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öffentlich verteidigt am 12. Dezember 2003

Gutachter: Prof. Dr. A. R. Champneys (University of Bristol)
Prof. Dr. B. Fiedler (Freie Universität Berlin)
Prof. Dr. B. Marx (Technische Universität Ilmenau)









Zusammenfassung

Die vorliegende Arbeit untersucht Bifurkationen homokliner Lösungen in gewöhnlichen
Differentialgleichungen. Homokline Lösungen sind in positiver und negativer Zeit asymp-
totisch zu einer Gleichgewichtslage, d.h. zu einer konstanten Lösung der Differentialglei-
chung. Die Arbeit betrachtet solche homokline Bifurkationen, die von einer Veränderung
des Typs dieser assoziierten Gleichgewichtslage herrühren. Verschiedene Szenarien wer-
den in der Klasse der reversiblen Differentialgleichungen analysiert.

Der Hauptteil der Arbeit beschäftigt sich mit Homoklinen an Gleichgewichtslagen, welche
selbst in einer lokalen Bifurkation verzweigen. Dabei verändert sich der Typ der Gleich-
gewichtslage vom reellen Sattel (mit führenden reellen Eigenwerten) zum Sattel-Zentrum
(mit einem Paar rein imaginärer Eigenwerte). Das Miteinander lokaler und globaler
Bifurkationseffekte erfordert eine neuartige Behandlung: Durch eine Kombination ana-
lytischer und geometrischer Techniken wird eine Beschreibung verzweigender Homo-
klinen gewonnen. Dabei werden sowohl rein reversible Systeme als auch Systeme mit
zusätzlicher Symmetrie und Hamilton-Struktur betrachtet.

Im zweiten Teil der Arbeit werden homokline Bifurkationsphänomene untersucht, die von
einer Typveränderung der Gleichgewichtslage von rellem Sattel zu komplexem Sattel-
Fokus (mit komplexen führenden Eigenwerten) herrühren. Dabei wird die Existenz von
zwei Ausgangshomoklinen in sogenannter Blasebalg-Konfiguration (homoclinic bellows
configuration) vorausgesetzt. Unter Verwendung einer auf Lin zurückgehenden analyti-
schen Methode werden Bifurkationsresultate für verzweigende N -Homoklinen erzielt.

Die allgemeinen Bifurkationsresultate werden auf physikalische Probleme der nichtline-
aren Optik und Wasserwellentheorie, sowie auf zwei mathematischen Modellgleichungen
angewendet und in numerischen Untersuchungen bestätigt.





Abstract

The thesis investigates bifurcations from homoclinic solutions of ordinary differential
equations. Homoclinic solutions are characterised by approaching an equilibrium, i.e.
a constant solution of a differential equation, in both positive and negative time. The
thesis is devoted to the analysis of homoclinic bifurcations that originate from a change
in the type of the associated equilibrium. Several scenarios are considered in the class
of reversible ordinary differential equations.

The main part of the thesis deals with solutions homoclinic to equilibria that themselves
undergo a local bifurcation. In this process the type of the equilibrium changes from a
real saddle (with real leading eigenvalues) to a saddle-centre (with a pair of imaginary
eigenvalues). The interplay of local and global bifurcation effects requires a new analyt-
ical approach. By a combination of analytical and geometric techniques a description of
bifurcating homoclinic solutions is derived. Thereby both purely reversible systems and
systems with additional symmetry or Hamiltonian structure are considered.

The second part of the thesis discusses a homoclinic bifurcation in which the associated
equilibrium undergoes a transition from real saddle to complex saddle-focus (with com-
plex leading eigenvalues). The existence of two primary homoclinic solutions forming
a so-called bellows structure is assumed. Using an analytical technique known as Lin’s
method results about the bifurcation of N -homoclinic orbits are derived.

The theory is applied to physical problems from nonlinear optics and water wave theory
as well as to two mathematical model systems. Numerical investigations confirm the
general bifurcation results.
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CHAPTER 1

Introduction

1.1. Prologue

There has been a long fascination with homoclinic and heteroclinic phenomena in ordin-
ary differential equations (ODEs) and discrete dynamical systems, motivated by both
mathematical and applied questions. From a mathematical point of view homoclinic
phenomena are of interest because they represent a possible source for complex dynam-
ics. From Poincare’s studies on celestial mechanics [72], over Birkhoff’s and Smale’s
work on discrete systems [5, 80], or Shilnikov’s analysis of saddle focus homoclinic orbits
[78], researchers have always searched for a suitable description and understanding of
the complicated behaviour caused by the seemingly simple primary configuration. It
has been recognized that connecting orbits and their bifurcations play an important role
in the qualitative theory of dynamical systems since they can be thought of as organ-
izing centres for the dynamics of a system in their neighbourhood. Strong effort has
gone into describing the different bifurcations that can occur in terms of genericity and
into determining the different types of behaviour in systems undergoing homoclinic and
heteroclinic bifurcations.

In applications the role of certain travelling (or standing) waves played by homoclinic and
heteroclinic orbits is of immediate interest. Travelling wave solutions form a particular
important set of solutions or patterns of partial differential equation (PDE) models. In
mathematical biology they can describe impulse propagation in nerve fibres [69]. In
water-wave theory they arise as solitary waves of elevation or depression [26, 15]. In
nonlinear optics they are of interest for the transition of beams and pulses through
optical fibres [1, 73]. Standing waves can model localized structures in solid mechanics
[76].

By an appropriate travelling wave ansatz the PDE system can be reduced to a system
of ODEs, and hence dynamical systems theory for ODEs can be employed in the study
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1. Introduction

of PDEs. Homoclinic orbits in the travelling wave system describe pulses in the PDE
model. Often such waves are also referred to as solitary waves or solitons (although
no integrability is assumed here). Heteroclinic orbits in the travelling wave system
correspond to fronts or kinks in the PDE model. In many situations it is of interest
whether given pulses or kinks are accompanied by N -pulses, i.e. by waves that consist
of N well-separated copies of the primary waves. This amounts to the study of the
existence of N -homoclinic orbits in the travelling wave system.

Often this system has the structure of being reversible, because of spatial symmetries in
the underlying PDE model. A number of examples is given in [22] or Section 3.6 below.
Consequently, substantial progress in the understanding of the associated phenomena
has been made. A comprehensive overview is given in [22, 23].

Most of the bifurcation results in the literature, however, concern a single homoclinic
orbit (or heteroclinic cycle) to a hyperbolic equilibrium [22]. Other scenarios, such as
homoclinic orbits to equilibria of saddle centre type, have attracted attention only re-
cently [23]. The purpose of this thesis is to take a further step and to analyse two new
types of bifurcations from homoclinic orbits in reversible systems, using a mixture of
geometric, topological and functional-analytical techniques. Both types of bifurcations
can be characterized by a change in the type of the associated equilibrium.

In the main part we consider a family of reversible systems that possesses a symmetric
homoclinic orbit to an equilibrium of real saddle type, i.e. to an equilibrium whose
leading eigenvalues are real. Such homoclinic orbits are of codimension-zero in the class
of reversible systems and can therefore be continued in the considered family. We are
interested in the bifurcation that occurs when the leading eigenvalues merge at 0 and
become imaginary. In this process the equilibrium changes its type to a saddle centre,
and the investigation of this process amounts to discuss bifurcations from homoclinic
orbits to degenerate equilibria, that is, to equilibria which possess a singular linearization.
Because of this singularity the global behaviour near the homoclinic solution is strongly
affected by a local bifurcation of the equilibrium. We discuss this influence for several
classes of reversible system. A complete description of bifurcating one-homoclinic orbits
is derived.

In the second part we study what happens when the equilibrium, associated to a homo-
clinic orbit, undergoes a transition from a real saddle to a complex saddle focus. In
the usual way, we refer to equilibria as saddle foci, if their leading eigenvalues are com-
plex. This time we do not consider the case of a single homoclinic orbit, which has
been discussed in the literature before, see for instance [21]. Instead we are interested in
bifurcations from two homoclinic orbits that form a so-called bellows configuration. This
means that both orbits approach the equilibrium in the same direction for positive and
negative time, respectively. Our studies focus on bifurcating N -homoclinic orbits.

The rest of this introductory section is devoted to a comprehensive description of the
bifurcation phenomena that we deal with in this thesis. We do not intend to give a
summary of the thesis; in particular, we discuss the general bifurcation problems and
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1.2. Two model systems

the techniques for their analysis only in brief. We rather want to arouse the reader’s
interest by presenting numerical results that have been derived for two systems of second
order ODEs. These umbilic systems are unfoldings of a degenerate equilibrium with
fourfold eigenvalue zero in a class of reversible Hamiltonian systems. Our analysis of the
umbilic systems is mainly concerned with the existence and bifurcations of homoclinic
and heteroclinic orbits. Starting from rigorous existence results for such orbits, obtained
in [88, 91], we have numerically studied bifurcations of connecting orbits in the system,
see for instance [58]. These studies have been the main motivation for the investigations
in this thesis.

In the following we use the numerical results to illustrate some of the problems we
will deal with, and to give the reader an idea of what we are interested in. But it is
important to note that the umbilic systems are not only suitable examples for numerical
computations. On the contrary, being unfoldings of a highly degenerate equilibrium they
are of interest in their own right. We will therefore repeatedly return to the systems
throughout the thesis and explain how general bifurcation results apply to these specific
systems. Furthermore, we have compiled some material in Appendix A, where we give
information about the origin of the umbilic systems and list analytical results that lay
the foundations for the numerical analysis.

1.2. Two model systems

Our studies revolve around bifurcations of connecting orbits that have been observed
numerically in two systems of second order ODEs, called the umbilic systems. These
systems have been obtained as unfoldings of a degenerate equilibrium with fourfold
eigenvalue zero in a class of reversible Hamiltonian systems in the author’s Diploma
thesis [88], see also [91]. They read

ẋ = f±(x, α, β) =




x2

2x1x3 + 2αx1

x4

−x2
1 ± x2

3 ∓ 2αx3 − β


 (1.1)

with x = (x1, x2, x3, x4) ∈ R4, and with real parameters α, β. Our analysis of the umbilic
systems is mainly concerned with the existence and bifurcation of orbits connecting
equilibria. Corresponding results have been obtained in [88, 91] and are reviewed in
Section A.2. In the present introductory part we discuss some fundamental properties.

It is important to note that the umbilic systems belong to the class of reversible Hamilto-
nian systems. To fix thoughts let us first introduce what we will understand by revers-
ibility throughout this thesis. Consider an ODE

u̇ = f(u), u ∈ R2n. (1.2)
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1. Introduction

We call the equation (or equivalently the corresponding vector field f) R-reversible if
there exists a linear involution R, i.e. a linear map on R2n satisfying R2 = id, with a
fixed space Fix (R) := {u : Ru = u} of dimension n such that

f(Ru) + Rf(u) = 0.

We remark that there exist more general definitions of reversibility. Some authors, for
instance, allow both the phase space of the system and the fixed space Fix (R) to have
arbitrary dimension [63, 67]. But the scenarios that we are interested in will lead to
situations in which a hyperbolic equilibrium point is contained in the space Fix (R). In
this case the dimension of Fix (R) is necessarily half the dimension of the phase space
as demanded above, see [81]. Consequently, we have chosen the restrictive definition of
reversibility to avoid constant technical considerations.

It is easy to verify that the umbilic systems are reversible with respect to the involu-
tions

R1 : (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4),

and
R2 : (x1, x2, x3, x4) 7→ (−x1, x2, x3,−x4).

Moreover, for the map S := R1 ◦ R2 we find that f±(Sx, α, β) = Sf±(x, α, β), i.e. this
map describes a Z2-symmetry for (1.1).

In addition to being reversible and Z2-symmetric the umbilic systems are also Hamilto-
nian with Hamilton functions H± given by

H±(x, α, β) = −1

2
x2

2 +
1

2
x2

4 + x2
1x3 ∓ 1

3
x3

3 + α(x2
1 ± x2

3) + βx3.

Because of the indefinite quadratic form in H± the systems belong to the class of in-
definite Hamiltonian systems, as introduced in [44]. Setting q = (x1, x3) they can be
written as

Sq̈ +∇V (q, α, β) = 0,

with an indefinite matrix

S =

( −1 0
0 1

)

and potential V . The Hamiltonian is then given by H̃±(q, q̇, α, β) = 1
2
〈Sq̇, q̇〉+V (q, α, β).

This property is of importance in Sections A.2 and A.3, where we investigate the exist-
ence of heteroclinic cycles for (1.1).

We have mentioned before that the umbilic systems are unfoldings of a highly degenerate
equilibrium point. Indeed, setting α = β = 0 we find that x = 0 is an equilibrium which
possesses a fourfold eigenvalue zero. Our interest in equilibria of this type stems from
a problem in nonlinear optics which is described in Appendix A. In that Appendix we
also explain the origin of the systems and their mathematical relevance.
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1.3. Homoclinic orbits to degenerate equilibria

For the time being, however, we can consider the umbilic systems as model systems
for the homoclinic bifurcations that will be studied in this thesis. The corresponding
numerical analysis is based on rigorous existence results for homoclinic and heteroclinic
orbits. We have put together these results in Appendix A and the interested reader is
referred to this part for detailed information.

In the first Section A.2 we review results about the bifurcation of equilibria and the
existence of connecting orbits, mainly obtained in [88, 91]. The results about bifurcations
of equilibria are compiled in bifurcation diagrams in Figures A.1 and A.3, respectively.

The results about the existence of connecting orbits are completely analogous for both
systems. In most cases, we therefore only consider the reversible hyperbolic umbilic f−

in detail. For this system two results are of particular importance in the following:

• The existence of a homoclinic orbit γhom to an equilibrium ξ2 for all parameter
values where ξ2 exists, that is for β < α2 (see Figure A.1 and Theorem A.1).

• The existence of a symmetric heteroclinic cycle {γhet, R1γhet} between equilibria
ξ3 and ξ4 = R2ξ3 for all parameter values where these equilibria are real saddles,
i.e. for −4α2 ≤ β < −3α2, α > 0 (see Figure A.1 and Theorem A.2).

Both the homoclinic orbit and the heteroclinic cycle are subject to numerical studies.

We also discuss two techniques that are of advantage for the (numerical) analysis of
the systems. We first show that in most cases one of the two parameters α, β can
be eliminated by a suitable scaling. In particular, we will see that bifurcation results
are independent of the size of α and β. This simplifies the numerical analysis since
we are not chained to a local regime. Moreover, we demonstrate how to factor out
the Z2-symmetry of the systems. This allows us to unify the treatment of homoclinic
and heteroclinic orbits to the equilibria ξ3 and ξ4. The latter point is again used in
Chapter 4.

Section A.3 of the appendix is devoted to a detailed treatment of the heteroclinic cycle
{γhet, R1γhet}. One of the open questions in [88] has been whether this cycle persists
the transition of the equilibria ξ3,4 from real saddles to complex saddle foci. This trans-
ition occurs for parameter values β = −4α2, α > 0. In Section A.3 we show that the
cycle exists because of a topologically transverse intersection of corresponding stable and
unstable manifolds and therefore survives the associated equilibria’s change in type.

1.3. Homoclinic orbits to degenerate equilibria

The main part of this thesis is devoted to the study bifurcations from homoclinic orbits to
degenerate equilibria in reversible systems. In Chapter 2 we deal with such a bifurcation
in a class of reversible and Z2-symmetric systems, motivated by numerical investigations
on the umbilic systems. In Chapter 3 we extend these studies to the class of purely
reversible systems.
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1. Introduction

We have introduced the concept of reversibility above. A characteristic property of
reversible systems is that if u(·) is a solution of (1.2), then so is ũ(t) = Ru(−t). If we have
u(0) ∈ Fix (R) then u(t) = Ru(−t), and for the corresponding orbit U := {u(t) : t ∈ R}
we find that RU = U . We call such orbits and the corresponding solutions R-symmetric
or symmetric, in short. They are of particular concern in the theory of reversible systems
since they enjoy special properties. For an overview we refer to [63, 81].

Consequently, we are interested in symmetric homoclinic orbits. We assume such an orbit
to be contained in the intersection of the stable and unstable manifold of a degenerate
equilibrium. Here, degenerate means an equilibrium with singular linearization. More
precisely, we assume the spectrum of this linearization to consist of a double, non-
semisimple eigenvalue zero and hyperbolic eigenvalues, that is, eigenvalues with non-zero
real part. (From now on we follow the usual convention and speak of the eigenvalues
of the equilibrium.) Hence, the scenario requires a phase-space that is a least four-
dimensional. In the four-dimensional case the equilibrium is assumed to have a double
zero and a pair of real eigenvalues. Note that the equilibrium’s eigenvalues necessarily
come in pairs because of the reversibility.

It is not hard to see, that this scenario is non-generic. Already the existence of an
equilibrium of the above type is a codimension-one phenomenon in the class of revers-
ible systems. The additional assumption concerning the existence of a homoclinic orbit
typically increases the codimension of the problem further. We therefore consider an un-
folding of the degenerate situation. We are interested in how homoclinic orbits bifurcate
from the primary one.

We first encountered a problem of this type in numerical studies on the umbilic systems,
undertaken in [58]. Let us briefly describe these studies since they give an idea of what
we are interested in. We concentrate on the case of the hyperbolic umbilic f−.

A new type of homoclinic bifurcation - numerical results

We are concerned with the homoclinic orbit γhom of f−, asymptotic to the equilibrium ξ2,
whose existence is asserted in Theorem A.1 in Section A.2. This orbit is symmetric with
respect to both involutions R1 and R2. Consequently it is contained in the invariant
space Fix (S). An analytical expression for the corresponding homoclinic solution is
given in Theorem A.1.

We are interested in a bifurcation from γhom that occurs at parameter values β = −3α2,
α > 0. (In the bifurcation diagram in Figure A.1 this corresponds to the curve B4.)
For simplicity we make use of a scaling property of f−, established in Lemma A.5.
Roughly speaking Lemma A.5 states that systems (1.1) to different parameter values
are equivalent if these parameter values lie on the same arc of a parabola β = cα2 with
c ∈ R. In studying a bifurcation it is therefore important to vary the parameters such
that these curves are crossed. In the following we keep α = 1 fixed and consider f−

under variation of β only.
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Figure 1.1.: Phase portrait after the reversible pitchfork bifurcation of ξ2. This figure
shows plots of periodic orbits and of the heteroclinic cycle {γhet, R1γhet} for
α = 1, β = −3.2, projected in (x1, x2, x3)-space.

Let us first consider the associated equilibrium ξ2. As the bifurcation diagram in Fig-
ure A.1 shows the equilibrium has a double zero and a pair of real eigenvalues for α = 1,
β = −3. Moreover, if the critical value, β = −3, is crossed with decreasing β, the
equilibrium undergoes a reversible pitchfork bifurcation, giving rise to two saddles ξ3

and ξ4 = R2ξ3 and turning from a real saddle into a saddle centre itself.

A numerical analysis of the local bifurcation of ξ2 yields the ‘phase portrait’ in Figure 1.1.
This figure shows plots of projections of periodic orbits in (x1, x2, x3)-space for α = 1,
β = −3.2, i.e. ‘after the bifurcation’. In addition it shows a heteroclinic cycle between
ξ3 and ξ4. Because of its characteristic shape we refer to this local scenario as the eye
case of a reversible pitchfork bifurcation.

Now let us return to the homoclinic orbit γhom. According to Theorem A.1 this orbit
exists for all β < α2. In particular, the existence of γhom is unaffected by the local
bifurcation above. At a first glance this is a rather remarkable result. It is well known
that symmetric homoclinic orbits to hyperbolic equilibria are of codimension-zero in
R-reversible systems [29]. The reason for this lies in the possibility for a transverse
intersection of the stable manifold of the equilibrium and the space Fix (R). Since the
stable and unstable manifold of a symmetric equilibrium are R-images of each other,
the orbit through such an intersection point is homoclinic to the equilibrium and thus
exists robustly. Hence, this can explain the stable existence of γhom for parameter values
where ξ2 is a real saddle. (For the particular case of γhom it is indeed possible to prove
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1. Introduction

that the stable manifold of ξ2 intersects the fixed space of the involution transversally,
see Lemma 2 in [91].)

For β ≤ −3α2, however, ξ2 is nonhyperbolic and the above transversality arguments
do not apply in the full four-dimensional phase space. But we can now use the fact
that γhom ⊂ Fix (S). Reduced to this space f− is still reversible and therefore we
can repeat the above arguing within Fix (S). Hence, the symmetries of f− imply the
robust existence of γhom. Nevertheless, the loss of hyperbolicity of ξ2 (in the full system)
should have consequences for the dynamics in a neighbourhood of the orbit. Hence, it
is interesting to investigate bifurcations from γhom.

We have studied the situation numerically, using the software package AUTO/HomCont
[32] and have searched for homoclinic orbits to the equilibria ξ3 and ξ4. (Note that no
other homoclinic orbits to ξ2 can exist since its stable and unstable manifold agree along
γhom if β < −3α2.) Because of the reversing symmetry of f− it suffices to compute
homoclinic orbits to ξ3. The numerical techniques for this are based on the continuation
methods for symmetric homoclinic orbits that are implemented in AUTO/HomCont.

Our idea for the computation of homoclinic orbits to ξ3 is as follows: We start a continu-
ation of γhom with parameter values α = 1, β > −3. (Here we use the known analytical
expression of γhom.) The continuation is performed with decreasing β such that the
critical value β = −3 is crossed. Upon crossing we do not compute homoclinic orbits to
ξ2 but switch to the equilibrium ξ3. In this way homoclinic orbits to ξ3 can be found
which look like ‘copies’ of γhom.

In a first run γhom has been continued as an R1-symmetric homoclinic solution. As a
result, only R1-symmetric homoclinic orbits could be detected by the above procedure.
It turns out that when we move the parameter β through β = −3 then not only the
equilibrium ξ2 undergoes a pitchfork bifurcation but also the orbit γhom follows a similar
scenario. Indeed, for β < −3 we find a new homoclinic orbit to the equilibrium ξ3, and
- by reversibility - another one to ξ4, both bifurcating from the primary orbit γhom. We
term this scenario a reversible homoclinic pitchfork bifurcation.

In Figure 1.2 we present plots of solutions that have been produced by the above proced-
ure. Panel (a) shows the primary solution γhom for parameter values α = 1, β = −2.8.
The right part of the panel contains plots of the x1-component and x3-component of the
homoclinic solution xhom. In the left part we give an impression of the situation in phase
space and show a projection of the corresponding orbit in (x1, x2, x3)-space. Because of
the chosen projection γhom is completely contained in the x3-axis. In the lower panel
of Figure 1.2 the situation for α = 1, β = −3.5 is illustrated. For an impression of
the proportions we have also incorporated the heteroclinic cycle {γhet, R1γhet} into the
3D-picture. Note the different scales of the x1- and x2-axis, and of the x3-axis.

Since γhom is symmetric with respect to both involutions Ri, i = 1, 2, we can repeat
the above computations and continue γhom as an R2-symmetric solution. In this way
R2-symmetric solutions between ξ3 and ξ4, i.e. heteroclinic cycles, have been computed.
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Figure 1.2.: Reversible homoclinic pitchfork bifurcation for f−(x, α, β). The shown
homoclinic solutions have been computed by the continuation method de-
scribed in the text. A plot of the (small) heteroclinic cycle between ξ3 and
ξ4 is added in the lower panel.

The results are completely analogous to the homoclinic scenario. The local bifurcation is
followed by the global bifurcation, in which heteroclinic orbits between ξ3 and ξ4 emerge
for β < −3. These orbits are ‘copies’ of the primary homoclinic solution and form a
cycle. In Figure 1.3 we show a plot of the cycle at β = −3.5 in (x1, x2, x3)-space. Note
the similarity to the homoclinic structure in the lower panel of Figure 1.2.

Let us summarize these results. The computations suggest that the local bifurcation of
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Figure 1.3.: Plot of the heteroclinic cycle that emerges in the bifurcation of γhom. The
shown solutions have been computed for α = 1, β = −3.5. Different orbits
have been plotted differently.

ξ2 is accompanied by a similar global bifurcation of the homoclinic orbit γhom. While
the local reversible pitchfork bifurcation leads to the emergence of two additional R1-
symmetric equilibria ξ3,4, we find a global reversible homoclinic pitchfork bifurcation
in which two R1-symmetric homoclinic orbits bifurcate from γhom. These orbits are bi-
asymptotic to ξ3 and ξ4, respectively. Moreover, both the local and the global bifurcation
leads to the emergence of a symmetric heteroclinic cycle between ξ3 and ξ4.

Our aim in Chapter 2 is to understand the homoclinic bifurcation of γhom analytically.
Instead of restricting to the specific systems (1.1) we study the bifurcation in a general
class of reversible and Z2-symmetric ODEs. The results in this chapter are based on the
article [90].

Remark 1.1. We have seen that the umbilic systems have the additional property of
being Hamiltonian. This has been used extensively to prove the existence of γhom and
of the heteroclinic cycle {γhet, R1γhet} in [88, 91], see also Section A.2. Nevertheless, we
neglect this Hamiltonian property in the general bifurcation analysis. The reason for
this is simple. The reversing symmetries govern the behaviour of the system to such
an extent that we can analyse the bifurcation scenario without relying on a possible
Hamiltonian structure.

10



1.3. Homoclinic orbits to degenerate equilibria

The general problem

As announced above we will not consider the umbilic systems alone, but we will turn
to a general class of reversible and Z2-symmetric ODEs that possess an equilibrium
which undergoes a reversible pitchfork bifurcation and which is connected to itself by a
symmetric homoclinic orbit. We are interested in bifurcations from this homoclinic orbit,
in particular, in the bifurcation of homoclinic and heteroclinic orbits to equilibria.

Hopefully the numerical example above has already convinced the reader that it is worth
investigating this bifurcation. But there are further reasons why this is an interesting
problem.

The analytical challenge for the analysis lies in the interplay of local and global effects.
Indeed, we are interested in the global bifurcation of a homoclinic orbit which is strongly
influenced by the local bifurcation of an equilibrium. This requires us to take a further
step in the analysis of homoclinic bifurcations in reversible systems. Let us, for simplicity,
explore this point in the case of four-dimensional systems.

Symmetric homoclinic orbits to hyperbolic equilibria are a classic issue of the theory
of reversible systems, with studies dating back to Devaney [29, 30]. We have already
observed that such orbits are of codimension-zero, i.e that they generically exist robustly
in reversible systems. A sufficient condition for the robustness is the non-degeneracy of
the orbit, which means that the intersection of the corresponding stable and unstable
manifold along the orbit only contains the vector field direction [81]. Devaney has proved
that in this case the homoclinic orbit is accompanied by a family of periodic orbits.
These orbits accumulate on the homoclinic orbit with a period tending to infinity, see
also [81].

It is well-known that the complexity of the dynamics near the homoclinic orbit is essen-
tially determined by the type of the associated equilibrium. In a generic situation, the
behaviour near homoclinic orbits to real saddles (with four real eigenvalues) is rather
simple, whereas homoclinic orbits to complex saddle foci (with four complex eigenvalues)
are accompanied by a very complex dynamics, see for instance [22, 41]. In particular,
one can often prove uniqueness results for homoclinic orbits to real saddles, whereas in a
neighbourhood of homoclinic orbits to complex saddle foci infinitely many N -homoclinic
orbits exist [41]. These are homoclinic orbits which make N windings in a neighbourhood
of the primary orbit. We return to these differences in detail in the next section.

More recently, also the case of homoclinic orbits to saddle centre equilibria has attracted
substantial attention. In the case of four-dimensional systems a saddle centre possesses
one pair of imaginary eigenvalues and one pair of real eigenvalues. Note that such
equilibria are of codimension-zero in the class of reversible systems. By the Lyapunov
Centre Theorem [29] the two-dimensional centre manifold of the equilibrium is filled
with periodic orbits and, in particular, no local bifurcation occurs.

A symmetric homoclinic orbit to a saddle centre exists if the one dimensional stable
and unstable manifolds intersect the two-dimensional fixed space of the involution. By
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1. Introduction

a simple count of dimensions we conclude that symmetric homoclinic orbits to saddle
centres are of codimension one and therefore generically exist at isolated parameter
values in one-parameter families of reversible ODEs. General studies in [68, 62] for re-
versible Hamiltonian systems and [16] for purely reversible systems deal with the ques-
tion of how N -homoclinic orbits accumulate on parameter values for which a primary
homoclinic orbit exists.

Our studies in Chapter 2 (and Chapter 3) take the natural next step and deal with
homoclinic orbits to equilibria which themselves undergo a local bifurcation. We note
that we do not aim to give complete description of the bifurcation scenario. Our main
interest lies in the bifurcation of one-homoclinic orbits to equilibria. We will derive a
complete description of the bifurcations of one-homoclinic orbits. The case of bifurcating
N -homoclinic orbits is analytically more involved and is briefly discussed.

The general approach

We now outline how we will treat the homoclinic bifurcation in Chapter 2. We note
that although our primary interest lies in four-dimensional systems, the analysis in that
chapter mainly concerns systems of arbitrary (even) dimension. This is done merely to
show that the results are not restricted to four dimensions, but can easily be extended
under appropriate transversality conditions. Nevertheless, in the short description below
we will only consider four-dimensional systems since the higher-dimensional case requires
additional technical considerations.

Our bifurcation analysis uses two supplementary concepts. On the one hand we present
an analytical technique for the detection of one-homoclinic orbits, namely a generaliz-
ation of Lin’s method [66, 75, 81]. On the other hand, the analysis is inspired by a
geometric approach for the study of singularly perturbed systems of ODEs, known as
geometric singular perturbation theory [54, 55]. Of particular concern to us here are
studies about homoclinic orbits to slow manifolds, presented in [45, 42] and references
therein.

Let us give explanations and consider a system ẋ = f(x, λ) with x ∈ R4, n ≥ 1, and
λ ∈ R, which is reversible with respect to two involutions R1 and R2 and possesses an
Ri-symmetric (i = 1, 2) homoclinic orbit Γ to the equilibrium 0. The 0-equilibrium is
assumed to bifurcate in a reversible homoclinic pitchfork bifurcation and we want to
analyse bifurcations of homoclinic orbits from Γ. (The precise setting for the problem
is described in Section 2.2.)

We first determine suitable manifolds that contain the desired bifurcating orbits. For
that we turn to the local bifurcation of 0 and apply centre manifold theory. We find that
the local bifurcation can be described in a family of planar reversible and Z2-symmetric
vector fields. Indeed, a straightforward application of the Centre Manifold Theorem [37]
yields two-dimensional, locally invariant ‘centre manifolds’ W c

loc,λ, that contain all small
bifurcating solutions. We will see in Section 2.2.1 that we have to distinguish two generic
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1.3. Homoclinic orbits to degenerate equilibria

cases for the local bifurcation: the eye case, which appeared in the numerical example,
and the figure-eight case.

Furthermore, centre manifold theory associates local stable and unstable manifolds
W

cs(cu)
λ to the centre manifolds. These manifolds can be extended to global manifolds

along the primary homoclinic orbit Γ. Our main idea for the analysis is to determine
the intersection W cs

λ ∩ W cu
λ . In this way we compute homoclinic solutions to W c

loc,λ,
i.e. solutions that are asymptotic to W c

loc,λ as t → ±∞. Afterwards we analyse the
asymptotic behaviour of these solutions in detail.

The first step is accomplished by introducing a cross section Σ to Γ and by studying
the traces of W

cs(cu)
λ in Σ. For this purpose the symmetries of the system and of Γ are

essential. It is possible to show that both manifolds have a common tangent space in Σ
(Lemma 2.2), and that both manifolds intersect the fixed spaces Fix (R1) and Fix (R2)
transversally (Lemma 2.9) in Σ. Consequently, we obtain one-parameter families of R1-
symmetric homoclinic orbits and R2-symmetric homoclinic orbits to W c

loc,λ, respectively,
see Theorem 2.10.

The geometric considerations are backed up by a generalized version of Lin’s method.
Lin’s method has proved to be a powerful tool in the bifurcation analysis of homoclinic
orbits to hyperbolic equilibria [66, 75]. We use an adapted version from [57] to deal with
the case of homoclinic orbits to nonhyperbolic equilibria. The main technical difference
to the analysis for homoclinic orbits to hyperbolic equilibria lies in the circumstance
that in the nonhyperbolic situation the variational equation along the homoclinic orbit
possesses an exponential trichotomy, instead of an exponential dichotomy. This requires
a modified approach.

It turns out that homoclinic orbits which approach 0 at some pre-described exponential
rate play a distinguished role in the analysis. We call such orbits fast decaying. In Sec-
tion 2.3.1 it is shown that for each λ there exists a unique fast decaying homoclinic orbit
to 0. This perfectly agrees with the robust existence of γhom in the numerical example
f−. Afterwards we study the existence of homoclinic orbits to W c

λ in Section 2.3.2. Using

the presentation of W
cs(cu)
λ as graphs over their common tangent space in Σ we derive

bifurcation equations of Melnikov-type for the splitting of these manifolds. We remark
that the results for homoclinic orbits to W c

loc,λ are independent of the type of reversible
pitchfork bifurcation of 0.

Having described homoclinic orbits to W c
loc,λ we then go on to analyse their asymptotic

behaviour in detail. For this we use the invariant foliation of W cs
λ and perform a pro-

jection along stable fibres, see Section 2.4. This technique allows us to determine which
orbits in W c

loc,λ are connected by homoclinic or heteroclinic orbits, simply by discussing
the bifurcation diagrams in Figure 2.5 for the eye case and Figure 2.6 for the figure-eight
case. We derive existence results for homoclinic and heteroclinic orbits to equilibria and
periodic orbits. In particular, we prove that in the eye case a reversible homoclinic pitch-
fork bifurcation occurs, while in the figure-eight case no additional homoclinic orbits to
equilibria exist. The results are summarized in the Theorems 2.11 and 2.12.
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1. Introduction

In principle, the outlined method can also be used to detect N -homoclinic orbits that
bifurcate from the primary orbit Γ. This, however, requires to track the manifolds
W

cs(cu)
λ when they pass by the centre manifold W c

loc,λ.

