the other hand, a constant background of
defect recombinations would render it less steep. Besides, an x-dependent defect density would
lead to unpredictable results.

4.3 Embedment of the NCs

4.3.1 Electronic properties

The effect of the insertion of a Ge or Si NC into the SiC host material on the electronic structure
is demonstrated in Figs. 4.28 and 4.29 for the 41-atom structures. For both group-IV materials,
NC-induced occupied states arise in the lower part of the energy gap of the host material. Due to
the supercell description, these states are not really dispersionless. They show a behavior similar
to that of the defect bands in supercell calculations. While exhibiting the highest degeneracy at
the Γ point, they split even along the high-symmetry directions into several bands according to
their s- or p-like orbital character. The main structures of the SiC DOS have been used for the
alignment of the band structures.

Since the interaction between adjacent crystallites decreases with decreasing spatial separa-
tion, the crystallite-induced bands become more dispersive. A comparison of results obtained
for 216-atom and 512-atom supercells in Figs. 4.28 a) and b) shows that this is indeed the case.
Clearly, the main features of the band structure close to the valence-band maximum (VBM) of
SiC are the same for the 41-atom crystallite in the two different cells. This is a consequence
of the strong Ge contributions to the corresponding wave functions which are, therefore, rather
strongly localized. Comparing Figs. 4.28 and 4.29 we find that Ge and Si NCs behave differ-
ently in cubic SiC. For germanium, NC-induced states only occur as occupied valence states
in the lower part of the fundamental gap, not, however, as empty conduction states closer to
the conduction band minimum of SiC. The situation is radically different for silicon. There are
empty crystallite-induced bands within the host band gap. They exhibit a dispersion similar to
that of the folded lowest conduction band of bulk SiC. Within a simple quantum-confinement
model this result may be interpreted such that confined holes arise in both the Ge and the Si NCs,
while confinement of electrons takes only place in the latter system. Therefore, the system Ge
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Figure 4.30 Density of states for NCs in SiC, as calculated in the 512-atom simple cubic cell for Ge NCs (with Ge-C crystallite-
host interfaces) and Si NCs. Red line: NC-host supercell system, black: pure cubic SiC. The triangles indicate the electronic
energies at the k point used in the electronic structure calculation. The arrows point to the highest occupied states. The energy
zero is defined by the VBM of SiC. The DOS has been calculated according to eq. (3.2) using the tetrahedron integration discussed
in section 3.4.

in 3C-SiC is of a type-II heterostructure character, whereas Si in 3C-SiC is type-I. However,
due to the low barrier and the small sizes of the NCs and of the supercells, the localization is
by no means complete. Sizable portions of the Si-related wave functions extend into the host
material. The corresponding bands are dispersive, indicating that the crystallite-matrix system
acts more as a composite material. The strong mixing of Si and SiC states induces the splitting
and shift of conduction-band states into the fundamental gap. The observed heterostructure
character is, in principle, in agreement with results of Harrison’s tight-binding model [225].
The conduction-band minima of the two materials give rise to a nearly flat band line-up.

Looking at the electronic density of states (DOS) one finds that the results for the 41-atom
inclusions are representative for the other NCs that we have studied. The one-particle DOS for
both Ge and Si crystallites in the 512-atom cells are plotted in Fig. 4.30. For comparison, the
DOS of the pure host SiC is also shown. The main SiC-related peaks have been used for the
energy alignment. The spectra depend on the number of atoms, which can be represented by a
filling factor f , i.e., the ratio of the number of embedded atoms and the total number of atoms.
Up to a crystallite size of 83 atoms, corresponding to a filling factor of f = 0.162, the DOS of
the host material is conserved with regard to its main features. The ragged shape of the DOS
indicates the transition from a system with extended states to one with partially localized states.

The DOS of Ge crystallites (with Ge-C interface) are shown in Fig. 4.30. The Ge-crystallites
induce additional occupied states within the fundamental gap of the host close to its VBM. The
number of these states increases with the crystallite size. Their positions shift to higher energies.
This is in complete agreement with the prediction of a type-II heterostructure behavior. On the
other hand, the DOS of the Si crystallites shows unoccupied states near the conduction band
minimum, thereby verifying the type-I behavior. For the largest crystallites we have studied,
those of 147 and 239 atoms representing filling factors of f = 0.287 and f = 0.467, the
main bulk features of the host disappear; the gap is not clearly recognizable and filled with
states, both occupied and unoccupied. Therefore it is not possible to draw simple comparisons
between extended and localized states as in the case of the smaller crystallites. This is not
surprising. For the large filling factors of the order of 0.5 it is clearly not a good model to think
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Figure 4.31 Dielectric function ε(ω)
of Ge embedded in cubic SiC with Ge-
C crystallite-host interface in a 512-atom
cell. The respective number of Ge atoms is
as indicated.
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Figure 4.32 Dielectric function ε(ω) of
Si embedded in cubic SiC in a 512-atom
cell. The respective number of Si atoms is
as indicated.
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Figure 4.33 Contribution of the occupied gap
states to the imaginary part of the dielectric func-
tion of Ge crystallites with Ge-C crystallite-host
interface and of Si NCs embedded in cubic SiC in
a 512-atom cell. Green line: gap-state contribu-
tion; red line: imaginary part of the total dielectric
function. The oscillator strengths of the optical
transitions involving the gap states are indicated
by vertical lines.

of the crystallites as being embedded in some host material without changing its properties.
Rather, the systems under consideration represent composite materials with an inhomogeneous
distribution of the atomic species.

Recently, Luppi et al. have applied a similar model for embedment of strained Si clusters in
SiO2 [42, 226, 227]. Their results are similar to ours with respect the band structures, although
their localized states show less dispersion due to the larger gap of SiO2.

4.3.2 Optical spectra

The dielectric function of the supercell systems obtained by means of the tetrahedron integration
discussed in section 3.4 are shown in Figs. 4.31 ff. With increasing size of the NCs there is a
significant deviation from the spectra of the pure cubic SiC [162]. The high-energy SiC peak
with mixed E′1, E′0, and E2 + δ character, located at about 9 eV in the DFT-LDA absorption
spectrum, is strongly reduced. For the larger crystallites of 147 and 239 atoms it vanishes
altogether. This is in agreement with the result that the DOS loses its clearly recognizable host
bulk features for these filling factors. Despite the difference in their heterostructure behavior, the
spectra of Ge and Si crystallites develop similarly with varying crystallite size. The difference
spectra (not shown) for both types show strong negative peaks at about 7 and 8.5 eV which do
not change their energetical position with increasing crystallite size. We attribute these peaks
to the vanishing of the SiC bulk properties discussed above. A deeper discussion and effective-
medium treatment can be found in Weissker et al. [48].

