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Abstract

Mobile agents provide a new and fascinating design paradigm for the architecture
and programming of distributed systems. A mobile agent is a software entity that is
launched by its owner with a user-given task at a specific network node. It can decide
to migrate to other nodes in the network during runtime. For a migration the agent
carries its current data, its program code, and its execution state with it. Therefore,
it is possible to continue agent execution at the destination platform exactly where
it was interrupted before. The reason for a migration is mainly to use resources that
are only available at remote servers in the network.

This thesis focuses on the migration process of mobile agents, which is to our knowl-
edge not considered in literature so far, although the performance of a mobile agent
based application strongly depends on the performance of the migration process. We
propose a general framework an an innovative set of notions to describe and specify
the migration process. By introducing the concept of a migration model, we offer a
classification scheme to describe migration issues in existing mobile agent systems.
As an example, the migration feature of two well-known mobile agent systems, Aglets
and Grasshopper, are characterized. A detailed analysis of network load of mobile
agents as compared to client-server approaches in several typical application scenar-
ios shows the potential benefits of mobile agents. However, the analysis also shows
drawbacks of the simple migration techniques that are used in today’s mobile agent
systems. The main drawback of these simple techniques is the lack of adaptability,
which causes the superfluous transmission of code and data.

We present a new migration model named Kalong, which overcomes these draw-
backs. It provides the agent resp. the agent programmer with a very flexible way to
migrate an agent. Using Kalong, a migration is no longer a monolithic transmission
of code and data. It is possible to send only those pieces of code and data that
are used at the next destination platform with high probability. The agent can of
course dynamically load missing code or data items from appropriate servers. The
Kalong migration model was implemented in the Java programming language and
can be used as an independent software component. It should be usable in almost
all existing mobile agent systems. This Kalong software component is extendable,
which is shown by implementing basic security solutions.

We conducted experiments to show the performance of our new Kalong model
in real network environments. The result of our experiments is that Kalong’s new
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features increase the performance of mobile agents as compared to all other existing
migration techniques. Measurements also point to the influence of many parame-
ters on the performance of mobile agents, as for example network quality, code size,
transmission protocol, and security enhancements.

ii



Zusammenfassung

Mobile Agenten stellen ein neues faszinierendes Design-Paradigma für den Aufbau
und die Programmierung von verteilten Systemen dar. Ein mobiler Agent ist eine
Software-Entität, die von ihrem Besitzer mit einem Auftrag auf einem Knoten eines
verteilten Systems gestartet wird und dann zur Laufzeit auf andere Knoten des Netzw-
erkes migriert. Bei einer Migration nimmt der Agent seine derzeitigen Daten, seinen
Programmcode und seinen aktuellen Ausführungszustand mit, so dass auf dem Ziel-
knoten die Ausführung genau an der Stelle fortgesetzt werden kann, an der sie auf
dem letzten Knoten unterbrochen wurde. Der Grund für eine Migration liegt bei mo-
bilen Agenten vornehmlich darin, Ressourcen zu nutzen, die nur auf anderen Knoten
im Netzwerk angeboten werden.

Diese Arbeit konzentriert sich auf den Migrationsprozess für mobile Agenten, dem
in der Literatur bisher wenig Aufmerksamkeit geschenkt wurde, obwohl er die Ausfüh-
rungsgeschwindigkeit eines Agenten entscheidend beeinflusst. Es wird ein allgemeines
Rahmenwerk für den Ablauf einer Migration vorgestellt und erstmals einheitliche
Begriffe zur Beschreibung des Migrationsprozesses definiert. Unter dem Begriff des
Migrationsmodells wird ein Klassifikationssystem zur Beschreibung der Migration-
seigenschaften eines mobilen Agentensystems vorgestellt und die beiden am weitesten
entwickelten Systeme Aglets und Grasshopper in diesem Schema beschrieben. Eine
detaillierte Analyse der Netzbelastung von mobilen Agenten im Vergleich zum tradi-
tionellen Client-Server Ansatz in mehreren typischen Anwendungsszenarien zeigt das
Potential von mobilen Agenten zur Verringerung von Verarbeitungszeiten. Allerdings
zeigt die Analyse ebenso die Nachteile der in heutigen Agentensystemen verwenden-
ten sehr einfachen Migrationstechniken. Der Hauptnachteil dieser Techniken ist die
fehlende Anpassbarkeit, wodurch vielfach Programmcode und Daten des Agenten
überflüssig übertragen werden.

Es wird ein neues Migrationsmodell mit Namen Kalong vorgestellt, das diese
Nachteile beseitigt und dem Programmierer eines mobilen Agenten eine sehr flexi-
ble Technik für die Migration zur Verfügung stellt. Mit Kalong kann getrennt von
der Geschäftslogik des Agenten die Migration im Detail beschrieben werden. Bei
Kalong wird die Übertragung von Code und Daten im Gegensatz zu anderen Mi-
grationsmodellen nicht mehr als untrennbare Einheit gesehen. So ist es möglich, bei
einer Migration nur solche Codefragmente zu übertragen, die mit hoher Wahrschein-
lichkeit auch auf der Zielplattform gebraucht werden. Ähnlich können die Daten eines
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Agenten getrennt übertragen werden, so dass einzelne Daten nicht zu solchen Plattfor-
men mitgenommen werden müssen, auf denen sie mit hoher Wahrscheinlichkeit nicht
gebraucht werden. Der Agent kann jederzeit fehlenden Code oder Daten von dafür
geeigneten Server-Plattformen nachladen. Kalong wurde als Software-Komponente
implementiert und kann in nahezu allen derzeitigen Agentensystemen verwendet wer-
den. Die Komponente ist erweiterbar und an konkrete Anforderungen des Agentensys-
tems anpassbar. Die Ergänzung der Komponente um grundlegende Sicherheitstech-
niken wird am Beispiel gezeigt.

Zahlreiche Messungen in realen Netzwerken zeigen die Vorteile des neuen Migra-
tionsmodells. Er stellt sich heraus, dass durch die neuen Funktionen von Kalong
die Ausführungsgeschwindigkeit von mobilen Agenten gegenüber bisherigen Migra-
tionsmodellen gesteigert werden kann. Die Messungen zeigen außerdem den Einfluss
verschiedener Parameter, wie beispielsweise Netzwerkqualität, Größe des Agenten,
Übertragungsprotokoll und verwendete Sicherheitstechniken.
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1. Introduction

Until some years ago, the term distributed system was mainly used for a network
of several computer systems with separated memory which are connected to each
other by a dedicated network. The computers used in such a distributed system are
almost homogeneous, which means that they have the same type of processor and
same type of operating system. The network is more or less static: computers are
only rarely switched off, network connections between hosts are always reliable and
provide constant bandwidths. Each computer has a fixed IP address and network
packet routing is done via local switches. Up until today, this type of network is
typical for most applications.

Currently, we see rapidly evolving network and computer technologies. The In-
ternet as a network of networks with heterogeneous computers has become widely
accepted as a very important medium for any kind of information exchange. The
number of people and companies providing services in the Internet increases contin-
uously and is even surpassed by the mere number of Internet users. Many different
types of services are offered in the Internet, first of all electronic mail and electronic
file exchange. Without any doubt, the most successful Internet service is the World
Wide Web. Whereas, in the beginning, the Web was only a medium to publish infor-
mation on so-called Web sites, we now see the dissemination of novel applications in
the Web.

Most of these applications are part of the electronic commerce domain, for example
online shops or electronic marketplaces. They are built using traditional design
technique called client-server, where a single powerful computer system (server) holds
data to be shared over the network, and less powerful computer systems (clients)
access the server using a network. In Internet applications the server not only holds
data but also executes application code in form of Java servlets or some other kind
of server-based language. In this paradigm, the client is only responsible for the
graphical user interface, which is in Internet applications some kind of Web interface
using HTML pages.

Due to the success of the World Wide Web, the notion of what we know as a
distributed system shift outwards. The Web can be considered as a predecessor of
future distributed systems, as we notice an exponential growth of services available
on the Internet already today. In the future we will see hundreds of million of people
being on-line by different means of communication using hundreds of million services
in the Internet. Only in the center of the network, connections will be of copper or
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fiber – on the edges of the network, wireless connections based on new standards like
Bluetooth, WLAN, and UMTS will become popular. Bandwidth in the center of the
network will increase dramatically in the next years – and it will cover upcoming
demands for transmission of large amount of data as needed, for example, in video
streaming. On the outskirts of the network, however, available bandwidth will not
increase as fast as in the center. People still use and perhaps will use for the next years
Internet connections via ISDN or xDSL with not more than 128 Kb/sec. Therefore,
the bandwidth gap between backbone and end-user connection will increase. Since
backbone connections are fairly often renewed compared to the local bandwidths,
this trend will continue over the next years.

Two major trends can already be seen entering the main-stream of interest: Perva-
sive computing means that everything might become a node in a distributed system.
As computers become more and more tiny, computers can be found not only on desks
but also in cars to regulate speed control, at wrists to show the time and control pulse,
and in refrigerators to monitor the temperature.

The second trend we want to mention here is nomadic computing which means
that users move during their work physically from place to place, logging into the
system from very different computer systems, e.g. first from a system in the office
over the company-wide local area network, later from home over an ISDN dial-up
connection. Nevertheless, users want to see nearly the same working environment,
the same applications and, above all, the same data. In addition, nomadic users
demand for a seamless integration of different devices, making it possible to change
the working environment from a desktop computer to a PDA in a few seconds.

All these new trends require new network-centric programming techniques. The
client-server design pattern, successfully used for distributed systems in local area
networks, is not able to face all the challenges of future distributed systems described
above.

One very promising approach is mobile code resp. mobile agents. With mobile code
we name a technique where code is transferred from the computer system that stores
the code files to the computer system that will execute the code. A well-known
example of mobile code are Java applets which are small programs available in a
portable and interpretable byte code format. Applets are transferred from a Web
server to a Web browser in order to be executed as part of a HTML page.

Mobile agents are a special type of mobile code. A mobile agent is a program that
can migrate from a starting host to many other hosts in a network of heterogeneous
computer systems and fulfill a task specified by its owner. It works autonomously
and communicates with other agents and host systems. During the self-initiated
migration, the agent carries all its code and data, and the complete execution state
with it.

The difference between mobile code and mobile agents is the fact that mobile
agents initiate the migration process by themselves, whereas the migration of mobile
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code is initiated from other software components, e.g. the Web browser in the case of
Java applets. The second difference is that mobile code migrates only from a server
to a client and does not leave the client to migrate back to the server or another
client. Mobile code’s lifetime is bound to the lifetime of the Web page it is part of
and dies when the browser terminates or another Web page is requested. In contrast
to this, mobile agents usually migrate more than once. Think of a mobile agent that
travels to several hosts in order to collect prices for a desired product.

1.1. Motivation for This Thesis

The employment of mobile agents is justified by several advantages of this new
paradigm as compared to the traditional client-server paradigm1.

An important technical argument in favor of mobile agents is the network load
argument (sometimes also called performance argument) on which we will focus in
this thesis2. According to this argument, mobile agents are able to save network load
and, therefore, decrease execution time to some extent by shipping code close to the
data instead of shipping data to the code as it is done in the client-server paradigm.

To make this clear, we consider an example, where in a distributed system a server
holds an image database and clients must filter this database for interesting images
by analyzing image content. To analyze image content, the client has developed an
algorithm for which the code is currently stored at the client. Using the client-server
paradigm the client will request images from the server using remote procedure calls
or remote method invocations. The server only offers an interface to filter images
according to name, modification date, author, etc., but not image content, of course.
The result of the request might be a huge number of images and all images must be
transferred over the network to be analyzed locally at the client. The client filters
the received images using the given algorithm. As the server interface does not offer
filtering according to image content, it may happen that many images are transferred
that are not interesting to the client. In this case, the client has to repeat its request
several times to request other images (images of another author or older images), if
the last request was not successful.

In the mobile agent paradigm, the client sends a mobile agent to the image server
and the agent already contains the algorithm to analyze image content. The mobile

1Perhaps the first qualitative comparison of both paradigms was done by Harrison et al. in 1995.
The paper was later published as Chess et al. [1997]. The authors discuss several advantages of
mobile agents against client-server based techniques and conclude: “While none of the individual
advantages of mobile agents given above is overwhelmingly strong, we believe that the aggregate
advantage of mobile agents is overwhelmingly strong, because: . . . b. While alternatives to mobile
agents can be advanced for each of the individual advantages, there is no single alternative to all
of the functionality supported by a mobile agent framework. . . . ” [Harrison et al., 1995, p. 17].

2We will discuss other important advantages later in Section 2.3.
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agent can then communicate with the server locally, without producing any network
traffic. After the agent has filtered the database, it will only take those images with
it that passed the filter and thus are interesting for the client.

The advantages of mobile agents that can be concluded from the example above
are that mobile agents can reduce network load

1. by reducing the overhead of network protocols (e.g. repeated requests), and

2. by filtering data at the server side.

It is obvious to see that this argument is only valid if, simply speaking, the mobile
agent’s code that has to be transmitted is not larger than the amount of data that
can be saved by the use of a mobile agent. Transcribed into our example above, a
mobile agent will produce less network traffic if its size is smaller than the amount
of image data that is not transmitted due to filtering at the server side. In the other
case, the client-server paradigm will produce less network traffic. It might be argued
that it is inadmissible to restrict the comparison to the number of bytes not including
the overall execution time. Using agents, execution time can be higher even if the
number of bytes to transmit is smaller due to a large number of agents, all sharing
server’s processing load. For the moment, we assume to have a highly scalable server,
which allows to neglect processing time.

It depends on the size of the request, the size of the reply, the code size and some
other parameters to decide how much network load can be saved. For example, if
the client requests all images, using mobile agents would be better in all probability.
In the other case, if no image fits the request, the client-server technique would have
been the better choice. As some of these parameters can be determined at runtime
earliest, the decision between mobile agent and client-server paradigm must be done
dynamically at runtime to achieve always lowest network load.

However, a dynamic decision between sending code to a server and shipping data
to the client is very difficult to implement, because it requires to implement both
paradigms and it requires an algorithm to forecast the reply size before having sent the
request to the server. As, in general, it is not possible to develop such an algorithm,
several approaches were published in the last years where the decision is done before
designing the whole application. These approaches are based on mathematical models
for network load where several parameters, as for example request size and reply size,
are estimated by the software designer. The result of this network load analysis
is either a mixture of agent migrations and remote procedure calls [Straßer and
Schwehm, 1997], or a design decision for either the client-server, or the mobile agent
paradigm [Carzaniga et al., 1997]. Looking into the future this decision might be
wrong, if parameters of the mathematical model turned out to be different3. Apart

3We will discuss both approaches in detail in Section 3.1.
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from these approaches, a detailed analysis of the reasons for mobile agents producing
more network load than remote procedure calls is still missing.

1.2. Contribution of This Thesis

The main thesis of our work is that mobile agents need a sophisticated migration
technique that allows fine-grained and flexible agent migration.

As described in the last section, mobile agents have the ability to save network
load as compared to client-server techniques, but this advantage depends on the
application scenario. In contrast to the two approaches described in the last section,
we first investigate the reasons, which in total are responsible for higher network load
of mobile agents in specific situations. The result is a collection of inherent drawbacks,
which mostly are related to the migration process. It turned out that most of today’s
mobile agent migration techniques do not differ from mobile code technology, which
is used for Java applets for example. We analyze the migration process in detail and
we compare different approaches implemented in current mobile agent systems with
regard to these disadvantages. We show that none of these systems has implemented
techniques to avoid the possible drawbacks. Above all, the typical behavior of mobile
agents to migrate several times between different hosts and the fact that in real-world
agent-based applications many agents of the same type are alive in parallel, are not
considered in current mobile agent systems.

We present a new migration technique which allows the programmer (or the agent
itself) to adapt the agent’s migration process during runtime. Using our migration
technique it is possible to develop mobile agents that produce lower network load
than with all existing mobile agent systems and to avoid typical drawbacks of mobile
agents.

Incidentally, using our new migration technique, we are able to propose a new
solution for implementing a dynamic decision between sending code or sending data.
Our approach does not use a static network analysis between both paradigms, but
uses mobile agents in any case. The mobile agent works in two phases, where in the
first phase the agent filters the database locally at the remote server. According to
the size of the result, the agents decides whether to stay at the server and analyze the
result locally, or to ship the result to the client and process it there. The advantage
of this procedure comes from the fact that the code for processing the request is
much smaller than the code for data filtering and the latter is only transmitted to
the server, if it is really needed at the server.

The following are the contributions of our work in particular:

• Analysis of drawbacks of mobile agents as compared with client-server.

• Description of the state-of-the-art in agent migration. Identification of the
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design issues and design alternatives. Classification schema for the migration
of mobile agents to assess an existing mobile agent system.

• A new mobility model which provides a fine-grained and flexible agent migra-
tion. Semi-formal description of the network migration protocol.

• The Kalong migration component, in which the new model is implemented.
By providing a migration component we also present a new idea in building
mobile agent systems, namely by using components-off-the-shelf, at least for
agent migration.

• Implementation of some migration strategies and comparison regarding perfor-
mance. Empirical evaluation in a real-world network.

1.3. Outline of This Thesis

This thesis is divided into four parts.
In the first part, we introduce the concept of mobile agents as a new paradigm

to design and program distributed systems and compare mobile agents with more
traditional techniques, as for example client-server techniques. We motivate focusing
on effective migration as a key factor to increase the overall performance of mobile
agent based applications. In the second part (pp. 47) we give an overview of state-of-
the-art migration techniques in existing mobile agent systems. The main contribution
of this part is a classification scheme to describe the design issues according to agent
mobility.

The third part (pp. 113) is the core contribution of this thesis. Here, we motivate
and introduce our new mobility model. We describe the architecture of a software
component, named Kalong, which implements this new mobility model and we specify
the new migration protocol SATP. The last part (pp. 201) of this thesis contains
evaluation of our new migration component.

The enclosed CD-ROM contains the source code, the API documentation of Kalong,
and an electronic version of this thesis.
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Part I.

Introduction to Mobile Agent
Technology

In the first part of this thesis we introduce mobile agents as a new
design paradigm for distributed systems, present main advantages,
and describe application domains that would benefit from the use
of mobile agents. We analyze the performance of mobile agents
in terms of network traffic and response time as compared to client-
server based techniques and motivate why we focus on the migration
aspect of mobile agents.





2. Mobile Agent Systems As a New
Paradigm for Distributed Computing

In this chapter we provide an overview of traditional techniques for programming
of distributed systems and introduce the mobile agent paradigm. We present the
history of mobile agents beginning with early approaches using mobile code in the
1970’s up to the latest mobile agent systems developed during the last two years. At
the end of this chapter, we motivate their use in some specific application domains
and enumerate important advantages of this new paradigm.

2.1. Traditional Techniques for Distributed Computing

In this section we will summarize three very important design paradigms used for
the development of today’s distributed systems. We will abstract in this presentation
from implementation and language details and we will only describe the architecture
of systems based on these paradigms.

In particular, we use the following abstractions1. A site represents the notion of
location in a distributed system, for example a single computer as part of a network.
A site hosts resources, which are any kind of immovable files, data bases, or any
external devices. A site also hosts and executes code, for example by using a virtual
machine or simply a micro-processor. We assume virtual machines to be immobile
too2, although moving processes is possible in distributed operating systems. The
code contains the know-how to perform a specific computation. Note that a compu-
tation can only be successful, if code and necessary resources are located at the same
site. At last, we have interactions between code, resources, and virtual machines on
the same or on different sites.

In the following, we write SA for a site with name A, RM
A for a resource with name

M at SA, CN for code with name N, CN
A for code with name N at SA, and MN

A for
a virtual machine executing code CN

A at site SA.

1For the following, we were inspired by Vigna [1998b, pp. 36] and Picco [1998, pp. 38].
2Vigna and Picco define a computational component as “active executors capable to carry out

a computation”, which are allowed to migrate to other sites, whereas in our approach virtual
machines are immobile.
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2.1.1. Client-Server Paradigm

Client-server is the most common paradigm of distributed computing at present.
In this paradigm (Figure 2.1(a) on the facing page), there is code CS executed by a
virtual machine MS

B (server) offering a set of services (for example access to resources
Rx

B) at SB and code CC executed by virtual machine MC
A (client) that needs this

services in order to accomplish its task. Therefore, it sends a request to the server
using an interaction, in which it asks for execution of a specific service, supplemented
by some additional parameters. MS

B executes the requested service using resources
located at SB and sends the result back to MC

A using an additional interaction.
In this paradigm, no component is mobile, except of the request that is sent from

the client to the server. The request usually contains the name of the service along
with some additional parameters. This concept is comparable to a procedure call
in programming languages, and, therefore, several programming concepts were devel-
oped that offer convenient use of the client-server concept in programming languages,
for example Remote Procedure Call (RPC) [Birrell and Nelson, 1984; Nelson, 1981]
or Remote Method Invocation (RMI) [Sun, 2002].

2.1.2. Remote-Evaluation Paradigm

In the remote-evaluation paradigm the same distinction is made between server and
client as in the client-server paradigm (Figure 2.1(b)). Thus, there is code CS exe-
cuted by virtual machine MS

B at site SB having access to local resources, and code
CC executed by virtual machine MC

A at site SA. Important resources are located at
site SB. In contrast to the client-server paradigm, virtual machine MS

B does not offer
a suitable application specific service the client MC

A could use. Instead, the client
sends code fragment CF (which is not executed so far) to the server to be executed
there. Virtual machine MS

B executes this piece of code, for example by simply initiat-
ing a new virtual machine MF

B . During execution, local resources at site SB are used
and, afterwards, the result is sent back to the client using an additional interaction.

In this paradigm, the code fragment CF is mobile and sent from the client to the
server. The type of code depends on the concrete implementation of this paradigm
and might be either some kind of script language that is transmitted as source code,
or some intermediate code format that can be easily interpreted at the server. This
technique is described by Stamos [1986], similar approaches were already published
earlier. Examples are described in Section 2.2.3.

2.1.3. Code-on-Demand Paradigm

In the code-on-demand paradigm, roles are switched as compared to the remote-
evaluation paradigm (Figure 2.1(c)). Here, virtual machine MC

A has access to some
resources Rx

A but lacks the know-how to access them. The code to access the resources
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C R

M

Site BSite A

M

C

Client Server

reply (2)

request (1)

(a) Client-Server.

M

Site A Site B

F C RC

M

Client Server

reply (2)

code (1)

F

(b) Remote-Evaluation: Code fragment F, which is not exe-
cuted at site A, is sent to site B and executed there. Dashed
lines indicate that a component is dynamically loaded at site
B.

Site A Site B

Client Server

M

R C F C

M

F
code (2)

code request (1)

(c) Code-on-Demand.

Figure 2.1.: Examples for traditional design paradigms. We use the following sym-
bols: M stands for a virtual machine, R for a resource, C for a code
component, and F for a code fragment. Lines between components in-
dicate interactions, numbers indicate the order. If numbers are missing,
it should be understood as a simple request/reply interaction.
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is currently located at SB. Thus, MC
A interacts with MS

B by requesting the know-how
in form of code CF . The code is executed at SA by MF

A .
In this paradigm, the code fragment F is mobile and sent from the server to the

client. Concerning the type of code, the same remarks as given in the last section
are valid. Java applets are a very prominent example of this design paradigm.

2.2. Mobile Agents

2.2.1. Software Agents

Let us start with the simpler notion of software agents first, because, as we will show
later on, each mobile agent is also a software agent to a certain degree.

The word agent derives from the Latin word for actor and stands for a person
that acts on behalf of another. In different languages the notion agent is used with
different meanings. In English-speaking countries, for example, the word agent is
used very often in a more general context, while in German speaking countries an
agent mostly works for the secret service. In physical science, an agent can be an
active substance that causes a reaction. Usually, to rent or buy a house a real estate
agent is employed, or to plan a holiday, a travel agent is visited. Other sciences do
also use the term agent. For example, in legal sciences an agent provocateur is a
person hired to incite suspected persons to commit some illegal action that will make
them liable for punishment.

In computer science, the term agent is known since the mid 1970’s and it was
introduced in the area of artificial intelligence. Most authors refer to a paper written
by Hewitt [1977] as origin of the term agent. According to Foner [1997], the first
reference can be traced back to Vannevar Bush and Douglas Engelbart in the late
1950’s and early 1960’s.

A software agent is a software entity which continuously performs tasks given by a
user within a particular restricted environment. The involved software entity can be
a computer program, or a software component, or, in the meaning of object-oriented
programming languages, just a simple object. The definition of what exactly consti-
tutes a software agent has been intensively debated in the research community for
several years. Although this debate is not over yet, there is a common understanding
that a software entity has to exhibit certain minimal features to qualify as an agent:

Autonomy Agents operate and behave according to a self-made plan that is gener-
ated in accordance with the user-given task. Agents do not receive every step
of this plan stipulated by their owner in advance and they do not ask their
owner for confirmation of every step.

Social behavior Agents are able to communicate with other agents or human be-
ings by means of an agent communication language. Communication can be
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restricted to pure exchange of information, or can include sophisticated proto-
cols for negotiation, for example, when trading the price for a good or joining
an auction. An separate branch of research deals with the problem of multiple
agents working together on a single task in so-called multi-agent-systems. In
this case, benevolent behavior is necessary for a successful undertaking.

Reactivity Agents perceive their environment by some kind of sensors and are able
to react to identified events.

Proactivity Agents do not only react to stimuli from their environment, but they
are able to take the initiative and do active planning. B. Le Du explains this
with the following metaphor: “The difference between an automaton and an
agent is somewhat like the difference between a dog and a butler. If you send
your dog to buy a copy of the New York Times every morning, it will come back
with its mouth empty if the news stand happens to have run out of this specific
newspaper one day. In contrast, the butler will probably take the initiative and
buy a copy of the Washington Post, since he knows, that sometimes you read
it instead.” [Bradshaw, 1996, p. 16]

Nowadays, the term agent has (unfortunately) become a buzzword that is used
to signal innovative system characteristics, even if only a single feature of our list
has been slightly touched. For example, some electronic mail clients are called mail
agents, although they do nothing special aside from the usual task of delivering and
collecting e-mails from your mailbox.

True software agents must be seen as an extension of the more general concept of
objects or software components. Whereas software objects are passive, agents are
active entities according to the so-called Hollywood principle: “Don’t call us, we call
you!”.

2.2.2. Mobile Agents

A mobile agent is a software agent as described in the last section. However, it has
a single additional, and very important, property that makes it unique: It is capable
to move through a network of computer systems, hopping from node to node while
fulfilling its task.

Software agents as described in the last section are called stationary to express
that they are executed during their whole life-time on the same computer system, i.e.
the one on which they were started on. In contrast, a mobile agent is not bound to a
single computer system but it is free to migrate to other computer systems that are
reachable on basis of the available network infrastructure.

Many different definitions for the term mobile agent exist. We want to give our
own two definitions here. The first one targets the viewpoint of end-users:
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Mobile software agents are computer programs that act as a representa-
tive in the global network of computer systems. The agent knows its
owner, knows his/her preferences and learns by communicating with its
owner. The user can delegate tasks to the agent that is able to search
the network efficiently by moving to the service or information provider.
Mobile agents support nomadic users, because the agent can work asyn-
chronously while the user itself is off-line. Finally, the agent reports re-
sults of its work to the user by different communication channels such as
electronic mails, Web sites, pagers, or short messages via mobile phones.

In this definition many characteristics of software agents can be found, as we have
introduced them in the last section. A mobile agent acts on behalf of a user, it
knows its user, and gets to know him better over time. It has social behavior be-
cause it is able to communicate with the user, services, or even other agents. It
works pro-actively, because it can, for example, contact its owner by many means of
communication. The additional property of mobility can be seen as a very straightfor-
ward extension, at least from a human point of view, as it goes well with our natural
understanding of how to search for information in a distributed environment.

The second definition that we want to present here draws more attention on the
technical aspects of agent mobility.

Mobile agents refer to self-contained and identifiable computer programs,
bundled with their code, data, and execution state, that can move within
a heterogeneous network of computer systems. They can suspend their
execution on an arbitrary point and transport themselves to another com-
puter system. During this migration the agent is transmitted completely,
i.e. as a set of code, data, and execution state. At the destination com-
puter system, an agent’s execution is resumed at exactly the point where
it was suspended before.

In this definition is nothing left from the characteristics of a software agent. We
simply talk about computer programs or processes in the meaning of operating sys-
tems that are able to freeze themselves, move to other computer systems and resume
execution over there. This more technical definition can be seen as a complement of
the end-user driven one, simply targeting a lower level of abstraction.

There are three characteristics of mobile agents that must be stressed in any case:

1. Mobile agents are employed in wide-area and heterogeneous networks, in which
no assumptions can be made concerning either reliability of the connected com-
puters or security of the network connections.
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Figure 2.2.: The mobile agent paradigm. Agents are represented as small figurines
like pieces of a board game and are shown above other, stationary code
components (agencies) to indicate that they are dynamically bound to
this code.

2. The mobile agent’s migration is initiated by the agent (resp. its programmer)
itself in contrast to mobile object systems, where object migration is initiated
by the underlying operating system.

3. Migration of mobile agents is done to access resource only available at other
servers in the network and not just for load-balancing, as in mobile object
systems.

4. Mobile agents usually migrate more than once – this characteristic is sometimes
called multi-hop ability. After a mobile agent has visited the first server, it
migrates further to other servers to continue its task, whereas mobile code is
only transferred once in the remote-evaluation paradigm resp. code-on-demand
paradigm.

Let us have a closer look at this technical definition before moving on: By the
term code we mean some kind of executable representation of computer programs.
In case of script languages, like Perl or TCL this could be the source code, in case
of the Java programming language [Arnold and Gosling, 2000] it is the portable
intermediate Java byte code format, and in case of the C programming language it
could be the executable machine language format for a single processor. By the term
data we mean all variables of the agent – in case of object-oriented languages it is the
set of all attributes of the corresponding object. Finally, by the term state we mean
information about the execution state of the agent, e.g. information from within
the underlying processor about current register values and instruction pointers. In
case of the Java Virtual Machine [Lindholm and Yellin, 1999], which is the execution
environment for Java-based programs, the state of an agent comprises of the operand
stack, the instruction pointer, etc.

In the notion we introduced in Section 2.1 on page 9, we can describe the mobile
agents paradigm as follows (compare Figure 2.2). At site SA a virtual machine MT

A
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has the know-how in form of code, which is currently executed. During this execution
the code realizes that it needs access to some other resources currently located at
site SB. Thus, MT

A interacts with MU
B to transmit the code, together with some

more information about the current execution state. At site SB virtual machine MU
B

executes the code providing access to the resources located at this site. Later, the
code may decide that it needs other resources at other sites, e.g. SC , and so the code
migrates to another computer again.

A mobile agent system provides the infrastructure that implements the agent para-
digm. Each computer system that wants to host mobile agents must provide an
agent execution environment, called an agent server or agency. The agent server
is responsible to receive and execute mobile agents and provides basic facilities for
them, e.g to communicate, to protect them from malicious agents, and of course to
migrate.

In this case, mobile agents are seen from the viewpoint of software engineering and
distributed systems. They can be considered to be a new design paradigm in the
area of distributed programming and a useful supplement of traditional techniques
like the client-server architecture.

As almost all other mobile agent research groups, we have a rather pragmatic
notion of the term mobile agent. To our understanding, a mobile agent is simply
any kind of software entity that is able to initiate a migration on its own within a
network of heterogeneous computer systems and serves a specific task that has been
specified by its owner.

In fact, as we will show in the next section about the history of mobile agents, there
is currently a clear separation between the two research communities - people working
on intelligent software agents and people working on mobile agents. Unfortunately,
people from the non-mobile agent community do claim very often that mobility is a
pretty useless feature. This view can be best described by the statement that mobile
agents are a “solution in search of a problem”3. On the other hand, people from the
mobile agents community are sometimes proud of not working with intelligence.

2.2.3. A Short History of Mobile Agents

As we have pointed out earlier, the mobile agent paradigm relies heavily on the idea
of mobile code. Thus, to some extent, we have to consider mobile code as an ancestor
of mobile agents.

The idea to send code in an architecture-independent format to different hosts via
a network was mentioned, probably for the first time, by Rulifson [1969]. He and his
colleagues introduced the Decode-Encode-Language (DEL) which was published as
RFC 54. The idea was to download an interpretative program at the beginning of a

3Stated by John Ousterhout during an interview that is published online [IEEE IC-Online, 1997].
4Request For Comments, see http://www.rfc-editor.org/ for more information about RFCs.
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session, while communicating to a remote host. The downloaded program, written in
DEL, could then control the communication and efficiently use the small bandwidth
available between the user’s local host and the remote host. Later, Michael Elie
improved this concept and proposed the Network Interchange Language (NIL) as
RFC 51 in 1970.

About 10 years later, a group at Linkoping University in Sweden had the idea
to build a packet-oriented radio network they called Softnet. Each packet sent over
the network was a program written in the FORTH programming language and each
network node that received a packet immediately executed this FORTH program.
Using this technique, every user was able to instruct every network node to provide
new services. More information can be found in a paper by Zander and Forchheimer
[1983].

Joseph R. Falcone faced the problem of providing client-specific interfaces to re-
mote services across a heterogeneous distributed system [Falcone, 1987]. In contrast
to offering a single interface with many small functions to satisfy the possibly high
number of clients, Falcone proposed to enable clients to program their specific in-
terfaces themselves, using a well-defined new programming language NCL (Network
Command Language). In NCL a client sends an NCL expression to a server which, in
turn, executes this expression using standard functions provided in form of a library.
The server sends the result, which is an expression again, to the client which can
start a computing process again. Thus, what we have here is primitive mobile code
in both directions. Independently of Falcone, Stamos developed the Remote Evalua-
tion (REV) approach, which extends the idea of Remote Procedure Calls introduced
by Birrell and Nelson [1984]; Nelson [1981]. The motivation for REV is quite the
same as for NCL described above. In REV, a client sends a request to a server in the
form of a program. The server executes the program and sends the result back to
the client. Other examples of mobile code sent within networked computer systems
are remote batch job submission [Boggs, 1973] and the PostScript language used to
control printers [Adobe Systems, Inc., 1999].

A second step towards mobile agents was then done by adding a minimal kind of
autonomy to the messaging concept. We will refer to this technique, as is usual, as
mobile objects, although nowadays the term mobile objects is often associated with
Java RMI. The idea was that of active messages, i.e. messages that are able to
migrate to a remote host. A message contained data and some program code that
was executed on each server. However, the data portion was still dominant in this
concept, while the active portion, i.e. the code, was more or less an add-on. As
opposed to the mobile code approach, a mobile agent typically migrates more than
once in its life-time and migration is initiated by the agent itself.

The MESSENGERS project [Fukuda et al., 1996] proposed the concept of so called
autonomous objects, which were called Messengers. Messengers are able to migrate
autonomously through a local area network of dedicated servers that accept these
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objects. The difference to the techniques described above is that a Messenger is
not only transferred to a single remote server but is able to autonomously roam a
complete network. However, the concept was limited to static local area networks and
did not include any notion of application level intelligence. A messenger’s autonomy
was limited to the level of technological and system level needs and not targeted at
solving a user’s problem.

A third predecessor of mobile agents are mobile processes from which mobile agents
inherited the ability to capture the actual execution state of the processor or virtual
machine they currently use. The idea was developed in the area of distributed op-
erating systems in the late 1980’s. In this framework, a process which is currently
executed on a single computer system, can be moved to another system in order
to balance the load of the distributed system as a whole. An example for operat-
ing systems with process migration is Sprite [Douglis and Ousterhout, 1991]. One
technique to implement process migration is, for example, checkpointing. In regular
time periods an image of an active process is captured and stored permanently. In
order to migrate a process to another host, the last checkpoint is transmitted and the
process is reactivated. If we compare, it has to be noted again that in mobile agents
the motivation for migration derives not only from load balancing or other low level
technical goals, but is typically driven by the demand to facilitate via the agent the
use of various available services on the network’s application layer.

It was in 1994, when James E. White, affiliated with General Magic Inc. at that
time, published a white paper that initiated dedicated research on what we call
mobile agents today. This paper was later republished in a book edited by Bradshaw
[1996]. In this paper, White introduced the Telescript technology which comprises
of a runtime environment and a dedicated programming language for mobile agents.
This language already offered most of the very important aspects and abstractions
of all current mobile agent systems. The further development of Telescript was
nevertheless dropped when it became clear that this technology would not be able
to stand against Java as the common basis for most mobile agent systems. For their
work on mobile agents, General Magic received a U.S. patent in 1997 [White et al.,
1997].

Since General Magic’s initial project, the research community interested in mobile
agents has been steadily growing. Some major conferences have been established
that address solely this topic and a lot of workshops deal with specific subareas, like
security or communication. A lot of alternative mobile agent systems have been
developed since then. An almost up-to-date list counts about 70 different systems5.

Today, nearly all systems use the Java programming language as basis for their
development, only few systems additionally support other languages, as for example
TCL or Scheme. Some of the mobile agent systems developed in the last years

5See http://mole.informatik.uni-stuttgart.de/mal/mal.html.
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are Aglets by IBM6, Voyager by ObjectSpace7, and Concordia by Mitsubishi8. Two
mobile agent systems are real commercial products: Grasshopper by IKV9 and Agent
Development Kit by Tryllian10. Systems developed for university-based research are
for example Mole 11, Tacoma 12, D’Agents 13, Ajanta 14, Semoa 15, and our own
system Tracy16. See Kiniry and Zimmerman [1997], and Wong et al. [1998] for a
comprehensive review of Java-based mobile agent systems. A comparison of object
oriented mobile agent systems was done by Gschwind [2000]. We omit here a detailed
introduction to these systems and refer to literature for more information.

A first standardization approach to mobile agent systems was published by Milo-
jicic et al. in 1999. The Mobile Agent System Interoperability Facility (MASIF) was
backed by companies that were active in mobile agent research, e.g. IBM, General-
Magic, and GMD Fokus and was published as OMG standard. MASIF bases on
CORBA as system infrastructure. Aglets and Grasshopper are the only two systems
that support the MASIF standard today.

2.2.4. Some Typical Applications for Mobile Agents

In the last years many research groups and companies have participated in the ad-
vancement of mobile agent systems. However, as the technology is new and radical

6Aglets [Lange and Ishima, 1998] is perhaps the most famous mobile agent system. The project
became an open source project at Sourceforge (http://aglets.sourceforge.net/). The latest
version of Aglets is 2.0.2, February 2002.

7The product was purchased by Recursion Software, Inc. (USA). The latest version of Voyager is 4.5
and is available from http://www.recursionsw.com/products/voyager/voyager.asp. Unfortu-
nately, no white paper or any other documentation is available online. Two white papers [Ob-
jectSpace, 1997, 1998] are related to older version of Voyager (1.0 and 2.0).

8The project is not alive anymore. See http://www.merl.com/projects/concordia/ for more
information. The main publication about Concordia is by Koblick [1999].

9The latest version of Grasshopper is 2.2.4b, July 2002, see http://www.grasshopper.de for more
information. The Grasshopper mobile agent system is currently redesigned to become part of
a new IKV product, named enago, see http://www.ikv.de for more information. Information
about Grasshopper can also be found in Bäumer et al. [1999] and the manuals [IKV, 2001a,b].

10See http://www.tryllian.com for more information.
11Mole [Baumann et al., 1998; Straßer et al., 1997] was one of the first Java-based mobile agent

systems. The project was completed in year 2000, but its home page is still available at http:

//mole.informatik.uni-stuttgart.de.
12For more information about Tacoma, see Johansen et al. [1995] and http://www.cs.uit.no/

forskning/DOS/Tacoma/.
13D’Agents [Gray et al., 2002] is the successor of AgentTCL [Gray, 1997a], which was one of the

first mobile agent systems. For more information, see http://agent.cs.dartmouth.edu.
14Ajanta [Karnik and Tripathi, 2001] focuses on secure and robust mobile agent execution, see

http://www.cs.umn.edu/Ajanta/ for more information.
15Semoa [Roth and Jalali, 2001] focuses on mobile agent security, see http://www.semoa.org for

more information.
16An overview of Tracy is given in the appendix (pp. 267).
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in its concepts, some type of proof has been asked for that would show that mobile
agents, as a technology, are indispensable. (That this was never done for other tech-
nologies that are now widely used seems to be of no interest to those asking for the
ultimate killer application).

What is accepted today is that mobile agents will not make any applications pos-
sible that would not have been possible before, using other, more traditional tech-
niques. However, that holds also for other technologies, e.g. high-level programming
languages: We could still develop all our systems by sticking to plain object code,
even though nobody doubts any more that it was a good idea to develop higher level
languages and introduce design and requirements phases into the software life cycle.

Thus, and this holds for mobile agents as well, when we talk about a new technology
today, in most cases we talk about improved quality and management of complexity,
the efficient use of resources in projects and the adequacy of concepts and tools. The
point is not that something would not have been possible before, but how it can
be achieved – which, of course, sometimes means the same: It might be possible in
theory to build something similar to the Empire State Building without the use of
cranes, steel and concrete, but who would ever want to do that?

On the same basis we argue that mobile agent systems provide a single framework
and a very convenient abstraction, the mobile agent, to build distributed applications
very efficiently. The point is not to look at one specific application, but to look at the
whole set of possible applications and to understand that this new technology will
enable a new level of networked software by delivering a sound basis to understand,
handle and implement them despite their complexity and risks.

Nevertheless, its is possible to identify some application domains where mobile
agents have already shown to be highly valuable and that seem “to ask for” that
type of technology:

Electronic commerce, be it business to business or business to customer, suffers
from the fact that it currently simply translates real-world business into electronic
processes and data. Neither the advantages of the Web, nor the capabilities of
software driven systems are fully utilized. To achieve that, a much higher degree of
support for automation and a much better coverage of information sources must be
offered: The customer simply wants to state what he/she wants, and is not interested
to direct a system over hours manually to actually implement how this is done.
Interfaces need to be unified, but a general standardization has shown to be nearly
impossible. Huge amounts of data are shipped, and that often very slowly, and
then thrown away after the most primitive evaluation. In all of these cases mobile
agents can help, as they offer delegation and asynchronous task execution, are able to
simulate unified interfaces to widely differing sources, and, last but not least, actually
were born out of the need to send the evaluation process to the data, and not vice
versa.

Information retrieval is another popular application domain for mobile agents.
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Instead of moving large amounts of data to a single point where data is searched to
extract the needed pieces of information, the code for searching the data is moved
to the location where the data is. Nice examples are large graphical data bases,
e.g. the data warehouses of satellite pictures that will charge for the downloaded
data, not the information extracted. These systems also suffer from the problem of
the overly simplified and non-standardized interface for multiple clients, as discussed
above. Again, mobile agents will be able to unify that interface from the client’s
perspective and offer a higher and well adapted level of functionality.

Another typical application for mobile agents in the domain of information re-
trieval are multiple distributed sources. If the relevant information sources cannot
be centralized, either because of technical reasons, e.g. in a network of fast updating
sensors, or because of business-driven necessities, e.g. if the information at each node
is proprietary and the owner does not agree to a centralized solution, mobile agents
offer the only chance to develop a flexible solution that accepts the distributed nature
of the given environment and offers a solution that is as distributed and scalable as
the problem itself.

2.3. Technical Advantages of Mobile Agents

Although, mobile agents provide a new and interesting approach to distributed sys-
tems, there must be clear qualitative and/or quantitative arguments in favor of mobile
agents to substitute them for more traditional techniques. However, while we believe
that mobile agents are the most promising technology to solve most of the problems
of the networked future, it should be said that we also believe that mobile agents will
rather supplement many older techniques than killing them completely.

We will now present four major technical advantages, which are suitable for an
introductory chapter as this one is, in some more detail. It is this set of basic
technical advantages that opens the chance for improved and typical applications, as
discussed above.

1. Delegation of tasks. As mobile agents are simply a more specific type of
software agent, a user can employ a mobile agent as a representative to whom
the user may delegate tasks. Instead of using computer systems as interactive
tools that are only able to work under direct control by a user, autonomous
software agents aim at taking care of entire tasks and work without permanent
contact and control. As a consequence, the user can devote time and attention
to other, more important, things. Thus, mobile software agents are a good
means to cope with the steady information overload we experience.

2. Asynchronous processing. Once mobile agents have been initialized and set
up for a specific task, they physically leave their owners’ computer system and
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from now on roam freely through the Internet. Only for this first migration
a network connection must be established. This feature makes mobile agents
suitable for nomadic computing, where mobile users can start their agents from
mobile devices that offer only limited bandwidth and volatile network links.

3. Adaptable service interfaces. Current techniques in distributed systems
that offer application service interfaces, usually as a collection of functions,
constitute only the least common denominator of all possible clients. As a
consequence, most of the interface functions are more or less primitive and
clients will probably have to use a workflow connecting these functions in order
to execute a complex, user-driven operation. If the communication overhead
for exchanging messages between client and server is high, as compared to
the execution time of each function, it would make sense to offer aggregated
and more advanced functions as combinations of the primitive ones. However,
since it is very difficult to track down every possible scenario in advance or
even during runtime, this is usually not offered by the server’s multi-purpose
interface. Mobile agents can help in this situation by offering a chance to
design a client-driven interface that is optimized for the point of view of the
client (user), but is adaptable to different server interfaces. The key is to use
a mobile agent to translate the more complex and user-driven functions of the
client interface, at the server node, into the fitting primitive functions offered
there. Thus, the mobile agent simulates a constant and highly specialized
interface for the client (user), while talking to each server in its own language.

4. Code-shipping vs. data-shipping. This is the probably most cited advan-
tage of mobile agents and it stands in tight relationship to the last one. For
the same reason as mentioned above, service interfaces frequently offer only
primitive functions to access data bases. A single call can, therefore, result in
a huge amount of data sent back to the client, due to the lack of precision in
the request. Instead of transferring data to the client where it will be processed
and filtered and probably cause a new request (data-shipping), this code can
be transferred to the location of the data (code-shipping) by means of mobile
agents. In the latter case, only the relevant data, i.e. the results after processing
and filtering is sent back to the client. This reduces network traffic and saves
time, if the code for filtering is smaller than the data that must be processed.
This advantage has been scrutinized in the last years by many different research
groups and it has been verified in general.
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In this chapter we will motivate why we stress on the migration aspect of mobile
agents in this thesis. As already introduced in Chapter 1, we consider the network
load argument as one of the main advantages of mobile agents as compared with
other design paradigms for distributed systems. According to this argument, mobile
agents are able to save network traffic by shipping the code close to data, instead
of shipping data to the code as it is done in the client-server paradigm. Although
this argument can be proofed by experiments, there are cases where mobile agents
produce higher network load than client-server techniques. This leads to the very
important question for software designers: “Which paradigm produces lower network
load?”.

In the first section, we will describe two approaches from literature to answer this
question. The first approach proposes a design decision between mobile agents and
client-server on the basis of mathematical models. The second approach argues that
only a mixture between mobile agent migrations and remote procedure calls can
achieve smallest network load. Both approaches do not deliver a detailed analysis of
the reasons for the mobile agents’ bad performance.

Our thesis is that mobile agents suffer from several drawbacks that are all related
to the technical bases used to provide the ability to migrate. Therefore, we will carry
out a detailed network load analysis using mathematical models in Section 3.2. We
will compare both paradigms in typical scenarios to identify reasons for mobile agents
producing higher network load. The result is an enumeration of inherent drawbacks
of mobile agents as compared to client-server techniques, which all are entailed with
the details of the migration process. In the last section, we will discuss our results
and mention a few other papers that also focus on network load analyzes of mobile
agents.

3.1. Mobile Agents vs. Client-Server

3.1.1. Static Decision between Mobile Agents And Client-Server

This approach proposes a static decision between the two paradigms according to a
mathematical analysis of the network load for a concrete application. The approach
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was published several times for different applications. Carzaniga et al. [1997] and
Vigna [1998b] discuss this approach for an application from the information retrieval
domain, whereas Baldi et al. [1997], Picco [1998], and Baldi and Picco [1998] use this
approach for an application from the network management domain. This approach
compares network load for client-server, remote-evaluation, code-on-demand, and
mobile agents.

The main thesis of the authors is that no paradigm is better than the others
in every application scenario, but “The choice of the paradigm to exploit must be
performed on a case-by-case basis, according to the specific type of application and
to the particular functionality being designed within the application.” [Vigna, 1998b,
p. 42].

We describe their approach using the example of a distributed information system.
To give an expression on the mathematical model, we also mention some of the most
important parameters here. In the distributed information system N servers hold D
documents each. The client’s task is to download the relevant documents which are
identified using keywords. The server offers for each document a header that also
contains the keywords for this document. For sake of simplicity, the authors allow the
following constraints. The relation between relevant documents and all documents
equals i for all servers. The header information has length h bits for each document,
and each document has length b bits. Requests sent from the client to the server have
length r bits. Then, the authors model each approach using these parameters and
finally gain an expression for network load for each paradigm, e.g. the network load
using the client-server paradigm equals ((D + iD)r + Dh + iDb)N and the network
load for the mobile agent approach equals (r+CMA +s+ N

2 iDb)(N +1), where CMA

is the agent’s code size and s is the size of the state. Based on an evaluation of these
models, with estimated values for all parameters, the authors select a single design
paradigm which is recommended for the implementation of this application.

Concerning an analysis of the drawbacks of mobile agents, the authors found that
mobile agents always produce highest network traffic compared to all other design
paradigms, because an agent carries all documents already found yet, whereas in all
other paradigms documents are sent back to the client immediately. Thus, a mobile
agent’s data grows continuously with each hop, so that in sum it grows quadratically
in the number of servers.

The authors assume in their model a network where transmission costs only depend
on the number of bytes to transmit – and not on bandwidth and latency values.
According to the authors themselves, this is unrealistic, but necessary to keep their
model simple. Using such an uniform network, it is rather impossible that the mobile
agent approach produces less network traffic than the remote-evaluation approach,
because code in the remote-evaluation approach is smaller and mobile agents have to
migrate N + 1 times, whereas in the remote-evaluation approach only N migrations
are necessary. In our opinion it must be considered that networks for real-world
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application are heterogeneous, meaning that, for example, a migration between two
remote servers is faster than sending two requests from the client. Additionally, the
authors can only estimate values for the parameters of their model, for example the
size of the mobile agent’s code, before having implemented this agent and do not
explain how to obtain reliable values. The authors do not consider that parameters
might change in the future, which might reverse their recommendation.