In Section 2.5 we discuss the bifurcation of two-homoclinic orbits to the centre man-
ifolds W c

loc,λ. This is accomplished by introducing a second cross section Σ0 near the

equilibrium and investigating intersections of W
cs(cu)
λ with the fixed spaces Fix (Ri) in

Σ0. We set up a Poincare map which is studied geometrically for the eye case of the
local bifurcation. Here two scenarios, which differ in the geometry of W

cs(cu)
λ in Σ, are

possible. For one of the two cases we prove the existence of a family of symmetric two-
homoclinic orbits to W c

loc,λ ‘after’ the pitchfork bifurcation in Theorem 2.19. We show
in particular that two-heteroclinic orbits between the additional equilibria exist. The
difficulties caused by the non-trivial dynamics within W c

loc,λ already become apparent in
this section.

Other scenarios

In Chapter 3 we continue the study of homoclinic orbits to degenerate equilibria. The
investigations in Chapter 2 have concerned the corresponding bifurcation in the class
of reversible Z2-symmetric systems. We now analyse what happens if we consider the
homoclinic bifurcation in a purely reversible system.

At first glance answering this seems difficult. We have described above that the symmet-
ries of the system (and the homoclinic orbit) are essential for the analysis in Chapter 2:
The fact that W cs

λ is the image of W cu
λ under both involutions Ri is used to prove that

W cs
λ (and hence W cu

λ ) necessarily intersects both fixed spaces of the involutions trans-
versally, thus giving rise to two one-parameter families of symmetric homoclinic orbits
to W c

λ.

It is clear that there is more freedom for the position of W
cs(cu)
λ if only one reversing

symmetry is present. In particular, we will see that a transverse intersection of these
manifolds is no longer forbidden. But in this case the transverse intersection is generic.
The corresponding non-degeneracy assumption (Hypothesis 3.5) will be the substitute
for the additional symmetry in the last section.

It is straightforward to derive bifurcation diagrams for one-homoclinic orbits under this
assumption, using the method developed in Chapter 2. Note that in purely reversible
systems the local bifurcation of 0 is generically a reversible saddle-centre bifurcation or
transcritical bifurcation. We concentrate on the latter case. This is consistent with our
interest in the homoclinic bifurcation, in which the associated equilibrium changes its
type from real saddle to saddle centre - such a transition cannot occur with a local saddle-
centre bifurcation. Furthermore, note that the existence of fast decaying homoclinic
orbits in purely reversible systems has to be controlled by a second parameter, such that
the bifurcation is of codimension-two.
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1.4. A broom bifurcation of homoclinic bellows

The details of the analysis are presented in Section 3.3.2. To shorten the presentation
we will not employ the analytical machinery of Lin’s method as before, but rely on a
geometric argumentation. Consequently, we will exclusively consider four-dimensional
systems in this part.

The investigations in that chapter are based on a joint paper with Alan Champneys
[87]. In Section 3.3 we first discuss bifurcations of homoclinic orbits to degenerate equi-
libria in purely reversible systems. This part also contains the outline of the geometric
approach. The bifurcation scenario is presented in a bifurcation diagram in Figure 3.3
and Theorem 3.3.

Afterwards we return to reversible systems that are additionally Z2-symmetric, but
we assume a different action of the symmetries, compared to Chapter 2. Finally, in
Section 3.5, we consider the important class of reversible Hamiltonian systems. It is
interesting to note that reversible Hamiltonian systems are not generic in the sense of
Chapter 3, since they cannot fulfill the non-degeneracy Hypothesis 3.5. Still, we prove
that the bifurcation results for symmetric orbits, obtained before, are necessarily valid
in Hamiltonian systems (Theorem 3.7). Nevertheless, additional non-symmetric orbits
may bifurcate.

Our studies in Chapter 3 are motivated by a problem for solitary wave solutions of PDE
models. In a number of examples a novel kind of solitary waves has been observed
recently - so-called embedded solitons, see [18] and references therein. In the associated
travelling wave system such waves are described by homoclinic orbits to saddle centres.
On the other hand, gap solitons correspond to homoclinic orbits to real saddles. In this
context our studies deal with the question of what happens, if a gap soliton is traced
along a family of systems up to some parameter value where it passes over into being an
embedded soliton. (Note that both types of homoclinic orbits arise in the bifurcation
scenarios we study.) More details about this application are provided in Section 3.6,
where the theory is shown to match numerical computations on examples from water-
wave theory and nonlinear optics.

1.4. A broom bifurcation of homoclinic bellows

The investigations in Chapter 4 of this thesis concern bifurcations from symmetric homo-
clinic orbits, in which the associated equilibrium undergoes a transition from a real saddle
to a complex saddle focus. Such a transition occurs if the leading real eigenvalues of the
equilibrium merge with a second pair of eigenvalues on the real axis and split off into
the complex plane. Note that complex eigenvalues of symmetric equilibria in reversible
systems necessarily arise in quadruple {µ,−µ, µ̄,−µ̄}. Therefore, also this bifurcation
can only occur in at least four-dimensional systems. Moreover, the bifurcation is of codi-
mension one, with one parameter needed to control the spectrum of the equilibrium.

We have described before that homoclinic orbits to real saddles are usually accompanied
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1. Introduction

by simple dynamics. Observe that homoclinic orbits to real saddles can exist in planar
reversible systems, where the trivial behaviour near the orbit is obvious. In higher
dimensions there exist codimension-one mechanisms, such as the orbit flip [74] or non-
elementary homoclinic orbits [34, 59] which can lead to a non-trivial behaviour near
the orbit. In the generic situation, however, the planar picture can be recovered with
a family of periodic orbits accumulating on the homoclinic orbit [29, 30, 81]. In fact,
for a class of reversible and Hamiltonian systems it can be proved that except for this
family no bounded solutions exist near the homoclinic orbit [2, 84]. In particular, no
N -homoclinic or N -periodic orbits can exist.

The situation is completely different if the homoclinic orbit is asymptotic to a complex
saddle focus. In reversible Hamiltonian systems a famous theorem by Devaney [28]
implies the existence of shift dynamics near non-degenerate homoclinic orbits to saddle
foci, see also [92]. His results imply in particular that such orbits are accompanied by
infinitely many N -homoclinic orbits for each N > 1 [9]. More recently, Härterich has
derived a similar result without relying on an extra Hamiltonian structure in [41]. (Note,
however, that for reversible systems - in contrast to the Hamiltonian case - it has not
been proved yet that shift-dynamics necessarily occurs near the primary orbit.)

The change in type of the equilibrium hence leads to a dramatic change in the dy-
namics near the homoclinic orbit and therefore makes it interesting to investigate the
corresponding homoclinic bifurcation. We refer to this global bifurcation as broom bi-
furcation, following the notion in [4] where the equivalent bifurcation has been studied
in the non-reversible context. For reversible indefinite Hamiltonian systems studies of
this bifurcation have been undertaken in [21].

We do not consider the broom bifurcation of a single homoclinic orbit here. Instead we
assume that two orbits approach an equilibrium from the same directions as t →∞ and
t → −∞, respectively. Such a configuration has become known as homoclinic bellows,
see [3, 47, 46]. In our analysis of the broom bifurcation with a bellows configuration
we are again primarily interested in the bifurcation of homoclinic orbits. And again,
this interest stems from numerical investigations on the umbilic systems (1.1). Let us
conclude this introductory section with a presentation of the corresponding results and
with a description of the analysis afterwards.

A bellows configuration in the umbilic systems

A bellows configuration in the umbilic systems can be numerically detected via com-
putations for the heteroclinic cycle {γhet, R1γhet}, connecting the equilibria ξ3,4. The-
orems A.2 and A.4 show the existence of this cycle for all parameter values where the
equilibria are real saddles. It has been an open problem in [88] to describe the maximal
range of parameter values for which a cycle exists. Note that the proof of Theorems A.2
and A.4 uses a shooting method developed by Hofer and Toland [44], which implies a
certain monotonicity of the detected orbits. Therefore the shooting cannot yield orbits
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1.4. A broom bifurcation of homoclinic bellows

that are asymptotic to complex saddle foci.

In Section A.3 we demonstrate in a first step that the cycle persists the transition of
ξ3,4 from real saddles to saddle foci. This is accomplished by showing the cycle to exist
because of a topologically transverse intersection of the stable and unstable manifolds of
ξ3,4. Note that topological transversality is weaker than the usual notion of transversality.
(A precise definition is included in Section A.3.) Yet, this property allows us to continue
the heteroclinic cycle to some region in parameter space where the equilibria ξ3,4 are
complex saddle foci.

The whole range of parameter values for which the cycle exists has been detected nu-
merically in [58], using standard continuation methods from AUTO/HomCont. Let us
describe the procedure for the hyperbolic umbilic f−. Similar to the numerical analysis
in Section 1.3 we can analyse the problem by keeping one of the two parameters constant.
This time we set β = −3.5 and consider f− under variation of α only.

The continuation has been started at α = 1 where ξ3,4 are real saddles, as it can be seen
in the bifurcation diagram in Figure A.1. The starting solution has been obtained by a
period blow-up of a periodic orbit as in Figure 1.1. This solution has been continued with
decreasing α, such that the region in parameter space where ξ3,4 are complex saddle foci
has been reached. It has been found that there exists a bifurcation curve in the saddle
foci region, on which the cycle coalesces with another cycle {γ̃het, R1γ̃het} between ξ3,4

in a heteroclinic saddle node bifurcation. This occurs for parameter values α < 0,
β ≈ −5.5α2.

The heteroclinic bifurcation is not of concern to us here. Instead we focus on the second
cycle. It is possible to continue {γ̃het, R1γ̃het} with increasing α until we reach parameter
values where ξ3,4 become real saddles again, i.e. close to α = 0.92. A plot of the orbit
γ̃het for this parameter value is shown in Figure 1.4.

The orbit γ̃het in Figure 1.4 is composed of ‘homoclinic loops’ near the equilibria and of
a ‘heteroclinic part’ in the middle. These parts have already appeared separately in this
thesis. To see this consider Figure 1.5, where different orbits that have been computed
for α = 0.92, β = −3.5 are shown. The diagram shows a plot of the heteroclinic orbit γhet

and, in addition, plots of the homoclinic orbits that emerge in the reversible homoclinic
pitchfork bifurcation of γhom. (Note that this bifurcation occurs for α = 1.08, β = −3.5.)
The similarity to Figure 1.4 is obvious. In fact, it is possible to continue the separate
parts of γ̃het as orbits themselves, and these orbits show the same behaviour as γhet and
the respective homoclinic orbits.

We can summarize the results as follows. For parameter values β = −4α2, α > 0
the equilibria ξ3,4 are connected by a heteroclinic cycle. Furthermore, there exists a
homoclinic orbit to each of the equilibria and all orbits approach the equilibria in the
weak stable direction. We also refer to this formation as a bellows configuration, although
both homoclinic and heteroclinic orbits belong to it. (We discuss below that heteroclinic
cycles between ξ3,4 can be viewed as homoclinic orbits if one chooses an appropriate phase
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Figure 1.4.: Plot of the orbit γ̃het of f− for α = 0.92, β = −3.5 in (x1, x2, x3)-space.

space.) Finally, if the parameters are varied such that ξ3,4 become complex saddle foci,
there emerges a second heteroclinic cycle {γ̃het, R1γ̃het} which is composed of parts of
both primary orbits.

Let us discuss this further. We have described before that homoclinic orbits to complex
saddle foci are generically accompanied by a plethora of N -homoclinic orbits. Therefore
one would expect that such a plethora exists near the homoclinic orbits to ξ3,4, if ξ3,4

are complex saddle foci. Similarly, there should exist N -homoclinic and N -heteroclinic
orbits near the heteroclinic cycle. The numerical results now suggest that in addition
there exist orbits that follow the homoclinic and heteroclinic orbits in the bellows con-
figuration alternately. And even more so, these orbits emerge in the broom bifurcation
for parameter values β = −4α2, α > 0.

Similar to the last section we aim at an analytical understanding of this observation.
Nevertheless, there is a difference. Our results in Chapter 2 imply that the reversible
homoclinic pitchfork bifurcation necessarily occurs in (1.1), i.e. we can prove the nu-
merical results. This time the analysis will rely on genericity assumptions that have not
been verified for the umbilic systems. In particular, we assume all connecting orbits to
be non-degenerate. Therefore the analysis will support the numerics, but does not yield
rigorous results. We return to this point in Section 4.4.

Before starting the analysis it is convenient to use a little trick which allows us to unify
the treatment of heteroclinic and homoclinic orbits in the present case. This can be
achieved by factoring out the Z2-symmetry of the system and working in orbit space, i.e.
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Figure 1.5.: Plots of the orbit γhet (thick) and the one-homoclinic orbits (regular) that
emerge in the reversible homoclinic pitchfork bifurcation. The orbits have
been computed at the same parameter values as in Figure 1.4.

in the space of orbits of the system’s symmetry group {id, S}. This symmetry reduction
is performed explicitly for (1.1) in Section A.2.3 in the appendix. The reduced vector
field in orbit space is still reversible. The equilibria ξ3 and ξ4 = Sξ3 correspond to
the same equilibrium ξ̂. Hence, both homoclinic and heteroclinic orbits of the original
system are described by homoclinic orbits of the reduced systems. In particular, the
bellows structure of the heteroclinic cycle and homoclinic orbits now becomes a bellows
of two symmetric homoclinic orbits. Our general analysis will therefore concern reversible
systems possessing a homoclinic bellows.

Remark 1.2. Note that the reduction in general leads to a loss of smoothness. In fact,
the reduced vector field in orbit space is smooth except for points in Fix (S). But these
points are not of interest for us, since Fix (S) is an invariant subspace of the original
system. Thus, orbits which are asymptotic to ξ3,4 6∈ Fix (S) cannot visit this space.

The analysis

We describe the setting for the general analysis in Section 4.2. As explained before
we are concerned with homoclinic bellows in reversible systems, and we assume that
the associated equilibrium undergoes a transition from real saddle to complex saddle
focus. This transition can be achieved by considering one-parameter families of reversible
ODEs. The corresponding parameter will be introduced by deriving a suitable linear
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normal form for the equilibrium.

The analysis of the global bifurcation relies on Lin’s method. In the present case we are
concerned with homoclinic orbits to a hyperbolic equilibrium and it is therefore straight-
forward to derive bifurcation equations for homoclinic orbits near the primary ones, using
general results from [75]. General technical considerations are quoted briefly.

In Section 4.4 we solve the bifurcation equations and discuss the bifurcation scenario for
N -homoclinic orbits. We prove that beside the homoclinic bellows no homoclinic orbits
exist if the equilibrium is a real saddle. This confirms results in [34, 46].

If the equilibrium is a complex saddle focus, then there exist infinitely many homoclinic
orbits near the bellows configuration. More precisely, let Γ1 ,Γ2 denote the homoclinic
orbits in bellows configuration. To an N -homoclinic orbit we can associate a sequence
of N -numbers κ = (κj) ∈ {1, 2}N , that denote the order in which the orbit follows Γ1,
Γ2. The sequence κ is called symmetric, if κN+1−j = κj for all j = 1, . . . , N . We prove
that for each N and for any symmetric sequence κ of length N , there exist infinitely
many N -homoclinic orbits which follow the bellows structure according to κ (Theorem
4.6).
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CHAPTER 2

The reversible homoclinic pitchfork
bifurcation

2.1. Introduction

The main part of the thesis is dedicated to the study of homoclinic orbits to degenerate
equilibria. In this chapter we consider reversible and Z2-symmetric ODEs that possess
a homoclinic orbit Γ to an equilibrium which itself undergoes a homoclinic pitchfork
bifurcation. We are interested in bifurcations from the primary homoclinic orbit.

In the next section we introduce the general setting for the problem in detail. The local
bifurcation of the equilibrium is described via centre manifold reduction. We have to
distinguish two cases for the local bifurcation that differ in the sign of a third order term
in the equilibrium’s normal form. We also introduce suitable ‘centre manifolds’ W c

loc,λ

and ‘centre (un)stable’ manifolds W
cs(cu)
λ .

In Section 2.3 we study the intersection W cs
λ ∩ W cu

λ in some suitable cross section to
describe homoclinic orbits to W c

loc,λ (Theorem 2.10). This is accomplished by a general-
ized version of Lin’s method. Afterwards we use the invariant foliation of W cs

λ to study
the asymptotic behaviour of the detected homoclinic orbits in Section 2.4. We obtain
a complete description of bifurcating one-homoclinic orbits to W c

loc,λ in Theorems 2.11
and 2.12. In particular, we find excellent agreement of the general analysis with the
numerical studies in Section 1.3.

These parts of the chapter are based on the article [90].

In the final Section 2.5 we investigate bifurcating two-homoclinic solutions. We locate
R2-symmetric two-homoclinic solutions by studying intersections of W cs

λ with Fix (R2)
near 0. This requires a detailed analysis of the behaviour near W c

loc,λ. In one possible
scenario for the reversible homoclinic pitchfork bifurcation Theorem 2.19 shows the
existence of a one-parameter family of two-homoclinic orbits to W c

loc,λ for parameter
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2. The reversible homoclinic pitchfork bifurcation

values where three equilibria exist. This family contains in particular two-heteroclinic
orbits to the additional equilibria.

2.2. Basic assumptions and conclusions

Throughout this part we consider a family of ODEs

ẋ = f(x, λ), (x, λ) ∈ R2n+2 × R (2.1)

with a smooth vector field f and λ as a real parameter. The attribute smooth here
means C∞ or Ck with k sufficiently large. We assume the system to be reversible and
Z2-symmetric, more precisely we assume

Hypothesis 2.1. There exist linear involutions Ri : R2n+2 → R2n+2, i = 1, 2 with
dim(Fix (Ri)) = n + 1 and with R1R2 = R2R1, such that

Rif(x, λ) + f(Rix, λ) = 0 ∀(x, λ), i = 1, 2.

Of course, we assume R1, R2 to be distinct (see Hypothesis 2.2 below for a detailed
statement). In the same way as for the umbilic systems (1.1), Hypothesis 2.1 implies a
Z2-symmetry for (2.1), namely with S := R1R2 we have

Sf(x, λ)− f(Sx, λ) = 0 ∀(x, λ). (2.2)

In particular this equality shows that the space Fix (S) := {x : Sx = x} is an invariant
subspace for (2.1). It is an immediate consequence from Hypothesis 2.1 that within this
space the involutions Ri agree, i.e.

R1
∣∣Fix(S)

= R2
∣∣Fix(S)

=: RS.

Furthermore, when equation (2.1) is reduced to Fix (S), the system is reversible with
respect to RS.

Remark 2.1. In [65] Lamb has introduced the concept of reversing symmetry groups.
Using this formal notion we can reformulate Hypothesis 2.1 by saying that equation (2.1)
possesses the reversing symmetry group G := {I, R1, R2, S}. It is important to note that
G is finite and therefore we can introduce an inner product in R2n+2 such that each
element of G is self-adjoint.

Let us discuss a further property associated to the reversing symmetry group of (2.1).
In the following we will often use the fact that

Ri(Fix (±Rj)) ⊂ Fix (±Rj), i, j ∈ {1, 2}. (2.3)
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2.2. Basic assumptions and conclusions

This is obvious for i = j. For i 6= j let us choose x ∈ Fix (R1). (The arguments for the
other cases are the same.) Then

R1(R2x) = R2R1x = R2x,

and therefore R2x ∈ Fix (R1), also. (Note that in (2.3) we even have equality since the
Ri are bijective maps.)

2.2.1. Assumptions about the equilibrium

Our main interest lies in bifurcations of a global object, namely a homoclinic orbit.
But first we deal with the associated equilibrium and describe its local bifurcation. We
assume the following.

Hypothesis 2.2. Let f(0, 0) = 0 and assume that

σ(D1f(0, 0)) = {0} ∪ {±µ} ∪ σss ∪ σuu,

with 0 being a double, non-semisimple eigenvalue. Furthermore let µ ∈ R+, and let
|<(µ̃)| > µ ∀µ̃ ∈ σss ∪ σuu. Here σss(uu) denotes the strong stable (strong unstable)
spectrum of D1f(0, 0).

Thus, 0 is an Ri-symmetric equilibrium (i=1,2) which, in particular, implies

RiD1f(0, 0) + D1f(0, 0)Ri = 0.

Therefore, D1f(0, λ) is an Ri-reversible linear operator, and so its spectrum is symmetric
with respect to zero (in the complex plane). We conclude, that Hypothesis 2.2 describes
equilibria which generically occur in one-parameter families of reversible vector fields,
see also [64].

In order to study the local bifurcation of 0 we first distinguish the involutions Ri. For
this let Xc

λ=0 denote the centre subspace of D1f(0, 0). Observe that Xc
λ=0 is invariant

under the action of the involutions Ri, i = 1, 2. We want to study the situation when
the involutions act differently (and non-trivially) on Xc

λ=0 and demand

Hypothesis 2.3. Xc
λ=0 6⊂ Fix (±Ri) for i = 1, 2, and Xc

λ=0 ∩ Fix (S) = {0}.

For the description of the local bifurcation of 0 we apply centre manifold theory and
perform a reduction of the local problem to a family of two-dimensional reversible vector
fields. For this purpose, let us consider the extended system

ẋ = f(x, λ)

λ̇ = 0.
(2.4)
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2. The reversible homoclinic pitchfork bifurcation

Owing to Hypothesis 2.2 this system possesses the equilibrium (0, 0) with a 3-dimensional
local centre manifold W c

loc at (0, 0). This manifold is foliated into two-dimensional
invariant slices {λ = const.} which we denote by W c

loc,λ. Now, the Centre Manifold
Theorem [82, 37] shows that all small bounded solutions of (2.4) are contained in W c

loc

which means that for (2.1) we can follow the evolution of small bifurcating solutions

within the two-dimensional slices W c
loc,λ. Similarly, the manifolds W

cs(cu)
loc,λ , W

s(u)
loc,λ are

defined as slices of the local centre (un)stable W
cs(cu)
loc and (un)stable manifold W

s(u)
loc of

(0, 0) in (2.4).

Remark 2.2. Later we will deal with the globalized versions of the local manifolds
W

cs(cu)
loc,λ , W

s(u)
loc,λ and we will denote them by dropping the loc-index. Note that the mani-

folds W
cs(cu)
λ are stable and unstable manifolds for W c

loc,λ, respectively. By a slight abuse
of language we will, for instance, also refer to the slices W cs

λ as centre stable manifolds.

The centre stable, centre unstable and centre manifolds are not unique, in general.
The next lemma shows that they can be chosen, such that the symmetries of (2.1) are
preserved.

Lemma 2.1. The manifolds W cs
loc,λ, W cu

loc,λ can be chosen such that W cs
loc,λ = RiW

cu
loc,λ,

i = 1, 2.

Proof. We consider (2.4), which is easily seen to possess the reversing symmetry group
G := {I,R1,R2,S}, where

Ri :=

(
Ri 0
0 1

)

and S = R1R2. The key argument of the proof is that we can choose W
cs(cu)
loc such

that RiW
cs
loc = W cu

loc. In fact, this is a standard result for systems that are reversible
with respect to one involution, [49] or for systems symmetric with respect to a compact
symmetry group, [25]. The corresponding proofs can easily be generalized to the case
of a compact reversing symmetry group. The symmetry properties of the corresponding
slices W

cs(cu)
loc,λ are then apparent.

For later considerations it is useful to further simplify equation (2.1) around 0. Let
X cs(cu) denote the centre stable (centre unstable) subspace of the linearization at (0,0)
in (2.4). We can then assume that

W
cs(cu)
loc ⊂ X cs(cu).

In fact, there exists a transformation T which pushes the manifolds into their respective
subspaces, and moreover T can be chosen such that the symmetries of (2.4) are preserved,
since G is a compact reversing symmetry group. See for instance [57] for a computation
of T. Now setting W c

loc := W cs
loc ∩W cu

loc we obtain a ‘flat’ centre manifold for (2.4) and
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2.2. Basic assumptions and conclusions

by Lemma 2.1 we have RiW
c
loc = W c

loc for i = 1, 2. Finally, for the invariant slices we
conclude that

W
cs(cu)
loc,λ ⊂ X

cs(cu)
λ , (2.5)

where X
cs(cu)
λ denote the corresponding slices of the linear spaces Xcs(cu), and moreover

that RiW
c
loc,λ = W c

loc,λ for i = 1, 2.

An immediate consequence of Lemma 2.1 and the considerations below is that the vector
field in W c

loc,λ is also reversible with respect to two distinct involutions. Let us denote
the corresponding system by

ẏ = g(y, λ). (2.6)

Hypothesis 2.2 yields

g(0, 0) = 0, D1g(0, 0) =

(
0 1
0 0

)
,

and in suitably chosen coordinates we find the following normal form for the correspond-
ing involutions Ri

R1 : y := (y1, y2) 7→ (y1,−y2), R2 : (y1, y2) 7→ (−y1, y2).

The bifurcation of the equilibrium 0 of (2.6) can be studied in a planar normal form of
the vector field. More precisely, results by Dumortier [33] demonstrate that equilibria
of finite codimension are finitely determined in planar systems. This means that for
the study of local bifurcations one might always restrict to consider only polynomial
systems. Hence, it suffices to deal with normal forms which can in addition be chosen
such that the symmetries of the original system are preserved. In the present case this
normal form is given in [65, 64] and reads

ẏ1 = y2

ẏ2 =
∑

k odd

ak(λ)yk
1 .

(2.7)

By Hypothesis 2.2 we have a1(0) = 0 in (2.7) and we consider a generic bifurcation by
demanding

Hypothesis 2.4. a3(0) 6= 0.

Depending on the sign of a3(0) we are led to two unfoldings of the corresponding singular
systems. If a3(0) > 0 we obtain

ẏ1 = y2

ẏ2 = λy1 + y3
1.

(2.8)

Note that we have neglected terms of order larger than three in (2.8). These terms do not
influence the qualitative local behaviour of the systems since (2.8) describes a universal
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2. The reversible homoclinic pitchfork bifurcation

η R2η
0

λ < 0 λ = 0 λ > 0

Figure 2.1.: Phase portraits in for the reversible pitchfork bifurcation I: The eye case
with normal form (2.8).

0

η R2η

λ = 0 λ > 0λ < 0

Figure 2.2.: Phase portraits for the reversible pitchfork bifurcation II: The figure-eight
case with normal form (2.9).

unfolding of the singularity, see again [64]. We remark that the normal form for the
reversible problem (2.6) possesses the additional property of being Hamiltonian.

System (2.8) is easily analysed and it is straightforward to derive the corresponding
phase portraits in Figure 2.1. Here we find the situation that was encountered for the
illustrating example in Section 1.3. For λ < 0 there exist two additional equilibria
η = (−√−λ, 0), R2η = (

√−λ, 0) which are saddles while 0 has turned from a real
saddle (for λ > 0) into a centre. Moreover, we find a (small) symmetric heteroclinic
cycle between η,R2η. As before we refer to this bifurcation scenario as the eye case.

If a3(0) < 0 a universal unfolding is given by

ẏ1 = y2

ẏ2 = λy1 − y3
1.

(2.9)

The phase portraits can be found in Figure 2.2. For λ > 0 the additional equilibria
η = (−

√
λ, 0), R2η = (

√
λ, 0) are centres in this case and the equilibrium at 0 has

become a saddle which is connected to itself by two homoclinic orbits. Therefore we
name this scenario the figure-eight case.

Remark 2.3. The local bifurcation of 0 leads to the existence of a symmetric hyperbolic
equilibrium, and therefore the dimension of Fix (Ri) is necessarily half the dimension of
phase space [81]. This explains our general definition of reversibility in the first chapter,
see also Hypothesis 2.1. Moreover, the same argument shows that the space Fix (S)
must be even-dimensional.
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2.2. Basic assumptions and conclusions

The parameter λ was chosen to control the local bifurcation of the equilibrium 0. Since,
however, we are interested in the bifurcation of a homoclinic orbit one would expect
at a first sight that this requires additional parameters. But in the next section we
will assume sufficient transversality conditions for the homoclinic orbit which ensure the
problem to be of codimension one.

2.2.2. Assumptions about the homoclinic orbit

Let us now describe the homoclinic orbit which will be of concern in the following.

Hypothesis 2.5. For λ = 0 equation (2.1) possesses a solution γ(·) homoclinic to 0,
that is,

lim
t→±∞

γ(t) = 0.

The corresponding orbit Γ := {γ(t) : t ∈ R} is symmetric with respect to both R1 and
R2.

The R1-symmetry of Γ implies that the orbit intersects the fixed space Fix (R1) in some
point, say γ(0). Moreover, by Lemma 3 in [81] this point is unique. Since R2γ(0) ∈
Fix (R1) by (2.3) we thus obtain γ(0) ∈ Fix (R2), as well. This implies γ(0) ∈ Fix (S)
and the invariance of Fix (S) shows

Γ ⊂ Fix (S).

This trivially shows Fix (S) 6= {0} and thus dim(Fix (S)) ≥ 2.

From Hypothesis 2.2 we can immediately conclude that the orbit Γ is a global object
which lies in the intersection of W s

λ=0 and W u
λ=0.

Remark 2.4. The considerations show in particular that Γ does not approach the origin
at the lowest possible speed. Generically, such a situation results in a reversible orbit
flip bifurcation, see [74]. Here, however, this behaviour is forced by the symmetries of Γ
and the forthcoming analysis proves that no orbit flip bifurcation occurs.

Let us impose a transversality condition upon the homoclinic orbit Γ. In order to
consider a generic situation we assume that at λ = 0 the stable manifold of 0 intersects
the centre unstable manifold as cleanly as possible. More precisely, for λ = 0 we denote
the tangent space of the (un)stable manifold of 0 at the point γ(0) by Tγ(0)W

s(u)
λ=0 and

demand

Hypothesis 2.6. We have

dim(Tγ(0)W
s
λ=0 ∩ Tγ(0)W

cu
λ=0) = 1.
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2. The reversible homoclinic pitchfork bifurcation

We note that this assumption is automatically fulfilled in R4, since in this case the stable
manifold of the equilibrium 0 is one-dimensional.

Hypothesis 2.6 has important consequences for the dynamics near Γ. Let us first consider
the situation within the invariant subspace Fix (S). Here the equilibrium 0 is hyperbolic
and moreover, the trace of the centre unstable manifold W cu

λ=0 is the unstable manifold
W u

S of this equilibrium. This immediately follows from Fix (S) ∩W c
loc,λ = {0}, because

of Hypothesis 2.4. Thus, under Hypothesis 2.6 the intersection of W u
S and W s

S along Γ
only contains the vector field direction, i.e. the orbit is non-degenerate within Fix (S).
As a consequence, we find that the intersection of W u

S and Fix (RS) is transverse, see
Lemma 4 in [81]. (Recall that RS is the restriction of the Ri to Fix (S).) This point will
be of importance in the proof of Lemma 2.2 below.

In the next section we determine one-homoclinic orbits to W c
loc,λ by investigating the

intersection of W cs
λ and W cu

λ . Related studies in [57] reveal that the results crucially
depend on the relative position of the tangent spaces of the centre (un)stable manifold
and the fixed spaces of the involutions. Due to the symmetries of our problem we can
determine this position (see Lemmas 2.2 and 2.9 below). As a first result in this context
we obtain

Lemma 2.2. Under the assumptions above the intersection of W cs
λ=0 and W cu

λ=0 along Γ
is non-transverse with

dim
(
Tγ(0)W

cs
λ=0 ∩ Tγ(0)W

cu
λ=0

)
= 3.

Proof. First observe that it suffices to prove the non-transversality of the intersection
of the manifolds. The second assertion can then be obtained by a simple count of
dimensions and consideration of Hypothesis 2.6.

Seeking a contradiction, let us assume that the intersection of W
cs(cu)
λ=0 is transverse and

let us introduce a space Y c by setting

span{f(γ(0), 0)} ⊕ Y c := Tγ(0)W
cs
λ=0 ∩ Tγ(0)W

cu
λ=0.

(Here, all appearing decompositions are assumed to be orthogonal with respect to the

Ri-invariant inner product.) Since dim W
cs(cu)
λ=0 = n + 2 we have dim Y c = 1. Another

count of dimensions reveals

dim
(
Tγ(0)W

cs
λ=0 ∩ Fix (Ri)

)
= 1,

for i = 1, 2. By reversibility components of Tγ(0)W
cs
λ that are contained in Fix (Ri) also

belong to Tγ(0)W
cu
λ , and therefore Y c ⊂ Fix (R1) ∩ Fix (R2), i.e. we have Y c ⊂ Fix (S).

We will show that this is impossible because of Hypothesis 2.6. For this introduce a
space Ỹ cs by letting

Tγ(0)W
cs
λ=0 = span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cs.
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2.3. One-homoclinic orbits to the centre manifolds

An important observation is that

R1Ỹ
cs = R2Ỹ

cs. (2.10)

In fact, since the spaces Tγ(0)W
cs
λ=0 and span{f(γ(0), 0)}⊕Y c are invariant under S this

also applies to Ỹ cs, i.e. we have SỸ cs = Ỹ cs. In particular, R1R2Ỹ
cs = R1R1Ỹ

cs, and
this yields (2.10). So we can similarly decompose

Tγ(0)W
cu
λ=0 = span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cu,

with Ỹ cu := RiỸ
cs.

We can represent the manifolds W
cs(cu)
λ=0 near γ(0) as graphs of functions

hcs(cu) : span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cs(cu) → Ỹ cu(cs),

with Dhcs(cu)(0) = 0. Choosing (yc, h
cu(yc)) ∈ W cu with yc ∈ Y c ⊂ Fix (S) we have

R1(yc, h
cu(yc)) ∈ W cs, R2(yc, h

cu(yc)) ∈ W cs

and thus R1h
cu(yc) = R2h

cu(yc), wherefore (yc, h
cu(yc)) ∈ Fix (S).

Thus, we can again consider the reduced system within Fix (S). We recall that this sys-
tem is RS-reversible, and as above we denote the unstable manifold of the (hyperbolic)
equilibrium 0 by W u

S . Then W u
S = W cu

λ=0 ∩ Fix (S), and a consequence of our considera-
tions is that W u

S intersects Fix (RS) non-transversally. Indeed, letting dim Fix (S) = 2k
(recall that because of reversibility Fix (S) is even-dimensional) we have

dim Tγ(0)W
u
S = dim FixRS = k,

and since yc ∈ Fix (R1) ∩ Fix (R2) the above considerations yield

dim
(
Tγ(0)W

u
S ∩ FixRS

) ≥ 1.

But as it has already been discussed before, Hypothesis 2.6 implies a transverse inter-
section of W u

S and Fix (RS). So we derive the desired contradiction.