The lower-energy SiC peak at about 7 eV decreases and shifts to smaller photon energies.
It does so more strongly for Si than for Ge. For the largest crystallites the absorption tends to
become similar to results found for compressed Ge and Si, cf. page 58. Comparing the shifts
and the difference spectra for the Ge crystallites it can be seen that the main structure between
about 5 and 8 eV is attributable to the increasing amount of crystallite material. Its shift seems
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to be unaffected by spatial confinement and corresponds to the spectrum of the compressed Ge
in Fig. 3.29.

The most interesting part of the spectra lies below the main structures discussed above.
Below 4 eV there are additional shoulders developing into peaks which are strongly affected by
quantum confinement effects. In the Ge case, a more or less monotonous shift to lower energies
can be found with increasing crystallite size. The peak positions are 4.1, 3.8, and 3.7 eV for the
crystallites of 83, 147, and 239 atoms, respectively. This peak might become the E1 structure
in unstrained bulk Ge. For Ge such a shift has been predicted [228,229]. For the Si crystallites,
on the other hand, no simple description of the low-energy shoulders and peaks can be given.

In order to understand these features in more detail we study the influence of the gap states.
In Fig. 4.33 the contribution of the occupied gap states to the dielectric function within the
optical gap of the host are presented. In order to do this we have restricted the summation over
the valence states in expression ((2.71)) to a summation over the gap states. Below 4.5 eV for
Ge and 4 eV for Si NCs, the spectral properties are determined solely by the gap states. Fig 4.33
shows the oscillator strengths of the transitions against the respective transition energies. For
Si the transitions between the highest occupied valence states and the lowest conduction states
(cf. Fig. 3.2) have only very low oscillator strengths. However, they give rise to a structure
at a photon energy of about 1eV. The imaginary part of the dielectric function below 2 eV
is at most of the order of 1% of the maximum. Even though the Si crystallites in cubic SiC
tend to constitute a type-I system, the transition probabilities of the lowest transitions remain
small. This is the reason why the overall dielectric function in Fig. 4.32 does not strongly
reflect the different heterostructure character as compared to Ge. We note that the transitions
from the gap states do not occur into the CB edge but much higher into the CB. The effect on
the luminescence properties might, at this point, only be conjectured at. However, it could be
worthwhile to search for an infrared emission after illuminating Si / cubic SiC systems.

4.3.3 Hexagonal matrix and NCs

As shown above, embedding Ge in cubic SiC results in a type-II heterostructure. Hexagonal
SiC has a larger gap than the cubic polytype. Therefore, embedding Ge in hexagonal 4H-SiC
is expected to produce localization for both holes and electrons. From the calculations of the
free, hydrogen-terminated NCs we know that Ge has strong transitions at the bottom of the
spectrum. This leads to the expectation that Ge embedded in hexagonal SiC should give rise to
a heterostructure suitable for luminescence.

In Fig. 4.34 we show that, in fact, Ge in 4H-SiC is a type-I system. The density of states
shows both occupied and unoccupied localized states. However, in spite of the resulting overlap,
these states do not appreciably contribute to the absorption spectrum in Fig. 4.35. In view of the
results for the free hydrogen-terminated crystallites with their strong transitions at the HOMO-
LUMO gap, these results are surprising at first. Considering the differences between the two
systems it becomes clear that the strain in the NCs plays an important role.
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4.3.4 Influence of relaxation

As a first step to understand the influence of the strain we relax the model structures. The
possibility to "switch on" structural relaxation and to compare the results of the respective cal-
culations with those of the ideal structures permits to infer quantitatively the influence of the
relaxation on the optical properties. While it is intuitively clear that the compressed Ge will
expand and compress the host material in its vicinity, it is not a priori clear at what lattice
constant of the supercell system the relaxation should be done. The system which one seeks to
describe is the isolated Ge crystallite in an infinitely large matrix. The choice of supercells of a
certain size is dictated by methodological necessity. The imposition of the host lattice constant
as the lattice constant of the supercell system is unphysical because it neglects the expansion of
the material, leaving it only free to relax within the supercell whose dimensions are, however,
arbitrary and only dictated by numerical limitations. On the other hand, a calculation of the su-
percell system’s equilibrium lattice constant is unphysical for the same reasons. Therefore we
restrict ourselves at this point to a presentation of the results for the unrelaxed structure and for
the structure relaxed at the host material’s lattice constant and the equilibrium lattice constant
of the supercell system.

The structural relaxation pattern of NCs is complex. In Fig. 4.37 the individual bond lengths
are shown in dependence on their distance from the center of the crystallites. Trivially, the
compressed Ge-Ge bonds are shorter than their bulk values. Interestingly, however, the bonds
are shortest at the center of the crystallite, while their lengths increase towards the crystallite-
host interface. This is the opposite behavior as for the free NCs, cf. Fig. 4.2. The bonds between
Ge and the host (in this case, these are Ge-C bonds) have lengths intermediate between the
host-host and the Ge-Ge bonds. The host-host bonds are shorter compared to their bulk lengths
because of the compression. The situation is not significantly different for the relaxation at the
equilibrium lattice constant, except for larger bond lengths in general.
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However, the electronic properties change strongly. In Fig. 4.38 we present the band struc-
tures for the ideal and the two relaxed geometries. Obviously, the gap states show strong disper-
sion. Hence the NCs in different cells interact; the calculations are not converged with respect
to the amount of surrounding matrix material. However, the trends for all quantities presented
here are similar for all the systems, and cell sizes, which have been investigated. Therefore we
chose the present system which shows the effects particularly strongly because of the high fill-
ing factor. Moreover, the problems in the present form of the modeling are particularly clearly
understandable. In the larger cells, the dispersion of the gap states is strongly reduced.

The relaxation at the host material’s lattice constant shifts the (occupied, cf. Ref. [143]) gap
states of the crystallite to higher energies. In the present system this goes as far as to make the
system metallic, as can be seen from the band structure of Fig. 4.38. If, however, we change the
lattice constant to the equilibrium value, the gap states shift down again in energy, not, however,
as far as to re-attain their old energetical positions.

We alert the reader to the fact that there is, at this point, no basis for an alignment with the
bulk band structure of the host material. As can be inferred from Fig. 4.37, due to the large
filling factor there is nowhere in the system unstrained host material. On the other hand, all
the band structures are pressure dependent. The relative energetic positions of the bands are
undefined between the three systems in Fig. 4.38. The bottom of the conduction band has been
chosen as the energy zero for all three panels.

The optical properties of any system are, for the largest part, determined by the band struc-
ture. Hence the changes in the bands will translate into effects in the optical spectra which are
presented in Fig. 4.39. Here we do not have any alignment problem because we treat only en-
ergy differences. In accordance with Fig. 4.38, the onset of the absorption is drastically reduced
for the relaxed structure with respect to the ideal-structure result. The behavior at energies
close to zero reflects the fact that the system becomes essentially metallic for the relaxation at
imposed host lattice constant. As the cell is allowed to expand to its equilibrium lattice constant,
the onset of the absorption is blue-shifted. The shape of the whole spectrum is also changed.