3.1.2. Mixture between Agent Migrations And Remote Procedure Calls

The second approach is proposed by Straßer and Schwehm [1997]. Their thesis is
that only a mixture between agent migrations and remote procedure calls leads to
minimal network traffic.

The authors develop a simple mathematical model for network load and execu-
tion time of client-server and mobile agent based approaches for a given application
scenario. Several parameters are known in advance, for example the amount of com-
munication necessary between client and server(s) as well as bandwidth and latency
for all network connections. They model the advantage of mobile agents to filter or
compress server results before sending it back to the client by a so-called compression
factor σ. Agent migration is modeled as implemented in their Mole [Baumann et al.,
1998] mobile agent system, where agent code is not always transmitted along with
the agent’s state, but is usually dynamically loaded from the agent’s home server if
necessary. Class downloading can be avoided, if the necessary class is already avail-
able at the destination agent server. Therefore, a parameter P models the probability
to download any class from the agent’s home server. Nevertheless, the authors do
not evaluate their model with regard to class downloading probability P .

First, they evaluate a single client-server like interaction with regard to different
values for the server result size and the compression factor. The result is as expected
and shows that, for example, with low compression factors mobile agents produce
higher network load because sending code to the server causes a fixed overhead,
whereas with high compression factors mobile agents produce smaller network load.
After that, they consider a scenario where a sequence of interactions between a single
client and several servers is processed.

The authors’ main idea to solve the problem of deciding between the two paradigms
is that only a mixed sequence of agent migrations and remote procedure calls produces
minimal network load. The agent only migrates to a subset of all servers to be
visited, whereas the other servers are accessed using remote procedure calls. The
optimal sequence depends on the size of requests and results, and on the network
quality between each pair of nodes. All these parameters are assumed to be known
in advance.

To assess this technique, the authors compute the network load for all possible
combinations of migrations and remote procedure calls using a mathematical model.
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Under the assumption that network bandwidth and latency are known in advance,
they are able to show that it is actually a mixture that produces minimal network
load. At last, the authors proof their theoretical findings by experimental validation.
Here, an agent is able to compute its optimal communication pattern by itself using
the developed mathematical model. Values for bandwidth and latency are measured
by the underlying mobile agent system Mole. The authors compare three mobility
strategies, where the agent migrates always, or never, or according to the results of
the mathematical model. The measured execution times show that the optimized
mobility strategy has always least execution time. Iqbal et al. [1998] continue on this
work and present several algorithms to compute the optimal migration sequence of a
single agent. The approach is based on an algorithm to determine the shortest path
in a directed and weighed graph.

Both papers show that only a mixed sequence of remote procedure calls and agent
migrations lead to an optimal network load. Thus, to determine the optimal com-
munication sequence, knowledge of several parameters, for example about network
bandwidth, latency, request, and result size are assumed. However, it is not clear
how these values can be obtained in general and how robust their approach is against
variations of these values.

3.2. Performance Analysis of Simple Mobile Agents vs.
Client-Server

In this section we will develop ourselves a simple mathematical model in order to com-
pare network load for both client-server and mobile agent based paradigms. The aim
is to show under which circumstances the use of mobile agents causes lower network
load and which characteristics of mobile agents are responsible for sometimes higher
network load. Therefore, we do not consider the remote-evaluation and the code-on-
demand paradigm here, although for example the remote-evaluation paradigm might
produce less network load than the mobile agent paradigm, compare for example
Picco [1998]. We want to keep the model as simple as possible. Therefore, we fo-
cus our analysis of network traffic in terms of transmitted bytes and do not consider
transmission time, except of one scenario where we consider a heterogeneous network.

The application scenario we will use consists of a set of computers, where one
system takes the client role and all other systems are servers. The client sends client
requests to servers to obtain data items that are sent back as server result. The size
of a single client request is Breq and the size of a server result equals Bres. If no data
matches the request, the server has to send some kind of error notification about this
case, which has size Brep. A mobile agent that is sent from a client to a server has
code of size Bc and state information of size Bs. Additionally, an agent carries data
items, e.g. the client request or the results found at previously visited servers.
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Parameter Unit Description

BCS byte network load in the client-server approach
BMA byte network load in the mobile agent approach
TCS sec response time in the client-server approach
TMA sec response time in the mobile agent approach
Breq byte size of a client request
Brep byte size of a server error reply
Bres byte size of a server result
Bc byte size of a mobile agent’s code
Bs byte size of a mobile agent’s state
σ 0 ≤ σ ≤ 1 compression factor
m number number of servers to be visited

m∗ number number of servers at which client-server and mobile
agents produce the same network load

n number number of communication steps
pi 0 ≤ pi ≤ 1 probability that data is found at server i

δ(Li, Lj) sec delay (latency) between network nodes Li and Lj

τ(Li, Lj) byte/sec throughput between network nodes Li and Lj

Table 3.1.: Overview of the symbols used for the mathematical model in Section 3.1.

As we have already identified in Chapter 1 there are two individual advantages of
mobile agents, both able to reduce network load:

1. Reduction of network load by avoiding network protocol overhead, e.g. avoiding
many communication steps in a network protocol.

2. Reduction of network load by filtering and compressing data at the server side.

In our model, we describe data filtering and compression by a single parameter σ,
0 ≤ σ ≤ 1, which stands for a compression factor. The compression factor is applied
to the server result Bres, so that only (1−σ)Bres must be sent back to the client resp.
carried by a mobile agent. Table 3.1 gives an overview of all used symbols.

For the sake of simplicity, we make the following additional assumption: When a
mobile agent migrates to another computer it carries all its code, all state information,
and all data with it. Only if an agent migrates to its home server, code transmission
is omitted because code can be assumed to be already there. This corresponds to
a migration technique that is implemented in most mobile agent systems. For the
moment, we do not consider the impact of other techniques for agent migration, for
example the one implemented in Mole (see Section 3.1.2). Our model of network
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Scenario Breq Brep Bres Bc Bs σ pi Network Figure

1.1 50 20 var. 2000 100 .7 n/a hom. 3.1(a)
1.2 50 20 3000 2000 100 var. n/a hom. 3.1(b)
1.3 50 20 100 2000 100 n/a n/a hom. 3.2
2.1 100 50 10 000 3000 200 .8 1

m hom. 3.3(a)
2.2 100 50 10 000 3000 200 .8 1

m hom. 3.3(b)
3.1 100 n/a 10 000 3000 200 .8 n/a hom. 3.4
3.2 100 n/a var. 3000 200 var. n/a hom. 3.5
3.3 100 n/a 10 000 3000 200 .8 n/a hom. 3.6
3.4 100 n/a 10 000 3000 200 .8 n/a het. 3.7

Table 3.2.: Typical values of model parameters, which we use for all scenarios in
Section 3.1. Here, “n/a” indicates that this parameter is not needed in
this scenario and “var.” indicates that this parameter is varied in this
scenario.

load is placed on top of the TCP/IP stack, so that we do neither model TCP or IP
headers, nor network load that is caused by data retransmission, etc.

We will now discuss the behavior of mobile agents in the following three scenarios:

1. Network of one client and one server, where the client accesses the server one
or many times.

2. Network of one client and m servers, where the client is searching for a single
data item that might be stored at any server.

3. Network of one client and m servers, where the client is searching for data items
at all servers.

3.2.1. Scenario 1: Network of One Client And One Server

We first consider the case of reducing network load by data filtering and compression.
In the client-server approach, the client sends a request of size Breq to the server,
which answers with a result of size Bres. Here, no data filtering or compression can
be applied. Thus, the amount of bytes that is sent over the network is:

BCS = Breq + Bres (3.1)

In the mobile agent approach, the client sends an agent to the server. The agent
consists of code of size Bc and state information of size Bs. The agent carries the
request object of size Breq as data item. At the server, the agent communicates locally
with the server, which does not produce any network load. The agent has the code
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to filter or compress the server result, so that only (1−σ)Bres must be carried to the
agent’s home server. Please note, that the agent does not carry code and the request
object during the home migration, because the code is already available at the home
server and the request object is no longer needed. However, state information must
be sent back to the agent’s home. Thus, the amount of bytes for the mobile agent
approach is:

BMA = Bc + 2Bs + Breq + (1− σ)Bres (3.2)

From Equation 3.1 and Equation 3.2 we can derive a verification of the thesis when
mobile agents produce less network load than client-server approaches.

BMA ≤ BCS

Bc + 2Bs + Breq + (1− σ)Bres ≤ Breq + Bres

Bc + 2Bs ≤ σBres (3.3)

We see that a mobile agent produces lower network load, if and only if its code
including double the state is lower than the amount of bytes of the server result the
agent could save by compression and/or filtering.

We evaluate this scenario with the parameters found in Table 3.2 (Scenario 1.1
and 1.2). The result is shown in Figure 3.1. Figure 3.1(a) compares the network load
of the client-server approach with the mobile agent approach for a fixed compression
factor σ = .7 while varying the server result size between 0 and 5000 byte. The
diagram shows that the usage of mobile agents produces less network load only if the
server result size is large. The reason for this is the fixed network load overhead for
transmitting mobile agent’s code and state to the server, which is in this scenario
equal to 2100 byte. Figure 3.1(b) compares the network load of the client-server
approach with the mobile agent approach for a fixed server result size of 3000 byte
while varying the compression factor σ between 0 and 1. This diagram shows that
the usage of mobile agents produces less network load only if the compression factor
is high.

We will now have a look at the advantage of avoiding several network protocol
steps. A typical scenario is when a client has to check a server periodically to get
informed about changes, e.g. when a stock rate goes below a given limit. Therefore,
the client sends requests of size Breq to the server, which answers with a server reply
of size Brep in the case of no changes and with a server result of size Bres when the
change happened. Let us assume that the change happened after n requests were
sent. For the client-server approach the network load amounts to

BCS = nBreq + (n− 1)Brep + Bres (3.4)

The agent has to migrate to the remote server, which costs Bc + Bs and it carries
the request of size Breq. After processing, the agent migrates back, which costs
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Figure 3.1.: Evaluation of Scenario 1.1 and 1.2: mobile agents produce less network
load only if the server result is large or the compression factor is high.

Bs + Bres. Please note, that we do neither consider filtering, nor data compression
in this scenario. For the mobile agent approach the network load amounts to

BMA = Bc + 2Bs + Breq + Bres (3.5)

We evaluate this scenario with the parameters found in Table 3.2 (Scenario 1.3).
The result is shown in Figure 3.2 and it compares the network load of the client-
server approach with the mobile agent approach for fixed request, reply, and result
size, while varying the number of request n necessary until the event occurs. It can
be seen that in the client-server approach network load increases in proportion to the
number of requests while mobile agents produce constant network load. Thus, mobile
agents only produce less network load if the number of requests is beyond a threshold.
The reason for this is again the fixed network load overhead for transmitting code to
the server.

3.2.2. Scenario 2: Network of m Servers, Searching for a Single Data
Item

In this scenario the client searches for a single data item that is currently only avail-
able at one out of a set of m servers. Thus, in the client-server approach, the client
has to access each server sequentially until the information is found. We denote the
set of all servers with L = {L1, . . . , Lm}. The probability that the information is
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Figure 3.2.: Evaluation of Scenario 1.3: Number of request vs. network load. Mobile
agents produce less network load only if the number of requests is high.

found at server Li equals pi, where 0 ≤ pi ≤ 1. Therefore, it is important in which
order the servers are accessed and we define that the same order is used in the client-
server approach as well as in the mobile agent approach. After the information is
found at server Li, servers Li+1, . . . , Lm are not visited anymore.

Let us first consider the client-server approach. If the information item is found
at the first server, then only a single client request of size Breq and a single server
result of size Bres are sent. If the information is found at the second server, then two
requests of size Breq, a single error reply of size Brep (from the first server), and one
server result of size Bres is sent. We weigh each single case with its probability and
obtain the following network load:

BCS = p1(Breq + Bres) + p2(2Breq + Brep + Bres) + . . .

pm(mBreq + (m− 1)Brep + Bres)

=
m∑

i=1

pi(iBreq + (i− 1)Brep + Bres) (3.6)

We now look at the mobile agent approach. If the information is found at the first
server, the agent migrates only to the first server and comes back with the compressed
result. Please remember that the agent does not carry its code when migrating home.
If the information is found at the second server, the agent has to migrate three times,
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it needs not to carry any reply message from the first server, but one compressed
server result from the second server. Again, each case is weighed with its probability.
In sum, this amounts to:

BMA = p1(Bc + 2Bs + Breq + (1− σ)Bres) +
p2(2Bc + 3Bs + 2Breq + (1− σ)Bres + . . .

pm(mBc + (m + 1)Bs + mBreq + (1− σ)Bres

=
m∑

i=1

pi(iBc + (i + 1)Bs + iBreq + (1− σ)Bres) (3.7)

We evaluate this scenario with the parameters found in Table 3.2 (Scenario 2.1).
The result can be found in Figure 3.3(a). The diagram compares network load for
the client-server approach and the mobile agent approach for fixed request, reply,
and result size while varying the number of servers m. It can be seen that only for a
small number of servers, mobile agents produce less network traffic, because here data
filtering and compression have a positive effect on the overall network load. Beyond
a specific number of servers, mobile agents produce higher network load, because of
the overhead of sending code and state information to each server. Thus, network
load increases in proportion to the number of server in the mobile agent approach,
whereas network load only increases slightly in the client-server approach.

We will now evaluate the same scenario in a network where only the costs at the
client network interface are considered. For example, if the client is a mobile phone
that has a GPRS connection to the Internet, costs depend on the number of bytes
sent from the mobile phone to the Internet service provider – we denote this network
connection as uplink. Of course, the network load of the client-server approach is
identical to the one above (Equation 3.6). For the mobile agent approach we ignore
all costs related to migrations between servers in the network in this scenario. Thus,
the network load amounts to:

BMA = p1(Bc + 2Bs + Breq + (1− σ)Bres) + . . .

pm(Bc + 2Bs + Breq + (1− σ)Bres)

=
m∑

i=1

pi(Bc + 2Bs + Breq + (1− σ)Bres) (3.8)

= Bc + 2Bs + Breq + (1− σ)Bres (3.9)

Figure 3.3(b) shows that network load is much smaller now in the mobile agent
approach because data filtering and compression has a positive effect. Network load
is constant in the mobile agent approach, because only uplink costs are considered
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Figure 3.3.: Evaluation of Scenario 2.1 and 2.2: Network load vs. number of servers.

and, therefore, it is irrelevant on which server the information is found, whereas
it increases slightly in client-server approach. Please note that a scenario where
only uplink costs are considered is the only case where for high number of servers
mobile agents produce lower network load than client-server techniques – in all other
scenarios, it is vice-versa: the higher the number of servers the higher the network
load for mobile agents. Thus, it is very profitable to use mobile agents, if only uplink
costs must be considered.

3.2.3. Scenario 3: Network of m Servers, Select Information at All
Servers

In this scenario the client has to collect data items from all servers in the network,
so that in any case all m servers are visited. In the client server approach, the client
sequentially accesses each server, sending a request and receiving a server result. The
total network load amounts to:

BCS = m(Breq + Bres) (3.10)

In the mobile agent approach, the agent migrates from its home server to server
L1 with produces costs for code, state, and request transmission. On server L1 the
agent selects and filters data, so that the cost for the next migration to server L2

increases by (1−σ)Bres. At each succeeding server new data items of cost (1−σ)Bres
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Figure 3.4.: Evaluation of Scenario 3.1: Network load vs. number of servers. Network
load for mobile agents increases quadratically in the number of servers.

must be added, so that for the migration from server Li to server Li+1 data items
of size i(1 − σ)Bres must be take along. In sum, network load for the mobile agent
approach equals:

BMA = Bc + Bs + Breq +
+Bc + Bs + Breq + (1− σ)Bres +
+Bc + Bs + Breq + 2(1− σ)Bres + . . .

+Bs + m(1− σ)Bres

= mBc + (m + 1)Bs + mBreq +
m(m + 1)

2
(1− σ)Bres (3.11)

We evaluate this scenario using the parameters given in Table 3.2 (Scenario 3.1).
The result is shown in Figure 3.4. The diagram compares network load of the client-
server approach with the mobile agent approach for fixed size of client requests and
server results while varying the number of servers to be visited. Network load in-
creases in proportion to the number of servers in the client server approach, whereas
it grows quadratically in the mobile agent approach. The reason for this is that a
mobile agent collects data items from each server and must carry all results. Mobile
agents only produce lower network load when the number of servers to be visited is
small.
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As can be seen in Figure 3.4, there exists a number of servers for which both
paradigms produce the same network load. We denote this number of server with
m∗. We are now interested in how m∗ changes while varying the server result size
Bres and the compression factor σ. We evaluate this scenario using the parameters
found in Table 3.2 (Scenario 3.2). Figure 3.5 shows the relation between m∗ and
the server result size for four different compression factors. It can be seen that the
number of servers up to which mobile agents produce lower network load has an
upper bound for each value of σ, which depends on the size of the server result. This
upper bound is higher when the compression factor is higher.

Now, we will evaluate the same scenario as Scenario 3.1, but consider only costs at
the client network interface. Network load for the client-server paradigm is the same
as in Equation 3.10. The network load for the mobile agent approach equals:

BMA = Bc + Bs + Breq +
Bs + m(1− σ)Bres

= Bc + Breq + 2Bs + m(1− σ)Bres (3.12)

We evaluate this scenario using the parameters found in Table 3.2 (Scenario 3.3).
The result can be seen in Figure 3.6. As in Scenario 2.2 we can see that mobile agents
produce much lower network load than client-server techniques due to data filtering
and compression.
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Figure 3.6.: Evaluation of Scenario 3.3: Number of computers vs. network load, only
considering network load between client and any server.

At last, we will discuss the influence of network parameters on the response time
in both approaches. We want to show that in a heterogeneous network it is not
valuable to assess a paradigm solely on basis of network traffic, especially when
the network connection between client and any server has lower bandwidth than
inter-server connections. Therefore, we introduce δ : L × L → R, where δ(Li, Lj)
describes the delay (latency) of a network connection between node Li and node Lj

and τ(L:, LL) × L → R, where τ(Li, Lj) describes the throughput between node Li

and node Lj. For the moment, we omit processing time. From Equation 3.10 we
obtain the following equation for the response time:

TCS =
m∑

i=1

2δ(L0, Li) +
Breq + Bres

τ(L0, Li)
(3.13)

We assume the client as node L0. The execution time for a simple client-server call
consist of the time for transferring request and result plus the delay for this network
connection.

In the mobile agent approach, we can derive from Equation 3.11 the following
equation:
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Figure 3.7.: Evaluation of Scenario 3.4: Response time vs. number of servers. The
number of servers where network load of client-server and mobile agents
are equal is higher than in Figure 3.4.

TMA =

(
m∑

i=1

δ(Li−1, Li) +
Bc + Bs + Breq + (i− 1)(1− σ)Bres

τ(Li−1, Li)

)
+

+δ(L0, Lm) +
Bs + m(1− σ)Bres

τ(L0, Lm)
(3.14)

We will now evaluate this scenario using the parameters given in Table 3.2 (Scenario
3.4). The result is shown in Figure 3.7. We assume delay time to be 90 ms between
the client and each server, and 30 ms between a pair of servers. Throughput is
assumed to be 40 000 byte/sec for the client-server link, and 200 000 byte/sec for
inter-server connections.

The only difference in this evaluation compared to the evaluation of Scenario 3.1 is
the heterogeneous network and we can see its effect inasmuch as the break-even point
between client-server and mobile agents increased from about 5 to nearly 70 servers.
Due to the fact that the slow link between the client and all servers is used very
often in the client-server approach, response times are very high. However, beyond a
certain number of servers, mobile agents become worse because of their characteristic
to carry all data.
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3.3. Discussion of Our Own Results And a Further
Literature Review

In the last section we developed a mathematical model for network traffic and re-
sponse time of client-server based approaches and mobile agents for three general
application scenarios. Our evaluation of this model confirms the thesis that mobile
agents produce less network load than client-server techniques only, if their code to-
gether with the state is smaller than the amount of network load that can be saved
by their use.

The general result of our mathematical model is that within the same application
scenario we can find both parameter constellations where smallest network traffic is
achieved by either client-server or mobile agents. As a consequence, we must conclude
that it depends on the values of several factors, as for example code size, server
result size, number of servers to be visited, etc., which paradigm produces smallest
network traffic resp. response time. In this difficult situation, software designers
would surely benefit from any rule of thumb to decide, which paradigm should be
used in a given situation. However, in our opinion, this does not make sense, as
we abstract from several factors in our model for the sake of simplicity – and these
parameters undoubtedly will also influence the decision and would invalidate these
rules or make them at least inaccurate outside our model.

Limitations of Our Model and Other Approaches

Some factors that also influence network traffic and response time in real applications
are for example those considering network quality. One important aspect is the error
probability of a given network connection, especially in the case of wireless connec-
tions. A mathematical model including this parameter is for example presented by
Jain et al. [2000]. Another factor we did not model is server processing time. As
we ignored this factor, our model assumes response time to be equal to agent mi-
gration resp. data transmission time, which is of course inaccurate for all processing
intensive tasks. However, to extend our model with processing time would make it
indispensable to model server scalability too – and this would have been clearly out
of the scope of our intention for the moment. Notwithstanding, we are aware of this
factor, as Gray et al. [2001] pointed out recently that scalability of a mobile agent
server software is a severe penalty for the overall performance of mobile agent based
applications.

In contrast to our general mathematical model, where we tried to figure out the
main parameters influencing the performance in both paradigms, some authors focus
on parameters which are very specific for the examined application. For example,
Puliafito et al. [1999, 2001] consider an example from the information retrieval do-
main where a fixed number of servers must be accessed. After the first request is
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processed and the server result is sent back to the client, the client decides whether
another request must be sent to the server. The authors analyze the influence of the
probability pr of reusing the same server for a subsequent request. Such a subsequent
request produces network load and, therefore, transmission time in the client-server
approach, whereas in the mobile agent approach only processing time must be added.
The evaluation shows that with a low value for pr, the client-server approach performs
better, because of the overhead of mobile agent migration. However, with increasing
probability pr the client-server approach results in higher processing time than the
mobile agents approach.

There are several other papers that also discuss trade-offs between client-server and
mobile agent approaches, which we will not mention in detail, because they would
contribute any new results: Spyrou et al. [2000], Outtagarts et al. [1999], Papastavrou
et al. [1999], Knudsen [1995], Spalink et al. [2000], Theilmann and Rothermel [1999],
Samaras et al. [1999].

Advantages of Mobile Agents

We evaluated our model using several scenarios and we identified the following limited
advantages of mobile agents with a simple migration capability only. Mobile agents
produce lower network traffic,

1. if the number of requests during a communication is high so that many data
transmissions of the client-server paradigm can be avoided by using mobile
agents, or

2. if the size of the server result is high combined with a high compression or filter
factor, so that a much smaller number of bytes must be sent back to the client.

As already stated the concrete value of the threshold beyond which mobile agents
produce lower network load depends on several factors. Therefore, we are unfortu-
nately not able to be more precise at this point than to say that the number of
request or the compression factor must be high.

It is obviously easier to give concrete numbers, if instead of a mathematical model
real-world experiments are conducted. For example, Ismail and Hagimont [1999]
present results of experiments with the Aglets mobile agent system and a client-
server implementation based on Java RMI. The authors consider an example from
the information retrieval domain consisting of a single client and two servers. The first
server offers information about hotels and the second server is a telephone directory.
The task is to get a list of hotels in a given town together with their telephone numbers.
So, the client first requests from the hotel database a list of hotels, then selects those
hotels in the given town by itself, because it is assumed that the interface of the
first server does not offer any filter function. For each selected hotel, the second
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server is asked for the hotel’s telephone number. Measurements were down in a
network of three computers residing in different European cities. The results show
that the overall execution time depends on the number of hotel records returned
by the first server. Below 30 records, the RMI based client-server approach has a
lower execution time, whereas above this record number, the mobile agents approach
performs better. The experiment shows that mobile agents are a good choice only if
many data must be processed. Otherwise, mobile agents may produce more network
load than client-server techniques.

The other two scenarios deal with cases where more than a single server must be
accessed. In these cases, mobile agents work completely different as compared to
client-server based techniques. Whereas in the latter approach the client accesses
each server resulting in a star-shaped communication flow, mobile agents hop from
server to server not visiting the client meanwhile. In Chapter 2.2.2 we identified
especially this behavior as a major difference of mobile agents as compared to mobile
objects. The main advantage of this behavior comes from the fact that the network
connection between the client and any server is not used frequently by mobile agents,
so that mobile agents produce

1. smaller network load, if only network traffic at the client-interface is considered,
and

2. smaller response time, if the uplink has a smaller bandwidth (or higher latency)
than all inter-server connections.

We investigated a scenario where only data transmission at the client interface, the
so-called uplink, is considered. The result was that mobile agents have advantages,
if the user is interested in minimizing uplink costs, as it is conceivable with having
a GPRS mobile phone. In this case we do not consider all the network traffic that
is produced between servers so that all these transmission costs for code and data
transmission are not taken into account. Of course, this advantage can only exist in
combination with one of the advantages mentioned above. For example, if an agent
were not able to reduce the server result, its network load would only be smaller for
a very high number of servers.

The second advantage deals with the case of heterogeneous networks, i.e. networks
in which network connections do not have the same quality. We concentrated on
those networks, where the uplink, i.e. the connections between the client and any
server, has lower bandwidth or higher latency than connections between servers. A
typical example for such a network consists of a mobile client that must use a wire-
less LAN connection with a bandwidth of 2-11 Mb/sec rather than Ethernet with
100 Mb/sec. In such a heterogeneous network, we showed that mobile agents have a
smaller response time than client-server techniques. The reason for this is that mobile
agents do need this small bandwidth connection only twice for the migration from
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the client and, finally, back to the client, whereas in the client-server paradigm, each
server is accessed using this bottleneck connection. In our evaluation we neglected to
analyze the impact of network bandwidth and network latency on the performance
of mobile agents in detail, because this has been done in the literature before:

Rubinstein and Duarte [1999] evaluate trade-offs of mobile agents in network man-
agement tasks. Performance of mobile agents is compared to an approach using
SNMP. The network topology used in these simulations consist of a LAN of Man-
aged Network Elements (MNE) connected to a management station by a bottleneck
link. Simulations are made using a network simulation software. The application
scenario the authors look at are simple network management task, like for example
retrieving SNMP variables from all MNEs. The authors consider the network load
at the bottleneck link and response time of a single task as performance parameters.
The authors conduct several experiments, varying network latency and bandwidth,
the initial mobile agent’s size, and the number of bytes to select at each MNE. The
result is that the performance of mobile agents does not change with the latency,
because mobile agents only use the bottleneck link twice, whereas all SNMP mes-
sages must traverse the bottleneck link. Varying bandwidth of the bottleneck link
has the result that for a small bandwidth both mobile agents and SNMP messages
present larger response times. Here the authors found that for a lower number of
MNEs, SNMP messages perform better, but with increasing number of MNEs, mo-
bile agents have lower response times. Increasing mobile agents’ size has the expected
effect of higher response times, whereas response times for SNMP messages remain
constant.

Drawbacks of Mobile Agents Using a Simple Migration Technique

We will now analyze the reasons why mobile agents sometimes produce higher net-
work traffic. The first obvious reason is the size of the code that has to be transmitted
to each server the agent visits. Agent code is usually larger than a simple client-server
request, because agents do not only carry the code for data filtering and/or compres-
sion, but they also need additional logic implemented to decide which servers should
be visited. Only in few applications, this order might be a fixed itinerary, imple-
mented as a primitive array of URLs. In most applications the decision for the next
server to visit is done dynamically during runtime. On the other hand, large code
size is not in all cases a drawback. There is often a simple relation between the
quality of filtering and/or compressing data at the server site, and agents’ code size.
Simply speaking, the more sophisticated the data filtering task is (which results in
a higher compression factor), the larger the code is that is necessary to achieve this
compression factor. Higher network traffic of mobile agents as compared to client-
server techniques can be caused by situations where the achieved compression factor
is low, although much code was sent to the remote server – and those situations are
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not always avoidable.
A second drawback of the mobile agents paradigm is that sending code to each

server causes a fixed overhead in network traffic for each agent migration. Therefore,
before mobile agents can beat client-server based techniques, there can be several
client-server interactions as long as they are in sum smaller than this fixed overhead.
If the advantage of mobile agents comes from data compression or filtering than this
data reduction must save at least network traffic in the size of agent’s code.

A third drawback deals with the migration technique. One simplification of our
model is that we do not consider different techniques for agent migration. We assume
the widely used technique that sends code as one unit to each server. In some cases,
this might include pieces of code with low execution probability on specific servers,
i.e. it is improbable that these pieces of code will be executed on a specific server.
As an example, just think of a task divided in several sub-tasks. On a specific
server only one of these sub-tasks is executed, and, therefore, code for all other sub-
tasks was transferred superfluously. Kotz and Gray [1999] describe this as following:
“Thus, . . . , mobile agents (especially those that need to perform only a few operations
against each resource) often take longer to accomplish a task than more traditional
implementations, since the time savings from avoiding intermediate network traffic
is currently less than the time penalties from slower execution and the migration
overhead.”. We will come back to this drawback of mobile agents in Chapter 5,
where we will extend our model by several migration techniques.

The last three drawbacks for mobile agents’ bad performance were deduced from
the first scenario (pp. 28) of our model evaluation, where only a simple interaction
between a single client and a single server was examined.

If a mobile agent has to migrate to many servers instead of only a single one, we
can find further drawbacks. First of all, it is clear that a higher number of servers
to be visited does not have any positive impact on code migration. The agent’s code
must be transferred to each server that the agent visits, and, therefore, we could
repeat all the drawbacks of mobile agents presented above even in the multi-server
case. But also another drawback of mobile agents becomes obvious. If more than
a single server must be visited, the result collected at server Li−1 is transferred as
part of the mobile agent’s data to server Li. If the result of server Li−1 is not needed
at any server Li, . . . , Lm, then it was superfluous to transfer it. The same is true
for the other case, where data originally created at the client must be transferred to
all servers L1, . . . , Li−1, although server Li is the first one which needs them, e.g. to
create an appropriate request.

Our evaluation showed that mobile agents are only useful for a small number of
servers to be visited – a fact that intuitively contradicts the general idea of mobile
agents as multi-hop entities. Besides, we have shown mathematically that there
exists an upper bound for the number of servers, beyond this bound mobile agents
are unable to ever produce lower network traffic. For example, even in the case of a
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very high compression factor (σ = .95), mobile agents are better than client-server,
only if less than 40 servers are to be visited.

3.4. Summary of Part I

In the first part of this thesis we introduced the concept of mobile agents and com-
pared it to more traditional design paradigms for distributed applications. We gave
a brief description of the history of mobile agents, presented several application do-
main where mobile agents seem to be useful, and discussed the technical advantages
of mobile agents as compared to the client-server model.

In a first mathematical evaluation we examined a performance analysis of simple
mobile agents as compared to the client-server approach. The evaluation showed
that mobile agents have the possibility to reduce the network load and processing
time as compared to client-server based applications, because code is shipped to the
data, instead of shipping data to the code. However, we also showed some severe
drawbacks of mobile agents, features which are in sum responsible for higher network
load and longer processing time in certain situations.

All these drawbacks are caused by the simple migration technique used in our
mathematical model, which, however, reflect the current state-of-the-art in agent
migration. We learned that code migration is a very expensive task that must be
optimized and has to become more flexible. We also learned that data migration
has an important impact on the performance of mobile agents. It is our thesis that
the migration process of mobile agents must be optimized to let them migrate in a
more flexible and fine-grained way. What we mean is that a mobile agent should not
always migrate as one unit that consist of all code, state, and data information, but
that it is sometimes useful to let the agent decide which code and data item should
be transferred to the next server. In the next part we will, therefore, focus on the
migration process of mobile agents and reason about possible optimizations.
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Part II.

Analysis and Synthesis of Mobile
Agent Migration Techniques

The second part of this thesis focuses on the migration aspect of
mobile agents. We start in Chapter 4 with an introduction into the
migration process, describe how the Java language supports building
mobile agents, and discuss performance aspects of agent migration.
In Chapter 5 we will propose a classification scheme for agent mi-
gration. We will show that the process of transferring an agent
from one computer to another can be implemented in very different
ways, so that the software designer of a mobile agent system has to
make several design decisions or choose between several design al-
ternatives. In Chapter 6 we will reason about performance issues of
mobile agents and introduce the new Kalong migration technique.





4. The Mobile Agent Migration Process

After looking at mobile agents from the application point of view, we will now focus
on the migration process, which we identified to be one of the most crucial aspects
for high-performance mobile agents. So far we explained that agent migration simply
as the process of transferring a mobile agent from one computer system to another,
without going into technical details. In this chapter we will catch up on this issue.

We will start with a generic framework for an agent migration process that matches
almost all current implementations. This framework highlights some of the most
important technical requirements for a migration component. After that, we will
introduce the Java programming language in Section 4.2 with its features to support
the migration process and describe the migration process of the Tracy mobile agent
system.

4.1. Generic Framework for Agent Migration

The process of agent migration, although implemented in each mobile agent system
differently, can be described by a general framework. Introducing this framework also
helps us to unequivocally define some terms, which we will use in the next chapters
and the rest of this thesis.

A mobile agent is a software program that is in most systems executed as part of
a so-called mobile agent server software. This server software controls execution of
agents and provides some basic functionality for agent communication, agent control,
security, and migration.1 This mobile agent server is called agency in the following.
On each computer system that wants to host mobile agents, an agency of the same
type must be installed.2 All agencies that are able to exchange mobile agents form
a logical network that we call the mobile agent system. Each computer system can
host several agencies in parallel and each agency is reachable by at least one URL

1Of course, it is possible to build a system of (mobile) agents by just letting an agent be a process
in the meaning of operating systems. Processes can communicate with each other by primitives
offered by the operating system and even migration can be achieved with special distributed
operating systems or can be provided as the only service of the underlying mobile agent server
software. Tacoma [Johansen et al., 1995] is an example for such a system.

2Recently, some research groups started to develop methods to make mobile agents interoperable,
i.e. that two different agencies are able to exchange agents. See for example Pinsdorf and Roth
[2002] for more information.
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address to which migration is directed to. The URL also serves as a name of the
agency. For this moment it is not interesting, how the agency is structured, e.g. some
mobile agent systems subdivide a single agency into several places. Each place is a
closed area and agents in different places neither know or see each other, nor can
communicate with each other.

As any software program, mobile agents are written in some programming language.
As already described in Section 2.2.3, any programming language can be used in
principle for implementing mobile agents. In most systems there is a restriction
inasmuch as the same programming language must be used for mobile agents as was
used for the whole mobile agent system. Only few systems, e.g. Tacoma and D’Agents,
allow agents on the same system to be implemented using different programming
languages. The first mobile agent systems had mobile agents implemented in script
language, as for example Telescript, TCL, or Perl. Current mobile agent systems use
the Java programming language, because of its many features that lessen the effort
for building mobile agent systems.

When an agent is started on an agency, this one becomes the agent’s home agency.
The principal who starts the agent is called the agent’s owner and the owner also
defines the agent’s name. The owner information is important to decide in foreign
agencies how trustworthy the agent is. The agent’s name is important to identify an
agent unequivocally on all agencies of the mobile agent system. All this information
about an agent’s home agency, agent’s owner, and agent’s name become attributes
of the agent. Usually, an agent returns to its home agency after it has fulfilled the
given task. The other important agency is the one that holds the code of the agent,
we call this one a code server. Usually, the home agency equals the code server, but
this is not a must.

Agencies are typically multi-agent systems, i.e. a single agency can host many
agents in parallel. To provide quasi-parallel execution, some kind of scheduling is
offered. In most systems this process of scheduling is not programmed within the
server software, but is delegated to the programming language resp. the operating
system. For example, a very common case is that each agent owns a thread3. During
execution, the agent is allowed to start new child threads, of course.

Mobile agents consist of three components: code, data, and execution state. The
code contains the logic of the agent and all agents of the same type use the same
code4. The code must be separated from the code of the agency, so that it can be
transferred without the code for the agency to another one, and the code must be
identifiable and readable for the agency, e.g. in form of a file from the local file system

3Being a thread less than a process, see Tanenbaum [2001] for more information.
4Here, we have a rather pragmatic and narrow notion of type for agents: Two agents are of the

same type, if they use the same code. More programming language like definitions would refer
to the interface or the communication protocol the agent offers, see Zapf and Geihs [2000] for a
detailed discussion on other approaches for defining the notion of a type for agents.
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or byte stream from the network. Usually, as in other programs too, an agent’s code
consists of more than one file, e.g. many class files in the Java programming language.

The second component of an agent is data. This term corresponds to the values of
the agent’s instance variables, if we assume an agent to be an instance of a class in
object-oriented languages. The data are sometimes also called the object state. It is
important to note that not all data items an agent can access are part of its object
state. Some variables reference objects that are shared with other agents or the
agency software itself, for example file handlers, threads, the graphical user interface,
or other resources and devices that are not movable to other servers. Thus, we have
to restrict the agent’s immediate data to those data items the agent owns and that
are movable. Problems arising from the fact of non-movable resources are discussed
in the next chapter.

The third component is the execution state, which comprises of the program
counter, frame stack, and all other information that is necessary to resume execu-
tion at the remote agency. What this means, depends very much on the decision of
the mobile agent designer and the underlying execution environment (processor, op-
erating system, virtual machine), as we will see in the next chapter. For the moment,
we can state that the execution state contains the current value of the instruction
pointer and the stack of the underlying processor. The difference between object and
execution state information is that the elements of the object state are directly con-
trolled by the agent itself, whereas execution state information is usually controlled
by the processor resp. operating system.

The typical behavior of a mobile agent is to migrate from one agency to another
from time to time. During the process of migration, the current agency, i.e. the
one the agent currently resides on, is called the sender agency and the other agency,
to which the agent wants to migrate to, is called the receiver agency. During the
migration process the sender and the receiver must communicate over the network
and exchange data about the agent that wants to migrate. Thus, we can say, that
some kind of communication protocol is driven, and we call this the migration protocol.
Some systems simplify this task to an asynchronous communication, comparable to
sending an electronic mail, whereas other systems develop rather complicated network
protocols on top of TCP/IP.

The whole migration process contains six steps, which are executed in sequence,
except of S3 and R1 which are executed in parallel. Please refer to Figure 4.1.

The first three steps (S1-S3) are executed on the sender agency:

S1 Initialize the migration process and suspend thread. The process of migration
typically starts with a special command, the migration command, by which
the agent announces its intention to migrate to another agency, whose name is
given as parameter of the migration command. The first task for the agency
is now to suspend the execution thread of the agent and to guarantee that no
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Receive the agent

Deserialize the agent

Start agent execution

Transfer the agent

Capture data and state

Initialize migration process

Network

Sender Receiver

Figure 4.1.: The mobile agent migration process.

other child thread is still alive. This requirement is important for the next step,
where it is imperative that data and state are frozen and cannot be modified
later on.

S2 Capture agent’s data and execution state. The current state of all variables
(the data) of the agent is serialized, i.e. their current values are written to an
external persistent representation, e.g. a memory block or a file. The agent’s
state is also stored there, so that the point of suspension is known. Result of
the serialization process is the serialized agent which is a flat byte stream that
consists of the agent’s data and state information.

S3 Transfer the agent. The serialized agent is transferred to the receiver agency
using a migration protocol. Whether any code is sent to the receiver agency
depends on different parameters and will be discussed later.

The last three steps (R1-R3) are executed on the receiver agency.

R1 Receive the agent. The serialized agent is received using the migration protocol.
The receiver agency checks whether the agent can be accepted based on infor-
mation about the agent’s owner and the sender agency. The receiver agency
may filter out agents that come from agencies that are unknown or not trusted.

R2 Deserialize the agent. The serialized agent is deserialized, i.e. the variables and
the execution state are restored from the serialized agent. The result of this
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step should be an exact copy of the agent that existed on the sender agency
just before reaching the migration command.

R3 Start agent execution in new thread. The receiver agency resumes agent exe-
cution by starting a new thread of control. At least when resuming execution,
the agent’s code is needed. In this general framework we make no assumption
about how the code is transferred to the receiver agency. One possible tech-
nique is for example that the receiver agency loads the code from the agent’s
home agency or its code server. We will discuss those techniques in the next
chapter.

In the next section we will now look at an implementation of a migration process.
As an example we chose our Tracy mobile agent system, which is implemented in the
Java programming language.

4.2. Migration in the Tracy Mobile Agent System

In this section we will describe the migration process of an existing mobile agent
system, which was developed using the Java programming language. We will follow
the generic framework introduced in the last section and explain the advantages of
Java for programming mobile agent systems and mobile agents. We chose the Tracy
system as an example here, not only because Tracy is the result of our own research,
but also because the complexity of the Tracy migration process lies in the middle
between a very simple one, e.g. used in Semoa [Roth and Jalali, 2001] and a difficult
one, e.g. used in Aglets [Lange and Ishima, 1998]. A detailed introduction into the
Tracy mobile agent system would be out of the scope of this thesis and is, therefore,
postponed to the appendix, see pp. 267.

The Java programming language [Arnold and Gosling, 2000] has become the de-
facto standard programming language for mobile agents5. All systems, developed in
the last four years, are using this programming language for the mobile agent system
as well as for the mobile agents. Even both projects mentioned in the last section
that do not solely support Java, cannot be named as opponents of this language at all,
because in these projects one of the main research issues is multi-language support
and both do support Java.

The advantage of Java comes from several built-in features that lessen the effort
for building mobile agent systems. In this section we will especially focus on features
that support the migration process, e.g. object serialization, dynamic class loading,

5For some time, the question which languages are suitable for mobile agents was topic of intensive
research in the community. For a detailed discussion about the language requirements for mobile
agents, we refer to the dissertation thesis of Knabe [1995], and the following papers [Cugola et al.,
1997a,b; Knabe, 1997b; Thorn, 1997].
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and reflection. We will also briefly mention foundations of the security architecture
of Java. Despite of these advantages, some aspects of Java are also imperfect with
regard to the requirements of mobile agent systems – we will also briefly discuss these
drawbacks.

4.2.1. Foundations of Java

Java is an object-oriented language developed by Sun, Inc. Although the original
project goal was simply to develop a new programming language (Oak) for a new
kind of remote control with LC display and touchscreen (named “*7”), Java became
the Internet language since 1995. For some time, the most famous application domain
for Java were applets that are shipped from a Web server to a Web browser. Today,
due to major performance improvements achieved in the last years, Java has become
a widely used programming language for server-based applications, too.

The most important feature that made Java an Internet programming language is
its portability. Java programs are compiled into a architecture independent byte code
format [Lindholm and Yellin, 1999] which is executed using a Java virtual machine.
As virtual machines exist for almost all current hardware platforms and operating
systems, Java programs have the enormous advantage of being executable on almost
all existing computer systems. Portability is a very important requirement for mo-
bile agent systems, because mobile agents must be able to migrate in a network of
heterogeneous computer systems.

A consequence of the architecture independent byte code format is that Java is
an interpreted language. The byte code is executed by the virtual machine, which
completely protects the underlying operating system from direct access out of Java
programs. This simplifies security control, because an intermediate code format al-
lows easier code inspections for security violations than compiled native code. As all
interpreted languages, Java has a lower execution performance than compiled code.
However, very sophisticated techniques were developed for Java to translate interme-
diate code into optimized native code during execution (just-in-time compilation and
hot-spot optimization).

The language itself supports development of safe applications, because, in contrast
to C for example, Java has a pointer model that does not support pointer arithmetic
and illegal type casting. The byte code verifier, a component of the virtual machine,
filters out code before execution that violates basic semantics of Java. Even during
runtime, a security manager controls all potentially unsafe operations, as for exam-
ple file access, network connections, or access to the graphical user interface. It is
dynamically determined, whether the given program is permitted to perform these
operations.

Java comes with many libraries, e.g. for data structures, network programming,
graphical user interfaces, etc. Especially network programming is supported using
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sockets as well as using remote method invocation (RMI), which is the object-oriented
version of the remote procedure call concept. Java RMI is so powerful that imple-
menting a very simple mobile agent system can be done in less than 100 lines of code,
compare for example Avvenuti and Vecchio [2000].

Unfortunately, Java also has some drawbacks with regard to mobile agent systems.
The main disadvantage is perhaps the fact that it is impossible to obtain the current
execution state of a thread in form of the current instruction pointer and calling
stack, so that it is practically impossible to preserve and later resume execution of a
mobile agent in detail. Therefore, as we will see later, Java based mobile agents can
only offer a weak form of mobility, where the agent is restarted at the receiver agency
by invoking a method (instead of jumping into it). Another drawback is the lack of
resource control, e.g. for memory or processor cycles. Therefore, it is not possible to
avoid denial of service attacks, which is a specific type of security attack, where the
attacker tries to consume so much resources that the system is not able to handle
incoming requests anymore.

4.2.2. Representing Agents in Tracy

In Tracy, an agent is an object of a specific class, named Agent. Tracy distin-
guishes between three types of agents, namely stationary system agents, stationary
gateway agents, and mobile agents. The corresponding classes are SystemAgent,
GatewayAgent, and MobileAgent, which are all direct subclasses of class Agent and
are all member of package de.unijena.tracy.agent.

Class Agent is the main class within the TracyAPI. It is an abstract class that
serves as base for all agents and must not be instantiated by the programmer. Class
Agent defines methods and variables to control an agent’s life-cycle, get and set
internal data structures, and receive messages. Some of theses methods are useful
for the programmer, e.g. methods to inform about the current agency, whereas some
methods are only useful for an agency to control the agent. Class Agent also defines
some methods that are supposed to be overridden by subclasses.

To give a practical example, we subclass MobileAgent, although we have not intro-
duced class MobileAgent, yet. In the following example we will only refer to agent
functionality that is common to all agent classes. To define an agent in Tracy, package
de.unijena.tracy.agent must be imported, which includes all basic definitions.

1 import de.unijena.tracy.agent.∗;
2

3 public class MyFirstTracyAgent extends MobileAgent
4 {
5 SomeOtherClass other = new SomeOtherClass();
6

7 public MyFirstTracyAgent()
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8 {
9 // do some initialization

10 }
11

12 public void startAgent()
13 {
14 // do something
15 }
16 }

Method startAgent is defined abstract in class Agent and even no direct subclass does
provide an implementation for it. This method is the entry point that is called at
the agent’s home agency to start the agent and, therefore, every user-defined agent
must implement this method.

Usually, an agent consists of more than one class. In the example above, we see
that this agent has a variable named other of type SomeOtherClass.

4.2.3. The Migration Process

In the following we will explain the migration process as implemented in Tracy accord-
ing to the framework introduced in the last section. We do not follow the sequence
introduced in the framework, but combine tasks that belong together, for example S1
and R3, etc. We omit to introduce the network transmission task here. Tracy uses
its own migration protocol, called SATP, which is an asynchronous network protocol
that bases on the TCP/IP protocol. We introduce this protocol later in Chapter 7.

Starting the Migration Process And Resuming Execution

In this section we will show how a mobile agent can start a migration to a receiver
agency and how execution is resumed at the receiver agency. Actually, there are
two ways to move a mobile agent. The first way is to use the go command to
initiate migration with a default migration behavior to a single remote agency, and
the other way is to use so-called migration properties to configure the migration
process in detail, e.g. to define a complete itinerary. Then, the next go command
automatically chooses the next destination in the given itinerary. In this section, we
will only concentrate on the standard migration technique, using migration properties
is explained in the appendix.

An agent migration is initiated by calling a method named go with the name of
the receiver agency as the first parameter and the name of the method to invoke
after migration as the second parameter. Method go is defined in class MobileAgent
and cannot be overridden (defined final there) and should not be overloaded by the
agent itself.
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final protected void go( URL destination, String methodName )
Migrates an agent to the receiver agency destination and restart it by invoking method

methodName.

The name of the receiver agency is just a URL, where the protocol should be tracy
and the host name is the name of the receiver agency. Usually, a port number is also
required, so that for example a complete destination address is tracy://tatjana.cs.uni-
jena.de:4040. Calling method go stops agent execution immediately and statements
following the go invocation will never be executed, neither in the case of a successful
migration, nor in the case of a migration error. A go command might be included
in a try ... catch clause. In this case, neither the Tracy-defined runtime exception
AgentExecutionException, nor any super classes of this exception, must be caught.

1 try
2 {
3 // some code that might throw an IOException
4

5 System.out.println(”Running on server \”tatjana.cs.uni-jena.de\””);
6 go( ”tracy://domino.cs.uni-jena.de:4040”, ”runAtRemote” );
7

8 // statements below will never be executed
9 System.out.println(”This message will never be seen.”);

10 }
11 catch( IOException e )
12 {
13 System.err.println( e.getMessage() );
14 e.printStackTrace();
15 }

There are two other methods that are shortcuts for the above mentioned go method:

final protected void go home( String methodName )
Migrates an agent to its home agency and restarts it by invoking the method with name

methodName.

final protected void go back( String methodName )
Migrates an agent to the agency it came from and restarts it by invoking the method with

name methodName.

In the case that migration is not successful, e.g. because the receiver agency does
not accept agents from the current agency or both agencies use different versions of
the migration protocol, the agent must be reactivated at the current agency. There-
fore, method migrationFailed is called, which is defined empty in class MobileAgent.
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protected void migrationFailed()
Is called in case of any migration error.

The default behavior of this method is to do nothing, which lets the agent wait for
new messages to become active again. Usually, this method should be overridden
and could for example try to migrate again.

Resuming agent execution at the receiver agency is done using the Java reflection
technique. After the agent was deserialized and at least the agent’s main class is at
the receiver agency so that the agent object can be successfully instantiated, agent
execution is resumed. In Tracy the agent is resumed by starting a method whose
name was given as second parameter in the go-statement. The name of this method
was transmitted as part of the state of the agent.