2.3. One-homoclinic orbits to the centre manifolds

The goal of the following analysis is the description of bifurcating homoclinic orbits to
the centre-manifolds W c

loc,λ introduced in the last section. For that we will study the
intersection of W cs

λ and W cu
λ in some cross section Σ to the primary homoclinic orbit

Γ. The splitting of these manifolds will be described by Melnikov-like computations.
We only consider one-homoclinic orbits in the following which means that we are only
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2. The reversible homoclinic pitchfork bifurcation

concerned with the first intersections of W
cs(cu)
λ with Σ. (Note that parts of these

manifolds may visit Σ many times.)

Our approach is inspired by a technique known as Lin’s method [66, 75, 81], see also
Chapter 4. The original version of this method allows one to study the dynamics near
orbits connecting hyperbolic equilibrium solutions by defining bifurcation equations for
recurrent dynamics near the orbits. Since we deal here with a homoclinic orbit to a
degenerate equilibrium we use a generalization of Lin’s method, similar to the one de-
veloped in [57]. Although our procedure is comparable to [57] we include some technical
details for the sake of self-containment of the forthcoming parts of the thesis. The con-
sideration of one-homoclinic orbits here corresponds to the ‘first step’ of the original
version of Lin’s method. The spirit of the analysis is also similar to [83].

We first remind the reader that we have chosen γ(0) ⊂ Fix (R1)∩Fix (R2). At this point
we introduce a cross-section Σ to Γ by decomposing

R2n+2 = span{f(γ(0), 0)} ⊕ Y s ⊕ Y u ⊕ Z

with span{f(γ(0), 0)} ⊕ Y s(u) = Tγ(0)W
s(u) and setting

Σ := γ(0) + {Y s ⊕ Y u ⊕ Z}.
Again, we stress the fact that this decomposition is assumed to be orthogonal with
respect to an Ri-invariant inner product. Note that Z is complementary to the sum of
the tangent spaces of the stable and unstable manifolds of 0. Therefore Hypothesis 2.6
implies dim Z = 3. Using Lin’s method we will eventually detect one-homoclinic orbits
by solving a bifurcation equation in Z.

Let us discuss how the symmetries of (2.1) are reflected in this decomposition. Recall
that dim(Fix (Ri)) = dim(Fix (−Ri)) = n + 1. Now, using RiW

s = W u, and therefore
RiY

s = Y u for i = 1, 2 we obtain the equivalent of Lemma 2.4 and Lemma 2.5 in [57].

Lemma 2.3. The space Y s⊕Y u contains (n−1)-dimensional subspaces of both Fix (Ri)
and Fix (−Ri) for each i = 1, 2. The space Z contains a two-dimensional subspace Yi of
Fix (Ri) and a one-dimensional subspace of Fix (−Ri) for each i = 1, 2.

Even more so, we have Y1 6= Y2, because assuming Y1 = Y2 we can conclude Z ⊂ Fix (S).
Within the invariant subspace Fix (S), however, Hypothesis 2.6 implies that Γ is a non-
degenerate orbit homoclinic to the hyperbolic equilibrium 0. Since Z is complementary
to the sum of the tangent spaces of the corresponding stable and unstable manifold we
must have dim Z = 1 in contradiction to the above.

An immediate consequence of this observation is the next lemma.

Lemma 2.4. For Z there exists a decomposition into one-dimensional subspaces Xi

Z = X1 ⊕X2 ⊕X3, (2.11)

where X1 ⊂ Fix (R1)∩Fix (−R2), X2 ⊂ Fix (−R1)∩Fix (R2), X3 ⊂ Fix (R1)∩Fix (R2).
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2.3. One-homoclinic orbits to the centre manifolds

Proof. We first consider the situation in Σ ∩ Fix (S). We recall again, that here the
one-dimensional space Z ∩ Fix (S) is complementary to the sum of the tangent spaces
of the stable and unstable manifolds of 0. Since Γ is non-degenerate in Fix (S) we know
from [81] that

(Z ∩ Fix (S)) ⊂ (Fix (R1) ∩ Fix (R2)),

which shows the existence of X3.

Now let X1 := Z ∩ Fix (−R2). Then by Lemma 2.3 it holds dim X1 = 1. Moreover, by
(2.3) we have R1X1 ⊂ X1 and thus, either X1 ⊂ Fix (R1) or X1 ⊂ Fix (−R1); and the
second possibility is excluded because it would imply X1 ⊂ Fix (S) in contradiction to
dim Z ∩ Fix (S) = 1 and X1 ∩ X3 = {0}. In a similar manner we obtain the assertion
for X2.

In a first step of Lin’s method we look for one-homoclinic orbits to the origin. Now
the non-hyperbolicity of the equilibrium comes into play in that we have to distinguish
between two kinds of such orbits, namely fast decaying and slowly decaying solutions.

2.3.1. Fast decaying homoclinic orbits to the origin

Following Lin’s method for connecting orbits between hyperbolic equilibria we would
look for solutions γ± of (2.1) defined on R± which start in Σ with a difference lying in a
certain space and which approach 0 for t → ±∞. In our case, however, 0 is degenerate
for λ = 0. It turns out to be appropriate to detect only solutions, that approach 0 with
some prescribed exponential rate, first.

Definition 2.1. Choose α ∈ (0, µ) where µ ∈ R+ is the leading non-zero eigenvalue of
0 as in Hypothesis 2.2. A solution x(·) of (2.1) and its orbit X are called fast decaying if

sup {eα|t|||x(t)|| : t ∈ R} < ∞.

Note that the primary homoclinic orbit Γ is fast decaying. For the detection of fast
decaying homoclinic orbits we look for solutions γ± that fulfill

(Pγ) (i) The orbits of γ± are near Γ

(ii) γ+(0), γ−(0) ∈ Σ

(iii) sup {e±αt||γ±(t)|| : t ∈ R±} < ∞
(iv) γ+(0)− γ−(0) ∈ Z

Such solutions will be detected as perturbations of Γ for which we introduce functions
v± defined on R± by

γ±(t) = γ(t) + v±(t), t ∈ R±.
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2. The reversible homoclinic pitchfork bifurcation

We will formulate an equivalent problem to (Pγ) for v±. First, the functions have to
solve the equation

v̇ = D1f(γ(t), 0)v + h(t, v, λ) (2.12)

where h(t, v, λ) = f(γ(t)+ v, λ)−f(γ(t), 0)−D1f(γ(t), 0)v. Note that h(·, 0, 0) ≡ 0 and
D2h(·, 0, 0) ≡ 0. In order to satisfy the exponential rate for γ± we introduce spaces

V +
α := {v ∈ C0([0,∞),R2n+2) : sup

t≥0
eαt||v(t)|| < ∞}

V −
α := {v ∈ C0((−∞, 0],R2n+2) : sup

t≤0
e−αt||v(t)|| < ∞}.

The adopted version of (Pγ) then reads

(Pv) (i) ||v±(t)|| is small for all t ∈ R±
(ii) v+(0), v−(0) ∈ Y s ⊕ Y u ⊕ Z

(iii) v+ ∈ V +
α , v− ∈ V −

α

(iv) v+(0)− v−(0) ∈ Z

In order to find solutions of (2.12) that fulfill (Pv) we use the fact that the variational
equation along the homoclinic orbit Γ

v̇ = D1f(γ(t), 0)v (2.13)

possesses exponential trichotomies on R±, see [57]. This means, there exist projections
P±

u (t), P±
s (t), P±

c (t) such that id = P±
u (t) + P±

s (t) + P±
c (t) ∀ t ∈ R± and

Φ(t, s)P±
i (s) = P±

i (t)Φ(t, s), i = u, s, c,

where Φ(·, ·) denotes the transition matrix of (2.13). Moreover, for t ≥ s ≥ 0 and for all
αc with µ > α > αc > 0 we have

||Φ(t, s)P+
s (s)|| ≤ Ke−α(t−s), ||Φ(s, t)P+

u (t)|| ≤ Ke−α(t−s),
||Φ(t, s)P+

c (s)|| ≤ Keαc(t−s), ||Φ(s, t)P+
c (t)|| ≤ Keαc(t−s).

Using reversibility one can define P−
i (t) such that similar relations hold on R−. Of

importance for us is that

im P+
s (t) = Tγ(t)W

s
λ=0, im P−

u (t) = Tγ(t)W
u
λ=0, (2.14)

and that we can choose

ker P+
s (0) = Z ⊕ Y u, ker P−

u (0) = Z ⊕ Y s.

These results are proved in [39], see also [57].
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2.3. One-homoclinic orbits to the centre manifolds

Solutions of (2.12) satisfy the following fixed point problem

v+(t) = Φ(t, 0)η+ +
∫ t

0
Φ(t, s)P+

s (s)h(s, v+, λ)ds

− ∫∞
t

Φ(t, s)(id− P+
s (s))h(s, v+, λ)ds

v−(t) = Φ(t, 0)η− − ∫ 0

t
Φ(t, s)P−

u (s)h(s, v−, λ)ds

+
∫ t

−∞ Φ(t, s)(id− P−
u (s))h(s, v−, λ)ds,

(2.15)

where η+ ∈ Tγ(0)W
s
λ=0, η− ∈ Tγ(0)W

u
λ=0. Expanding f in the definition of h we obtain

the estimate
||h(t, v, λ)|| ≤ c1||v||2 + c2||λ||(||γ(t)||+ ||v||).

Thus, v±,∈ V ±
α implies h(·, v±(·), λ) ∈ V ±

α . Combining this with the exponential tricho-
tomy we see that the right-hand side in (2.15) is a map

Tγ(0)W
s(u)(0)× R× V ±

α → V ±
α .

Therefore the exponentially bounded solution of (2.12) are exactly the solutions of
(2.15), considered in V ±

α . By the Implicit Function Theorem this problem can be solved
around (η±, λ, v±) = (0, 0, 0) for v± = v±(η±, λ). Now, regarding the requirements on
v±(η±, λ)(0) in (Pv) we decompose

v+(η+, λ)(0) = η+ + yu(η
+, λ) + z+(η+, λ)

v−(η−, λ)(0) = η− + ys(η
−, λ) + z−(η−, λ),

with ys(u) ∈ Y s(u), z± ∈ Z. By (Pv) (iv) and (2.14) we must have

η+ = ys(η
−, λ), η− = yu(η

+, λ),

which again can be solved for η± = η±(λ). We thus obtain in complete analogy to
Lemma 2.7 in [57]

Lemma 2.5. For each λ sufficiently close to 0 the problem (Pγ) has a unique pair of
solutions (γ+(λ), γ−(λ)).

Remark 2.5. We see that the solution of (Pγ) is not affected by the change of dimension
of the stable (unstable) manifold of the equilibrium 0 for λ 6= 0. This can be explained by
the assumed exponential bound for the solutions, because for parameter values where
0 is hyperbolic we look for solutions of (Pγ) that are contained in the strong stable
(unstable) manifold of 0. Therefore the change in the dimension of the whole stable
(unstable) manifolds is not important.

We can detect fast decaying homoclinic orbits by solving the bifurcation equation

ξ∞(λ) := γ+(λ)(0)− γ−(λ)(0) = 0.
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2. The reversible homoclinic pitchfork bifurcation

The uniqueness of the pair (γ+(λ), γ−(λ)) then immediately implies

Riγ
+(λ)(0) = γ−(λ)(0), i = 1, 2.

Therefore ξ∞(λ) ∈ Fix (−Ri) for i = 1, 2 and since in Z

(Fix (−R1) ∩ Fix (−R2)) = {0}

we conclude

Theorem 2.6. For |λ| sufficiently small there exists a unique fast decaying homoclinic
orbit Γ(λ) to 0 which is symmetric with respect to both involutions.

Remark.
a) The geometric reason for this result is very clear. We have already established the

fact that within Fix (S) the orbit Γ is non-degenerate. An application of Lemma 4
from [81] as in the proof of Lemma 2.2 then shows that the unstable manifold W u

S

of 0 intersects Fix (RS) transversally. So there is no chance for destroying this
homoclinic connection. In particular, no additional parameter is needed to control
the existence of fast decaying homoclinic orbits.

b) There may exist additional homoclinic orbits to 0 which approach the fixed point
with a smaller exponential rate and in fact such a smaller rate would be generic.
Only the symmetries of (2.1) prevent Γ from switching to the lowest exponential
rate available (reversible orbit flip bifurcation). We will deal with the existence of
such orbits in the next part. 3

2.3.2. Homoclinic orbits to W c
loc,λ

In the second step of Lin’s method for nonhyperbolic equilibria we determine one-
homoclinic orbits to W c

loc,λ. This time the loss of hyperbolicity near the equilibrium
is overcome by looking for solutions of (2.1) on a finite time-interval. Let us intro-
duce intervals I+ := [0, T ] and I− := [−T, 0]. Choosing a ‘time’ T we seek solutions
x+ : I+ → R2n+2 and x− : I− → R2n+2 that satisfy

(Px) (i) The orbits of x± are near Γ

(ii) x+(0), x−(0) ∈ Σ

(iii) x+(0) ∈ W cs
λ , x−(0) ∈ W cu

λ

(iv) x+(0)− x−(0) ∈ Z.

Provided T is chosen large enough we can formulate an equivalent demand to (Px) (iii)
by requiring
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2.3. One-homoclinic orbits to the centre manifolds

(P̃x) (iii) x+(T ) ∈ W cs
loc,λ, x

−(T ) ∈ W cu
loc,λ

This time x± are described as perturbations of the solutions γ±(λ)

x±(t) = γ±(λ)(t) + v±(t);

which again leads to an equivalent problem for v± : I± → R2n+2. So we determine
solutions of

v̇ = D1f(γ±(λ)(t), λ)v + h(t, v, λ) (2.16)

on I± with

h(t, v, λ) = f(γ±(λ)(t) + v, λ)− f(γ±(λ)(t), λ)−D1f(γ±(λ)(t), λ)v,

and we require the solutions of (2.16) to satisfy

(Pc
v) (i) ||v±(t)|| is small on I±

(ii) v+(0), v−(0) ∈ Y s ⊕ Y u ⊕ Z

(iii) v+(T ) ∈ W cs
loc,λ, v

−(−T ) ∈ W cu
loc,λ

(iv) v+(0)− v−(0) ∈ Z

Note that (Pc
v) (iii) uses the linear structure in W

cs(cu)
loc,λ which is guaranteed in (2.5) for

T sufficiently large.

The search for solutions of the above problem again relies on exponential trichotomies
of the equation

v̇ = D1f(γ±(λ)(t), λ)v. (2.17)

Solutions of (2.16) are exactly the solutions of the fixed point equations

v±(t) = Φ±(t, 0, λ)η± + L±(t, h(t, v±, λ)), t ∈ I± (2.18)

where Φ±(t, s, λ) denote the transition matrices of (2.17) and the operators L± are
defined for t ∈ I± by

L+(t, g) :=

∫ t

0

Φ+(t, s, λ)P+
cs(s, λ)g(s)ds−

∫ T

t

Φ+(t, s, λ)(id− P+
cs(s, λ))g(s)ds,

L−(t, g) := −
∫ 0

t

Φ−(t, s, λ)P−
cu(s, λ)g(s)ds +

∫ t

−T

Φ−(t, s, λ)(id− P−
cu(s, λ))g(s)ds.

The projections P±
cs(cu) are chosen in accordance with the exponential trichotomy of

(2.17). Note that L±(t, g) solve the equations

v̇ = D1f(γ±(λ)(t), λ)v + g(t),
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2. The reversible homoclinic pitchfork bifurcation

with g ∈ C0(I±,R2n+2). Here it is essential that we deal with functions on finite intervals,
which ensures that the solutions L±(t, g) are well-defined. Considering the right-hand
side of (2.18) as map

Tγ±(λ)(0)W
cs(cu) × R× C0(I±,R2n+2) → C0(I±,R2n+2)

we can apply the Implicit Function Theorem near (η±, λ, v±) = (0, 0, 0) and obtain
solutions

v± = v±(η±, λ), (2.19)

where this time

η+ ∈ (Y s ⊕ Y u ⊕ Z) ∩ Tγ+(λ)(0)W
cs
λ , η− ∈ (Y s ⊕ Y u ⊕ Z) ∩ Tγ−(λ)(0)W

cu
λ ,

according to (Pv)(iii). Again we refer the reader to [57] for a more detailed exposition.

In order to manage (Pv)(ii), (iv) we involve the space Y c, as introduced in the proof of
Lemma 2.2

span{f(γ(0), 0)} ⊕ Y c = Tγ(0)W
cs
λ=0 ∩ Tγ(0)W

cu
λ=0

and use the refined decomposition

R2n+2 = span{f(γ(0), 0)} ⊕ Y s ⊕ Y u ⊕ Ẑ ⊕ Y c,

with Ẑ⊕Y c = Z. Because of Lemma 2.2 we have dim Y c = 2, and we find that RiẐ = Ẑ.

We obtain a representation of Σ ∩W
cs(cu)
λ as graphs of some functions

hcs(cu)(·, λ) : Y c ⊕ Y s(u) → Y u(s) ⊕ Ẑ,

which yields

η+ = y+
c + ys + D1h

cs(0, λ)(y+
c , ys)

η− = y−c + yu + D1h
cu(0, λ)(y−c , yu)

with some y±c ∈ Y c, ys(u) ∈ Y s(u). Substituting this relation into (2.19) we obtain

v+ = v+(y+
c , ys, λ), v− = v−(y−c , yu, λ).

In a similar way as in the preceding subsection we decompose v± at t = 0 to find

v+(y+
c , ys, λ)(0) = y+

c + ys + y+
u (y+

c , ys, λ) + z+(y+
c , ys, λ)

v−(y−c , yu, λ)(0) = y−c + yu + y−s (y−c , yu, λ) + z−(y−c , yu, λ).
(2.20)

Again, (Pv)(iv) implies

ys = y−s (y−c , yu, λ), yu = y+
u (y+

c , ys, λ), (2.21)

and this system of equations can be solved for ys = ys(y
+
c , y−c , λ), yu = yu(y

+
c , y−c , λ).

Putting things together we obtain in analogy to Lemma 3.5 in [57]
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2.3. One-homoclinic orbits to the centre manifolds

Lemma 2.7. For λ sufficiently close to 0 and for sufficiently small y+
c , y−c ∈ Y c there

exists a unique pair (x+(y+
c , y−c , λ), x−(y+

c , y−c , λ)) of solutions of problem (Px).

For the detection of one-homoclinic orbits to W c
loc,λ it remains to solve

ξ(y+
c , y−c , λ) := x+(y+

c , y−c , λ)(0)− x−(y+
c , y−c , λ)(0) = 0, (2.22)

which can be written

ξ(y+
c , y−c , λ) = (y+

c − y−c ) + (z+(y+
c , ys(y

+
c , y−c , λ), λ)

− z−(y−c , yu(y
+
c , y−c , λ), λ)) .

(2.23)

Here we have used the representation (2.20) and the fact that because of Theorem 2.6
we have

γ+(λ)(0)− γ−(λ)(0) = 0, ∀λ.

In order to solve (2.22) we must have y+
c = y−c =: yc since these are the Y c-components

of ξ. Introducing ξ̃(yc, λ) := ξ(yc, yc, λ) it therefore suffices to consider the bifurcation
equation

ξ̃(yc, λ) = 0. (2.24)

We view ξ̃ as a map ξ̃ : Y c × R→ Ẑ.

Our solution of (2.24) will to a large extend invoke the symmetries of (2.1). So we have
to consider their consequences for the equation. Let us explore this point before we go
on with the solution of (2.24).

We return to the presentation (2.19): v+ = v+(η+, λ), v− = v−(η−, λ). Due to the
reversibility of the fixed point equation similar to (2.15) it holds that Riv

±(η±, λ)(t) =
v∓(η∓, λ)(−t) (as usual i = 1, 2). An immediate consequence for (2.21) is

Riy
+
u (y+

c , ys, λ) = y−s (Riy
+
c , Riys, λ),

Riz
+(y+

c , ys, λ) = z−(Riy
+
c , Riys, λ).

(2.25)

For the solutions of (2.21) we thus obtain

Riyu(y
+
c , y−c , λ) = ys(Riy

−
c , Riy

+
c , λ). (2.26)

These properties will be used below to detect symmetries in (2.24).

The last result of this part shows that we have a one-to-one correspondence between
solutions (yc, λ) of (2.24) with yc ∈ Fix (Ri) and Ri-symmetric one-homoclinic orbits
near the primary one Γ.

Lemma 2.8. Suppose that the pair (yc, λ) solves the bifurcation equation (2.24) and let
x(yc, λ)(·) denote the corresponding solution of (2.1) with orbit Ξ(yc, λ). Then Ξ(yc, λ)
is Ri-symmetric if and only if yc ∈ Fix (Ri).
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2. The reversible homoclinic pitchfork bifurcation

Proof. For the proof we note first that x(yc, λ)(0) ∈ Fix (Ri) is equivalent to

Riγ
+(λ)(0) + Riv

+(yc, ys(yc, yc, λ), λ)(0)

= γ−(λ)(0) + v−(yc, yu(yc, yc, λ), λ)(0).

Now suppose yc ∈ Fix (Ri). Since Riγ
+(λ)(0) = γ−(λ)(0) by Theorem 2.6 we only have

to consider the v±-part. Here the above symmetries provide

Riv
+(yc, ys(yc, yc, λ), λ)(0) = v−(Riyc, Riys(yc, yc, λ), λ)(0)

= v−(Riyc, yu(Riyc, Riyc, λ), λ)(0),

and from yc ∈ Fix (Ri) and the equivalence above we obtain x(yc, λ)(0) ∈ Fix (Ri) and
therefore the symmetry of the orbit.

On the other hand v+(yc, ys(yc, yc, λ), λ)(0) = v−(yc, yu(yc, yc, λ), λ)(0) and therefore the
only Y c-component in x(yc, λ)(0) is yc because of (2.20). Since the symmetry of Ξ(yc, λ)
is equivalent to x(yc, λ)(0) ∈ Fix (Ri) this requires yc ∈ Fix (Ri).

Geometry in Σ

Before we solve the bifurcation equation (2.24) we return to a discussion of geometric
properties of the primary homoclinic orbit Γ. In Lemma 2.2 we have already shown that
Γ results from a non-transverse intersection of W cs

λ=0 and W cu
λ=0. Now we investigate the

relative position of these manifolds with respect to Fix (Ri). The following lemma shows
that W cs

λ=0 (and therefore also W cu
λ=0) intersects both fixed spaces transversally.

Lemma 2.9. Consider (2.1) under the Hypotheses 2.1 - 2.6. Then W cs
λ=0 t Fix (Ri) at

γ(0) where i = 1, 2.

Proof. The proof is by contradiction, so let us assume that for instance W cs
λ=0 intersects

Fix (R1) non-transversally, which implies

dim
(
Tγ(0)W

cs
λ=0 ∩ Fix (R1)

) ≥ 2.

Because of Hypothesis 2.6 we therefore have Y c = Tγ(0)W
cs
λ=0 ∩ Fix (R1) and Ẑ ⊂

Fix (−R1) ∩ Fix (R2). Applying the decomposition (2.11) we thus have Y c = X1 ⊕ X3

and Ẑ = X2. The idea of the proof is to show that for each yc ∈ X3 we have ξ̃(yc, 0) = 0.
Since (yc, 0) ∈ Fix (S) this would amount to a family of homoclinic orbits to 0 in Fix (S)
and as in the proof of Lemma 2.2 we derive a contradiction to the non-degeneracy
Hypothesis 2.6.

We shall show first that
ξ̃(yc, 0) = −ξ̃(R2yc, 0). (2.27)

The simple proof of this assertion uses the representation (2.23). We find that

ξ(yc, yc, 0) = z+(yc, ys(yc, yc, 0), 0)− z−(yc, yu(yc, yc, 0), 0)
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2.3. One-homoclinic orbits to the centre manifolds

and because of (2.25) we have

ξ(R2yc, R2yc, 0) = z+(R2yc, R2yu(yc, yc, 0), 0)− z−(R2yc, R2ys(yc, yc, 0), 0)

= z−(yc, yu(yc, yc, 0), 0)− z+(yc, ys(yc, yc, 0), 0),

since z± ∈ Fix (R2). This proves (2.27).

From the symmetry (2.27) we immediately deduce that for yc ∈ Fix (R2) we have
ξ̃(yc, 0) = 0, i.e. we deduce that ξ̃∣∣X3×{0}

≡ 0. Then the application of Lemma 2.8

gives the R1- and R2-symmetry of the corresponding orbits, i.e. for the corresponding
solutions x(yc, 0)(·) we have x(yc, 0)(0) ∈ Fix (R1) ∩ Fix (R2) ⊂ Fix (S). By invariance
of Fix (S) it holds x(yc, 0)(t) ∈ Fix (S) ∀ t ∈ R.

Hence, the above assumption implies the existence of a one-parameter family of one-
homoclinic solutions in Fix (S) connecting W c

loc,λ=0 - and thus the equilibrium 0 - to
itself. Hypothesis 2.6, however, implies the non-degeneracy of Γ in Fix (S) which gives
a contradiction.

We recapitulate the result, namely that Tγ(0)W
cs
λ=0 t Fix (Ri), for i = 1, 2. By transvers-

ality this relation persists for λ small and we conclude that

dim
(
Tγ(0)W

cs
λ ∩ Fix (Ri)

)
= 1 for i = 1, 2. (2.28)

In view of the decomposition (2.11) this results in Yc = X1 ⊕ X2 and Ẑ = X3. To
see this choose y ∈ Yc \ Fix (−R1). By Lemma 2.3 such y exists. Then we have for
Y := span(y + R1y) ⊂ Fix (R1) that R2Y ⊂ Y , and therefore we conclude that either
Y = X1 or Y = X3. The latter possibility can be ruled out since we would find that in
this case either Yc = X1 ⊕X3 or Yc = X2 ⊕X3 in contradiction to (2.28). We refer to
Figure 2.3 for an impression of the geometric relations in Z. We also emphasize that the
relative position of the manifolds W

cs(cu)
λ is prescribed by the symmetries of the system

to such an extent that no further parameter is needed for an unfolding.

For the solution of (2.24) we identify ξ̃ : X1⊕X2×R→ Ẑ with a map ξ̃λ : R×R→ R.
In a manner similar to the proof of Lemma 2.9 the symmetries of (2.1) yield in the
present situation

ξ̃λ(y1, y2) = −ξ̃λ(−y1, y2), ξ̃λ(y1, y2) = −ξ̃λ(y1,−y2);

note again that this is valid for all λ. In particular,

ξ̃λ(0, ·) ≡ 0 and ξ̃λ(·, 0) ≡ 0 (2.29)

for all λ. Thus, we can write

ξ̃λ(y1, y2) = y1y2 · rλ(y1, y2),

and in order to describe the solution set of (2.24) completely, we impose the following
non-degeneracy condition
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2. The reversible homoclinic pitchfork bifurcation

γ(0)

Y c

Fix (R2) ∩ Z

Fix (R1) ∩ Z

Ẑ

Figure 2.3.: Relative position of Tγ(0)W
cs
λ = Tγ(0)W

cu
λ and the fixed spaces of the invol-

utions Ri in Z

Hypothesis 2.7. rλ=0(0, 0) 6= 0.

This condition is equivalent to assuming D2ξ̃λ=0(0, 0) to be non-singular and it ensures
that the zero level set of ξ̃λ is given in (2.29). Again applying Lemma 2.8 we find for
each λ sufficiently small a curve of intersection points of W cs

λ and W cu
λ in Fix (R1) and

one in Fix (R2). Let us summarize this in the next

Theorem 2.10. Under the Hypotheses 2.1 - 2.7 we find curves D1 and D2 in Σ such
that for each point of Di the orbit through this point is an Ri-symmetric one-homoclinic
orbit to W c

loc,λ. The curves D1,D2 intersect in a unique point which corresponds to
the fast decaying homoclinic orbit to 0, provided by Theorem 2.6. There exist no other
one-homoclinic orbits than those described above.

2.4. The bifurcation scenario for one-homoclinic orbits

In Theorem 2.10 we have seen that for each λ sufficiently small the intersection of
W cs

λ and W cu
λ in Σ consists of two curves D1,2. To derive a complete description of the

homoclinic bifurcation it remains to study the asymptotic behaviour of the corresponding
homoclinic orbits. For this we project the solution set of (2.24) along the stable fibres
of W c

loc,λ onto this manifold. For simplicity we return to the class of four-dimensional
systems in this part, that is, we set n = 1 in (2.1). This allows a very convenient
geometric arguing.

Let us introduce the projection method. Restricting to systems in R4 we have dim W cs
λ =

dim W cu
λ = 3 and we can think of W cs

λ as being foliated into one-dimensional fibres, i.e.
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x

W c
loc,λ

y

Mφt(y),λMy,λ

φt(x)

φt(y)

Figure 2.4.: Invariance of the stable fibres: The orbit through x ∈ My,λ stays in the fibre
with base point φt(y) for all t ≥ 0.

from each y ∈ W c
loc,λ there originates a one-dimensional manifold My,λ ⊂ W cs

λ , that is

W cs
λ =

⋃
y∈W c

loc,λ

My,λ.

In particular, M0,λ is nothing but the fast decaying homoclinic orbit Γ(λ). We infer that
for λ sufficiently small there exists a neighbourhood U of 0 (independent of λ) such that
for each y ∈ U the fibre My,λ intersects Σ transversally which shows that the projection
along the fibre is injective. Furthermore, this projection is smooth in both y and λ, see
[79]. We thus conclude that the images of the curves Di under the projection are smooth
curves Ci in W c

loc,λ.

Finally, the fibres enjoy an invariance property which is of fundamental importance for
the following discussion. Choose y ∈ W c

loc,λ and let φt(y) denote the solution of (2.1)
with φ0(y) = y. Then we have

φt(My,λ) ⊂ Mφt(y),λ (2.30)

as long as φτ (y) ∈ W c
loc,λ for all τ ∈ [0, t]. Hence, points in My,λ follow the orbit through

the base point y under the flow, see Figure 2.4. In particular, if y ∈ W c
loc,λ belongs to

a stable manifold of an equilibrium or periodic orbit itself, then each point in My,λ will
be transported to this orbit under the flow.

For the discussion of one-homoclinic orbits to W c
loc,λ it suffices to consider the projection

of D1,2 at λ = 0 since we can infer the images for λ sufficiently small from this by
continuity. The above discussion immediately shows that the curves C1,2 intersect only
in 0. We impose a final transversality condition concerning the projection.

Hypothesis 2.8. Ci t Fix (R1) in W c
loc,λ=0 for i = 1, 2.
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2. The reversible homoclinic pitchfork bifurcation

λ > 0λ < 0 λ = 0

Figure 2.5.: Dynamics in W c
loc,λ together with the curves C1,2 (plotted dashed) needed

for the detection of one-homoclinic orbits I: The eye case

Geometrically, we demand that D1,2 are projected on curves that are not tangent to the
fixed space of the involution R1. This is obviously a non-degeneracy condition which
concerns the geometry within the centre stable manifold W cs

λ=0. We postpone a detailed
discussion of Hypothesis 2.8. In the following we demonstrate how Hypothesis 2.8 allows
us to give a complete classification of bifurcating one-homoclinic orbits to W c

loc,λ.

We have seen in Theorem 2.10 that the set of homoclinic orbits to W c
loc,λ does not depend

on the local bifurcation of 0. Differences arise only now, when we investigate in detail
which orbits in W c

loc,λ are connected by (large) homoclinic or heteroclinic orbits.

2.4.1. The eye case - the reversible homoclinic pitchfork bifurcation

Let us redraw Figure 2.1 including the curves C1,2 of points x ∈ W c
loc,λ whose fibres

intersect Σ in points on one-homoclinic orbits to W c
loc,λ. We then obtain Figure 2.5.

We can now discuss the type of orbits this bifurcation diagram yields. Let us start
with λ ≥ 0. Note first that Hypothesis 2.8 forbids intersection points of C1,2 with the
stable and unstable manifolds of 0 in W c

loc,λ others than the origin, since these manifolds
become tangent to Fix (R1) as λ → 0. Therefore the curves C1,2 only contain points
whose orbits leave W c

loc,λ (apart from 0). And hence, there only exists the fast decaying
one-homoclinic orbit to 0 whose existence has been established in Theorem 2.6.

For λ < 0 we find a large variety of one-homoclinic orbits. Again intersection points of
Ci with bounded solutions in W c

loc,λ are of interest. First we observe from Figure 2.5 that
both Ci, i = 1, 2 intersect each periodic orbit in W c

loc,λ twice. Every such intersection
point corresponds to a symmetric one-homoclinic orbit to a periodic orbit. Indeed,
assume that Ci intersects the periodic orbit Γp ⊂ W c

loc,λ. First, (2.30) shows that the
corresponding solution that starts in Σ approaches Γp as t →∞. Moreover, considering
a point Γp∩Ci we know from the construction that this solution starts in Fix (Ri) which
immediately shows that for t → −∞ it approaches RiΓp = Γp.

Finally, we discuss the intersection points of Ci with the heteroclinic cycle in W c
loc,λ. To

these points there correspond solutions in W cs
λ that approach the equilibria η,R2η as

t → ∞ by the invariance property (2.30). The intersections of the cycle with C1 give
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λ < 0 λ = 0 λ > 0

Figure 2.6.: Dynamics in W c
loc,λ together with the curves C1,2 (plotted dashed) needed

for the detection of one-homoclinic orbits II: The figure-eight case.

rise to R1-symmetric solutions which therefore approach R1η = η,R2η as t → −∞, i.e.
these solutions are homoclinic to the equilibria. This shows that a reversible homoclinic
pitchfork bifurcation, as introduced in Section 1.3, occurs. Similarly, the intersection
points of the cycle with C2 imply the existence of a (large) heteroclinic cycle near the
primary homoclinic orbit Γ. It is important to note that Hypothesis (2.8) implies η,
R2η /∈ Ci. Therefore, the rate at which the detected homoclinic and heteroclinic orbits
approach η, R2η is determined by the behaviour in W c

loc,λ. We summarize the results as
follows.

Theorem 2.11 (One-homoclinic orbits in the eye case). Consider (2.1) under the
Hypotheses 2.1 - 2.8 and assume moreover that the normal form for the local bifurcation
of the equilibrium 0 is given by (2.8). Then for each λ sufficiently small there exists a
fast decaying homoclinic orbit to the origin which is symmetric with respect to both R1

and R2.

In addition for λ < 0 every periodic orbit in W c
loc,λ is connected to itself by two pairs of

R1-symmetric and R2-symmetric homoclinic orbits, respectively. Moreover, the equilibria
η and R2η are connected to itself by R1-symmetric homoclinic orbits, and furthermore
there exists a symmetric heteroclinic cycle between η, R2η.