86 Chapter 4. Results

0 1 2 3 4 5
Photon energy [eV]

0

2

4

6

8

Im
  ε

(ω
)

Equil.
1 %
2 %
4 %
8 %
10 %

Figure 4.40 Imaginary part of the di-
electric function calculated for the 83-
atom hydrogen-terminated Ge crystal-
lite for strain values as indicated. A
broadening of 0.1 eV has been applied.

2.1 2.2 2.3 2.4 2.5
Photon energy [eV]

0

0.2

0.4

0.6

0.8

1

1.2

Im
 ε

(ω
)

Equil.
0.1%
0.4%
0.6%
1%
2%
4%
6%
8%

Figure 4.41 Blow-up of the region of
the first peak in Fig. 4.40.

0 0.02 0.04 0.06 0.08 0.1
Strain ∆a/a

10
−1

10
0

10
1

10
2

10
3

L
if

e 
tim

e 
[a

.u
.]

Figure 4.42 Radiative lifetimes for
the 83-atom hydrogen-terminated crys-
tallite as a function of the compressive
strain.

The influence of the relaxation on the oscillator strengths is shown in Fig. 4.36. Due to the
distortions as compared to the ideal structure, the transitions become stronger. However, they
remain very small as compared to the transitions relevant to the optical properties, cf. Fig. 2.74.
Thus the relaxation alone cannot yet explain the difference between the behavior of the free and
the embedded NCs.

4.4 Beyond the Ground-State Equilibrium

4.4.1 Pressure / Strain

While the simple relaxation of the embedded model structures gives some indication of the im-
portance of the strain, it does not resolve the discrepancy between the results for the free and the
embedded Ge NCs. Therefore we consider now explicitly the pressure (or strain) dependence
of the Ge NCs.

In Fig. 4.40 the imaginary part of the dielectric function of the hydrogenated cubic Ge NCs
is shown for different hydrostatic pressures. Pressure (or hydrostatic strain ∆a/a) is modeled by
reducing the interatomic distances a. For zero pressure the spectrum shows the familiar strong
feature at the absorption onset. However, with increasing pressure this part decreases rapidly.
Correspondingly, the radiative lifetimes eq. (2.73) will increase strongly. This is shown in Fig.
4.42.

The high hydrostatic pressure means that the radii of the crystallites become smaller. Taking
into account the fact that the lifetimes become shorter with decreasing NC size it is clear that
there is some contribution to the lifetime curve in Fig. 4.42 which is due to the size effect. The
pure pressure dependence separated from this effect is an even stronger increase in the lifetimes.

In order to explain the pressure dependence of the optical properties we turn to the pressure
dependence of the HOMO-LUMO gap. Shown in Fig. 4.43 (b) it includes again contributions
from both the pressure and the size dependence. Similar to the procedure for the GeSi alloy
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NCs, the curve is, at least approximately, corrected by subtracting the energy difference found
from the size dependence of the unstrained crystallites [144] between the gap energies of the un-
strained radius and the radius reduced by the pressure. The corrected curve is also shown in Fig.
4.43 (b). After increasing with increasing pressure it reaches a maximum at about ∆a/a=6%
compressive strain and then decreases. This can be explained as follows. Both the pressure
and the quantum size effect will change the contributions from the different bulk states. We
can compare our HOMO-LUMO gaps of the crystallite of R=15 Å to the pressure-dependent
gaps of bulk germanium in Fig. 4.43 (a) [230]. Assuming that the differences between the bulk
and the NC gap behavior are not extreme we get the following picture. At zero pressure, the
Γ-Γ gap and the Γ-L gap lie very close in energy. Hence, the states relevant to the LUMO
state will correspond mainly to the Γ and L bulk states. With increasing pressure the Γ-Γ-gap
increases above the Γ-L gap but remains at roughly constant energetic separation from the Γ-L
gap up to very high pressures. However, at about ∆a/a=3% the Γ-X gap becomes the smallest,
lying increasingly below the Γ-L and Γ-Γ gaps. This means that, in the high-pressure regime,
conduction band states from the X-point will contribute most to the LUMO state of the NC en-
ergy scheme, while the Γ-contribution decreases due to the increasing energetic separation. The
vanishing contribution of the Γ-Γ-transition makes the HOMO-LUMO transitions very weak
and results in the strong increase of the radiative lifetimes. The situation is very similar for
hexagonal Ge [230].

Most interestingly, also the difference between Si and Ge NCs can be explained in this
way. The Γ-X-gap which corresponds to the low-probability transitions in Ge at high pressure
is the lowest gap in Si for the whole pressure range (not shown). From Fig. 4.43 we predict
the pressure coefficient of the HOMO-LUMO gap for Ge crystallites in the considered size
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range to be positive. This result disagrees with the findings of reference [39]. While perhaps
in our approach we overestimate the contribution of the Γ-Γ-transition, the transferability of
the empirical pseudopotentials down to NC sizes of 1-2 nm seems questionable and should be
considered with care [231].

After these findings and the experience with the alloy NCs in section 4.2 we corroborate our
interpretations by considering the pressure dependence of the HOMO-LUMO gap of GeSi alloy
NCs. Changing the interatomic distances, again there is the change of the NC volume and the
corresponding confinement-related positive shift. After subtracting this, the result as shown in
Fig. 4.44 is obtained. The behavior changes smoothly from the pure-Ge to the pure-Si behavior,
with the crossover at about x = 0.3. The negative pressure dependence of the PL peak energies
for Si NC samples has been measured by Cheong et al. [232].

This shows, once more, that the confinement and the alloying act approximately indepen-
dently. Moreover, also the pressure dependence can be considered separately. The change of
the gap character is also another corroboration of the interpretation as given in section 4.2.

4.4.2 Stokes shifts

The Stokes shifts are calculated according to equation (2.61) in section 4.4.2. The contribution
due to the structural relaxation encompasses two different effects. There is the volume-like
structural relaxation which is consistent with the assumption of Td symmetry. This part of the
effect is similar to the breathing mode in defect physics. Second, there is the effect which is
due to a possible symmetry break after the excitation, as recently discussed by Puzder et al
[233]. Of course, both effects are not independent. The fixed-symmetry structural contribution
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to the Stokes shift represents the lower limit of the Stokes shifts. Additional non-symmetry-
conserving relaxations further lower the total energies. As the size of the crystallites increases,
the crystallite will be increasingly better described as having a bulklike interior and a surface
governed by surface phenomena.

Moreover, the hydrogenated crystallites have always been thought of as a model for both
free crystallites (which they really are) as well as for crystallites embedded in a matrix with a
very large gap. In the latter case, there will be some symmetry stabilization, depending on the
interface region. In dependence of this, the value of the real structural contribution to the Stokes
shift will lie between the free-symmetry and the symmetry-restrained results.