Java reflection is a powerful technique to determine information about classes, their
variables and methods during runtime. Additionally, it is possible to invoke a method
of an arbitrary object only by having its name in a String variable. In the following
example, we show an extract from the Tracy source code, where for a given mobile
agent object a method with name methodName is invoked.

1 import java.lang.reflect.Method;
2

3 protected void startAgent( MobileAgent mobileAgent,
4 String methodName ) throws Exception
5 {
6 Method method = mobileAgent.getClass().getMethod( methodName, new Class

[] {} );
7 method.invoke( mobileAgent, new Object[] {} );
8 }

In line 6, we first determine the class name of the given mobile agent object, then
ask this class for a method of name methodName. The second parameter of method
getMethod contains an array of types that the wanted method must accept as param-
eter. An empty array as in the example indicates that the method should accept no
parameters. If the agent’s class has such a method, it is stored in variable method.
In the other case, an exception is thrown. In line 7 this method is invoked with the
mobile agent as parameter and an empty array of objects, which means that this
method has no parameter at all. Method startAgent is called within a new thread
that is assigned to the agent.

Object Serialization And Deserialization

After a mobile agent has indicated to migrate to another agency, serialization of the
agent takes place. Serialization means that all variables of the agent, together with
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all recursively referenced objects and their variables are traversed and put into a flat
byte array. The set of all objects to be serialized is called object closure.

In the current version of Tracy we use the standard object serialization technique
that is already implemented in Java [Sun, 1999]. To use this technique, each class
whose objects should be serialized during their life-time must implement interface
java.io.Serializable. Class MobileAgent already implements this interface, so that all
mobile agents in Tracy can be serialized. Additionally, all variables that a mobile
agent class defines, must be either marked serializable too, or marked as transient,
which means that this variable is not an element of the object closure. If a not seri-
alizable object is found during the serialization process an exception will be thrown.
Note, that class variables, i.e. those marked as static, are not part of the serialized
object. Thus, the object will probably retrieve different values of class variables at
the destination agency.

Java object serialization does only determine the object state of an agent and not
its execution state. In Tracy only the name of the method that should be invoked at
the receiver agency is part of the agent’s state.

The following extract from the Tracy source code gives an impression of how simple
the task of object serialization is in Java. Method serializeAgent gets a reference to
the mobile agent as parameter and returns the serialized agent as byte array. In case
of an error, the method returns null.

1 private byte[] serializeAgent( MobileAgent mobileAgent )
2 {
3 ByteArrayOutputStream baos = new ByteArrayOutputStream();
4 try
5 {
6 ObjectOutput oos = new ObjectOutputStream( baos );
7 oos.writeObject( mobileAgent );
8 oos.flush();
9 }

10 catch( IOException e )
11 {
12 return null;
13 }
14

15 return baos.toByteArray();
16 }

The most important statement is line 7, where the agent is serialized to an output
stream. In line 15 this output stream is converted into a flat byte array.

The result of the serialization process is the so-called serialized agent, which is now
transferred to the receiver agency. To instantiate a new mobile agent from a byte
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array, is only a little bit more complicated. The standard Java object serialization
technique allows to instantiate a new object simply from a byte array containing the
serialized object. This procedure is correct, because the serialized object contains all
information about used classes that are necessary to define and initialize the object
correctly.

1 private MobileAgent deserializeAgent( byte[] bytestream )
2 {
3 try
4 {
5 ByteArrayInputStream bais = new ByteArrayInputStream( bytestream );
6 ObjectInputStream ois = new TracyObjectInputStream(
7 new TracyClassLoader( this ),
8 bais );
9

10 mobileAgent = (MobileAgent)ois.readObject();
11 return mobileAgent;
12 }
13 catch( Exception e )
14 {
15 return null;
16 }
17 }

This method uses two Tracy-specific new classes to instantiate mobile agents.
Class TracyObjectInputStream subclasses the standard Java class ObjectInputStream
which is responsible to conduct the complete deserialization process. If a class

must be loaded during deserialization, then method resolveClass is called. In class
TracyInputStream this method is overridden, so that our new class TracyClassLoader
is used for this task. If the process of deserialization fails, value null is returned.

Finding Classes and Dynamic Class Loading

The default migration technique of Tracy transfers the serialized agent together with
the state information, which only comprises of the method name to invoke at the
destination, and all classes the agent might ever use to the receiver agency.

Therefore, the first problem before an agent can migrate is to determine which
classes must be transferred to the next agency. Comparable to the definition of
object closure, we can also define code closure as following: The code closure consists
of the agent’s main class, e.g. MyFirstTracyAgent in the example above and all classes
that are used for variables, method parameters, method return values, and local
variables of any class of the code closure. Unfortunately, Java does not provide an
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easy way to determine this set of class names automatically. Class Class of the Java
API provides method getDeclaredClasses which only returns an array of classes that
are used for member variables. Using method getDeclaredMethods we can obtain
information about all methods and using this information we can determine classes
that are used for parameters and return values. But, Java does not provide a method
to determine information about local variables defined within methods. Therefore,
we implemented our own technique that looks at the byte code of the class. There,
we find the constant pool [Lindholm and Yellin, 1999] which is a table that contains
all class names that are ever used in this class. To read this table we use a tool
named ByCal (byte code analyzer) which was developed within our project. This
tool offers several services to analyze Java byte code, transform it, and even perform
sophisticated control and data flow analyzes on it.

Obviously, the code closure should not contain classes that are not to be transferred
to the receiver agency, because they can be assumed to be already there, e.g. classes
of the Java API or classes that are part of Tracy. Before collecting the byte code for
each class of the code closure, those classes are deleted from the code closure. To
read the byte code for each class that is element of the code closure, Java does not
provide a simple technique, too. Therefore, we search for the class in all directories
and Java archive files that are defined in the environment variable CLASSPATH.

After the agent is received at the destination agency, its code must be linked to
the code of the already running agency. This is another advantage of the Java pro-
gramming language that allows dynamic class loading and linking. This mechanism
allows the virtual machine to load and define classes at runtime.

In Java, an instance of class ClassLoader is responsible to load and define classes.
Each class loader defines an own name space, so that different classes with the same
name can be loaded into a single virtual machine without conflicts. The default class
loader that is used unless the user specifies to use an own one, loads classes from
the local file system, i.e. from directories or from Java archives that are listed in the
CLASSPATH. Each object knows the class loader it was created by and a single
class loader has usually created many objects, e.g., if an object creates new objects,
the same class loader is used.

When a class loader has to load a class, it looks for the corresponding class code
according to the following rules:

1. First, the class loader checks, whether the class has been already loaded before
and gets the byte code from the cache in this case.

2. Then, the system class loader is asked to load the class from the system Java
JAR file.

3. Then, the class loader looks at the CLASSPATH variable and searches all
directories and Java archives.
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4. Finally, it delegates the task to a user-defined class loader by invoking method
findClass.

When the class code is found, it is defined by calling a special method defineClass
of the class loader. User-defined class loaders must override method findClass and
can load the byte code for the given class name for example, by either using a
HTTP or FTP server, or using any other technique. Due to the default Tracy mi-
gration technique, all class files are already at the destination agency, so that the
TracyClassLoader has only to look for the byte code in a local repository, where all
incoming classes are stored.
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After we introduced technical details of the migration process and showed how the
migration process is implemented in the Tracy mobile agent system, we will now
discuss other approaches to implement mobile agent migration. The main goal of
this chapter is to collect the design issues and to reason about design alternatives of
agent migration. We introduce the term mobility model to describe the migration
technique of a specific mobile agent system and we propose a language to describe
mobility models. As an example, we describe the mobility models of two existing
mobile agent systems, Aglets and Grasshopper, using our new language. The chapter
concludes with a brief review of other approaches to classify mobile agent migration
techniques.

In this chapter, we will not consider other design issues than those that are related
to agent mobility. Of course, there are many other issues a designer must take
into consideration when implementing a mobile agent system, as for example agent
naming, agent communication, security, monitoring, fault-tolerance, etc. We know
that there are several interdependences between all these issues and we agree that
it would be very useful to propose a complete list of design issues for mobile agent
systems. Some approaches were done in this direction, for example by Picco [1998],
Hammer and Aerts [1998], and Karnik and Tripathi [1998]. However, in this thesis
we will focus only on mobility issues. The very important relation between agent
migration and agent security is discussed in a later chapter.

5.1. Mobility Models

The migration technique of Tracy that we have introduced in the last chapter was
only one option how migration could be implemented in mobile agent systems. Actu-
ally, all mobile agent systems have implemented their own migration technique and
differences can be found in all phases of our generic framework for agent migration.
We already mentioned some of them in the last chapter, as for example other mi-
gration initiation commands than go, different understandings of the elements of an
agent’s state, other techniques to relocate classes, and different migration protocols.

The goal of this section is to gather information about other migration techniques
in order to

1. discuss the design issues and design alternatives for agent migration, show pros
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Receive the agent

Deserialize the agent

Start agent execution

Transfer the agent

Capture data and state

Initialize migration process

Network
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User’s view

Agent’s view

Network’s view

Figure 5.1.: The migration process and the three levels of our mobility model.

and cons, and discover dependences between different design issues,

2. develop a language to describe the migration technique of an existing mobile
agent system.

The first point is important for a designer of a new mobile agent system, because
he has to decide which migration technique the new system should provide. Using
the results of the discussion in this chapter, he will be able to approximate the effort
for each design alternative and then weigh between them. The second aspect is to
describe the migration technique of an existing mobile agent system in a unified way,
which makes it easy to compare different approaches.

To structure our discussion we introduce the term mobility model. The mobility
model of a mobile agent system describes almost all important features concerning
agent migration. A mobility model defines three views on migration issues and each
view corresponds to two phases of our six-phase generic framework presented in the
last chapter, see Figure 5.1.

1. User’s view: How to initiate agent migration?

2. Agent’s view: How is data and code relocated in the network?

3. Network’s view: How is data and code transferred over the network?

The first view focuses on all issues that are related to the user interface of agent
migration (phases S1 and R3). Design issues are here for example the migration
command, the technique to resume agent execution, and how the receiver agency can
be addressed. The second view focuses on the technique for data and code relocation
(phases S2 and R2). Here, we introduce the term migration strategy, which describes
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which pieces of code migrate to which other agency and how data is handled in each
case. The last view focuses on the technique to transmit data over the network
(phases S3 and R1). We already introduced the term migration protocol which is an
important part of this view.

To describe a mobility model, we propose a language, named Mobility Language
(MoL), for which we will give a definition using Extended Backus-Naur Form (EBNF).
A description of a mobility model consists of several lines, where each line comprises
of a key-value pair. The key is the name of a design issue and the value is either a sin-
gle design alternative or a collection of design alternatives, separated by a semi-colon,
that were chosen for the mobile agent system to be described.

For example, the following excerpt of a description in MoL defines that an Agency-
Name consists of a SymbolicName together with a HostName. The second line defines
that this agency can be addressed using either a Protocol and the SymbolicName, or
a Protocol, the SymoblicName, and a PortNumber.

1 AgencyName = SymbolicName + HostName .
2 AgencyAddress = Protocol + SymbolicName ;
3 Protocol + SymbolicName + PortNumber .

To describe the grammar of MoL, we use EBNF. We will write <MobilityModel> to
denote a design issue (non terminal symbol) and “weak-migration” for a design alter-
native (terminal symbol). We use the following meta symbols: A sequence of symbols
is separated by +, alternatives are printed using brackets [ . . . | . . . ], repetitions with
at least one element are printed using braces { . . . }, and finally an optional symbol
is marked with parenthesis ( . . . ). So, to start our definition of MoL, we define that
a mobility model consists of three views, where each view must be defined.

1. <MobilityModel> ::= <User> + <Agent> + <Network>

In the following three sections, we will discuss each view of a mobility model in detail.

5.1.1. Programmers’ View

The first view is considered with all aspects of migration that are related to the agent
programmer.

2. <User> ::= <Naming> + <Creating> + <Code> + <Data> + <Migration>

Naming And Addressing

The first design issue <Naming> considers the aspects of the agency name and the
types of addresses that can be used for agent migration.
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3. <Naming> ::= <AgencyName> + <AgencyAddress>

The aspect of agent naming is not considered in our description, because it is part
of the design issues for the whole mobile agent system. Each agent has a name to be
identified during its life-time. The name is used for example by other agents to set
up a communication channel and is used by the agency itself to control the agent. In
some mobile agent systems, the name is also used for agent tracking and for remote
communication between agents currently residing at different agencies. Therefore,
the agent name must be unique and immutable for the agent’s whole lifetime. The
structure or scheme for an agent name can be very different. Besides a symbolic name,
e.g. Blofeld, it usually contains also the name of the home agency and the name of the
underlying host system to make the name globally unique. The symbolic name can be
explicitly given by the agent’s owner in form of an easy to read name, or implicitly
computed by the agency, e.g. as a digest of the agent’s code together with some
random to make the name unique. In the latter case, an human-readable alias name
might be provided by the agent’s owner. Concerning migration it is not important
how an agent’s name is structured or obtained as long, as it is guaranteed that each
name is globally unique. For successful migration the agent name is very important,
as the constraint that no two agents with the same name must exist can be best
validated during the migration process. Therefore, the agent’s name is an element
of the migration protocol and the receiver agency checks whether there is an agent
with the given name already registered with the agency.

More important with regard to agent migration is the structure of the agency’s
name. Each agency must have a name to be identified whenever the agency itself
or any resources of it must be addressed. If the mobile agent system only allows
a single agency on each host, then it is sufficient to have the “Hostname” as the
agency name, e.g. tatjana.cs.uni-jena.de. For some application areas it might be
more convenient to have more than a single agency on each host, so that each agency
must have a “SymbolicName”, e.g. fortknox. If an agency is further structured into
several smaller units, sometimes called places, then also each place must have a name,
which becomes part of the symbolic name, e.g. whyte/penthouse. The symbolic name
without the host name is sufficient for agency addressing, if there exists an technique
for name resolving comparable to domain name resolving of Internet names. If such
a technique is not available, then the agency name must consist of the symbolic name
and the host name.

4. <AgencyName> ::= “AgencyName” + “=” + <AddressNameScheme> + “.”

5. <AddressNameScheme> ::= [“SymbolicName” | “HostName” | “SymbolicName”
+ “+” + “HostName”]

For migration it is necessary to address a single agency. Addressing requires more
information than naming, because a network connection usually requires the name
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of a network protocol and a port number to which communication is directed to. To
require a protocol makes of course only sense, if the mobile agent system provides
more than a single transmission protocol. If a port number is required too, then
the mobile agent system should commit that this port number is never changed and
that all agencies use the same port number, as a change forces changes at all agent’s
source codes (assumed that addresses are hard-coded in the agent’s sources and
not given by the user). As this usually cannot be guaranteed, for example because
another software system already uses this port number, it is wise to allow a dynamic
resolution of port numbers according to the required protocol. For example in Tracy
there is a port resolution service from which information about used port numbers
and network protocols can be obtained, so that the user never has to deal with port
numbers. Thus, in addition to the source code presented on p. 55, we could also write
go(“tracy://tatjana.cs.uni-jena.de”).

In Grasshopper the region registry is responsible to resolve port numbers. In a
system where such service is not available, protocol and port number is mandatory
if the agency offers several transmission protocols in parallel. A mobile agent system
might allow more than a single addressing scheme.

6. <AgencyAddress> ::= “AgencyAddress” + “=” + <AddressSchemes> + “.”

7. <AddressSchemes> ::= <AddressScheme> + ({“;” + <AddressScheme>})

8. <AddressScheme> ::= (“Protocol” + “+”) + <AddressNameScheme> + ( “+” +
“PortNumber”)

Creating Agents

When an agent is created, it must be decided where the agent is started first. In the
usual case, the agent is started at the current agency, i.e. the one on which the agent’s
owner placed the creation command. In this case, the current agency becomes the
agent’s home agency. Sometimes it might be useful to start the agent immediately
at a remote agency, e.g. if the current host does not have enough resource to execute
a full equipped agency software, but only some kind of loader. To allow this feature,
other agencies must support remote starting by offering a communication interface
for this.

9. <Creating> ::= “CreateAt” +
“=” + “CurrentAgency” + (“;” + “RemoteAgency”) + “.”

Agent Code

The next important issue that must be decided is the place from which code can be
loaded. We call such a place a code source. The code source is used to load classes
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when the agent is created at its home agency as well as whenever classes are not
available at any remote agency and must be loaded dynamically on demand.

The most natural way is to add the directory, where agent class files can be found,
to the CLASSPATH variable, so that the Java virtual machine can find it. This
solution is not comfortable, because it makes it necessary that CLASSPATH already
contains all directories for all agents that might ever be started at this agency before
starting the whole agency software. The reason for this derives from a limitation
of the Java virtual machine, which does not allow modifications of CLASSPATH
during runtime. The consequence is that the whole agency must be shut down

in order to make changes of the CLASSPATH variable visible. More flexible is to
allow agent class files to be stored anywhere in the file system and to give their
location as parameter during agent creation. In both cases it is not easy for remote
agencies to load classes, because direct access to the file system of a remote agency
is usually prohibited, as long as class loading is not part of the migration protocol.
The most flexible way is to store class files somewhere in the file system, where they
are reachable using standard network transmission protocols, e.g. HTTP or FTP.

Next, the file format for the agent’s code must be chosen. The easiest way is of
course to store each class file separately as this is the output of the Java compiler.
Java also allows to bundle many class file into a single Java archive (JAR) file, which
might be compressed and digitally signed.

10. <Code> ::= “Code” + “=” + <CodeSources> + “.”

11. <CodeSources> ::= <CodeSource> + ({ “;” + <CodeSource>})

12. <CodeSource> ::= [“ClassPath” | “FileSystem” | “HTTP” | “FTP” | “Migra-
tionProtcol”] + “+” + [“Class” | “Jar”]

Agent Data

Next, it must be decided, what types of data the mobile agent can access and use.
Each type of data has its own behavior during agent migration. We distinguish four
types of data that are useful for mobile agents:

Proxy non-mobile, remote access possible. Data items of this type only exist at
the agent’s home agency and are not movable to other agencies. However,
mobile agents can access these data items transparently from any other remote
agency and any modifications are transmitted to the agent’s home agency. We
name this data type proxy as on each agency there exists a proxy object1 that
is part of the serialized agent and that is responsible to transparently forward
modifications to the home agency. Access to files or the graphical user interface
might benefit from using this type of data.

1Compare the proxy design pattern described in Gamma et al. [1994].
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Static non-mobile, remote access not possible. Data items of this type only exist
at a single agency and cannot be taken along during migration as they are
physically bound to it. This data type is common for files or the graphical user
interface, whenever they are not of type proxy. In Java, these data items can
be marked as transient, so that they are not part of the serialized agent.

Moving mobile, source removed. This data type is used for all local or member
variables of the agent that are not shared with other agents or the agency.
Data items of this type are part of the serialized agent. After migration, data
items of this type do not exist at the sender agency any more.

Copying mobile, source not removed. This data type is used for all variables for
which the agent has a reference and that are shared with other agents or the
agency itself. A copy of the data item is part of the serialized agent, so that
at the remote agency the agent has still access to it but modifications are not
visible at the original data item at the last agency.

13. <Data> ::= “DataTypes” + “=” + <DataTypes> + “.”

14. <DataTypes> ::= <DataType> + ({ “;” + <DataType>})

15. <DataType> ::= [ “Proxy” | “Static” | “Moving” | “Copying” ]

Migration

We subdivide design issues concerning migration into the following items:

16. <Migration> ::= <Initiator> + <Mobility> + <DestinationAddress> + <Effect>

+ <Error>

The first design issue that must be discussed is the initiator of an agent migration.
Migration can be initiated by the agent itself, or by some other instance, e.g. another
agent or the agency. Usually, it contradicts the autonomy of software agents that an
external instance can decide to migrate an agent. Nevertheless, in some situations it
does make sense to allow this, e.g. for load-balancing or in the case of severe errors,
which makes it necessary to shut down a complete agency. In this case the agent
should be forced to migrate to another system to prevent severe damage for the agent.
The other scenario, where migration is initiated from outside the agent is when an
agent is forced to migrate back to its home agency. If migration is initiated from
outside the agent, is might be useful to allow the agent to vote against the migration.

17. <Initiator> ::= “MigrationInitiator” + “=” + “Agent” + <OtherInitiator> + “.”
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18. <OtherInitiator> ::= (“;” + “OtherAgent” + (“withVeto”)) + (“;” + “Agency”
+ (“withVeto”)) + (“;” + “Owner” + (“withVeto”))

The next issue is the type of mobility. Existing mobile agent systems can be
distinguished by the type of mobility they offer to the programmer and, actually,
this is the most discussed design issue concerning agent migration in the literature.
Each type of mobility can be characterized by the interpretation of the term state.
The type of mobility can be weak or strong, and in both cases further issues must be
decided.

19. <Mobility> ::= “Mobility” + “=” + [ “Weak” + “.” + <Weak> | “Strong” + “.”
+ <Strong>]

The weakest form of mobility only transmits the instance variables (object state)
and the code of the mobile agent to the destination platform. The mobile agent is
initialized and started by invoking a designated method. This kind of mobility is used
for example in Aglets, Grasshopper, Mole [Straßer et al., 1997], and Discovery [Lazar
and Sidhu, 1998]. We call this type of mobility weak mobility with fixed method
method invocation.

In a stronger form of mobility the mobile agent system allows the programmer to
define the name of a starting method within the go-command. On the destination
site the agent is initialized and started by invoking the given method. This kind
of mobility is used e.g. in Voyager [ObjectSpace, 1997]. The drawback of these two
forms of mobility is that the programmer has additional effort to implement state
marshaling and unmarshaling of local variables. Consider the following example:

1 public class AMobileAgent extends MobileAgent
2 {
3 private int copyOfLocal = 0;
4

5 protected void anyMethod()
6 {
7 int local = 10;
8

9 // some code
10

11 // before we can migrate, we have to save variable local
12 copyOfLocal = local;
13

14 go( ‘‘tracy://tatjana.cs.uni-jena.de’’, ‘‘runAtRemote’’ );
15 }
16 }

68

http://aglets.sourceforge.com
http://www.grasshopper.de
http://mole.informatik.uni-jena.de


5.1. Mobility Models

This example shows how to save the value of local variables in object variables, so that
it is part of the serialized agent. Method runAtRemote can use variable copyOfLocal
again.

In both mobility levels, the migration command can only be the last instruction
within a method, as changing the platform induces invoking a new method. The
difference between these two types of mobility is not really evident, as it is very
easy to map the latter type of mobility to weak mobility, for example in the Java
programming language. We show an example of an agent that simulates the latter
form of mobility, although the mobile agent system only provides weak mobility.

1 public abstract class GoWithMethodName extends MobileAgent
2 {
3 private String nextMethod = null;
4

5 protected void go( URL destination, String methodName ) throws Exception
6 {
7 nextMethod = methodName;
8 go( destination );
9 }

10

11 public void run()
12 {
13 Method method = this.getClass().getMethod( nextMethod, new Class[] {} );
14 method.invoke( this, new Object[] {} );
15 }
16 }

The go-command stores the name of the method to invoke at the remote agency in
a variable that is part of the serialized agent. At the remote agency, the designated
method run is started as usual for weak mobility. This method uses the Java reflection
mechanism to call the given method itself. We call this type of mobility weak mobility
with arbitrary method invocation.

20. <Weak> ::= “WeakMobility” + “=” [“FixedMethod” | “ArbitraryMethod”] +
“+” + [“Command” | “Ticket”] + “.”

When only a weak form of mobility is offered, the command to initiate the migra-
tion can be a specific command or predefined method of the agent, or a ticket. The
first way is to use a migration command, e.g. go or move, where parameters define,
to which agency the agent should migrate to. The other way is to store necessary
information about the destination is a data structure that is called a ticket. When
agent execution terminates, the agency reads the ticket and migrates the agent. Us-
ing a migration command has the consequence that agent execution is terminated
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at exactly the point where the migration command occurs. All statements following
the migration command are never executed, except an migration error occurs, which
we will discuss later. Using a ticket does not give direct control of migration to the
programmer. A ticket can be redefined several times which makes it not obvious to
the programmer what the agent really will do when execution terminates.

Mobile agent systems that offer the highest level of agent mobility can not only
marshal all instance variables, but also all local variables of the current method,
together with the program counter and the call stack of the Java virtual machine. On
the destination platform the agent is initialized and started at the first instruction
after the go-command. We call this type of mobility strong. First mobile agent
systems, like Telescript [White, 1996] or AgentTCL [Gray, 1996] offered this kind of
mobility, because it is the most natural one for the programmer. It is comparatively
easy to add all features to support strong mobility to a mobile agent system, if
full access to the underlying programming language, the compiler, and the runtime-
system is available. A new command go can be supplemented that initiates the
complete marshaling process, or open access to call stack and program counter can
be conceded to the programmer of the mobile agent system.

To implement strong mobility in mobile agent systems written in the Java program-
ming language, the source code of the Java virtual machine (JVM) must be modified,
or the agent’s source code has to be transformed to simulate this. Modifying the
JVM is difficult to carry out, although it is said to be done in Ara [Peine and Stolp-
mann, 1997] and Sumatra [Acharya et al., 1997], compare also the Merpati project at
University of Zurich, Swiss [Suri et al., 2000]. A modification of the JVM has also to
be considered strategically imprudent. A customer can only use the resulting mobile
agent system, if he uses the modified JVM, not to mention problems of licensing the
JVM source code.

The other way to offer strong mobility to the programmer is agent source code trans-
formation. Fünfrocken [1999] transforms the agent’s source code by a pre-processor
that inserts code to save and recover the execution state. Another comparable at-
tempt is made by Sekiguchi et al. [1999]. The drawback of both methods is a longer
source code and a not neglectable performance decrease. Other techniques to achieve
strong mobility were developed by Illmann et al. [2001], Bettini and Nicola [2001],
and Wang et al. [2001].

Strong mobility, in the way we described it above, does only mean that the agent
can interrupt itself to start the migration. The reverse case, that the agency can in-
terrupt an agent, e.g. to perform load-balancing or to start an emergency migration
to a neighbor-platform because of a system failure, is not possible with any of these
migration concepts. As it is at the time of writing impossible to achieve this trans-
parent type of mobility, we omit to add a design alternative for this case. Compare
Walsh et al. [2000] who describe how to achieve this type of mobility in principle in
Java.
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21. <Strong> ::= “StrongMobility” + “=” + [“SourceCodeTransformation” | “JVM-
Modification”] + “.”

Whether weak or strong mobility should be implemented in mobile agent systems,
was a major issue controversy discussed in the literature in the last years. Baumann
[1995] states that strong mobility is in most case useless, because “. . . a migration
step is a major break in the life of an agent”. Usually, a mobile agent works in phases,
where each phase is completely executed at a single agency. It is at the transition
between phases, where a migration takes places and not within a single phase. Cabri
et al. [2000] argue along the same line while stressing that weak mobility leads to a
“clean programming style, . . . , resulting in a more clear and understandable program”.
Advocates of strong mobility argue with the more natural programming style and
with advantages in agent engineering that are possible with this type of mobility, see
for example Belle and D’Hondt [2000]. Walsh et al. [2000] argue that the advantage
of strong mobility is “that long-running or long-lived threads can suddenly move or
be moved from one host to another”, which immediately leads to the question of
agent autonomy.

Next, the target of a migration must be discussed. Each migration is directed to
some target, whose address must be defined using a migration command or a ticket.
Usually, migration is directed to a remote agency whose name is known. Migration
can also be directed to another agent or a resource that the agent wants to use. Then,
it must be discussed, whether only the next destination is specified or a complete
itinerary or route can be defined. In some application scenarios it might be very
useful to have a mechanism to define a route, because the agent has to repeat a
single task on several agencies, e.g. to collect data. The route can be defined by the
programmer of the agent and can be fixed, i.e. not modifiable by the agent during
runtime, or fully flexible, so that the agent can define the route by itself.

22. <DestinationAddress> ::= “DestinationAddress” + “=” + <DestinationType> +
({ “;” + <DestinationType>}) + “.”

23. <DestinationType> ::= <Resource> + “+” + <Cardinality>

24. <Resource> ::= [“Agency” | “Agent”]

25. <Cardinality> ::= [“Single” | “Fixed Route” | “Definable Route”]

The next issue is the effect of an agent migration. Usually, a migration has the
effect that the agent is moved completely to the remote agency and there still exists
only a single instance of this agent. An alternative is to make a fresh copy of the
agent, which is sent to another agency and started as if it has not existed before.
The other case is to clone the agent. In this case a copy is sent to a remote agency,
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but this copy already has the same data as the original agent. The latter technique
is for example used in AgentTCL and is called forking there.

26. <MigrationEffect> ::= “MigrationEffect” + “=” + <Effects> + “.”

27. <Effects> ::= <Effect> + ({ “;” + <Effect>})

28. <Effect> ::= [“Move” | “Copy” | “Cloning”]

The final design issue is related to an agency’s behavior in case of a migration
error. The technique to use here depends on the type of mobility chosen. The first
technique is to restart the agent and a local variable indicates that an error has
occurred. If a weak form of mobility was chosen, then this kind of error notification
is used. If the system allows to invoke an arbitrary method after successful migration,
then invoking an error method is a good alternative. The reason of the migration
failure can be given as parameter for example. If a system provides strong mobility,
then throwing an exception is the best technique. Grasshopper offers this technique
too, although it only offers a weak form of mobility.

29. <Error> ::= “MigrationError” + “=” + [“Restart” | “ErrorMethod” | “Excep-
tion”] + “.”

5.1.2. Agent’s View

In this section we will have a look at the way code can be relocated within the
network. Data transmission is not an issue here, because the types of data supported
by the mobile agent system were already defined in the last section and all systems
solely offer a technique were the serialized agent is sent as a single unit from the
current agency to the next remote agency.

Migration Strategies

The type of code relocation that is used for agent migration is named migration
strategy. In the following, we will describe four common migration strategies with
regard to transmission type, site location and code granularity, compare Figure 5.2.

Some systems offer a migration strategy that we call push-all-to-next strategy . The
code of the agent (together with the code of all referenced objects) and the serialized
agent, are transmitted at once. Some systems do not transmit the whole code but fil-
ter out those pieces of code available on each platform already, e.g. ubiquitous classes,
like the standard classes of Java and code of the mobile agent system. This migration
strategy is used for example in Voyager 2.0 [ObjectSpace, 1998], Ara [Peine, 1997],
and Extended Facile [Knabe, 1997a]. It corresponds to one of the main characteris-
tics of mobile agents, that is autonomy. The agent needs no connection to the home
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Figure 5.2.: Overview of migration strategies.

agency, from which it was started. At a first look we could consider this strategy to
be fast, because only one transmission is necessary for the complete agent. However,
a major drawback is that code is transmitted to the destination site that is probably
never used.

The second approach does not transmit any code along with the data transmission.
We call this the pull strategy.After receiving and unmarshaling the agent’s data, the
mobile agent server on the destination site tries to invoke the given method and
then starts loading the corresponding class files dynamically. The pull strategy can
be further divided in pull-per-unit and pull-all-units. The first strategy dynamically
loads code on a per-class policy, whereas the second strategy loads all class files as
one package immediately if one class file must be loaded. The pull strategy is used
for example in Mole [Straßer et al., 1997] and in Grasshopper. This strategy can
be slower than the push-all-to-next one, because several network connections may
be necessary to load all required class files. When delegating this task to the Java
virtual machine, one network connection per class is needed (pull-per-unit), unless
several classes have been combined into one Java archive (pull-all-units). The major
drawback of both pull-oriented migration strategies is that there must be an open
network connection, or at least a fast way to reconnect, either to the home platform
or to the last platform the agent came from. If it is impossible to connect to any of
these platforms, the agent cannot be executed.

The fourth migration strategy is push-all-to-all strategy. As in the push-all-to-
next strategy the complete code of an agent is transmitted, but not only to the next
destination, but to all destination platforms the agent is going to visit. Of course,
this requires that the agent knows all its destinations in advance, e.g. by a given
itinerary. When an agent arrives on a destination platform, the execution can start
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immediately without any further code downloading.
Besides these four different strategies, combinations of push and pull techniques

are used in some systems. As we will describe in detail later, for example Aglets
offers a technique where classes with a high probability to be used at the next agency
are pushed and missing classes are pulled from a code server on demand later. The
MASIF standardization approach suggests to push only the agent’s main class and
let all other classes be loaded on demand. However, the decision which classes are
pushed and which are pulled is done by the system. In contrast, for example in
Sumatra [Acharya et al., 1997], the programmer can combine push and pull strategies
manually.

Almost all mobile agent systems offer only one of these strategies and an interesting
question is, whether it makes sense to adapt the migration strategy according to an
application scenario. We already mentioned some qualitative arguments in favor of
each migration strategy, but we did not provide exact quantitative arguments. For
the moment, we will only mention that our own research [Braun et al., 2000b, 2001b]
has come to the result that there are non-neglectable performance differences between
all strategies – we come back to this question in the next chapter of this thesis.

Code Transfer

Concerning code relocation we will now discuss the following issues:

30. <Agent> ::= <CodeTransfer> + (<CodeCache>) + (<UbiquitousClasses>)

As described in the last section, code relocation strategies can be distinguished
in push and pull strategies. Some systems offer both approaches, which has the
consequence that some (not all) classes are pushed to the next destination and other
classes are pulled on demand.

31. <CodeTransfer> ::= “CodeRelocation” + “=” + <CodeStrategies> + “.”

32. <CodeStrategies> ::= <CodeStrategy> + ({ “;” + <CodeStrategy>})

33. <CodeStrategy> ::= [<Push> | <Pull>]

When the system offers a push strategy it must be decided, which classes must
be sent to the agency. We call this issue <ClassClosure>. The first technique is to
determine all classes the agent might ever use during its life-time from the agent’s
main class file. How to determine an agent class closure in Java was already described
in the last chapter. The next technique only collects those classes for which an
object exists in the serialized agent (“SerializedAgentClosure”). As these classes are
necessary to deserialize the agent successfully at the remote agency, it is a good
compromise between sending all classes at once and no classes at all. However, the
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fact that some classes are in use does not say anything about the probability for
other classes to become in use just at the next agency. Some systems allow the user
to bundle classes in a Java archive (JAR) file and whenever a class from a JAR file
must be transmitted, the whole JAR file will be transmitted (“JarClosure”). The last
technique allows the user to make the decision which classes to transmit dynamically
during runtime.

The next design issue that must be decided, is whether code can be pushed only to
the next agency or to all agencies that were defined in a route or that are available
within the logical network.

34. <Push> ::= “Push” + <ClassClosure> + “To” + <PushTarget>

35. <ClassClosure> ::= [“AgentClassClosure” | “SerializedAgentClosure” | “JarClo-
sure” | “UserDefinedClosure”]

36. <PushTarget> ::= [“NextServer” | “ManyServers”]

When a system offers a pull technique it first must be decided what transmission
unit is used. Usually, only single class files will be transmitted. Although not im-
plemented in any mobile agent system, also downloading of a complete JAR file is
possible. The next issue is the place where the remote agency looks for the class to
be loaded. Here, a mobile agent system must define a strategy, which instances are
to be asked for the code and in which order. Possible components are for example
the class loader which is responsible to load all agent’s classes. A class loader should
have a local cache of all classes already loaded. Next, the local CLASSPATH variable
could be checked for a class with the given name. Then, an agency wide class cache,
which is shared by all class loaders can be asked, and at last, several other agencies,
for example the last agency visited or the agent’s home agency can be asked.

37. <Pull> ::= “Pull” + [ “Jar” | “Class” ] + “From” + <PullTargets>

38. <PullTargets> ::= <PullTarget> + ({ “+” + <PullTarget>})

39. <PullTarget> ::= [ <AgencyType> | “ClassLoader” | “ClassPath” | “Cache” |
“CodeSource”]

40. <AgencyType> ::= [“Home” | “Remote” | “LastServer”]

An important design issue is to decide which classes are never transmitted, even
if they are member of a class closure, because they are assumed to exist at every
agency already. Those classes were named ubiquitous in the last chapter. A mobile
agent system might define that this is defined by the system, e.g. all class from Java
packages (which have specific prefixes) and all classes of the mobile agent system are
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never transmitted. Sometimes it might be useful to allow the user to add package
prefixes or class names to this list (“UserDefined”), because mobile agents are part
of some application which can also be assumed to exist on every remote agency. The
most flexible way is to allow the agent to define its own filter list.

41. <UbiquitousClasses> ::= “UbiquitousClasses” + “=” + [“SystemDefined” |
“UserDefined” | “AgentDefined”] + “.”

Last, it is important to decide, whether class code is cached by the agency after
it was loaded for the first time. Although caching is a good technique to save time
when loading the same classes very often, it has the negative effect that class code
changes might not become visible to the agency as the cache is not informed about
changes. Caching can be found most often when an agent’s code is reachable using
the CLASSPATH variable, because all classes of the CLASSPATH are loaded by
the system class loader of the Java virtual machine. For other classes it must be
decided whether the agent class loader or a component of the agency manages the
class cache. In the first case, agents of the same type are not able to share code,
which has the consequence that the same class might be loaded more than once.
In the latter case, agents might share classes which might lead to problems with
different class versions. In this case it must also decided whether any kind of version
management is implemented. Another design issue concerning code caches is whether
the class is only asked before loading classes or also before class transmission. The
first approach can only prevent class downloading, whereas the second approach could
also prevent classes to be pushed to the agency. This technique must be supported by
the migration protocol, because class names must be sent before pushing any agent
code. The remote agency could check for which classes the code is already available.

42. <CodeCache> ::= “CodeCache” + “=” <Instance> + “+” + [“BeforeTransfer” |
“BeforeLoad”] + “.”

43. <Instance> ::= [ “ClassLoader” | “Agency” ] + “+” + (“VersionManagement”)

5.1.3. Network’s View

The last view considers all aspects that are related to data transmission. The trans-
mission strategy defines the way an agent is actually transmitted to the destination
platform. Some Java based mobile agent systems, e.g. Mole, use a proprietary and
very simple migration protocol that is based on remote method invocation (RMI) [Sun,
2002] for this task. The destination agent server a RMI server that provides a method
to accept a mobile agent. The penalty of using RMI is its poor performance. Most
systems use migration protocols on top of TCP/IP or HTTP.

Concerning the migration protocol, it must be decided whether an asynchronous or
synchronous protocol is used. The advantage of the first one is performance, whereas
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it can also be more unreliable, as the remote agency does not acknowledge reception.
The second issue to decide is whether migration is failure atomic, i.e., whether the
migration protocol guarantees that the mobile agent is transmitted completely or
not at all. The next issue is the network protocol. Here, several protocols are listed,
the most common are perhaps TCP/IP and RMI. Grasshopper defines some kind of
meta-protocol, which can be used to determine which protocols the receiver agency
supports before sending the agent.

44. <Network> ::= <MigrationProtocol> + <TransmissionProtocols>

45. <MigrationProtocol> ::= “MigrationProtocol” + “=” + [“Synchronous” |
“Asynchronous”] + (“FailureAtomic”) + “.”

46. <TransmissionProtocols> ::= “TransmissionProtocol” +
“=” <NetworkProtocols> + “.”

47. <NetworkProtocols> ::= <NetworkProtocol> + ({ “;” + <NetworkProtocol>})

48. <NetworkProtocol> ::= [“TCP/IP” | “CORBA” | “SSL” | “RMI” | “RMISSL” |
“SOAP” | “META” | “HTTP” | “Other” ]

5.2. Examples for Mobility Models

In the following section we will describe the mobility model of the mobile agent
systems Aglets and Grasshopper. We chose these two systems, because they are con-
sidered as the most famous system and used for real-world application development.
We will not describe the Tracy mobility model here, as a detailed introduction into
the migration technique of Tracy will be part of the next chapter.

5.2.1. Aglets

Aglets is a mobile agent system that was developed by IBM since 1995. The first
announcement was given at the JavaOne conference in 1996 and the first version of
Aglets was published in 1998. Since the year 2000, Aglets is an open source project
at Sourceforge and no longer supported by IBM. The Aglets system supports the
MASIF standard.

Aglets provides a weak form of mobility, where a method named run is called
whenever an agent is started or restarted at an agency. The migration initiation
command is named dispatch and gets as single parameter the URL of the destination
agency. To address agencies, a protocol and a host name are mandatory, a symbolic
agency name can be added, if more than a single agency exists at the destination.
The port number is predefined and cannot be changed. Route management is not
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supported by the dispatch method but can be implemented by the user with a specific
design pattern.

When an agent is created only a single code source can be defined, but the type of
code source is very flexible. It usually contains a URL to a resource that can be ac-
cessed using the HTTP protocol or the Aglets migration protocol ATP. Classes must
be stored in a directory that is listed in the AGLET EXPORT PATH environment
variable to be fetched from any agency using the ATP protocol. If the code source
contains a file system path, classes cannot be downloaded from remote agencies. If no
code source was defined at all, then the agent’s code is loaded using the environment
variable AGLET PATH, which contains a list of directories of the local file system.
These classes cannot be transferred to other agencies.

The migration strategy of Aglets is not just a simple push or pull strategy but
a sophisticated combination of both. When an agent should migrate all classes for
which an object exists in the serialized agent (Aglets calls these classes in use) are
pushed to the next agency. If the code source is a JAR file, then the whole JAR
file is pushed to the next agency, without regard whether a class is in use or not.
At the destination agency, missing classes are loaded on demand (pull). To load a
class, the following strategy is used. First it is checked whether the current class
loader has already loaded this class before, next the class is searched in the local
CLASSPATH. This has the effect that a local class might be loaded although the
agent has pushed its own class file. Third, the local cache manager is checked, which
is in the current version of Aglets only able to cache JAR files correctly. At last, the
agent’s code source is checked for the code. Code downloading always happens on
the base of single class files and never on the base of complete JAR files. Classes that
are not supposed to migrate must be defined using the two environment variables
CLASSPATH or AGLETS PATH.

The user can influence the migration strategy used for the next migration only
by modifying the object state of the agent. To prevent a class to be transferred to
the next agency, no object of this class must exist in the serialized agent. The most
flexible way to achieve this is to set all variables of this class to null. Then, the
Java serialization process will not consider this class. The other way is to define a
variable as transient, which has the same effect. The reverse case, to transmit a
class although no object of this type currently exists, can be achieved as easy. It
is only necessary to add a variable of type Class which must be initialized with the
name of the class to transmit, for example Class forceTransmission = MyClass.class.

Other important issues of the Aglets mobility model are for example, that an
agent’s owner is able to retract an agent from any agency, if he knows the current
location of it. Aglets uses the standard Java serialization technique, so that data
types static, copy, and move are supported. The class cache is only asked before
class downloading and the migration protocol is defined on top of TCP/IP and can
be also be tunneled within a HTTP protocol to get through firewalls.
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Here is the complete description of the Aglets’s mobility model:

1 // Programmer’s view
2 //
3 AgencyName = SymbolicName + HostName .
4 AgencyAddress = Protocol + HostName ; Protocol + HostName + SymbolicName .
5 CreateAt = CurrentAgency .
6 Code = ClassPath + Class ; ClassPath + Jar ; FileSystem + Class ;
7 FileSystem + Jar ; HTTP + Class ; HTTP + Jar ;
8 MigrationProtocol + Class; MigrationProtocol + Jar .
9 DataTypes = Static ; Copy ; Move .

10 MigrationInitiator = Agent ; OtherAgent ; Owner .
11 Mobility = Weak .
12 WeakMobility = FixedMethod + Command .
13 // Agent’s view
14 //
15 DestinationAddress = Agency + Single .
16 MigrationEffect = Move .
17 MigrationError = Restart .
18 CodeRelocation = Push SerializedAgentClosure To NextServer ;
19 Push JarClosure To NextServer with base Jar ;
20 Pull Class From ClassLoader + ClassPath + Cache + CodeSource .
21 UbiquitousClasses = SystemDefined .
22 CodeCache = ClassLoader + BeforeLoad .
23 // Network’s view
24 //
25 MigrationProtocol = Synchronous .
26 TransmissionProtocol = TCP/IP ; HTTP .

5.2.2. Grasshopper

The Grasshopper mobile agent system is developed by IKV++, Berlin, Germany.
The first version was developed at GMD FOKUS in 1995. Since 1998 the product
is maintained by IKV, which is a GMD spin-off company. Currently, Grasshopper is
passed over to a be part of a new product called enago. Grasshopper supports both
MASIF and FIPA standards.

Grasshopper provides a weak form of mobility, where a method named live is
invoked to start the agent. The migration initiation command is move which gets as
parameter the URL of the next destination. Interesting is Grasshopper’s technique
for catching migration errors as in this case an exception is thrown. Grasshopper
does not provide techniques for route management.

When an agent is created, several code sources can be defined from which code
can be loaded on demand. A user definable code source can be either on the local
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file system, or can be accessed via the HTTP protocol. In both cases it seems not to
be possible to define a JAR file as code source. When an agent migrates, no classes
are transmitted along object state migration, so that Grasshopper does not support
any kind of push strategy. When the agent is deserialized, classes must be pulled
according to the following strategy. First, the agency’s CLASSPATH is checked by
the system class loader. If code is reachable using this class loader, no two different
classes with the same name can exist. Next, the last agency from which the agent has
come from is asked for the class. If it is still not found, all agent’s code sources are
checked sequentially, and at last the agent’s home agency is asked for the code. In all
these cases, class files are only cached by the agent’s class loader so that transmission
of the same class for different agents is not avoided. As Grasshopper only provides
a single pull migration strategy, there is no chance for the user to adapt migration
behavior of its agent. It is even impossible to modify the class downloading strategy,
for example to bypass the last agency to be asked for the code.

Other important issues of the Grasshopper mobility model are that an agent can be
forced to migrate by other system components, but the agent is able to vote against
a migration. Very interesting are Grasshopper’s transmission strategies. Grasshop-
per not only supports several network protocols, but also has a meta protocol by
which two agencies can communicate which network protocols are supported by both
systems. A service called region registry is responsible to maintain a directory of all
agencies active within the local subnetwork. Using this region registry makes it for
example possible to omit port numbers in agency address.

1 // Programmer’s view
2 //
3 AgencyName = HostName + SymbolicName .
4 AgencyAddress = HostName + SymbolicName ; Protocol + HostName +

SymbolicName ;
5 Protocol + HostName + SymbolicName + PortNumber .
6 CreateAt = CurrentAgency .
7 Code = ClassPath + Class ; HTTP + Class ; .
8 DataTypes = Static ; Copy ; Move .
9 MigrationInitiator = Agent ; System WithVeto .

10 Mobility = Weak .
11 WeakMobility = FixedMethod + Command .
12 // Agent’s view
13 //
14 DestinationAddress = Agency + Single .
15 MigrationEffect = Move .
16 MigrationError = Exception .
17 CodeRelocation = Pull Class From ClassLoader + ClassPath + LastServer +
18 CodeSource + Home.
19 UbiquitousClasses = SystemDefined .
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20 CodeCache = ClassLoader + BeforeLoad .
21 // Network’s view
22 //
23 MigrationProtocol = Synchronous .
24 TransmissionProtocol = TCP/IP ; CORBA ; SSL ; RMISSL ; META .

5.3. Related Work – Other Classification Approaches

In this chapter we proposed a classification scheme for the migration issues of mobile
agents. Although almost each mobile agent system has implemented a different
migration technique, as far as we know, no sophisticated approach was developed
to classify these different techniques so far. Some authors describe design issues of
mobile agent systems in general, e.g. related to agent communication, agent naming,
security, etc. Concerning agent mobility these approaches keep superficial and in
most case do only mention the difference between weak and strong mobility.

For example, Hammer and Aerts [1998] collect several design issues concerning
mobile agent systems, but only three issues concerning migration were detected. First,
according to Hammer and Aerts, it must be decided, whether migration is state
preserving or not. The next issue is whether migration is failure atomic or not,
and the last issue is whether the agent can define an itinerary or not. Karnik and
Tripathi [1998] only distinguish between strong and weak mobility, whether the agent
is moved, cloned, or forked, and whether code is pushed to the next agency or pulled
from the home agency. Cabri et al. [1998] only decide between strong and weak
mobility and whether migration is initiated explicitly by the agent itself or implicitly
by the underlying agency software.

Fuggetta et al. [1998] have proposed the so far best approach to classify different
techniques for mobile code, unfortunately their approach is not suited to classify
mobile agent migration techniques as it mainly tries to cover all types of mobile code
approaches, as code-on-demand, remote-evaluation, and mobile agents. The authors
distinguish strong and weak mobility, where they use the term weak mobility in case
of remote-evaluation, where except of some initialization data no state information
is shipped to the remote server. In our definition, weak mobility contains the object
state of the agent. The authors define that strong mobility is supported in two forms,
migration and remote cloning. The first form is comparable to our migration effect
of moving an agent, whereas the latter one is comparable to our migration effect of
cloning an agent. Weak mobility is divided into code shipping (remote-evaluation)
and code fetching (code-on-demand) – do not confound this with our distinction
between push and pull migration strategies. Finally, the authors distinguish between
asynchronous and synchronous techniques, where the sending execution unit is either
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non-blocking or blocking and waiting for the result. The authors also classify data
space management, which results in a comparable enumeration of alternatives as in
our approach for the data design issue.
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In the previous two chapters we have collected information about current implemen-
tation techniques for mobile agent migration. We can now start reasoning about new
mobility models resp. migration techniques that surmount the drawbacks of simple
mobile agents, as discussed in Section 3.3.

In Section 6.1 we will discuss these drawbacks against the background of current
implementations and evaluate whether today’s mobility models are able to solve
any of these drawbacks. Then, in Section 6.2, we will collect factors influencing
mobile agents’ performance and discuss, how this performance can be improved. One
important aspect of Section 6.2 is to investigate whether the migration strategy has
an effect on the overall performance of mobile agents. At last, in Section 6.3, we
will describe our idea of a new mobility model, named Kalong. Using the Kalong
mobility model gives the programmer of mobile agents resp. the mobile agent itself
the possibility to influence the migration strategy in a very fine-grained way and
offers other very important new features to increase migration performance.