2.4.2. The figure-eight case

The procedure for the second type of the local pitchfork bifurcation is completely ana-
logous to the one above. We start again by plotting the centre manifolds W c

loc,λ together
with the curves Ci in Figure 2.6. (Recall that the behaviour in Σ was completely inde-
pendent from the bifurcation of 0.)

We can analyse the intersection points of Ci with orbits in W c
loc,λ in a similar fashion. So

for λ ≤ 0 we see that each curve Ci intersects each periodic orbit surrounding the centre 0
two times. Hence, there exist two Ri-symmetric homoclinic orbits to each periodic orbit
in W c

loc,λ.

The analysis for λ > 0 requires a closer look at the figure-eight in W c
loc,λ. It is important
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that for λ → 0 the stable and unstable manifold of the saddle 0 (λ > 0) become
tangent to Fix (R1). This is an immediate result of an analysis of the corresponding
(Hamiltonian) normal form system (2.9). So for λ sufficiently small Hypothesis 2.8
prevents intersections of the curves Ci with the region bounded by the figure-eight.
Therefore we only find intersections of Ci with periodic orbits that surround all three
equilibria.

Theorem 2.12 (One-homoclinic orbits in the figure-eight case). Consider (2.1)
under the Hypotheses 2.1 - 2.8 and assume moreover that the normal form for the local
bifurcation of the equilibrium 0 is given by (2.9). Then for each λ sufficiently small there
exists a fast decaying homoclinic orbit to the origin which is symmetric with respect to
both R1 and R2. No other one-homoclinic orbits to equilibria exist.

In addition for λ ≤ 0 every periodic orbit in W c
loc,λ is connected to itself by two pairs of

R1-symmetric and R2-symmetric homoclinic orbits, respectively. For λ > 0 we find such
two pairs of homoclinic orbits for the periodic orbits encircling all three equilibria.

2.4.3. Application to the model systems

We finally return to the umbilic systems (1.1) and demonstrate how the results obtained
within the general frame apply to these systems and necessarily imply the occurrence of
a reversible homoclinic pitchfork bifurcation. As usual we concentrate on the reversible
hyperbolic umbilic f−. Recall from Section 1.3 that a reversible homoclinic pitchfork
bifurcation has been numerically detected for f− at parameter values α > 0, β = −3α2,
i.e. on the bifurcation curve B4 in Figure A.1.

In order to verify the numerical results we obviously have to check the various hypo-
theses and non-degeneracy conditions imposed in Theorem 2.11. First we know from
Section A.2 that the Hypotheses 2.1-2.5 are fulfilled for f− at the above parameter values.
Note that Hypothesis 2.4 requires to compute the normal form for the local bifurcation
which has not been done explicitly in Section A.2. The results in that section, how-
ever, immediately show that the system falls within the eye case scenario. Furthermore,
Hypothesis 2.6 is automatically fulfilled since we consider four-dimensional systems.

It would be more difficult to prove that f− satisfies the non-degeneracy conditions in Hy-
potheses 2.7 and 2.8. Fortunately, we do not have to do this. In fact, these assumptions
only exclude the existence of additional homoclinic orbits to W c

loc,λ. More precisely, the
bifurcation equation (2.24) is always solved if y1 = 0 or y2 = 0, which corresponds to the
curves D1,2. If Hypothesis 2.7 is violated the solution set of this equation may contain
additional curves and may vary with the parameter λ. Furthermore, Hypothesis 2.8
ensures that that the curves C1,2 do not intersect the additional equilibria η, R2η that
are created in the local bifurcation. Thus, if Hypothesis 2.8 is violated, then additional
‘orbit flip’ homoclinic and heteroclinic orbits to η, R2η may exist. Nevertheless, we
have
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Corollary 2.13. Consider f− with parameter values in a suitable neighbourhood of the
bifurcation curve B4 in Figure A.1. Then the statements of Theorem 2.11 apply to the
orbit γhom, homoclinic to ξ2. In particular, for parameter values −(3+ε)α2 < β < −3α2

and α > 0, with ε > 0 sufficiently small, there exist two R1-symmetric homoclinic orbits
to the equilibria ξ3,4, and these equilibria are connected by a further heteroclinic cycle.

We remark once more that there may exist additional one-homoclinic orbits to orbits
in a neighbourhood of ξ2. Moreover, additional homoclinic and heteroclinic orbits to
ξ3,4 may be contained within the strong stable and strong unstable manifold of these
equilibria and thus be subject to a reversible orbit flip bifurcation. Note, however, that
the solutions computed in Section 1.3 are generic in that they do not lie in the strong
(un)stable manifolds of ξ3,4.

Remark 2.6. In the case of the reversible elliptic umbilic the above statements apply
to the orbit γhom at parameter values α < 0, β = 3α2.

2.5. Existence of two-homoclinic solutions

In this section we investigate the bifurcation of symmetric two-homoclinic orbits to
W c

loc,λ from the primary homoclinic orbit Γ. Recall that a homoclinic orbit is called
two-homoclinic if it is contained in a neighbourhood of the primary orbit Γ and makes
exactly two windings, or, equivalently, if it intersects the cross section Σ for exactly two
times.

Symmetric homoclinic orbits W c
loc,λ can again be detected by studying the intersection

of W
cs(cu)
λ with the fixed spaces of the involutions Fix (Ri). In general, there are two

possibilities. Intersections can occur either near the equilibrium 0 or near the point
γ(0), that is, in Σ. In the former case orbits through such points of intersection is
N -homoclinic with even N , whereas the latter case leads to N -homoclinic orbits with
odd N . Furthermore, if points of intersections exist at all, then we would expect the
intersection of Fix (Ri) and W

cs(cu)
λ to be transverse. A simple count of dimensions

reveals that thus one-parameter families of homoclinic orbits exist, just as in the results
for one-homoclinic orbits, obtained above.

It is however, difficult, to prove the existence of intersection points of the manifold.
Below we investigate this problem for the case of two-homoclinic orbits in the setting of
this chapter. We will present a geometric approach and consequently consider only four-
dimensional systems. Moreover, we restrict to an analysis in the case of the reversible
homoclinic pitchfork bifurcation, i.e. we assume that the local bifurcation is given by
the normal form (2.8). We study the existence of two-homoclinic orbits to W c

loc,λ for
parameter values λ < 0 where three equilibria exist.

The difficulties in detecting N -homoclinic orbits stem from the fact that we have to
analyse the behaviour of W

cs(cu)
λ when these manifolds pass by the centre manifold
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W c
loc,λ. A description of this behaviour is achieved by combining results by Jones et. al.

[52, 53], obtained in the frame of singularly perturbed systems, with results by Deng
about the behaviour near nonhyperbolic equilibria [27].

2.5.1. The geometric setup

In this section we consider the system (2.1) with x ∈ R4 and under the assumptions
of Theorem 2.11. This means in particular, that the local bifurcation of 0 is assumed
to be of eye type. We study the existence of two-homoclinic orbits to W c

loc,λ for some
fixed parameter value λ < 0 (sufficiently close to 0) where 0 is a saddle centre and the
additional equilibria η, R2η are connected by a small heteroclinic cycle.

Two-homoclinic orbits are detected as intersections of W
cs(cu)
λ with the fixed space

Fix (R2) near 0. For this we follow solutions starting in W cu
λ ∩ Σ and investigate their

intersection with the fixed spaces in some suitable three-dimensional section Σ0 near 0.
We study a Poincaré map P : domP ⊂ Σ → Σ0, where domP denotes the domain of
P . This set is characterized below.

Definition of P
Let us first introduce the section Σ0. For simplicity we choose suitable local coordinates
in some neighbourhood Û of 0, such that the local centre stable and centre unstable
manifold W

cs(cu)
loc,λ are flattened out. So let us introduce coordinates x = (xs, xu, y), in

which

W cs
loc,λ = {xu = 0}, W cu

loc,λ = {xs = 0}, W c
loc,λ = {xs = xu = 0}.

Moreover, in [27] Deng proves that it is always possible to choose admissible variables in
which the local stable and unstable fibres are flattened out, as well. Hence, with no loss
of generality we can for instance assume that the local stable fibre with base point y0 is
given by Myo,λ = {xu = 0, y = y0} in Û , see also [54]. The coordinates can be chosen
such that the reversibility of the systems is preserved, and the involutions Ri now read
for y = (y1, y2)

R1 : (xs, xu, y1, y2) → (xu, xs, y1,−y2), R2 : (xs, xu, y1, y2) → (xu, xs,−y1, y2),

compare also with Section 2.2.1. In local coordinates equation (2.1) becomes

ẋs = −µxs + hs(xs, xu, y, λ), ẋu = µxu + hu(xs, xu, y, λ),

ẏ = g(y, λ) + hc(xs, xu, y, λ)
(2.31)

with nonlinearities hs, hu, hc whose derivatives vanish at 0, and which satisfy

hs(0, xu, y, λ) = hu(xs, 0, y, λ) = 0, hc(0, xu, y, λ) = hc(xs, 0, y, λ) = 0,
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see [27]. By g(·, λ) we denote the (normalized) vector field in W c
loc,λ, as in equation (2.6).

Note that in (2.31) we assume the positive eigenvalue µ of D1f(0, 0) to be independent
of λ. Since we consider (2.1) with fixed λ < 0 below we do not have to worry about
λ-dependence of terms in (2.31).

We introduce the section Σ0 at 0 by setting

Σ0 = {x = (xs, xu, y) : xs = xu}.
Note that Σ0 contains both Fix (R1) and Fix (R2). In the notation of Section 2.3 we
therefore have Σ0 = Z. Furthermore, we find that W c

loc,λ ⊂ Σ0. A straightforward
computation involving the local normal form (2.31) shows that orbits, which pass by the
centre manifold W c

loc,λ, intersect Σ0 transversally. In Figure 2.7 we give an impression.

We now return to the situation within the cross section Σ = γ(0) + Z to the primary

orbit Γ. We consider the two-dimensional traces of the first intersection of W
cs(cu)
λ with

Σ. According to Lemma 2.2 these manifolds have a common tangent space, and since we
deal with four-dimensional systems we have Tγ(0) (W cs

λ ∩ Σ) = Tγ(0) (W cu
λ ∩ Σ) = Y c. We

can therefore represent these traces as graphs of functions h
cs(cu)
λ : Y c → Ẑ. Moreover,

in Section 2.4 we have shown that we can identify points in W
cs(cu)
λ with the base point

of the respective (un)stable fibre. Now we can use this projection along fibres to obtain

‘pictures’ in W
cs(cu)
λ ∩ Σ of orbits in W c

loc,λ, as for instance in Figure 2.8.

We are interested in orbits in W cu
λ that start in Σ, intersect Σ0 and return to Σ under

the flow of the system. This motivates the next definition, see also [42]

Definition 2.2. The manifold W cu
λ lies inside W cs

λ at the point (yc, h
cu
λ (yc)) ∈ W cu

λ ∩Σ,
if hcu

λ (yc) < hcs
λ (yc). If hcu

λ (yc) > hcs
λ (yc), then W cu

λ is said to lie outside W cs
λ at the point

(yc, h
cu
λ (yc)) ∈ W cu

λ ∩ Σ.

Let us now consider the solution xp(·) through some point p ∈ W cu
λ ∩ Σ, such that

xp(0) = p, and assume that there exists a time τ ∈ R+ such that x(τ) ∈ Σ0. If the orbit
visits Σ0 more than once, then take τ as the smallest time. The assignment p 7→ xp(τ),
defines a map

P : domP → Σ0.

The above definition is related to the domain domP as the following general observation
shows. We consider the part of W cs

λ from Σ to W c
loc,λ and think of W cs

λ and W c
loc,λ as

being identified. This yields a closed manifold W̃ cs
λ in R4. Let us assume that W̃ cs

λ is

not twisted. Since dim W̃ cs
λ = 3 it divides phase space, and therefore only those parts of

W cu
λ ∩Σ that lie inside W cs

λ intersect Σ0 and return to Σ afterwards, see also Figure 2.7.

On the other hand, if W̃ cs
λ is twisted then dom P consists of those parts of W cu

λ that lie
outside W cs

λ .

This fact can be used to characterize domP in our situation. For that we return to the
bifurcation equation for one-homoclinic orbits (2.24). Recall that with yc = (y1, y2) the
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Σ0 Σ

W c
loc,λ

W cs
λ

W cu
λ

b)
W cu

λ
W c

loc,λ

Σ0 Σ

W cs
λ

a)

Figure 2.7.: Schematic description of the domain of P : If W̃ cs
λ is not twisted, then the

part of W cu
λ that starts inside W cs

λ in Σ will intersect Σ0 and eventually
return to Σ (panel a)). Points outside W cs

λ are not transported back to Σ
(panel b)). Two dimensions are missing in this picture.

equation could be written as

ξ̃λ(y1, y2) = y1y2 · rλ(y1, y2) = 0,

where yi represent the Fix (Ri)-coordinate of yc in Y c. Moreover, using the graph repres-

entation of W
cs(cu)
λ ∩Σ introduced above, we can also write ξ̃λ(y1, y2) = hcu

λ (yc)−hcs
λ (yc).

Therefore the sign of ξ̃λ determines the domain of P . Since rλ=0(0, 0) 6= 0 by Hypo-
thesis 2.7, the domain must consist of two opposite quadrants in Y c, see Figure 2.8.

We have to distinguish two different possibilities, which are illustrated in Figure 2.8.
In this figure we show a plot of W cu

λ ∩ Σ. For simplicity we have flattened out this
manifold. Furthermore, a picture of the heteroclinic cycle in W c

loc,λ is achieved by a
projection along unstable fibres. (Recall that we are concerned with the case λ < 0 such
that three equilibria exist in W c

loc,λ.) Of particular importance to us are the unstable
fibres of the equilibria η, R2η. The corresponding intersection points in Σ are indicated
by dots, denoted pη, Spη in Figure 2.8. As we have seen, Hypothesis 2.8 prevents that
homoclinic orbits to η, R2η exist, which are contained in the strong unstable manifold
of these equilibria. Therefore, the unstable fibres of the equilibria do not lie in Fix (Ri)
in Σ. We conclude that either both pη, Spη or none of the points are contained in
domP . In the following we restrict to the latter possibility. In this case we can prove
the existence of R2-symmetric two-homoclinic orbits to W c

loc,λ. Hence, let us assume

Hypothesis 2.9. Let pη, Spη denote the points in which the unstable fibres of η, R2η
intersect Σ. Then pη, Spη /∈ domP .

The Poincaré map P is used for proving the existence of two-homoclinic orbits to W c
loc,λ

in the following way : In Figure 2.8, consider the upper point pu where the projection
of the heteroclinic cycle intersects Fix (R2), i.e. the line y1 = 0, in Σ. The point pu is
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y1

y2

Spη

pη

a) y2

pη

Spη

b)

pr

pu

y1

Figure 2.8.: Illustration of the two possibilities of domP in Σ (filled with grey). The
heteroclinic cycle in W c

loc,λ is projected along unstable fibres onto W cu
λ . The

points, where the unstable fibres of η, R2η intersect Σ are denoted by pη,
Spη. Thus, the situation in panel a) corresponds to Hypothesis 2.9.

contained in the unstable manifold of the equilibrium η. Since pu ∈ Fix (R2) a solution
through pu is therefore asymptotic to R2η as time t → ∞. We will show that in a
neighbourhood of pu in domP there exist points whose P-image is arbitrarily close to
R2η in Σ. In a similar way, we find points in a neighbourhood of pr ∈ Fix (R1) which are
mapped in a neighbourhood of η by P . (Note that the orbit through pr is homoclinic
to η.) Thus, the P-images of curves in domP that connect such points near pu with
those near pr necessarily have to intersect Fix (R2) in Σ0, see Figure 2.9 below. We thus
conclude that there exists a one-parameter family of R2-symmetric homoclinic orbits to
W c

loc,λ.

In the next part we establish the existence of suitable points near pu, pr by a careful
study of the Poincarè map P .

2.5.2. Analysis of the Poincaré map P
Consider a point p ∈ domP . We follow the solution xp of (2.1) with xp(0) = p until it
intersects Σ0 at some time τp. The corresponding trajectory is divided into two parts.
The second part describes the behaviour of xp in a neighbourhood of W c

loc,λ, the first one
the behaviour outside this neighbourhood. For that let us introduce a box

B := {(xs, xu, y) : |xs| ≤ δ1, |xu| ≤ δ1, ||y|| < δ2}

where the δi are chosen such that B ⊂ Û .

The difficult task lies in describing the behaviour of solutions in B. Here it is of advantage
that we are only interested in solutions that start close to W cs

λ in Σ. Let us first analyse,
how such solutions enter the box B. Consider the flight from Σ to B. For all p ∈ Σ the
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orbit through p will enter B through the side Bs := {xs = δ1} of B. In particular, if
p ∈ W cs

λ ∩ Σ, then there exists a time τ such that xp(τ) = (δ1, 0, yp). A straightforward
computation, using again (2.31), shows that the orbit intersects the side Bs transversally
at xp(τ). Thus, Bs is a cross section to the flow and the corresponding map from Σ to
Bs is a diffeomorphism and we obtain as a result.

Lemma 2.14. If p ∈ Σ is sufficiently close to W cs
λ , then the orbit through p enters B

in some point (xs, xu, y) = (δ1, ε, yp). Moreover, ε → 0 as d(p,W cs
λ ) → 0, where d(·, ·)

denotes the standard metric.

The behaviour of solutions that enter B in points (δ1, ε, yp) is described by the following
lemma which is used in the proof of an ‘exchange lemma with exponentially small error’
in [52]. In this lemma let µ̃ be a constant close to but smaller than µ.

Lemma 2.15 ([52]). Let (xs, xu, y)(·) be a solution of (2.31). As long as the trajectory
stays in B, there exist constants cs, cu, c, K > 0 such that, for s ≤ t

1) |xs(t)| ≤ cs|xs(s)|e−µ̃(t−s)

2) |xu(t)| ≥ cu|xu(s)|eµ̃(t−s)

3)
∫ t

s
|xs(τ)| · |xu(τ)| dτ ≤ Kec(s−t)

Of concern to us is the following interpretation, which can be found in a similar version
in [42, 53].

Lemma 2.16. Let xcs(·) be a solution in W cs
loc,λ through xcs(0) = (δ1, 0, y0) and assume

that the solution through y0 in W c
loc,λ is bounded. For each τ > 0 there exists a ∆0 > 0

such that for all ∆ ∈ (0, ∆0) the solution through (δ1, ∆, y0) stays in B for all t ∈
[0, τ ]. If τ is chosen large enough, there is a time interval where both xs and xu are
exponentially small. In this case a solution leaves B at time τ through point (ε, δ1, z1)
with ε exponentially small.

During the time interval where xs and xu are exponentially small the solution follows
the flow in the centre manifold W c

loc,λ closely. Hence, the behaviour in W c
loc,λ determines

where the solution intersects the cross section Σ0. This geometric consideration can be
put on rigorous footing using general results by Deng [27] about the behaviour near
nonhyperbolic equilibria. Observe that the solution in Lemma 2.16 can be characterized
by a Shilnikov problem in that it fulfills

xs(0) = δ1, xu(τ) = δ1, y(0) = y0. (2.32)

In [27] Deng shows that given the Shilnikov data (τ, δ1, δ1, y0) there exists a unique
solution (xs, xu, y)(t; τ, δ1, δ1, y0) of the Shilnikov problem (2.32). Moreover, he obtains
exponential expansions for the solution. Let Di denote the i-th derivative in all arguments
of some function. We quote from Lemma 3.1 in [27]:
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Lemma 2.17. Let (xs, xu, y)(·) denote the (unique) solution of the above Shilnikov prob-
lem. Denote by yc the solution in W c

loc,λ with yc(0) = y0, and assume that this solution
is bounded. Then there exists µ̃ ∈ (0, µ) and K > 0, such that for all t ∈ [0, τ ] and
i = 0, 1, 2, . . .

1) |Dixs(t)| ≤ Ke−µ̃t

2) |Dixu(t)| ≤ Keµ̃(t−τ)

3) y(t) = yc(t) + R(t), where |DiR(t)| ≤ Ke−µ̃τ .

Note that the first two estimates are similar to Lemma 2.15 above.

We can summarize the results of this technical part as follows. Let us once more consider
a solution (xs, xu, y)(·) which enters B sufficiently close to W cs

loc,λ. The time τ this
solutions spends in B can be controlled by the distance to W cs

loc,λ. In particular, this
distance determines at what time τ̂ ≈ τ/2 the solution intersects Σ0. During its passage
through B there is a time interval where both xs and xu are exponentially small, and y
follows its reference solution yc in W c

loc,λ exponentially closely according to points 1)-3)
in Lemma 2.17. With regard to our original problem concerning the Poincaré map we
conclude that the solution intersects Σ0 in an exponentially small neighbourhood of the
position of the reference solution yc, see estimate 3) in Lemma 2.17.

We are finally in position to prove the existence of points near pu, pr whose P-image lies
in a neighbourhood of R2η and η, respectively.

Lemma 2.18. For each ε > 0 there exist points p1, p2 (depending on ε) in the same
quadrant of domP, such that d(Pp1, η) < ε, d(Pp2, R2η) < ε in Σ0. As before d(·, ·)
denotes the usual metric.

Proof. Let us describe how to find points p1. For that we follow the solution through
the distinguished point pr ∈ W cs

λ in Σ, see again Figure 2.8. This point enters the box
B at some point (xs, xu, y) = (δ1, 0, yr). Since the local stable fibres are flattened out in

Û ⊃ B, the centre manifold solution yc with yc(0) = yr describes the heteroclinic orbit
Γh from R2η to η. We consider solutions through points (xs, xu, y) = (δ1, ∆, yc(s)), with
s ∈ (−1, 1). If ∆ = 0 all of these points lie on stable fibres of the orbit Γh. By the above
computations we thus find that, given an ε-neighbourhood U of η, there exists a ∆ such
that every orbit through points (δ1, ∆, yc(s)) intersects Σ0 in U .

It remains to show that there exists a point in domP that enters B at a point of the
form (δ1, ∆, yc(s)). This can be achieved by following solutions through these points
backward to the cross section Σ. If ∆ = 0 the solutions intersect Σ in some curve which
is contained in W cs

λ ∩Σ and transversally intersects W cu
λ ∩Σ in pr. Applying Lemma 2.14

we conclude that for ∆ > 0 small the ‘backward image’ of {(δ1, ∆, yc(s)), s ∈ (−1, 1)}
also intersects W cu

λ at some point p1 which belongs to domP and whose P-image is
ε-close to η, by construction.

The existence of p2 is proved similarly using the distinguished point pu.
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pr
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p1

pu C
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Σ0 Fix (R2)
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Figure 2.9.: Existence of two-homoclinic orbits to W c
loc,λ. The left part shows a quadrant

of domP in Σ. The P-image of curves through p1 and p2 must intersect
Fix (R2) in Σ0, as shown in the right part. The intersection point represents
a two-homoclinic orbit.

Let us now choose ε > 0 sufficiently small and take points p1, p2 according to the above
lemma. We can connect these points by some curve C in domP . By continuity, P(C) is
a curve in Σ0 with end points P(pi) on different sides of Fix (R2). Therefore P(C) has
to intersect Fix (R2) in Σ0, giving rise to a R2-symmetric homoclinic orbit to W c

loc,λ, see
Figure 2.9. Since C can be chosen arbitrarily we obtain

Theorem 2.19. Consider (2.1) with λ < 0, under the assumptions of Theorem 2.11 and
Hypothesis 2.9. There exists a one-parameter family of R2-symmetric two-homoclinic
orbits to W c

loc,λ.

By choosing a special curve C we can prove the existence of further connecting orbits
between η, R2η. Indeed, we find parts of the unstable manifold of η, R2η in domP . These
parts stem from the projected heteroclinic cycle in W cu

λ , see for instance Figure 2.8 again.
We can take C to be the part between pu and pr in Figure 2.8 and conclude by the same
argument as above that an orbit in the unstable manifold of η (R2η) intersects Fix (R2)
near 0.

Theorem 2.20. In the setting of Theorem 2.19 above there exists a two-heteroclinic
cycle between the equilibria η, R2η.

Remark 2.7. It should be clear that the approach does not allow us to prove the
existence of R1-symmetric two-homoclinic orbits, since η, R2η ∈ Fix (R1). Hence, we
cannot control whether curves starting near η and ending near R2η intersect Fix (R1).
We remark further, that also in the case where Hypothesis 2.9 is violated (panel b) in
Figure 2.8) the presented method cannot be used to obtain existence results for two-
homoclinic orbits. The interested reader may easily be convinced of this fact by applying
the geometric idea to this case.
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2.5.3. Bifurcation ofN -homoclinic solutions in the umbilic systems

Let us finally return to the umbilic systems (1.1) and present some numerical results
about N -homoclinic orbits. Again we concentrate on the reversible hyperbolic umbilic
f−. According to Corollary 2.13 a reversible homoclinic pitchfork bifurcation occurs for
this system at parameter values α > 0, β = −3α2. Hence, parameter values β < −3α2

are of interest in the following. Unfortunately, we cannot prove that the theory applies
to f−, since it is almost impossible to check whether the technical, but fundamental
Hypothesis 2.9 is fulfilled. Nevertheless, we present results of numerical computations
below.

We can compute N -homoclinic (and N -heteroclinic) orbits to equilibria of f− using
a homoclinic branch-switching method, developed by Oldeman et. al. in [70]. This
branch-switching uses continuation methods to ‘switch’ from a given one-homoclinic
solution to N -homoclinic solutions nearby. The computational scheme is based on ideas
from Lin’s method. The branch-switching is implemented in AUTO/HomCont.

We apply the method for investigating whether additional homoclinic and heteroclinic
orbits to the equilibria ξ3,4 of f− exist. We use the homoclinic orbits and heteroclinic
orbits which emerge in the reversible homoclinic pitchfork bifurcation of γhom as start-
ing solutions. Note that the branch-switching can only be applied to homoclinic orbits.
However, we have already described that the treatment of homoclinic and heteroclinic
orbits to ξ3,4 can be unified by a Z2-symmetry reduction of the system. For the compu-
tation of heteroclinic orbits, we therefore have to consider the reduced system (A.7).

We have applied the method to f− with parameter values α = 1, β = −3.5. Here
we have computed N -homoclinic solutions to ξ3 for N = 2, 3, 4. Precisely one N -
homoclinic solution for each N could be computed. Plots of the x1-and x3-component
of the solutions are presented in Figure 2.10. We see that these orbits first follow the
one-homoclinic solution to ξ3 until they come close to Fix (S) (x1 = 0) and then follow
γhom before they return to ξ3. Therefore the orbits are not N -homoclinic orbits in the
classic sense, since they are composed of two homoclinic solutions to different equilibria.
But along the lines of this chapter it is perfectly justified to view them as N -homoclinic
orbits to the centre manifolds.

We could not compute further heteroclinic orbits between ξ3,4. This, however, does not
exclude the existence of such orbits since numerical difficulties have been encountered
because of the loss of smoothness in the point y1 = y2 = 0 in the reduced system (A.7).

Finally, we point out one aspect that could not be covered by the general analysis, which
has been performed for a fixed value of the parameter λ < 0: A continuation of the N -
homoclinic orbits up to the critical parameter values suggests that these orbits emerge in
the reversible homoclinic pitchfork bifurcation of γhom. In particular, no N -homoclinic
solutions can be computed for parameter values β > −3α2, where only ξ2 exists.
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2. The reversible homoclinic pitchfork bifurcation
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Figure 2.10.: Plots of 2-, 3-, and 4-homoclinic solutions created in the reversible homo-
clinic pitchfork bifurcation of γhom. The solutions have been computed at
α = 1, β = −3.5. The x1- and x3-components of the solutions are shown.
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CHAPTER 3

Homoclinic orbits to degenerate equilibria -
other cases

3.1. Introduction

In this part we continue the study of homoclinic orbits to degenerate equilibria. In the
main part we generalize the studies of Chapter 2 to the class of purely reversible systems.
Our analysis proceeds along similar lines as before. There are, however, differences. In
the case of a purely reversible system a second parameter is needed for controlling the
existence of fast decaying homoclinic orbits to 0, such that the homoclinic bifurcation is
of codimension-two. In addition, the generic local bifurcation of the equilibrium is either
a reversible saddle-centre bifurcation or transcritical bifurcation. We consider the case
of the transcritical bifurcation, since we are interested in the transition of real saddle to
saddle centre for the equilibrium, associated to the homoclinic orbit.

In the analysis we concentrate on the bifurcation of one-homoclinic orbits. For the
detection of one-homoclinic orbits to W c

loc,λ we do not employ Lin’s method, but rely
on a geometric reasoning. Consequently, we restrict the analysis to four-dimensional
systems in this chapter. We achieve a complete description of one-homoclinic orbits to
W c

loc,λ in Theorem 3.3, see also Figure 3.3.

Of particular interest to us is the analysis of one-homoclinic orbits to 0, because of
an application to solitary wave solutions of PDE models, that we have in mind (see
below). If the origin is a saddle centre, homoclinic orbits to this equilibrium are of
codimension-one, whereas they are structurally stable when 0 is hyperbolic. We show
that homoclinic orbits to the saddle 0 are generically destroyed either by developing
an algebraically decaying tail or through a fold, depending on the sign of the second
perturbation parameter.

After the analysis of the bifurcation in purely reversible systems we consider systems
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3. Homoclinic orbits to degenerate equilibria - other cases

with an additional Z2-symmetry in Section 3.4. Finally, the important class of reversible
Hamiltonian systems is studied in Section 3.5.

In the final Section 3.6 we apply the theory to a problem for solitary waves, which
concerns the transition from embedded solitons to gap solitons. Details are provided in
Section 3.6, where the general results are also shown to match numerical computations
on examples from water-wave theory and nonlinear optics.

The chapter is based on the joint paper [87] with Alan Champneys.

3.2. The setting

In this part we consider four-dimensional ODEs

ẋ = f(x, λ), x ∈ R4, λ ∈ Rl (3.1)

and assume them to be R-reversible.

Hypothesis 3.1. There exists a (linear) involution R : R4 → R4 such that

f(Rx, λ) + Rf(x, λ) = 0, ∀x, λ.

Moreover, we have dim(Fix (R)) = 2.

Turning to equilibria of (3.1) we assume that the origin is an equilibrium of (3.1) which
is degenerate for λ = 0, that is

Hypothesis 3.2. f(0, λ) = 0 ∀λ, and σ(D1f(0, 0)) = {0} ∪ {±µ} with 0 being a non-
semisimple eigenvalue and µ ∈ R+.

This hypothesis assumes the existence of an equilibrium in 0 for all λ and therefore
prevents a local saddle-centre bifurcation of 0. Instead we will find that Hypothesis 3.2
generically results in a transcritical bifurcation of the equilibrium. We have already
explained above that this bifurcation is of interest to us, since it leads to a transition
of 0 from real saddle to saddle centre. We also remark that Hypothesis 3.2 is again
generically met in one-parameter families of reversible ODEs.

Our final assumption concerns the existence of a homoclinic orbit Γ.

Hypothesis 3.3. At λ = 0 equation (3.1) possesses an orbit Γ = {γ(t) : t ∈ R}
homoclinic to 0, i.e. γ(t) → 0 as t → ±∞. Furthermore, Γ is R-symmetric and
fast decaying, i.e. we have RΓ = Γ, and choosing α such that 0 < α < µ we have
||γ(t)||eαt → 0 as t →∞.

In the following we study bifurcations of one-homoclinic orbits from the primary orbit Γ.
The procedure runs completely along the lines of Chapter 2. Via centre manifold theory
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we first analyse the local bifurcation of the 0-equilibrium, thereby introducing centre
stable and centre unstable manifolds. We then study the intersection of these manifolds
and detect one-homoclinic orbits to the centre manifolds. Afterwards the asymptotic
behaviour of these orbits is described by a projection along stable fibres.

To shorten the presentation we have now chosen to perform an analysis that consists
of purely geometrical considerations. The analytical machinery developed in the last
chapter can be applied to this problem in precisely the same way as above and yields the
same results. This is demonstrated in an earlier preprint version [86] of the article [87].
In particular, [86] shows that, similar to the last section, the results can be generalized to
higher-dimensional systems. Hence, our choice of considering four-dimensional systems
only is not restrictive.

3.3. Bifurcation of one-homoclinic orbits in the general
case

3.3.1. Bifurcation of the equilibrium

For the analysis of the local bifurcation we again turn to the extended system

ẋ = f(x, λ)

λ̇ = 0

with equilibrium (x, λ) = (0, 0). As before this allows to introduce an l + 2-dimensional

centre manifold Wc
loc and l + 3-dimensional centre (un)stable manifolds W

cs(cu)
loc . These

manifolds are foliated into {λ = const.}-slices which we again denote by W c
loc,λ and

W
cs(cu)
loc,λ , respectively.

In accordance with the reversibility we can choose W cs
loc,λ = RW cu

loc,λ and set W c
loc,λ =

W cs
loc,λ ∩W cu

loc,λ, see [49]. We can also extend the local manifolds W
cs(cu)
loc,λ along the orbit

Γ to derive global centre (un)stable manifolds. Again the global versions are denoted by
the same symbols without loc-index. We note that the symmetries of the local manifolds
are preserved such that RW cs

λ = W cu
λ .

By the Centre Manifold Theorem [82, 37] we can follow the evolution of small bifurcating
solutions of (3.1) in a family of planar reversible vector fields on W c

loc,λ. We use again
the fact that the local bifurcation is completely described by the normal form of the 0-
equilibrium. Introducing (y1, y2)-coordinates in W c

loc,λ the involution R can be assumed
to act as R : (y1, y2) 7→ (y1,−y2) and an appropriate reversible normal form is given in
[65, 64] by

ẏ1 = y2

ẏ2 =
∑

k≥1 ak(λ)yk
1 .
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3. Homoclinic orbits to degenerate equilibria - other cases

λ1 = 0

0 η

λ1 > 0λ1 < 0

0η

Figure 3.1.: Phase portraits for the normal form (3.2) of the reversible transcritical bi-
furcation in W c

loc,λ.

Note that by Hypothesis 3.2 we have a1(0) = 0 and we can ensure to deal with a generic
bifurcation by imposing

Hypothesis 3.4. a2(0) 6= 0.

With no loss of generality the normal form for the problem then reads

ẏ1 = y2

ẏ2 = λ1y1 + y2
1.