The difference between the energies of the ground-state and the excited-state geometry, i.e.,
the structural contribution to the Stokes shift, is shown in Fig. 4.45. No attempt has been made
to model the contribution related to the size distribution of the NCs. The contribution plotted in
Fig. 4.45 is, therefore, only directly measurable in resonance experiments, in which only NCs
with a definite size are excited.

Unfortunately, direct comparison with experimental Stoke shifts is difficult because mea-
sured values contain all the discussed effects, in particular the contribution due to the size dis-
tribution of the NCs. Nonresonantly measured Stokes shifts can be as large as 1 eV for Si NCs
in a SiO2 matrix [234]. For a resonant excitation of Si NCs, much smaller Stokes shifts of the
order of a few meV and up to 50 meV are observed [116]. The inset of Fig. 4.45 with Stokes
shifts as a function of the excitation energies demonstrates that our calculated Stokes shifts
for the largest NCs are close to values measured resonantly for H-terminated porous Si. The
shifts for surface-oxidized Si NCs are only slightly larger than the calculated value for the NCs
corresponding to this transition energy.

In order to go beyond the symmetry-constrained calculations we did tests shown in Fig.
4.46 which indicated the following: For the 83-atom NC, the Td Stokes shift is particularly
small with 0.03 eV. This might be a consequence of the model of the particular crystallite.

An excited-state relaxation of the same NC but without the symmetry constraint yielded a
pair excitation energy of 2.1 eV, making the Stokes shift about 0.4 eV. Hence this crystallite has
not yet reached the size regime where the symmetry-keeping volume contribution is dominant.
This is shown in Fig. 4.46 and in rough agreement with very recent results of Franceschetti
et al. [115]. However, the fact that the Stokes shift of our largest crystallite agrees fairly well
with experiment seems to be an indication that in this size regime (about 2.5 nm diameter) the
symmetry break is already supplanted by the fixed-symmetry contribution as the main cause of
the structural part of the Stokes shift.

Over the whole range of sizes, the fixed-symmetry structural Stokes shift is much larger for
Ge than for Si. While for Ge even for the diameter of 2 nm the shift is appreciable, for the
corresponding Si crystallite it has the tiny value of 5 meV. The differences between Ge and Si
are a consequence of the different symmetries of the electron-hole pairs in Ge and Si crystallites
due to the different physical character of the contributing single-particle states, especially to the
LUMO states due to the different bulk band structures. Moreover, the bonding in Ge NCs is
weaker than that in Si. Consequently, the geometrical changes due to the electron-hole pair
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can induce larger changes in the excitation energies. Thus it is no surprise that the structural
contributions to the Stokes shift are different for the two materials.

It is clear from the foregoing discussion that the description of the excited-state structural
effects will be an important field of research in the future.



Chapter 5

Conclusion and Prospectives

The present work provides contributions to both fundamental and practical questions. We have
investigated the structural, electronic, and optical intrinsic properties of Ge and Si nanocrystals.
Using bulk-fragment-like, H-terminated model structures, we have focused our attention on the
mechanisms and properties due to intrinsic effects. The work aims at the general tendencies and
dependencies in NCs. In particular, we have been able to describe the interconnection (or, more
precisely, the mutual independence) of different effects like strain, alloying, and confinement.

The modeling of NCs is not yet a very evolved field, though the results of the last few
years give many indications as to the direction in which the development will lead. Most prac-
tically relevant systems treat NCs embedded in some crystalline, amorphous, or maybe fluid
surrounding. Depending on the height of the potentials as well as on the line-up, different het-
erostructures are created, with confinement of either both the excited electrons and the holes, or
just one of them. Our H-terminated model structures are considered both a model of NCs em-
bedded in some matrix with a large gap, and, second, free NCs per se. We have investigated the
structural relaxation pattern of the NCs. By considering the influence of the relaxation on our
target quantities we have shown that ionic relaxation is an indispensable part of NC modeling.
Especially the radiative lifetimes proved highly sensitive to the relaxation. This is a technical
point, important though it is. The answers given here will aid future modeling, but are not, by
themselves, a description of actual physical effects.

Using the relaxed structures, we calculated the transition probabilities and, closely con-
nected, the radiative lifetimes as relevant for a PL experiment or application. It has been shown,
in agreement with related results of other groups [209] that Ge nanostructures appear to be bet-
ter suited for light emission than Si NCs, at least as long as quasi-direct transitions are the main
contributors. We were able to explain this in terms of the composition of the HOMO and the
LUMO states with respect to the bulk band structures. Comparison with experimental values
revealed, once more, a large spread of the measured values. Future work will have to explain
why, at least until now, luminescence has been achieved more readily from Si NCs, rather than
from Ge NCs. This might be explicable by the fact that most of the transitions in Si are phonon
or defect assisted. Lately it has been shown for small NCs that the heterostructure picture is to
be, if not supplanted at least complemented, by interface-, reconstruction-, and defect-related
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effects. All comparison between experimental and theoretical results suffers from the strongly
varying properties of the experimental samples.

One of the main points of this work has been the calculation of excitation energies. While the
description of excitations in bulk systems is already rather sophisticated, it is still not completely
clear what the “correct” description of NC excitations is. Available theoretical data spread over
a band of about 3 eV — on the scale of 10 eV in total! Unfortunately, the experimental situation
is no different. Very few results are available where the assignment of particular properties
to particular effects or structures is corroborated beyond reasonable doubt. Thus, to date, the
theoretical results for NCs in the intermediate size range remain often predictive and can only be
discussed in term of their advantages and drawbacks. We have calculated the excitation energies
by means of a ∆SCF method using an occupation constraint. This method is superior to the older
∆SCF method used for Si NCs for physical as well as for purely practical reasons which include
the simultaneous description of electron and hole, as well as the faster convergence with respect
to the cell size. In the last two years, this approach has become widely used. Our method is
known to underestimate the excitation energies in the bulk limit.

Frequently excitation energies are discussed in terms of some functional dependence on the
diameter of the NC. For instance the somewhat archaic effective-mass approximation yields, for
a spherical square-well potential, excitation energies proportional to d−2. There is agreement
now in the literature that the exponent is smaller. We obtained values of about -1.0 for both Si
and Ge. However, careful consideration of the limits d → 0 and d → ∞, or of different choices
of the size range of NCs taken into account, shows that a simple fit cannot account completely
for the true relation. The reason for this is unknown, but it appears likely that in particular
the transition from spatial confinement to bulk-like relative localization of electron and hole
changes the respective dependencies.

The results of our ∆SCF method have been found to be extremely close to the LDA eigen-
value differences, deviations becoming important, if at all, only for the smallest localization
radii. While this is, in general, explained by the cancellation of the Coulomb interaction and
the self-energy effects, a tentative correction of our values using the correction as calculated
by Delerue et al. gave a rather clear overestimate of the values for larger radii. At present it
seems that only the explicit incorporation of at least the self-energy effects and the electron-
hole interaction will be able to finally settle the questions about the excitation energies in NCs
of intermediate size. Until then our method provides a rather well investigated tool for the prac-
tical calculation of excitation energies.