6.1. Drawbacks of Simple Migration Techniques and Current
Implementations

In Section 3.3 we discussed the results of our mathematical model for network load
and transmission time for mobile agents using a single, very simple migration tech-
nique (push-all-to-next). We detected several inherent drawbacks of mobile agents
that are responsible for a higher network load and higher processing time as compared
to client-server approaches.

The inherent drawbacks of mobile agents are in summary:

• An agent’s code is typically larger than a simple client-server request and causes
a fixed overhead for each migration. It is only meaningful to send large code to
remote agencies, if server results can be decreased decisively by data filtering
or compression.

• An agent’s code is transmitted to a remote agency, even if it is never used
over there. In the case of the push-all-to-next migration strategy, transmission
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of never used classes cannot be avoided. However, even in the case of a pull
migration strategy, code might be loaded superfluously because of the object
state serializing technique used by all Java based mobile agent systems. We
will present an example for this later.

• An agent’s data is transmitted as a single unit, which has the effect that a
mobile agent carries data items to all servers of the given itinerary, even if they
are never used before reaching the home agency again. In the other case, the
agent carries data items to several agencies, although they are never used at
the first agencies. This was the reason for poor performance in case of a high
number of agencies.

However, we have also already detected a major advantage of mobile agents. In
case of small-bandwidth network connections a mobile agent must use this bottleneck
only rarely for migration, whereas client-server approaches have to use them several
times.

It is fair to assume that using other migration strategies than the simple push-all-
to-next strategy could be a solution for the problem of superfluously transmitted class
code. For example, in the pull-per-unit strategy, code is never transmitted along an
agent’s state transmission and always loaded dynamically on demand. This has the
consequence that classes are only transmitted if they are imperative at the remote
agency. It is important to understand what it means for a class to be imperative at
a specific agency. Usually, we would expect to load a class, only if the corresponding
object is accessed, i.e. used or defined. In Java, at least as long as the Java object
serialization technique is used, code must also be downloaded if an object of this type
is part of the serialized agent. Look at the following example for a mobile agent:

1 import de.unijena.tracy.agent.∗;
2

3 public class SomeTracyAgent extends MobileAgent
4 {
5 protected SomeClass first = new SomeClass();
6 transient SomeOtherClass second = new SomeOtherClass();
7

8 public MyFirstTracyAgent()
9 {

10 // do some initialization
11 }
12

13 public void startAgent()
14 {
15 // do something
16 go( ‘‘tracy://tatjana.cs.uni-jena.de’’, ‘‘runAtRemote’’ );
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17 }
18

19 public void runAtRemote()
20 {
21 // do something
22 if( /∗ ... ∗/ )
23 {
24 SomeOtherClass third = new SomeOtherClass();
25 // do something
26 }
27 go( ‘‘tracy://domino.cs.uni-jena.de’’, ‘‘runAtNext’’ );
28 }
29 }

After initialization, the agent immediately migrates to tatjana.cs.uni-jena.de and
execution is resumed by invoking method runAtRemote. Variable first is part of the
serialized agent, whereas variable second is not because it is marked as transient. We
assume that the agent migrates using strategy pull-per-unit, so that no classes are sent
along the object state. When the agent is deserialized at the remote agency, besides
the agent’s main class SomeTracyAgent, also class SomeClass is loaded, because it is
needed to reconstruct the agent correctly. Thus, this class is loaded, although method
runAtRemote does not use variable first at all. An example, where code downloading
really depends on a use, is variable third, which is a local one defined within method
runAtRemote. If we assume that no other object variable uses SomeOtherClass, then
only if the expression in line 22 evaluates to true, code for class SomeOtherClass is
loaded. What we have learned from this example is that when using the standard
Java serialization technique, the agent resp. programmer does not have precise control
which classes are downloaded at the destination agency. Even if strategy pull-per-
unit is used, classes might be downloaded although they are not really necessary at
the remote agency.

We now want to discuss, whether the disadvantages of the two simple migration
techniques enlisted above can be resolved by any mobility model presented in the
last chapter. The first point – mobile agents’ code being larger than a simple client-
server request – can of course not be solved by any mobility model automatically.
The problem is that an agent’s code usually contains other methods that are not
needed at the next destination which lengthen the code. An agent’s code size would
surely benefit from a code split, where each piece of code only contains methods with
high coherence. Code transmission would then work on the basis of code pieces. As
long as such a code splitting technique is not available, the programmer can only
attach importance to this problem when designing his agents.1

1Compare Section 10.3 for more information about a class-splitting technique that was developed
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The second point – superfluously transmitted classes – can not be solved neither
in the Aglets system, nor in the Grasshopper system. For example, in Grasshopper
classes are never pushed to next agencies, but always loaded dynamically on demand.
As Grasshopper uses the standard Java serialization technique, some classes might
be loaded although code is not needed at the destination. Besides, classes are loaded
superfluously in the case when two agents of the same type reside at the same agency.
Code is loaded twice in this case, because Grasshopper does not provide code caching
on the level of agencies. In Aglets, classes in use are pushed and other classes are
loaded on demand. The user is only able to influence which classes are pushed to the
next agency, e.g. by storing class code in different directories on the local file system
and defining environment variables appropriately. As the Aglets system also bases
on the Java serialization technique, classes will be downloaded.

The third point – fine-grained data transmission – cannot be solved by any system,
because both use the standard Java serialization technique, where the object closure
always contains all data items in use and not marked transient. The user has no
chance to download data items from the agent’s home agency during the agent’s tour
or to send data items back to the home agency, when it is known that they are not
used at the next agencies.

The result of this brief analysis of current mobility models and systems is that none
of them is even close to solve the problems we identified to be inherent drawbacks
of simple migration techniques. Although both inspected mobile agent systems use
other than the simple push-all-to-next migration strategy, they are not able to solve
the problem of superfluously transmitted code and they are not able to solve the
problem of data transmission. In the next section we will discuss approaches to
improve the performance of mobile agents in general.

6.2. Improving the Performance of Mobile Agents

Before we will reason about specific techniques to improve the migration process using
new sophisticated mobility models, we will think about performance optimizations
for mobile agents in general. In the next section we will concisely discuss several
approaches to improve the performance of mobile agents proposed in literature so
far. Then, we will discuss the influence of different migration strategies on mobile
agents’ performance.

6.2.1. Overview of Mobile Agents’ Performance Aspects

The performance of mobile agents is influenced by several factors and within the
life-cycle of a typical mobile agent, we find several occasions where performance can

as part of the Tracy project.
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Figure 6.1.: Classification of mobile agents’ performance issues.

be improved, as for example: its task given by the user, the route or itinerary, its
code size, the size of collected data, network parameters like bandwidth and latency,
etc.

To structure our discussion, we developed the following classification schema, com-
pare Figure 6.1. We first divide runtime aspects and transmission aspects.

Runtime Aspects

In the first class we place techniques by which an agent’s execution time can be
improved. The first important aspect is the format, used to send an agent’s code to
destination agencies.

Code Format The code format influences code size and, therefore, transmission
time and, with a higher extent, also code execution time. We can distinguish here
between source code, intermediate byte code, and machine code. Machine code is
specific to a processor architecture family and cannot be executed on processors that
do not belong to this family. In heterogeneous systems like mobile agent systems, it is
very important to have code in a format that can be understood and executed at all or
almost all nodes. Therefore, machine code is in general not a good format to transmit
mobile agents’ code, unless some kind of simulator or translator is used that is able to
translate code between different architectures. However, as a huge part of computer
systems base on either Intel Pentium, Compaq Alpha, or Sun SPARC processors,
techniques could be used which send an agent’s code in multiple representations
to destination agencies. In the distributed operating system community this was
for example implemented in systems described by Dubach et al. [1989] and Shub
[1990]. In the mobile object system Emerald [Steensgaard and Jul, 1995], not all
code representations are sent but only one is selected that will be used at the next
destination. This technique is not suitable for mobile agents, as a later migration
would not be possible in this case. Knabe [1997a] describes several drawbacks of
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these approaches, as for example that addition of a new processor architecture type
requires a new compilation of all agents. Additionally, he points out that the number
of different processor architectures is too high to allow code transmission for all
processor types, which is undoubtedly true.

A better solution is to transmit an agent’s code in a format that is independent of
the underlying processor architecture. This might be source code or some interme-
diate code representation, if such is available for the used language. In first mobile
agent systems, as for example Telescript and AgentTCL, which used script languages
for programming mobile agents, code was transmitted in source code format. Source
code must be compiled at each agency again to an executable format, which increases
execution time and becomes very uneconomical if a huge amount of source code must
be compiled only to execute a few lines of code at this agency. An advantage of this
code format is high execution performance due to the imperative compilation process.

Intermediate code is the result of a compilation process that is performed at the
agent’s home agency. Intermediate code is a low-level representation, which consists
of commands for a virtual machine. Java byte code is the most popular example for a
intermediated code format, especially for mobile agent systems. Intermediate code is
usually more compact than source code and could already contain several architecture
independent code optimizations, e.g. dead code elimination or loop unrolling [Aho
et al., 2000], which will increase execution performance. Intermediate code is either
interpreted by some kind of virtual machine or immediately translated into machine
code at the destination agency. Java uses a mixture of both techniques, where code
is interpreted when executed for the first time and then translated into machine code
during runtime (just-in-time compilation). Later, this code is further analyzed to
detect performance bottlenecks and the respective code areas are especially optimized
(hot-spot-optimization).

An approach that combines transmission of source code, intermediate code, and
machine code is for example proposed by Knabe [1997a]. In his mobile agent system,
which uses the programing language Extended Facile, the agent programmer can
influence in which transmission format the agent should migrate the next time. The
decision might be based on the agent’s task as can be seen in the following example
which we take from the paper cited above: In the case of a so-called batch agent,
which has to execute a long-running process, the destination agency will benefit
from a highly optimized machine code which can only be produced, if high-level
source code is available for compilation. Another example is related to code size vs.
network quality. If the network connection has low bandwidth, for example a dial-up
connection, transmission time is more important than execution time and, therefore,
the smallest code representation should be sent, independent of how good execution
time will be.

If we now look at Java as programming language, another issue that influences
performance of mobile agents is its byte code format. Although it is very easy to
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produce and interpret, Java byte code has some major drawbacks with regard to
code optimization and security. For example, the stack based architecture of the
Java virtual machine makes it difficult to optimize code for RISC processors and the
built-in byte code verifier does only provide some simple code checks whether basic
semantics of Java are violated. In the programming language community, alternatives
to Java byte code are discussed that allow easy code annotations for code optimization
and provide sophisticated security checks. See for example Amme et al. [2001] for
a new safe intermediate code format for Java based on static single assignment that
can be translated to highly-optimized machine code very fast.

Code Execution Another aspect that influences execution performance is the un-
derlying hardware architecture, i.e. CPU, memory, system load, etc. Hardware pa-
rameters are especially important in the case of Java, where the virtual machine
itself needs a huge amount of memory. Unfortunately, this aspect cannot be influ-
enced by the agent or agent programmer. A second aspect is the agency software
and its optimizations on the level of Java code. Some drawbacks of the Java virtual
machine can be resolved by skillful programming within the agency software. Most
of these techniques are not restricted to programming of mobile agent systems, but
are applicable in all Java programs. We only want to mention here two techniques,
i.e. improved object serialization techniques and thread pools. Some authors propose
new object serialization techniques for Java, which either speed up the whole serial-
ization process or produce a smaller serialized object. See for example Philippsen
and Zenger [1997] for an example for such a technique.

As mobile agent systems are multi-threaded systems, every software agent usually
owns at least a single thread of control. To achieve parallel execution of agents, thread
scheduling is provided by the Java virtual machine resp. by the underlying operating
system. Unfortunately, thread creation is very expensive in Java and should, there-
fore, be minimized to save execution time. The problem is aggravated by the fact
that mobile agents usually have only a very short visiting time at each agency, so that
a thread’s life-time is usually very short. To solve this problem, it is a well-known
technique in Java to use so-called thread pools, which is more or less a data structure
that manages a stock of sleeping threads. Whenever a new thread is needed, no new
thread is created but an already existing thread from the thread-pool is resumed and
associated with the new task. When the task is finished the thread is put back to
the pool again. The technique of thread pools is for example described by Soares
and Silva [1999] and its influence on the overall execution performance is measured
using several experiments.
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Transmission Aspects

In the second class, all techniques are summarized that influence network load and
transmission time during agent migration. According to the three views of mobility
models, we distinguish here three optimization issues.

Programmer’s View From the programmer’s point of view, the most influential
factor is the level of mobility that is supported. Whereas weak mobility is very
easy to achieve and works very fast in Java based systems, it is very complicated to
achieve strong mobility in Java, as already mentioned in Section 5.1.1 on page 63.
Strong mobility not only increases code size and lengthens transmission time, but also
increases execution time as can be seen from the experiments made by Fünfrocken
[1999] for example. Another aspect of the programmer’s point of view is the itinerary
an agent has to execute. The optimization goal within this level is to find suitable
agencies and services, and to optimize the route to all of these agencies. The order in
which agencies are visited is most important of course and there are several trade-offs
to be considered. For example is it more useful to go to neighboring agencies first,
because they are easy to reach, and even to risk that information is not found there,
or go to far away agencies first where the probability to find right information is high,
but migration costs are also high and transmission may be untrusted. In an earlier
paper we named this level of migration optimization the macro level, see Erfurth
et al. [2001a,b].

The only work that proposed an optimization on the macro level is by Barbeau
[1999]. He uses the term migration strategy to describe the way of relocating an
agents’ state and code within the network. Barbeau uses a more coarse-grained
approach, because he still views an agent’s code as one transmission unit, whereas
we consider code to consist of multiple pieces that can migrate (almost) independently.
He compares three strategies: First, an agent visits all nodes sequentially. Second,
all nodes are visited sequentially but the agent’s state is uploaded to its home server
periodically. Third, the agent is sent in parallel to all nodes that it has to visit
using a multi-cast protocol. The author evaluates these migration strategies using
mathematical models and is able to show that it makes sense to upload the state of
an agent to its home agency under certain circumstances from time to time. Further,
he can show that the parallel strategy performs better than any sequential strategy.

Agent’s View From the agent’s point of view, a mobile agents’ performance is
influenced by code and data relocation techniques, we call this the micro level of
optimization. The issue of optimization here is the amount of network load that is
produced by a single agent migration between two agencies. Migration time may not
depend directly on the amount of bytes that are to transmitted, because in networks
with varying values for bandwidth it might be even faster to send a larger number
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of bytes through a high-bandwidth network connection than sending a small number
of bytes through a one with low-bandwidth.

Techniques to optimize network load and transmission time can be easily deduced
from the problems of the simple migration technique, summarized at the beginning of
the last section. The first problem is related to the actual size of code, which can be
reduced by using sophisticated compression techniques that are developed for Java
byte code, see for example Bradley et al. [1998] and Pugh [1999]. The second problem
is raised by code that is superfluously transmitted to a destination agency, either
because it is not needed there or because it does already exist there due to a prior
code transmission of the same or another agent of the same type. However, besides
the qualitative arguments against this technique (see p. 72), we can also mention
quantitative arguments. An extension of our model of network load and transmission
time to consider different migration strategies is not in the scope of this section, so
we postpone it to the following one. There we will compare all migration strategies
presented in Section 5.1.2 in two application scenarios. The result of this evaluation
is that no migration strategy works best in every situation, i.e., no migration strategy
is able to solely produce lowest network load resp. transmission time in all application
scenarios.

The consequence is that it is not sufficient to make a simple exchange of strategies,
but it is necessary to provide a dynamic choice, which migration strategy should be
used for the next migration. As we have seen in the last section, current mobility
models are not able to provide techniques which allow a dynamic decision between
different migration strategies, e.g. in Aglets it is not possible to decide which class
should be pushed or pulled and in Grasshopper it is not even possible to push classes
at all.

Another technique to avoid class transmission is a class cache. The limitations
of current class caches used in Aglets and Grasshopper have already been described.
Those class cache techniques are only able to avoid class downloading from the agent’s
home agency, but code transmission as done in the push-all-to-next strategy. An
evaluation of class caches was done for example by Soares and Silva [1999]. In the
case of push strategies current class caches are completely useless. A solution would
be a class cache technique that already becomes active when an agent migrates. For
example, in a first step the names of classes that should be transmitted are sent to
the destination agency as part of the migration protocol. The destination agency
answers with information about what classes are already available and which not. In
practice we would have to deal with the problem of equal class names for different
classes and different class versions, of course.

If class downloading cannot be avoided, then it should be at least as fast as possible.
Here it is important to load classes from a near-distance server as a lower distance
could improve time for downloading. Current mobile agent systems only allow to
define a single code server (Aglets), which in most cases equals the agent’s home
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agency, or to define multiple code servers, to which code must be transmitted using
techniques outside the mobile agent system, e.g. a simple FTP file transfer. Hohl
et al. [1997] describe techniques to improve the migration performance by using more
than a single code server in the Mole system. This code server need not to be located
on the same host as the agent server. If an destination agency must download classes
during execution of a mobile agent, it first looks for them at neighboring code servers,
before loading them from the home agency. Code servers communicate to exchange
information about existing classes. The authors assume that classes are registered at
a code server by the programmer manually. They do not provide any performance
measurements to prove their concept.

The last drawback of simple migration techniques used so far, is data handling.
We saw that it costs a huge amount of network load to carry data items to servers,
although these data items are never used at this agency. We already have seen that
using the standard Java object serialization technique, that is used in all current
mobile agent systems, this drawback cannot be avoided. What is necessary is a
technique to transmit data items independently of the object state of the agent, so
that an agent can dynamically download data items from its home agency in case
they are really needed. Later, the agent can upload these data items again to avoid
carrying them to next agencies.

A last aspect we would like to mention here, is the way how code is transmitted
from the sender agency or a code server to the destination agency. Usually, code
transmission is completed before code execution is started. An optimized code trans-
fer starts code execution before code transmission is completed, so that both phases
are overlapped for some time. This can be easily achieved for example in the case of
Java applets, if the JAR file is reordered so that classes that are needed first at the
destination are placed at the beginning of the file. Krintz et al. [1999] and Stoops
et al. [2002] describe approaches to implement this technique, not for mobile agent
systems but only for mobile object systems.

Network’s View From the network’s point of view, we see two factors that influence
mobile agents’ performance: network bandwidth and network latency resp. the overall
architecture of the network in which the agent has to operate in. As we will see in the
next section in detail, the type of network, e.g., whether all network connections have
the same quality or not, has a great impact on performance. Of course, the agent or
agent programmer has no mean to influence these values but it is very important to
be able to react on them.

6.2.2. Performance and Migration Strategies

In this section we will evaluate the relation between performance of mobile agents
and migration strategies used. In the last chapter we introduced the two main classes
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of migration strategies, i.e. push and pull strategies. We also learned that in most
cases they are used stand alone, but in rare cases also in some kind of combination.

An interesting question is now how the migration strategy influences the migration
performance of mobile agents. One severe simplification of our mathematical model
for network load and transmission time was especially that only push-all-to-next was
supported. To evaluate the influence of the migration strategy to the performance of
mobile agents, we will now extend our model to allow dynamical class downloading.
Prior version of this model were published as Braun et al. [2000b] and Braun et al.
[2001b].

We extend our model, where the agent has to visit m servers {L1, . . . , Lm} to collect
data from each server. In contrast to our first model, we now assume that an agent
consists of several class files, which can be dynamically loaded during execution from
the agent’s home agency. The decision which class files must be loaded is influenced
by the communication of the agent to the local agent server.

To model network load, we assume that an agent consists of u units (classes) of
code, each of length Bk

c , k = 1, . . . , u, some data of length Bd (which at least contains
the request of length Breq), and state information of length Bs. A request to load
a specific code unit has length Br for all units Bk

c . The probability of dynamically
loading code unit k on server Li is P k

Li
. By this we can model two aspects. First, it

expresses the probability that a specific code sequence is to be executed. Second, we
can also model the fact that code is already in a local code cache. On server Li the
agent’s data increases by Bres ≥ 0 byte.

The migration process consists of marshaling data and state, transmitting data,
state, and code to the destination agency, and unmarshaling of data and state informa-
tion. To model round-trip time, we make the following simplifications. Marshalling
and unmarshaling of data is linear in time to the number of bytes and modeled by
µ : N → R. For each pair of servers we know throughput τ : L × L → R and delay
δ : L × L → R in advance. We assume both τ and δ to be symmetric, i.e. for all
i, j ∈ L : τ(Li, Lj) = τ(Lj, Li) ∧ δ(Li, Lj) = δ(Lj, Li).

We divide the migration process into three steps. First, the agent migrates from
its home agency L0 to the first server L1 of the given itinerary. Second, the agent mi-
grates from server Li to server Li+1, where i = 1, . . . ,m−1. Last, the agent migrates
back to its home agency. For the following we assume that L0 6= Li, i = 1, . . . ,m.
We define Bc =

∑
k=1,...,u

Bk
c . S ∈ {pushnext,pushall,pullunit,pullall} stands for a

migration strategy. The network load for a migration from an agent’s home agency
is calculated by
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Bleave(L, S) =


Bd + Bs + Bc if S = pushnext
Bd + Bs + |L|Bc if S = pushall
Bd + Bs +

∑
k=1,...,u

P k
L1

(Br + Bk
c ) if S = pullunit

Bd + Bs + Br + Bc if S = pullall

(6.1)

A migration from La to La+1, with a ∈ {1, . . . ,m− 1} has network load of

Bmig(L, a, S) =


Bd + aBres + Bs + Bc if S = pushnext
Bd + aBres + Bs if S = pushall
Bd + aBres + Bs +

∑
k=1,...,u

P k
La+1

(Br + Bk
c ) if S = pullunit

Bd + aBres + Bs + Br + Bc if S = pullall
(6.2)

When an agent migrates to its home agency, network load amounts to

Bhome(L, S) = Bd+ | L | Bres + Bs. (6.3)

Finally, the whole network load equals

BMA(L, S) = Bleave(L, S) +
∑

l=1,...,m−1

Bmig(L, l, S) + Bhome(L, S). (6.4)

To derive transmission time from network load, it is necessary to consider time for
marshaling and unmarshaling of data and state and network latency. All network
load must be divided by network throughput. To make the following formulas more
lucid, we define the following abbreviations.

The time to load all necessary code units dynamically on server Ls from the agent’s
home agency is

φs =
∑

k=1,...,u

P k
Ls

(
δ(Ls, L0) +

Br + Bk
c

τ(Ls, L0)

)
.

In the case that not only some, but all code units must be downloaded at server Ls,
we can write

Φs = δ(Ls, L0) +
Br + Bc

τ(Ls, L0)
.

The time to push code to all agencies equals

ϕ =
∑

l=1,...,m

(
δ(L0, Ll) +

Bc

τ(L0, Ll)

)
.
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The corresponding time for migrating an agent from its home agency is

Tleave(L, S) =


2µ(Bd + Bs) + δ(L0, L1) + Bleave(L,S)

τ(L0,L1) if S = pushnext
2µ(Bd + Bs) + ϕ + Bd+Bs

τ(L0,L1) if S = pushall
2µ(Bd + Bs) + δ(L0, L1) + Bd+Bs

τ(L0,L1) + φ1 if S = pullunit
2µ(Bd + Bs) + 2δ(L0, L1) + Bd+Bs+Br+Bc

τ(L0,L1) if S = pullall
(6.5)

Note, that marshaling and unmarshaling of date and state information each takes
µ(Bd + Bs) of time. For example, in the case of a pullunit strategy, time comprises
of the time for marshaling and unmarshaling of the agent’s state, the time to open
a network connection to the home agency, the time to transmit all agent’s state
information to the first agency and to load missing classes from the home agency
(φ1).

We define Ba
d,s = Bd + aBres + Bs, which is the amount of accumulated data

and state information at server La. The time to migrate from La to La+1, with
a ∈ {1, . . . ,m− 1} is

Tmig(L, a, S) =


2µ(Ba

d,s) + δ(La, La+1) + Bmig(L,a,S)
τ(La,La+1) if S = pushnext

2µ(Ba
d,s) + δ(La, La+1) + Bmig(L,a,S)

τ(La,La+1) if S = pushall

2µ(Ba
d,s) + δ(La, La+1) +

Ba
d,s

τ(La,La+1) + φa+1 if S = pullunit

2µ(Ba
d,s) + δ(La, La+1) +

Ba
d,s

τ(La,La+1) + Φa+1 if S = pullall
(6.6)

Note, that Bmig(L, a, S) refers to the amount of network load produced by a usual
migration using strategy S, see Equation 6.2.

The time to migrate to the home agency is

Thome(L, S) = 2µ(Bhome(L, S)) + δ(Lm, L0) +
Bhome(L, S)
τ(Lm, L0)

. (6.7)

Finally, the whole transmission time amounts to

TMA(L, S) = Tleave(L, S) +
∑

l=1,...,m−1

Tmig(L, l, S) + Thome(L, S). (6.8)

To evaluate an agent’s round-trip based on this model, we consider the following
two network scenarios, compare Figure 6.2 on the next page. In the first scenario
we assume a homogeneous network, where all network connections have the same
quality. We assume network bandwidth as τ = 800 Kb/sec and delay δ = 5 ms.
In the second scenario we assume a heterogeneous network (ring topology), where
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L0

L1

L2 L3

L4

(a) Homogeneous
network.

L0

L1

L2 L3

L4

(b) Heterogeneous net-
work.

Figure 6.2.: Examples for the network model used for the evaluation. Agencies are
drawn as circles, network connections as solid lines, and agent migrations
as dashed lines.

Class download probability
Class Class size [byte] Sc. 1 Sc. 2 Sc. 3 Sc. 4

1 10 000 1 1 1 1
2 15 000 0 .5 1 1
3 15 000 0 .2 .8 1
4 15 000 0 0 .5 1
5 15 000 0 0 .2 1

Table 6.1.: Code size and download probabilities in four different scenarios.

connections between neighboring servers are as fast as in the homogeneous case, but
all other network connections only have a small bandwidth of τ = 250 Kb/sec and
delay δ = 10 ms.

The agent consists of five classes, where the first class is the agent’s main class and
the four other classes are to process specific subtasks and are only necessary on a few
servers. The code size of each class can be seen in Table 6.1. The initial data size
(Bd) of the agent is 1000 byte and the initial state size (Bs) is 100 byte. The agent
has to migrate to four servers, on each server it has to communicate to the local
agent server. As a result, the agent’s data grows by the value of the server result,
which is 3000 byte on each server. A class request has length Br = 20 byte.

Figures 6.3 and 6.4 on page 98 compare transmission times of four different mi-
gration strategies, while varying class download probabilities in four scenarios. The
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Figure 6.3.: Transmission time vs. class download probability in a homogeneous net-
work for four different migration strategies.

probabilities for class downloading of these four scenarios can be seen in Table 6.1.
In the first scenario only one class (the agent’s main class) is downloaded, whereas
in the last scenario all classes must be downloaded. The second and third scenario
model that only a subset of classes must be downloaded.

In a homogeneous network the mobile agent’s transmission time using strategies
push-all-to-next, push-all-to-all, and pull-all-units are almost identical, because all
code is transmitted independent of whether it is needed or not. The additional
time to open a network connection and to transmit a code request takes only a
few milliseconds when using strategy pull-all-units to the home agency. In contrast,
strategy pull-per-unit grows linear in the download probability. It is faster than all
other strategies in a homogeneous network, even if more than only one class must be
downloaded. Only in the case of downloading all class files, this strategy leads to a
higher transmission time, because of several code requests that must be sent to the
home agency.

In a heterogeneous network, strategies push-all-to-all and pull-all-units take the
same time, again. However, transmission time is higher than using strategy push-
all-to-next, because in these strategies all class files must be transmitted using slow
network connections, whereas in strategy push-all-to-next, code and data is sent
via neighboring network connections. The diagram shows that in a heterogeneous
network strategy pull-per-unit is slower than push-all-to-next, even if not all classes
must be downloaded. Again, this is because code must be download from the home
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Figure 6.4.: Transmission time vs. class download probability in a heterogeneous
network for four different migration strategies.

agency via slow network connections.
What we have learned from this evaluation is that no migration strategy produces

least transmission time in every situation. In homogeneous networks, pull per unit
is a good strategy, because code downloading is cheap, whereas in a heterogeneous
network, code downloading from a far away agency is expensive and should be avoided.
In such a network, it is useful to push code in most cases. Of course, the decision for
a migration strategy is influenced by several factors, as for example code size, code
download probability, etc.
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6.3. The Kalong Mobility Model

In this section we will introduce our new mobility model, named Kalong, which
is the synthesis of most ideas for improved mobility models proposed in the last
two sections. The main feature of Kalong is its flexible and fine-grained migration
technique, where an agent or its programmer can define new migration strategies
for each single migration. In this section, we confine to the foundations of Kalong
without going into technical details. In Part III of this thesis we will then formally
describe the migration protocol and explain how to program migration strategies in
detail.

Kalong differs from current mobility models in three main aspects:

1. Kalong defines a new agent representation and new transmission units. In our
model, mobile agents not only consist of an object state and their code, but
have also an external state, which comprises of data items that are not part
of the object state. A mobile agent’s code is no longer transmitted in form of
classes or JAR files, but we introduce a new transmission format that we call
code unit. A code unit comprises of at least one class or many classes, which are
supposed to migrate together. A single class can be member of several units.

2. Kalong defines two new agency types, additionally to the already known home
and remote agencies as in current mobility models. We introduce a code server
agency, from which an agent can download code on demand, and we introduce
a mirror agency, which is an exact copy of an agent’s home agency. It is
important to understand that agency types are only valid for a single agent,
i.e., a single agency can be a mirror for one agent and a remote for another
agent at the same time. A mobile agent can define an agency to be a code
server or mirror and later release it again dynamically during runtime.

3. Kalong defines a new class cache mechanism, that not only prevents class down-
loading in the case of pull strategies, but also code transmission in the case of
push strategies. Our class cache is able to avoid transmission of identical classes
used in different agents and can distinguish between different versions of the
same class.

All these new features are accompanied by new commands for agents to define their
own migration behavior.

6.3.1. Agent Representation

We start our introduction with the new agent representation, compare Figure 6.5.
As a consequence of the problems with Java serialization process, we allow agents
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Java

Agent Serializable

SerializableData

ClassCode Code Unit
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External Data Item
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Figure 6.5.: Mapping of the Java agent representation to elements of the Kalong
mobility model.

to have other data items besides their object state and we call these data items, the
external state. Elements of the external state are plain Java objects, which must be
serializable. Each data item of the external state must have a name to be stored
and accessed by its owner. The external state is private for a single agent instance
and it is not possible to share the external state with other agents in the meaning of
blackboards for example, even if they were of the same agent type.

We introduce two new commands by which mobile agents can access their external
state.

protected void setData( String name, Serializable data )
Store a data item under the given name in the external state.

protected Serializable getData( String name )
Receive a data item of the external name.

To delete a data item it must be set to null.
When an agent migrates, elements of its external state do not migrate automati-

cally, in contrast to the elements of its object state. However, an agent can define
one or many items of its external state to be part of the state that is sent to the desti-
nation agency. Such data items become invalid at the sender agency if migration was
successful. Using this technique of external data items, an agent or its programmer
can select data items for migration that will be used at next agencies with a high
probability. Data items that most likely will not be used, are not transferred, which
in sum can reduce network load.
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Data items that were not sent as part of an agent’s state, remain at the sender
agency only, if it is the agent’s home agency. If the sender agency is a remote agency,
all data items of the external state will be transferred along the agent’s state, as it is
not allowed to leave data items at other than the agent’s home agency. A data item
that remains at an agent’s home agency, is not accessible by its owner, if the owner is
residing at another than the home agency. Thus, there is no possibility for a remote
access. Instead of this, Kalong provides a technique to transmit data items from the
agent’s home agency to the current agency. First, a data item can be downloaded
using method loadData.

protected void loadData( String data )
Load a data item of the external state from the agent’s home agency.

When the data item is transferred from the home to the current agency, it becomes
invalid at the home agency. No class code is sent along this data transmission. It is
possible to transmit multiple data items in one shot, using either a list of names or
wildcards.

Data items of the external state can be sent back to the agent’s home agency using
method uploadData.

protected void uploadData( String data )
Upload a data item from the current agency to the agent’s home agency.

After this, the data item is not available at the current agency anymore and it
becomes valid at the home agency again. This makes it possible to reduce network
traffic by uploading data items that are not necessary at the agencies visited in the
near future. It is of course possible that an agent later requests the same data item
from its home agency again.

Using the concept of external data items, we not only solve the problem of super-
fluously transmitted data items, but also the problem of superfluously transmitted
code due to the Java serialization technique. As we have seen in Section 6.1, for each
element of the object state, code is necessary when deserializing the agent, even if
the variable is not used at this agency. Using data items stored in the external state,
code that is necessary to instantiate this object at the current agency is downloaded
earliest when the data item is deserialized.

A further advantage of external data items outside our main line of argumentation
is concerning security. One problem in the area of security problems of mobile agents
is the fact that an agent’s data must be protected against illicit reading and any
manipulation by malicious agencies. Using our technique of an external state, it
is possible to leave data items that might be the target of unauthorized reading
attempts at the home agency as long as they are really needed. For example, a
shopping agent needs its owner’s credit card number not until it has found a shop
from which the good shall be bought.
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Kalong also introduces a new code representation where the basic code transmission
unit is not a single class file or a JAR file. As we observed that often several classes
migrate together, we introduce a new transmission unit, which we call code unit. A
code unit consists of at least one or many Java classes, comparable to a JAR file.
Classes, which are part of the same code unit should have a common criterion which
makes them qualified for a transmission as single unit. A good reason to bundle
classes is the same execution probability, for example, because all classes belong to
the same subtask. Each code unit has at least one or many code bases, from which
it can be loaded.

The decision, which class belongs to which code unit, is done by the agent itself,
before its first migration. This distribution cannot be changed afterwards as this
would contradict some fundamental other aspects of our mobility model. We come
back to this issue later. It might seem to be difficult to define such a distribution,
but we will show in a later chapter, how this can be done very easily. It is important
to understand that such a distribution of classes into units is done by each agent
instance itself and that two agents might have different code units, although they
belong to the same type.

Code transmission always works on the basis of code units. In the case of push
strategies, the agent can define which code units shall be sent to the next agency. If
a code unit migrates, all classes of this code unit migrate. Code downloading which
is necessary when using pull strategies, works as the following: If a class is needed,
for example during the agent deserialization process, it first must be determined to
which code unit the class belongs to. This might not be unequivocal, as it is possible
to let a single class be part of more than one code unit. Second, it must be decided
from which code base the code unit should be loaded. The technique to describe this
choice will be explained later.

6.3.2. Migration Process

We will now describe how a migration is processed in Kalong. Kalong provides
a very flexible and fine-grained technique to describe the migration strategy of a
mobile agent. It is not only possible to define the migration strategy for a type of
agents, or a single agent instance, but for each single migration that the agent has
to perform. For the moment, we will only introduce the general concept of defining
migration strategies in Kalong. A detailed introduction into programming migration
strategies will be part of the next chapter of this thesis.

The parts, in which an agent is transmitted during a migration are:

1. State, which consists of the object state and, additionally, some other agent-
defined data items of the external state.

2. Code units, which contain the code in form of Java class files.
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As already said, it is not necessary that the agent carries all data items of the
external state as well as all code units. It is possible and sometimes advisable to
sent only code units and no state information at all, which will make the destination
agency a code server – we will explain this later in detail. If only state information
is sent, then the agent uses a pull strategy. In this case, at least a description of all
code units that contains at least the names of all classes and code bases are sent to
the destination agency, see Section 6.3.4.

After an agent has left its home agency, no information about this agent is deleted,
except the object state and data items that were part of the state. At the destination
agency, code units are received and stored so that the agent’s class loader can access
code using a class name. If state was sent during the migration, then the agent
is deserialized. Classes not already available at the destination agency must be
downloaded as described above.

When an agent migrates from an arbitrary remote agency to another agency, it
can define a new migration strategy in terms of state and code units. The agent
is free to define which data items shall be part of the agent’s state and which code
units shall migrate, with one exception concerning data items. As it is not allowed to
leave data items at an arbitrary remote agency, the migration strategy must define
for each data item whether it shall be part of the state or be uploaded to the agent’s
home agency. We define a rule, that all data items that are still valid at the current
(remote) agency when an agent migrates, are mandatory part of the state. With
code units, we do not have this problem, as it is without danger to delete them at
the remote agency, after a successful migration. After an agent has left a remote
agency, all information about the agent is deleted. Thus, this agency cannot be used
for code unit downloading in future.

It should be obvious that using these two primitives of state and code unit transmis-
sion, together with the ability to define which elements of the external state should
be part of the agent’s state, it is possible to describe all migration strategies that we
have introduced in the last chapter. For example, to describe the push-all-to-next
strategy, we define all classes to form a single code unit, which is sent along with
the agent’s data to the next agency. To describe the pull-per-unit strategy, we define
that each class forms a single code unit and none of them is transmitted along agent’s
code.

6.3.3. Types of Agencies

In the last section we have already mentioned that Kalong also defines some new
types of agencies. So far, mobile agents can only migrate from their home agency
to visit the so-called remote agencies. One very important rule we introduced in the
last section was that all information about an agent is deleted at a remote agency
after the agent has left it. Now, we will introduce two new types of agencies, which
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Home

Loading code without code server

Loading code with code serverCode Server

Figure 6.6.: Example to show the advantages of a code server. Agencies are drawn
as circles, network connections as solid lines, migrations as dashed lines,
and code requests as dotted lines.

both are able to keep or remember data and/or code for a single agent.
First, we introduce the code server agency. When an agent leaves a remote agency,

it can define within the migration strategy that some code units shall be stored at
the current agency. Code units must be already available to be stored, so that they
must have been downloaded by the migration strategy before, if necessary. If at least
one code unit is copied, this agency becomes a code server agency for this agent.
The effect is twofold: First, the name of this agency is added to this list of code
bases. Second, after a successful migration, these code units are not deleted and can
in future be downloaded from this agency. As already mentioned, the agent must
decide from which code base units should be downloaded and this will be explained
later. The range of possible strategies goes from a simple one, that always uses the
last code server agency defined, to very complex one, that consider network metrics
and compares the cost of downloading code units from different agencies.

Using code server agencies, an agent has the chance to deposit code at several
agencies that are near to the ones it will visit in the next future. For example, in
Figure 6.6, we assume the cluster of agencies on the right side to be in the USA,
whereas the left side shall be in Europe. When the agent now migrates in the USA
and it is known that many servers should be visited over there and if additionally it
is also worthwhile to use code downloading at all, then the agent can define a code
server there.

This is not possible with any other mobility model currently available. In Aglets
it is not possible to define something similar to a code server at all. All classes can
only be downloaded from a single code base which must be defined during agent
creation. In Grasshopper it is possible to define multiple code server, but also only
when starting the agent and not during runtime.
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One question remains open and that is about how to release code servers again.
Therefore, we introduce the technique of sending commands between agencies. To
send a command to another agency is a new primitive that we have not introduced
so far. Using this command it is possible for the agent at any point to release a code
server defined before. This has the effect that all code units are deleted and this
agency is deleted from the list of code bases of all units.

Second, and as a direct consequence of the concept of a code server for code we
introduce the mirror agency, which can keep information about code and data. The
mirror agency is a copy of all data items of the external state and all code units. If a
mirror agency exists it takes the role of the home agency as long as it is defined. The
necessity of a mirror agency becomes obvious when looking at the example above,
and assuming that the agent wants to use downloading and uploading of data items.
It would be very expensive, if the agent would be forced to communicate to its home
agency for exchange of data items. Therefore, an agent can define a mirror agency,
which has the consequence that automatically all data items and all units of the
home agency, which are not already at the current agency, are downloaded to the
new mirror agency. All data items are set invalid at the home agency.

If the agent defines an agency to be a mirror and there already exists a mirror
agency, then all data items and all units must have been loaded from the old mirror
before. The last mirror agency must be released by the agent, which is done by
sending a command to this agency as described above for code servers.

6.3.4. Code Cache

The third important aspect of our new mobility model is the code cache. Code
caching is a technique to decrease network load by avoiding class transmission be-
tween two agencies in the case where code is already available at the destination
agency. We already became familiar with the Java code cache technique, which is
implemented as part of the class ClassLoader and which is able to avoid multiple
downloading of code for the same agent instance. In contrast to this technique, our
class cache shall not only work for a single agent instance, but shall be able to share
classes between several agents.

The cache works on the basis of classes and not units, because it could happen that
agents of the same type use different unit definition, so that for one agent instance
a specific class is in one unit and for another instance it is in another unit. If we
use a cache on the basis of units, it would only work for a single agent instance and
therefore would be quite useless.

The goal of our code cache is to check during the migration protocol, whether code
that belongs to the migrating agent is already available at the destination agency,
without sending the whole code. We use the technique of digests or hash values to
check whether two classes are equal or not. A digest is a sequence of bytes of fixed
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length, for example 16 byte in the MD5 [Rivest, 1992] algorithm, which is produced
from a stream of data of variable length. A digest algorithm must assure that it is
computationally infeasible to find two data streams that produce the same digest2.
As part of the SATP migration protocol, which we will introduce in the next chapter
in detail, the sender agency transmits the so-called Agent Definition Block to the
receiver agency. This block contains information about all units, all classes within
these units, a digest for each class and information about code bases from which units
can be downloaded. At the destination agency, each class is now checked against the
local class cache. If it contains a class with an equal name and equal digest, then it
can be assumed that code for this class is already available. The destination agency
informs the sender about this fact by a specific reply message, which should the
sender let neglect to send this class. In all other cases, code for this class is not
available yet, and the sender is informed to send the code.

It then depends on the migration strategy, which units resp. classes are really send
to the destination agency afterwards. If, for example, a unit is not pushed from the
sender agency, and code is not yet available at the destination, then it is inevitable to
pull code for these classes later. In the other case, if code is already available at the
destination, we will discover this using our cache algorithm and then we can neglect
to send code for these classes at all.

6.4. Summary of Part II

In this part of the thesis we first introduced a general framework for the migration
process of mobile agents. We discussed design issues of the migration process and
proposed the concept of a mobility model to describe the features of a mobile agent
system with regard to agent mobility. After that, we discussed the drawbacks of the
simple migration techniques used in today’s mobile agent systems and discussed in
detail possibilities to improve the performance of the migration process. As part of
this discussion we extended our mathematical model for network load and migration
time in order to compare different migration techniques. Finally, we proposed our
new mobility model, named Kalong, which gives the programmer of mobile agents
more possibilities to influence their migration process.

Until now, mobile agent systems only provide very simple migration strategies.
The push strategy always transmits all code classes of the agent, together with the
agent’s state to the next destination, compare Figure 6.7(a). In contrast, the pull
strategy never transmits any code class, but only the agent’s state and imposes the
task of downloading code on the receiving agency, compare Figure 6.7(b).

Using the new Kalong mobility model, the agent has the opportunity to select

2This does not mean that it is impossible, but the probability is very low that there exists a pair
of x, y for which H(x) = H(y), when H is the digest (hash) function.
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Figure 6.7.: Traditional migration strategies

classes that should be transmitted to the next destination agency, while other classes
can be downloaded from the agent’s home agency later. Also with regard to data
items, Kalong provides new functions to select which parts of the agent’s data state
should be sent to the destination agency, while others remain at the home agency,
compare Figure 6.8. If the agent needs a specific data item at an agency that is not
yet available, it can be downloaded from the agent’s home agency. The advantage
of this technique is a reduction of network load, because the data items itself and
the corresponding class code is only transmitted, if the data item is really used. We
call this feature the adaptive transmission of code and data, which gives the agent
programmer the chance to react to certain execution or network scenarios. No other
mobility model currently allows the programmer to influence the migration process
to such an extent. The necessity for adaptive transmission was already discussed:
For example in case of low-bandwidth and unreliable network connection the agent
should migrate with all its classes to avoid dynamic class loading later. However, if it
is already known from the current execution state of the agent that specific classes or
data items will not be used under any circumstances at the next destinations, their
transmission is superfluous and should be avoided. With Kalong it is possible to
implement migration strategies that take such rationals into account.

The second advantage of Kalong, as compared to all other mobility models, is its
capability to dynamically define code server and mirror agencies. All other mobility
models only distinguish between the agent’s home server and the remote servers,
which are all servers that the agent visits. The home server has the very important
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Figure 6.8.: Adaptive transmission of code and data in Kalong.

role to provide all of the agent’s code so that it can be downloaded from this server
later. In most mobile agent systems the home server is also the only server that
provides the agent’s code. In some systems the programmer can manually deploy
agent code to other servers too.

In Kalong it is possible that the agent dynamically defines a server to become a
code server, compare Figure 6.9. The effect is that all code of the agent is copied
to this server and, therefore, can be also loaded from this server in the future. The
advantage results from the fact that it is faster to load code from a near-located
agency than from the far away home agency. The agent can decide in relation to its
itinerary for example, which server should become a code server. When the agent
terminates, it has to release all code servers to free resources.

A mirror agency is an extension of a code server agency, where not only agent’s
code but also selected data items of the external state are moved to this agency. A
mirror agency completely overrides the existence of a home agency, so that all data
and code loading requests are directed to the mirror instead of the home agency.
Like a code server, a mirror server should be used reduce the time for code and data
transmission.

The third advantage of Kalong is a comprehensive technique for code caching.
Before any class is transmitted to a destination agency, it is verified whether exactly
this class is already available there. If the destination agency already has this class,
the sender agency must not send it again. Using this technique, network load and
transmission time can be decreased in the case that many agents of the same type
(using the same classes) roam the network and visit the same agencies. The equality
of classes is checked using a hash value, which guarantees that also different versions
of the same class can be distinguished.

As far as we known, there is only a single paper available in literature that also
discusses the concept of an adaptable migration process. Picco proposed a lightweight
and flexible mobile code toolkit named µCode [Picco, 1999]. The main principle of
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(b) Mirror.

Figure 6.9.: Further advantages of the Kalong migration model.

µCode is the flexibility to control code relocation. The unit of transmission is called
group, which can contain single classes, class closures, and objects. The programmer
can choose which classes and objects shall be part of the next migration – a technique
which is comparable to the possibilities a programmer has with Kalong. A migration
is started by invoking method ship of class Group. Classes that are not already
available at the destination server are downloaded from a single server that is given as
parameter in method ship. µCode does not provide the possibility to load data items
dynamically during runtime or to update data items at the agent’s home server. It
does not allow to define more than a single server from which code can be downloaded,
and, therefore, does not allow to define code servers during runtime. Due to the lack
of individual data transmission, µCode also does not provide a mirror concept. The
source code of µCode is available as an open source project at Sourceforge3.

The idea of introducing code servers to load code from near-distance agencies
instead of the home agency, was presented by Hohl et al. [1997]. However, their

3Visit http://mucode.sourceforge.com for more information.
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concept can be named static, as code server must be initialized manually be the
agent programmer and can not by initialized by the agent during runtime. We
already discussed this paper in Section 6.2.

Other papers available do not focus on the adaptation of the general migration
process, but on optimizations for specific aspects of mobile applications. For exam-
ple, Tanter et al. [2002] discuss the problem of determining the data items that a
mobile application (which might be an agent) should take along during a migration
or leave at the source environment to be accessed remotely. They explain techniques
a programmer can use to specify the type of data migration for each instance. The
authors work towards a technique, where the kind of migration can be exchanged
dynamically during runtime.

Another paper discusses techniques to determine the itinerary of a mobile agent
during runtime [Satoh, 2001, 2002] using the new concept of mobile agents being the
provider for the migration service in a mobile agent system. The MobileSpaces system
is a framework for building network protocols for migrating mobile agents over the
Internet. It is characterized by two new concepts. First, mobile agents are organized
in a hierarchy, which means that agents can contain other agents, resulting in a tree
structure. Second, mobile agents can migrate to other mobile agents (inter-agent
migration) as a whole, together with all their inner agents. A mobile agent migrates
into another agent, which itself implements a network protocol for migration. The
author only describes applications of this system on the level of route determination,
and not the lower level of an optimized agent transmission.
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Part III.

The Kalong Mobility Model And
Its Implementation

In the last part we identified the migration process as a very resource-
critical part of mobile agents and we described several techniques
to improve the migration process. In Section 6.3 we gave a first
informal description of our new Kalong mobility model, which is
our suggestion to enhance the migration process of mobile agents.
This part of the thesis is entirely devoted to a detailed specification
of Kalong as mobility model and a description of its implementation
as the Kalong software component.





7. Specification of the Kalong Mobility
Model

This chapter specifies the Kalong mobility model and the SATP migration protocol.
The reader may skip this technical chapter and continue with the description of
the Kalong software component on Page 147 or with the evaluation of the Kalong
mobility model in Part IV on page 201.

7.1. Introduction

This specification defines the Kalong1 mobility model. Kalong provides an efficient
technique for migration of mobile agents between computer platforms. It is designed
to be portable between different machines, operating systems, network architectures,
and network transport protocols. In the current version, Kalong bases on the Java
programming language. It is planned to port Kalong to other programming languages
later.

Kalong is supposed to be embedded in an agency software and to communicate
with three other components, compare Figure 7.1.

1. The agent manager is responsible for agent execution and other basic functions
of a mobile agent server. It communicates with Kalong to conduct a migration.
In the other direction, Kalong notifies the agent manager about received agents.

2. The network is not directly accessed by Kalong but by using a network adapter
component that abstracts from details of a network protocol and works as
a dispatcher for a set of different protocols. Kalong communicates with the
network adapter using a very small interface, which only provides functions to
open and close a network connection and to send and receive byte sequences.
For each network protocol, the network adapter launches a server that listens to
a network port for incoming migrations. The network adapter informs Kalong
about incoming requests.

1Kalong is the name of a fruit-eating flying fox, lat. Pteropus vampyrus, inhabiting Java island.
The Kalong is remarkable for its span and its flying speed. The latter was the reason to choose
this name for our mobility model, besides the relation to Java.
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Figure 7.1.: Kalong and its environment.

3. Kalong must have access to a file system to load class files. Instead of a file
system, classes can also be loaded from remote network resources, accessible
using a URL address and a HTTP or FTP connection. The latter is not pictured
in Figure 7.1.