(3.2)

Being Hamiltonian, the system (3.2) is easily analysed. We find the familiar phase
portrait of the reversible transcritical bifurcation, see Figure 3.1. The origin is a centre
for λ1 < 0 and a saddle for λ1 > 0. In addition, for λ1 > 0 it is connected to itself by
a (small) homoclinic orbit Υ. If λ1 6= 0 there exists a second equilibrium η = (−λ1, 0).
The properties of η are the same as those of the 0-equilibrium except for the fact that
one has to reverse the sign of λ1.

3.3.2. Detection of one-homoclinic orbits

We now go on and investigate the bifurcation of one-homoclinic orbits to W c
loc,λ from

Γ. We study the intersection of W cs
λ and W cu

λ in some cross-section Σ to Γ. Of course
these manifolds may visit Σ many times. As in the first part of Chapter 2 our analysis
now concerns only those pieces of the manifolds that visit Σ for the first time, since
we are interested in one-homoclinic orbits. In a second step we analyse the asymptotic
behaviour of these homoclinic orbits in detail by performing the projection along stable
fibres. Fast decaying homoclinic orbits to the origin again play a distinguished role here.
A discussion of their bifurcation reveals the problem to be of codimension two.

Since Γ is symmetric we have Γ ∩ Fix (R) 6= ∅. Thus, we can choose γ(0) ∈ Fix (R) and
we introduce a cross-section Σ to Γ at γ(0)

Σ = γ(0) + Z,

where we can choose the space Z such that RZ = Z. This implies in particular that
Fix (R) ⊂ Z.
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W cu
λ ∩ Σ

W cs
λ ∩ Σ

Fix (R)

Dλ

Figure 3.2.: Position of the traces of W
cs(cu)
λ in Σ under Hypothesis 3.5

Recall that both W cs
λ and W cu

λ are l+3-dimensional. A simple count of dimensions shows
that these manifolds can intersect transversally along orbits. The following transversality
condition is crucial for our analysis.

Hypothesis 3.5. At γ(0) we have W cs
λ=0 t W cu

λ=0.

We claim that from Hypothesis 3.5 we can gather all the information we need. First
note that by standard arguments the transverse intersection of the manifolds will persist
for λ sufficiently close to 0. Now, the traces of W cs

λ and W cu
λ in the cross section Σ are

both two-dimensional. Their transverse intersection will therefore be a one-dimensional
object, i.e. some curve Dλ in Σ. Furthermore, Hypothesis 3.5 implies that the traces of
both W cs

λ=0 and W cu
λ=0 intersect Fix (R) transversally in Σ. Indeed, assuming this was not

the case would amount to (Tγ(0)W
cs
λ=0 ∩Z) ⊂ Fix (R). But because of RW cs

λ = W cu
λ this

would yield Tγ(0)W
cs
λ=0 = Tγ(0)W

cu
λ=0 in contradiction to Hypothesis 3.5. Repeating the

arguments above we see that both W cs
λ and W cu

λ intersect Fix (R) in Σ in some curve.
Hence, Dλ ⊂ Fix (R), see Figure 3.2 for an illustration. We formulate this result as a
first lemma.

Lemma 3.1. Under Hypotheses 3.1-3.5 equation (3.1) possesses a one-parameter family
of symmetric homoclinic orbits to the manifolds W c

loc,λ for λ sufficiently small. This
family of orbits intersects Σ in a smooth curve Dλ ⊂ Fix (R).

Because of Hypothesis 3.5 the set of one-homoclinic orbits to W c
loc,λ does not depend on

λ. But the structure within this set, for instance the number and type of homoclinic
orbits to equilibria, will change. Fast decaying orbits again play a distinguished role
here. To see this we use the invariant foliation of W cs

λ into stable fibres, introduced in
Section 2.4. We denote the fibre with base point y ∈ W c

loc,λ again by My,λ.

Let us first consider the stable fibre M0,λ of the origin. By the invariance property (2.30)
of the foliation this fibre is invariant itself. It is therefore the strong stable manifold of

59



3. Homoclinic orbits to degenerate equilibria - other cases

the 0-equilibrium (which coincides with the stable manifold for λ1 ≤ 0). Thus, a fast
decaying homoclinic orbit exists if and only if M0,λ intersects W cu

λ (or, equivalently, if it
intersects Fix (R)) in Σ. Indeed, a solution in the fibre would be homoclinic to 0 because
of its symmetry established in Lemma 3.1 and would satisfies the exponential bound of
Hypothesis 3.3, since it is contained in the strong (un)stable manifold of 0.

In order to consider a generic situation for the bifurcation of fast decaying orbits we
impose a transversality condition with regard to the stable fibre M0,λ. For this define

M0 :=
⋃

λ small

M0,λ, Wcu :=
⋃

λ small

W cu
λ .

(Note that Wcu is nothing but the extended version of the local manifold introduced in
Section 3.3.1.) We demand the following.

Hypothesis 3.6. M0 t Wcu in γ(0) at λ = 0.

Let us discuss the consequences of Hypothesis 3.6. We can consider the intersection of
M0 and Wcu in Σ× Rl (recall that λ ∈ Rl in (3.1)). By counting dimensions one easily
sees that Hypothesis 3.6 implies this intersection to be (l − 1)-dimensional. Thus, we
can consider (3.1) with parameters (λ1, λ2) ∈ R2. In a suitable unfolding fast decaying
homoclinic orbits then exist on some curve in parameter space. With no loss of generality
we can assume this curve to be the λ1-axis.

Lemma 3.2. Under Hypothesis 3.6 we can choose parameters (λ1, λ2) ∈ R2 such that the
local bifurcation of the 0-equilibrium is described by (3.2) and such that (3.1) possesses
a fast decaying homoclinic orbit if and only if λ2 = 0.

In order to investigate whether additional homoclinic orbits to 0 exist we follow the
procedure in Section 2.4 and project the curve Dλ along stable fibres from Σ onto W c

loc,λ.
As before, this projection is injective and smooth. Thus, the image of Dλ under the
projection is some curve Cλ which intersects the origin for λ = 0. Similar to Section 2.4
we impose the following transversality condition upon this curve.

Hypothesis 3.7. Cλ=0 t Fix (R)

In consequence we obtain the bifurcation diagram in Figure 3.3. This diagram shows
the local behaviour in W c

loc.λ together with the curve Cλ in dependence of the parameters
(λ1, λ2). We recall that λ1 has been chosen to control the local bifurcation of 0. The
parameter λ2 has been introduced to unfold the bifurcation of fast decaying homoclinic
orbits. Such orbits exist if Cλ intersects the origin. Hence, λ2 controls the position of Cλ

in W c
loc,λ. Since the stable fibres depend smoothly on λ and because of Hypothesis 3.6,

the curve Cλ moves linearly to lowest order with respect to λ2.

Again, points of intersection of Cλ with bounded orbits in W c
loc,λ are of interest. First

note that all homoclinic orbits to W c
loc,λ are R-symmetric by Lemma 3.1. Hence, the
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λ1

λ2

L

Figure 3.3.: Bifurcation diagram for one-homoclinic orbits near Γ. The dashed line in
each small box shows the curve Cλ. On the curve L a saddle-node bifurcation
of slowly decaying homoclinic orbits to 0 occurs. A similar curve exists for
homoclinic orbits to η but is not shown in the diagram.

invariance (2.30) of the foliation of W cs
λ implies that points of intersection of Cλ with

periodic orbits in W c
loc,λ correspond to homoclinic orbits to these periodic orbits. Simil-

arly, there exists a fast decaying homoclinic orbit if and only if 0 ∈ Cλ (this has already
been observed above!). But homoclinic orbits to equilibria also exist, if Cλ intersects or-
bits in W c

loc,λ which are themselves asymptotic to an equilibrium. For instance, points of
intersection of Cλ with the (small) homoclinic orbit Υ yield (large) homoclinic orbits to
equilibria. We note that for such orbits the asymptotic behaviour is essentially governed
by the corresponding solution within W c

loc,λ.

It is now straightforward to discuss the bifurcation diagram in Figure 3.3. Let us first
focus on homoclinic orbits to the origin. We first consider the situation for λ1 < 0.
Here, 0 is a saddle centre and we find that Cλ intersects the origin if and only if λ2 = 0.
This intersection corresponds to a fast decaying homoclinic orbit. For λ2 6= 0 the curve
Cλ only intersects periodic orbits near 0, which represents homoclinic orbits to these
periodic orbits. We conclude that for λ2 6= 0 no homoclinic orbits to the origin exist.
This result is also compatible with the fact that symmetric homoclinic orbits to a saddle
centre are of codimension-one in the class of reversible systems.

For λ1 = 0 we find homoclinic orbits when λ2 ≤ 0. In fact, for λ2 = 0 this is implied
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3. Homoclinic orbits to degenerate equilibria - other cases

by Hypothesis 3.2, while for λ2 < 0 we see that Cλ intersects the curve of points which
are asymptotic to the origin within W c

loc,λ as t → ∞. This intersection represents
an algebraically decaying homoclinic solution to 0. An elementary calculation for the
normal form (3.2) shows that this solution will eventually decay like 1/t2 for t → ±∞.

Let us now discuss the bifurcations when λ1 > 0. Here the origin is a real saddle and for
λ2 = 0 there exists a fast decaying homoclinic orbit to this saddle. This orbit lies in the
strong (un)stable manifold of 0 and one would expect a reversible orbit flip bifurcation
when the parameters are varied, [74]. Indeed, we find this in Figure 3.3. For λ2 < 0
the curve Cλ intersects the stable manifold of 0 (in W c

loc,λ) which shows the existence of
a slowly decaying homoclinic orbit. For λ2 > 0 sufficiently small we actually find two
points of intersection of Cλ with the small homoclinic orbit Υ in W c

loc,λ. (Note that this is
a consequence of Hypothesis 3.7.) Therefore two slowly decaying homoclinic orbits to the
origin exist. However, a closer examination shows that the upper point of intersection
corresponds to an orbit which first follows Γ for some time, but when the orbit is close
to the centre manifold, it does not approach the 0-equilibrium directly but runs along
Υ. We therefore not view this orbit as being one-homoclinic to 0 since it comprises a
gluing between Γ and Υ. Doing so, we find agreement with general results concerning
the reversible orbit flip bifurcation derived in [74] which show that generically only a
single one-homoclinic orbit exists.

Finally, another interesting bifurcation occurs when λ2 is increased further. We find a
curve L on which the two points of intersection of Cλ with Υ merge and vanish. This
scenario corresponds to a saddle-node bifurcation of symmetric homoclinic orbits as
was analysed in [9, 59]. Such a bifurcation occurs when a homoclinic orbit becomes
degenerate, i.e. when the tangent spaces of the stable and unstable manifold of 0 have
another common direction along the orbit (in the four-dimensional case they thus agree).
For λ2 large enough there exists no homoclinic orbit to 0. Let us give some explanation
concerning the properties of the curve L: First of all we recall that the motion of C in
W c

loc,λ is linear in λ2. On the other hand, it is an easy calculation using the normal form
(3.2) that the size of the small homoclinic orbit Υ varies linear in λ1. Therefore, we
conclude that L is the graph of some function λ1 = aλ2 + o(λ2) with a > 0, λ2 ≥ 0. We
summarize the results in a theorem.

Theorem 3.3 (One-homoclinic orbits to 0 in the general case). Consider (3.1)
under the Hypotheses 3.1 - 3.7 with parameters λ = (λ1, λ2) chosen in accordance with
the normal form (3.2) and with Lemma 3.2. Then fast decaying homoclinic orbits to 0
exist if and only if λ2 = 0. For λ1 < 0 no other one-homoclinic orbits exist.

In the case λ1 = 0 we find one homoclinic orbit to the 0-equilibrium if λ2 ≤ 0 which is
algebraically decaying for λ2 < 0.

For λ1 > 0, λ2 ≤ 0 we find one homoclinic orbit to the 0-equilibrium. For λ2 > 0 there
exist two homoclinic orbits which coalesce in a saddle-node bifurcation on some curve
L := {(λ2, λ1) : λ2 ≥ 0, λ1 = aλ2 + o(λ2)}, with some a > 0.
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An equivalent theorem describes homoclinic orbits to η, the second equilibrium in W c
loc,λ.

The reason for this is the symmetry of the bifurcation diagram in Figure 3.3 and the
symmetry in W c

loc,λ, where the properties of 0 and η are exchanged if the sign of λ1 is
reversed. We leave further details to the reader.

Let us finally discuss how homoclinic orbits to periodic orbits in W c
loc,λ bifurcate from

the primary orbit Γ. If λ1 < 0, λ2 = 0 there exists a homoclinic orbit to the saddle centre
equilibrium 0, and every periodic orbit in W c

loc,λ is connected to itself by two homoclinic
orbits. For λ2 6= 0 there exists a critical amplitude A, depending linearly on λ2, such
that we only find homoclinic orbits to periodic orbits with an amplitude greater than
A. The range of λ2 for which homoclinic orbits to periodic orbits exist is bounded by
the saddle-node curve for homoclinic orbits to η and by the reversible orbit flip curve
for homoclinic orbits to η. Similar statements apply to parameter values λ1 > 0 if the
roles of the equilibria 0 and η are again exchanged.

3.4. Cases with Z2-symmetry

In this section we consider the situation under the additional assumption that (3.1) is
Z2-symmetric with respect to some involution S (commuting with R), that is we have

Sf(x, λ) = f(Sx, λ), ∀(x, λ). (3.3)

Since the composition Q := R ◦ S gives another reversibility, this is equivalent to con-
sidering systems that are reversible with respect to two involutions. Hence, this is the
situation we have encountered in Chapter 2. We will see, however, that the location of
the invariant subspace Fix (S) is crucial for the bifurcation results. And of course, we
will consider cases that differ from the ones studied in Chapter 2.

3.4.1. Odd symmetry

We deal with (3.1) under Hypotheses 3.1 - 3.3 and assume additionally

Hypothesis 3.8. f is odd-symmetric, that is f(x, λ) = −f(−x, λ) for all (x, λ).

Equivalently we could have required f to be reversible with respect to Q := −R, as well.
We remark that since S = −id we have Fix (S) = {0}.
Hypothesis 3.8 has consequences for the local bifurcation of the equilibrium 0. Now we
have to consider systems (and therefore normal forms) in W c

loc,λ that are reversible with
respect to the involutions R and −R. Therefore the local behaviour is the same as in
Chapter 2, and is governed by the general normal form (2.7). Under Hypothesis 2.4
we consequently obtain the two normal forms (2.8), (2.9) for the local bifurcation of 0,
which differ in the sign of the cubic term and which give rise to a reversible pitchfork
bifurcation of eye type and of figure-eight type, respectively.
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λ1

λ2

Figure 3.4.: Bifurcation diagram for one-homoclinic orbits near Γ in case of the normal
form (2.8). The dashed line in each box shows the curve Cλ.

We can now proceed with the analysis of bifurcations from Γ as in Section 3.3.2. But for
that two things are important. First, Hypothesis 3.8 implies that −Γ is another fast de-
caying homoclinic orbit to the origin at λ = 0. Second, we again impose Hypothesis 3.5,
which by symmetry also holds for points on −Γ. Thus, we can deal with the orbit Γ
alone and infer all results for −Γ using the Z2-symmetry of (3.1).

For the orbit Γ the analysis of the last section can be performed again. Lemma 3.1
thus shows the existence of a manifold of homoclinic orbits to W c

loc,λ of which all orbits
are R-symmetric. Projecting along stable fibres in this case we also get a curve Cλ for
which the non-degeneracy Hypothesis 3.7 is assumed to hold. Doing so, we derive two
bifurcation scenarios, depending on which normal form describes the bifurcation of 0.
The corresponding diagrams are given in Figure 3.4 and 3.5.

As before, these diagrams allow us to give a complete description of the homoclinic orbits
to W c

loc,λ. Exclusively considering homoclinic orbits to 0 and we obtain the following
theorem.

Theorem 3.4. Consider (3.1) under the Hypotheses 3.1 - 3.8 with parameters λ =
(λ1, λ2) chosen in accordance with the normal form (2.8), (2.9) and Lemma 3.2. Then
fast decaying homoclinic orbits to the origin near Γ exist if and only if λ2 = 0. For
λ1 < 0 no other one-homoclinic orbits exist.

In case the normal form for the local bifurcation is given by (2.8) then there exist ad-
ditional homoclinic orbits for all λ1 ≥ 0, λ2 6= 0 which are algebraically decaying when
λ1 = 0.
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λ2

λ1

L− L+

Figure 3.5.: Bifurcation diagram for one-homoclinic orbits near Γ in case of the normal
form (2.9). The dashed line in each box shows the curve Cλ.

When the local bifurcation is described by (2.9) then additional orbits only exist for
λ1 > 0. For |λ2| sufficiently small there exist two homoclinic orbits which coalesce in
a saddle-node bifurcation at some curve L = L+ ∪ L− given by λ1 = aλ2

2 + o(λ2
2), with

some a > 0.

By symmetry the assertions are also valid near −Γ.

Remark 3.1. For the figure-eight case we need again Hypothesis 3.7 to derive the
bifurcation diagram. Furthermore, for the normal form (2.9) the size of the figure-eight
depends quadratically on λ1. More precisely, let υ1,2 := (±υ, 0) denote the two points
of the figure-eight Υ1 ∪ Υ2 which have the largest respectively smallest y1-component.
Then we find that υ2 = 2λ1. This explains the shape of the ‘saddle-node-curves’ L± in
Figure 3.5.

3.4.2. Z2-symmetry with W c
loc,λ ⊂ Fix (S)

We are now interested in the case when the fixed space of S is non-trivial. That is we
consider (3.1) under Hypotheses 3.1 - 3.3 and assume in addition that

Hypothesis 3.9. There exists an involution S : R4 → R4 commuting with R and with
dim(Fix (S)) = 2, such that (3.3) is fulfilled.

65



3. Homoclinic orbits to degenerate equilibria - other cases

As remarked before, the map Q := S ◦R induces another reversing symmetry for (3.1).
We remark that, within Fix (S), the involutions Q and R agree.

In Chapter 2 we have considered the situation where Γ ⊂ Fix (S). We now deal with
the other possibility, namely that the symmetry affects the local bifurcation. Denoting
the centre eigenspace of D1f(0, 0) by Ec, let us assume that

Hypothesis 3.10. Ec ⊂ Fix (S).

Under Hypothesis 3.9 we can derive a bifurcation diagram for one-homoclinic orbits near
Γ in precisely the same manner as before. First, we see that within W c

loc,λ ⊂ Fix (S)
the vector field is reversible with respect to one involution. Therefore the equilibrium 0
generically bifurcates in a transcritical bifurcation as in Section 3.3 above. The corres-
ponding normal form for the local bifurcation is given by (3.2) and the local bifurcation
diagram is shown in Figure 3.1.

For the homoclinic orbit Γ Hypothesis 3.10 yields that QΓ 6= Γ, i.e. Γ is not symmetric
with respect to Q. Indeed, assuming that Γ was Q-symmetric we would have γ(0) ∈
Fix (R)∩Fix (Q), i.e. γ(0) ∈ Fix (S). But this results in Γ ⊂ Fix (S), which is forbidden
by Hypothesis 3.10. We therefore conclude that QΓ is a second homoclinic orbit of
(3.1).

Precisely as in Section 3.4.1 we can now consider each orbit separately and then immedi-
ately apply the results of Section 3.3.2. Thus the bifurcation diagram for one-homoclinic
orbits in Figure 3.3 is valid for both Γ and QΓ. So, we obtain the next theorem.

Corollary 3.5. Consider (3.1) under Hypotheses 3.1 - 3.7, and Hypotheses 3.9, 3.10.
Then QΓ is a second homoclinic orbit to 0 at λ = 0 and Theorem 3.3 applies to both
orbits Γ and QΓ.

Remark 3.2. A completely analogous result is valid when the local bifurcation of x = 0
is described by the normal forms (2.8) or (2.9). This case is non-generic in our general
setup. It could, however, arise when we assume an additional symmetry within the
subspace Fix (S). Then the bifurcation of one-homoclinic orbits from Γ is described by
Theorem 3.4.

3.5. Reversible Hamiltonian systems

We now turn to systems that are both reversible and Hamiltonian. This class of systems
is of particular importance in applications since many mechanical or optical problems
lead to the study of ODEs that are both reversible and Hamiltonian. (We also encounter
this in the examples treated below.)

We show below that the basic transversality condition, Hypothesis 3.5, cannot be satis-
fied in the class of Hamiltonian systems, i.e. such systems are non-generic in the sense
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of this chapter. It is nevertheless possible to prove that the previously obtained results
about bifurcating symmetric orbits are necessarily valid in Hamiltonian systems. (There
may, however, bifurcate non-symmetric orbits, which is not the case in generic reversible
systems.) Therefore, in applying the theory to a specific reversible Hamiltonian system,
we do not have to check whether Hypothesis 3.5 is fulfilled, which usually is a serious
obstacle.

So let us consider (3.1) under Hypotheses 3.1 - 3.3 and demand in addition that

Hypothesis 3.11. There exists a function H : R4 × R2 → R such that (3.1) can be
written as

ẋ = J · ∇H(x, λ), (3.4)

where

J =

(
0 I

−I 0

)

denotes the standard symplectic structure on R4.

A well-known property of (3.4) is that the Hamilton function H is a first integral for the
equation, i.e. it is constant along orbits of the system. It is this conservative character
of the equation which is of relevance for the following analysis. We also note that the
reversibility of (3.4) is reflected by the fact that H ◦R = H.

Proceeding as usual we find that the local bifurcation of 0 in W c
loc,λ is described by

the normal form (3.2). The determination of homoclinic orbits to W c
loc,λ, however, is

difficult. Similar to the situation in Chapter 2 the property of (3.4) being Hamiltonian

imposes additional restrictions for W
cs(cu)
λ and does not allow our basic Hypothesis 3.5

to be fulfilled. To see this note that the cross-section Σ is smoothly foliated by level-sets
Hh of the Hamiltonian H. Each of these intersects the space Fix (R) transversally and
with no loss of generality we can assume them to be straightened out, i.e. Hh ⊂ TH0.
(Here we assume that the equilibrium is contained in the zero level set H0 of H.)

In addition, Lemma 3.2 implies that for λ1 < 0, λ2 = 0 there exists a homoclinic orbit to
the saddle centre 0. Let us consider the consequences. Restricted to the centre manifold
the Hamilton function H has a local extremum, say minimum. If H(0) = 0 this implies
that all points in W cs(cu) take non-negative values of H which in turn implies that the
traces of W cs(cu) in Σ lie ‘on one side’ of the trace of H0 in Σ. This observation shows
that the tangent spaces of both manifolds at γ(0) are contained in the tangent space of
H0; see [62] for a rigorous proof and Figure 3.6 for an illustration. Clearly, the same
relations must be found for λ = 0 such that we obtain the next lemma.

Lemma 3.6. Consider (3.4) under Hypotheses 3.1 - 3.3. Then

Tγ(0)W
cs
λ=0 = Tγ(0)W

cu
λ=0

and Tγ(0)W
cs
λ=0 t Fix (R).
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Hc

H0 = TW cs
λ

Fix (R)

W cs
λ

W cs
λ (Π)

W cu
λ (Π)

(a) (b)

Figure 3.6.: Situation in Σ in the Hamiltonian case: For parameter values where a homo-
clinic orbit to a saddle centre equilibrium exists the trace of W cs

λ is tangent
to the zero level set H0 of the Hamiltonian and intersects Fix (R) transvers-
ally. (By reversibility the same statement is valid for W cu

λ .) Panel (a) of the
picture shows a sketch of the intersection the stable and unstable manifold
of a periodic orbit Π in some level set Hc of H in Σ. Note that in addition
to the intersection points in Fix (R) these manifolds generically intersect in
two further points giving rise to a pair of non-symmetric solutions as in (b).

Because of the non-transverse intersection of W cs
λ=0 and W cu

λ=0 we expect that both R-
symmetric and non-symmetric solutions bifurcate from Γ, compare again with Figure 3.6.
In the following we concentrate on the bifurcation of symmetric orbits.

The existence of symmetric homoclinic orbits can be discussed in the same way as
before. Lemma 3.6 implies the existence of a manifold of homoclinic orbits to W c

loc,λ

which intersects the cross-section Σ in some curve Dλ. Hence, we are in precisely the
same situation as in Section 3.3.2 and immediately obtain the final theorem.

Theorem 3.7. Consider the Hamiltonian system (3.4) under Hypotheses 3.1 - 3.3, and
Hypotheses 3.6, 3.7. Then the existence of R-symmetric homoclinic orbits near Γ is
described by Theorem 3.3.

Remark 3.3. In the same way one can discuss the different cases in Section 3.4 under the
additional hypotheses that the systems are Hamiltonian. One then finds that the main
theorems in the corresponding sections describe the existence of symmetric homoclinic
orbits near the primary orbit Γ.
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3.6. Three numerical examples

We shall illustrate our theoretical results with numerical computations for three ex-
amples, belonging to the class of reversible Hamiltonian systems. First, we deal with a
reversible fourth-order equation arising in a water-wave problem which is part of the gen-
eral family of 5th-order KdV models. Afterwards, we study two problems from nonlinear
optics involving reversible and Z2-symmetric systems. For the numerical investigations
we have used the methods for homoclinic continuation implemented in AUTO/HomCont
[32]. Let us provide some information on the underlying physical problems before we
turn to the specific problems.

3.6.1. Embedded and gap solitons

There has been much interest in recent years in the existence of localised coherent
structures in nonlinear media, especially in optics. A particularly important class of
localised structure are solitary waves, or ‘solitons’. In situations governed by higher-
order or multi-component partial differential equation (PDE) models in 1+1 dimensions,
the spectrum of linearized waves generally has at least two branches. If these branches do
not fill out the entire possible spectrum of wave frequencies, then one has the possibility
of a gap in the linear spectrum where exponentially localised solutions can exist, so
called gap solitons [31]. Such solutions can be linearly stable solutions of the PDE in
that they are attractors for a range of initial data. They are also typically structurally
stable, in that they exist for a range of frequency and other parameter values.

In contrast, an embedded soliton (ES) is a solitary wave which exists despite having its
internal frequency in resonance with linear waves. Specifically, they occur in a two-
component model when the dispersion relation has only one branch. Generally, such
solitons should not exist , one finding instead (delocalized) quasi-solitons or ‘generalized
solitary waves’ with non-vanishing oscillatory tails (radiation component) [7]. However,
at some special values of the internal frequency, the amplitude of the tail may exactly
vanish, giving rise to an isolated soliton embedded into the continuous spectrum. Hence,
at these discrete values embedded solitons exist as codimension-one solutions [93, 18].
Another interesting feature of ESs is that they may at best be only linearly neutrally
stable, being subject to a weak one-sided algebraic instability, see e.g. [93, 71]. That
is, if one makes an energy increasing perturbation then via the shedding of radiation,
the initial condition relaxes algebraically back to the solitary wave. In contrast, energy
decreasing perturbations cause the solitary wave to decay algebraically away. The exist-
ence of embedded solitons has been established in a number of physical models includ-
ing generalized 5th-order Korteweg-de Vries (KdV) equations [56, 14, 15, 95], coupled
KdV equations [36], in nonlinear Schrödinger (NLS) equations with higher-order deriv-
atives [12, 35] and in various coupled NLS-type equations arising in nonlinear optics
[93, 17, 19].
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3. Homoclinic orbits to degenerate equilibria - other cases

In the usual way, soliton solutions in each of these example PDEs reduce to homoclinic
orbits of ordinary differential equations (ODEs) via a travelling-wave or steady-state
reduction. The ODEs typically have the structure of being fourth-order, reversible and
Hamiltonian. The parameter region that supports embedded solitons corresponds to
when the origin (the trivial equilibrium) in such an ODE system is a saddle centre.
Here, one two-dimensional component gives rise to the imaginary eigenvalues ±iω (cor-
responding to a continuous branch in the linear spectrum of the PDE system), and the
other to real eigenvalues ±µ (corresponding to a gap in the linear spectrum). In con-
trast, the gap soliton parameter region is where the eigenvalues of the origin are purely
real.

Hence, our general studies so far describe precisely what happens as we trace a path
of embedded solitons up to a parameter value ω = 0 at which it passes over into being
a gap soliton. Indeed, within the unfolding (3.1) of the degenerate situation at λ = 0
we find this process on the curve λ2 = 0 where fast decaying homoclinic orbit exists
and where 0 changes its type from a saddle centre (for λ1 < 0) to a real saddle (λ1 >
0). Bifurcating homoclinic orbits to the invariant manifolds W c

loc,λ represent additional
solitary waves (homoclinic orbits to equilibria) or generalized solitary waves (homoclinic
orbits to periodic orbits). Of particular importance in the following examples are solitary
waves that decay to 0.

3.6.2. A fifth-order KdV equation

In this section we illustrate the results of Section 3.3 with numerical studies for a fourth-
order equation arising in water-wave theory. We are concerned with the existence of sol-
itary wave solutions for the following fifth-order long-wave equation for gravity-capillary
water waves,

rτ +
2

15
rxxxxx − b rxxx + 3 rrx + 2 rxrxx + rrxxx = 0.

Which is an example of a general family of 5th-order KdV equations, see [56, 95]. Making
the travelling wave ansatz r(x − aτ) = r(τ, x), introducing t := x − aτ and integrating
the resulting ODE once, we obtain a fourth-order equation for r

2

15
riv − br′′ + ar +

3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0, (3.5)

where a prime denotes differentiation with respect to t. Homoclinic orbits to the origin
of (3.5) were intensively studied in [15], using a combination of analytical and numerical
techniques.

Here we are interested in the situation for a = 0 and b = 2, since for these parameter val-
ues the fundamental Hypotheses 3.1 - 3.3 are fulfilled. First note, that for all parameter
values a, b equation (3.5) is reversible with respect to

R : (r, r′, r′′, r′′′) 7→ (r,−r′, r′′,−r′′′).
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Note also, that one can introduce variables such that (3.5) may be written as a Hamilto-
nian system; see [15] for details. Moreover, the origin is an equilibrium for all a, b which
is easily seen to possess a double non-semisimple eigenvalue 0 and a pair of real eigen-
values if a = 0, b > 0. Increasing the parameter a through 0, the equilibrium undergoes
a transcritical bifurcation described by the normal form (3.2). The equilibrium turns
from a saddle centre (a < 0) into a real saddle (a > 0). In particular, for a > 0 a small
homoclinic orbit emerges which corresponds to the famous Korteweg-de Vries solitary
wave (after an appropriate rescaling of the system).

Finally, in [15] the following explicit homoclinic solution

rh(t) = 3

(
b +

1

2

)
sech2

(√
3

2
(2b + 1)t

)

of (3.5) is found for parameter values a = 3/5 · (2b + 1)(b− 2), b ≥ −1/2. In particular,
rh exists for a = 0 and b = 2 where it is a fast decaying homoclinic solution. So the
results of Sections 3.3 and 3.5 should apply to this situation.

In fact, numerical studies in [15] already revealed the orbit flip bifurcation of the primary
homoclinic orbit for a > 0 . Also the existence of the curve L, where the saddle-node
bifurcation of homoclinic orbits occurs, could be numerically verified. This curve can be
approximated by taking different values of a > 0, b for which rh exists and performing
a numerical continuation of the homoclinic solution with decreasing b and fixed a. For
example, for a = 0.1 we can continue the starting solution with decreasing b until we
find a limit point at b∗ = 1.83226. In Figure 3.7 we present the bifurcation diagram
together with corresponding plots of solutions at the indicated points. We have found
comparable results for all tested parameter values.

The results in Figure 3.7 show excellent agreement with the general theory. Indeed, we
find that in the reversible orbit flip bifurcation two homoclinic orbits emerge, of which
one is composed of the fast decaying solution and the (small) ‘KdV’-homoclinic orbit, see
panel b) in Figure 3.7. The two homoclinic orbits coalesce in a saddle-node bifurcation,
and we find that the corresponding bifurcation curve L is essentially linear.

Also the existence of an algebraically decaying solution for a = 0, b > 2 can be verified
numerically. In Figure 3.7 such a solution is shown for parameter values a = 0, b = 2.5.
Another illustration is given in Figure 3.8 where we compare this solution to the ex-
ponentially decaying solution at a = 0.1, b = 2.5. The plots in part c) of this figure
indicate that the solution for a = 0 decays with a quadratic rate in accordance to results
of Section 3.3.

So, for equation (3.5) we can compute everything that has been predicted by the theory.
We remark that for this example we have not made use of the reversible symmetry
of the equation (which is possible in AUTO). Nevertheless, all solutions found have
been symmetric under time-reversal which suggests that only symmetric one-homoclinic
solutions bifurcate from the primary homoclinic orbit. This is of interest since the results
in Section 3.5 did not concern non-symmetric solutions.
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Figure 3.7.: Bifurcation diagram for (3.5) as computed with AUTO. On the solid curve
S the analytically known solution rh exists. For a > 0 this curve describes
a reversible orbit flip. After decreasing b two homoclinic solutions can be
found. In a) the slow decaying solution after the orbit flip is shown. In b)
we show a plot of the second solution which is composed of the primary
orbit and the small ‘KdV’ homoclinic solution. These two orbits coalesce
in a saddle-node bifurcation on the curve L to the left of S (see panel c)).
For parameter values b > 2, a = 0, represented by the dashed line to the
right of S, computations with AUTO show the existence of an algebraically
decaying homoclinic solution as depicted in d) see also Figure 3.8.
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Figure 3.8.: Comparison of the solutions for a = 0, b = 2.5, (I), and a = 0.1, b = 2.5,
(II). Panels (a) and (b) show plots of the solutions. In (c) the reciprocal
of the square-root of the solutions is plotted. Here the linearity of (I) as
t → ∞ reveals the quadratic rate of decay for the solution whereas (II)
decays at some higher (exponential) rate. Note that the solution (II) in (c)
is multiplied by a factor 1/10 in order to view it on the same set of axes.

Note that we do not attempt to prove any of the results for (3.5) rigorously. This would
amount to proving that the equation fulfills the non-degeneracy conditions imposed for
the general analysis. In particular regarding Hypothesis 3.7 this is a major difficulty.
But since we find perfect agreement of the numerical and the theoretical results we could
argue the other way around and claim that (3.5) is a generic Hamiltonian system in the
sense of this chapter. So our analysis can explain the numerical results obtained for the
equation.

3.6.3. Two examples from nonlinear optics

In connection with the general results of Section 3.4.1 and 3.4.2 we study two examples
which possess an additional Z2-symmetry. Both deal with the existence of embedded
solitons in nonlinear optical media.