Using spin-polarized calculations, we have been able to calculate the exchange splitting be-
tween the singlet and the triplet excitons. The calculated values agree rather well with available
experiment, although for small radii the splitting is underestimated, likely due to the incapability
of the employed LSDA exchange-correlation potential to describe pure multiplets.

Experimental PL results are easier to come by, but they are most strongly influenced by
defects, dangling bonds, etc. Experimental absorption spectra are few and far between, as
they are harder to obtain. Their advantage is that they are less sensitive to the aforementioned
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effects. Therefore they account more easily for the quantum-confined optical transitions. Good
qualitative agreement has been found between our ab initio results and experimental spectra.

Test calculations using NCs of arbitrary shape have shown that the main results of this work
are not valid only for the crystallites of Td symmetry, but are general. This holds in particular
for the strong lowest transitions in Ge NCs.

For the first time an ab initio method has been applied to an alloy on a nm length scale. We
have shown that the alloying of Ge and Si leads to effects which act – at least approximately –
independently from the confinement. The electronic and optical properties change smoothly for
changing composition, and the change reflects the change in gap character between Γ-Γ and Γ-L
for Ge NCs, and Γ-X for Si. This has been corroborated using the pressure dependence of the
excitation energies for alloy crystallites. Calculated lifetimes showed that the changes as found
in experiment are due to intrinsic effects rather than to defects, clarifying the experimentalists’
interpretation. The structural relaxation of the GeSi alloy NCs takes place such as to roughly
follow Vegard’s rule.

In order to improve upon the H-saturated model for embedded NCs, we embedded Ge and
Si NCs in a crystalline matrix using a simple replacement of atoms resulting in strongly strained
structures. This has been the first ab initio calculation for such a structure. Recently, a similar
model has been used by Luppi et al., suffering from a similar strain problem as ours. This
is the only other ab initio treatment of embedded NCs besides our work. The heterostructure
character especially of Ge NCs in cubic SiC has been determined to be type II.

A description of the properties of the composite system NC plus matrix has been possible
using an extrapolative version of the tetrahedron method. For this we implemented an extrap-
olation using second order k·p-theory and a subsequent resampling, applicable for supercell
systems. The number of k points could be reduced to just one, at least for Td cubic supercells.
The method has been used in the description of the spectral properties of the embedded sys-
tems. Embedment of Ge in hexagonal SiC with a large gap resulted in a type-I heterostructure,
but, contrary to expectation, no strong transitions between the band edges were found; the in-
fluence of the NCs on the dielectric function was minimal. However, ionic relaxation of the
strained systems slightly improved the transition probabilities, leading to the understanding that
the strain or pressure dependence of the material’s properties was the reason: Our embedded
model structures were not able to reproduce the experimental situation in terms of strain and,
therefore, neither the optical and luminescence properties. Tentative steps in order to obtain a
better model have shown that this improvement is a highly non-trivial task.

Subsequently, the pressure dependence of Ge NCs’ properties has been found to be deter-
mined by a bulk-like pressure dependence of the direct and indirect gaps, leading to a strong
change in the respective contributions to the composition of the NC states. Under high pres-
sure, Ge NCs become Si-like, i.e., in the experimentalists’ language: indirect. The change under
pressure remains valid independently of alloying as well, corresponding to the different contri-
butions. From our results we conclude that also the pressure dependence and the confinement
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act approximately independently, as does the alloying. We were able to explain our results in
terms of a unified and consistent picture of these effects.

Finally, we have carried out excited-state ionic relaxations using a Td symmetry constraint.
Rather small Stokes shift contributions have been obtained in this way. On the other hand,
discarding the symmetry restraint we obtained much larger shifts, in agreement with recent
publications of other groups. Real embedded systems will experience some restraint due to
the interface or surrounding. Our values thus indicate the lower bound for the shifts, for larger
NCs, however, the main contribution. Hence it is necessary to consider the embedment and the
interface structure in order to describe a given system’s Stokes shift correctly. The change due
to an inclusion of spin-polarization has been found to be small.

* * *

For many quantities, there is a lack of experimental results, in particular for Ge. Measure-
ments of life times, spin splittings, excitation energies of quantum-confined excitons, etc. would
be desirable. For this reason the present dissertation also hopes to raise the interest of the ex-
perimentalists in those questions. As especially Ge is a difficult case for the pseudopotential
description, a corroboration (or, for that matter, also a refutation) of the present results would
be valuable. Moreover, it must be finally found out why, until now, Si has been used more suc-
cessfully to produce light emission than Ge. This might lead to new questions like the influence
of doping in Si NCs [203, 235], or of electron-phonon coupling.

Until now, experiment has been simply described by using the electronic states in the model
NC and transitions between them. A more specific description of experiments would be useful.
For instance, for the the description of the Stokes shifts one will have to start from asking
the question as to which experiment is to be described, involving which effects on which time
scales, etc. Electron-phonon coupling will be needed in order to describe and explain many of
the relevant optical effects, in particular in Si NCs.

As the experimental samples will continue to be diverse, a better insight into different effects
having different signatures in the optical spectra or other properties is desirable. “Nano-science”
will have to create some sort of data base in order to describe a given sample: Many effects
occurring with a certain statistical likelihood make up the properties of a real system. If theory
can supply an according description, it will also be successful in the prediction of material
properties.

In order to achieve this, better growth models and more specific characterization methods
have to be developed, comparable to those in surface physics: Highly sophisticated fabrication
of a clean surface with a controlled number of controlled defects or reconstructions enables a
detailed comparison with the theoretical description of a given effect. In particular, the model
for embedding NCs in a host material has to be developed, especially for the interfaces. The
available ab initio results suffer from serious drawbacks of the model. This is mainly due to
the lattice mismatch of the constituent atomic species and the resulting compressive strain, as
exemplified by the discussion of this thesis. The highly non-trivial task of constructing realistic
models for the interfaces will has to be solved. It is likely that combined methods of empirical-
potential molecular-dynamics and subsequent ab initio determination of the electronic and op-
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tical properties will be used, the feasibility of which we have already started to investigate. This
could involve partial melting of surfaces or interfaces, and subsequent cooling. The treatment
of dangling bonds will be one of the key questions, both in theory and experiment.

This will be particularly helpful for the Ge / Si heterostructures which are of paramount
importance for technology. Here, ab initio calculations are still rare because, as preliminary
results have shown, the strain fields extend very far, requiring huge supercells (if the present
approach is to be employed), and an intermixing has to be included almost certainly. Moreover,
the alignment of the bands or the electronic potential between the strained supercell system and
the practically infinite bulk must be enabled.