Kalong defines a new migration protocol, named Simple Agent Transport Protocol2

(SATP), which is an application level protocol to transfer agent information to a sin-
gle destination agency. SATP works according to a simple request/reply scheme and
must be used on top of a connection-based network protocol that provides a reliable
flow of data, for example TCP. It can be embedded in any other application-level
protocol that also uses TCP, for example SSL, HTTP, SOAP, etc. This specification
defines SATP commands as well as the message format to be used, in contrast to
the specification of SMTP for example, where the definition of the message format
is moved to a companion protocol (RFC 822).

Kalong is responsible for the whole migration process and all tasks related to agent
migration. Especially, Kalong must provide functions to serialize and deserialize
agents, it must define an own class loader object for each agent, which directs requests
to load classes back to Kalong. Kalong is not responsible for any kind of agent thread
management. In the case of an agent migration, it is the agent manager that must
control thread suspension and guarantee that no agent thread is able to still modify

2The name was chosen in tradition to other application-level protocols, like Simple Mail Transfer
Protocol and Simple Network Management Protocol, and to distinguish it from Aglets’ Agent
Transfer Protocol (ATP). Unfortunately it happened that SATP became more complex than
ATP.

114

http://aglets.sourceforge.com


7.2. Kalong Vocabulary

the agent’s state. After an agent has been received successfully, Kalong only notifies
the agent manager to start the new agent.

In detail, Kalong defines the following models, interfaces, and protocols:

1. An agent model that introduces the concept of external state and a new level
of granularity for class transmission, see Section 7.3.

2. An interface (IKalong, see Section 7.4 on page 122) for the agent manager to
conduct a migration, an interface (IAgentManager, see Section 7.5 on page 134)
for Kalong to access the agent manager.

3. An interface (INetwork, see Section 7.6 on page 134) for Kalong to use the
network adapter, an interface (IServer, see Section 7.7 on page 135) for the
network adapter to access Kalong.

4. A migration protocol, named SATP, which defines messages and their format
sent over the network, see Section 7.8 on page 135.

As compared to our definition of mobility models, the focus of Kalong lies on
issues of the agent’s and network’s view. Kalong’s new agent model partially refers
to the programmer’s view too. However, Kalong does not define anything related
to the mobility level (which is part of the programmer’s view) for example, and it
is the task of the agent manager to map requirements of the mobility level to the
preferences of Kalong as described in the following sections.

7.2. Kalong Vocabulary

This specification uses the following terms:

Agent A mobile agent as used in this thesis. We will often use the term agent
instance to denote a single agent object in contrast to the set of all agents of
the same type, or the agent’s type.

Agency Software that is necessary to execute and migrate mobile agents on a com-
puter system. We distinguish between the sender agency which starts a transfer
and the receiver agency, to which the transfer is directed.

Agent Manager Subcomponent within an agency, which conducts a migration pro-
cess.

Connection A network connection is a virtual communication channel between two
computers that is used to transmit SATP messages.
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Context Kalong maintains for each agent a context data structure that comprises of
all information necessary for Kalong, e.g. its name, its home agency, its data
units, its state, etc.

Message The basic unit of SATP communication. A message is a sequence of bytes
matching the syntax as described in the following sections.

Migration Is a special form of a transfer, which always has the consequence that
agent execution is stopped at the sender agency and resumed at the destination
agency. We define two new verbs to describe the direction of a migration. When
an agent leaves an agency, then it migrates out and when an agent is received
by an agency, then it migrates in.

Migration Strategy A migration strategy defines what agent information should be
sent to which agency. A migration strategy can consist of one or many transfers.
The agent manager defines the migration strategy by using the methods of
interface IKalong.

Object State The object state or agent object state is equal to the serialized agent.

Request A request is a SATP message which is sent from a sender to a receiver
agency.

Reply A reply is a SATP message which is sent as answer to a request from the
receiver agency to the sender agency.

Transaction A migration strategy might consist of several transfers. As a migration
strategy must be an atomic process, which is either completely executed or
not at all, Kalong provides transaction management according to a Two Phase
Commit (2PC) protocol.

Transfer The process of transferring agent information from a single sender agency
to a single receiver agency. If the transfer includes an agent’s state information,
then it is a migration.

URL Each agency must have one or many addresses in form of a URL. Kalong does
not require a specific format of URLs, as addresses are only forwarded to the
network adapter.

7.3. Agent Model

7.3.1. Agents and Agent Contexts

In Kalong, an agent must be a Java object of type Serializable or any subclass, as
an agent’s object state must be marshaled to be sent to a destination agency. The
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object state comprises of all agent’s attributes, which must be serializable too.

Agent Names

An agent must have a globally unique name that does not change during its life-time.
To be globally unique means that there must not be two agent instances with the
same name in the whole agent system independent of time. Kalong does not specify
how to obtain such a name and does not define any structure for a name, except
that a name must be codeable into a Java String object. Kalong can only locally and
temporally verify that no two agent instances with the equal name exist, when new
agents are registered with Kalong and when agents migrate in. The agent manager
is responsible to guarantee uniqueness by an appropriate algorithm to generate agent
names.

Data Items

Besides the agent’s object state, agents also have an external state which is defined
as a set of serializable Java objects which are accessible by the agent but are not part
of the object state. Each element of the external state must have a unique name to
be stored and accessed by its owner. A name must be codeable as Java String object.
Data items of the external state must not be accessible by other agent instances. A
single data item should not be shared with another agent instance, as it is copied in
order to migrate it.

Each data item has a status that can be defined or undefined. If a data item is
transferred to another agency, it is locally set to undefined and set to defined at the
destination agency. Thus, it is possible to let data items remain at the home agency
for example, although the agent has migrated to another agency. The agent can
request those data items from its home agency later. Kalong must assure that a data
item currently set to undefined is never read or written by the agent manager.

Code Units

An agent’s code is transferred in form of code units. A code unit contains one or
many classes, which will always be transferred together. Each code unit has a locally
unique identifier, i.e. no two units of the same agent instance have the same identifier.

Each agent instance defines its own distribution of classes onto units. It is allowed
to include the same class in more than a single unit. It is the task of the agent manager
to make sure that classes are completely spread onto units. Code distribution cannot
be modified, after the the agent definition block (see below) was sent the first time.
Each code unit has a list of code bases from which it can be loaded. A code base is
an agency and is described by one or many URL addresses. The home agency should
not be member of any code base as this would be redundant.
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Figure 7.2.: Comparison of the global and local life-time of a agent with the life-time
of an agent’s context.

Agent Context

All information about the external state and code units of an agent are stored within
Kalong in a data structure named agent context. There exists a single agent context
for each agent instance. Kalong must provide methods to access data items of the
external state by the agent manager, but Kalong does not specify how an agent
manager provides access to its data items for an agent instance. Kalong does not
define the detailed structure of an agent context. All implementation details are left
to the programmer.

It is important to understand the difference between the life-time of an agent
instance and an agent context. An agent is created by a user within the agent
manager. It has a global life-time which lasts from its creation till its termination
(which is not necessary at the same agency). The time visiting an agency, starting
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Agent Roaming

rcvHeaderregisterAgent

deleteAgentContext

sendState

rcvState
Agent Running

Figure 7.3.: State diagram for an agent context.

after the agent has migrated in and stopping after the agent has migrated out, is
called the local life-time. Thus, the local life-time is bound to a single agency.

Agent context objects are created when the agent manager registers an agent with
Kalong or when an agent migrates in. However, the life-time of an agent context
might not terminate with the local life-time of an agent. For example, a home agency
is supposed to keep information about code units so that the agent can load necessary
classes later. We will see in the next section two more examples for agencies that
retain agent information, even beyond an agent’s local life-time. To summarize, the
life-time of an agent context is not bound to either the local or the global life-time of
an agent, but it is at least as long as the local life-time of the corresponding agent.

This can be best explained using an example, compare Figure 7.2. The figure
shows global and local life-time for an agent visiting three agencies A, B, and C.
An agent’s life-time is drawn as striped bar, an agent’s local life-time is drawn with
non-filled bar, and an agent’s context life-time is drawn with a solid bar. The agent
is created at agency A, which automatically becomes the agent’s home agency. It
now migrates to two other agencies, named B and C and finally returns to agency
A to terminate there. After the agent was created, also an agent context object is
created for it. When the agent migrates to agency B, the local life-time terminates,
but the agent context’s life-time continues. At agency B, a local life-time and an
agent context’s life-time are started when the agent migrates in. After it has been
migrated out, the local life-time terminates, whereas the agent context’s life-time
continues. The reason for this is that the agent has defined agency B to become a
code server, i.e. some code units of this agent are still available at agency B for later
download. Before the agent leaves agency C, it releases the code server again, which
terminates the context’s life-time at agency B. Finally, after the agent has returned
home, the context’s life-time at agency A terminates too.

At last, we can also describe the life-time of an agent context using a state diagram,
compare Figure 7.3. After creation, an agent context is first in state Agent Running,
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Home Remote Code Server

Mirror

Figure 7.4.: The four agencies types in Kalong and how agency types can change
during life-time.

which indicates that the agent is currently been executed. After the state was sent
to another agency, the context switches to state AgentRoaming, which means that
the agent is not executed at this agency any more. If an object state is received later,
it switches back to the first state again. On a remote agency, the context is first in
state AgentRoaming (because we allow to initialize a remote agency as code server
by only sending code units), until an object state is received. Then, it switches to
state AgentRunning.

7.3.2. Agencies

An agency is the place where agents are executed. Kalong does not specify how an
agency is further structured, for example using the concept of logical places. This
must be done within the agent manager component.

Each agency must have at least a single address in form of a URL, for example:
tcp://tatjana.cs.uni-jena.de:4155/whyte/penthouse, where tcp is the protocol name,
the number 4155 is the port number on which the agency can receive agents using
this protocol, and whyte/penthouse is the name of the place to which the migration
is directed to. Kalong does not specify any format of this URL, but it requires that
is consists at least of a protocol name, a host name, and a port number. All other
parts of a URL are not considered by Kalong.

Addresses are obtained by the underlying network adapter component, which man-
ages a set of different network protocols and defines a server for each protocol lis-
tening to a specific port. Therefore, agencies can be addressed using many different
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Agency Type Data items Code units Cardinality

Home X X 1
Remote 1
Code server X 0..n
Mirror X X 0..1

Table 7.1.: Comparison of the four agency types with regard to their ability to store
data items and code units and the number of agencies of this type.

URLs. For example, the same agency can be addressed using tcp://tatjana.cs.uni-
jena.de:4155 and ssl://tatjana.cs.uni-jena.de:4156. The first address must be used to
communicate to this agency over a plain TCP connection, whereas the second URL
must be used to have a secure connection using the SSL protocol. The addresses
of an agency must only differ in the protocol and the port number, all other URL
elements must be equal. This requirement must be verified by Kalong.

Kalong distinguishes the following roles for agencies from the view of a single agent
instance. This role information is transparent for the agent manager and only used
within Kalong, thus, it might be a little bit confusing that we speak of agency roles
where we really mean Kalong roles.

1. The agency on which the agent was started becomes automatically the home
agency. An agent must only have a single home agency and an agent’s home
agency must not be redefined. The home agency does not delete any informa-
tion about the agent except of the agent’s object state, after the agent has
migrated out.

2. A remote agency is every agency that an agent visits while executing an
itinerary. Usually, a remote agency drops all information about an agent, after
the agent has left it.

3. A code server agency is able to store code units, even after the agent has left
the agency. Thus, code can be downloaded from this agency later. There can
exist multiple code server agencies in parallel.

4. The mirror agency is able to keep information about code unit and data items,
even after the agent has left the agency. The mirror is a complete copy of all
information stored about an agent at the home agency. There exists always
only a single mirror agency at a specific point in time.

The role of an agency with regard to a specific agent instance might change during
its life-time as can be seen in Figure 7.4. An agency becomes a home or remote
agency by starting or receiving an agent. A home agency releases its role, when
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the agent terminates or the agent manager deletes the corresponding agent context
object. A remote agency releases its role when the agent leaves it and migrates to
another one, or the agent defines this agency to become a code server or mirror
agency. Code server and mirror agencies release their role only by an agent’s order.
A mirror agency can be defined to become a code server afterwards. We show in
the next section, how an agent can define a code server or mirror agency. Table 7.1
compares the agency types with regard to their ability to keep information about
agents.

7.4. Interface IKalong

This interface defines the main functions of the Kalong component. It is used by
the agent manager to access an agent’s context and to define a migration strategy.
The protocol definition is given as a set of methods with arguments and results in
Java syntax. A description of the function of each method should provide enough
information to allow its implementation.

The agent manager at the sender agency communicates with Kalong in two phases.
First, it registers an agent with Kalong, so that Kalong can verify that all used classes
are available for transmission and the agent itself as well as all its components are
serializable. Second, it uses the services of this interface to conduct the migration
process.

We divide the methods of IKalong in four groups:

1. Methods to start and stop transactions.

2. Methods to register agents and define code units.

3. Methods to modify a local agent context.

4. Methods to transfer agent information via network.

Almost all methods receive an agent name as parameter to identify the agent
context. All methods of interface IKalong are assumed to work synchronous.

In the following the term current agency always refers to the agency on which the
commands are executed.

7.4.1. Manage Transactions

A migration strategy might comprise of several transfers. As it must be an atomic
command that is only executed with all its transfers or none at all, Kalong provides
a common technique for transaction management, called two-phase-commit (2PC)
protocol.
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The idea of the 2PC protocol is the following. All commands that modify the
agent context information either locally at the current agency or remote at any of
the destination agencies, must be bracket by the following transaction management
commands. To start a transaction, the following method must be used.

public void startTransaction( String agentName )throws KalongException
Start a transaction. Throws an exception, if a transaction is running already.

After this method was called, no other thread can start a transaction using this agent,
until the transaction terminates.

To explain the 2PC protocol, we assume a case where several connections have been
opened to different remote agencies. After all messages have been sent, the agent
manager must send a so-called prepare message (first phase) using the following
method.

public boolean prepare( String agentName )
Send a prepare message to all receiver agencies. The reply informs about success.

Kalong maintains a list of all connections that were opened since the last call of
method startTransaction. Method prepare sends a prepare message to all receiver
agencies. Each receiver answers, whether the last transfer was successful or not.
Method prepare collects these reply messages and returns true if all receiver agencies
have accepted the transfer and false, if at least a single agency has not accepted the
transfer.

The agent manager must now send either a commit or rollback message to all
receiver agencies (second phase) with regard to the result of the previous method.
Both methods close all network connections and terminate the transaction.

public void commit( String agentName )
Send a commit message to all receiver agencies.

A commit message applies all changes made during the last transfer. This might
have the consequence that an agent is started at a remote agency.

public void rollback( String agentName )
Send a rollback message to all receiver agencies.

A rollback message recovers at the receiver agency the last stable state before the last
transfer was started. Of course, the last three methods must assure that a transaction
has been started before. If no transfer was done since the last start of a transaction,
method prepare must return true.
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7.4.2. Information about Agencies and Defining Agent Contexts

As already described, agency addresses are defined by the network adapter compo-
nent. As this information is the only one that must be available at the agent manger
about the network layer, Kalong must pass on this information.

Using the following method, all addresses of this agency can be requested.

public java.net.URL[] getURLs()
Return an array of URLs of the current agency or null, if this agency has no addresses yet.

It simply uses the corresponding method of INetwork to obtain this information, see
Section 7.6 on page 134.

Before agents can migrate, they must be registered with Kalong. If this method
is successful, a new agent context exists in Kalong which can be accessed using the
given agentName. If the method fails for any reason, no agent context is created and
an exception is thrown.

public void registerAgent( String agentName, Serializable agent )throws
KalongException
Registers an agent with name agentName and object state agent with Kalong.

This method first checks whether an agent context with the given name agentName
already exists and throws an exception in this case. The current agency becomes
the home agency for this agent. All classes of the class closure are determined by
analyzing object agent. It throws an exception, if no address of the current agency
can be determined.

After context creation, the code units for this agent must be defined, before any
migration can happen.3 The main method to define code units is the following.

public int defineUnit( String agentName, String[] classNames )
Defines a new unit with classes classNames. Returns the code unit identifier.

All classes whose name is given in the array className are bundled into a single
code unit. Parameter classNames must not be null or the empty array. Kalong must
assign a unique identifier to this unit, which is returned to the caller. The definition
of code units cannot be changed or modified afterwards. The agent manager is
responsible that all necessary classes of the class closure are distributed on code
units. Classes that are not part of any code unit cannot be transferred to remote
agencies, either by pushing or pulling. The agent manager can request the classes of
the class closure by using the following method.

public String[] getClassNames( String agentName )
Returns an array of Strings containing the names of all classes that the current agent uses.

3In rare cases, when all classes of the agent can be assumed to already exist at any destination
agency, it is allowed to skip unit definition.
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The class closure determined by Kalong contains all classes that are used by the
agent, even common Java classes, as for example java.lang.String, etc. It is the task
of the agent manager to implement a filter function for ubiquitous classes (compare
p. 75) and not to add these to any code unit. In contrast, it is allowed to add classes
to code units that were not part of the class closure. This might be important in
rare cases where a class is used, but the class name is not part of the agent’s Java
byte code. Consider the following example:

1 public class TestAgent implements Serializable
2 {
3 public void run()
4 {
5 Class aClass = Class.forName( ”OtherClass” );
6 SomeInterface object = aClass.newInstance();
7 }
8 }

In this example, class OtherClass is assumed to implement interface SomeInterface.
The class is defined by using method Class.forName, which gets a String object as
parameter containing the name of the class. A new instance of this class is created
by using method newInstance and assigned to a variable of the super type. As a
consequence, the byte code of class TestAgent does not contain the full class name
for class OtherClass, except as String representation and this cannot be distinguished
from other String objects without a semantic analysis of the byte code. To make class
OtherClass able to migrate, it must be added to some code unit manually.

There is another method, by which the agent manager can obtain a list of all
classes for which at least a single object exists in the serialized agent.

public String[] getClassesInUse( String agentName )
Returns an array of class names. Each class is used in the serialized agent.

The agent manager can also request the size of a class’ byte code.

public int getClassSize( String className )
Returns the size of the given class.

7.4.3. Modifying Agent Context

The following methods are mostly for retrieving information about the agent context
resp. the agent itself. They must be used within a transaction.

First, to request the address of an agent’s home agency, the following method must
be used.
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public URL[] getHomeAgency( String agentName )
Return the addresses of the agent’s home agency.

Data Items

The following methods are to access the data items of the external state and to define
the object state.

public String[] getDataItems( String agentName )
Returns an array containing the names of all data items.

The returned array contains all data items, without regard to their current state. If
the agent has no data items in the external state, the return value is the empty array.
If only undefined data items are to be requested, then the following method can be
used.

public String[] getUndefinedDataItems( String agentName )
Returns an array containing the names of all undefined data items.

If no undefined data items exist, the return value is the empty array. If only all
defined data items are to be requested, then the following method can be used.

public String[] getDefinedDataItems( String agentName )
Returns an array containing the names of all defined data items.

To define and retrieve the value of a data item, the following two methods can be
used.

public void setData( String agentName, String name, Serializable object )
throws KalongException
Set the data item with name name to the value given as object.

This method throws an exception, if the data item is currently undefined and, there-
fore, cannot be overwritten. To delete a data item permanently, it must be set to
the null value.

public Serializable getData( String agentName, String name )throws
KalongException
Returns the value of the data item with name name.

The method throws an exception, if the data item does not exist or is currently
undefined. To check whether a data item is accessible, its state can be requested
using this method:

public byte getDataItemState( String agentName, String name )throws
KalongException
Returns the current state of the data item with name name.
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The return value equals 0, if the data item is defined, and 1, if it is undefined. If the
data item does not exist, an exception is thrown. In some cases it might be necessary
to know the size of a serialized data item in order to decide, if it should migrate to
the next destination or remain at the current one.

public int getDataSize( String agentName, String name )throws
KalongException
Returns the size of the serialized data item with name name. Throws an exception, if the

requested data item does not exist.

The last method must be used to define the object state of an agent.

public void setObjectState( String agentName, Serializable state )
Define the agent’s object state.

This method must be used before a migration is started.

Code Units

The next methods are to retrieve information about code units.

public int[] getUnits( String agentName )throws KalongException
Returns an array with the identifiers of all units.

If no units were defined yet, the return value equals the empty array.

public String[] getClassesInUnit( String agentName, int id )throws
KalongException
Returns an array with the names of all classes that are connected with the given unit

identifier.

If the given unit identifier is invalid, an exception is thrown. The return value is
never null or the empty array. The next method is used, when a specific class is to
be downloaded.

public int[] getUnitForClassName( String agentName, String className )
Returns the identifiers of all units that contain the given class name.

If the given class name is not member of any unit, the empty array is returned.

Defining Code Server Agencies

To mark a unit to remain at the current agency after a migration, the addresses of
the current agency must be added to the unit’s code base.

public void addCodeBases( String agentName, int id, URL[] url )throws
KalongException
Add the given URLs as new code bases for the given unit. Throws an exception, if the given

identifier is invalid.
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The new code bases must be appended to the existing list, because the order of the
code base addresses must not be changed. With the following method, the current
code bases can be requested.

public URL[] getCodeBases( String agentName, int id )throws
KalongException
Returns all code bases of the given unit. Throws an exception, if the given identifier is invalid.

With the last method, agency addresses can be deleted from a unit’s list of code
bases.

public void deleteCodeBases( String agentName, int id, URL[] url )throws
KalongException
Delete the given URLs from the code bases for the given unit. Throws an exception, if the

given identifier is invalid.

Defining Mirror Agencies

Finally, the last three methods are to define and delete mirror agencies. It is impor-
tant to understand that these methods have only a local effect and changing a remote
agency to a mirror agency means more than only calling method setMirrorAgency.
It is necessary to load all data items and code units from the current mirror or home
agency before.

public URL[] getMirrorAgency( String agentName )
Returns the addresses of the current mirror agency, if defined. Otherwise return null.

public void setMirrorAgency( String agentName, URL[] mirror )throws
KalongException
Define the current mirror agency. Throws an exception, if a mirror is defined already.

public void deleteMirrorAgency()
Delete the currently defined mirror agency.

Also the last method has only a local effect and it does not send a message to the
current mirror agency to release its role.

7.4.4. Sending Messages to Receiver Agencies

The following methods are to conduct a transfer of messages to a single receiver
agency. It is not allowed to open more than one connection to the same receiver
agency during the same transaction. All transfer messages must be part of a trans-
action.
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To start a transfer, the following method must be called.

public Object startTransfer( String agentName, URL receiver )throws
KalongException
Open a connection to the receiver agency whose address is given as parameter. Return a

handler object for this connection.

Note, that the address of the receiver agency must be given as a single URL. The
agent manager is responsible to select the correct address from the list of all known
URLs for the destination. The return value of this method is a so-called handler
object which is used to identify this transfer. This specification does not define how
this handler object is determined, but it must be unique for all transfers during the
same transaction. There does not exist any method to stop a transfer explicitly, as
network connections are closed by using the two methods commit and rollback.

All other methods process according to the following pattern.

1. The agent’s context is accessed to obtain further information.

2. This information is sent as a SATP request message to the receiver agency
which always has to answer with a reply message. The type of request depends
on the method, compare Table 7.2 on page 136.

3. The reply message is analyzed and the result is stored in the agent’s context if
necessary.

In the following, we will focus on the semantic of each function. The structure of
each message is defined in the following section.

There are a few constraints in sending messages, as not all messages must be sent
as part of a single transfer. We describe these rules by using a finite state machine,
whose graphical representation can be found in Figure 7.5. In the figure, states are
named from the viewpoint of the receiver agency, so that for example a state is named
ADB Rcv, which should express that the agent definition block (ADB) was received
successfully. For the sender side, states should be renamed accordingly.

public boolean ping( Object handler, byte[] data )
Send the given byte sequence data to the receiver agency.

This method can be used to check the availability of the remote agency or to check
connection quality. The receiver is supposed to send back the byte array data un-
changed. The method returns true if the same byte sequence was received, otherwise
false. Ping messages may be sent at any point during a transfer and may also be
sent multiple times.

The following methods do not have a return value but throw an exception in the
case of any error.
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ADB Rcv
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Header Rcv
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Figure 7.5.: State diagram for a SATP transfer. We omit to draw that at each state
a Ping message can be sent/received, which does not change the state.

public void sendHeader( Object handler, byte command )throws
KalongException
Send the header to the receiver agency. Throws an exception, if the receiver agency does not

accept the header.

The header message contains information about the agent and its home agency. The
receiver agency must answer, whether it accepts further messages for this agent or
not. The sender should terminate the transfer, if the receiver did not accept the
header. The receiver must reject any further messages except a ping message, if the
header was not accepted.

The header message must be sent prior to all other messages during a transfer,
except a ping message. It must not be sent more than once during the same transfer.
A header message should be followed by any other message. Header messages can be
sent between all agency types.

At the receiver agency the agent’s name given in the header is used to select the
agent context. If no agent with the given name exists, it must be decided, whether
the transfer should be accepted or not, for example using the addresses of the home
or sender agency. Kalong must ask the agent manager as part of this decision using
method verifyAgent of interface IAgentManager. The reply code is set accordingly.

The command parameter contains the code of a process that should be executed
after transfer is completed.

No operation (noop) (value 0) In most cases, this command is sent, which has no
effect at the remote agency. In case of usual agent migration, it is not necessary

130



7.4. Interface IKalong

to specify to start the agent – even in this case, this command should be
selected.

Release code server agency (value 1) Is sent to a code server agency in order to
instruct it to release its role and delete all code units.

Release mirror agency (value 2) Is sent to a mirror agency in order to instruct it to
release its role and delete all data items and code units. If there are defined
data items left at the mirror agency, the header must be rejected.

Start code server (value 3) Using this command, it is possible to create a code
server remotely, i.e. without migrating to it. All code units sent afterwards are
immediately copied at the receiver agency.

Release mirror agency to code server (value 4) Is sent to a mirror agency in order
to instruct it to release its role and become a code server agency. The effect is
that all data items are deleted, but code units are still available at this agency.
If there are defined data items left at the mirror agency, the header must be
rejected.

public void sendADB( Object handler, boolean classCache )throws
KalongException
Send the agent definition block (ADB) to the receiver agency.

This message is used to transmit information about code units and classes without
the code itself. The parameter classCache defines whether the receiver should answer
with information about class availability.

The header must have been sent before an ADB message. It is allowed to send a
ADB message multiple times to the same agency, as it is possible that code bases
have changed. After an ADB message, no request messages must be sent to the
receiver agency.

public void sendUnits( Object handler, int[] ids )throws KalongException
Send code units with the given identifiers to the receiver agency.

This message is used to transmit a set of code units to the receiver agency. The
receiver replies whether it accepts the transmission or not.

A header message must have been sent before a unit message. An agent definition
block must be available at the receiver agency, before a unit can be accepted. To
transmit many code units, they should be sent as one message. After a unit message,
any unit request or data request message must not be sent, as it does not make sense
to request units or data items from an agency to which units or data items were sent
to right before.

131



7. Specification of the Kalong Mobility Model

public void sendUnitRequest( Object handler, int[] ids )throws
KalongException
Send a request to download units with the given identifiers to the receiver agency.

This message is used to request units from a home, code server, or mirror agency.
The receiver replies the requested units, unless one of the following reasons.

1. The receiver is not a home, code server, or mirror agency for this agent.

2. Any of the sent unit identifiers is invalid.

A header message must have been sent before this message. Messages of type ADB,
unit, or state must not have been sent before or after this message. To request many
data code units, their identifiers should be bundled into a single message of this type.

public void sendState( Object handler, String[] names )throws
KalongException
Send the state to the receiver agency.

This message is used to transmit an agent’s object state and optional some data
items to the receiver agency. The names of the data items to transmit along the
state are given as parameter names. This parameter might be null. The receiver
answers, whether it accepts this message or not.

The effect of this method is that in fact the names of all data items are sent to the
destination agency, but some of them without their value. The reason for this is that
data items can only be distributed between two types of agencies: the current one
and the home (resp. a mirror) agency. Even, if a data item shall remain at the home
agency, the agent must have knowledge about this data item, at least to prevent
creation of a new data item with the same name, which would rise conflicts when the
agent migrates back to its home agency.

Therefore, the state contains the names of all data items. All data items given
as parameter names are sent with state defined and their current value. The state
is locally set to undefined. All other data items are sent with state undefined and
without their value.

If the sender agency is not allowed to store data items (i.e. it is a remote or code
server agency), all data items are transferred with their value to the destination
agency without regard to the value of parameter names.

A header message must have been sent before a state message. An agent definition
block must be available at the receiver agency before a state message can be received.
It is not necessary that the ADB was sent during the same transfer. A state message
must not be sent to an agency, where an agent is currently executed. After a state
message, no unit request or data request message must be sent.

After a transaction in which a state message has been sent, some or even all agent
related information have to be dropped at the sender agency. If the sender was a
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remote agency and the agent has copied some code units, the agency becomes a
code server. If the agent has not copied code units, all agent related information are
deleted. If the sender was a home or mirror agency, they remain their role.

public void sendDataUpload( Object handler, String[] names )throws
KalongException
Send data items whose names are given as parameter to the receiver agency.

This message is used to upload data items from the current agency to a home or mirror
agency. It must not be sent to the home agency, if there exists a mirror agency. The
receiver answers, whether the new data values are accepted. The receiver must reject
a data item upload for the following reasons:

1. The receiver is not a home or mirror agency.

2. An uploaded data item is already defined at the receiver agency.

A header message must have been sent before this message type. Messages of type
ADB, unit, or state must not have been sent before or will be sent after this message.
To transmit many data items, they should be bundled into a single message.

Only data items that are defined at the current agency can be uploaded. At the
receiver agency, these uploaded data items must be undefined before, and set to
defined after receiving them. After a successful transmission, sent data items must
be set to undefined locally.

public void sendDataRequest( Object handler, String[] names )throws
KalongException
Send a request to download data items with the given names to the receiver agency.

This message is used to request data items from an agent’s home or mirror agency.
It must not be sent to the home agency, if there exists a mirror agency. The receiver
must reply with the requested data items. The receiver must reject the message for
any of the following reasons:

1. The receiver is not a home or mirror agency for this agent.

2. Any of the data items is undefined or does not exist at the receiver agency.

A header message must have been sent before this message. Messages of type ADB,
unit, or state must not have been sent before or will be sent after this message. To
request many data items, their names should be bundled into a single message.
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7.5. Interface IAgentManager

This interface is used by Kalong to communicate to the agent manager. It is used
during an in-migration of an agent to this agency to check whether reception of the
agent is allowed. The agent manager could for example reject any migration that
comes from a host supposed to be malicious. Therefore, it should use the information
about the lastAgency given in the following method.

public boolean verifyAgent( String agentName, URL[] homeAgency, URL[]
lastAgency )
Checks whether an agent with the given name and addresses is allowed to migrate in this

agency.

After Kalong received an agent’s state, the agent manager is asked to start agent
execution. For this task, the following method is used:

public void startAgent( String agentName, Serializable object )
Start the given agent.

The parameter object contains the deserialized agent object. All classes not already
available at the current agency must have been downloaded before.

7.6. Interface INetwork

The second interface defines methods to access the network adapter. The first method
is used to get all addresses under which the network adapter is accessible.

public URL[] getURLs()
Return the URLs for all network protocols, or null, if no addresses are defined.

The next three methods are to handle network connections. The first method is
used to open a communication channel to a remote agency.

public Object openTransfer( URL receiver )throws KalongException
Open a network connection to the given receiver agency and return an object to identify this

transfer. Throws an exception, if the connection cannot be opened.

The second method is used to send a message to the destination agency. The
return value contains the reply message, which must be processed now.

public byte[] send( Object handle, byte[] data )throws KalongException
Send the given byte sequence to the receiver, wait for a reply and return it. Throws an

exception, if the method cannot be sent.

Finally, at the end of a transfer, the network connection must be closed again.

public void closeTransfer( Object handle )
Close a network connection.
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7.7. Interface IServer

The last interface defines methods that must be used by the network component to
access Kalong. Kalong must provide an implementation of this interface.

These methods are the counterparts to the ones described in the last section. For
example, if method send of interface INetwork is called at the sender, method receive
of this interface is called at the receiver.

public Object openTransfer()throws KalongException
Open a network connection, returns an object to identify this transfer.

The method returns null, if the connection cannot be opened.

public byte[] receive( Object handle, byte[] data )throws KalongException
Receive the given byte sequence, wait for a reply and return it.

public void closeTransfer( Object handle )
Close a network connection.

7.8. SATP Migration Protocol

This section defines the SATP migration protocol, version number 1.0.

7.8.1. Introduction

Each method of interface IKalong to transfer agent information uses one of the mes-
sage types defined in this section. Although it might be clear from the names, which
method uses which message, Table 7.2 gives an overview. A reply message named
“Ok/Nok” stands for one that only contains information whether the receiver has
accepted the request or not.

To describe the message format we use the Extended Backus-Naur Form as intro-
duced in Chapter 5 on page 63. First of all, we define the following non-terminal
symbols: a <Byte> represents a single byte with value range from 0 to 255. Symbol
<Short> is used for numbers and is two byte long, and <Integer> is also used for
numbers and is four byte long. To code <Short> and <Integer> symbols, we use the
big-endian format, where the highest byte is stored first, i.e. at the lowest storage
address. For example, a four-byte integer is stored in the following order:

Byte3 Byte2 Byte1 Byte0
0 1 2 3
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Interface method Request message Reply message

ping Ping Ping
sendHeader Header Ok/Nok
sendADB ADB ADBReply
sendUnits Unit Ok/Nok
sendUnitRequest Unit Request Unit
sendState State Ok/Nok
sendDataUpload Data Item Data Item Key
sendDataRequest Data Request Data Item
prepare Prepare Ok/Nok
commit Commit none
rollback Rollback none

Table 7.2.: Mapping of interface methods to message types.

The first line shows the sequence of bytes in memory, the second line shows the byte
offset.

In the following, it will be sometimes necessary to express a byte literal. In this
case, we will use hexadecimal numbers, e.g. “0x15” to express the decimal number 21.
In addition to the meta symbols introduced above, we define n{<A>}m as a repetition
of symbol <A> between n and m times, where 0 ≤ n ≤ m. Mostly, we will use this
new meta symbol in the form where we have to define a repetition of exactly n times,
so that we write n{<A>}n.

Sometimes, it is necessary to refer to a value of a <Byte>, <Short>, or <Integer>

symbol. In this case, we will write <An> to express that symbol <A> contains the
value n, which we will use later on.

For example, the following <Message> comprises of n + 5 byte, where the number
n is described by symbol <A>.

1. <Message> ::= <An> + <B> + <C>

2. <A> ::= <Byte>

3. <B> ::= n{<Byte>}n

4. <C> ::= <Integer>

7.8.2. SATP Request and Reply Messages

The general operation of the SATP protocol is that the sender transmits a request to
the receiver, which answers with a reply message. A request always has the following
format:
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1. <Request> ::= <RequestCode> + <Lengthn> + <RequestParameter>

2. <RequestCode> ::= [ <RcPing> | <RcHeader> | <RcUnit> | <RcUnitReq> | <Rc-
Data> | <RcDataReq> | <RcADB> | <RcState> | <RcPrepare> |
<RcCommit> | <RcRollback> ]

3. <Length> ::= 1{<Byte>}4

4. <RequestParameter> ::= n{Byte}n

A request starts with a command byte, which is followed by a sequence of one up to
four bytes in which a number of bytes is coded as described below. The format of a
<RequestParameter> depends on the message type and is defined later for each type.

To transmit a sequence of bytes, we use a byte-count oriented technique, where
we send the number of the following bytes prior to the raw byte sequence. The
advantage of this technique is that the receiver can read data from the network very
fast, especially in Java. Every String or byte array is transmitted as such a byte
sequence in SATP. Usually, coding a value of type int would result in a sequence
of four bytes, but up to three of them might be wasted, because the number to be
coded is less than 28 or 216 or 224. To optimize these cases, we propose to code a
byte length in the following way. We name the original number of bytes the length,
and the resulting sequence of bytes which contains this number, the code. The idea
is to use the two highest bits in the first byte of the code to contain the code length.
A value of 0 means that the code is only one byte long (0 bytes following), a value
of 3 means that the code is four bytes long (three bytes following). So, for example
the following code stands for the number 33.

00100001
0

It can be seen that with a single byte it is only possible to code numbers from 0 to
63. The following two bytes are the code for number 257.

01000001 00000001
0 1

Therefore, in our approach the highest value for a length can be 230 − 1, which will
be sufficient for all cases in SATP.

The format of a reply message depends on whether the request was successful or
not.

5. <Reply> ::= [ <ReplyOk> | <ReplyNok> ]
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6. <ReplyOk> ::= “0x6F” + <ReplyParameter>

7. <ReplyParameter> ::= <Lengthn> + n{<Byte>}n

8. <ReplyNok> ::= “0x70” + <ErrorCode> + <ErrorText>

9. <ErrorCode> ::= <Short>

10. <ErrorText> ::= <String>

11. <String> ::= <Lengthm> + m{<Byte>}m

If the request message was accepted, then a <ReplyOk> answer is sent. It comprises
of a single byte which must have the value 0x6F and a byte sequence which contains
the reply parameter. For example, if a unit request was sent, then this byte sequence
will contain the units. If the request message was not accepted or the message format
was not as accepted, then a <ReplyNok> answer is sent. The <ErrorCode> and the
<ErrorText> contain a detailed error description.

7.8.3. Other SATP Messages

Ping

The ping message sends a sequence of bytes to the receiver agency which is supposed
to reply with a <ReplyOk> message with the unchanged byte sequence as parameter.

12. <RcPing> ::= “0x76”

13. <PingParameter> ::= n{<Byte>}n

The parameter is a sequence of arbitrary bytes. The receiver must send back this
byte sequence as <ReplyOk> message without any modification. The receiver answers
with a <ReplyNok> message to indicate that it does not accept this ping message.
The receiver is allowed to terminate a transfer, for example, if the sender tries to
flood the receiver with ping messages.

Header

The header message contains information about the agent and its home agency. The
receiver agency must answer, whether it accepts (<ReplyOk> without any parameter)
further messages for this agent or not (<ReplyNok> with an error message).

14. <RcHeader> ::= “0x66”

15. <HeaderParameter> ::= <Vendor> + <Major> + <Minor> + <AgentName> +
<HomeAgency> + <SenderAgency> + <Command>
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16. <Vendor> ::= <String>

17. <Major> ::= <Byte>

18. <Minor> ::= <Byte>

19. <AgentName> ::= <String>

20. <HomeAgency> ::= <PackedURLArray>

21. <SenderAgency> ::= <PackedURLArray>

22. <Command> ::= [ <Noop> | <ReleaseCodeServer> | <ReleaseMirror> | <ReleaseMir-
rorToCodeServer>]

23. <Noop> ::= “0x00”

24. <ReleaseCodeServer> ::= “0x01”

25. <ReleaseMirror> ::= “0x02”

26. <StartCodeServer> ::= “0x03”

27. <ReleaseMirrorToCodeServer> ::= “0x04”

The first part of the header is the SATP protocol version number. To assure that
two agencies are able to exchange messages correctly, both should have the same
version of the SATP protocol. The sender declares its version number as part of the
header. The receiver should only accept a transfer if its version number equals the
sender’s one or is higher. We use a major–minor scheme to describe the version of the
protocol. The minor number is incremented, when changes were made to the protocol
that do not apply to the general message format, but to the semantics for example.
The major number is incremented, if substantial modification were made with regard
to the message format. Both values are coded in a byte each. For example, a version
0.1 is earlier than 0.11, which is earlier than 1.0.

The third part is the agent’s name. The next two parts contain addresses of
the agent’s home agency and of the sender agency. A complete URL, for exam-
ple tracy://tatjana.cs.uni-jena.de:4567/fortknox/gold#abc, consists of the following
parts: protocol (tracy), host name (tatjana.cs.uni-jena.de), port number (4567), path
to the resource (fortknox), file name of the resource (gold), and reference within the
resource (abc). As Kalong does not define the structure of a URL, all parts of a
valid URL must be transmitted. As we can assume that all addresses of the same
agency have the same host name, path name, file name and reference, we only store
these parts once. The first element of a <PackedURLArray> is the number of URLs
following. We name this number n.
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28. <PackedURLArray> ::= <NumberOfURLsn> + <URLHostName> + <URLPath>

+ <URLFile> + <URLRef> + n{ <URLProtocol> + <URLPort-
Number> }n

29. <NumberOfURLs> ::= <Short>

30. <URLHostName> ::= <String>

31. <URLPath> ::= <String>

32. <URLFile> ::= <String>

33. <URLRef> ::= <String>

34. <URLProtocol> ::= <String>

35. <URLPortNumber> ::= <Short>

ADB

This message is used to transmit information about code units and classes without
the code itself. The receiver should answer with a <ReplyOk> and information about
which classes are already available at the receiver’s class cache. The receiver should
not answer with a <ReplyNok>, except that the ADB message has had a wrong
format.

36. <RcADB> ::= “0x67”

37. <ADBParameter> ::= <NumberOfUnitsn> + <CacheUsage>

+ <UnitDescriptions>

38. <NumberOfUnits> ::= <Short>

39. <CacheUsage> ::= [ <UseCache> | <DoNotUseCache> ]

40. <UseCache> ::= “0x00”

41. <DoNotUseCache> ::= “0x01”

42. <UnitDescriptions> ::= n{<UnitDescription>}n

The ADB contains the number of units and information about each code unit. The
part <CacheUsage> defines whether the receiver agency should check all class descrip-
tions against the local code cache and return information about class availability. In
the last rule, n is the number of units (<NumberOfUnits>).
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Each unit and each class of an agent has a unique identifier, which is assigned dur-
ing agent creation at the agent’s home agency and not changed later. Unit identifiers
are used for example for downloading units, class identifiers are used in the reply to
an ADB message to give information about class availability. Each unit description
has the following format:

43. <UnitDescription> ::= <UnitId> + <ClassesDescription> + <CodeBases>

44. <UnitId> ::= <Short>

45. <ClassesDescription> ::= <NumberOfClassesn> + n{<ClassDescription>}n

46. <NumberOfClasses> ::= <Short>

47. <ClassDescription> ::= <ClassId> + <ClassName> + ( <Digest> )

48. <ClassId> ::= <Short>

49. <ClassName> ::= <String>

50. <Digest> ::= <Lengthd> + d{<Byte>}d

51. <CodeBases> ::= <NumberOfCodeBasesc> + c{<CodeBase>}c

52. <NumberOfCodeBases> ::= <Short>

53. <CodeBase> ::= <NumberOfURLsu> + u{<URL>}u

54. <URL> ::= <String>

Each unit description consists of the identifier, the number of classes in this unit,
and a list of code bases for this unit. For each class, the class identifier, the class
name, and a digest is sent (only if the cache is activated). To code the list of URLs
in a code base, we do not use the packed form for URLs as described above, as a
list of code bases will mostly contain different addresses where compression is not
worthwhile.

If the receiver agency should check classes against its local cache, the class name
and digest are used. If there is already a class with the given name for which the local
digest equals the given digest, then it is assumed that the identical class is already
available, otherwise, it is not.

The ADB reply object contains the identifier for each all classes that are already
available at the destination agency.

55. <ADBReplyParameter> ::= <NumberOfClassesn> + n{ <ClassId> }n
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Unit

This message is used to transmit a set of code units to the receiver agency. The
receiver replies whether it accepts the transmission or not. The receiver should only
reject unit transmission, if the message cannot be parsed due to any format error.

56. <RcUnit> ::= “0x68”

57. <UnitsParameter> ::= <NumberOfUnitsn> + n{<Unit>}n

58. <Unit> ::= <UnitId> + <NumberOfClassesc> + c{<Class>}c

59. <Class> ::= <ClassName> + <ClassCode>

60. <ClassCode> ::= <Lengthm> + m{<Byte>}m

A unit message contains at least one or many units, where each unit is uniquely
identified by a number. Each unit contains the code of at least one class. The set
of classes that is transmitted for a specific unit depends on the reply of the ADB
message. If the receiver already has the code for a specific class and transmits this
information to the sender agency, then the sender should not send this class. As a
consequence, the set of classes that is transmitted as a unit can be a subset of the
classes that do belong to this unit.

State

This message is used to transmit an agent’s state to the receiver agency. It consists of
some URLs, the serialized agent, and optional some data items. The receiver answers,
whether it accepts this message or not.

61. <RcState> ::= “0x6C”

62. <StateParameter> ::= <MirrorAgencies> + <DestinationAgency> +SerializedA-
gent + <DataItems> + <DataItemKey>

63. <MirrorAgencies> ::= <PackedURLArray>

64. <DestinationAgency> ::= <String>

65. <SerializedAgent> ::= <Lengthn> + n{<Byte>}n

66. <DataItems> ::= <NumberOfDataItemsm> + m{<DataItem>}m

67. <DataItem> ::= <DataItemName> + <DataItemState> + (<SerializedDataItem>)

68. <NumberOfDataItems> ::= <Short>
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69. <DataItemName> ::= <String>

70. <DataItemState> ::= [ <Defined> | <Undefined> ]

71. <Defined> ::= “0x10”

72. <Undefined> ::= “0x11”

73. <SerializedDataItem> ::= <Lengthl> + l{<Byte>}l

The part <MirrorAgencies> is a list of addresses of the mirror agency if it exists.
Otherwise, the number of URLs in the <PackedURLArray> equals 0. The second
part contains the address of the agency to which the transfer is directed to. This
address is important at the receiver agency, for example, if the agency consists of
more than one place and the name of the destination place is part of the URL. The
third part is the serialized agent, which is a sequence of bytes. The last part contains
data items of the external state. Each data item has a name, a state, and optionally
the serialized object as byte sequence. Symbol <DataItemKey> is defined later in
rule 78.

Unit Request

This message is used to request units from a home, code server, or mirror agency. The
receiver answers with a <ReplyOk> message and the requested units as parameter.
The receiver must answer with <ReplyNok> in case of any error.

74. <RcUnitReq> ::= “0x69”

75. <UnitRequest> ::= <NumberOfUnitsn> + n{<UnitId>}n

Symbol <UnitId> was already defined in rule 44. The reply message has the format
as defined in rule 57.

Data Item

This message is used to upload data items from the current agency to a home or
mirror agency. The receiver answers with a <ReplyOk>, if the new data values are
accepted, otherwise <ReplyNok>.

76. <RcData> ::= “0x6A”

77. <DataParameter> ::= <DataItems> + <DataItemKey>

78. <DataItemKey> ::= <Lengthn> + n{<Byte>}n
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Symbol <DataItems> was defined above. Symbol <DataItemKey> is a byte sequence
that contains a key necessary to upload data items. This key protects data items to
be overwritten accidentally at a home agency, when the agent already has defined
a mirror agency. Additionally, it is necessary, as data uploading creates a security
problem that we have to consider now. A malicious server might send forged data
upload messages to a home or mirror agency and manipulate data items by this.
The problem even occurs, if a malicious server requests a data item from a home
server for example. As the state of this data item is set to undefined at the home
server, the agent is not able to download the same data item later. Unfortunately,
we cannot solve this problem completely, i.e. protect the home agency against any
malicious access. However, we can provide a technique, so that the agent under all
circumstances notices a malicious access and is able to react on this. The technique
works in two steps:

1. Downloading and uploading data items has always the effect that states change.
If a data item is downloaded, then its state is set to undefined at the home
agency. If the agent later wants to download this data item again, it receives
an error message.

2. If a malicious server loads a data item, modifies it, and then uploads it again,
the state is set to defined at the home agency again. The agent would not notice
the manipulation in this case. Therefore, we introduce a data item key that
is necessary for data uploading. This key is created at the home agency when
the agent is started and is carried by the agent as part of the state. In case
of a data upload message the key must be sent to the home agency where it is
compared to the key locally stored. If both are equal, the upload is successful.
In the other case, the upload is rejected. In case of a successful upload, the
reply message contains a new key that was computed by the home agency. A
malicious server might have stolen the key that the agent carries. Using this
key, the server is able to upload a data item. However, if the agent later wants
to upload a data item by itself, the message is rejected as it knows an outdated
key only.

Data Request

This message is used to request data items from an agent’s home or mirror agency.
The receiver answers with a <ReplyOk> message and the requested data items as
parameter. The receiver must answer with a <ReplyNok> in case of any error.

79. <RcDataReq> ::= “0x6B”

80. <DataReqParameter> ::= <NumberOfDataItemsn> + n{<DataItemName>}n

Symbol <DataItemName> was define above in rule 69.
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Prepare

The prepare message is sent to a receiver agency to check whether any error has
been occurred during the current transfer. The receiver agency must answer with
<ReplyOk> without parameter, if it accepts the whole transfer, and <ReplyNok>

otherwise with an appropriate error message.

81. <RcPrepare> ::= “0x64”

Commit

The commit message is used to indicate the receiver agency to commit all changes
done during the current transfer. The last stable state of the agent’s context can be
dropped.

82. <RcCommit> ::= “0x65”

The commit message is not supposed to send a valid reply message.

Rollback

The rollback message is used to indicate the receiver agency to release all changes
made during the current transfer and to restore the last stable state.

83. <RcRollback> ::= “0x6D”

The rollback message is not supposed to send a valid reply message.
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This chapter describes the implementation of the Kalong mobility model as the Ka-
long software component. It is the reference implementation of the Kalong specifica-
tion.

8.1. Introduction

We start with a brief introduction to two very important aspects of Kalong as soft-
ware component. First, Kalong in itself is not a complete mobile agent system but
is designed to be an independent software component for agent migration to be used
with (almost) any existing mobile agent server architecture. Second, Kalong is de-
signed to work as a virtual machine for the task of agent migration. Therefore, it
defines a minimal set of commands or functions, which are in sum sufficient to control
the entire process of agent migration as defined in the Kalong mobility model.

8.1.1. Kalong as Software Component

Earlier in this thesis we already stated that about 70 mobile agent systems were
developed by the community over the last years. Although this number reflects
an enormous research output by different groups all over the world, it also reveals
premature status of research and a not-existent coordination between projects.