An extended massive Thirring model

We first consider an extended massive Thirring model that describes solitons in an
optical media equipped with Bragg-grating, see [20] and references therein. The model
is described by the following systems of complex PDEs

iut + iux + Duxx + (σ|u|2 + |v|2)u + v = 0
ivt − ivx + Dvxx + (σ|v|2 + |u|2)v + u = 0.

Looking for steady state solutions via u(x, t) = eiχtU(x), v(x, t) = e−iχtU(x) we can
perform scalings and assume with no loss of generality that σ = 0 and U = V ∗, where
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V ∗ denotes the complex conjugate of V . Doing so, we obtain the single complex ODE

DU ′′ + iU ′ + χU + U |U |2 + U∗ = 0, (3.6)

which is reversible with respect to

R : (U,U ′) 7→ (U∗,−(U ′)∗)

and has odd symmetry

S : (U,U ′) 7→ −(U,U ′).

We note again that one can write (3.6) as a Hamiltonian system in R4.

For |χ| < 1 the origin is a saddle centre equilibrium of (3.6) and at χ = −1 it undergoes
a reversible pitchfork bifurcation of figure-eight-type to become a real saddle itself.

In [17] it was found numerically that there are three curves in the (D, χ)-plane at which
embedded solitons exist. Each of these curves can be extended to parameter values
χ < −1, so that there exist three points in the parameter plane around which the
results of Section 3.4.1 apply, see Figure 3.9. (Note that because of the odd symmetry of
(3.6) embedded solitons, i.e. homoclinic orbits, come in pairs. But obviously it suffices
to consider one of the two orbits for our purposes.) We restrict attention to one of
the points and choose the point (D∗, χ∗) = (1.5,−1) with the largest D-value for our
computations.

In accordance with Theorem 3.4 we can detect a reversible orbit flip bifurcation of the
primary homoclinic orbit and two curves where a saddle-node bifurcation of homoclinic
orbits occur. In Figure 3.10 the bifurcation diagram including plots of the real parts of
the corresponding homoclinic solutions is shown. In the computations we have explicitly
used the reversing symmetry of (3.6). As for example (3.5) above we find that the
reversible orbit flip bifurcation of the primary orbit also gives rise to a solution which
is composed of the fast decaying solution and a small homoclinic solution in the centre
manifold. Note, however, that for (3.6) there are two different small homoclinic solutions
and which one is chosen depends on whether D is decreased or increased.

We remark that for this example the computations have to be performed very close to
the critical parameter values to find agreement with the general bifurcation results con-
cerning the shape of the “saddle-node curves”. On the other hand, in order to illustrate
the different types of bifurcating solutions it is necessary to compute the solutions in
Figure 3.10 for larger parameter values. This explains why the bifurcation diagram in
this figure is only schematic for χ < −1.00005.

A second-harmonic-generation system

We end this section with computations for the system in connection to which the term
embedded solitons was used first. In [93] solitary waves appearing in an optical medium
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Figure 3.9.: The three curves in the (D,χ)-parameter plane at which homoclinic solu-
tions of (3.6) were computed in [17] to cross the boundary of the region
for which the origin is a saddle centre (|χ| < 1). The indicated solution at
(D∗, χ∗) := (1.5,−1) is the one whose unfolding is computed in Figure 3.10.

with competing quadratic and cubic nonlinearities were studied. The model is given
by

iuz + 1
2
utt + u∗v + γ1 (|u|2 + 2|v|2) u = 0

ivz + 1
2
δvtt + qv + 1

2
u2 + 2γ2 (|v|2 + 2|u|2) v = 0,

where u and v are the amplitudes of complex wave vectors corresponding to the fun-
damental and second-harmonic fields. Seeking stationary solutions in the form u =
U(t) exp(ikz), v = V (t) exp(2ikz), with real k we are led to the system of ODEs for
U , V

1
2
U ′′ − kU + UV + γ1 (|U |2 + 2|V |2) U = 0

−1
2
δV ′′ + (q − 2k)V + 1

2
U2 + 2γ2 (|V |2 + 2|U |2) V = 0.

(3.7)

Embedded soliton solution of (3.7) have been found for δ > 0 and γ1,2 < 0 in [93],
and for δ < 0, γ1,2 > 0 in [18]. We shall follow the latter paper here and search for
parameter values δ < 0 where our theory applies. In the following we fix the parameters
γ1 = γ2 = 0.05, k = 1 and consider (3.7) as a system depending on the two parameters
δ, q.

Let us first discuss the symmetries of (3.7). The system is reversible with respect to

R : (U,U ′, V, V ′) 7→ (U,−U ′, V,−V ′)

and Z2-symmetric with respect to

S : (U,U ′, V, V ′) 7→ (−U,−U ′, V, V ′).

The origin is an equilibrium for all parameter-values. We are interested in the situation at
q = 2 since on this line the equilibrium has a zero eigenvalue and a pair of real eigenvalues.
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Figure 3.10.: Bifurcation of one-homoclinic orbits of (3.6) near (D∗, χ∗), computed using
AUTO. On the solid curve, the fast decaying homoclinic orbit exists and
for χ < −1 this defines an orbit flip bifurcation. On the dashed curves
saddle-node bifurcations of homoclinic orbits were detected. The solutions
in the sub-panels were all computed for χ = −1.01 and the given values of
D. Only the real parts of the solutions are shown.
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Moreover, it is easy to compute that the centre eigenspace of the linearization at this
equilibrium is contained in Fix (S). According to Section 3.4.2 we would therefore expect
a transcritical bifurcation of the equilibrium. Equation (3.7), however, is non-generic
since we find that the local bifurcation is governed by the normal form (2.9). This means
that the equilibrium undergoes a pitchfork bifurcation of figure-eight type. Nevertheless,
our general studies still apply to this system. As it has been observed after Corollary
3.5 we just have to adapt the results of Section 3.4.1 in this case.

In [18] curves (in the (δ, q)-parameter plane) of R-symmetric embedded soliton solutions
were found for k = 0.3. In a similar manner we find a curve of such solutions for
k = 1. This curve can be extended to parameter values q < 2 where the origin is a real
saddle, see Figure 3.11. The critical parameter value is given by (δ∗, q∗) = (−2.6425, 2).
Now we can go again through computations similar to the last example. The results
are comprised in the bifurcation diagram in Figure 3.11. We have again incorporated
plots of solutions of (3.7) for several parameter values. For the purpose of illustrating the
different types of homoclinic solutions we only show the V -component of the solutions.

The computations in this section show an excellent agreement to the general results
obtained above, and thus our general approach seems to be appropriate to explain the
bifurcation of solitary waves in the examples. A logical next step lies in investigating
bifurcations of N -homoclinic orbits, which represent N -pulse solitary waves of the phys-
ical system. This could be achieved similar to Section 2.5. In that section, however,
the difficulties in the analysis already have become apparent. The investigations are
therefore beyond the scope of this paper. A discussion is postponed to Chapter 5.
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Figure 3.11.: Bifurcation diagram for one-homoclinic orbits of (3.7) near (δ∗, q∗). The
fast decaying homoclinic orbit exists at the solid curve whereas at the
dashed curves the saddle-node bifurcation of homoclinic orbits occurs. The
corresponding solutions have been computed for q = 1.995 and the given
values of δ. Plots show the V -components of the solutions.
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CHAPTER 4

Broom bifurcation of a bellows configuration

4.1. Introduction

We now turn to the homoclinic bifurcation in reversible systems, that is caused by a
change in the type of the associated equilibrium from real saddle to complex saddle
focus. We are interested in bifurcations from a homoclinic bellows configuration of two
symmetric homoclinic orbits. Of particular concern is the emergence of N -homoclinic
orbits near the bellows configuration.

A symmetric equilibrium undergoes the above transition through some critical para-
meter value, at which its leading eigenvalues are real, double, and non-semisimple. The
unfolding of this situation requires one parameter. We assume the two homoclinic orbits
in the bellows configuration to be generic, such that also the homoclinic bifurcation is of
codimension-one. As in Chapters 2 and 3 we study the bifurcation in the corresponding
unfolded family.

In Section 4.2 we discuss the problem’s setting in detail. In particular, we state the non-
degeneracy conditions for the homoclinic orbits and we derive a linear normal form for
the equilibrium, which associates a precise meaning to the parameter in the unfolding.
Afterwards, in Section 4.3 we derive bifurcation equations for N -homoclinic orbits near
the bellows configuration. This section extensively uses general results by Sandstede [75].
The bifurcation scenario is described in Section 4.4 where the equations are solved. We
prove the existence of infinitely many N -homoclinic orbits near the bellows configuration
if the equilibrium is a complex saddle focus, whereas there are no N -homoclinic orbits
if it is a real saddle (Theorem 4.6). The homoclinic orbits in the saddle focus region
follow both orbits in the bellows configuration.
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4. Broom bifurcation of a bellows configuration

4.2. Basic assumptions

Let us consider a system of ODEs

ẋ = f(x, λ), x ∈ R2n, with n > 1, λ ∈ R (4.1)

such that the following hypotheses are fulfilled.

Hypothesis 4.1. The system is R-reversible.

Hypothesis 4.2. At λ = 0 there exists an equilibrium in 0, i.e. f(0, 0) = 0. In addition,
σ(D1f(0, 0)) = {±1}∪ σss ∪ σuu, with µ = 1 as a double non-semisimple eigenvalue and
|<(µ̃)| > µ0 > 1 ∀µ̃ ∈ σss ∪ σuu for some µ0 ∈ R.

Remark 4.1. The assumption, that the leading eigenvalues of 0 are precisely ±1 is not
restrictive. This can always be achieved by a suitable time scaling. We have made the
assumption only to simplify later computations.

Hypothesis 4.3. At λ = 0 there exist two R-symmetric homoclinic orbits Γ1, Γ2 6= Γ1

to 0. Let Γi = {γi(t) : t ∈ R}, such that γi(0) ∈ Fix (R) for i = 1, 2. The orbits Γi form
a bellows configuration. This means that

lim
t→∞

γ̇1(t)

||γ̇1(t)|| = lim
t→∞

γ̇2(t)

||γ̇2(t)|| =: e+,

lim
t→−∞

γ̇1(t)

||γ̇1(t)|| = lim
t→−∞

γ̇2(t)

||γ̇2(t)|| =: e−.

Note that e+ = Re−, due to the symmetry of Γi.

We make further assumptions that ensure the bifurcation of Γi to be at least-degenerate
as possible. First note that due to Hypothesis 4.2 the equilibrium is hyperbolic, and
therefore no local bifurcation occurs in perturbations of f(0, 0). In particular, we find
a symmetric hyperbolic equilibrium for all λ sufficiently close to 0. We can assume this
equilibrium to be independent of λ, such that f(0, λ) = 0 for all λ. Since the spectrum of
D1f(0, λ) is symmetric to the origin in the complex plane, Hypothesis 4.2 thus describes
a codimension-one situation in the class of reversible systems.

We demand that the family f(·, λ) is chosen such that λ unfolds the linearization at 0.
This can be made precise by consideration of a normal form of D1f(0, 0).
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4.2. Basic assumptions

A linear normal form near the equilibrium

Consider the linearization D1f(0, 0) =: A of the equilibrium 0 in (4.1). By the Jordan
normal form theorem we can assume that

A =




1 1 0 0 0 0
0 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 Auu 0
0 0 0 0 0 Ass




, (4.2)

where Auu and Ass denote the strong unstable and strong stable part of A. We have the
following result about a normal form of A.

Lemma 4.1. Let A(·) : R → L(R2n) be a smooth family of matrices and suppose that
A(0) = A, as in (4.2). Moreover, suppose that the family is reversible with respect to
some involution R, that is, RA(λ) + A(λ)R = 0 for all λ sufficiently close to 0. Then
there exists a smooth family of linear transformations T (·) : R→ L(R2n), such that

T (λ)A(λ)T (λ)−1 =




1 1 0 0 0 0
a(λ) 1 0 0 0 0

0 0 −1 1 0 0
0 0 a(λ) −1 0 0
0 0 0 0 Auu(λ) 0
0 0 0 0 0 Ass(λ)




, (4.3)

with a(0) = 0, and Ass(uu)(·) as (n − 2) × (n − 2)-matrices, that contain the strong
(un)stable spectrum of A(·).

Proof. Consider the SN-decomposition of A(0) =: S(0)+N(0), where S(0) denotes the
semisimple and N(0) the nilpotent part of A(0), respectively. By the linear version of
the normal form theorem for vector fields (see for instance [82] and [49]) we can find
transformations T (λ), smooth in λ, such that for

Ã(λ) := T (λ)A(λ)T (λ)−1

it holds Ã(λ)S(0) = S(0)Ã(λ). Moreover T (λ) can be chosen to commute with R such

that Ã(λ) is also R-reversible. A simple calculation reveals that (4.3) is the only possible
form for an R-reversible matrix that commutes with S(0).

Let us return to our specific problem. By the above lemma we can assume D1f(0, λ) to
be of the form (4.3). In order to unfold D1f(0, 0) completely we demand

Hypothesis 4.4. a′(0) 6= 0.
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4. Broom bifurcation of a bellows configuration

The sign of a′(0) determines on which side of the parameter line the equilibrium has
real eigenvalues. Thus, choosing a′(0) > 0 we can with no loss of generality assume
that a(λ) = λ. In this case we find σ(D1f(0, λ)) = {±1±

√
λ} ∪ σss ∪ σuu. (Note that

also σss(uu) varies smoothly with λ. These strong spectra are not of concern for our
analysis.)

Remark 4.2. For deriving a linear normal form near 0 only a local transformation
is needed. This transformation can be globalized in the usual way by some cut-off
function. It is important to note that the reversibility of the system can be preserved in
this process.

A generic bellows configuration

We now turn to the homoclinic orbits Γi. We are interested in bifurcations from the
bellows structure that are caused only by the change in the eigenvalues of 0. Therefore,
we have to exclude the occurrence of several codimension-one bifurcations of the Γi. We
need to introduce some notation first.

In the following we use the convention that the index i takes values i = 1, 2. Let W s(u)(0)
denote the (un)stable manifold of 0. One of the assumptions concerns bounded solutions
of the formal adjoint to the variational equation along Γi

ẋ = −D1f(γi(t), 0)T x. (4.4)

It is well known [75] that the dimension of the space of bounded solutions of (4.4) is
related to the dimension of Tγi(t)W

u(0) ∩ Tγi(t)W
s(0), see below.

Hypothesis 4.5. The orbits Γi satisfy the following.

(i) The orbits are non-degenerate, i.e.

dim
(
Tγi(t)W

u(0) ∩ Tγi(t)W
s(0)

)
= 1 for all t.

(ii) Define e+ as in Hypothesis 4.3, and denote by es the (normalized) eigenvector of
D1f(0, 0) to the eigenvalue −1. Then e+ = es.

(iii) Because of (i) equation (4.4) possess a unique bounded solution Ψi, up to multiples
[75]. We assume that Ψi approaches 0 at an exponential rate greater than −µ0 as
t → −∞ (see Hypothesis 4.2 for the definition of µ0).

Let us comment on this. As a whole, Hypothesis 4.5 contributes to the fact that the
Γi are of codimension-zero. (Note that we need one further non-degeneracy condition
below.) It has already been remarked that the non-degeneracy (i) of the orbits leads to
a transverse intersection of W u(0) and Fix (R) at the points γi(0). Therefore homoclinic
orbits Γi,λ to 0 exist for all λ sufficiently close to 0. Part (ii) excludes that Γi approaches
0 with some exponential rate greater than µ0. This assumption is also generic. Indeed,
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4.3. Deriving bifurcation equations

if (ii) was violated, one would find a bifurcation of Γi similar to the reversible orbit
flip [74]. Note that the classic orbit flip bifurcation concerns homoclinic orbits that are
contained in the strong (un)stable manifold of equilibria with simple leading eigenvalues.
We therefore have to adapt the standard assumption to our case. Similarly, part (iii)
is an adapted version of the usual assumption to prevent an inclination flip bifurcation
of Γi, see also [60] for an analogous hypothesis in the case of a discrete system. Both
assumptions (ii), (iii) are needed for estimating terms in the bifurcation equations for
N -homoclinic orbits.

We conclude that two smooth families of homoclinic orbits Γi,λ, i = 1, 2, parameterized
by λ, exist by the above hypothesis. In particular, for fixed λ the orbits Γ1,λ and Γ2,λ

also form a bellows configuration. (Below we apply the notation of Hypothesis 4.3 at
λ = 0 and write Γi instead of Γi,0.)

4.3. Deriving bifurcation equations

For the analysis of bifurcating homoclinic orbits from the bellows configuration we use
Lin’s method. Since 0 is a hyperbolic equilibrium we can apply the original version of
the method, which is due to Lin [66] and which has been substantially improved later by
Sandstede [75]. (Note that some authors refer to the method as ‘homoclinic Lyapunov-
Schmidt reduction’ [97].) The geometric idea of the method is to obtain certain types
of solutions near a homoclinic orbit Γ, or more generally a heteroclinic cycle, by gluing
together pieces of orbits which themselves can be viewed as copies of Γ. For that a cross
section Σ to Γ is introduced. Lin’s methods yields the existence of discontinuous ‘orbits’,
built from sequences of solutions of (4.1), with the discontinuities or ‘gaps’ lying in some
lower dimensional space of Σ. The closing of these gaps defines bifurcation equations
for detecting solutions near Γ.

In the following we apply Lin’s method to the investigation of bifurcating N -homoclinic
orbits near the bellows configuration Γ1 ∪ Γ2. We set up the problem and derive bi-
furcation equations for N -homoclinic orbits near the bellows. This procedure relies on
general results concerning Lin’s method, which are quoted from the literature. The main
source is [75], but we also refer to [59, 76, 77, 74, 81] for other examples in which Lin’s
method is employed.

Let us equip R2n with an inner product, such that R is orthogonal. We introduce cross
sections Σi = γi(0) + Wi, transverse to Γi, see Figure 4.1. By choosing Wi orthogonal
to γ̇i(0) we ensure that Wi = Fix (R) + W−

i , where W−
i denotes an (n− 1)-dimensional

subspace of Fix (−R). Besides, let Zi be the subspace in Σi, orthogonal to Tγi(0)W
u(0)+

Tγi(0)W
s(0),

Zi =
(
Tγi(0)W

u(0) + Tγi(0)W
s(0)

)⊥
.

Because of Hypothesis 4.5, (i), Zi is one-dimensional; moreover, Zi ⊂ Fix (−R). We will
derive bifurcation equations in Zi.
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4. Broom bifurcation of a bellows configuration

Γ1

Z1

Σ2

Σ1

Z2

Γ2

0

Figure 4.1.: Setup of Lin’s method for studying bifurcations from the bellows configur-
ation Γ1 ∪ Γ2

We are interested in solutions that follow the orbits Γi with some given itinerary. So let
us introduce a sequence κ = (κj) ∈ {1, 2}Z of indices κj. We look for a sequence (xj) of
solutions of (4.1), such that xj starts in Σκj−1

at t = 0, follows Γκj−1
to a neighbourhood

of 0 and returns along Γκj
to Σκj

at the time 2ωj. Moreover, the gap

Ξj := xj+1(0)− xj(2ωj)

should lie in the space Zκj
, see Figure 4.2. The solutions xj can be characterized by the

sequence of ‘times’ (ωj). Indeed, since 0 is a hyperbolic equilibrium, and since the orbits
Γi are non-degenerate we obtain from [75].

Theorem 4.2 ([75], Lemma 3.9). Choose κ = (κj)j∈Z. For each λ and for each
ω := (ωj)j∈Z, with ωj ∈ R+ sufficiently large for all j, there is a unique sequence (xj) of
solutions xj : [0, 2ωj] → R2n of (4.1), that fulfill

(i) xj(0) ∈ Σκj−1
, xj(2ωj) ∈ Σκj

(ii) The orbit Xj of xj is contained in a neighbourhood of Γ1 ∪ Γ2.

(iii) Ξj(λ, ω) := xj+1(0)− xj(2ωj) ∈ Zκj
.

Remark 4.3. It is important that Theorem 4.2 remains true if we have ωj = ∞ for
some j ∈ Z [75]. In this case xj is contained in the stable or unstable manifold of the
equilibrium, and the sequence ω is not continued. Hence, N -homoclinic orbits, if they
exist, can be described by finite sequences (ωj) of length N + 1 with ω1 = ωn+1 = ∞,
and N − 1 times ωj for the flight from Σκj−1

to Σκj
, j = 2, . . . , N .

In order to find a solution of (4.1) we have to glue together the pieces xj in Zκj
and

consequently derive a set of bifurcation equations

Ξ(λ, ω) := (Ξj(λ, ω))j∈Z = 0. (4.5)
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4.3. Deriving bifurcation equations

0

xj
xj+1

Σκj

Γκj−1

Σκj−1

Γκj

Zκj
Zκj−1

Figure 4.2.: Illustration of solutions xj in Theorem 4.2.

Note that in the case of an N -homoclinic orbit (4.5) reduces to a set of N equations.

Estimates for Ξj(λ, ω)

We follow the general analysis in [75] and express Ξj(λ, ω) as

Ξj(λ, ω) = ξ∞(λ) + ξj(λ, ω).

Here ξ∞ measures the splitting of W s(u)(0) in Σ under variation of λ, and ξj reflects the
influence of taking a finite ’time of passage’ from Σκj−1

to Σκj
.

Since Γi exists robustly in the family Γi,λ, we immediately conclude

ξ∞(λ) = 0 for all λ.

It remains to compute ξj(λ, ω), for which we introduce some further notation first. Let
us consider the variational equation along Γi,λ

ẋ = D1f(γi,λ(t), λ) x.

The formal adjoint equation is given by

ẋ = −D1f(γi,λ(t), λ)T x (4.6)

and because of the non-degeneracy of Γi,λ for λ small enough, equation (4.6) has a unique
bounded solution Ψi,λ, compare with above and [75]. Moreover, Ψi,λ(0) ∈ Zi and with
this at hand we cite the following result, again taken from [75].
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4. Broom bifurcation of a bellows configuration

Theorem 4.3 ([75], Satz 3). Choose λ and ω as in Theorem 4.2. Then the gaps Ξj

can be expressed as

Ξj(λ, ω) = 〈Ψκj ,λ(−ωj), γκj−1,λ(ωj)〉
−〈Ψκj ,λ(ωj+1), γκj+1,λ(−ωj+1)〉+R(λ, ω)

In this theorem R(λ, ω) denotes terms of higher order for which estimates are given in
[75]. Note that R(λ, ω) is differentiable.

The inner product terms in the above formula concern points in a neighbourhood of
0. For estimating these terms we use a general lemma that describes the behaviour of
solutions in the stable manifold of 0. Its assertion closely resembles that of Lemma 1.5
in [75] and of Lemma 2.2 in [97]. We also refer to the latter paper for a proof since it
proceeds along the same lines as the one given there.

Lemma 4.4. Consider the differential equation

ẏ = B(λ)y + F (y, λ), y ∈ Rn, λ ∈ Rl

where B is a family of linear operators and F is smooth with F (0, λ) = 0, D1F (0, λ) = 0.
Suppose that the spectrum of B(λ) can be decomposed into σ(B(λ)) = σss(λ)∪σs(λ) such
that for all λ

Re σss(λ) < −βss < Re σs(λ) < −βs < 0

with numbers βs, βss ∈ R+ satisfying βss < 2βs, independent of λ. Suppose that the
corresponding spectral projections P s(ss) are smooth in λ and set Bs(λ) := B(λ)P s. For
small initial values y0(λ), depending smoothly on λ, let y(·, λ) denote the solution with
y(0, λ) = y0(λ). Then there exists a vector v(λ) such that

||y(t, λ)− eBs(λ)tv(λ)|| ≤ ce−βsst for all t > 0.

The vector v depends smoothly on λ.

A similar result applies to solutions of (4.6), see for instance Lemma 1.8 in [75]. We
apply this result for estimating the inner product terms in Theorem 4.3. Recall that
σ(D1f(0, λ)) = {±1 ±

√
λ} ∪ σss ∪ σuu. Observing Hypothesis 4.5 it is straightforward

to compute

〈Ψκj ,λ(−ωj), γκj−1,λ(ωj)〉 =

〈(
e−ωj cosh

√
λ ωj −e−ωj/

√
λ · sinh

√
λ ωj

−e−ωj
√

λ sinh
√

λ ωj e−ωj cosh
√

λ ωj

)
v(λ),

(
e−ωj cosh

√
λ ωj e−ωj

√
λ sinh

√
λ ωj

e−ωj/
√

λ · sinh
√

λ ωj e−ωj cosh
√

λ ωj

)
w(λ),

〉
+ R̃(λ, ωj)

(4.7)

with v, w differentiable in λ and with R̃ as terms of higher order in ωj, see below for
details. As it is written, this formula only makes sense for λ > 0. We can, however,
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4.4. Existence of N -homoclinic orbits

permit complex arguments for the functions appearing in (4.7). Then this formula
describes the leading terms in ξj.

We will make a final assumption about these leading terms. Computing the above inner
product at λ = 0, we find terms

〈Ψκj
(−ωj), γκj−1

(ωj)〉 = e−2ωj(〈v(0), w(0)〉+ 2ωj) + R̃(λ, ωj).

Moreover, the term 〈v(λ), w(λ)〉 contributes to the coefficient for the leading terms in
(4.7) for all λ. We assume

Hypothesis 4.6. The vectors v(0) and w(0) are not orthogonal.

Let us comment on this. Assume that this assumption is violated such that the leading
term in (4.7) is zero. In this case we can introduce a second parameter to unfold this
leading term. In particular, one then finds a curve in the region λ > 0 where 0 is a real
saddle such that the leading term in ξj, i.e. the coefficient in front of e(−1+

√
λ)ωj , vanishes

on the curve. This corresponds to an orbit flip bifurcation, since it means that the orbit
does not approach the equilibrium at the lowest possible speed. Hence, Hypothesis 4.6
prevents an orbit flip in the unfolded family.

4.4. Existence of N -homoclinic orbits

Let us consider Theorem 4.2 with an N -tuple κ = {κ1, . . . , κN} and an (N + 1)-tuple
ω = {∞, ω2, . . . , ωN ,∞}. The tuples uniquely determine a sequence (xj), j = 1, . . . , N
of solutions that satisfy (i)-(iii) in Theorem 4.2. The sequence describes an N -homoclinic
solution if it solves (4.5).

We focus on symmetric homoclinic orbits. Here the number of equations in (4.5) can
be reduced further. Let us exploit this point. We call the above N -tuple κ symmetric,
if κN+1−j = κj for all j = 1, . . . , N . Similarly, we call ω symmetric if ωN+2−j = ωj

for j = 2, . . . N . Finally, R-symmetry of a sequence of solutions of (i)-(iii) in Theorem
4.2 means that Rxj(t) = xN+1−j(−t). Note that an R-symmetric solutions of (4.1)
necessarily is an R-symmetric sequence of solutions.

As a consequence of the uniqueness in Theorem 4.2 we obtain

Lemma 4.5. Consider the unique sequence of solutions (xj) from Theorem 4.2, associ-
ated to κ and ω as above. This sequence is R-symmetric if and only if both κ and ω are
symmetric. Moreover, the gaps ξj satisfy ξN+1−j(λ, ω) = ξj(λ, ω) in that case.

Proof. It is clear that R-symmetric sequences are necessarily described by symmetric
tuples κ, ω. The proof that symmetry of κ, ω is sufficient for the symmetry of (xj)
is completely analogous to the proof of Lemma 3.1 in [74], see also [81]. The idea is
to represent the corresponding R-images by solutions (x̃j) of (i)-(iii) in Theorem 4.2.

87



4. Broom bifurcation of a bellows configuration

Straightforward considerations show that (x̃j) correspond to the same tuples κ, ω, and
thus uniqueness in Theorem 4.2 implies equality. The gap property is a simple con-
sequence.

Hence, for the detection of symmetric N -homoclinic orbits it suffices to choose a sym-
metric tuple κ and to solve the system

ξj(λ, ω) = 0, j = 1, 2, . . . , [N/2] (4.8)

with symmetric ω. (By [N/2] we denote the largest integer smaller than N/2.)

In the following we discuss the existence of symmetric N -homoclinic orbits for different
signs of λ. We assume that κ and ω are symmetric and look for solutions of (4.8). We
first consider values of λ where 0 is a real saddle.

The case λ ≥ 0

If λ > 0 we can simplify the inner product terms, such that for j = 1, . . . , [N/2] the gap
ξj can be written as

ξj(λ, ω) = c1(λ)e−2ωj sinh(2
√

λ ωj + d(λ))

+c2(λ)e−2ωj+1 sinh(2
√

λ ωj+1 + d(λ)) + o(e−2(1−
√

λ)ωj) + o(e−2(1−
√

λ)ωj+1)

with functions c1,2, d that are smooth in λ and bounded away from 0, because of Hy-
pothesis 4.6. The functions c1,2, d are related to the vectors v(λ), w(λ), such that
smoothness is a consequence of Lemma 4.4.

It is easy to see that the equation has no solution apart from the trivial one. Recall that
ω1 = ∞. Thus, ξ1(λ, ω) = 0 implies ω2 = ∞. The same argument yields ωi = ∞ for
all i = 2, . . . , N − 1. We conclude that no symmetric N -homoclinic orbits exist, if the
equilibrium 0 is a real saddle. Moreover, the argument does not need the symmetry of
κ and ω and hence we conclude that no N -homoclinic orbits exist at all if λ > 0.

The same argument shows the non-existence of N -homoclinic orbits for λ = 0. Here we
compute

ξj(0, ω) = c1(0)e−2ωj(ωj + d(0)) + c2(0)e−2ωj+1(ωj+1 + d(0)) + o(e−2ωj) + o(e−2ωj+1),

again with non-zero coefficients c1,2, and d ∈ R.

The case λ < 0

We can detect a plethora of N -homoclinic orbits if λ < 0. Here the gap ξj reads

ξj(λ, ω) = c1(λ)e−2ωj sin(2
√
|λ| ωj + d(λ))

+c2(λ)e−2ωj+1 sin(2
√
|λ| ωj+1 + d(λ)) + o(e−2ωj) + o(e−2ωj+1),

(4.9)
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4.4. Existence of N -homoclinic orbits

for j = 1, . . . , [N/2]. We note that similar formulas in the saddle focus region have been
derived in [76, 77].

This system can be solved in the same way as in [76]: We chose a real number w, such
that ωj ≥ w for all j = 2, . . . , [N/2] and introduce variables

r = e−2w, aj = e−2(ωj−w), j = 2, . . . , [N/2] + 1.

Then (4.9) becomes

c1(λ)raj sin
(√

|λ| ln(raj) + d(λ)
)

+c2(λ)raj+1 sin
(√

|λ| ln(raj+1) + d(λ)
)

= o(raj).

We can divide through r and choose in particular

r = e−2kπ/
√
|λ|, k ∈ N.

Using the periodicity of sin(·) we see that the r drops out in the sin-terms, such that we
are left with

c1(λ)aj sin
(√

|λ| ln(aj) + d(λ)
)

+c2(λ)aj+1 sin
(√

|λ| ln(aj+1) + d(λ)
)

= O(raj).

Now, letting r → 0 and recalling that ω1 = ∞ we obtain the system

c2(λ)a2 sin
(√

|λ| ln(a2) + d(λ)
)

= 0

c1(λ)aj sin
(√

|λ| ln(aj) + d(λ)
)

+c2(λ)aj+1 sin
(√

|λ| ln(aj+1) + d(λ)
)

= 0, j = 2, . . . , [N/2].

(4.10)

Obviously, this system can be solved for infinitely many sequences (ai). Moreover, the
Jacobian of the left hand side is a upper-triangular matrix with non-zero diagonal-entries.
Hence, it is regular and we can apply the implicit function theorem at an arbitrary
solution sequence (aj)

∗ of (4.10). This yields the existence of infinitely many values

of rk = e−2kπ/
√
|λ| such that the sequences ω that correspond to (aj)

∗, rk solve (4.9).
We conclude that infinitely many symmetric homoclinic orbits exist for each choice of
itinerary κ.

Let us discuss the result. The special choice of symmetric sequences κ1 := (1, 1, . . . , 1)
and κ2 := (2, 2, . . . , 2) shows that for each N there exist infinitely many N -homoclinic
orbits in a neighbourhood of each one of the primary orbits Γi. This agrees with the
well known results in [41, 76]. But, of course, we find additional homoclinic orbits that
are composed of parts of both Γ1 and Γ2.
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4. Broom bifurcation of a bellows configuration

Furthermore, the computations also give some information about the fate of N -homoclinic
orbits as λ → 0− 0. Choose a fixed λ < 0 and assume that the sequence ω ∈ RN+1 de-
scribes the N -homoclinic solution x. Now, if the orbit is continued with respect to λ we
find that ωj →∞ for j = 2, . . . , N . Thus, the orbit approaches the primary homoclinic
bellows Γ1 ∪ Γ2.

We summarize the results about the existence of N -homoclinic orbits in a final the-
orem.

Theorem 4.6. Consider (4.1) under Hypothesis 4.1-4.6. Then for λ ≥ 0 there exist no
additional homoclinic orbits near the bellows configuration Γ1 ∪ Γ2. If λ < 0, then for
each symmetric sequence κ ∈ {1, 2}N of arbitrary length N , there exist infinitely many
symmetric homoclinic orbits that follow the bellows configuration according to κ.

4.5. Application to the umbilic systems

Let us finally return to the systems (1.1) and discuss some consequences of the above
results for them. We concentrate on f− with parameter values α > 0, β = −4α2. Our
results suggest that a plethora of homoclinic and heteroclinic orbits emerges at these
parameter values.

First recall from Section 1.4 that we have to consider the reduced system (A.7) in orbit
space. Here the heteroclinic cycle {γhet, R1γhet} and the homoclinic orbits to ξ3,4 are
represented by a homoclinic bellows configuration. Second, we note that we cannot
prove that f− fulfills the assumptions for the general analysis. In particular, it is not
clear whether the orbits are non-degenerate. But the robust existence of the orbits,
established numerically, strongly suggests this.

Therefore, according to Theorem 4.6 there should emerge N -homoclinic orbits near
the bellows for β < −4α2. We have shown one of them in Figure 1.4. This orbit is
represented by a three-homoclinic orbit in the reduced system, which alternately follows
the primary orbits.