Another relevant question would be the development of a description of the mechanism of
annealing after ion implantation, e.g., for Ge in SiC. This would be possible by the considera-
tion of the mobility of the surplus atoms in the crystal lattice. As oxygen has proven to be very
important, the modeling of structures including oxygen will also be pursued further, as will be
the modeling of defects and surface reconstructions in NCs.

In the next years, there will be definitely further development of the tool box of condensed-
matter physics, including application to NCs. Apparently, this will definitely include the electron-
hole interaction in an appropriate manner, as well as local-field effects. The approaches will
most likely include many-body perturbation theory based on GW + Bethe-Salpeter equation
calculations, Time-Dependent DFT, and quantum-Monte-Carlo methods. This avenue of devel-
opment should conclusively terminate the discussion about the excitation energies of NCs, the
contribution of the self-energy effects depending on the radius, and also explain in better than
heuristic terms the cancellation between self-energy effects and the Coulomb energy. In any
case, the treatment of excitations will continue to be central to the field, among them the topic
of Stokes shifts, and maybe also photo-induced chemical reactions including NCs.

In any case it is desirable to create some overlap for the scales on which the semi-empirical
pseudopotential methods and the ab initio approach yield reliable results on a routine basis. No
one method will be able, at least in the foreseeable future, to handle the systems over the whole
size range. Neither is that necessary. For small sizes, ab initio techniques are applicable, and
questions due to the confinement are the most relevant — among them Stokes shifts, etc. The
latter necessitate the fully quantum-mechanical approach. For “very large” nanostructures, the
empirical and semi-empirical approaches provide a reliable description of the properties.

It appears likely that a further separation between applied and fundamental nano-research
takes place in the NC field. Theoretical research will continue to create better models for the
description, along with experiment which will continue to create better and better defined crys-
tallites. Applied research will, on the other hand, use its natural “engineering-type” of approach
and work closely focused on practical results. In doing so it will use the results of fundamental
science. (Here acts a peculiar feedback mechanism – the development of computer technique
has greatly accelerated especially the progress in the field of computer simulation which in turn
fosters the technological development.)

* * *
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On a broader perspective, it is very likely that the overlap between organic chemistry and
condensed-matter physics will increase. The systems treated using the methods developed in the
context of NCs will include the interaction of nanocrystalline material with biological molecules
and maybe surfaces and tissues. This will, on the one hand, depend on the present focus of pub-
lishing and funding agencies on what came to be curiously termed “life sciences,” on the other
hand, however, on the marketability of respective research results. The latter effect extends into
the realm of scientific publications, where a marketing-type style of presentation of scientific
results is now not uncommon. Besides, the direction of the technological development will also
be largely determined by considerations like availability of certain techniques, cost, funding of
research, etc.

The focus in the field of computational materials science will in part continue to be on the
“traditional” questions like device fabrication. On the other hand, it will likely embrace the field
of medical and biological applications – implying all its promises and dangers and, therefore,
questions of responsibilities.

* * *
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[78] S. Öğüt, J.R. Chelikowsky, and S. Louie, Phys. Rev. Lett. 80, 3162 (1998) (Reply to
Franceschetti, Wang, and Zunger, ref. [31].)
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Zusammenfassung i

Deutsche Zusammenfassung

Die vorliegende Arbeit betrachtet die intrinsischen optischen Eigenschaften von Germanium-
und Siliziumkristalliten im Rahmen der Dichtefunktionaltheorie (DFT) in Lokaldichtenähe-
rung. Ihre Ergebnisse liefern Beiträge sowohl zum grundlegenden physikalischen Verständnis
der Effekte in Nanokristalliten (NCs) als auch zu praktischen Aspekten.

Zu Beginn der Arbeit lag eine Vielzahl von unterschiedlichen theoretischen Arbeiten vor,
die insbesondere für den mittleren Größenbereich der Kristallite zumeist semiempirischer Na-
tur waren. Deren Anwendbarkeit auf die Kristallite im nm-Bereich ist jedoch nicht a prio-
ri gesichert. Außerdem machen eine Vielzahl von Effekten aufgrund ihrer Natur ab-initio-
Berechnungen nötig. Als Beispiel seien die strukturellen Beiträge zur Stokes-Verschiebung von
Emissionslinien gegenüber der Absorption genannt.

Der Stand der Literatur bezüglich der experimentellen Charakterisierung ist relativ unüber-
schaubar. Das liegt darin begründet, daß die verschiedenen Herstellungsmethoden für Nano-
kristalle sehr unterschiedliche Stukturen mit folglich ebenfalls sehr unterschiedlichen Eigen-
schaften hervorbringen. Aus diesem Grund liegt für einen großen Teil der Ergebnisse noch
keine eindeutige und gesicherte Interpretation vor. Damit wird ein enges Zusammenspiel von
Theorie bzw. Modellierung und Experiment notwendig. Im Fall der vorliegenden Arbeit war
es notwendig, experimentelle Resultate zu finden, die möglichst eindeutig auf die räumlichen
Quantisierungseffekte zurückzuführen sind und nicht durch Defekte oder oberflächenchemische
Effekte beeinflußt sind.

In der vorliegenden Arbeit wurden Modellstrukturen benutzt, die Fragmenten der Volumen-
halbleiter Silizium und Germanium mit Wasserstoffabsättigung der äußeren Bindungen ent-
sprechen. Das Hauptaugenmerk lag dabei auf den allgemeinen Tendenzen und Effekten. Insbe-
sondere waren wir in der Lage, das Zusammenspiel bzw. die gegenseitige Unabhängigkeit der
Effekte des räumlichen Confinement und von Mischungseffekten und Druckabhängigkeiten zu
beschreiben. Die Rechnungen wurden mit Hilfe des Programmpaketes VASP durchgeführt, das
eine Ebene-Wellen-Entwicklung der Kohn-Sham-Eigenfunktionen benutzt. Die Modellstruk-
turen wurden deswegen im Rahmen der Superzellenmethode beschrieben. Um die für diese
Strukturen notwendigen großen Zellen behandeln zu können, kam die Projector-augmented-
wave- (PAW-) Methode zum Einsatz. Neben den geringen Anschneideenergien, die ähnliche
Werte wie jene für die „ultra-soften“ Pseudopotentiale besitzen, werden bei dieser Methode
Allelektronenwellenfunktionen erzeugt. Damit kann die Berechnung der Übergangsmatrixele-
mente erfolgen, die für die Berechnung der optischen Eigenschaften notwendig sind.

Die ionische Relaxation und die Bestimmung der elektronischen und optischen Eigenschaf-
ten für sowohl die ideale als auch die relaxierte Struktur von freien Nanokristallen haben ge-
zeigt, daß die Relaxation für die Modellierung unabdingbar ist. Insbesondere die strahlenden
Lebensdauern sind aufgrund der energetischen Umordnung der Zustände nahe des obersten be-
setzten und des untersten unbesetzten Zustandes sehr empfindlich.
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Weiter ergab die ionische Relaxation ein komplexes strukturelles Muster. Die interatomaren
Abstände an der Oberfläche der Kristallite sind geringer als jene im entsprechenden Volumen-
material, während im Zentrum eine Expansion stattfindet. Die durchschnittlichen Bindungslän-
gen sind geringer als im Volumenmaterial.