Today’s mobile agent systems are almost all stand-alone systems unable to com-
municate with each other, and sometimes not more than prototypes tailored to a
specific research issue. The reason for this is the lack of any reference architecture
for mobile agent systems as well as the absence of an open and extendable implemen-
tation. Therefore, each research group is compelled to develop its own prototype.
Due to limited resources, this prototype is more a proof-of-concept implementation
focusing on a single research issue and leaving out elementary functional components
necessary for a full mobile agent system.

This is also the reason for disparate perceptions of basic concepts of mobile agents,
e.g.:

• What should a mobile agent be from the programmer’s point of view: an object
of a specific type, which defines several basic functions for mobile agents like
communication, migration, etc., or just any serializable object?
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• What level of communication is necessary: only a simple one between agents
residing at the same agency or a complex one which also allows remote commu-
nication?

• What level of security is necessary? Is it sufficient to protect hosts against
malicious agents, or is it necessary to protect agents against malicious servers
too?

• What kind of mobility is necessary?

The disadvantageous consequence of these isolated islands of research is that find-
ings cannot be transferred between projects in form of definite implementations, for
example software components that can be installed in other mobile agent systems.
Sometimes, even the general research idea cannot be adopted to another mobile agent
systems due to differences in basic concepts, as described above. One practical down-
side is the number of different migration protocols currently existing. Except for
two systems (Aglets and Grasshopper) which support the MASIF migration protocol
proposed as OMG standard in 1998, it is virtually impossible to make two systems
interoperable. Even for the two named systems, nobody has proofed yet whether
they really can exchange agents. Although with the MASIF standard there exists a
common migration protocol, almost no research group uses it, which might have to
do with difficulties in implementing the complete standard because of its complexity
and the lack of any independent software component offering MASIF as service.

In contrast to the big number of prototype implementations, few systems have
already been developed as full-featured mobile agent systems that might be used in
real-world applications too. These offer techniques for all important issues of agent
programming, like migration, communication, security, management, etc. However,
even these system are not willingly used, because of their complexity and size. They
are built as monolithic systems, with a very high number of features and are not
easy to configure and handle. Besides the impossibility to extend these systems by
own implementations of research results, even mere usage might be prevented by
functional overloading in certain application scenarios.

Some people see all this as a very important reason for harming the spread and
acceptance of mobile agents.1 If a system is not adaptable to real-world requirements,
potential users are not willing to use this mobile agent system or mobile agents at
all. To get hold of an industrial partner or sponsor for a real-world project becomes
a forlorn hop in this situation.

To amend this situation, one of the most important challenges of our Tracy project
is to develop a reference architecture for mobile agent systems in coordination with
the Special Interest Group on Mobile Agents of the European AgentLink network.

1Compare for example http://dsonline.computer.org/0208/f/kot.htm.
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IKalong

IAgentManager

INetwork

INetworkServer
Kalong Component

Figure 8.1.: The Kalong software component and its interfaces.

This architecture makes intensive use of the concept of software components, which
are all held together by a micro kernel [Buschmann et al., 1996]. It is leveraging off of
previous work done by the Tracy team in designing the first Tracy architecture and
benefits from experiences learned when porting it to mobile platforms and investi-
gating feasibility to use Tracy within an electronic commerce application [Kowalczyk
et al., 2002]. A first implementation of this reference architecture is currently un-
der way as a diploma thesis and will be presented as Tracy2. A brief architecture
description can be found in the appendix, see Section A.6 on page 279.

Such an open architecture has many advantages. As it has only a very small
imperative core, as a basis for many software components to be added on, mobile
agent systems become very modular. Each component offers specific services, as for
example agent communication, agent migration, persistence, etc. This modular archi-
tecture makes it very easy to port a mobile agent system to other devices, as features
no longer needed can be simply removed. If a feature is too heavy-weighted for a
resource limited mobile device for example, it can replaced by another component
with less services and of less size. Code reuse is also supported as the architecture
guarantees that software components are usable at any mobile agent system built on
this architecture.

One very important component in a mobile agent system is concerned with agent
migration of course. Kalong provides such a component. It was developed indepen-
dently of the Tracy2 architecture and bases only on very few assumptions about the
environment. Therefore, it should be usable in (almost) all mobile agent software
architectures and has already been successfully adapted to work with the Tracy2
architecture. It is planned to integrate Kalong into other systems, as for example,
Grasshopper and Semoa in the near future.

Kalong defines four interfaces, compare Figure 8.1. On the left side of Kalong,
there are two interfaces used to communicate to the agent manager. Interfaces on
the right side are to communicate with the network adapter. Interface IKalong defines
the functions of Kalong, whereas interface IAgentManager defines functions of the
agent manager object used by Kalong. On the other side, class INetwork defines
functions of the network adapter used by Kalong and class INetworkServer define
the functions of Kalong that can be used by the network server component to be
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called when messages are received from the network.
Kalong can be easily adapted to any mobile agent system as it is the result of

reducing all requirements on a migration component to a common denominator. For
example, Kalong only requires mobile agents to be a Java object of type Serializable,
which is at least necessary in any mobile agent system to marshal an object’s state.

Besides the pure functional advantages of Kalong, its flexible migration technique,
and possibility to define fine-grained migration strategies, we see a major advantage
of the concept of a migration component in the ability to make two different mobile
agent systems interoperable. This usually has two distinct challenges. First, mobile
agent systems must be able to communicate, i.e. they must understand the same
migration protocol. Second, mobile agents of one system must be executable at the
other one. The first challenge is taken on by Kalong. The second challenge must be
resolved by the designer of the mobile agent system. First promising results have been
reported by the Semoa research group at Fraunhofer Society, Darmstadt, Germany,
who were able to adapt their system to run Tracy agents [Pinsdorf and Roth, 2002].

8.1.2. Kalong as Virtual Machine

The second aspect, we want to mention here, is the basic idea of Kalong as a virtual
machine or engine2 for agent migration.

Kalong provides a basic set of functions to describe the migration of a mobile agent.
For example, it comprises of commands to define which units should be transferred,
which data items shall be part of the state, and it contains commands to load code
units or data items. Besides, it offers additional services, for example for transaction
management, security, and persistence.

With this concept of a virtual machine, it now becomes obvious how to define a
migration strategy in detail. In the last chapters we have always used this term to
describe the effect of an agent migration, without going into details of defining it.

For example, a push strategy was defined to transmit all code units of an agent to
the destination agency, together with the agent’s state and all data items currently
defined at the source agency. Using the commands defined in interface IKalong in
the last chapter (p. 122), we can now give a first impression how a migration strategy
may look like.

1 void sendAgent( String agentName, URL destination )
2 {
3 Object handle = null;
4 String[] allDataItems = kalong.getDataItems( agentName );

2We prefer the term virtual machine, although we run the risk to confuse the Kalong virtual
machine with the Java virtual machine. In the following chapters, we will always refer to the
Kalong virtual machine except otherwise mentioned.
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5 int[] allUnits = kalong.getUnits( agentName );
6

7 kalong.startTransaction( agentName );
8 handle = kalong.openTransfer( agentName, destination );
9 kalong.sendHeader( handle, IKalong.NOOP );

10 kalong.sendADB( handle, true );
11 kalong.sendUnits( handle, allUnits );
12 kalong.sendState( handle, allDataItems );
13 kalong.prepare( agentName );
14 kalong.commit( agentName );
15 }

The migration commands of Kalong are very low-level, of course. To make pro-
gramming of migration strategies easier, the mobile agent system can define new
levels of abstraction on top of Kalong, for example to bundle often used sequences
of commands into new commands, so that programming of migration strategies be-
comes more comfortable for the programmer. We will show the Tracy2 approach for
this in a later section.

8.2. Using the Kalong Component

In this chapter we will give an introduction to use Kalong as a software component
and to program migration strategies. This chapter does not contain the full docu-
mentation of all classes of the Kalong component. Some deeper introduction into the
main classes and the overall design of Kalong can be found in the following section.
The full documentation of all classes can be found on the enclosed CD-ROM, which
also contains the complete source code for Kalong and all other components and
classes necessary to execute the examples presented in this chapter.3

8.2.1. Starting and Configuring Kalong

The main class of the Kalong software component is class Kalong in package org.taf.
kalong. It has the following two constructors:

public Kalong()
Creates a new Kalong component.

3The documentation of Kalong consists of a set of HTML files generated by the JavaDoc tool. The
main file is ./docs/index.html, which also gives an overview of the content of the CD-ROM. If
you read this thesis electronically (for example using the Acrobat Reader), you can use Acrobat’s
WebLink function to open the documentation by clicking on the file name. Additionally, we
underlay all class names with a link to the class documentation. Not all PDF viewer programs
are able to handle links correctly.
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public Kalong( INetwork network )
Creates a new Kalong component that uses the given network component.

To embed Kalong in an existing mobile agent system, it must be connected to the
agent manager and the network (as long as not done with the constructor already).

public void registerNetwork( INetwork network )
Register a network component with this instance of Kalong.

public void registerListener( IAgentManager listener )
Register an agent manager with this instance of Kalong.

At last, the network component must be able to inform Kalong about incoming
messages. For this task, Kalong offers the interface INetworkServer, for which Kalong
already provides an implementation. This implementation can be requested using
the following method:

public INetworkServer getNetworkServerInterface()
Returns an implementation of interface INetworkServer.

The following method is to check, whether an agent context already exists.

public boolean existsAgentContext( String agentName )
Returns true, if an agent context with the given name already exists.

The last method is used to delete an agent context.

public void deleteAgentContext( String agentName )
Delete an agent context locally.

To delete an agent context has the consequence that no information about data
items, object state, and code units do exist anymore at the current agency. Calling
this method does not have the consequence that an agent currently roaming the agent
system is killed. However, this agent cannot use this agency for downloading data
items or code units anymore, which might cause an unexpected behavior or might
even crash the agent. The agent manager must make sure that probably existing
code servers must be informed to release, before the agent context is deleted.

In the following example, we show how to start and configure a Kalong instance.

1 package test;
2

3 import org.taf.kalong.Kalong;
4 import org.taf.kalong.IKalong;
5 import org.taf.network.Network;
6 import org.taf.network.ProtocolEngine;
7 import org.taf.network.tcp.TCPEngine;
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8

9 public class StartKalong
10 {
11 public static void main( String[] args )
12 {
13 Kalong kalong = null;
14 IKalong iKalong = null;
15 Network network = null;
16 ProtocolEngine tcpProtocol = null;
17

18 kalong = new Kalong();

An example for a network component is also part of the CD-ROM. The main class
of this component is Network, which works as a manager for several network trans-
mission protocols. Each transmission protocol must be implemented by extending
class ProtocolEngine.

19 network = new Network();
20 tcpProtocol = new TCPEngine();
21 network.registerProtocolEngine( tcpProtocol );
22 tcpProtocol.startServer( 5555 );

Each protocol engine defines a protocol name that can be used to define URLs.
For example, class TCPEngine defines the protocol with name “tcp”. In line 22 a
new thread is started that will accept incoming messages on port 5555.

Now, Kalong must be connected to the network component. As the network com-
ponent is an independent software component, it does not implement the interfaces
of Kalong, but provides interfaces on its own. To allow communication between these
two interfaces, we implement adapter classes. For example, from the view of Kalong
we create an adapter that implements the Kalong interface INetwork and accesses
the network component transparently. For the other communication direction, we
need another adapter class that implements an interface of the network components
and directs all method invocations to Kalong. We omit to print the source code of
both classes here, the source code can be found on the CD-ROM.4

23 NetworkAdapter nAdapter = new NetworkAdapter( network );
24 KalongAdapter kAdapter = new KalongAdapter( kalong.

getNetworkServerInterface());
25 kalong.registerNetwork( nAdapter );
26 network.registerListener( kAdapter );

4See KalongAdapter and NetworkAdapter in package org.taf.mdl.
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27 kalong.registerListener( new KalongListener() );
28 }
29 }

In line 27, we register a listener object with Kalong, which will be informed in case
of received agents. This listener must implement interface IAgentManager and we
will show an example for this listener later in Section 8.2.3.

The last method of class Kalong is used by the agent manager to request an
implementation of interface IKalong, which contains all functions to access an agent
context and program migration strategies.

public IKalong getKalongInterface( String agent )throws KalongException
Return an implementation of interface IKalong.

As this interface has some minor differences as compared to the one presented in
the specification (p. 122), we will present its definition in the following section.

8.2.2. Interface IKalong

The difference of this interface as compared to the one defined in the last chapter
is that it is personalized to a single agent. Whereas in the last chapter, almost all
functions required a parameter agentName of type String, we now give the agent’s
name only once when obtaining the interface.

1 public interface IKalong
2 {
3 public static final byte NOOP = 0x00;
4 public static final byte REL CODESERVER = 0x01;
5 public static final byte REL MIRROR = 0x02;
6 public static final byte START CODESERVER = 0x03;
7 public static final byte REL MIRROR TO CODESERVER = 0x04;
8

9 public static final byte DATA DEF = 0x00;
10 public static final byte DATA UNDEF = 0x01;
11

12 // transaction management
13 public void startTransaction() throws KalongException;
14 public boolean prepare();
15 public void commit();
16 public void rollback();
17

18 // registering agents
19 public URL[] getHomeAgency() throws KalongException;
20 public URL[] getURLs() throws KalongException;
21 public void registerAgent( Serializable agentObject ) throws KalongException;
22 public int defineUnit( String[] classNames ) throws KalongException;
23 public String[] getClassNames() throws KalongException;
24 public String[] getClassesInUse() throws KalongException;
25 public int getClassSize( String className ) throws KalongException;
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26 public URL[] getLastAgency() throws KalongException;
27

28 // data items
29 public String[] getDataItems() throws KalongException;
30 public String[] getDefinedDataItems() throws KalongException;
31 public String[] getUndefinedDataItems() throws KalongException;
32 public byte getDataItemState( String dataItem ) throws KalongException;
33 public void setDataItem( String dataItem, Serializable dataObject ) throws KalongException;
34 public Serializable getDataItem( String dataItem ) throws KalongException;
35 public int getDataSize( String dataItem ) throws KalongException;
36 public void setObjectState( Serializable agentObject ) throws KalongException;
37

38 // code units and code servers
39 public int[] getUnits() throws KalongException;
40 public String[] getClassesInUnit( int id ) throws KalongException;
41 public int[] getUnitForClassName( String className ) throws KalongException;
42 public void copyUnit( int id ) throws KalongException;
43 public URL[] getCodeBases( int id ) throws KalongException;
44 public void addCodeBases( int id, URL[] url ) throws KalongException;
45 public void deleteCodeBase( int id, URL[] url ) throws KalongException;
46 public byte[] getByteCode( String className ) throws KalongException;
47

48 // mirrors
49 public URL[] getMirrorAgency() throws KalongException;
50 public void setMirrorAgency( URL[] mirror ) throws KalongException;
51 public void deleteMirrorAgency() throws KalongException;
52

53 // transfers
54 public Object startTransfer( URL destination ) throws KalongException;
55 public boolean ping( Object handle, byte[] data ) throws KalongException;
56 public void sendHeader( Object handle, byte command ) throws KalongException;
57 public void sendADB( Object handle, boolean classCache ) throws KalongException;
58 public void sendUnits( Object handle, int[] unitIds ) throws KalongException;
59 public void sendUnitRequest( Object handle, int[] unitIds ) throws KalongException;
60 public void sendState( Object handle, String[] dataItems ) throws KalongException;
61 public void sendDataUpload( Object handle, String[] dataItems ) throws KalongException;
62 public void sendDataRequest( Object handle, String[] dataItems ) throws KalongException;
63 }

In lines 3–7, all valid header commands are defined, which can be used in method
sendHeader to release a code server or mirror agency. In lines 9–10, all valid states
for data items are defined. A description of each method can be found in the docu-
mentation on the CD-ROM.

8.2.3. Interface IAgentManager

During the process of receiving an agent from the network, Kalong communicates to
the agent manager using interface IAgentManager.

1 public interface IAgentManager
2 {
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3 public Object receivedInMigration( Object handle, String agentName, URL[]
homeAgency, URL[] lastAgency );

4 public ProtectionDomain getProtectionDomain( Object handle );
5 public void startAgent( Object handle, Serializable agent, URL destination );
6 // ...
7 }

The first method receivedInMigration is called after a SATP header was received.
The agent manager has now the chance to verify, if this transfer should be accepted.
For this decision, it can use the given parameters, the agent’s name, the agent’s home
agency, and the addresses of the sender agency. If the agent manager returns a null
value, the sender is informed about header rejection. In the other case, the return
value is an object, by which the agent manager can identify this transfer in future.

The second method getProtectionDomain is called by Kalong before the received
agent is deserialized. The return value must be an object of type ProtectionDomain,
which is a Java class from package java.security. A protection domain is a grouping of
a code source and permissions granted to all code from this code source. Protection
domains are used to specify the permissions of an agent on the current agency. It is
given to the class loader that will assign this protection domain to all classes of the
agent.

For example, the following method creates a protection domain, which grants per-
mission to read all files in the user’s home directory.

1 public ProtectionDomain getProtectionDomain(Object handle)
2 {
3 // ...
4 PermissionCollection coll = new PermissionCollection();
5 coll.add( new FilePermission(”${user.home}/−”, ”read”) );
6 CodeSource cs = new CodeSource( handle.homeAgency[0], null );
7 ProtectionDomain pd = new ProtectionDomain( cs, coll );
8 return pd;
9 }

Finally, the third method startAgent is called by Kalong after the agent was ini-
tialized. The second parameter agent contains a reference to the deserialized agent
object and the third parameter contains the URL of the migration destination. The
agent manager might need this URL to dispatch the incoming agent to a specific
place, whose name is stored in the URL.

Later, in Chapter 9 we show other methods of this interface that can be used to
sign and encrypt messages.
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8.2.4. Examples to Use Interface IKalong

We will now show how to use the Kalong component in some typical use-cases.

Registering an Agent

Before an agent can migrate or use any other function of Kalong, it must be registered
with the component. This is done using method registerAgent. The agent object must
have been initialized before.

1 package test;
2

3 // ...
4

5 public class TestKalong
6 {
7 public static void main( String[] args )
8 {
9 Kalong kalong = new Kalong();

10 IKalong iKalong = null;
11 Runnable agent = new Agent();
12 agent.run();
13

14 // connection Kalong and the other components
15

16 try
17 {
18 iKalong = kalong.getKalongInterface( ‘‘Scaramanga’’ );
19 iKalong.startTransaction();
20 iKalong.registerAgent( agent );
21

22 String[] allClasses = ikalong.getClassNames();
23 String[] filterClasses = new String[] { ‘‘java.∗’’, ‘‘javax.∗’’, ‘‘org.xml.∗’’ }
24 String[] agentClasses = ArrayUtils.filter( allClasses, filterClasses );
25 iKalong.defineUnit( agentClasses );
26

27 iKalong.commit();
28 } catch( KalongException e ) {
29 e.printStackTrace();
30 iKalong.rollback();
31 }
32 }
33 }
34

35 class Agent implements Serializable, Runnable
36 {
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37 private Integer value = new Integer(100);
38

39 void run()
40 {
41 // ...
42 }
43 }

As can be seen, an agent can be any object of a class that implements at least
interface Serializable. In the example, class Agent also implements interface Runnable
and, therefore, must provide a method with name run. In line 18, the Kalong

interface for an agent with name Scaramanga is requested and in line 20 the initialized
agent object is registered with Kalong. After registering, the given agent object is
accessible under the name Scaramanga. Please note that for sake of readability we
chose short and human-readable agent names in all examples. A real implementation
must guarantee that agent names are unique in the whole agent system.

The effect of registering is that Kalong has read the agent’s class file and has
determined the class closure of the agent’s main class. This list of class names can
be requested using method getClassNames of the Kalong interface. In the example
above, this class list would comprise of classes test.Agent, java.lang.Object, java.lang
.Integer, java.io.Serializable, and java.lang.Runnable.

Now, we must define the agent’s code units. As already said, the user of Kalong
is responsible to filter classes that are ubiquitous and, therefore, need not to migrate
to other agencies. The utilities package org.taf.util contains a class ArrayUtils that
provides a method for filtering class names.

String[] ArrayUtils.filter( String[] source, String[] pattern )
Returns the source parameter without Strings that match any of the given pattern.

To describe pattern, regular expression can be used. In lines 22–24, we use this
method to filter out all base Java classes from the list of all agent’s classes. In line
25 a single unit is defined that contains all agent’s classes.

Accessing Data Items

Kalong provides functions to store data items in the agent’s context. To store a data
item, method setDataItem must be used. After a new data item was stored, it has
the state DATA DEF which is a constant defined in interface IKalong. To retrieve a
data item, method getDataItem must be used. A data item can be any object that
is serializable.

1 try
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2 {
3 iKalong.setDataItem( ‘‘firstDataItem’’, new Integer( 100 ) );
4 assert( iKalong.getDataItemState( ‘‘firstDataItem’’ ) == IKalong.DATA DEF

);
5

6 Integer anInteger = (Integer)iKalong.getDataItem( ‘‘firstDataItem’’ );
7

8 iKalong.getDataItem( ‘‘secondDataItem’’ );
9

10 iKalong.commit();
11 }
12 catch( KalongException e )
13 {
14 e.printStackTrace();
15 iKalong.rollback();
16 }

In line 8, a data item is requested that does not exist. An exception is thrown in
this case. The Kalong interface provides other methods to retrieve an array of all
data items names or to determine the size of a single serialized data item. The latter
can be important to decide, which data items shall migrate or not.

Simple Migration

We now present the implementation of a simple migration. It is in fact the one that
we have referred to as push-all-to-next, which transmits all agent’s code and all its
data to the next destination.

For the following, we assume that the agent was registered and code units were
already defined. The agent might also have stored some data items in its context.
Variable iKalong contains a reference to the agent’s Kalong interface.

1 try
2 {
3 URL destination = new URL( ‘‘tcp://tatjana.cs.uni-jena.de:5555’’ );
4 int[] unitIds = iKalong.getUnits();
5 String[] dataItems = iKalong.getDataItems();

Variable destination contains the address of the destination agency. The array of
integer values with name unitIds contains all identifiers of the agent’s code units and
the array of Strings with name dataItems contains the names of all data items the
agent owns.

159



8. Implementation of Kalong

6 iKalong.setObjectState( agent );
7 iKalong.startTransaction();

In line 6 the agent object state is stored in the agent’s context and the next
statement starts the transaction.

8 Object handle = iKalong.startTransfer( destination );
9 iKalong.sendHeader( handle, IKalong.NOOP );

10 iKalong.sendADB( handle, true ); // true means to use cache
11 iKalong.sendUnits( handle, unitIds );
12 iKalong.sendState( handle, dataItems );
13 }
14 catch( Exception e )
15 {
16 e.printStackTrace();
17 }
18 finally
19 {
20 if( iKalong.prepare() )
21 {
22 iKalong.commit();
23 } else
24 {
25 iKalong.rollback();
26 }
27 }

This migration strategy consists of a single transfer. The connection to the destina-
tion agency is opened using method startTransfer. The return value is an object that
is used to identify this transfer when sending further messages. The first message
that is sent now must be a SATP header, which transmits the agent’s name and some
other important information about the agent to the destination agency. The second
parameter of this method is the header command which specifies the process that
will be executed at the end of this transfer at the destination agency. In this case,
NOOP stands for no process.

In the following, the agent definition block is sent. The second parameter of method
sendADB defines whether the remote agency should check for already available classes
and reply this information. Then, all units and the state together with all data items
is sent. Finally, the whole transaction is prepared and then committed or rolled back.
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Loading Data Items From the Home Agency

The following example shows how to download a single data item from the agent’s
home agency.

1 try
2 {
3 URL homeAgency = iKalong.getHomeAgency()[0];
4 String[] dataItemsToLoad = new String[] { ‘‘secondDataItem’’ };
5

6 iKalong.startTransaction();
7

8 Object handle = iKalong.startTransfer( homeAgency );
9 iKalong.sendHeader( handle, IKalong.NOOP );

10 iKalong.sendDataRequest( handle, dataItemsToLoad );
11

12 Integer second = (Integer)iKalong.getDataItem( ‘‘secondDataItem’’ );
13 }
14 catch( Exception e )
15 {
16 e.printStackTrace();
17 }
18 finally
19 {
20 if( iKalong.prepare() )
21 {
22 iKalong.commit();
23 } else
24 {
25 iKalong.rollback();
26 }
27 }

The addresses of the agent’s home agency can be obtained by calling method
getHomeAgency. If the home agency is accessible by different network protocols, the
returned array contains more than a single URL. As a simplification, we chose the
first address by default. The name of the data item to load is defined in line 4 and
the request to load a data item is sent in line 10. Immediately after this method
terminated, the data item is available using method getDataItem.

The effect of loading a data item is that its state is set to DATA UNDEF at the
agent’s home agency and to DATA DEF at the current agency. If the same data item
is loaded once again from the home agency, the transfer would be not successful and
an exception would be thrown locally.
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Uploading a Data Item and Migrate to the Next Destination

The next example shows how to handle more than a single transfer during a single
transaction. The task is to migrate to agency tatjana.cs.uni-jena.de but not carry
data item with name firstDataItem. Instead, it is uploaded to the agent’s home
agency before.

1 try
2 {
3 URL destination = new URL( ‘‘tcp://tatjana.cs.uni-jena.de:5555’’ );
4 URL homeAgency = iKalong.getHomeAgency()[0];
5 String[] dataItemsToUpload = new String[] { ‘‘firstDataItem’’ };
6

7 iKalong.startTransaction();
8

9 Object handleHome = iKalong.startTransfer( homeAgency );
10 iKalong.sendHeader( handleHome, IKalong.NOOP );
11 iKalong.sendDataUpload( handleHome, dataItemsToUpload );
12

13 Object handleDest = iKalong.startTransfer( destination );
14 iKalong.sendHeader( handleDest, IKalong.NOOP );
15 iKalong.sendADB( handleDest, false ); // true means to use cache
16 iKalong.sendUnits( handleDest, null );
17 iKalong.sendState( handleDest, null );
18 }
19 catch( Exception e )
20 {
21 e.printStackTrace();
22 }
23 finally
24 {
25 if( iKalong.prepare() )
26 {
27 iKalong.commit();
28 } else
29 {
30 iKalong.rollback();
31 }
32 }

The type of migration that is used to transmit the agent to the destination agency
is comparable to a pull strategy, as no code units are sent in line 16.
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Defining Code Servers and a Mirror Agency

The next example shows how to make the current agency to become a code server
agency. The goal is that after the next migration all code units shall remain at the
current agency and can be downloaded from this agency later.

1 try
2 {
3 int[] unitIds = iKalong.getUnits();
4

5 for( int i=0; i<unitIds.length; i++ )
6 {
7 iKalong.copyUnit( unitIds[i] );
8 }
9 }

10 catch( Exception e )
11 {
12 e.printStackTrace();
13 }

The important statement is in line 7, where the unit with the given identifier is
marked not to be deleted after the next migration. The effect of this method is that
the addresses of the current agency are added to the list of code bases of the unit.

To define a mirror agency is only a little bit more complicated. A mirror agency
must hold all data items and all code units per definition. Therefore, before a mirror
agency can be activated, the agent manager has to load all missing data items and
code units. Kalong does not provide a method for this.

We assume a situation, where currently no mirror agency is defined. If this is not
true, then it would be necessary to release the current mirror agency first.

1 try
2 {
3 URL homeAgency = iKalong.getHomeAgency()[0];
4 String[] dataItemsToLoad = iKalong.getUndefinedDataItems();
5 int[] unitsToLoad = iKalong.getUndefinedUnits();
6

7 iKalong.startTransaction();
8 Object handleHome = iKalong.startTransfer( homeAgency );
9 iKalong.sendHeader( handleHome, IKalong.NOOP );

10 iKalong.sendDataRequest( handleHome, dataItemsToLoad );
11 iKalong.sendUnitRequest( handleHome, unitsToLoad );
12 }
13 catch( Exception e )
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14 {
15 e.printStackTrace();
16 }
17 finally
18 {
19 if( iKalong.prepare() )
20 {
21 iKalong.commit();
22 } else
23 {
24 iKalong.rollback();
25 }
26 }
27

28 iKalong.setMirrorAgency();

In line 28 the current agency is defined to be a mirror agency from now on.

Release a Code Server or Mirror Agency

Finally, we show an example how to release a remote code server or mirror agency
by sending a header command. To release code servers is in important task to
free resources at the other agencies that currently hold a copy of the agent’s code.
Releasing mirror agencies is necessary, before defining a new mirror as mentioned
above.

We only show an example to release a code server.

1 try
2 {
3 URL codeServerToRelease = new URL(‘‘tcp://tatjana.cs.uni-jena.de:5555’’);
4

5 iKalong.startTransaction();
6

7 Object handle = iKalong.startTransfer( codeServerToRelease );
8 iKalong.sendHeader( handle, IKalong.REL CODESERVER );
9

10 int[] allUnits = iKalong.getUnits();
11 URL[] deleteCodeBase = new URL[] { codeServerToRelease };
12 for( int i=0; i<allUnits.length; i++ )
13 {
14 iKalong.deleteCodeBase( allUnits[i], deleteCodeBase );
15 }
16 }
17 catch( Exception e )
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18 {
19 e.printStackTrace();
20 }
21 finally
22 {
23 if( iKalong.prepare() )
24 {
25 iKalong.commit();
26 } else
27 {
28 iKalong.rollback();
29 }
30 }

To simplify the code, we assume to know the address of the code server that should
be released. In fact, this address must be obtained from the agent’s context using for
example method getCodeBases which returns all known code bases for a given unit.
To release a code server is defined as header command in line 8. No more messages
must be sent to the destination in this case. After the transfer the code server must
be deleted from the list of code bases of all units. This is done in lines 10–15.

If a mirror agency is to release, then the header command must be changed to
REL MIRROR and finally method deleteMirrorAgency must be called.

8.3. Implementation Details

In this section we will give a brief overview of the implementation of the Kalong
software component. The implementation consists of 32 Java classes with in sum
about 7000 lines of code (without documentation). Kalong uses some other utility
classes of the Tracy project, which have in sum about 1600 lines of code.

These classes are organized in the following packages:

org.taf.kalong Contains the main classes of Kalong, such as for example, class Kalong
and the main interface IKalong.

org.taf.kalong.util Contains Kalong specific utility classes, for example the Kalong
class loader class KalongClassLoader.

org.taf.kalong.util.classcache Contains all classes that belong to the Kalong class
cache.

org.taf.util Contains some imperative classes from the Tracy project, as for exam-
ple class ThreadPool and class ByteBuffer, which provides methods to code
primitive Java data types into a flat byte array.
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To use Kalong, a network component is required that implements the interfaces as
described in the Kalong specification. Our implementation of a network component
is organized in the following packages:

org.taf.network Contains the main class Network and the implementation of an ab-
stract class ProtocolEngine which provides the skeleton for the implementation
of transmission protocol engines.

org.taf.network.tcp Contains the implementation of a protocol engine that uses the
TCP transmission protocol.

org.taf.network.ssl3 Contains the implementation of a protocol engine that uses the
SSL transmission protocol.

The implementation of the network component has about 1500 lines of code (with-
out documentation).

We will now describe some very important classes that are mandatory to under-
stand the internal processes of Kalong. For a documentation of the other classes,
especially the network component, we refer to the documentation in HTML on the
enclosed CD-ROM.

8.3.1. Important Classes of the Kalong Component

The design of Kalong was done along the following principles:

• For each agent residing at the current agency, there exists an object of class
Context, which holds all information about data items and code units of the
agent. Context objects are managed by an object of class ContextManager
which is responsible to verify that the same context is not used within more
than a single transaction in parallel.

• A single transaction is completely handled by a single so-called session object.
A session object is created for every transaction. It works as a mediator that
uses several other objects (its colleagues) for subtasks. Compare Gamma et al.
[1994] for a description of the mediator design pattern.

• The colleagues, i.e. class ContextManager, class Codec, and class SATP are
singleton.

Figure 8.2 shows a class diagram using UML notation that contains the main
classes of Kalong.
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IKalong

Context

SessionOut

IAgentManager

ContextManager

SessionIn Kalong.NetworkServerImpl INetworkServer

AbstractSession

Codec SATP

INetwork

Figure 8.2.: Overview of the main classes of the Kalong software component.

AbstractSession

Class AbstractSession is the base class for the two classes SessionOut and SessionIn.
Both session classes handle transfers, class SessionOut handles out-migrations and
class SessionIn handles in-migrations.

This abstract class defines common behavior of both session types. Especially, it
defines an inner class AbstractSession.States, which is responsible to control a trans-
action according to the rules of the SATP migration protocol (compare Figure 7.5).

SessionOut

This class implements interface IKalong and provides access to a single agent’s con-
text. It is also responsible to handle all tasks related to transaction management and
transfer of agent information to remote agencies.

An instance of this class is returned by method getKalongInterface of class Kalong.
It uses class ContextManager to get a reference to the agent’s context object and
delegates subtasks to other classes as described below.

SessionIn

This class is responsible to handle incoming SATP messages. It is created by class
Kalong.NetworkServerImpl, which is the default implementation of INetworkServer,
when a remote agency opens a connection to this agency. The object is deleted, after
the transaction has terminated.
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It delegates subtasks to other classes as described below. During the reception of
an agent, class IAgentManager is called, as described in Section 8.2.3.

ContextManager

The ContextManager is responsible for managing agent’s contexts. It provides two
methods lock and unlock, which a session object uses to get access to a single context
object. This class is also responsible for context persistence. It exists only a single
instance of this class.

Context

Class Context is the container for all agent related information that must be known
in Kalong. There exists a single context object for each agent currently residing at
this agency. Context objects are created and deleted by the context manager.

Codec

The Codec class implements the message structure as described in Section 7.8. It
provides for each SATP message type two methods, which are called by a session
object to code or decode messages. It exists only a single instance of this class.

SATP

Finally, class SATP provides functions to create request messages that consist of a
request type and a request parameter. On the other hand, it provides methods to
decode and process reply message. For example, method decodeReply returns the
reply parameter in case of a <ReplyOk> message and throws an exception of type
KalongException in case of a <ReplyNok> message. It exists only a single instance
of this class.

8.3.2. Sequence Diagram for Sending a Header Message

To give an impression how Kalong works internally, we will now present a sequence
diagram for the process of opening a network connection and sending a SATP header
message, compare Figure 8.3. The sequence diagram shows the communication be-
tween the objects described above. We assume that the agent is registered with
the context manager already. For the following, the client is the instance that uses
Kalong for agent migration, for example the agent manager.

First, the client calls Kalong to return a reference to a IKalong interface for the
agent whose name is given as parameter. A new instance of class SessionOut is
created. The client starts the transaction by calling method startTransaction, which
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:ContextManager :Context :Codec :SATP :INetwork:Kalong

:SessionOut
new()

decodeReply( reply )

sendData( message )

codeRequest( HEADER, request )

codeHeader( name, ... )

getAgentName()

:Client

startTransfer( destination )

getKalongInterface( agent )

sendHeader( handle, command )

openConnection( destination )

name

request

handle

message

reply

startTransaction()
lock( agent )

Figure 8.3.: Sequence diagram for the task of opening a network connection and
sending a SATP header.

locks the agent context object. After that, the network connection is opened to
the destination agency using method startTransfer. The session object calls method
openConnection of the network component to establish a communication channel to
the remote agency.

Next, the process of sending a header message is started by the client. The session
object handles this process by sequentially communicating to other objects and finally
sending the request message to the network component.

It first requests the agent’s name by calling the agent’s context object. Then it
calls class Codec to construct a header message according to the SATP specification
rule 15, p. 138. It calls class SATP to create a request message, where the first byte
contains the message type as described in rule 1, p. 137.

Then it calls method sendData of the network component to send the message to
the remote agency. The return value of this method contains the reply message of
the remote server. Finally, this reply message is decoded using a method of class
SATP again. As a header reply message is either an acknowledge or reject message,
no further decoding must happen.

After the header, further SATP messages are to be sent and the processing of these
messages works comparable.
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Agent System

In the last two chapters we presented the basic Kalong migration protocol and its
reference implementation as Kalong software component. The main advantage of
Kalong is that it provides a new optimized migration technique, which allows the
programmer of mobile agents to describe a migration strategy in a very fine-grained
way. We gave first examples to illustrate how migration strategies can be imple-
mented. In the last part of this thesis (pp. 201), we will present results of several
real-world performance measurements.

As we have already mentioned many times, Kalong was designed to work with
many, if not all mobile agent systems. It was of particular importance for us not
to depend on any design issues that are part of the programmer’s view of a mobile
agent system. However, the process of installing Kalong in an existing mobile agent
system is not trivial due to the fact that the main Kalong interface is very low-level.

This chapter is dedicated to the problem of adapting Kalong to an existing mobile
agent system and the goal of this chapter is to show an example, how this process
can be carried out in practice. Therefore, we have to face two problems:

1. The interface of Kalong is very low-level. We introduced the Kalong migration
component as a virtual machine for agent migration. It provides a minimal
set of functions or commands to describe a migration strategy. As the focus
of Kalong lies on migration optimization, it does not provide any mean for the
problem of mobile agent security for example.

Therefore, we present a technique to extend the basic Kalong protocol. We will
show that in fact the Kalong specification only defines the common portions
of a protocol family and the Kalong software component offers a way to define
new migration protocols on basis of Kalong. Using this technique, it is possible
to add security issues to Kalong in a very modular way.

2. We show how to connect Kalong to an existing mobile agent system. We
present a new component, named MDL that aggregates Kalong and the network
dispatcher component and provides a small and easy-to-use interface. This
new component also defines a new abstraction to define and handle migration
strategies in a more comfortable way.
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9.1. Extending Kalong

In this section, we will present a technique to extend the basic Kalong migration pro-
tocol as defined in Chapter 7. The extension mechanism is a very powerful technique
to complement Kalong with other services related to agent migration. The exten-
sion mechanism allows for example to compress each SATP message before Kalong
sends it to the destination agency, or to inspect each incoming class code to detect
malicious agents1. The extension mechanism defines some selected points, where a
user of a Kalong component can modify the structure of each SATP message. It
is not possible to define new SATP message types, but each SATP message can be
modified before it is sent to the destination and immediately after it is received at
the destination platform. We will now first describe the interface of the extension
mechanism and, after that, present some examples how this technique can be used
to supplement Kalong with solutions for some selected security problems of mobile
agents.

9.1.1. The Kalong Extension Interface

The extension mechanism of Kalong consists of a single interface IAgentManager de-
fined in package org.taf.kalong. It defines methods that are called by Kalong during
the process of an in- or out-migration. For the following we denote the central com-
ponent of a mobile agent system that controls agent execution, the agent manager.
An instance of interface IAgentManager is part of the agent manager and must be
registered after starting the Kalong component using method registerListener as de-
scribed in Section 8.2.1 on page 151. Without this listener, Kalong does not accept
in-migrations and cannot start any out-migration.

By registering a listener object, the agent manager is able to modify the structure
of each SATP message. To distinguish such a new migration protocol from the basic
Kalong migration protocol, each listener must define a vendor name, and a version
in form of a major and minor number. As already defined above, a migration can
only be successful, if both the sender and receiver agency support the same protocol.

The following three methods must be implemented by the agent manager to define
the new migration protocol version information.

public String getVendorName()
Returns the protocol vendor name.

public byte getMajorVersion()
Returns the protocol major version number.

1A malicious agent is one that tries to pilfer information from its host environment or tries to
damage its host by mean of so-called denial-of-service attacks. We give further examples for
malicious agents on pp. 177.
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public byte getMinorVersion()
Returns the protocol minor version number.

The general communication protocol between Kalong and its listener is that Kalong
first informs the listener about the beginning of a migration process (either in- or
out-migration). The listener must return a so-called handle object to identify this
migration process later. This handle object must be given as first parameter in all
other methods.

public Object startOutMigration( String agentName, URL destination )
An out-migration has been started. The method must return an object by which this transfer

can be identified later.

At a destination agency, Kalong calls the following method, immediately after it
has accepted a network connection from a sender agency.

public Object startInMigration()
An in-migration has been started. The method must return an object by which this transfer

can be identified later.

Methods codeMessage and decodeMessage are used to code and decode messages or
parts of messages. Please note, that a listener must always implement both variants.
If it provides a method to code a message for example, then there also must be an
analogous method to decode it again.

The following method is called, whenever Kalong is going to send a SATP message
to the destination agency. This is not only the case during out-migrations, as all reply
messages are coded using this method too. Thus, for example, if a sender agency
has requested a unit for downloading, the destination agency calls this method to
code the real unit transfer. The listener can modify this message, for example, by
compressing it or signing it digitally. During this process, the listener might need
more information about the agent, so a parameter context is given, by which the
listener can access some important methods of the agent’s context object.

public byte[] codeMessage( Object handle, byte messageType, byte[] message,
IContext context )throws KalongException
Codes a SATP message that is given in parameter message and return it.

The corresponding method that is called after receiving a SATP message, is:

public byte[] decodeMessage( Object handle, byte messageType, byte[] coded,
IContext context )throws KalongException
Decodes a received message that is given as parameter coded.

The type of message is given as parameter messageType. Interface IContext defines
constant values for all SATP message types.
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The next pair of methods is called to code and decode class codes. Parameter
classCode contains the original byte code of the class with name className.

public byte[] codeClassCode( Object handle, String className, byte[] classCode
)throws KalongException

Codes the given class that is given as Java byte code.

The corresponding method to decode a class is the following.

public byte[] decodeClassCode( Object handle, String className, byte[]
codedClass )throws KalongException
Decodes the given class code and return a valid Java byte code.

This method must return the original byte code of the class with name className,
so that it can be loaded and defined by a Java class loader object.

The next two methods are to code and decode the serialized object state of an
agent.

public byte[] codeObjectState( Object handle, byte[] state )throws
KalongException
Codes the agent’s object state.

public byte[] decodeObjectState( Object handle, byte[] codedstate )throws
KalongException
Decodes the agent’s object state.

The last method must return a byte sequence that can be deserialized using the
standard Java deserialization mechanism.

The next three methods are only called during an in-migration. The first one is
called by Kalong after a Header message is received. The purpose of this method is
to decide whether the migration request should be accepted or not. The listener can
use all information that were received along the Header message.

public boolean receivedInMigration( Object handle, String agentName, URL[]
homeAgency, URL[] lastAgency )
Decides, whether an in-migration for this agent is allowed or not.

The method must return true, if the migration request is accepted, otherwise false.
In many cases, the given information about the agent’s home agency and the agency
from which the agent comes from, is not sufficient to make a qualified decision. How-
ever, these are the only information, which are sent as part of a SATP header. If more
information are needed, for example, certificates of the agent’s owner, these must be
added to the SATP header message using methods codeMessage resp. decodeMessage.

The purpose of the last two methods was already explained in Chapter 8.2.3 on
page 155.

174



9.1. Extending Kalong

public ProtectionDomain getProtectionDomain( Object handle )
This method is called when Kalong deserializes a received agent. The returned protection

domain defines the permissions of this agent.

public void startAgent( Object handle, Serializable agent, URL destination )
The given agent was deserialized successful and must now be started by the agent manager.

9.1.2. A First Example: Compression of all SATP Messages

To give a first impression of the range of application of Kalong’s extension mechanism,
we will present an example, where each SATP message is compressed before sent to
the remote agency.

The following example shows parts of the source code of class ZIPAgentManager
that implements message compression using standard Java techniques provided by
classes GZIPInputStream and GZIPOutputStream defined in package java.util.zip.
To implement message compression is very easy, as the listener must only imple-
ment both methods to code and decode SATP messages, which are codeMessage and
decodeMessage. All other methods to code and decode object states or Java classes,
immediately return the given information unchanged.

1 public class ZIPAgentManager implements IAgentManager
2 {
3 public String getVendorName()
4 {
5 return ”TRACYZIP”;
6 }
7

8 public byte getMajorVersion()
9 {

10 return 0x01;
11 }
12

13 public byte getMinorVersion()
14 {
15 return 0x00;
16 }
17

18 public byte[] codeMessage(Object handle, byte messageType, byte[] raw, IContext context)
throws KalongException

19 {
20 try
21 {
22 ByteBuffer bb = new ByteBufferList();
23 bb.putInt( raw.length );
24

25 ByteArrayOutputStream baos = new ByteArrayOutputStream();
26 GZIPOutputStream zos = new GZIPOutputStream( baos );
27 zos.write( raw, 0, raw.length );
28 zos.close();
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29

30 bb.putBytesWithLength( baos.toByteArray() );
31 return bb.toByteArray();
32

33 } catch( Exception e )
34 {
35 throw new KalongException( e );
36 }
37 }
38

39 public byte[] decodeMessage(Object handle, byte messageType, byte[] coded, IContext context)
throws KalongException

40 {
41 try
42 {
43 ByteBuffer bb = new ByteBufferList( coded );
44 int length = bb.getInt();
45

46 byte[] zipped = bb.getBytesWithLength();
47 byte[] unzipped = new byte[ length ];
48

49 ByteArrayInputStream bais = new ByteArrayInputStream( zipped );
50 GZIPInputStream zis = new GZIPInputStream( bais );
51

52 int pos = 0;
53 do
54 {
55 pos += zis.read( unzipped, pos, length−pos );
56 } while( pos < length );
57 zis.close();
58

59 return unzipped;
60 } catch( Exception e )
61 {
62 throw new KalongException( e );
63 }
64 }
65

66 public byte[] codeObjectState(Object handle, byte[] state) throws KalongException
67 {
68 return state;
69 }
70

71 public byte[] decodeObjectState(Object handle, byte[] codedstate) throws KalongException
72 {
73 return codedstate;
74 }
75

76 public byte[] codeClassCode(Object handle, String name, byte[] classCode) throws
KalongException

77 {
78 return classCode;
79 }
80

81 public byte[] decodeClassCode(Object handle, String name, byte[] codedClass) throws
KalongException

82 {
83 return codedClass;
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84 }
85

86 // some methods are missing
87 }

Both methods work without regard to the message type, as simply all SATP mes-
sages are to be compressed. The original message is written to an instance of class
GZIPOutputStream, which itself uses an instance of class ByteArrayOutputStream
to store the compressed data. The format of the compressed message consists of a
four-byte integer that contains the length of the original message, followed by a byte
array that contains the compressed message. To create this message format, class
ByteBuffer is used that is part of the Tracy project and defined in package org.taf.util.
It provides several methods to code Java’s primitive data types into flat byte arrays.
To decode a compressed message is very straightforward. The message is given to
an instance of class GZIPInputStream, from which the inflated data is read until all
bytes are received. Finally, the original message is returned to Kalong.

As this example shall only give a first impression how to use this interface, we do
not show the implementation to verify an in-coming agent or to start one.

9.1.3. Security Problems of Mobile Agents

We now come to a very important part of mobile agents’ research. Until now, we did
not consider mobile agents security aspects within this thesis, as that was not a major
research issue within Kalong. However, we are aware of the fact that mobile agent
security is of major interest and the absence of a comprehensive security technique
prevents the widespread use in real-world applications.

In the last years, many research groups world-wide have focused on security aspects
of mobile agents and a huge amount of papers were published. It is not the goal of
this section to give an overview of the state-of-the-art and the interested reader is
pointed to the following book by Vigna [1998a], the thesis of Karnik [1998] and the
following papers [Farmer et al., 1996a,b; Jansen, 2000; Karjoth et al., 1997; Karnik
and Tripathi, 2001; Roth and Conan, 2001; Roth and Jalali, 2001].

In this section, we will first give an impression of what can go wrong when a mobile
agent roams a network and briefly discuss security attacks. After that, we will show
how the extension mechanism of Kalong can be used to supplement the basic Kalong
migration protocol by some solutions for fundamental security problems.

Passive Attacks Passive attacks are directed to the communication link between
agencies. The adversary does not interfere with the messages sent over the network.
No data is modified by such an attack, but the data is monitored to extract useful
information. As neither communication partner does notice this attack, it is normally
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This box explains some fundamental notions with regard to security services and the
notation used in this section.

Symmetric cryptosystems use a common key K that is shared between the sender
Alice and the receiver Bob to encrypt messages but must be kept secret against other
entities. Alice uses key K to encrypt a message, which is then sent to Bob, who is
able to decrypt it with the same key K. An eavesdropper Eve may be able to read
Alice’s message but cannot understand it, because she does not have the key K.
The advantage of symmetric cryptosystems is speed, whereas secret key distribution
between Alice and Bob is a considerable technical problem.

In asymmetric cryptosystems or public-key cryptosystems each principal has two
keys – a public key which is shared with all other principals (for example by posting
it on a public key directory service) and a corresponding private key, which must be
kept secret by the owner. The concept of public-key cryptosystems is that messages
can be encrypted using either key and can only be decrypted using the other key
of the key pair. For example, Alice encrypts a message to Bob with Bob’s public
key K+

B , which she obtains by looking at a public directory. This message can
only be deciphered using the corresponding private key K−

B , which is only known
by Bob. The advantage of asymmetric cryptosystems is a comparatively easy key
distribution, as the public key can be published elsewhere in the network and only
the private key must kept secret. The disadvantage is its low speed. In practice,
public key distribution is supplemented by techniques to verify the identity of the
owner using so-called certificates, so that Alice can trust that the public key she has
obtained from the directory service actually belongs to Bob.

Using digital signatures it is possible to verify that a message was originated by
the sender and to check the integrity of a message. Alice encrypts a message with her
private key K−

A . When Bob receives the message, he can decrypt the message using
Alice’s public key K+

A . If it was successful, he can be sure, that the message was
encrypted using the corresponding private key, which is only known by Alice. Thus,
Bob can be sure, that Alice is the author of the received message. Due to the low
speed of public-key cryptosystems, message signing is often combined with digests.

A digest or hash value is the result of a one-way hash function computed over a
message. Such a hash function maps any arbitrary sized byte sequence to a fixed sized
byte sequence, for example 16 byte in the case of the MD5 function. An important
feature of a hash function is that there does not exist a simple technique to find
the original value x, when only the hash value h(x) is known. Additionally, it also
computationally infeasible to find another y so that h(x) = h(y). In other words,
if two hash values are the same, it can be inferred that the two original values are
identical. Digests are often used in combination with digital signatures. As digest are
a good mean to condense data while keeping its uniqueness, not the original message
is encrypted using private key K−

A , but the message’s digest.