We finally remark that there are even more orbits that form a bellows configuration
with {γhet, R1γhet}. For instance, also the large heteroclinic cycle in Figure 1.3 and each
N -homoclinic orbit in Figure 2.10 can be continued to parameter values β = −4α2. All
of these orbits are in bellows configuration with {γhet, R1γhet}. Therefore the arguments
using Theorem 4.6 can be repeated for each of these bellows.
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CHAPTER 5

Discussion

Let us conclude this thesis by discussing a few open problems and interesting directions
for future research in connection with the studies undertaken here. Let us begin with
some general remarks.

This thesis concerns homoclinic bifurcations in reversible systems that are caused by
a change in the type of the associated equilibrium. We have discussed the bifurcation
caused by a saddle / saddle centre transition and - in a concise way - the bifurcation
caused by a saddle / saddle focus transition. Our analysis has by no means answered all
questions about these bifurcations and a few interesting problems are discussed below.
However, let us first look at two further possible bifurcations of the equilibrium that
lead to an interesting behaviour near an associated homoclinic orbit.

Consider the case of a homoclinic orbit to a complex saddle focus, for simplicity in R4.
We have studied what happens, if the orbit is continued in a one-parameter family and
the complex eigenvalues of the equilibrium meet on the real axis. Another possibility
for the eigenvalues is to meet on the imaginary axis, such that the equilibrium becomes
a centre. This process is known as a reversible 1:1-resonance [50] or Hamiltonian-Hopf
bifurcation [85]. Iooss and Peroueme show in [50] that the local bifurcation is essentially
governed by a normal form of the system. In the so-called subcritical case of the local
bifurcation they prove the existence of two symmetric homoclinic orbits in the parameter
region where the equilibrium is hyperbolic. The size of these orbits shrinks to 0 when the
equilibrium becomes a centre. This effect has been observed in a number of examples,
for instance also in the umbilic systems [58]. Note however, that there is a second
possibility. In [6] a class of systems is studied where the homoclinic orbit persists up
to parameter values of the reversible 1:1-resonance. At the resonance the orbit decays
algebraically to the centre, and it is accompanied by an infinite number of algebraically
decaying N -homoclinic orbits.

Another study of the effect of a local codimension-one bifurcation on a symmetric homo-
clinic orbits can be found in the literature. Assume the existence of a homoclinic orbit
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to a saddle centre. We have seen that in two-parameter families of reversible ODEs
such orbits typically exist along curves in parameter space. Our studies have dealt with
the bifurcation when along such a curve the equilibrium becomes a real saddle. But if
the homoclinic orbit is continued in ‘opposite direction’ along the curve, there is the
possibility that the real eigenvalues merge at 0 and become imaginary, such that the
equilibrium becomes a centre. Studies in [67, 24] show that in the singular limit the
homoclinic orbit shrinks to a point. Investigations in [61] for reversible Hamiltonian
systems concern the behaviour of two-homoclinic orbits in such a transition.

We now return to the bifurcations that have been considered in this thesis.

Homoclinic orbits to degenerate equilibria

The studies in Chapters 2 and 3 of this thesis have concerned homoclinic orbits to de-
generate equilibria. We have introduced appropriate ‘centre manifolds’ W c

loc,λ and have
studied the existence of homoclinic orbits to these manifolds. We could completely
describe bifurcating one-homoclinic orbits and, moreover, analyse their asymptotic be-
haviour by a projection along stable fibres.

In the last part of Chapter 2 we have taken a next step and have analysed the existence of
two-homoclinic orbits. There we have chosen to rely on a geometric approach, motivated
by studies for singularly perturbed ODEs. The difficulties have become evident. One of
the main obstacles is the ‘complex’ dynamics in W c

loc,λ which makes it difficult to analyse
the behaviour in a neighbourhood of this manifold geometrically.

Therefore, one of the major directions of future research is to either improve the geo-
metric approach or to develop an analytical technique for the study of further recurrent
dynamics near the primary orbit. It would, for instance, be desirable to further gener-
alize Lin’s method, such that the case of homoclinic orbits to nonhyperbolic equilibria
can be analysed completely. It seems likely that, just as in the geometric considerations
in Section 2.5, this method decomposes into two parts, one dealing with the local beha-
viour near W c

loc,λ and the other with the ‘global flight’. For the local part, exponential
expansions as in [27] will be crucial. Rigorous results are still missing.

Let us discuss interesting aspects of the bifurcation scenarios that have been established
in Chapters 2 and 3. The bifurcation scenario for the reversible homoclinic pitchfork
bifurcation implies that for λ < 0 the homoclinic orbits to the equilibria η, R2η and the
(small) heteroclinic cycle in W c

loc,λ form a bellows configuration. The results of Section
2.5 and the numerical computations for the system f− suggest that at the same time
N -homoclinic (and N -heteroclinic) orbits to the equilibria exist. Similarly, in the case
of a local transcritical bifurcation, treated in Chapter 3 we find a homoclinic orbit which
is composed of the primary orbit and the small homoclinic orbit Υ, see panel b) in
Figure 3.7. This orbit can also be viewed as a two-homoclinic orbit near the bellows
configuration.

These observations remarkably differ from the results in [46], where it is proved that
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generically no N -homoclinic orbits exist near a bellows configuration. Of course, since
in our case the bellows configuration emerges in another bifurcation itself, it is not sur-
prising that the results do not fall into the general frame. But still, this is an interesting
difference. Moreover, it is shown in [46] that N -periodic orbits exist near the bellows
configuration, and that in general, one finds complex dynamics, caused by heteroclinic
orbits between periodic orbits near the bellows. It is interesting to see, how far this
result applies to our scenarios.

In each of the bifurcation scenarios in Chapter 3 we have encountered a reversible orbit
flip bifurcation of the primary orbit. General results by Sanstede et. al. in [74] show that
this bifurcation typically leads to the emergence of N -homoclinic orbits. See also [15]
for a numerical investigation of this bifurcation for the 5-th order KdV-equation (3.5),
where the presence of a Hamiltonian structure implies that the bifurcation is degenerate
compared with the analysis of [74]. These results concern orbits which are composed
of copies of the fast decaying homoclinic orbit alone. In our case, however, there is the
possibility of an even richer dynamics in that it includes orbits being composed of copies
of the primary orbit and of parts that are governed by the dynamics in W c

loc,λ.

Of similar interest is the existence of N -homoclinic solutions for parameter values where
the origin is a saddle centre. Here, general results are available which explain the accu-
mulation of such solutions on parameter values where the primary orbit exists, see [16]
for the reversible case and [68, 61] for the case of systems that are additionally Hamilto-
nian. An interesting point is that these studies show differences in the behaviour of
systems that are purely reversible and of those are also Hamiltonian. In Section 3.5 of
the present paper we have established a possible reason for these differences, namely
the fact that the Hamiltonian property does not allow a transverse intersection of the
centre-stable and unstable manifolds. This will certainly be reflected in results concern-
ing bifurcating N -homoclinic orbits. Thus, an analysis may also give further insight into
qualitative differences between reversible and Hamiltonian systems, see [16] for some
related remarks.

Hence, the fundamental problem in a future analysis of homoclinic orbits to degenerate
equilibria lies in the study of bifurcating N -homoclinic orbits.

Let us finally turn to the application in Section 3.6 where we have considered the trans-
ition gap soliton / embedded soliton (ES). From a PDE point of view a further important
project is the study of the stability of solutions. More precisely an open question is what
happens to the stability of the ESs when they cross the critical parameter value to be-
come structurally stable objects. For a variety of model equations, including two of
the examples studied in this thesis, the property of semi-stability of embedded solitons
has been established by a mixture of numerical, asymptotic and rigorous arguments
[71, 95, 93, 94]. Does this semi-stability necessarily transform into true exponential sta-
bility when the embedded soliton becomes a gap soliton? A general rigorous answer to
this question is of course beyond the realm of the finite-dimensional dynamical systems
theory used in Chapter 3.
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5. Discussion

The broom bifurcation

Our analysis of the broom bifurcation from the bellows structure in Chapter 4 have fo-
cussed on a specific part of the dynamics, namely bifurcating N -homoclinic orbits. The
bifurcation results resemble those for single homoclinic orbits: If the equilibrium is a
complex saddle focus, then infinitely many N -homoclinic orbits exist. But in the trans-
ition of the equilibrium each one of these orbits approaches the primary configuration,
and no N -homoclinic orbits exist in the saddle region.

It is interesting to study further dynamics near the bellows. As we have described
above, homoclinic orbits to saddle foci are typically accompanied by an incredibly rich
dynamics. In particular, infinitely many N -homoclinic and N -periodic orbits exist near
such homoclinic orbits [41]. Note, however, that it is not fully clear for purely reversible
systems whether shift-dynamics necessarily occurs near homoclinic orbits to saddle foci.
If the system is additionally Hamiltonian, then before-mentioned results by Devaney [28]
ensure this.

Now, consider what happens when the associated equilibrium changes its type. If a single
homoclinic orbit is concerned, then the results are similar to those for the N -homoclinic
orbits, namely each N -periodic solution will be destroyed in the process. However, the
investigations in [46] about the dynamics near a bellows configuration show that the
configuration is accompanied by infinitely many N -periodic orbits, even in the saddle
case. Thus, there is a possibility for N -homoclinic orbits to survive the equilibrium’s
change. So, what happens with N -periodic orbits near the bellows if the equilibrium
becomes a saddle?

The umbilic systems

Let us conclude the thesis with some remarks about the umbilic systems (1.1). As we
have remarked, these systems are of importance, since they describe the behaviour near
equilibria with fourfold eigenvalue zero in a class of reversible Hamiltonian systems.

Our studies demonstrate that in an unfolding of such an equilibrium a great variety of
homoclinic and heteroclinic phenomena can be observed. This is of interest in applica-
tions. In Appendix A we describe our motivation for the study of (1.1), which stems from
a model in nonlinear optics. In this context it is interesting to study the relation of our
results to the physical problem. Because of a certain degeneracy in the corresponding
model this is by no means trivial.
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APPENDIX A

The umbilic systems

A.1. Introduction

In this appendix we collect various results in connection with the umbilic systems (1.1).
We start with some details on how the system have been derived as unfoldings of an
equilibrium with fourfold eigenvalue zero. In Section A.2 we then review results about
the bifurcation of equilibria and existence results for connecting orbits, derived in the
author’s Diploma thesis [88], see also [91]. Of particular importance are existence results
for a homoclinic orbit γhom, stated in Theorems A.1 and A.3, and for a heteroclinic cycle
{γhet, R1γhet} in Theorems A.2 and A.4. We also discuss two techniques that facilitate
the analysis of the umbilic systems.

The heteroclinic cycle is again the subject of Section A.3, where we extend the existence
results from [88]. The results of that section have already found their way into [91]. In
Section A.3 we explain the corresponding analysis in detail.

Let us for the sake of completeness look back on fundamental properties of the umbilic
systems (1.1) that have already been explained in the first introductory chapter. First,
recall that the systems read

ẋ = f±(x, α, β) =




x2

2x1x3 + 2αx1

x4

−x2
1 ± x2

3 ∓ 2αx3 − β




for x = (x1, x2, x3, x4) ∈ R4, depending on parameters α, β ∈ R. We view the systems
(1.1) as (parameter dependent) dynamical systems induced by the vector fields f±. We
refer to the vector field f− as the reversible hyperbolic umbilic; the other case f+ is
referred to as the reversible elliptic umbilic.

The vector fields f± are reversible and Z2-symmetric. Indeed, we have seen that f± are
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Appendix A. The umbilic systems

reversible with respect to

R1 : (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4)

and
R2 : (x1, x2, x3, x4) 7→ (−x1, x2, x3,−x4).

As a result, the map S := R1 ◦R2 describes a Z2-symmetry for (1.1), that is

Sf±(x, α, β)− f±(Sx, α, β) = 0.

An immediate consequence of this equality is that the fixed space Fix (S) is invariant
with respect to the the flow of f±.

Finally, the umbilic systems are Hamiltonian with a Hamilton function given by

H±(x, α, β) = −1

2
x2

2 +
1

2
x2

4 + x2
1x3 ∓ 1

3
x3

3 + α(x2
1 ± x2

3) + βx3.

Because of the indefinite quadratic form in H± the systems belong to the class of indef-
inite Hamiltonian systems.

We have already mentioned a number of times that (1.1) are unfoldings of an equilibrium
with fourfold eigenvalue zero. Indeed, setting α = β = 0 a quick calculation shows that

D1f
±(0, 0, 0) =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 . (A.1)

Why are we interested in equilibria of this type?

The physical background

Our motivation comes from a problem in nonlinear optics that concerns the existence
of solitary light waves in an optical fibre. We are interested in the special case of
so-called χ(2)-solitons. These are solitary light waves that exist in a medium with χ(2)-
nonlinearity, see [13, 11] for comprehensive reviews. In this case light propagation is
adequately described by the following system of PDEs

i
∂w

∂ξ
+ r

∂2w

∂t2
− w + w∗v = 0

iσ
∂v

∂ξ
+ s

∂2v

∂t2
− αv +

1

2
w2 = 0

(A.2)

for the complex functions v and w, representing the envelope amplitudes of the fun-
damental and second-harmonic waves, respectively. The evolution variable ξ measures
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A.1. Introduction

the distance along the optical fibre. The second variable t describes distance or re-
tarded time, depending on whether we deal with a spatial or temporal problem. The
parameters r, s can only take values ±1. Their sign is determined by the signs of the
dispersion/diffraction coefficients. The parameter σ measures the ratio of the disper-
sion/diffraction, and α is a dimensionless real parameter. System (A.2) is obtained from
the model for χ(2) second-harmonic generation of type I by a normalization procedure
and the insertion of an appropriate ansatz, see [13, 97, 96].

Solitary waves and kinks are stationary solutions of (A.2), i.e. solutions depending on t
only. The search for real stationary solutions then leads to the study of homoclinic and
heteroclinic solutions of a system of second-order ODEs

rw′′ − w + wv = 0
sv′′ − αv + w2/2 = 0,

(A.3)

where the prime denotes differentiation with respect to t. It is not hard to see that (A.3)
is an indefinite Hamiltonian which is reversible with respect to the involutions R1 and
R2, introduced above.

If r = −1, s = 1 one is interested in the existence of heteroclinic orbits of (A.3),
corresponding to kink solutions of (A.2). For α > 0 there is a chance for such orbits as
we find two equilibria

(w1/2 , w′
1/2 , v1/2 , v′1/2 ) = (±

√
2α, 0, 1, 0)

on the same level set of the corresponding Hamiltonian. (The symmetries of the system
imply that heteroclinic orbits will not come alone but in pairs forming a cycle, and thus
describe fronts in the physical system.)

If α ≥ 8 the equilibria are real saddles, that is, their linearization possesses four real
eigenvalues. In this region heteroclinic orbits can be found by a shooting technique
for indefinite Hamiltonian systems, developed in [44]. (We touch upon this method in
Appendix A.) For 0 < α < 8, however, the equilibria are complex saddle foci, and
therefore the situation is more involved. Our idea was to attack the existence problem
for this region at the special value α = 0. Here the two equilibria emerge in some
(degenerate) pitchfork bifurcation of an equilibrium ξ0 and a local bifurcation analysis
combined with path-following arguments should provide information about the existence
of heteroclinic orbits.

A calculation shows that the linearization at the degenerate equilibrium ξ0 is precisely as
in (A.1). Such matrices are of codimension two in the class of reversible and Hamiltonian
matrices, according to results by Hoveijn [48]. One would thus expect an unfolding of
the local bifurcation of ξ0 to require two parameters. But unfortunately this is not the
case. The particular singularity ξ0 of (A.3) is of infinite codimension, since there exists a
manifold of equilibria at α = 0. This circumstance makes a rigorous analytical treatment
almost impossible. We have thus decided to drop the concrete physical problem. Instead,
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our goal is to analyse the generic local behaviour near equilibria with fourfold eigenvalue
zero in a corresponding class of reversible indefinite Hamiltonian systems.

In a first step we have aimed at deriving a standard form for the degenerate equilibrium
and a corresponding unfolding. In general this is a very hard problem and only few
results can be found in the literature. One problem similar to ours is studied by Iooss
via normal form theory in [51]. We have chosen to exploit the Hamiltonian structure
and have performed an unfolding of the singular Hamilton function using techniques
from Catastrophe Theory. (Note that a degenerate equilibrium corresponds to a singu-
larity of the Hamilton function.) This method has successfully been applied to planar
Hamiltonian systems in [8, 40]. We refer to [88, 91] for details of the procedure in the
present case.

We have found the singularity of the Hamilton function to be of codimension two in the
class of reversible systems. Obviously, this agrees with the results by Hoveijn about the
linear codimension. The procedure shows that two cases have to be distinguished which
differ in the sign of a third order term in the singular Hamilton function, namely the
reversible hyperbolic hyperbolic umbilic with Hamilton function H− and the reversible
elliptic umbilic with Hamilton function H+. The chosen procedure also yields unfoldings
of the singular Hamilton functions and we consequently obtain the vector fields f± that
bear the names of the corresponding Hamilton function.

Although we could obtain the vector fields f± in a straightforward way, the chosen
procedure does not allow us to prove that they are indeed versal unfoldings of the singular
systems (with α = β = 0). It therefore remains to investigate whether bifurcation
results that have been obtained for the umbilic systems occur robustly near singularities
with fourfold eigenvalue zero. In many cases it is possible to prove this robustness.
In particular, we can show that the bifurcation results in Appendix A are generic, see
[91] for details. We therefore hope to convince the reader that the umbilic systems are
more than just suitable examples for the numerical studies in the first chapter. On the
contrary, they are of mathematical importance since the results obtained for the systems
also increase the understanding of the generic behaviour near such equilibria.

Also, we are not aware of any physical application of f± or any direct relation to the
physical system (A.3). But again, bifurcations that will be observed for f± are of interest
in physical applications, as we have demonstrated for example in Chapter 3.

A.2. Summary of analytical results

In the following we collect various analytical results about f±. We present bifurcation
diagrams for equilibria and existence results for connecting orbits.
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A.2. Summary of analytical results

A.2.1. The hyperbolic umbilic f−

Many bifurcation results are completely analogous for both of the umbilic systems and
can be derived in a similar way. In our discussion of the analytical results we will
therefore focus on the reversible hyperbolic umbilic f−, as usual. The results for the
elliptic umbilic are summarized afterwards.

Bifurcations of equilibria

Equilibria of f− can be computed directly as solutions of the system of equations
f−(x, α, β) = 0. It is also straightforward to compute the eigenvalues of the equilib-
ria using computer algebra programs. We find two equilibria

ξ1,2 = (0, 0, α±
√

α2 − β, 0)

if β ≤ α2 and two additional equilibria

ξ3,4 = (±
√
−3α2 − β, 0,−α, 0)

if β < −3α2. The bifurcation diagram is presented in Figure A.1. This diagram shows
the number of equilibria of the systems in certain regions or curves in the parameter
plane. For each equilibrium the position of its eigenvalues in the complex plane is
indicated in the corresponding small box. Single eigenvalues are denoted by a ‘•’ whereas
for double eigenvalues (meaning eigenvalues of algebraic multiplicity two) we use ‘×’.
(Note that the notation in the diagram slightly differs from the one in [91].)

Local bifurcation of equilibria occur on two parabolas

B1 ∪ B2 := {β = α2} and B3 ∪ B4 := {β = −3α2}.
From Figure A.1 we conclude that a reversible saddle-centre bifurcation occurs for β = α2

while for β = −3α2 a reversible pitchfork bifurcation takes place.

We note that all equilibria are R1-symmetric, that is, R1ξi = ξi, i = 1, . . . , 4. But only
ξ1 and ξ2 are R2-symmetric, whereas R2ξ3 = ξ4. We furthermore note that ξ3 and ξ4 are
the only equilibria on the same level set of the Hamiltonian H−.

For certain parameter values one finds qualitative changes in the linearizations of equi-
libria that may lead to a bifurcation of orbits in their neighbourhood. Of interest to us
is the behaviour on the parabola

B5 ∪ B6 := {β = −4α2}.
If this parabola is crossed with decreasing β then either ξ3,4 turn from centres into
complex saddle foci and lose their stability in a reversible 1:1-resonance or Hamiltonian-
Hopf bifurcation [50, 85] if α < 0, or the equilibria turn from real saddles into complex
saddle foci if α > 0. The latter case is considered in Chapter 4.
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ξ1 ξ2

ξ3 ξ4

ξ1

ξ3

ξ1 ξ2

ξ4ξ3

ξ1

ξ3

ξ2

ξ4

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ2ξ1

ξ1 ξ2

ξ3 ξ4

α

β

B1 B2

B3 B4

B5 B6

ξ1 = ξ2 ξ1 = ξ2

ξ4

ξ2

Figure A.1.: Bifurcation diagram for equilibria of f−. It shows the equilibria ξi of the
system in the α, β-plane and the position of their eigenvalues in the complex
plane. Each of the small boxes refers to a region or bifurcation curve in the
parameter plane. Within the boxes single eigenvalues are denoted by ’•’,
for double eigenvalues we use ’×’. On the solid curves B1 ∪B2 := {β = α2}
and B3 ∪ B4 := {β = −3α2} local bifurcations of equilibria occur, whereas
the dashed curve B5 ∪ B6 := {β = −4α2} is related to a qualitative change
of the eigenvalues of the equilibria ξ3,4.

Homoclinic orbits

We will now show the existence of a homoclinic orbit to the equilibrium ξ2. The key to
this is the invariance of the plane

Fix (S) := {x : Sx = x} = {x = (x1, x2, x3, x4) : x1 = x2 = 0},
which has already been observed above. Within Fix (S) the reduced system is also
Hamiltonian and it can be shown that a homoclinic orbit is created in the reversible
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a) b)

x3 x3

x4

Figure A.2.: Existence of a homoclinic orbit of f−(x, α, β) for β < α2: panel (a) shows
the potential V (x3, α, β) = x3/3−αx2

3+βx3 for the system in Fix (S), panel
(b) shows γhom itself.

saddle-centre bifurcation on B1 ∪ B2, see Figure A.2. It is also possible to derive an
analytical expression for the corresponding solution. We obtain

Theorem A.1. For β < α2 the vector field f− possesses a homoclinic orbit γhom to the
equilibrium ξ2. The orbit is symmetric with respect to both R1 and R2, that is Riγhom =
γhom, i = 1, 2. The corresponding solution xhom with xhom(0) ∈ Fix (R1) ∩ Fix (R2) is
given by xhom(t) = (0, 0, r(t), ṙ(t)), where

r(t) = 3
√

α2 − β · sech2

(
4
√

α2 − β√
2

t

)
+ α−

√
α2 − β.

Theorem A.1 shows the existence of γhom for all parameter values where ξ2 exists. Let
us discuss this result. We distinguish two cases.

For parameter values between B2 and B4 the equilibrium ξ2 is hyperbolic and the ro-
bust existence of γhom is compatible with the fact that homoclinic orbits to hyperbolic
equilibria are of codimension-zero in the class of reversible or Hamiltonian systems. It
is possible to prove that γhom is non-degenerate for parameter values between B2 and B4

(Lemma 2 in [91]). This explains the robust existence of the orbit for parameter values
in this region.

If, however, we choose parameters not between B2 and B4 the equilibrium ξ2 is non-
hyperbolic and the above transversality arguments do not apply to the orbit in the full
four-dimensional phase space. Indeed, a homoclinic orbit to a nonhyperbolic equilibrium
should break up under perturbations even in the case of a reversible or Hamiltonian sys-
tem. But for γhom the Z2-symmetry of f− does not allow this, since we can repeat the
transversality arguments for the situation within the space Fix (S).

The transition of ξ2 from a hyperbolic equilibrium (real saddle) to a nonhyperbolic
equilibrium (saddle centre) occurs for parameter values on B4. By Theorem A.1 the
transition does not affect the orbit γhom itself. But still, one can expect a bifurcation of
orbits from γhom. In Chapter 2 it is demonstrated that the situation on B4 leads to a
reversible homoclinic pitchfork bifurcation.
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Heteroclinic orbits

Heteroclinic orbits between equilibria of Hamiltonian systems can only exist if these
equilibria belong to the same level set of the Hamiltonian. Since ξ3 and ξ4 are the only
equilibria of f− on the same level set of H−, heteroclinic orbits can only exist between
these equilibria. Because of the R1-reversibility of f−, and since ξ3,4 ∈ Fix (R1), such
orbits will not come alone but in pairs forming a heteroclinic cycle. We will show that
such a cycle exists for parameter values between B4 and B6.

It is instructive to consider the local bifurcation of ξ2 on B4 first. Here the equilibrium
undergoes a (reversible) pitchfork bifurcation giving rise to the two real saddles ξ3,4

and turning from a real saddle to a saddle centre itself. A normal form calculation
for this bifurcation shows that a small heteroclinic cycle between ξ3 and ξ4 emerges
in this bifurcation. Hence, the pitchfork bifurcation is of eye type, compare also with
Figure 1.1.

For the actual proof of existence of such a heteroclinic cycle we employ a shooting
method for indefinite Hamiltonian systems developed by Hofer and Toland [44]. The
investigations in [44] concern systems with a Hamilton function of the form

H̃(q, q̇) =
1

2
〈Sq̇, q̇〉+ V (q),

where S is an indefinite matrix, possessing exactly one negative eigenvalue, and V is the
potential. It is proved that certain periodic, homoclinic or heteroclinic orbits exist, if
the potential V satisfies certain assumptions. In particular, the method is not restricted
to any local regime as the discussion of the local bifurcation of ξ2 above. An application
of the method to f− yields the following theorem.

Theorem A.2. Consider f− with parameter values α > 0 and −4α2 ≤ β < −3α2.
Then the equilibria ξ3 and ξ4 are connected by a heteroclinic cycle {γhet, R1γhet}.

Theorem A.2 ensures the existence of the heteroclinic cycle for all parameter values
between B4 and B6, that is, for all parameter values where the equilibria are real saddles.
It has been an open question in [88] what happens to the cycle when we vary parameters
such that B6 is crossed. On this curve the equilibria ξ3,4 change their type from real
saddles to saddle foci. It is important to note that the shooting method can only
be applied to the region where the equilibria are real saddles since it yields a certain
monotonicity for the detected orbits, see [44, 91] for details. (We also return to this point
in Section A.3 below.) This monotonicity is not shared by orbits that are asymptotic
to equilibria of saddle focus type because of the behaviour in a neighbourhood of the
equilibrium. In Section A.3 we exploit a topological property of γhet to derive further
existence (continuation) results.
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Figure A.3.: Bifurcation diagram of f+. It shows the equilibria ξi of the system in the
α, β-plane and the position of their eigenvalues in the complex plane. Each
of the small boxes refers to a region or bifurcation curve in the parameter
plane. Within the boxes single eigenvalues are denoted by ’•’, for double
eigenvalues we use ’×’. On the solid curves B1 ∪ B2 := {β = 3α2} and
B3 ∪ B4 := {β = −α2} local bifurcations of equilibria occur, whereas the
dashed curve B5 ∪B6 := {β = 2α2} is related to a qualitative change of the
eigenvalues of the equilibria ξ3,4.

A.2.2. The elliptic umbilic f+

The elliptic umbilic f+ can be analysed in the same way as f− above. The equilibria
of the system and their eigenvalues can again be computed directly. We summarize the
results in the bifurcation diagram in Figure A.3. We note that in contrast to f− the
vector field f+ possesses equilibria for each parameter values.

The results about connecting orbits for f+ are completely analogous to the ones obtained
in the last section. They read as follows.

103



Appendix A. The umbilic systems

Theorem A.3. For β > −α2 the vector field f+ possesses a homoclinic orbit γhom to the
equilibrium ξ1. The orbit is symmetric with respect to both R1 and R2, that is Riγhom =
γhom, i = 1, 2. The corresponding solution xhom with xhom(0) ∈ Fix (R1) ∩ Fix (R2) is
given by xhom(t) = (0, 0, r(t), ṙ(t)), where

r(t) = −3
√

α2 + β · sech2

(
4
√

α2 + β√
2

t

)
+ α +

√
α2 + β.

Theorem A.4. Consider f+ with parameter values α < 0 and 2α2 ≤ β < 3α2. Then
the equilibria ξ3 and ξ4 are connected by a heteroclinic cycle {γhet, R1γhet}.

A.2.3. Two methods to simplify the systems

We present two techniques that will simplify the analysis of (1.1). By a suitable scaling
we establish that vector fields f±(·, α1, β1) and f±(·, α2, β2) are equivalent if the para-
meters lie on the same arc of a parabola β = cα2, c ∈ R. Thus, in a lot of cases it
suffices to consider the system under variation of one of the parameters. Afterwards
we discuss a technique that allows us to unify the treatment of homoclinic and hetero-
clinic orbits. Using suitable coordinates we can factor out the Z2-symmetry of (1.1) and
classify homoclinic and heteroclinic orbits as certain homoclinic orbits in the new phase
space. In deriving these two results we again concentrate on the hyperbolic case f−.
The computations for f+ run completely along the same lines and are omitted.

A suitable scaling

For convenience we rewrite f− as a system of second order ODEs

ẍ1 = 2x1x3 + 2αx1

ẍ3 = −x2
1 − x2

3 + 2αx3 − β
(A.4)

and introduce a new parameter by setting λ = α2sgn(α). This straightens parabolas in
the (α, β)-plane to lines in the (λ, β)-plane. Here we introduce polar coordinates

λ =

{
r cosφ : λ ≥ 0

−r cos (π − φ) : λ < 0

β = r sin ϕ

with φ ∈ [−π
2
, π

2
) and r ∈ R+. With no loss of generality we restrict to λ > 0 in the

following. Then (A.4) can be written as

ẍ1 = 2x1x3 + 2
√

r cosφ x1

ẍ3 = −x2
1 − x2

3 + 2
√

r cosφ x3 − r sinφ.
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Finally, setting x̃1 := x1/
√

r, x̃3 := x3/
√

r and scaling time by τ(t) := 4
√

r · t, we obtain
differential equations for Xφ,r(t) := x̃1(τ(t)), Yφ,r(t) := x̃3(τ(t)) which read

Ẍφ,r = 2Xφ,rYφ,r + 2
√

cosφ Xφ,r

Ÿφ,r = −X2
φ,r − Y 2

φ,r + 2
√

cosφ Yφ,r − sinφ.
(A.5)

Obviously, equation (A.5) depends on φ alone. Translated backwards into our original
parameters we obtain in consequence

Lemma A.5. Consider f± with parameter values (α1, β1) and (α2, β2) such that α1, α2

have the same sign and such that either α1 = α2 = 0 or β1/α
2
1 = β2/α

2
2. Then the vector

fields f±(·, α1, β1) and f±(·, α2, β2) are equivalent.

Let us discuss this result in detail. Lemma A.5 implies that bifurcations (of equilibria,
periodic orbits, or connecting orbits) can only occur on parabolas {β = cα2} in the para-
meter plane. Hence, we can also perform the numerical analysis of such bifurcations by
keeping one parameter fixed and vary only the other. Moreover, we can use paramet-
ers of arbitrary size and we are not chained to some local regime. Finally, the lemma
also allows to check the validity of numerical computations, since detected bifurcations
should appear only on arcs of parabolas in the (α, β) parameter plane.

Reducing the symmetry

In the final part of this short summary of results for (1.1) we show how the treatment
of homoclinic and heteroclinic orbits between the equilibria ξ3,4 can be unified. For
this we factor out the Z2-symmetry and consider the systems in orbit space, i.e. in the
space of orbits of the action of the symmetry group {id, S} of (1.1). The equilibria ξ3,4

correspond to an equilibrium ξ̂ in this space and both homoclinic and heteroclinic orbits
to ξ3,4 correspond to homoclinic orbits. This makes the general analysis of Chapter 4
applicable to the systems.

We can perform the reduction to orbit space for (1.1) explicitly. Again we focus on the
hyperbolic umbilic f−. Here the calculations proceed as follows. First recall that

S : (x1, x2, x3, x4) 7→ (−x1,−x2, x3, x4).

Thus, Fix (S) := {x1 = x2 = 0} and we will transform the (x1, x2)-coordinates only.
Here, the map S acts as a rotation by π. Returning to the original form in (1.1) we
consider f− as a first order system and rewrite the equations for (x1, x2)

ẋ1 = x2

ẋ2 = 2x1x3 + 2αx1
(A.6)
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For the moment we think of x3 as a parameter in these equations. It is not hard to
calculate that in polar-coordinates

x1 = r cos(φ), x2 = r sin(φ),

system (A.6) becomes

ṙ =
r

2
· sin(2φ) + (x3 + α) · r sin(2φ)

φ̇ = cos(2φ) +

(
x3 + α− 1

2

)
· (1 + cos(2φ)).

In this version the action of S is immediate, as the system is invariant under φ 7→ φ+π.
We divide out this symmetry by setting ψ = 2φ. Geometrically, this map achieves the
following: The sides of a quadrant in the (x1, x2)-plane are identified (“glued together”)
in a way such that both the vertical and horizontal sides have different directions, re-
spectively. The resulting surface is known as the real projective plane. One can thus
consider the resulting vector field on this surface. But we will not pursue this geometric
point of view, as it is of no importance for us.

We go back to ‘cartesian’ coordinates by setting

y1 = r cos(ψ), y2 = r sin(ψ).

It is then straightforward to calculate the ODEs for (y1, y2) and to adapt those for
(y3, y4) = (x3, x4). They read

ẏ1 = (1− 2y3 − 2α) · y2 −
(

1

2
+ y3 + α

)
· y1 · y2√

(y2
1 + y2

2)

ẏ2 =

(
1

2
+ y3 + α

)
· 2y2

1 + y2
2√

(y2
1 + y2

2)
+ (2y3 + 2α− 1) · y1

ẏ3 = y4

ẏ4 = −(y2
1 + y2

2)

2
−

√
(y2

1 + y2
2)

2
y1 − y2

3 + 2αy3 − β.

(A.7)

The vector field in (A.7) is well-defined everywhere and smooth in all points, except for
the plane y1 = y2 = 0. This plane corresponds to the fixed space Fix (S) of the Z2-
symmetry in original x-coordinates. Here the vector field is merely continuous, but
not differentiable. But since Fix (S) is invariant for the original system, and since
ξ3,4 6∈ Fix (S) homoclinic and heteroclinic orbits to these equilibria stay away from
this space. Hence, the lack of smoothness in (A.7) is not of concern to us in this set-
ting.