Ein zentraler Punkt der Arbeit bestand in der Berechnung der Anregungsenergien von Na-
nokristallen. Wir habe eine sogenannte ∆-self-consistent-field-Methode (∆SCF) benutzt, um die
gesuchten Anregungsenergien aus den Gesamtenergien zweier selbstkonsistenter Rechnungen
zu bestimmen. Anders als bei der bisher gebräuchlichen ∆SCF-Methode, die Paaranregungs-
energien aus den Einteilchenanregungen zu berechnen sucht, konnten wir mit Hilfe von Beset-
zungszahlvorgaben eine gleichzeitige Beschreibung von Elektron und Loch im Nanokristalliten
vornehmen. Damit wird eine Elektron-Loch-Anregung modelliert, wobei sowohl die Coulomb-
als auch Selbstenergieeffekte eingeschlossen sind. Diese Methode, welche eine Reihe von Vor-
teilen gegenüber der „konventionellen“ ∆SCF-Methode besitzt, ergibt für kleinere Kristallite
Werte, die den Resultaten der zeitabhängigen Dichtefunktionaltheorie gleichen. Die Streuung
der zum Vergleich verfügbaren experimentellen und theoretischen Resultate ist groß. Deswe-
gen kann eine abschließende Bewertung der einzelnen Methoden noch nicht erfolgen. Es stellt
sich jedoch heraus, daß eine einfache funktionelle Abhängigkeit der Anregungsenergien vom
Kristallitdurchmesser nicht angegeben werden kann. Die verschiedenen angepaßten Funktionen
mit 1/da-Abhängigkeiten ergeben jedoch grob Werte zwischen 1.0 und 1.4 für den Exponenten.

Die Auslöschung der Selbstenergieeffekte und der Elektron-Loch-Wechselwirkung in un-
seren Resultaten ist fast vollständig. Aus diesem Grunde sind für die betrachteten Systeme
die Energiedifferenzen von Kohn-Sham-Eigenwerten in DFT-LDA gute Näherungen der An-
regungsenergien. Die Methode ordnet sich erfolgreich in die komplexeren Methoden ein, wie
etwa der Kombination von GW-Rechnung und der Lösung der Bethe-Salpeter-Gleichung. Sie
ermöglicht eine zuverässige Bestimmung von Anregungsenergien insbesondere kleiner Kristal-
lite. Das Verfahren wird inzwischen von einer Vielzahl von Forschungsgruppen angewandt.

Desweiteren wurde – erstmalig im Rahmen einer ab-initio-Methode – die Aufspaltung der
Anregungsenergien von Singulett- und Tripletexziton aufgrund des Elektron-Loch-Austauschs
berechnet. Dazu wurden spinpolarisierte Rechnungen im Rahmen der lokalen Spindichtenähe-
rung (LSDA) durchgeführt. Trotz prinzipieller Probleme der LSDA bei der Beschreibung von
Multipletts wurden Werte in guter Übereinstimmung mit dem Experiment erzeugt.

Ein unter dem Gesichtspunkt der Anwendung sehr wichtiges Resultat ist das Auftreten von
starken optischen Übergängen an der Absorptionskante von Ge NCs. Das reflektiert die starken
Beiträge der direkten (Γ-Γ) Bandlücke. Diese Interpretation der Resultate wurde durch Unter-
suchungen verschiedener Druckabhängigkeiten bestätigt. Anders als in Si NCs, die bis hinab zu
sehr kleinen Durchmessern den indirekten Charakter des Volumenmaterials widerspiegeln, ist
man in Germaniumkristalliten nicht auf phononen- oder defektunterstützte Übergänge angewie-
sen, um Lumineszenz zu erzielen. Lebensdauermessungen an Siliziumkristalliten können trotz
der starken Streuung der experimentellen Werte als Bestätigung unserer Ergebnisse angesehen
werden.
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Neben der Charakterisierung der Kristallite durch Anregungsenergien und Lebensdauern
ist auch der Gesamtverlauf der dielektrischen Funktion von Interesse. In der vorliegenden Ar-
beit wurden die Spektren in der Näherung unabhängiger Teilchen und unter Vernachlässigung
von Lokalfeldeffekten berechnet. Damit wurde eine in wesentlichen gute Übereinstimmung mit
experimentellen Spektren erziehlt.

Im Rahmen dieser Arbeit wurden erstmals ab-initio-Berechnungen der Eigenchaften von
Mischkristalliten im nm-Bereich durchgeführt. Die Bindungslängen der betrachteten GexSi1−x-
Kristallite stellen sich, ähnlich wie im Volumenmaterial, im wesentlichen so ein, daß die Ve-
gardsche Regel erfüllt wird. Anregungsenergien und Lebensdauern ändern sich kontinuierlich
mit der Zusammensetzung x. Damit konnten die Meßergebnisse für Photolumineszenz von
GexSi1−x Kristalliten durch intrinsische Effekte erklärt und Defekte als Hauptmechanismus der
Bandlückenänderung ausgeschlossen werden. Die Ähnlichkeit der x-Abhängigkeit mit der des
Volumenmaterials sowie die Skalierbarkeit von Anregungsenergien und Lebensdauern beim
Vergleich mit experimentellen Werten zeugen von einer weitgehenden Unabhängigkeit der Ef-
fekte von Confinement und Mischung. Diese Vermutung wurde durch die Berechnung der zu-
sammensetzungsabhängigen Druckabhängigkeit der Anregunsenergien bestätigt.

Um eine bessere Modellierung der Einbettung zu erzeugen, wurden Kristallite in einer kri-
stallinen Matrix betrachtet. Am Modellsystem Ge oder Si in Siliziumkarbid haben wir die er-
sten ab-initio-Berechnungen der elektronischen und optischen Eigenschaften solcher Systeme
durchgeführt. Zur Erzeugung der Modellstruktur wurden Silizium- und Kohlenstoffatome der
Matrix durch Si oder Ge ersetzt, so daß aufgrund der Gitterfehlanpassung eine stark verspannte
Struktur vorlag. Die einzige weitere ab-initio-Untersuchung eingebetteter Kristallite von Luppi
et al., arbeitet mit einem Modell, das ähnliche Beschränkungen wegen der Verspannung auf-
weist.