Figure 9.1.: The notation used in this section for cryptographic terms. Inspired by
Lange and Ishima [1998].
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difficult or impossible to detect. The most simplest variant of a passive attack is
eavesdropping, where the adversary monitors the communication link between two
agencies and captures agents to extract useful information from the agent’s state or
code for example. This might result in a leakage of sensitive information. Another
form of attack is traffic analysis, which also works in the case when each message
is encrypted, because it is not important that data is readable (understandable) to
the attacker. Here, the adversary attempts to find pattern in the communication
between two agencies, which might bring him in a situation where he can derive
certain assumptions based on these patterns.

Active Attacks Active attacks include security threats where an agency tries to
manipulate agent code or data for its own good or an agent tries to attack its hosting
agency by deliberately using resources, for example memory or a CPU. Most promi-
nent examples of this kind of attack are alteration, where an agent’s data is deleted
or tampered with by an agency, and impersonation, where a malicious agent imper-
sonates another agent instance, which has more comprehensive permissions than the
malicious agent itself.

Thus, we distinguish between malicious agents and malicious agencies as the ac-
tive entity. The first case can be solved to some extent using a combination of cryp-
tographic techniques and basic security mechanisms provided by the Java virtual
machine. The technique works in four steps.

1. First, an agency tries to detect malicious agents migrating into it by inspecting
agent code and rejecting agents that infringe programming rules for benevolent
mobile agents. For example, an agent should not implement method finalize,
which is invoked by the garbage collector to clean up resources used by this
object instance. A malicious agent might use this method to attack the garbage
collector by blocking the current thread, which has the effect that no memory
is freed any more and the whole agency eventually crashes.

2. The second step is agent authentication, which includes verifying the developer
of the agent and checking the integrity of the agent’s code.

3. The next step is agent authorization, where the agent is given certain permis-
sions according to its principals.

4. The last step is to execute an agent in a separate environment, where each
access to host resources is verified against the agent’s permissions and no agent
can access any other agent instance on the level of Java objects.

In Java this restricted execution environment is called sandbox . Due to the
limitation of the Java programming language, this kind of host protection is
not complete. For example, Java does not provide a means to control how much
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memory an agent uses, so a possible attack might be for an agent to allocate
constantly memory. This is also called a denial of service attack.

The second case considers malicious agencies that try to tamper with agent code
or data. Unfortunately, this type of attack is much more difficult to solve as an
agent must disclose all its code and at least part of its data to its host, if it wants
to be executed. Therefore, no general guarantee can be given that an agent is not
maliciously modified [Farmer et al., 1996b]. For example, a malicious agency can
steal useful information stored in the agent, modify data carried by the agent to its
own advantage, or modify an agent’s code in a way that the agent acts maliciously
on other agencies and its home agency. Other examples can be found in Lange and
Ishima [1998] and Karnik [1998]. However, the situation is not so irremediably, as
it seems to be. Using cryptographic techniques, especially data signatures and data
encryption, a situation can be achieved where illegal access to an agent’s code and
data can be detected – but not prevented.

The basic concept is to rely on the notion of trust as usual in public key infrastruc-
tures. Benevolent agencies help benevolent agents by providing such security services
and to protect themselves from malicious agents and malicious agencies. To make
this concept more tangible, we give two examples that we adopted from Karnik [1998].
In the first one, we present a technique to protect a data item of an agent against
illegal manipulations. In the second example, we present a technique to protect a
data item so that it is only usable on selected agencies, all of them assumed a priori
to be non-malicious.

Read-only Data Items In frequent cases, an agent carries data items whose value
remain constant over the whole life-time of the agent. For example, the itinerary was
given by the agent’s owner and contains addresses of all agencies the agent should
visit. This information should be unmodifiable2. To achieve such read-only data
items, the following technique can be used.

At the agent’s home agency, this data item is signed with the private key of the
owner. According to the notion presented in Figure 9.1 on page 178, we can write
signature = SigA(data) = K−

A (h(data)), where h(data) is the digest of the data item,
computed using a one-way hash function, for example MD5, and A is the owner of the
agent. The signature must be computed at the agent’s home agency, as the owner’s
private key is only available there. The signature becomes part of the agent.

When the agent accesses this data item, the host agency verifies whether the read-
only data item has been tampered with. To do this, the agency needs the public
key K+

A of the owner, usually in form of a trusted certificate. It computes the digest

2Of course, a malicious agency has other techniques to manipulate an agent’s route, for example
by just sending the agent to another destination than requested.
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equally to the home agency and compares it to the signature that the agent carries.
Thus, it checks, if h(data) equals K+

A (signature). If both match, the agency can
assume that the data item was not modified.

A malicious agency has two ways to attack this technique. First, it could modify
the data item in a way that the digital signature is still valid. Although, this is
not impossible, due to the hash function used it is assumed to be computationally
infeasible to find another data item with the same digest. Second, the agency modifies
the data item and the signature so that the data items seems to be valid, although
it is not. As it is a fundamental concept of the whole public key cryptography that
the private key is only known to the owner, this attack can be ruled out.

Protect a Data Item for Selected Agencies The next problem is to protect data
items in a way so that they can only be read at certain agencies but not at all agencies
the agent visits. The necessity occurs in a case where data items are defined at the
home agency but shall only be read at some other agencies as well as in the case that
a data item is defined at any agency and shall only be readable at the agent’s home
agency.

This problem can be solved by encrypting the data item with the public key
K+

T (data) of the agency for which the data item is targeted. An additional sig-
nature SigA(K+

T (data)) that binds the address of the target agency to the encrypted
data item using the agent’s private key can be used to ensure that the target address
has not been tampered with.

This solution has a disadvantage, as the data item must be encrypted n times, if it
should be readable at n agencies. A better solution is proposed by Roth and Conan
[2001], who use a hybrid encryption technique. The data item is encrypted using
symmetric encryption, where only key k (which is much shorter than the original
data item) is encrypted n times using the public key of all target agencies.

If the agent gets a new data item at an arbitrary agency, which should not be
readable at any other agency in the following but only at the agent’s home agency,
then it can be encrypted with the public key of the home agency using the same
technique as described above. Besides, using the new features of the Kalong migration
protocol, it is also possible to send this data item immediately back to the agent’s
home agency, so that no other agency has a chance to read it anyway.

9.1.4. How to Implement Security Solutions With Kalong

Now we will show how Kalong’s extension mechanism can be used to implement these
security solutions.

Class Code Filtering Code filtering is used to inspect in-coming classes and check
whether they implement code fragments considered to be malicious. An example for
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this was already presented above. When an agent implements method finalize, it
might attack the garbage collector thread.

Class code filtering can be implemented using the Kalong extension mechanism.
When ever Kalong receives a code unit, it calls method decodeClass of the Kalong
listener object for each class. This method gets the class name and the class byte
code, as it was received from the network, as parameter. It must return a valid Java
byte code for this class. For the following we assume that no other class coding
is implemented so that parameter codedClass already contains valid Java byte code,
which is only inspected within this method.

1 class FilterAgentManager implements IAgentManager
2

3 // ...
4

5 public byte[] decodeClass(String name, byte[] codedClass) throws
KalongException

6 {
7 filterClass( name, codedClass );
8 return codedClass;
9 }

10

11 void filterClass(String name, byte[] bytecode) throws KalongException
12 {
13 try
14 {
15 ClassFileStructure cfs = new ClassFileParser(new BycalDataInputStream(new

ByteArrayInputStream(bytecode))).parseClassFile();
16 ClassStructure cs = new ClassStructure(cfs);
17 Method fin = cs.getMethod(”finalize()”);
18

19 if(fin != null)
20 {
21 throw new KalongException(”class has a finalize method”);
22 }
23 } catch(IOException e)
24 {
25 throw new KalongException(”class code cannot be analyzed and is, therefore

, not accepted”);
26 } catch(AccessFlags Exception f)
27 {
28 throw new KalongException(”class code cannot be analyzed and is, therefore

, not accepted”);
29 }
30 }
31 }
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Method decodeClass calls method filterCode and returns the byte code as it was
received, if the byte code filter did not find any malicious code. Otherwise, this
method throws an exception with an appropriate error message, which is sent back
to the sender agency.

Method filterClass uses the ByCAl tool, which was developed as part of the Tracy
project to analyze Java classes on the level of byte code. The class file is read using
class ClassFileStructure and analyzed using class ClassStructure. The latter class
provides a method to check, whether a method with a given name exists (getMethod).
If a method with name finalize is found, it throws an exception, otherwise it returns
silently.

Agent Authentication Agent authentication can be done by verifying a digital
signature of the agent’s owner or the last agency, the agent came from. Digitally
signing with the agent’s owner private key can only be done at the agent’s home
agency. Therefore, only the immutable or static part of an agent can be digitally
signed, all mutable data as for example the agent’s object state or data items of the
external state cannot be signed with the owner’s key.

We show an example, where the static parts of a SATP header message, which
comprise of the agent’s name and its home agency are digitally signed at the agent’s
home agency. At each host the agent visits, this signature is verified against the
owner’s public key.

To sign a header message can be implemented using method codeMessage of inter-
face IAgentManager. This method is called by Kalong whenever a SATP message is to
be sent to a destination agency. The message type is given as parameter messageType.
The header as it was created by Kalong is given as parameter message.

1 class SigningAgentManager implements IAgentManager
2 {
3 // ...
4

5 public byte[] codeMessage(byte messageType, byte[] message, IContext context)
throws KalongException

6 {
7 if(messageType == IContext.HEADER)
8 {
9 if(agentCertificate != null)

10 {
11 try
12 {
13 byte[] codedAgentCertificate = agentCertificate.getEncoded();
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14

15 ByteBuffer bb = new ByteBufferList();
16 bb.putBytesWithLength(codedAgentCertificate);
17 bb.putBytesWithLength(message);
18

19 if(agentNameSignature == null)
20 {
21 ByteBuffer buffer4sig = new ByteBufferList();
22 buffer4sig.putString(context.getAgentName()).putURLArray(context.

getHomeAgency());
23 agentNameSignature = signBytes(signEngine, agentPrivateKey, buffer4sig

.toByteArray());
24 }
25

26 bb.putBytesWithLength(agentNameSignature);
27 return bb.toByteArray();
28

29 } catch(Exception f)
30 {
31 f.printStackTrace();
32 return null;
33 }
34 } else
35 {
36 return null;
37 }
38 } else
39 {
40 return message;
41 }
42 }
43 }

This code excerpt does not show how to obtain certificates or private keys from
a local keystore file, as this is done using fundamental Java security mechanisms.
We assume that variable agentCertificate contains the agent owner’s certificate and
agentPrivateKey already contains the private key of the agent’s owner. For sake of
simplicity, we send the agent owner’ certificate as part of the header message too. In
real applications, only some information about this certificate would be part of the
header and the destination agency would have to load the certificate from a public
key server.

This method creates a new header message that comprises of three parts. First, it
contains the owner’ certificate (line 16), second the original header message (line 17),
and third, the digital signature (line 26). The conditional in line 19 decides whether
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the agent’s signature must be created (because the current agency is the home agency)
or can be reused. In the latter case, variable agentNameSignature already contains
the agent’s signature. Otherwise, the agent’s name and its home agency URLs are
signed in line 23. To verify a signature, the destination agency must implement
method decodeMessage of interface IAgentManager, as shown in the following excerpt.

1 public byte[] decodeMessage(byte messageType, byte[] message, IContext context
) throws KalongException

2 {
3 if(messageType == IContext.HEADER)
4 {
5 ByteBuffer bb = new ByteBufferList(message);
6 byte[] codedAgentCertificate = bb.getBytesWithLength();
7 byte[] msg = bb.getBytesWithLength();
8 agentNameSignature = bb.getBytesWithLength();
9

10 try
11 {
12 CertificateFactory cf = CertificateFactory.getInstance(”X509”);
13 ByteArrayInputStream bais1 = new ByteArrayInputStream(

codedAgentCertificate);
14 agentCertificate = (X509Certificate) cf.generateCertificate(bais1);
15 agentPublicKey = agentCertificate.getPublicKey();
16

17 } catch(Exception e)
18 {
19 agentCertificate = null;
20 agentPublicKey = null;
21 remoteAgencyCertificate = null;
22 remoteAgencyPublicKey = null;
23 }
24

25 return msg;
26 } else
27 {
28 return message;
29 }
30 }

First, the header message is split into the three components: certificate, original
header message, and digital signature (lines 6–8). After that, the owner’s certificate
is initialized and the owner’s public key is requested (lines 12–15).

The process of verifying the digital signature is done in an other method, when
the header message is checked to decide whether an agent shall be accepted.
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1 public boolean validateHeader(String agentName, URL[] homeAgency, URL[]
lastAgency)

2 {
3 try
4 {
5 if( keystore.getCertificateAlias(agentCertificate) == null )
6 {
7 return false;
8 } else
9 {

10 ByteBuffer buffer4sig = new ByteBufferList();
11 buffer4sig.putString(agentName).putURLArray(homeAgency);
12 return verifySignature(signEngine, agentPublicKey, buffer4sig.toByteArray

(), agentNameSignature);
13 }
14 } catch(Exception e)
15 {
16 e.printStackTrace();
17 return false;
18 }
19 }

First, it is checked, whether the owner’s certificate is trusted (line 5), and second
(line 12), the signature is verified. Using the same technique, it is possible to sign all
classes using the owner’s public key and verify their integrity.

Read-only Data Item The next two examples focus on protecting data items against
illegal modifications or illegal access. This service can also be implemented using
the extension mechanism of Kalong but we will show here a version that imple-
ments an adapter to access the main Kalong interface. The general concept is
that agents can not only use the two methods setDataItem and getDataItem as de-
fined in interface IKalong, but also use two new methods setReadOnlyDataItem and
setEncryptedDataItem.

Here is the code to sign a data item. We assume that the agent has already
defined the keystore alias of its owner in variable alias and the the keystore password
in variable password.

1 public void setReadOnlyDataItem(String name, Serializable value) throws
MDLException

2 {
3 String alias = null;
4 char[] password = null;
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5 SignedObject signedObject = null;
6

7 // request of owner’s alias and password is not shown here
8

9 try
10 {
11 priKey = (PrivateKey) keystore.getKey( alias, password );
12 signedObject = new SignedObject( value, priKey, signEngine );
13 } catch( Exception e )
14 {
15 throw new MDLException( e );
16 }
17

18 setDataItem( name, signedObject );
19 }

The owner’s private key is read from the keystore file in line 11 and the data item
is encapsulated together with its signature by an object of class SignedObject, which
automatically signs the data item in line 18.

When the data item is accessed using method getDataItem, it must be checked
of what type the data item is. If the data item is an object that is an instance of
SignedObject, then the signature is verified and the data value returned to the caller.
The following source code shows how to access Kalong to read a data item with name
name (line 13). In line 22 it is checked whether the data item is of type SignedObject.
We assume that variable pubKey is defined outside this method and already contains
the public key of the agent’s owner. Finally, in line 28, the object is verified and the
original data item returned to the caller in line 41.

1 public Serializable getDataItem(String name) throws MDLException
2 {
3 Serializable dataValue = null;
4 SignedObject signedObject = null;
5 boolean dataVerified = false;
6

7 /∗
8 ∗ Read the data item from the external state.
9 ∗/

10 try
11 {
12 kalongInterface.startTransaction();
13 dataValue = kalongInterface.getDataItem(name);
14 } catch(Exception e)
15 {
16 throw new MDLException(e.getMessage());
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17 } finally
18 {
19 kalongInterface.commit();
20 }
21

22 if( dataValue instanceof SignedObject )
23 {
24 signedObject = (SignedObject)dataValue;
25

26 try
27 {
28 dataVerified = signedObject.verify( pubKey, signEngine );
29 } catch( Exception e )
30 {
31 throw new MDLException( ”signed data item cannot be verified due to: ”

+ e.getMessage() );
32 }
33

34 if( ! dataVerified )
35 {
36 throw new MDLException( ”signed data item was tampered with” );
37 }
38

39 try
40 {
41 return (Serializable)signedObject.getObject();
42 } catch( Exception e )
43 {
44 throw new MDLException( e );
45 }
46 }
47

48 // ...
49 }

Protect Data Items for a Target Agency Finally, we present the code to encrypt
a data item so that it can be only read at a single target agency. The agent calls
this method to store a data item under the given name, which is encrypted with the
public key of the agency whose local keystore alias is given in parameter targetAlias.

Data encryption is done in Java using objects of class Cipher and we assume
that an object with name rsaCipher has been initialized to use asymmetric RSA
encryption. In line 9 the cipher is initialized for encryption using the public key of
the target agency which is obtained from the local keystore file. Data encryption
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works using the same technique as described above with signed object. An object of
type SealedObject is used, which serializes the data item and encrypts it using the
given cipher object (line 10). Finally, this object is stored in the agent’s external
data state (line 17).

1 public void setEncryptedDataItem(String name, Serializable value, String
targetAlias) throws MDLException

2 {
3 SealedObject sealedObject = null;
4 PublicKey targetPublicKey = null;
5

6 try
7 {
8 targetPublicKey = keystore.getCertificate( targetAlias ).getPublicKey();
9 rsaCipher.init( Cipher.ENCRYPT MODE, targetPublicKey );

10 sealedObject = new SealedObject( value, rsaCipher );
11 } catch( Exception e )
12 {
13 e.printStackTrace();
14 throw new MDLException( e );
15 }
16

17 setDataItem( name, sealedObject );
18 }

Data decryption is implemented in method getDataItem. In addition to the source
code presented above, we show here what must be done when the data item is of
type SealedObject.

1 public Serializable getDataItem(String name) throws MDLException
2 {
3

4 // ...
5

6 } else if( dataValue instanceof SealedObject )
7 {
8 try
9 {

10 rsaCipher.init( Cipher.DECRYPT MODE, agencyPrivateKey );
11 return (Serializable)((SealedObject)dataValue).getObject( rsaCipher );
12 } catch( Exception e )
13 {
14 throw new MDLException( ”data item cannot be decrypted due to: ” + e

.getMessage() );
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15 }
16 } else
17

18 // ...
19

20 }

In line 10 the cipher object is initialized for decryption using the private key of the
current agency. Finally, in line 11 the object is decrypted and returned to the caller.

9.2. Coupling Kalong to Tracy2

At the end of this part of the thesis we will now describe how Kalong was adapted
to work with the Tracy2 mobile agent system. The detailed architecture of a Tracy2
agent server is presented in the appendix. The general concept is that of a micro
kernel that provides basic services of a mobile agent server, as for example agent
execution and thread management. On top of the micro kernel, several so-called
features are responsible to provide other services, as for example agent migration
(which is implemented using Kalong), agent communication, a blackboard etc. The
goal of this section is to give an impression how Kalong was adapted to work as a
Tracy2 feature.

9.2.1. MDL

As described already, Kalong uses another software component, named network
adapter, to access the network using different transmission protocols. Kalong only
implements the basic Kalong migration protocol and uses the network adapter for
all tasks that are related to network communication. We presented an example to
connect these two components with each other on Page 152.

To reduce the complexity of the migration feature for Tracy2, we decided to aggre-
gate these two components into a new one, which is named MDL (Migration Defini-
tion Layer). MDL provides several services, which in sum simplify using Kalong. All
classes that belong to this component are defined in package org.taf.mdl.

• MDL starts instances of the Kalong component and the network adapter com-
ponent and connects both components with each other. MDL provides two
adapter classes for this task.

• MDL can be configured using a Map data structure, which contains the network
transmission protocols to start. MDL relieves the user from manually register-
ing network protocols with the network adapter and start a network server for
each protocol.
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• MDL has a very small interface as compared to Kalong. There is only a single
method startMigrationStrategy that the client of a MDL component must use to
initialize the whole migration process. MDL defines a new level of abstraction
and introduces class MigrationStrategy.

• MDL registers an own listener object of type IAgentManager with Kalong,
which already implements all the security solutions presented in the last section.
MDL defines an own listener interface, which only defines a single method that
is called to start agent execution for in-coming agents.

The main method of MDL is the following one that is used to initialize a migration
process.

public void startMigrationStrategy(String agentName, Serializable agent, String
name, Map properties)throws MDLException
Start the migration process for agent agentName using migration strategy name and the

given migration properties.

The first two parameters contain the agent’s name and the agent object. The third
parameter contains the name of a migration strategy. Under this name, the MDL
component must know a class that extends class MigrationStrategy, which is defined
in package org.taf.mdl. A class of type MigrationStrategy aggregates all commands
that describe the migration process for a specific migration strategy. Classes that
describe a migration strategy must be registered with MDL under a user-defined
name, so that agents can simply select the migration strategy to use for the next hop
by providing this name as parameter name in method startMigrationStrategy.

For example, the push-all-to-next migration strategy is implemented as shown in
the following source code:

1 public class PushAgent implements MigrationStrategy
2 {
3 public void run(Serializable agent, IKalong kalong, Map properties) throws

MDLException
4 {
5 int[] allUnits = null;
6

7 try
8 {
9 kalong.startTransaction();

10 kalong.setObjectState( agent );
11

12 allUnits = kalong.getUnits();
13 if( allUnits.length == 0 )
14 {
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15 String[] allClasses = kalong.getClassNames();
16 String[] filtered = ArrayUtils.filter( allClasses, new String[] { ”java.∗”

, ”javax.∗”, ”org.taf.∗” } );
17 if( filtered.length > 0 )
18 {
19 kalong.defineUnit( filtered );
20 }
21 }
22

23 URL destination = (URL)properties.get( MigrationStrategy.
MDL DESTINATION );

24

25 int[] allUnits = kalong.getUnits();
26 String[] allDataItems = kalong.getDataItems();
27

28 Object handle = kalong.startTransfer( destination );
29 kalong.sendHeader( handle, IKalong.NOOP );
30 kalong.sendADB( handle, true );
31

32 if( allUnits.length > 0 )
33 {
34 kalong.sendUnits( handle, allUnits );
35 }
36

37 kalong.sendState( handle, allDataItems );
38

39 } catch( Exception e )
40 {
41 e.printStackTrace();
42 throw new MDLException( e.getMessage() );
43

44 } finally
45 {
46 if( kalong.prepare() )
47 {
48 kalong.commit();
49 } else
50 {
51 kalong.rollback();
52 }
53 }
54

55 }
56 }
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This class describes the common pattern for this kind of migration and it must
be configured to work for a specific agent by the forth parameter given to method
startMigrationStrategy, and which is given to the concrete migration strategy object
as third parameter of method run. This object of type Map might contain several key–
value pairs by which the agent manager can configure the migration process. At least,
this map must contain a pair where the key equals the String literal mdl.migration
and the corresponding value contains a URL object of the next destination.

The whole documentation of this component can be found on the enclosed CD-
ROM.

9.2.2. Migration as Tracy2 Feature

Tracy2 defines an abstract class named Feature which must be implemented by each
concrete feature. The complete definition of class Feature is omitted and we focus on
the few methods that are used within the migration process.

The following source code gives an impression on how the migration feature is
implemented. It shows the constructor, where the feature configures and starts an
instance of the MDL component.

1 public class Kalong extends Feature
2 {
3 final private MDL mdl;
4 final private IMDLListener listener;
5

6 /∗∗ Creates a new instance of Kalong ∗/
7 public Kalong( String featureName ) throws Exception
8 {
9 super( featureName );

10

11 Map properties = new HashMap();
12 properties.put( MDL.NETENGINECLASS + ”.1”, ”org.taf.network.tcp.

TCPEngine” );
13 properties.put( MDL.NETENGINEPORT+ ”.1”, new Integer( 5555 ) );
14 properties.put( MDL.NETENGINECLASS + ”.2”, ”org.taf.network.ssl3.

SSLEngine” );
15 properties.put( MDL.NETENGINEPORT+ ”.2”, new Integer( 6666 ) );
16

17 mdl = new MDL( properties );
18

19 /∗
20 ∗ Register a simple migration strategy.
21 ∗/
22 mdl.registerMigrationStrategy( ”push”, org.taf.mdl.strategies.PushAgent.class

);
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23

24 /∗
25 ∗ Create a listener object for the MDL component, which is called by MDL in

the case of
26 ∗ an in−migration. Register this listener object with MDL.
27 ∗/
28 listener = new MDLListener();
29 mdl.registerListener( listener );
30 }
31

32 // ...

In Tracy2 any kind of agent is an object that implements interface Runnable. This
design decision was made in conformance to the general concept that agents should
be exchangeable with other mobile agent systems – and interface Runnable is the
least common denominator for this. Mobile agents must additionally be marked as
Serializable. As a consequence, an agent does not have its own methods to commu-
nicate to other agents or to initialize the migration process. A new kind of commu-
nication must be established for agents to be able to use feature services.

The concept used in Tracy2 is that of a so-called context object. Each feature
defines an own interface that must extend interface IFeatureContext. This interface
defines methods by which the agent can communicate to the feature. The feature
maintains a single context object for each agent that uses the feature. For example,
the migration feature provides the following context interface:

1 public interface IMigrationContext extends IFeatureContext
2 {
3 public void setDestination( URL destination );
4 public void setMigrationStrategy( String name );
5 public void setDataItem( String name, Serializable value ) throws

KalongException;
6 public Serializable getDataItem( String name ) throws KalongException;
7 public void setReadOnlyDataItem( String name, Serializable value ) throws

KalongException;
8 public void setEncryptedDataItem( String name, Serializable value, String target

) throws KalongException;
9 }

The first two methods are used to define the URL of the next destination and the
name of the migration strategy to use. All other methods are used to access the
external data state of the agent that is maintained by Kalong. An agent can request
its own context object by calling a static method of class Context, which is defined
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as part of Tracy2. This method accepts the name of the feature as parameter and
dispatches the request to the desired feature. In the following example, an agent is
shown that requests its migration context object, defines a data item, and sets the
migration properties.

1 public class SampleAgent implements Runnable
2 {
3 public void run()
4 {
5 try
6 {
7 IMigrationContext migrationContext = Context.getContext( ”migration” );
8 migrationContext.setDataItem( ”data1”, new Integer( 100 ) );
9 migrationContext.setDestination( new URL(”tcp://tatjana.cs.uni-jena.de:4040”

));
10 migrationContext.setMigrationStrategy( ”push” );
11 } catch( Exception e )
12 {
13 e.printStackTrace();
14 }
15 }
16 }

As can be seen, the migration context does not provide a method to initialize the
migration process directly. The reason for this is that it is not the agent on its own
that can decide, whether it can migrate, because other features might disapprove this
action. For example, a communication feature might refuse an agent from migration,
if it still wants to deliver messages to the agent. Therefore, every time when method
run of an agent terminates, the micro kernel of Tracy2 carries out a voting protocol,
where each feature is asked whether the agent might be killed or fall asleep (for
example for wait for new messages) or to migrate. Only if all features agree, the
migration feature is asked to initialize the migration process.

The method to initialize the migration process is named removeAgent and the
source code is shown in the following:

1 public void removeAgent(Runnable agent)
2 {
3 MigrationContext context = (MigrationContext)getContext0( agent );
4

5 if( context != null )
6 {
7 URL destination = context.getDestination();
8 String strategy = context.getMigrationStrategy();
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9 String agentName = context.getAgentName();
10

11 if( destination == null || strategy == null )
12 {
13 removeAgentContext( agent );
14 return;
15 }
16

17 Map migrationProperties = new HashMap();
18 migrationProperties.put( MigrationStrategy.MDL DESTINATION,

destination );
19

20 try
21 {
22 mdl.startMigrationStrategy( agentName, (Serializable)agent, strategy,

migrationProperties );
23 removeAgentContext( agent );
24 } catch( MDLException e )
25 {
26 /∗
27 ∗ Migration failed. Restart the agent now.
28 ∗/
29 }
30 } else
31 {
32 removeAgentContext( agent );
33 }
34 }

First, it is checked whether the agent has already requested a context object at
all. If not, the method terminates immediately. Otherwise, the URL of the next
destination and the name of the migration strategy are read from the context object.
If both are defined, the migration process is started by invoking the appropriate
method of component MDL. If the migration process was not successful, the agent
must be registered locally and the micro kernel must be informed to execute the
agent again. The latter is not shown in the source code above.

If an agent has been received by a Kalong instance, the MDL component is in-
formed about this event, which immediately forwards it to the migration feature.
The migration feature implements interface IMDLListener and defines the following
method to start an agent.

1 class MDLListener implements IMDLListener
2 {
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3 public void startAgent(String agentName, Serializable agent, URL destination,
IContext context)

4 {
5 if( kernel != null )
6 {
7 if( agent instanceof Runnable )
8 {
9 MigrationContext migContext = (MigrationContext)getContext( (Runnable)

agent );
10 migContext.setKalongContext( context );
11

12 kernel.runAgent( (Runnable)agent );
13 } else
14 {
15 throw new IllegalArgumentException(”given agent is not of type Runnable

”);
16 }
17 }
18 }
19 }

The given object of type IContext provides methods to access the agent’s external
data state. This reference is given to the agent’s migration context, so that the
context can forward requests to the external data state directly to Kalong.

9.3. Summary of Part III

In this part of the thesis we specified the new Kalong mobility model and the SATP
protocol for agent transmission. We introduced the Kalong software component that
is the reference implementation of the Kalong mobility model. The main advantages
of the Kalong software component are:

• Kalong can be seen as a virtual machine for agent migration. It provides
generalized low-level functions that can be used to control the migration process
of a mobile agent in a very fine-grained way.

• The Kalong software component is independent of any mobile agent system. It
does not rely of specific design issues made by the agent system and should,
therefore, be usable in almost any mobile agent system.

• The Kalong software component is extendable inasmuch as it defines several
points in the migration process where the agent manager is called to modify or
extend the structure of each SATP message. We have shown how basic security
issues can be implemented using the extension mechanism of Kalong.
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The next part of the thesis will focus on a first evaluation of Kalong using several
real-world experiments.
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Part IV.

Evaluation

In the last part of this thesis, we will evaluate our new migration
model Kalong. We will first provide several examples for migration
strategies and point out other application areas where the new fea-
tures of Kalong may be used to increase the performance of mobile
agent migration. After that, we will discuss the results of several
performance experiments we have done in order to demonstate the
benefit of Kalong in terms of saved network transmission time. Fi-
nally, the last chapter of this thesis gives a conclusion and an outlook
to further developments.





10. Some Thoughts on the Applicability
of Kalong

In this chapter we will reason about the applicability of Kalong to improve the overall
performance of mobile agents. We will provide several examples how the migration
process can be improved using the new features of Kalong. In a first step, we will
present in Section 10.1 a catalog of simple migration strategies. This catalog contains
all migration strategies mentioned in Chapter 5.1 on page 61 and, therefore, covers
the current state of the art. Then, in Section 10.2, we will present several examples
to illustrate the possibilities of Kalong to influence and adapt the migration process
by the programmer, for example to fetch classes in parallel. Finally, in Section 10.3
we will reason about more sophisticated migration strategy and we will present first
results on the way towards a fully automated migration planner that always chooses
the best migration strategy.

10.1. Examples for Simple Migration Strategies

In this section we will present a catalog of migration strategies to show that it is
possible to implement all those strategies presented in the chapters before by using
Kalong. All migration strategies are located in package org.taf.mdl.strategies. The
class diagram for all implemented migration strategies is depicted in Figure 10.1.
It includes an abstract class AbstractMigrationStrategy that implements interface
MigrationStrategy of package org.taf.mdl. The abstract class provides several methods
that are common to all migration strategies, for example to define code units.

The main method of class AbstractMigrationStrategy is method run as defined in
interface MigrationStrategy. It expects as parameter the migrating agent, a reference
to the corresponding Kalong interface, and a map (key-value pairs) that contains all
migration properties. To define the migration properties, the following keys must be
used:

• MDL DESTINATION The corresponding value must be a URL that contains the
destination address.

• MDL UBICLASSES The corresponding value must contain an array of String ob-
jects that are regular expressions to be matched by fully qualified Java class
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MigrationStrategy
<<interface>>

PullPerClassWithoutCache PushAgentWithoutCache

PullAllClasses PullPerClass PushAgent

PullAllClassesWithoutCache WormWithoutCache

Worm PushToAll PushAgentLoadOther PushClassesInUse InitCodeServer

AbstractMigrationStrategy

Figure 10.1.: Class diagram for all implemented migration strategies.

names, which should not migrate. This key-value pair is optional. A default
value is defined in class AbstractMigrationStrategy (SYSTEMCLASSES).

• MDL USECACHE If the migration property object contains an entry with this key,
the Kalong code cache is activated for the next migration without regard to
the default value of the migration strategy.

• MDL NOTUSECACHE If the migration property object contains an entry with this
key, the Kalong code cache is disabled for the next migration without regard
to the default value of the migration strategy.

• MDL OPTIONS The corresponding value must contain a map, which contains
further migration properties used by some migration strategies. This key-value
pair is optional.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.kalong.KalongException;
5 import org.taf.mdl.MDLException;
6 import org.taf.util.ArrayUtils;
7

8 import java.io.Serializable;
9 import java.net.URL;

10 import java.util.Map;
11

12 public abstract class AbstractMigrationStrategy implements org.taf.mdl.MigrationStrategy
13 {
14 protected static String[] SYSTEMCLASSES = new String[]{”java.∗”, ”javax.∗”, ”org.taf.∗”};
15 protected static final String ERROR NO DESTINATION = ”no destination address defined”;
16 protected static final String ERROR NO PROPERTIES = ”no migration properties defined”;
17 protected static final String ERROR CACHEUSAGE NOT UNIQUE = ”ambitious cache

usage”;
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18 protected static final String ERROR NO OPTIONS = ”no migration propertiy options
defined”;

19

20 protected boolean useClassCache = true;
21 protected IKalong kalong;
22 protected Serializable agent;
23 protected URL destination = null;
24 protected Map options = null;
25 protected String[] userDefinedUbiClasses = SYSTEMCLASSES;
26

27 public final void run(final Serializable agent, final IKalong kalong, final Map properties)
throws MDLException

28 {
29 this.agent = agent;
30 this.kalong = kalong;
31

32 checkMigrationProperties( properties );
33

34 try
35 {
36 kalong.startTransaction();
37 kalong.setObjectState(agent);
38

39 if (kalong.getUnits().length == 0)
40 {
41 defineUnits();
42 }
43

44 migrateAgent();
45

46 } catch (Exception e)
47 {
48 throw new MDLException(e.getMessage());
49

50 } finally
51 {
52 if (kalong.prepare())
53 {
54 kalong.commit();
55 } else
56 {
57 kalong.rollback();
58 }
59 }
60 }
61

62 private void checkMigrationProperties( final Map properties ) throws MDLException
63 {
64 if( properties == null )
65 {
66 throw new MDLException( ERROR NO PROPERTIES );
67 }
68

69 destination = (URL)properties.get( MDL DESTINATION );
70 options = (Map)properties.get( MDL OPTIONS );
71

72 if( properties.containsKey( MDL UBICLASSES ))
73 {
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74 userDefinedUbiClasses = (String[])properties.get( MDL UBICLASSES );
75 }
76

77 if( properties.containsKey( MDL USECACHE) && properties.containsKey(
MDL NOTUSECACHE ))

78 {
79 throw new MDLException( ERROR CACHEUSAGE NOT UNIQUE );
80 } else if( properties.containsKey( MDL USECACHE ))
81 {
82 useClassCache = true;
83 } else if( properties.containsKey( MDL NOTUSECACHE ))
84 {
85 useClassCache = false;
86 }
87 }

Variable useClassCache (line 20) decides, whether the class cache should be used
or not. By default, a migration strategy uses the cache, but this can be modified by
defining this variable false or using a migration property as described above. Method
run first verifies the given migration properties and copies stored values to instance
variables. It then starts a transaction, defines the agent object state, and calls method
defineUnits, if not already done before. Finally, it invokes method migrateAgent to
start the migration process.

Class AbstractMigrationStrategy defines the following two abstract methods that a
concrete migration strategy must implement. Their purpose was already explained
above.

88 protected abstract void defineUnits() throws MDLException;
89

90 protected abstract void migrateAgent() throws MDLException;

To simplify the process of unit definition, this class provides two methods to define
either all classes as a single unit (method defineUnitForAllClasses) or a single unit
for each class (method defineUnitForEachClass).

91 protected final void defineUnitForAllClasses() throws MDLException
92 {
93 try
94 {
95 final String[] agentClasses = filterAgentClasses(kalong.getClassNames());
96 kalong.defineUnit(agentClasses);
97 } catch (KalongException e)
98 {
99 throw new MDLException(e);

100 }
101 }
102

103 protected final void defineUnitForEachClass() throws MDLException
104 {
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105 try
106 {
107 final String[] agentClasses = filterAgentClasses(kalong.getClassNames());
108 for (int i = 0; i < agentClasses.length; i++)
109 {
110 kalong.defineUnit(new String[]{agentClasses[i]});
111 }
112 } catch (KalongException e)
113 {
114 throw new MDLException(e);
115 }
116 }
117

118 protected final String[] filterAgentClasses(final String[] classNames)
119 {
120 return ArrayUtils.filter(classNames, userDefinedUbiClasses );
121 }

Finally, this class defines a method migrate, that can be used by concrete migration
strategies to start the migration process in a very flexible way. It expects as parameter
the destination of the next migration, an array of units and an array of data items
that should be transmitted, and a boolean value that indicates, whether the code
cache should be used. This method opens a new network transfer and sends the ADB
as well as all units and data items, as specified in the parameters.

122 protected final void migrate(final URL destination, final int[] units, final String[] dataItems,
final boolean useCache) throws MDLException

123 {
124 final Object handle;
125

126 if (destination == null)
127 {
128 throw new MDLException( ERROR NO DESTINATION );
129 }
130

131 try
132 {
133 handle = kalong.startTransfer(destination);
134 kalong.sendHeader(handle, IKalong.NOOP);
135 kalong.sendADB(handle, useCache);
136

137 if (units != null && units.length != 0)
138 {
139 kalong.sendUnits(handle, units);
140 }
141

142 kalong.sendState(handle, dataItems);
143

144 } catch (KalongException e)
145 {
146 throw new MDLException(e);
147 }
148 }
149 }

205



10. Some Thoughts on the Applicability of Kalong

10.1.1. Push to Next

The PushToNext migration strategies defines a single unit for all classes of the agent
and sends them in one shot to the next destination.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.KalongException;
4 import org.taf.mdl.MDLException;
5

6 public class PushToNext extends AbstractMigrationStrategy
7 {
8 protected void defineUnits() throws MDLException
9 {

10 defineUnitForAllClasses();
11 }
12

13 protected void migrateAgent() throws MDLException
14 {
15 final int[] unitIds;
16 final String[] definedDataItems;
17

18 try
19 {
20 unitIds = kalong.getUnits();
21 definedDataItems = kalong.getDefinedDataItems();
22 } catch (KalongException e)
23 {
24 throw new MDLException(e);
25 }
26

27 migrate(destination, unitIds, definedDataItems, useClassCache);
28 }
29 }

In line 20 all code units and in line 21 all data items that are currently defined are
requested. In line 27 the migration process is started.

Class PushToNextWithoutCache extends this class and initializes useClassCache
with false, which deactivates the class cache. However, it is still possible to use
keys MDL USECACHE to activate the cache again. For most of the following migration
strategies, there exists such a derived class that deactivates the class cache per default,
compare Figure 10.1.
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10.1.2. Push Agent Class and Load Other Classes

This migration strategy defines a single code unit for each class and only transmits the
main agent class to the next destination, while all other classes are loaded dynamically
during runtime from the agent’s home server.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.KalongException;
4 import org.taf.mdl.MDLException;
5

6 public final class PushAgentLoadOther extends AbstractMigrationStrategy
7 {
8 protected void defineUnits() throws MDLException
9 {

10 defineUnitForEachClass();
11 }
12

13 protected void migrateAgent() throws MDLException
14 {
15 try
16 {
17 final String agentClassName = agent.getClass().getName();
18 final int[] units = kalong.getUnitForClassName(agentClassName);
19 final String[] definedDataItems = kalong.getDefinedDataItems();
20

21 migrate( destination, new int[] { units[0] }, definedDataItems, useClassCache );
22

23 } catch( KalongException e )
24 {
25 throw new MDLException( e );
26 }
27 }
28 }

In line 17 the class name of the agent’s main class is determined and in the fol-
lowing line the corresponding code unit is requested that contains this class. This
implementation must be extended, if the agent itself extends other classes or inter-
faces. In line 21 the migration process is started and the first unit that contains the
agent’s base class is selected for transmission.

10.1.3. Push Classes in Use

This migration strategy is our equivalence to the Aglets’ migration strategy, where
all classes are transmitted for which an object exists in the serialized agent (classes
in use). It defines a single code unit for each class. The migration process of this
strategy is more difficult than in the previous strategies as a search for the smallest
set of units that contain the used classes is necessary. In line 33 an array of all used
classes is requested. Method findUnitsToSend selects the units that contain all these
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classes. If more than a single unit qualifies for transmission, the smallest unit is
selected.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.kalong.KalongException;
5 import org.taf.mdl.MDLException;
6 import org.taf.util.ArrayUtils;
7

8 import java.util.HashSet;
9 import java.util.Iterator;

10 import java.util.LinkedList;
11 import java.util.List;
12 import java.util.Set;
13

14 public final class PushClassesInUse extends AbstractMigrationStrategy
15 {
16 public PushClassesInUse()
17 {
18 }
19

20 protected void defineUnits() throws MDLException
21 {
22 defineUnitForEachClass();
23 }
24

25 protected void migrateAgent() throws MDLException
26 {
27 try
28 {
29 /∗
30 ∗ Determine the names of all classes for which an object exists in the serialized agent.
31 ∗ Select units, which should be transmitted to achieve this.
32 ∗/
33 final String[] classesInUse = kalong.getClassesInUse();
34 final String[] filtered = ArrayUtils.filter(classesInUse, new String[]{”java.∗”, ”javax.∗”, ”

\\[Ljava.∗”, ”org.taf.∗”});
35 final int[] unitsToSend = findUnitsToSend(kalong, filtered);
36 final String[] definedDataItems = kalong.getDefinedDataItems();
37

38 migrate( destination, unitsToSend, definedDataItems, useClassCache );
39

40 } catch( KalongException e )
41 {
42 throw new MDLException( e );
43 }
44

45 }
46

47 private int[] findUnitsToSend(final IKalong kalong, final String[] classes) throws
KalongException

48 {
49 List list = arrayToList(kalong.getUnitForClassName(classes[0]));
50

51 for (int i = 1; i < classes.length; i++)
52 {
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53 list = union(list, arrayToList(kalong.getUnitForClassName(classes[i])));
54 }
55

56 final Set setOfUnits = findSmallest(kalong, list);
57 return ArrayUtils.copy((Integer[]) setOfUnits.toArray(new Integer[0]));
58 }
59

60 private LinkedList union(final List list1, final List list2)
61 {
62 final LinkedList result = new LinkedList();
63

64 try
65 {
66 final Iterator iterList1 = list1.iterator();
67 while (iterList1.hasNext())
68 {
69 final HashSet set1 = (HashSet) iterList1.next();
70

71 final Iterator iterList2 = list2.iterator();
72 while (iterList2.hasNext())
73 {
74 final HashSet set2 = (HashSet) iterList2.next();
75 final Set newSet = new HashSet();
76 newSet.addAll(set1);
77 newSet.addAll(set2);
78 result.add(newSet);
79 }
80 }
81 return result;
82 } catch (Exception e)
83 {
84 e.printStackTrace();
85 return null;
86 }
87 }
88

89 private List arrayToList(final int[] units)
90 {
91 final List result = new LinkedList();
92

93 for (int i = 0; i < units.length; i++)
94 {
95 final Set set = new HashSet();
96 set.add(new Integer(units[i]));
97 result.add(set);
98 }
99 return result;

100 }
101

102 private Set findSmallest(final IKalong kalong, final List list) throws KalongException
103 {
104 Set minimalSet = null;
105 int minimum = 0;
106 int sizeOfUnits = 0;
107

108 final Iterator iterList = list.iterator();
109 while (iterList.hasNext())
110 {
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111 final Set element = (Set) iterList.next();
112

113 sizeOfUnits = 0;
114 final Iterator iterSet = element.iterator();
115 while (iterSet.hasNext())
116 {
117 final int unitid = ((Integer) iterSet.next()).intValue();
118 sizeOfUnits += kalong.getUnitSize(unitid);
119 }
120

121 if (minimum == 0 || minimum > sizeOfUnits)
122 {
123 minimalSet = element;
124 minimum = sizeOfUnits;
125 }
126 }
127

128 return minimalSet;
129 }
130 }

10.1.4. Initialize Code Server

This migration strategy can be configured to initialize a code server agency with-
out migrating to it. The address of the code server must be stored under key
codeserver.url in the MDL OPTIONS map of the migration properties.

In method defineUnits this migration strategy defines a single unit for each class
and deploys all agent’s code to the given code server. Method deployAgentCode opens
a network transfer to this host and transmits all code units. After that, a marker
is stored for all these code units to indicate they can be downloaded from this code
server in the future. As deploying agent code is part of the definition of code units.
Code deployment can only be done once after the agent has been started at the home
agency.

The migration process is started by invoking method migrateAgent. This method
has now to decide, whether the given code server happens to be equal to the next
destination (line 54). If this is true, then only the state must be sent, as the network
connection to the code server is still open. Otherwise, it starts a new network transfer
to the given destination address.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.kalong.KalongException;
5 import org.taf.mdl.MDLException;
6

7 import java.net.URL;
8

9 public final class InitCodeServer extends AbstractMigrationStrategy
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10 {
11 public static final String CODESERVER = ”codeserver.url”;
12

13 protected Object handleForCodeserver = null;
14 protected URL codeServer = null;
15

16 public InitCodeServer()
17 {
18 /∗ Class cache should be activated so that a migration to an agency notices the code server.

∗/
19 useClassCache = true;
20 }
21

22 protected void defineUnits() throws MDLException
23 {
24 defineUnitForEachClass();
25

26 /∗
27 ∗ Deploy agent’s code to the agency and make it to a code server agency.
28 ∗ Check that such an address is defined.
29 ∗/
30 if( options == null )
31 {
32 throw new MDLException( ERROR NO OPTIONS );
33 }
34

35 codeServer = (URL) options.get( CODESERVER );
36 if( codeServer == null )
37 {
38 throw new MDLException( ”no codeserver address defined” );
39 }
40

41 try
42 {
43 deployAgentCode( codeServer, useClassCache );
44 } catch( Exception e )
45 {
46 throw new MDLException( e );
47 }
48 }
49

50 protected void migrateAgent() throws MDLException
51 {
52 try
53 {
54 if( codeServer != null && codeServer.equals( destination ) && handleForCodeserver !=

null )
55 {
56 /∗ connection to code server is already open, reuse it ∗/
57 kalong.sendState( handleForCodeserver, null );
58

59 } else
60 {
61 migrate( destination, kalong.getUnits(), null, useClassCache );
62 }
63

64 } catch( KalongException e )
65 {
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66 throw new MDLException( e );
67 }
68

69 }
70

71 private void deployAgentCode( final URL codeserver, final boolean useCache ) throws
KalongException

72 {
73 int[] allUnits = kalong.getUnits();
74

75 final Object handle = kalong.startTransfer(codeserver);
76 handleForCodeserver = handle;
77

78 kalong.sendHeader(handle, IKalong.START CODESERVER);
79 kalong.sendADB(handle, useCache );
80 kalong.sendUnits(handle, allUnits);
81

82 /∗ store information about the new code server for each unit ∗/
83 allUnits = kalong.getUnits();
84 for( int i=0; i<allUnits.length; i++ )
85 {
86 kalong.addCodeBases(i, new URL[] {codeserver} );
87 }
88 }
89 }

10.1.5. Push to All

The next migration strategy is an extension of the last one, as it sends the code not
only to a single but to all hosts that the agent will visit while executing its itinerary.

The itinerary must be given as an array of URLs stored in the options of the
migration properties. In line 42 it is checked that the given destination address is
member of this array. Method deployAgentCode deploys all code units to all these
hosts. Again, as in the last migration strategy, this process of deploying an agent’s
code can only be done once in the agent’s life-time.

The migration process is defined in method migrateAgent. It must decide, whether
it is the first migration leaving the home agency. In this case, an already open network
connection can be reused. Otherwise, a new network transfer must be opened.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.kalong.KalongException;
5 import org.taf.mdl.MDLException;
6 import org.taf.util.ArrayUtils;
7

8 import java.net.URL;
9

10 public final class PushToAll extends AbstractMigrationStrategy
11 {
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12 public static final String ALL DESTINATIONS = ”all.destinations”;
13 protected static final String ERROR NO ALLDEST = ”migration property options does not

contain key \”” + ALL DESTINATIONS + ”\””;
14

15 protected Object handleForFirstDestination = null;
16

17 public PushToAll()
18 {
19 }
20

21 protected void defineUnits() throws MDLException
22 {
23 defineUnitForAllClasses();
24

25 /∗
26 ∗ The addresses of all destinations is stored in the migration properties.
27 ∗ Check that the given migration destination is element of this array.
28 ∗/
29 if( options == null )
30 {
31 throw new MDLException( ERROR NO OPTIONS );
32 }
33

34 final URL[] allDestinations = (URL[]) options.get( ALL DESTINATIONS );
35

36 if( allDestinations == null || allDestinations.length == 0 )
37 {
38 throw new MDLException( ERROR NO ALLDEST );
39 } else if( destination == null )
40 {
41 throw new MDLException( ERROR NO DESTINATION );
42 } if( ! ArrayUtils.hasElement( allDestinations, destination ))
43 {
44 throw new MDLException( ”given destination address \”” + destination + ”\” is not

element of the list of all destinations” );
45 }
46

47 try
48 {
49 deployAgentCode( allDestinations, destination, useClassCache );
50 } catch( Exception e )
51 {
52 throw new MDLException( e );
53 }
54 }
55

56 protected void migrateAgent() throws MDLException
57 {
58 Object handle = null;
59 try
60 {
61 /∗
62 ∗ If the migration is directed to any of the agencies to which code
63 ∗ was shipped before, reuse this transfer. Otherwise (means, this is
64 ∗ not the first migration with this strategy), start a new transfer.
65 ∗/
66 if( handleForFirstDestination == null )
67 {
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68 handle = kalong.startTransfer( destination );
69 } else
70 {
71 handle = handleForFirstDestination;
72 }
73

74 kalong.sendState( handle, kalong.getDefinedDataItems() );
75

76 } catch( KalongException e )
77 {
78 throw new MDLException( e );
79 }
80

81 }
82

83 private void deployAgentCode( final URL[] allDestinations, final URL destination, final
boolean useCache ) throws Exception

84 {
85 final int[] allUnits = kalong.getUnits();
86

87 for (int i = 0; i < allDestinations.length; i++)
88 {
89 final Object handle = kalong.startTransfer(allDestinations[i]);
90

91 if( destination.equals( allDestinations[i] ))
92 {
93 handleForFirstDestination = handle;
94 }
95

96 kalong.sendHeader(handle, IKalong.START CODESERVER);
97 kalong.sendADB(handle, useCache );
98 kalong.sendUnits(handle, allUnits);
99 }

100 }
101 }

10.1.6. Pull Per Class

This migration strategy does not transmit any code units but only the migrating
agent’s object state during the migration process. It defines a single code unit for
each class. In line 14 the migration process is started and the two null values indicate
that no code units and no data items shall be transmitted per default.