Homoclinic and heteroclinic orbits to ξ3,4 of the original system are homoclinic orbits of
(A.7) to the equilibrium

ξ̂ = (
√
−3α2 − β, 0,−α, 0).
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Note that such orbits correspond to different types of orbits in the original system. If we
want to lift back results from orbit space to the original phase space we can distinguish
these types by their ‘path’ in (y1, y2)-space. Orbits, whose paths do not encircle the origin
in this space necessarily describe homoclinic orbits to ξ3 and ξ4. Note that the symmetry
implies that such orbits appear in pairs. On the other hand, if the path encircles the
point y1 = y2 = 0, the corresponding pair of orbit in the original space can either be
homoclinic or heteroclinic. (Think of the cycle {γhet, R1γhet} or a pair of homoclinic
orbits to ξ3,4 close to this cycle.) We can distinguish these two possibilities by the
number of their windings. If the number is odd, then the orbit represents a heteroclinic
orbit between ξ3 and ξ4. In the other case it represents a homoclinic orbit.

A.3. Continuation of a heteroclinic cycle

In this section we consider the heteroclinic cycle {γhet, R1γhet} of the umbilic systems in
detail. Existence results for this cycle have been stated in Theorems A.2 and A.4. The
results there only concern values of the parameters α, β for which ξ3,4 are real saddles.
We show now that the cycle exists at least in some small region in parameter space
where the equilibria are complex saddle foci. We do not attack the existence problem
directly, but perform a continuation of the known heteroclinic cycle. For this we exploit
a topological property of the orbit.

We have seen before that homoclinic and heteroclinic orbits generically exist robustly in
reversible or Hamiltonian systems. (The arguments have concerned homoclinic orbits,
but they easily generalize to the case of heteroclinic cycles.) Recall that non-degeneracy
of a symmetric orbit is sufficient for its robust existence. This means that the corres-
ponding stable and unstable manifolds intersect as cleanly as possible along the orbit.
Unfortunately, it is very difficult to prove that a specific orbit is non-degenerate, since
this requires a detailed knowledge of the behaviour of those manifolds. Since the cycle
{γhet, R1γhet} has been found by a shooting method we do not know enough about the
orbits to prove their non-degeneracy.

Remark A.1. We note that there are examples of fourth-order equations for which
it could be shown that homoclinic orbits, found by shooting, are non-degenerate, see
[9, 84]. But the proofs in these papers are rather specific and do not apply to our case.

Instead of analysing the non-degeneracy of γhet (and consequently R1γhet) we focus
on a weaker property and show that this cycle exists due to a topologically transverse
intersection of the stable and unstable manifolds of ξ3,4. This idea has been developed
by Buffoni in [10] where it has been applied to a heteroclinic cycle in the Extended
Fisher-Kolmogorov equation. The precise definition of topological transversality needs
additional concepts from differential topology and will be given below. But a good
example to have in mind is the intersection of the graph of F : x 7→ x3 with the x-axis at
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0. This intersection is not transverse but, as we will see, it is topologically transverse. An
important observation is that this intersection cannot be destroyed. Hence, topological
transversality is also sufficient for the continuation of connecting orbits. Note, however,
that there may exist additional points of intersection in perturbations.

We will prove that for all values of α, β where ξ3,4 are real saddles the cycle exists due
to a topologically transverse intersection of the stable and unstable manifolds of ξ3,4.
Therefore, we can continue the cycle at least to some small region in parameter space
where the equilibria are complex saddle foci. This continuation method is closely related
to the shooting method in [44] and extensively uses the fact that (1.1) are indefinite
Hamiltonian systems. It is therefore useful to return to the presentation of (1.1) as
systems of second-order ODEs

Sq̈ +∇V (q, α, β) = 0 (A.8)

with q = (x1, x3). In these coordinates the Hamiltonian reads

H̃±(q, q̇, α, β) =
1

2
〈Sq̇, q̇〉+ V (q, α, β),

as above, with an indefinite quadratic form 〈S·, ·〉 and potential V .

As usual, we do not deal with both systems (1.1) in detail, but we focus on the hyperbolic
umbilic f− in the following. All calculations can repeated for the elliptic case without
any difficulties. The results of this section have already appeared in [91], the proofs
and technical details are taken from the preprint [89]. We first provide the necessary
background from differential geometry.

A.3.1. Topological transversality

The notion of topological transversality is closely related to the concept of intersection
numbers. Our approach to this subject is similar to [10]. We start with the concept of
intersection numbers of manifolds (see also [43, 38]) which is afterwards generalized to
compact pieces of manifolds.

Let M be a finite-dimensional orientable C1-manifold without boundary and let K, N
be finite-dimensional orientable C1-manifolds without boundary such that K is a closed
submanifold of N and

dim M + dim K = dim N.

Let F ∈ C1(M, N) be transverse to K in the classic sense. This means that for each
k ∈ K for which there exists m ∈ M such that F (m) = k it holds

im (dmF )⊕ TkK = TkN.

If the natural orientation of im (dmF ) completed with the orientation of TkK gives
the orientation of TkN then the orientation number O(F,m, K) of F at x is set to
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O(F, m,K) = +1, and O(F,m, K) = −1 otherwise. Now, the intersection number of F
and K can be defined as an integer I(F, K) satisfying the following:

I-1) If F is transverse to K, then F−1(K) is a finite set of points [38] and

I(F,K) :=
∑

m∈F−1(K)

O(F,m, K).

I-2) If F0 and F1 are homotopic then I(F0, K) = I(F1, K).

I-3) If I(F,K) 6= 0 then F−1(K) 6= ∅.
I-4) If ∆ ∈ C1(N,N ′) is a diffeomorphism, then I(∆ ◦ F, ∆(K)) = ±I(F, K).

I-5) Suppose that intersection theory is applicable for Mi, Ki, Ni, Fi. Then

I(F1 × · · · × Fk, K1 × · · · ×Kk) =
k∏

i=1

I(Fi, Ki).

It is important to note that the intersection number is continuous, i.e. it is constant
under small perturbations of F or K. Also note that every map F is homotopic to a
map F̃ transverse to K, where F̃ can be chosen as close to F as necessary.

Assume now that M is also included in N and denote the inclusion by i : M ↪→ N .
Then the intersection number of M and K is denoted by I(M, K) and is defined by

I(M, K) := I(i,K).

The intersection of the manifolds M and K is said to be topologically transverse provided
that I(M,K) 6= 0.

For the application of this concept to the heteroclinic cycle of f− we have to generalize the
concept of topological transversality to compact pieces of manifolds as in [10]. Let M̃ be
a finite-dimensional orientable C1-manifold without boundary. A compact subset M 6= ∅
of M̃ with cl (int M) = M is called a compact piece of manifold. We refer to [10] for a
precise definition of intersection numbers of compact pieces of manifolds which slightly
differs from the one above. We only mention that the characteristic properties I-1) to I-
5), which are essential in later computations, also hold in the generalized frame provided
that one restricts to admissible maps. A map F : M → N which can be extended to a
map F̃ ∈ C1(M̃, N) is called admissible if F−1(K) ⊂ int M . For the intersection number
of two compact pieces of manifolds M1 ⊂ N , M2 ⊂ N the assumption of admissibility
means dim M1 + dim M2 = dim N and M1 ∩ M2 ⊂ int M1 ∩ int M2. As above, the
intersection of M1 and M2 is called topologically transverse if I(M1,M2) 6= 0.

A.3.2. Shooting for heteroclinic orbits

We consider the reversible hyperbolic umbilic f− for parameter values α > 0 and −4α2 ≤
β < −3α2. In this case the equilibria ξ3 and ξ4 = R2ξ3 are real saddles. We show that
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their two-dimensional stable and unstable manifolds intersect topologically transversally
in some suitably chosen cross section Σ. We work in (q, q̇)-coordinates and use a (before-
mentioned) monotonicity property of orbits of the system that allows a reduction to
q-space.

For this it is convenient to modify the potential V such that the equilibria ξ3,4 are

contained in the zero level set of H̃−. This can easily be achieved by considering

V (q, α, β) = q2
1q2 +

1

3
q3
2 + α(q2

1 − q2
2) + βq2 +

4

3
α3 + αβ,

which, of course, leads to the same systems of ODEs.

We now introduce the following cones in R2

K0 := {p = (p1, p2) ∈ R2 : |p2| < |p1|, p1 > 0}
K1 := {p = (p1, p2) ∈ R2 : |p2| > |p1|, p2 > 0}
K2 := {p = (p1, p2) ∈ R2 : |p2| < |p1|, p1 < 0}
K3 := {p = (p1, p2) ∈ R2 : |p2| > |p1|, p2 < 0}.

We also introduce a component C of the set {q : V (q, α, β) > 0} which we take as the
region bounded by the line q2 = −α and by the curve 3q2

1 + q2
2 − 4αq2 + 3β + 4α2 = 0

(see Figure A.4 for an impression of this set). For q ∈ ∂C we have V (q, α, β) = 0.

From now on we only consider solutions in the zero level set H0 of the Hamiltonian. For
such orbits the sign of 〈Sq̇, q̇ 〉 only changes if the sign of V (q, α, β) changes. Therefore
q̇ is forced to stay in one of the cones Ki as long as V (q, α, β) 6= 0. In particular, if
(q, q̇) is a solution of (A.8) such that q(0) ∈ C, q̇(0) ∈ K0 then either limt→∞ q(t) = ξ4

or the path q(t) has to leave C at some finite exit time τ+ (see also [44]). Furthermore,
if q2(τ

+) = −α (i.e. the path leaves through the upper boundary of C) then q̇(τ+) 6= 0
and q̇(τ+) ∈ ∂K0∩∂K1. In the other case we have q̇(τ+) 6= 0 and q̇(τ+) ∈ ∂K0∩∂K3.

Now for x ∈ [−
√
−3α2 − β, 0] let Qx := {q ∈ cl C, q1 ≤ x} and suppose that (q, q̇) is a

solution with q(0) ∈ cl C and q̇(0) ∈ cl K0. Then the path q(t) leaves Qx in some finite
exit-time τ+

x (q(0), q̇(0)) and the related point of leaving in (q, q̇)-space will be denoted
by

Γx(q(0), q̇(0)) :=
(
q
(
τ+
x (q(0), q̇(0))

)
, q̇

(
τ+
x (q(0), q̇(0))

))
.

If q(0) 6∈ Qx then we set τ+
x (q(0), q̇(0)) = 0 and Γx(q(0), q̇(0)) = (q(0), q̇(0)). This

construction is applied to some set A which for ε > 0 sufficiently small is defined by

A := {(q, q̇) ∈ W u
loc(ξ3) : q1 = −

√
−3α2 − β + ε, q ∈ cl C}.

Here W u
loc(ξ3) denotes the local unstable manifold of ξ3. (We refer to Figure A.4 for an

impression of some of the sets previously defined.) The next lemma describes properties
of A.
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Lemma A.6. Consider (A.8) with −4α2 ≤ β < −3α2 and let A be defined as above
with ε > 0 sufficiently small. Then for every q ∈ cl C with q1 = −

√
−3α2 − β + ε there

exists a unique q̇ ∈ cl K0 such that (q, q̇) ∈ A. If q(0) ∈ ∂C with q2(0) = −α then
q̇(0) ∈ ∂K0 ∩ ∂K1, else if q(0) ∈ ∂C with q2(0) < −α then q̇(0) ∈ ∂K0 ∩ ∂K3. Finally,
let (q, q̇) be a solution with (q(0), q̇(0)) ∈ A. Then for every t < 0 it holds q(t) ∈ C.

Proof. The proof of the first part of Lemma A.6 uses explicit calculations for the lin-
earized vector field near the equilibrium ξ3 and the fact that W u

loc(ξ3) is tangent to the
unstable eigenspace of this problem. More precisely, we can flatten out W u

loc(ξ3) by
an appropriate transformation, so that the results below carry over from the linear to
the nonlinear problem. The actual computations have been performed using computer
algebra programmes. As they involve some lengthy expressions we will reduce their
presentation to a minimum.

Dropping the parameters for convenience and denoting the linearization at ξ3 by A we
find that

σ(A) =

{
±

√
2α±

√
4α2 + β

}
.

Let e = (e1, . . . , e4) and f = (f1, . . . , f4) denote the eigenvectors of A corresponding to

the positive eigenvalues
√

2α±
√

4α2 + β. Note that for β = −4α2 there is only one

positive eigenvalue of geometric multiplicity 1. In this case let e denote the eigenvector
and let f be a suitably chosen vector in the generalized eigenspace, complementary to e.

Let us now choose q ∈ cl C with q1 := x0 +ε. In order to show that there exists a unique
q̇ such that (q, q̇) ∈ A we consider the linear problem. Here this assertion follows from

det

(
e1 f1
e2 f2

)
6= 0.

(Note that we work in (q, q̇)-phase space such that the first two components of e, f

correspond to the q-variables.)

For the proof of the next assertions observe that for each (q, q̇) in A with q ∈ C the
velocity q̇ is bound to lie in the same cone Ki since V (q, α, β) > 0 in C and since A ⊂ H0.
We can therefore restrict to consider the situation on ∂C. Suppose for instance that
(q, q̇) ∈ A with q ∈ ∂C and q2 = −α, and let us show that q̇ ∈ ∂K0 ∩ ∂K1. In the linear
problem a simple computation shows that for g = (g1, . . . , g4) ∈ span{e, f} with g1 = ε,
g2 = 0 it holds g3 > 0, g4 > 0. Since in the nonlinear problem V (q, α, β) = 0 for q ∈ ∂C
the result follows.

For the last part of the lemma we have to show that for (q, q̇) ∈ A we have τ−(q, q̇) =
−∞. Seeking a contradiction we assume that there exists (q, q̇) ∈ A with τ−(q, q̇) = τ0 <
∞. Without loss of generality we further assume that q(τ0) = (q0, q1(q0)), i.e. that the
corresponding path leaves C through the lower boundary. Then q̇(τ0) ∈ ∂K0 ∩ ∂K1 and
we have q̇(t) ∈ K1 for t < τ0 close to τ0. From Figure A.4 it can be seen that in this case
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ξ3 ξ4C
q2 = −α

q2

q1

Gx

Qx

Â

Figure A.4.: Sketch of the set C. By Â we denote the projection of A onto q-space.

V (q(t), α, β) ≤ 0 and therefore q̇ ∈ K1 for all t < τ−. This contradicts (q, q̇) ∈ W u(ξ3)
(see again Figure A.4).

Lemma A.6 allows to consider M := Γ0(A). Clearly, M⊂ W u(ξ3) and, by reversibility,
R2M ⊂ W s(ξ4). We will show that M and R2M intersect topologically transversally
in

Σ := {(q, q̇) ∈ H0 : q ∈ C, q1 = 0, q̇ ∈ K0}.
Note that dimM = dim R2M = 1 and dim Σ = 2. Moreover, since for (q, q̇) ∈ M∩ Σ
we have q̇ ∈ K0 and therefore q̇1 > 0. We can thus view Σ as a cross section to W u(ξ3)
in H0.

Before the calculation of the intersection number we need another technical result.

Lemma A.7. For x ∈ [−
√
−3α2 − β, 0] define τ+

x (q, q̇) and Γx(q, q̇) as above. Then
τ+
x (·, ·) and Γx(·, ·) are continuous in A.

Proof. The continuity of Γx is an immediate consequence of the continuity of τx, so we
show the latter using similar arguments as in the proof of Lemma 7 in [44].

First choose (q0, q̇0) ∈ A and consider the case τ+
x (q0, q̇0) = 0. Then for each ε > 0

sufficiently small it holds q0(ε) 6∈ Qx. By continuous dependence on the initial value
there exists a neighbourhood U of (q0, q̇0) in A such that for each (q, q̇) ∈ U we have
q(ε) 6∈ Qx. This implies continuity in the first case.

For τ+
x (q0, q̇0) > 0 arguments as above show the existence of a neighbourhood U of

(q0, q̇0) in A such that for each (q, q̇) ∈ U we have q(τ+
x (q0, q̇0) + ε) 6∈ Qx for ε > 0

sufficiently small. Stated differently, this means τ+
x (q, q̇) ≤ τ+

x (q0, q̇0) + ε. It remains to
show that τ+

x (q, q̇) ≥ τ+
x (q0, q̇0) − ε. For this assume U to be compact. From the fact

that q̇ ∈ K0, i.e. that q̇1 > 0, for each (q, q̇) ∈ U and since q̇ is bounded in U we can infer
the existence of δ > 0 such that for all (q, q̇) ∈ U it holds τ+

x (q, q̇) ≥ δ > 0. Furthermore,
since int Qx is an open neighbourhood of the set {q0(t) : t ∈ [δ/2, τ+

x (q0, q̇0) − ε]} there

112



A.3. Continuation of a heteroclinic cycle

exists a neighbourhood V of (q0, q̇0) in A such that q(t) ∈ int Qx for (q, q̇) ∈ V and
t ∈ [δ/2, τ+

x (q0, q̇0) − ε]. Now each (q, q̇) ∈ V ∩ U meets our requirements which proves
continuity of τ+

x .

Calculation of the intersection number

Let us now come to the calculation of the intersection number of M and R2M in Σ as
defined above. We note that in Σ the involution R2 coincides with R̃2 : (q1, q2, q̇1, q̇2) 7→
(q1, q2, q̇1,−q̇2). In the following it will be more convenient to use R̃2.

We use a homotopy which is constructed with

Gx := {q = (q1, q2) ∈ ∂C : −
√
−3α2 − β + ε ≤ q1 ≤ x} ∪ {q ∈ C : q1 = x}.

The set Gx is homeomorphic to [−1, 1] (see again Figure A.4). The corresponding
homeomorphism is denoted by δx : Gx → [−1, 1]. For q ∈ C we can assume δx to be a
diffeomorphism. We also define the map

∆x : (Gx × cl K0) ∩H0 → [−1, 1]× R
(q, v) 7→ (δx(q), v2).

which also is a homeomorphism, and a diffeomorphism for q ∈ C. Note that the domain
of ∆0 contains the cross section Σ.

In order to work within the general frame of Section A.3.1 above we can restrictM, R2M
to an appropriate closed subset of Σ such that the restrictions are compact manifolds
with boundary. Recall from above that dimM = dim R2M = 1 and dim Σ = 2 and
therefore intersection theory is applicable. Setting x0 := −

√
−3α2 − β we obtain the

following sequence of equations

I (M, R2M) = I
(
M, R̃2M

)

= I
(
Γ0(A), R̃2Γ0(A)

)

= ±I
(
(∆0 ◦ Γ0)(A), (∆0 ◦ R̃2Γ0)(A)

)

= ±I
(
(∆x ◦ Γx)(A), (∆x ◦ R̃2Γx)(A)

)
∀x ∈ [x0 + ε, 0]

= ±I
(
(∆x0+ε ◦ Γx0+ε)(A), (∆x0+ε ◦ R̃2Γx0+ε)(A)

)
.

Here we have used the fact that ∆0 is a diffeomorphism in Σ and the homotopy property
of the intersection number. The latter requires to check the admissibility of the homotopy
which amounts to prove the next Lemma.

Lemma A.8. Let ∂A := {(q, q̇) ∈ A : q ∈ ∂C}. Then for each x ∈ [x0 + ε, 0] it holds

(∆x ◦ Γx)(∂A) ∩ (∆x ◦ R̃2Γx)(A) = ∅.
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-1 1

q̇2

δx0+ε(q)

Figure A.5.: Possible graphs of ∆x0+ε and (∆x0+ε ◦ R̃2)

Proof. Assume that there exists x ∈ [x0 + ε, 0] for which the condition is not fulfilled,

i.e. that there exists a ∈ Γx(∂A) with a ∈ R̃2Γx(A). Since, however, Γx(∂A) = ∂A,

(R̃2Γx)(∂A) = R̃2(∂A) we would have a ∈ ∂A ∩ R̃2(∂A). For a := (q, q̇) this implies
q̇2 = 0 and therefore q̇1 = 0 by Lemma A.6 which gives a contradiction.

It remains to calculate

I
(
(∆x0+ε ◦ Γx0+ε)(A), (∆x0+ε ◦ R̃2Γx0+ε)(A)

)
= I

(
∆x0+ε(A), (∆x0+ε ◦ R̃2)(A)

)
.

For this observe that ∂A = {(qt, q̇t), (qb, q̇b)}, where q̇t
2 > 0 and q̇b

2 < 0 by Lemma A.6.

Whence, for (pt, ṗt) := R̃2(q
t, q̇t) and (pb, ṗb) := R̃2(q

b, q̇b) we have ṗt
2 < 0 and ṗb

2 > 0,
respectively (see also Figure A.5.)

As pointed out in Section A.3.1 we can with no loss of generality assume that the inter-
section of ∆x0+ε(A) and (∆x0+ε◦R̃2)(A) is transverse. (If necessary, the intersection can
be modified by a homotopy.) Then there necessarily exists an odd number of intersection
points and we conclude that

I
(
∆x0+ε(A), (∆x0+ε ◦ R̃2)(A)

)
6= 0.

We have thus proved that there exists a topologically transverse intersection of subsets
of W u(ξ3) and W s(ξ4) for all parameter values α > 0 and −4α2 ≤ β < −3α2. An
immediate consequence is the final theorem.

Theorem A.9. There exists δ > 0 such that for α > 0 and −4α2 − δ < β < −4α2 the
vector field f− possesses a heteroclinic cycle connecting the equilibria ξ3 and ξ4.

We finally like to point out that this theorem indeed concerns the heteroclinic cycle
{γhet, R1γhet}. For parameter values near B5 centre manifold theory demonstrates that
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there exists only one ‘small’ cycle between ξ3 and ξ4. But this cycle necessarily lies in
the intersection M∩R2M and is also the one which is detected by the shooting method,
i.e. it is the cycle {γhet, R1γhet}. Hence, Theorem A.9 allows us to continue this cycle
to parameter values where ξ3,4 are saddle foci. It has been one of the open questions in
[88] if this is possible.

We can say even more. Using the scaling property of f−, established above, we can
conclude that there exists a further arc - say BH - of a parabola {β = cα2} in parameter
space such that the cycle exists for parameter values between BH and B6. Since the
heteroclinic cycle does not ‘survive’ the Hamiltonian-Hopf bifurcation of ξ3,4 on B5 the
bifurcation curve BH lies between B5 and B6. The numerical studies in Section 1.4 reveal
BH to be given by β ≈ −5.5α2, α < 0. For these parameter values the cycle undergoes a
saddle-node bifurcation with a second heteroclinic cycle between ξ3,4 and disappears.
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Zusammenfassung

Dieser Abschnitt enthält eine Zusammenfassung der Arbeit in deutscher Sprache. Sämt-
liche Referenzen beziehen sich auf den vorderen englischsprachigen Teil. Die Bezeich-
nungen sind ebenfalls beibehalten worden.

Einführung

Seit längerer Zeit besteht ein großes Interesse an homoklinen und heteroklinen Phä-
nomenen in gewöhnlichen Differentialgleichungen. Homokline und heterokline Orbits
sind zum einen von mathematischer Bedeutung, da sie häufig organisierende Zentren
für die Dynamik in ihrer Umgebung darstellen. Zum anderen finden Homoklinen An-
wendungen als solitäre Wellenlösungen (Pulslösungen) partieller Differentialgleichungen.
Heteroklinen beschreiben in diesem Zusammenhang sogenannte Fronten. Die partielle
Differentialgleichung wird dabei durch einen entsprechenden Ansatz für laufende Wel-
lenlösungen zu einer gewöhnlichen Differentialgleichung reduziert. In einer Vielzahl
von Beispielen implizieren Symmetrien der partiellen Differentialgleichung, dass die
zugeordnete gewöhnliche Differentialgleichung reversibel ist. Die Arbeit betrachtet zwei
neue Typen homokline Bifurkationen in Systemen reversibler gewöhnlicher Differen-
tialgleichungen. Diese können durch eine Änderung im Typ der assoziierten Gleichge-
wichtslage (GGL) charakterisiert werden. Beide Bifurkationen verlangen einen mindes-
tens vierdimensionalen Phasenraum.

Im Hauptteil der Arbeit werden Homoklinen an GGLn betrachtet, welche selbst in einer
lokalen Bifurkation verzweigen. Dabei geht die GGL über vom Typ des reellen Sat-
tels (mit führenden reellen Eigenwerten) in den Typ des Sattel-Zentrums (mit einem
Paar rein imaginärer Eigenwerte). Hier kommt es zu einem Zusammenspiel lokaler und
globaler Bifurkationseffekte. Dies erfordert eine neuartige Behandlung. Wir gewinnen
Bifurkationsszenarien für verzweigende homokline Orbits in verschiedenen Klassen re-
versibler Systeme.

Der zweite Teil behandelt Homoklinen an GGLn, welche ihren Typ vom reellen Sattel
zum komplexen Sattel-Fokus ändern. Es ist wohlbekannt [22], dass dieser Übergang zu
einer dramatischen Veränderung in der Dynamik nahe des Orbits führt. Wir betrach-
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ten diese Bifurkation für zwei Orbits in Blasebalg-Konfiguration und beschreiben die
Verzweigung N -homokliner Orbits. Dabei ist ein N -homokliner Orbit eine Homokline,
die N Umläufe entlang der Orbits des Blasebalgs macht.

Die allgemeinen Resultate der Bifurkationsanalyse werden in numerischen Untersuchun-
gen an mathematischen Modellgleichungen und physikalischen Problemen illustriert.

Die gewonnenen Resultate liefern neue Beiträge zur Bifurkationstheorie homokliner Or-
bits.

Homokline Orbits an degenerierte Gleichgewichtslagen

Im Hauptteil der Arbeit betrachten wir Bifurkationen von Homoklinen an degenerierte
GGLn. Dabei wird zunächst in Kapitel 2 der Fall reversibler und Z2-symmetrischer
Systeme betrachtet. Wir betrachten einparametrige Familien solcher Systeme ẋ =
f(x, λ), λ ∈ R, die zum Parameterwert λ = 0 eine Homokline Γ an eine GGL mit
singulärer Linearisierung besitzen. Die Homokline wird als symmetrisch vorausgesetzt,
d.h. sie soll im Fixraum der Z2-Symmetrie enthalten sein und invariant unter der zeit-
reversiblen Symmetrie sein. Der Parameter λ entfaltet die lokale Bifurkation der GGL,
siehe Abschnitt 2.2.

Wir analysieren zunächst die lokale Bifurkation mittels Zentrumsmannigfaltigkeit-Re-
duktion auf Mannigfaltigkeiten W c

loc,λ. Es ist wohl bekannt, dass unter den gemachten
Voraussetzungen die GGL typischerweise in einer Heugabel-Bifurkation verzweigt [64].
Wir unterscheiden Typ I (eye case) und II (figure-eight case) mit unterschiedlichen Vor-
zeichen im Term dritter Ordnung in einer Normalform.

Der Zentrumsmannigfaltigkeiten-Satz erlaubt es uns geeignete zentrumsstabile und zen-
trumsinstabile Mannigfaltigkeiten W

cs(cu)
λ zu erklären, die alle Lösungen enthalten, wel-

che asymptotisch zu den W c
loc,λ für t → ±∞ sind. Wir bestimmen den Schnitt W cs

λ ∩W cu
λ

und damit Homoklinen an W c
loc,λ. Diese umfassen insbesondere alle von Γ verzweigenden

Homoklinen an GGLn und periodische Orbits.

Zur Bestimmung von W cs
λ ∩ W cu

λ werden die Symmetrien des Systemes und von Γ
entscheidend genutzt. Es kann bewiesen werden, dass Γ unter Störungen erhalten bleibt
und dass zwei Familien von symmetrischen 1-Homoklinen an die W c

loc,λ existieren. Der
geometrische Zugang wird unterstützt durch eine analytische Methode, die ähnlich Lins
Methode Gleichungen für das Aufsplitten von W cs

λ und W cu
λ liefert. Analytische Details

sind in Abschnitt 2.3 zu finden.

Um das asymptotische Verhalten der homoklinen Orbits an W c
loc,λ zu analysieren führen

wir eine Projektion entlang stabiler Fasern durch. Nun zeigt sich der entscheidende
Einfluss der lokalen Bifurkation der GGL. Während im Typ II lediglich Homoklinen
an periodische Orbits von Γ verzweigen (Satz 2.12), kommt es beim Typ I zu einer
homoklinen reversiblen Heugabel-Bifurkation. Parallel zur lokalen Bifurkation, bei der
aus der GGL zwei neue GGLn η, R2η verzweigen, verzweigen homokline Orbits an η, R2η
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von Γ. Außerdem entsteht ein heterokliner Zykel nahe Γ an diese GGLn (Satz 2.11).

Im Abschnitt 2.5 wird die Existenz von 2-heteroklinen Zykeln zwischen η, R2η nachge-
wiesen. Dazu wird eine entsprechende Poincaré-Abbildung untersucht und ein nicht-
leerer Schnitt von W cu

λ mit dem Fixraum einer reversiblen Symmetrie nachgewiesen.

In Kapitel 3 werden die entwickelten Methoden benutzt um Bifurkationsszenarien in
weiteren Klassen reversibler Differentialgleichungen zu beschreiben. Den Schwerpunkt
bildet dabei die Analyse rein reversibler Systeme. Hier sind homokline Orbits an eine
Sattel-GGL strukturell stabil, während Homoklinen an ein Sattel-Zentrum von Kodimen-
sion-1 sind. Deshalb wird ein zweiter Parameter in der Entfaltung benötigt. Die lokale
Bifurkation der GGL ist nun im generischen Fall transkritisch.

Unter Verwendung des oben beschriebenen Zugangs und einer geeigneten Transvers-
alitätsbedingung können wir sehr einfach Bifurkationsdiagramme für 1-Homoklinen an
W c

loc,λ gewinnen und die Existenz homokliner Orbits an GGLn und periodische Or-
bits diskutieren (Satz 3.3 und Bemerkungen danach). Es wird bewiesen, dass beim
Übergang in die Sattel-Zentrum-Region Homoklinen auf zwei verschiedene Arten ver-
nichtet werden; entweder durch Sattel-Knoten Bifurkation mit einer zweiten Homokline
oder über ein algebraisches Abklingen zur GGL. Von besonderem Interesse sind reversible
Hamilton-Systeme. Hier wird gezeigt, dass die allgemeinen Resultate auf die Bifurkation
symmetrischer Orbits zutreffen. Allerdings können im Gegensatz zum rein reversiblen
Fall auch nichtsymmetrische Orbits verzweigen. Der Grund dafür liegt in einer Degen-
eriertheit der Klasse der Hamilton-Systeme. In dieser Klasse kann die grundlegende
Transversalitätsbedingung 3.5 nicht erfüllt werden.

Die allgemeine Theorie wird in numerischen Untersuchungen von physikalischen Pro-
blemen aus der Wasserwellen-Theorie und nichtlinearen Optik und von mathematischen
Modellgleichungen bestätigt.

Der Hauptteil der Arbeit fußt im wesentlichen auf den Veröffentlichungen [90, 87].

Bifurkation einer homoklinen Blasebalg-Konfiguration

In Kapitel 4 wird die Bifurkation von Homoklinen in reversiblen Systemen betrachtet,
deren assoziierte GGL ihren Typ von reellem Sattel zu komplexem Sattel-Fokus ändert.
Dabei wird die Existenz zweier symmetrischer Homoklinen, Γ1 und Γ2, vorausgesetzt,
die eine Blasebalg-Konfiguration bilden. Dies bedeutet, dass sie sich der GGL aus der
jeweils gleichen Richtung für t → ±∞ nähern, siehe Hypothese 4.3.

Eine oben beschriebene Änderung der GGL erfolgt an einem kritischen Parameterwert,
an dem die führenden Eigenwerte der Linearisierung reell, doppelt und nicht-halbeinfach
sind. Die Entfaltung dieser Situation benötigt einen Parameter. Es werden Nicht-
Degeneriertheitsforderungen an die Γi gestellt, so dass deren globale Bifurkation von
Kodimension-1 ist.
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Wir untersuchen die Existenz von N -Homoklinen in einer Umgebung des Blasebalgs.
Dazu werden Bifurkationsgleichungen nach der Methode von Lin [66, 75] hergeleitet.
Hauptquelle hierfür ist [75], die Darstellung beschräkt sich auf wesentliche Details.
Nach Ausnutzen der Symmetrien können wir N -Homoklinen durch Lösung von [N/2]-
Gleichungen finden. (Hier bezeichnet [·] die größte ganze Funktion.)

Die Lösung der Gleichungen zeigt ein analoges Verhalten zum bereits untersuchten Fall
[21] eines einzelnen homoklinen Orbits. Für Parameterwerte, bei denen die GGL ein
Sattel ist, existieren keine weiteren Homoklinen nahe Γ1 ∪ Γ2. Ist die GGL allerdings
ein Sattel-Fokus, so existieren unendlich viele Homoklinen.

Genauer gesagt, können wir bei beliebigem N eine beliebige symmetrische Abfolge κ ∈
{1, 2}N vorgeben, die angibt, in welcher Reihenfolge die gesuchte Homokline Γ1 und Γ2

folgen soll. Dann existieren zu dieser Abfolge unendlich viele N -Homoklinen nahe Γ1∪Γ2.
Werden die führenden Eigenwerte der GGL reell, so lösen sich alle N -Homoklinen an
Γ1 ∪ Γ2 auf.

Zwei Modellgleichungen

Die Untersuchungen der Arbeit werden insbesondere für zwei Modellsysteme von Diffe-
rentialgleichungen zweiter Ordnung angewendet. Diese Systeme wurden in der Diplom-
arbeit [88] des Autors als Entfaltungen einer GGL mit vierfachem 0-Eigenwert in einer
Klasse reversibler Hamilton-Systeme gewonnen. Sie beschreiben das typische Verhalten
in der Umgebung einer solchen GGL. Numerische Untersuchungen der Gleichungen mo-
tivieren und illustrieren die allgemeine Bifurkations-Analyse. Die zugrunde liegenden
analytischen Resultate sind in einem Anhang zusammengefasst.

Die gewonnenen Resultate, sowie ergänzende numerische Studien zeigen, dass in Störun-
gen der GGL eine reichhaltige Dynamik vorliegt. Insbesondere können zahlreiche homo-
kline und heterokline Bifurkationsphänomene beobachtet werden. Dies ist von Interesse
für ein zugeordnetes physikalisches Problem aus der nichtlinearen Optik.
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beigetragen. Ihnen allen möchte ich auf diesem Weg recht herzlich danken.

Mein erster Dank gilt meinen Betreuern Dr. Jürgen Knobloch und Prof. Dr. Bernd
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