Eines der Hauptprobleme der vorliegenden Arbeit war die Brillouinzonenintegration, wel-
che insbesondere für die Berechnung der dielektrischen Funktion notwendig ist. Die konventio-
nelle Tetraederintegrationsmethode, die in Volumenmaterialien sehr erfolgreich eingesetzt wird
und die Anzahl der notwendigen k-Punkte stark reduziert, versagt im Falle der Superzellen-
methode mit großen Zellen. Der Grund hierfür liegt in der Faltung der Bänder, nach der an
jedem k-Punkt sehr viele Bänder pro Energieintervall vorliegen. Da die ab-initio-Rechnungen
keine Zuordnung der verschiedenen Energien zu Bändern zuläßt, ist eine Interpolation in einer
Vielzahl von Fällen praktisch nicht möglich.

Um eine Beschreibung der Bandstruktur zu gewinnen, die eine Zuordnung von Energien zu
Bändern ermöglicht, wurde eine auf k·p-Störungstheorie beruhende Extrapolation implemen-
tiert, die ausgehend von einem k-Punkt innerhalb der irreduziblen Brillouinzone (IBZ) diesel-
be überdeckt. Um die lineare Tetraedermethode anwenden zu können, wurde die IBZ in ein
feineres Tetraedernetz unterteilt. In jedem dieser Tetraeder wurde eine Linearisierung der Ban-
denergien vorgenommen. Damit ist der Einsatz der linearen Tetraedermethode möglich. Zwei
Korrekturen wurden einbezogen: Die relativ großen Extrapolationsfehler, die in der Nähe von
„Anticrossings“ auftreten, wurden durch Störungstheorie für fast entartete Bänder korrigiert.
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Außerdem wurde eine Extrapolation der Übergangsmatrixelemente implementiert, die auf ei-
ner Entwicklung des Übergangsoperators nach den Wellenfunktionen in erster Ordnung Stö-
rungstheorie beruht. Es stellte sich jedoch heraus, daß beide Korrekturen für die Berechnung
der dielektrischen Funktion von untergeordneter Bedeutung sind.

Unser Modellsystem Germanium in kubischem SiC besitzt einen deutlichen Typ-II-Hetero-
strukturcharakter. Lokalisierte besetzte Zustände treten in der Bandlücke der Matrix auf. Das
Absorptionsspektrum wird unterhalb des Absorptionsansatzes der Matrix fast ausschließlich
durch die Beiträge dieser Zusände bestimmt. In Übereinstimmung mit dem Typ-II-Charakter
finden jedoch keine Übergänge zwischen den Bandkanten statt; die Übergänge erfolgen höher
in das Leitungsband.

In Kenntnis der starken Übergänge in den freien Germaniumkristalliten wurde eine Einbet-
tung von Germanium in hexagonalem SiC vorgenommen. Dieses hat eine größere Bandlücke,
worauf wir folgerichtig Lokalisation sowohl von besetzten als auch von unbesetzten Zuständen
fanden. Entgegen den Erwartungen an eine solche Typ-I-Heterostruktur ist der Einfluß dieser
Zustände auf die optischen Eigenschaften jedoch vernachlässigbar; es wurden keine starken
Übergänge zwischen den lokalisierten Zuständen gefunden. Die Übergangswahrscheinlichkei-
ten vergrößerten sich jedoch im Zuge der ionischen Relaxation der Systems, was die Druck-
oder Verspannungsabhängigkeit der Materialien als Grund für die schwachen Übergänge na-
helegt. Die Berechnung der Druckabhängigkeit der Übergangswahrscheinlichkeiten bestätigte,
daß unsere Modellstrukturen nicht in der Lage sind, die experimentelle Situation in bezug auf
die Verspannung zu reproduzieren. Das gleiche gilt deshalb auch für die Lumineszenzeigen-
schaften. Erste Schritte, die Verspannung des Materials auf einfachem Wege zu beheben, zeig-
ten, daß es sich dabei um eine schwierige Aufgabe handelt.

Die Druckabhängigkeit der elektronischen Eigenschaften der Kristallite ist im wesentli-
chen durch die im Volumenmaterial bestehende Druckabhängigkeit der direkten und indirekten
Bandlücken gegeben. Diese bestimmt gleichzeitig die Zusammensetzung der Kristallitzustände
aus den volumenmaterialartigen Wellenfunktionen. Unter hohem hydrostatischen Druck wer-
den Germaniumkristallite siliziumartig. Mit anderen Worten, die Hauptbeiträge zu den LUMO-
Wellenfunktionen entsprechen jenen der indirekten Bandlücke des Siliziums. In der Sprache
des Experiments heißt das: Die Kristallite werden quasi-indirekt.

Die Druckabängigkeit der Anregungsenergien in Mischkristalliten ähnelt – entsprechend
der Zusammensetzung des LUMO – jener im Volumenmaterial. Unsere Resultate sind dahin-
gehend zu interpretieren, daß auch die Veränderung der Eigenschaften unter Druck und das
Confinement unabhängig voneinander erfolgen. Dasselbe gilt für Druckabhängigkeit und die
Mischungseffekte in GexSi1−x NCs. Die Ergebnisse der vorliegenden Arbeit ermöglichen eine
konsistente Interpretation der Eigenschaften der Kristallite.
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Um die strukturelle Reaktion auf eine elektronische Anregung zu untersuchen, wurde die
ionische Relaxation für mit einem Elektron-Loch-Paar angeregte Kristallite durchgeführt. Da-
bei wurde die Td-Symmetrie der Kristallite als Nebenbedingung zugrunde gelegt. Dieses Ver-
fahren lieferte relativ kleine strukturelle Beiträge zur Stokes-Verschiebung. Bei Freigabe der
Symmetrie wurden, in Übereinstimmung mit kürzlich publizierten Resultaten anderer Gruppen,
deutlich größere Stokes-Verschiebungen berechnet. Die Spinpolarisation wurde im Rahmen der
LSDA ebenfalls untersucht. Es ergab sich nur ein unwesentlicher Unterschied zu den Stokes-
Verschiebungen der nicht-spinpolarisierten Rechnungen.

Die Arbeit ordnet sich in die Anstrengungen der jüngsten Zeit ein, ein einheitliches Ver-
ständnis der Effeke und Strukturen von Nanokristalliten zu erreichen. Sie betrachtet die durch
die räumlichen Quantisierungseffekte beeinflußten Eigenschaften und erbrachte in bezug auf ei-
nige der betrachteten Größen die ersten verfügbaren ab-initio-Resultate. Die methodischen bzw.
theoretischen Hauptbeiträge sind die Behandlung der Paaranregungsenergien durch eine ∆SCF-
Methode mit Besetzungszahlvorgabe sowie die Implementierung einer extrapolativen Variante
der Tetraederintegration, die für Rechnungen mit großen Superzellen anwendbar ist. Aus prak-
tischer Sicht wichtige Ergebnisse sind die Vorhersage der quasi-direkten starken Übergänge am
Absorptionsansatz von Germaniumkristalliten sowie die gefundene weitgehende Unabhängig-
keit von Confinement-Effekten, der Druckabhängigkeit sowie von Mischungseffekten.
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