1 package org.taf.mdl.strategies;
2

3 import org.taf.mdl.MDLException;
4

5 public class PullPerClass extends AbstractMigrationStrategy
6 {
7 protected void defineUnits() throws MDLException
8 {
9 defineUnitForEachClass();

10 }
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11

12 protected void migrateAgent() throws MDLException
13 {
14 migrate( destination, null, null, useClassCache );
15 }
16 }

10.1.7. Pull All Classes

This migration strategy only differs from the last one by defining a single code unit
for all classes.

1 package org.taf.mdl.strategies;
2

3 import org.taf.mdl.MDLException;
4

5 public class PullAllClasses extends AbstractMigrationStrategy
6 {
7

8 protected void defineUnits() throws MDLException
9 {

10 defineUnitForAllClasses();
11 }
12

13 protected void migrateAgent() throws MDLException
14 {
15 migrate(destination, null, null, useClassCache );
16 }
17 }

10.1.8. Worm

The last migration strategy works like a worm that roams the network and initializes
each agency that it visits to become a code server. It does not transmit any code
along with its state transmission, but always loads necessary classes from the last
agency it has been visited before. It defines a single code unit for all classes.

The migration process has to store information about the new code server for all
code units and then migrates the agent without code and external data items.

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.kalong.KalongException;
5 import org.taf.mdl.MDLException;
6

7 import java.net.URL;
8
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9 public class Worm extends AbstractMigrationStrategy
10 {
11 protected void defineUnits() throws MDLException
12 {
13 defineUnitForAllClasses();
14 }
15

16 protected void migrateAgent() throws MDLException
17 {
18 try
19 {
20 /∗
21 ∗ Initialize code server, mark all units so that they are copied here.
22 ∗/
23 final URL[] thisAgency = kalong.getURLs();
24 final int[] allUnits = kalong.getUnits();
25 for (int i = 0; i < allUnits.length; i++)
26 {
27 kalong.addCodeBases(allUnits[i], thisAgency);
28 }
29

30 migrate( destination, null, null, useClassCache );
31

32 } catch( KalongException e )
33 {
34 throw new MDLException( e );
35 }
36 }
37 }

10.2. Adapting the Migration Strategy

In the last section, we introduced several migration strategies, where the user cannot
influence the migration process in detail. By selecting the migration strategy it
is already defined which code units shall be transmitted. None of these migration
strategies selects elements of the external state to migrate. They always transmit the
whole agent object state and all defined data items. At this point of our discussion,
we will describe techniques, that enable the user to influence the migration process
in more detail.

10.2.1. Generic Migration

In Section 10.1.3 we presented the migration strategy that sends all classes of an
agent that are currently in-use to the next destination, whereas all other classes
must be loaded dynamically from an agent’s code server. This migration strategy
is comparable to the one that is implemented in the Aglets system. It is correct
that classes of objects that are currently accessed must be available at the remote
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destination, compare Section 6.1 on page 83. However, as we also have shown there,
it is not necessarily the case that all theses object are accessed at the destination.

If it is known that on the next destination agency only specific data items and their
corresponding classes are used, then the following pattern can be used: Put all data
that will not be used at the destination agency in a data item of the external state
and do not transmit this data item along object state migration. In other words,
select only those data items for migration that must be available at the destination
together with their corresponding classes. A new migration strategy is necessary,
where the programmer can define, in a fine-grained way, which data items and/or
classes should be transmitted. Such a strategy is implemented in the following class:

1 package org.taf.mdl.strategies;
2

3 import org.taf.kalong.IKalong;
4 import org.taf.mdl.MDLException;
5 import org.taf.mdl.MigrationStrategy;
6 import org.taf.util.ArrayUtils;
7

8 import java.io.Serializable;
9 import java.net.URL;

10 import java.util.Map;
11

12 public final class Generic extends AbstractMigrationStrategy
13 {
14 public static final String UNITS = ”generic.units”;
15 public static final String DATAITEMS = ”generic.dataitems”;
16

17 public Generic()
18 {
19 }
20

21 protected void defineUnits() throws MDLException
22 {
23 defineUnitForEachClass();
24 }
25

26 protected void migrateAgent() throws MDLException
27 {
28 if( options == null )
29 {
30 throw new MDLException( ERROR NO OPTIONS );
31 }
32

33 final int[] unitsToSend = (int[])options.get( UNITS );
34 final String[] dataItemsToSend = (String[])options.get( DATAITEMS );
35 migrate( destination, unitsToSend, dataItemsToSend, useClassCache );
36 }
37 }

In the options map of the migration properties, two entries specify which data
item and code units should migrate (lines 14–15). The entry with key UNITS must
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contain an array of integer values, which are unit identifiers. The entry with key
DATAITEMS must contain an array of Strings, which are the names of the data items
to transmit. This migration strategy defines a single code unit for each class. In
line 35 the migration process is started with the user-defined selection of code units
and data items.

10.2.2. Loading Classes and Data Items in Advance

As already described in the last chapters, Kalong provides the possibility to fetch
data items of the external state that are currently defined at the agent’s home or
mirror agency. We did not mention, that the same technique is possible for classes
resp. code units too.

Until now, we always stressed that code classes that are not available at the current
agency, can be downloaded from the agent’s home, code server, or mirror agency au-
tomatically on demand. The MDL component provides a new technique, so that the
programmer can start the process of code downloading manually, as soon as it is clear
that a specific class will be used in future. This technique, called code prefetching,
provides the advantage that code can be downloaded in parallel with agent execution,
a feature that may improve the performance of mobile agents considerably.

Consider the following source code:

1 public class SampleAgent implements Runnable
2 {
3 public void run()
4 {
5 try
6 {
7 IMigrationContext migrationContext = Context.getContext( ”migration” );
8

9 // ...
10

11 if( /∗ ... ∗/ )
12 {
13 // assume that it is known now that class A is used in future
14 migrationContext.loadClassNonBlocking( ”A” );
15

16 // ...
17

18 A a = new A();
19

20 // ...
21

22 }
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23 } catch( Exception e )
24 {
25 e.printStackTrace();
26 }
27 }
28 }

We assume that in line 14 it is already known that class A will be used in future. In
this line, the process of asynchronous class loading is started. The method invocation
returns immediately and a new thread has been started that processes class loading
in parallel. Later, when agent execution reaches line 18, the thread might have
terminated already, so that there is no delay for loading class A at this point.

Data items can be loaded asynchronously too, using loadDataItemNonBlocking
instead of method loadDataItem that was introduced in the last chapters.

10.3. Outlook to More Sophisticated Migration Strategies

In this section we will present some ideas for more sophisticated migration strategies.
Although it might be sufficient for most application domains to delegate the decision
about the migration strategy to the agent programmer, it is undoubtedly more conve-
nient to let Kalong determine the migration strategy itself. We call such a migration
strategy that decides in an autonomous fashion on the next migration strategy, an
automated migration strategy. In some situations, for example, if the agent roams the
Internet without a fixed itinerary but decides at each agency to which host the next
migration should be directed to, there is no alternative to an automated migration
strategy, if migration should be optimized, as the user has no knowledge about the
route that the agent will take.

As we have already shown in Section 3.2 on page 26 the performance of agent
migration depends on several factors, as for example network quality, execution prob-
ability of each code unit, the size of each code unit, etc. We now have to face two
problems. First, all these parameters must be determined and we will present some
techniques that we have developed to gather information about the network quality
later. Currently we are working towards a technique to analyze an agent’s code to
determine the execution probability of each code class by static or dynamic code anal-
ysis. Second, we have to find algorithms to decide, on the basis of these parameters,
how the next migrations should be processed.

Let’s start with the second step, because it turns out to be simpler. Our goal is
to decide which classes should be pushed from the sender to the destination agency
and which classes should be loaded from the agent’s home server later. We first
disregard all other Kalong features, as for example code servers and mirror servers,
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which complicate this decision further. As each class transmission is independent to
any other class, we must simply compare the migration time for each single class.

Let the mobile agent consist of u code units, where each code unit comprises of
exactly a single class. The size of code unit k equals Bk

c , k = 1, . . . , u. The network
is modeled using delay δ and throughput τ , each are assumed to be available for all
pairs of network nodes. The cost to transmit code unit k from the sender agency Li

to the destination agency Li+1 equals

T k
push =

Bk
c

τ(Li, Li+1)

We do not factor in the agent’s data and state size Bd + Bs and the network delay
δ(Li, Li+1), as these costs arise in any case. The alternative of pushing the code
unit is not to transmit it from the sender agency, but to impose on the destination
agency to load missing code units on demand from the agent’s home server L0. We
have to consider the execution probability P k

Li+1
that code unit k is really needed at

destination Li+1, so the cost amounts to

T k
pull = P k

Li+1

(
δ(Li+1, L0) +

(Bk
c + Br)

τ(Li+1, L0)

)
The cost to request a code unit equals Br. Here, we have to include the delay to open
a network connection, because each code unit is loaded using a new connection. We
are aware of the fact that both equations base on the simple mathematical model of
network load and transmission time developed in Section 3.2 on page 26, which has
to be improved and refined to serve as a real forecast instrument.

For each code unit k we compare both costs and choose the technique that has
lower cost. Figure 10.2 shows the source code of a method that implements this
decision process. Parameter code contains the size of all code units, and exProb the
execution probability for all code units on agency Li+1. The network parameters
are given by throughput1 for the connection between Li and Li+1 and throughput2
for the connection between Li+1 and L0. Network delay is given only for the home
connection, and parameter request contains the cost for a code request.

For example, an agent consists of two code units, where B1
c = 20 KB and B2

c =
10 KB. The execution probabilities are P 1

Li+1
= 0.8 resp. P 2

Li+1
= 0.2. The network

connection to the destination agency has throughput τ(Li, Li+1) = 800 Kb/sec and
the one between destination agency and home server has throughput τ(Li+1, L0) =
240 Kb/sec. Delay equals 15 ms and the cost of a code unit request is 100 byte. It
turns out that it does cost 200 ms to push the first code unit, whereas it takes 548 ms
to load it later. Therefore, the first code unit is pushed to the destination agency.
For the second code unit, cost for pushing equals 100 ms, whereas loading it later
on demand does only cost 70 ms – so this code unit is not pushed. If we decrease
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1 public Set findClasses( int[] code, float[] exProb, float throughput1,
2 float throughput2, float delay2, int request )
3 {
4 float pushCase, pullCase;
5 Set result = new HashSet();
6

7 for( int i=0; i<code.length; i++ )
8 {
9 pushCase = ((float)code[i] / throughput1 );

10 pullCase = exProb[i] ∗ ( delay2 + ((float)code[i] + (float)request ) /
throughput2 );

11

12 if( pushCase < pullCase )
13 {
14 result.add( new Integer(i) );
15 }
16 }
17

18 return result;
19 }

Figure 10.2.: Method to determine the classes to push to the next destination.
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throughput between destination agency and home agency, the result changes in a way
that now all code units should be pushed, because it is more costly to load missing
units later.

The decision process is more difficult, if not only the immediate next but more
migrations should be planned. Not only the network parameters must be known for
all agencies to be visited, but also the execution probability for all code units at
all destinations must be known. At this point, we might regard this as a limitation
of this kind of automated migration strategies, as it can be extremely expensive to
bring together network information about all next agencies at the current agency.

In principle, even the decision to initialize a code server or mirror agency can be
done using the same technique as described above. The question, whether a code
server should be initialized at the current agency can be answered by comparing
transmission time for the next migrations for the case that all code must be loaded
from the home server resp. the code server. If migration time can be reduced, a code
server should be initialized.

Currently, we are not able to determine all necessary information about network
quality and execution probability. Therefore, we were not able to verify our technique
in a real-world environment. However, we are currently working on extensions of
Kalong, for which we now present the current state of implementation.

Network Analysis We have developed a tool to monitor network performance and
integrated it in the Tracy mobile agent system. On each agency, this component
gathers information about network quality by testing network connections to neigh-
bor agencies. Two agencies are neighbors, if they are member of the same domain
which is never more than a sub-network, as defined by the Tracy domain manager
concept, see Section A.5 on page 277 for more information. Time measurements are
done using ping messages sent periodically between two agencies, from which network
throughput and latency are deduced. The monitor component provides an applica-
tion programming interface so that other components or agents can use the results.
In a second step, monitor components located at different agencies communicate to
exchange network information using mobile agents. Using this technique it is also
possible to use information about throughput and latency of a remote agency, which
is necessary to implement such automated migration strategies as described above.
Steffen Schreiber implemented this network monitoring tool as part of this diploma
thesis [Schreiber, 2002].

Agent Profiling To determine the execution probability of classes in a Java-based
mobile agent, we plan to use profiling techniques known from the area of compiler
construction, which in general are used to predict the probability of executing specific
code portions.
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A first approach to determine a profile is to instrument the agent’s source code and
to count how often a basic block is executed. This type of profiling is called dynamic,
because the agent must be executed to obtain profile information. The advantage
of dynamic profiling is that it provides very accurate information. However, as the
profile depends on the agent instance and not only on the type of agent, different
input data, for example a different user task, might lead to a completely different
profile. Therefore, such a profile is undoubtedly valuable, if a single agent is reused
many times for comparable tasks, but it is questionable, whether dynamic profile
information can be transferred to other instances, even if they are of the same agent
type. Another drawback of dynamic profiling is that it increases not only the code
by adding new statements for counting, but also the data, as the information must
be part of the agent’s state and carried through the network.

Another approach works statically and uses source code analysis to estimate pro-
files. It uses techniques as for example branch prediction or analysis of method
invocation frequencies to forecast, how often specific pieces of code will be used. The
advantage is that it is done before executing the agent and, therefore, will neither
increase the code nor the agent’s data. Static profiling will never be as accurate as
dynamic profiling, but it works for all agents of the same type and can, therefore, be
used several times.

The result of profiling is in both cases information, about the execution probability
of classes.

Class Splitting As an extension of the last technique we consider the idea of class
splitting to reduce network traffic for mobile agents. The problem with agent profiling,
as presented above, is a code granularity that so far is always the complete class. It
can be assumed that invocation frequency is not the same for all methods of the
same class. Therefore, it makes sense to increase the granularity of agent profiling to
provide information on the level of methods and to split a class into two or more new
classes and distribute methods according to their execution probability. Groups of
methods that are used with the same probability, because they call each other, should
be member of the same class, while other methods with lower execution probability
should form another class. If a method is called that is not implemented in the main
class, then another class is loaded that contains the code. The effect of class splitting
is that the resulting classes, and especially the main class, are smaller than the single
original class, which will in turn reduce network transmission time.

Chris Fensch implemented a software component for class splitting as part of his
diploma thesis [Fensch, 2001]. It provides a simple interface, where the user can
define to split a class into n other classes and specify, which class should contain
which methods. Classes are split on the level of Java byte code. The result of
splitting code is completely transparent to the programmer. This set of new classes
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can be used as if it were still only a single class, as all fragments are linked together.
Figure 10.3 shows an example of the class splitting technique. The left figure

shows the original agent. Using profiling technique, we found that method startAgent,
which is in Tracy only called once, when the agent is started, is never used on visited
agencies and, therefore, should not be part of the main agent. The right figure shows
the result of two classes AnAgent, which only contains a stub for method startAgent
and class Split, which contains the code for this method. Method startAgent of class
AnAgent creates an instance of class Split, if not already done, and forwards the
method invocation to this object. The figure also shows how the splitted class can
access private variables of the original agent using an auxiliary method that was
introduced by the splitting algorithm.

The idea of class splitting was proposed in the area of Java applets already [Krintz
et al., 1999]. We are currently working on experiments to verify the effect of class
splitting for real-world agents.
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1 package MyAgent;
2

3 class AnAgent extends MobileAgent
4 {
5 private Vector route;
6

7 // ...
8

9 public void startAgent()
10 {
11 // ...
12 route = new Vector();
13 // ...
14 }
15 }

(a) Original agent.

1 package MyAgents;
2

3 class AnAgent extens MobileAgent
4 {
5 private Vector route;
6 private transient Split I1;
7

8 public void startAgent()
9 {

10 if( I1 == null )
11 {
12 I1 = new Split( this );
13 }
14 I1.startAgent();
15 }
16

17 void access$123(Vector x)
18 {
19 route = x;
20 }
21 }

1 package MyAgents;
2

3 class Split
4 {
5 private AnAgent this$0;
6

7 Split(AnAgent x)
8 {
9 this$0 = x;

10 }
11

12 public void startAgent()
13 {
14 // ...
15 this$0.access$123(new Vector());
16 // ...
17 }
18 }

(b) The splitted agent consists of two
classes.

Figure 10.3.: Example for the class splitting technique. We picture Java source code,
although class splitting works on the level of Java byte code.
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In this chapter we examine several measurements to demonstrate the performance
of our new migration component Kalong. Our goal is to give some first impression
on how fast (or slow) migration can be in Java based agent systems. Additionally,
we will give some impression on how different parameters influence the migration
performance, as for example code size, network quality, code compression, and secu-
rity enhancements. Finally, we will show the effect of the new features of Kalong,
which provide the possibility to send data items back to the agent’s home agency, to
load code from a code server instead from the home agency, or the effect of mirror
agencies.

Our performance experiments must be seen as a first step towards a comprehensive
performance analysis of the migration process of mobile agents in general. Due to
some restrictions in the availability of enough network nodes and different network
qualities, we had to limit our experiments in the following aspects:

• We only measure the Kalong migration component as part of a very simple
mobile agent system, which is not equal to the Tracy system. We do not
compare our results to other mobile agent systems, as some of these are not
executable with the newest (and certainly fastest) Java virtual machine.

• There is no benchmark suite available, for example in form of several mobile
agents, which perform specific migrations. Therefore, we developed our own
mobile agents tailored to show the specific advantages of Kalong.

• We only measure the performance of mobile agents and do not compare it to
the client-server case.

• We only measure migration times and not the performance of a whole mobile
agent system. The agents that we used in the experiments do not produce load
on each visited agency.

• We only measure the time for a single mobile agent. We have no experiences
how the performance of Kalong will be for a higher number of agents that
migrate in parallel.

• We only have a very small number of network nodes available, especially in the
wide-area network. It is extremely interesting, how migration times increase in
real-world applications.
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11.1. Related Work

11.1.1. Performance Evaluation of Existing Mobile Agent Systems

As far as we know, only two systems have ever been explored concerning migration
performance. First, Gray [1997b] proposes in his thesis on the AgentTCL system
some performance evaluations. AgentTCL is based on the script language TCL.
The AgentTCL system provides some basic functions for a flexible and secure mobile
agent system. His results for migration times show high delays due to the very slow
script interpreter and a migration protocol overhead. Second, the Tacoma system
was evaluated by Johansen et al. [1997]. Tacoma is also not a Java-based mobile
agent system. The authors give values for the migration time of one agent from one
server to a remote one including time for serializing and deserializing, creating and
initiating, as well as sending an acknowledge message. As far as we know, no Java
based agent system has ever been explored concerning performance issues.

11.1.2. Performance Comparison of Mobile Agent Systems

Some work has been done to compare existing mobile agent systems. Dikaiakos and
Samaras [2000] define some micro-benchmarks to assess a mobile agent system, e.g.
one to capture the overhead of local agent creation, or one to capture the overhead
of point-to-point messaging. Although the authors define a micro-benchmark (called
ROAM) to capture the “agent-traveling overhead” [Dikaiakos and Samaras, 2000,
p. 9], they do not provide any values for this rather interesting benchmark for mobile
agent systems. Their paper also suffers of some fundamental methodological flaws,
e.g. they do not publish any factor information: the reader does not know which hard-
ware configuration, which type of network, or which software version was used. Silva
et al. [2000] compare eight mobile agent systems using twelve experiments. Their
results show the influence of several factors, e.g. the number of agent servers to visit
on one tour, the influence of the agent’s size and the influence of class caching, on
the performance of mobile agents. In our opinion, different mobile agent systems
cannot be compared without taking some fundamental design issues of each system
into account. Unfortunately, the authors do not consider that each system has imple-
mented different security strategies, different migration and transmission strategies,
etc.

11.2. Methodology

11.2.1. Experiments and Measurements

In sum we conducted eight different experiments, where in each experiment the mi-
gration time for a specific mobile agent in a certain environment is measured. Each
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experiment consists of several measurements, where in each measurement the same
agent is started several times. Agents used in different measurements vary for exam-
ple in code size or in the number of servers to be visited.

To conduct an experiment we developed a simple mobile agent system that is
defined in package org.taf.simpleagency. The main function of this agency is to start
agents, to measure migration time for each agent, to compute statistical information
(mean value and confidence interval) for a measurement, and finally to generate a
file that contains all the results of an experiment.

In each experiment we distinguish two roles for the involved computers. The
computer on which all agents are started is called master, all other computers that
are only visited by the agents are called clients. All experiments are described using
a single XML file. For each experiment it contains a node that defines the master
configuration and another node that defines the client configuration. The following
excerpt shows the beginning of the description of experiment no. 1 (M01) for the
master.

1 <node name=”M01 master”>
2 <map>
3 <entry key=”network.protocol.class.1” value=”org.taf.network.tcp.TCPEngine”/>
4 <entry key=”network.protocol.port.1” value=”5555”/>
5 <entry key=”keystore.url” value=”file:///home/mit/ips/braunpet/tracy2/migration/keystore”/>
6 <entry key=”keystore.alias” value=”ag1”/>
7 <entry key=”keystore.password” value=”∗∗∗∗∗∗∗”/>
8 <entry key=”filename” value=”M01 100l”/>
9

10 <entry key=”agent.0.name” value=”0”/>
11 <entry key=”agent.0.url” value=”file:///home/mit/ips/braunpet/tracy2/migration/examples”/>
12 <entry key=”agent.0.class” value=”agent.M01 0”/>
13 <entry key=”agent.0.home” value=”tcp://ipc047.inf.uni−jena.de:5555”/>
14 <entry key=”agent.0.route” value=”tcp://ipc033.inf.uni−jena.de:5566”/>
15 <entry key=”agent.0.strat” value=”pushnocache”/>
16 <entry key=”agent.0.init” value=””/>
17 <entry key=”agent.0.buildup” value=”5”/>
18 <entry key=”agent.0.rep” value=”1000”/>
19

20 <entry key=”agent.1.name” value=”2500”/>
21 <entry key=”agent.1.url” value=”file:///home/mit/ips/braunpet/tracy2/migration/examples”/>
22 <entry key=”agent.1.class” value=”agent.M01 2500”/>
23 <entry key=”agent.1.home” value=”tcp://ipc047.inf.uni−jena.de:5555”/>
24 <entry key=”agent.1.route” value=”tcp://ipc033.inf.uni−jena.de:5566”/>
25 <entry key=”agent.1.strat” value=”pushnocache”/>
26 <entry key=”agent.1.init” value=””/>
27 <entry key=”agent.1.buildup” value=”5”/>
28 <entry key=”agent.1.rep” value=”1000”/>
29

30 </map>
31 </node>

In lines 3-8 the master agency is configured, for example which network protocol
should be started on which port. In lines 10-18 the first measurement is described.
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Most important is line 12 where the name of the class is defined, line 14 where the
itinerary for this agent is defined, line 15 where the migration strategy to be used is
defined, and line 18 where the number of repetitions is specified. Lines 20-28 contain
the description of the second measurement. The following XML fragment shows the
definition of a client computer.

1 <node name=”M01 client”>
2 <map>
3 <entry key=”network.protocol.class.1” value=”org.taf.network.tcp.TCPEngine”/>
4 <entry key=”network.protocol.port.1” value=”5566”/>
5 <entry key=”keystore.url” value=”file:///home/mit/ips/braunpet/tracy2/migration/keystore”/>
6 <entry key=”keystore.alias” value=”ag2”/>
7 <entry key=”keystore.password” value=”∗∗∗∗∗∗∗”/>
8 </map>
9 </node>

For each experiment the Java virtual machine must be restarted. When the agency
is started it is parameterized with the name of the experiment to start (for example
M01 master). It then sequentially starts all the measurements. As already said, the
only information we are interested in is the time an agent needs for a migration.

To measure the time for a single migration of a mobile agent, we have to consider
the period of time from the initiation of the migration process (go-statement) to the
point of time where the agent is restarted at the destination server. Due to the lack
of a global time in a distributed system, we cannot simply compare time stamps
originating from different computer systems. Therefore, we always consider at least
two migrations: the first one to the destination server and the second one back to
the origin – we call this a ping-pong migration. Therefore, printed times are never
those for a single migration but always for a complete round-trip, which consists in
most cases of only two computers and in some cases of up to 7 computers. As a
consequence, the measured migration times do not only consist of the pure network
transmission time, but also the time for serializing the agent at the sender agency and
deserializing it at the receiver agency for each migration. Additionally we consider
time to link agent’s code, which involves verifying and preparing class code. The
process of serializing an agent takes in all our measurements less than 2 ms and the
process of deserializing the agent’s state and the linking agent’s code takes on average
between 1 and 5 ms and is linear with respect to state size resp. class size.

Each agent migration is repeated between 200 and 1 000 times and we only report
mean values and the 95% significance interval. The top 5% of the values were dropped,
because we want to disregard times messed through the Java garbage collector task.1

To illustrate our results we always used line-charts, although in some experiments

1The Java garbage collector is started whenever there is not enough memory to create new objects.
The process to free memory takes between 300 and 900 ms in our experiments.
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box-charts would have been the correct diagramming technique, because intermediate
values cannot be interpolated. However, in our opinion, line-charts make the results
we want to show more obvious to the reader.

11.2.2. Programming Agents for the Measurements

The common behavior of agents used in the experiments is defined in class BaseAgent
in package examples.agent. There it is defined that an agent executes the itinerary
given in the configuration file and finally migrates back to its home agency.

In general there exists a single agent class for each measurement. This class extends
class BaseAgent and defines special functions as necessary in the concrete measure-
ment, for example to send data items back to the agent’s home agency.

In some cases it is necessary to artificially increase the size of the agent’s code,
for example to show how migration time depends on code size. We use static String
objects for this purpose, which become part of the agent’s code and are not part of
the agent’s object state.

11.2.3. Test Environment

For the measurements we used seven computers placed at the University of Jena, one
computer placed at the University of Weimar (Germany)2, one computer placed at
the Fraunhofer Society Darmstadt (Germany)3, and one at the University of Irvine
(California, USA). More information about the used computers can be found in
Table 11.1. All computers use the latest version of the Java virtual machine (build
1.4.1 01-b01). The Java virtual machine was initialized to use an initial heap size
of 80 MB and a maximal heap size of 200 MB. The stack size is set to 512 KB. All
computers were fully dedicated during the experiments and all computer systems
have been used under the same conditions.

For most measurements we used the local area network in our department at
the University of Jena, which is an Fast-Ethernet network with a bandwidth of
100 Mb/sec where computers are connected via a single router. Some measurements
were done using a fully dedicated Ethernet network with a bandwidth of 100 Mb/sec
resp. 10 Mb/sec connected via a switch.

Measurements of migration times to the computers in Weimar, Darmstadt, and
Irvine were done using our standard Internet connection, which is a 155 Mb/sec up-
link to the German GigaBit Research Network (G-Win), which itself has a theoretical
bandwidth of 2.5 Gb/sec. The university of Weimar is also connected to G-Win using
also a 155 Mb/sec. The quality of the network connections at Darmstadt and Irvine
could not be determined.

2The city of Weimar is located about 20 km away from Jena.
3The city of Darmstadt is located about 300 km away from Jena.
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Name Location Processor MHz RAM OS
ipc047 Jena Athlon 900 512 Linux 2.4.18
ipc026 Jena Athlon 1400 512 Linux 2.4.18
ipc030 Jena Athlon 900 256 Linux 2.4.18
ipc031 Jena Athlon 900 256 Linux 2.4.18
ipc032 Jena Athlon 900 256 Linux 2.4.18
ipc033 Jena Athlon 800 256 Linux 2.4.18
ipc051 Jena Athlon XP 1600+ 1400 256 Linux 2.4.18
gonzo Weimar Pentium 3 800 1024 Linux 2.4.0

semoaext Darmstadt Pentium 2 450 512 SunOS 5.8
waylander Irvine (USA) Pentium 4 1700 896 Linux 2.4.18

Table 11.1.: Some parameters of the computer systems used in our experiments.

11.3. Results of the Basic Experiments

11.3.1. Transmission Time with regard to Code Size and Network
Quality

In the first experiment we examined the time for a ping-pong migration of a single
agent with different sizes in different networks. The agent is created on ipc047 and
has to migrate back and forth to a single other agency. We compare the migration
time for the following code sizes: 1685, 4185, 6685, 11 685, 22 685, and 51 685 byte.
The agent’s state is negligible in this experiment, as it consists of less then 100 byte.
The agent is transmitted using the PushToNext strategy without enabling the code
cache. All migrations were repeated 1000 times.

Figure 11.1 shows the migration times for all high-bandwidth connections. The
destination agency was started on ipc033. The graph also shows the result of a
measurement, where the sender agency as well as the receiver agency were located
on the same computer (ipc047) and the agent migrates using the local loop without
using the network.

The best migration performance was achieved using the 100 Mb/sec network via
a switch, where the smallest agent (1685 byte) only needs 23 ms for a single migra-
tion. The migration time only increases slightly up to 34 ms for the largest agent
(51 685 byte). Migration using the 100 Mb/sec network via a router is only few
milliseconds slower: 25 ms for the smallest and 35.5 ms for the largest agent. The
measurement using the internal network loop of the operating system was surpris-
ingly slower than both measurements using a 100 Mb/sec network. Here, a single
migration has costs of 28 ms for the smallest and 38 ms for the largest agent. The
only reason we have found so far is that this increase is due to the higher compu-
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Figure 11.1.: Time for a ping-pong migration between computers ipc047 and ipc033
using different high-bandwidth networks. The localhost measurement
was done on computer ipc047.

tational load of executing two agencies on a single computer in parallel. Migrating
agents using a 10 Mb/sec network is noticeably slower than the previous network
types. The smallest agent needs about 37 ms for a single migration and the largest
agent needs about 98 ms.

As can be seen from the graph, migration time is linear with the code size of the
agent. As can be seen from the 95% confidence intervals in Figure 11.1, measured
migration times are not significantly different when transmitting small agents (less
than 11 685 byte) using fast networks. This gives hints for the construction of an
optimization strategy: it is not always worth to reduce a 10 KB agent to a 5 KB
one, because the difference cannot be measured in general in fast networks. Using
the 10 Mb/sec network, all results are significantly different.

Comparing our results to the theoretical possible migration times, we found that
migration is about 8 times as high as possible using a 100 Mb/sec network. In a
10 Mb/sec network measured migration times are only twice as high as possible. In
other words, we have achieved a network throughput of about 13 Mb/sec in the
100 Mb/sec network and a throughput of almost 5 Mb/sec in the 10 Mb/sec network
in our measurements. The reason for this quite slow values can be found in a fixed
overhead of the Java programming language resp. the Java virtual machine, which is
known to have slow performance for network operations as compared to native code
implementations.
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Figure 11.2.: Time for a ping-pong migration between computers ipc047 and ipc033
using a ISDN network connection (64 kb/sec).

Figure 11.2 shows the migration times in a network with bandwidth of 64 Kb/sec,
which is the quality of a dial-up ISDN connection. This type of network is simulated
using the traffic shaper technique of the Linux operating system, which artificially
decreases throughput of a network device. The destination agency was started on
computer ipc033. Although migration times are very high, we achieved a throughput
that is only slightly below the theoretical optimum. For example, a single migration
of the 51 685 byte agent has cost of 7220 ms, which results in a throughput of about
56 Kb/sec. It is questionable, whether this high throughput can be achieved in a
real network environment too, but we were unfortunately unable to measure it.

Finally, Figure 11.3 shows the results for a ping-pong migration using a wide-area
network. A migration of the smallest agent to the University of Weimar (gonzo)
has a cost of about 135 ms and the largest agent has a cost of about 300 ms. A
migration directed to the Fraunhofer Society Darmstadt (semoaext) is only about
13% slower than the migration to Weimar. The reason for this is probably that
the agent is transmitted to gonzo over a 155 Mb/sec network connection, whereas it
is transferred using a Giga-Bit network to Darmstadt. The migration to computer
waylander at the University of Irvine has highest cost, as expected. The time for
a single migration is between 1800 ms for the smallest and 3562 ms for the largest
agent.
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Figure 11.3.: Time for a ping-pong migration in different wide-area networks.

11.3.2. Transmission Time with regard to Data Compression

In the second experiment we examined the effect of data compression to reduce
network load and transmission time. We used the same agents as in the experiment
before and we measured the time for a single ping-pong migration between agencies
at ipc047 and ipc033. If the agent is sent in a compressed form, all SATP messages
are compressed using the technique described in Section 9.1.2 on page 175. The agent
is transmitted using the PushToNext migration strategy without activating the code
cache. All measurements were repeated 1000 times.

We compare the effect of data compression in two network environments, i.e. a
100 Mb/sec network via a router (Figure 11.4(a)) and the 10 Mb/sec network via
a switch (Figure 11.4(b)). As can be seen from the graphs, in a high-bandwidth
network, data compression has a negative effect on the migration performance for
all code sizes. A migration is on average 40% slower than without data compression.
This behavior can be explained by two reasons:

• Compressing small amounts of data sometimes increases the size of a message.
For example, a SATP ADB message consists in our experiment on average of
79 byte in the uncompressed and 93 byte in the compressed form.

• Although a class of length 11 685 byte is for example reduced to 2176 byte,
migration time is higher as it takes 12 ms to achieve this compression.
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Figure 11.4.: Time for a ping-pong migration with regard to compression.

The consequence is that, although less data has to be transmitted, the overall
migration time is higher as the time to determine the compression exceeds the time
saved by the smaller network load. Therefore, in the high-bandwidth network, migra-
tion times with enabling data compression will almost always be higher than without
compression. Only for very large agents, this technique might ever lead to a reduc-
tion of migration time. Such agents were out of the scope of our measurements and
seem to be non-realistic.

In contrast, using the same computers in the low-bandwidth network, data com-
pression has a positive effect for agents larger than approximately 10 000 byte. For
smaller agents, we see the same effect as in the high-bandwidth network: the time
to compute the compressed SATP message is higher than the benefit of transmitting
smaller messages. For larger agents, we can now observe the expected effect. Sending
the agent with compressed SATP messages leads to smaller migration times. Now,
the time saved due to the smaller messages sent over the network exceeds the time
to compress the messages.

As a consequence, we can conclude that the break-even point, where both curves
intersect, depends on the network type. The lower the bandwidth of the underlying
network is, the smaller the agent may be to make the effort for data compression pay
off. We can assume that in wide-area networks, data compression is worth even for
the smallest agent used in our experiments.

To improve the effect of data compression further, we see two main aspects. First,
the process of compressing data can be done before the agent migrates. In the current
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Figure 11.5.: Time for a ping-pong migration with regard to different transmission
protocols and security extensions.

implementation, data compression is done during the migration process. However, for
the static parts of the agent, especially the agent’s code, compression could be done
earlier, for example while the agent is executed. On remote agencies, compressed
code units should not be dropped and recomputed during the next migration, but
saved and reused. As the agent’s code is with high probability the largest part of
the agent, this should improve the migration time dramatically. Second, we could
use sophisticated compression algorithms for Java byte code, as for example those
described by Pugh [1999] and Bradley et al. [1998], which will reduce the size for
Java classes more than the gzip algorithm that we have used in our implementation.
Both optimizations will be part of further investigation.

11.3.3. Transmission Time with regard to Security

In the next experiment we examined the cost of techniques that improve the security
of a migrating agent. The goal was to show how migration times changes when
agents migrate using the SSL network transmission protocol instead of TCP, and
the security extension we described in Section 9.1.4 on page 181. The secure SSL
network transmission protocol was configured to use server authentication and to not
reuse sessions. The security extension of MDL includes digital signatures for SATP
headers, state, and code messages. We used the same agents with the same code sizes
as in the previous experiments. The agents are transmitted using the PushToNext
strategy without enabling the code cache. All migrations were repeated 1000 times.
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We conducted the experiment in two network environments. The first graph (Fig-
ure 11.5(a)) shows the migration times between ipc047 and ipc033 connected by a
100 Mb/sec network (router), whereas the second graph (Figure 11.5(b) shows mi-
gration times between ipc047 and gonzo at the University of Weimar.

The first graph shows that SSL transmission is between 2.5 times and 3 times more
costly than using TCP, for example 73.5 ms for the smallest and 88 ms for the largest
agent. The difference between both transmission types is approximately 52 ms in the
fast network. The reason for the higher cost is the expensive handshaking protocol
between sender and receiver to authenticate the server and to exchange encryption
keys, which in sum increases the network load. This cost does not depend on the
agent’s size, which explains that migration time slows down in a higher extent for
small agents. In addition, all data sent over the network must be encrypted resp.
decrypted, which in fact increases the network load only slightly, but slows down
migration times because of the high computational effort.

If we further activate, in addition to SSL transmission, all the security extensions
described in Section 9.1.4 on page 181, i.e. signing of the SATP header, state, and
all class files and inspecting classes at the destination to filter out malicious code,
we can see in Figure 11.5(a) that migration times increase further. The migration
cost for the smallest agent is now 231 ms and for the largest agent 253 ms, which
is approximately between 7 and 10 times higher than migrating the agent without
the security extension and with TCP. The total difference between both types of
migration is approximately 215 ms. The reason for this could be at first sight a
higher network load, because for each SATP message a digest must be sent over the
network too. However, as we use the MD5 algorithms, each digest is only 16 byte
long and during an agent migration in our experiments, only about 3 to 5 digest are
transmitted, which should not have any effect on the migration time. Therefore, the
higher migration times must be the result of the time to compute message digests
and we found out that it takes for example 150 ms to determine the digest for a class
of length 11 685 byte.

The most interesting result of these two measurements is that all security exten-
sions increase network load only slightly but increase migration times considerably
due to the high computational effort for signing and encryption. As can be seen
from the graphs, the difference between the SSL curve and the Security extension
curve is constantly about 300 ms for two migrations and does not depend on the
network type. Notwithstanding, if we compare the SSL curve with the TCP curve,
it can be noticed that the difference between both is higher in the wide-area network
than in the local-area network, because SSL increase the network load of the whole
connection and is, therefore, dependent on the network type.

As a summary, we can state that the migration overhead caused by security tech-
niques can be expected to be increasingly smaller (measured as a percentage), if the
bandwidth of the underlying network is getting lower. As in a low-bandwidth net-
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Figure 11.6.: Time for a migration to 7 agencies using different migration strategies.

work, migration times are higher, the constant overhead for security will not be of
great weight. For example, we can expect migration times to increase by less than
10% when migrating between Jena and Irvine.

This result has a high practical advantage. Improving the security of mobile agents
can only be achieved with high effort, which results in a slowdown of migration times.
As the quality of the security techniques implemented for these experiments must be
classified as basic, we can imagine that more sophisticated techniques will increase
migration times further more. In specific application domains or in networks, where
these security techniques are not necessary, Kalong’s possibility to switch off this
extension can be of high benefit. On the other side, in wide-area networks, where
security of agent migration might be required, security has only a small impact on
the whole migration time, which is anyhow high.

11.4. Effect of Migration Strategies

In this section we evaluate the influence of different migration strategies on migra-
tion performance. We conducted this experiment in a 100 Mb/sec network with all
computers located in Jena. The agents were transmitted using the TCP transmission
protocol. As measurements were repeated 1000 times.

The goal of this experiment is only to show that the difference between known
migration strategies can be measured in a real-world network. This effect was forecast-
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ed in our mathematical model in Section 6.2.2. It is not our goal to determine any
migration strategy to be faster than others, because, as we have already discussed
in Section 6.2.2, it depends on the concrete application scenario which migration
strategies should be chosen – and this decision has to consider several parameters,
for example the agent’s code size, the network type, the probability for code execution,
etc.

To perform our experiment, we simulate a typical application from the information
retrieval domain. The agent visits several network nodes, where each platform has a
database with documents of different types, for example simple text file, structured
text files in XML or HTML, and images. Each document is characterized by a set
of keywords. The agent has to visit each platform. First, it filters all documents
according to a given set of keywords. The result is a set of interesting documents.
Second, all these documents are examined in detail, which results in the set of all
significant documents from which the agent takes a copy before migrating to the
next platform. To examine an interesting document, a specific class file for the given
document type is necessary on the current platform. Therefore, an agent consists of
one class file for the agent itself, which contains code to perform the first step and
all auxiliary tasks, like communication and route managing. Additionally, there are
five other class files, each for one document type, which contain special code for the
second step. If the agent finds a document of a specific type, the corresponding class
file must be downloaded dynamically, if it is not already available on the current
platform.

The experimental setup consists of a cluster of seven agent systems on computer
systems ipc047, ipc026, ipc033, ipc051, ipc030, ipc031, and ipc032. On each platform
we can change the number of document types that the agent will find interesting.
Doing this we can directly influence the number of classes that will be downloaded.

The agent class is of size 2012 byte, whereas all auxiliary class are each 10 000 byte.
In Figure 11.6 the graph can be seen for various numbers of document types found
interesting resp. the number of classes needed at runtime and various migration
strategies. Note, that in our experiments the agent does not take any data with it
when it migrates to the next server. Therefore, our results show only the time of
migrating code and initial data (which is again less than 100 bytes).

It can be seen that strategies PushAllClasses, PullAllClasses, and the strategy
where no code is transmitted (because it is assumed that code is already available
at all destinations, for example due to activating the code cache) are not dependent
on the number of classes to load. This is clear, as the two first migration strategies
always transmit all code without regard to their necessity. Obviously, transmitting no
code is faster than all other migration strategies as the network loader is smallest in
this case. If the agent must load all classes (PullAllClasses) it is on average 1.4 times
slower than pushing the code to the next destination, because pulling all classes needs
an additional network transmission on each agency.
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Strategy PullPerClass is linear dependent on the number of classes to be down-
loaded dynamically, as only those classes are loaded that are needed for agent execu-
tion. It is faster in case of no interesting documents than all other methods (except
transmitting no code at all), because only the agent class itself must be transmitted in
this case. If only one additional class file must be loaded (of size 10 000 byte) strategy
PullPerClass is as fast as the PushAllClasses strategy, which transmits 50 000 byte
code at this time. When increasing the number of document types, the PullPerClass
strategy is at last more than 70% slower than the PushAllClasses strategy and about
20% slower than the PullAllClasses strategy. This performance difference only results
from the fact that code must be downloaded dynamically.

This experiment confirms the results of our mathematical model. The different
amount of data sent over the network in each migration strategy can be measured in
form of different migration times. The number of classes where curve PushAllClasses
and PullPerClass intersect depends on the class size and the network type. For larger
classes, this point can be expected to be higher, as the difference between sending all
classes and only some classes becomes higher. In networks with lower bandwidth, it
is not only more expensive to transmit data but also to open a network connection.
The difference between all migration strategies can be expected to be higher. For
example, it can be expected that the PullPerClass migration strategy is slower than
the PushAllClasses strategy even for a small number of classes. However, as already
explained, it was not the goal of this experiment to quantitatively compare migration
strategies to find the fastest, as this is not possible in general. The results show that
it is worth to reasons about different migration strategies and to choose a suitable
one with regard to the application, to the network environment, the agent’s size and
many other parameters. Kalong’s possibilities to program such migration strategies
dynamically and to react in a very flexible and fine-grained way to these parameters,
is a necessary and worth concept.

11.5. Effect of Caching

In this experiment we want to analyze the effect of the Kalong’s code cache. As al-
ready described in Section 6.3.4 on page 105, the Kalong protocol can check, whether
agent’s code is already available at the destination agency before sending the code.
In this experiment we compare migration times of a single agent to five agencies.
The agent is started at gonzo (Weimar) and then migrates to four agencies in Jena
(ipc047, ipc026, ipc033, ipc051) and returns back to gonzo. The agent uses the Push-
ToNext migration strategy, once with and once without enabling the code cache. All
measurements were repeated 200 times.

The solid line in Figure 11.7 shows the migration time for different code sizes in
the case that the agent does not enable the code cache. It shows that migration time
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Figure 11.7.: Time for a migration to 5 agencies in a wide-area network with regard
to the code cache.

depends on the code size, as expected. The dashed line in Figure 11.7 shows the
migration time, if the agent activates the code cache and all agent’s code is already
available at the destination agency. It can be seen that migration times are no longer
dependent on the code size as no code is transmitted in this case at all. The time for
the migration is the result of transferring the agent’s state and data items.

The effect of the code cache depends directly on code size, of course. For small
code (1685 byte) the difference is only 15 ms for the whole round-trip. For the largest
code (51685 byte) the complete migration time without using the cache is 2.5 times
higher as with enabling the code cache.

Of course, the code cache can only have a positive effect, if at least a single class
of the agent is already available at the destination agency. Figure 11.7 can also be
interpreted as that the solid line shows the time for the first migration, whereas the
dashed line shows the migration time for all following migrations for the same agent.
An interesting question that we have not examined so far it, how the code cache
increases migration performance, if a huge amount of agents of the same type, i.e.
using the same classes, migrates to the same agencies.

Another interesting question concerns the overhead of the cache protocol. Unfor-
tunately, we were not able to measure this overhead, but we can reason about the
increase on network load that is caused by it. If we assume that an agent consists
of five classes and each class name is 20 characters long, then the ADB message
comprises of 5 × (20 + 16) bytes, as the digest for each class is 16 byte long. The
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(a) Using a 100 Mb/sec network.
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(b) Using a wide-area network.

Figure 11.8.: Time for a migration of a single agent to 7 resp. 5 agencies in different
networks. The agent creates a data item with given size and takes it
as part of its state or sends it back to its home agency.

answer message of type ADBReply consists of only a single byte for each class. In
sum, this are 185 byte that must be exchanged between sender and receiver agency
in order to prevent the transmission of an agent’s code.

11.6. Effect of Data Uploading

In the next experiment we want to examine the performance benefit of sending data
items back to the agent’s home server instead of taking it as part of the agent’s state
to all other agencies. We compare the migration time for a complete round-trip to
7 resp. 5 agencies for different data items in a local 100 Mb/sec network and a wide-
area network. The agent migrates using the PushToNext migration strategy without
using the code cache. The size of the agent is 2443 byte. The measurements were
repeated 1000 times.

The first graph (11.8(a)) shows the result for the local network. The agent starts at
ipc047 and first migrates to ipc026. There, the agent gets a new data item of a given
size (5000, 10 000, 20 000, or 60 000 byte). Then, the agent migrates to five other
agencies (ipc033, ipc051, ipc030, ipc031, and ipc032) before returning back to its
home agency. The dashed line shows the result for the case that the agent takes the
new data item as part of its state to all other agencies. The migration time depends
on the size of the data item as expected. The solid line shows the result for the
case that the agent sends the new data item back to its home agency before it leaves
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ipc026. Here, the migration time does not depend on the data item size anymore
as the agent does not carry the data item. The migration time does only depend
on the code size and the constant size of the state. It can be seen in Figure 11.8(a)
that for small data items it is slower to send data items back. In theses cases, the
time to open an additional network connection to the home agency and to send a
small data item is higher than the time that is needed to carry this data to all other
agencies. For data items larger than about 11 000 byte, sending the data item back is
faster. For example, in case of a 60 000 byte data item, sending the data item home
is 1.6 times faster than taking it along.

The second graph (11.8(b)) shows the result for the wide-area network, where the
agent is started at ipc047 (Jena) and then migrates to four other agencies in Weimar
and Jena (gonzo, ipc051, gonzo, ipc051) before migrating back home. It can be seen
that it is now for all data items faster to send the data item back than to carry it
along. The solid line again shows the time for carrying the data item to all agencies,
which depends on the size of the data item. In contrast to the first graph, sending
the data item back is now also dependent on the data size, which can be explained
with the time to send the data item back to the home server from Weimar to Jena
using a low-bandwidth network connection. However, in the wide-area network we
have a higher speed-up: sending the data item home is twice as fast as carrying it as
part of the state. It is obvious that the performance benefit depends on the number
of agencies to which the data item is not carried anymore and the bandwidth of the
underlying network. If the number of servers is higher or the network slower, the
performance speed-up is higher.

11.7. Effect of Code Servers

In this experiment we are interested in the performance gain that could be achieved
by using code servers for dynamic code loading instead of home servers. An agent
is able to initialize a code server dynamically during runtime at any agency that it
is currently visiting. The effect is that some or all code units remain at the code
server, even if the agent migrates to another agency. In future endeavors, the agent
can download classes from this code server, for example if it is placed nearer to the
current agency than the home agency.

We compare the time for a complete round-trip to four agencies vs. the size of the
classes that must be loaded. The agent base class has 2176 byte and needs a single
other class of size 2500, 5000, 10 000, 20 000, or 50 000 byte. Both classes are loaded
dynamically during runtime. All measurements were repeated 200 times.

Our scenario consists of four agencies on gonzo, ipc026, ipc047, and ipc051. The
agent is started on gonzo (Weimar) and migrates using the PullAllClasses migration
strategy. In the first case, the code is loaded from the agent’s home server, and in
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Figure 11.9.: Time for a migration to 4 agencies using the Pull strategy with regard
to different locations of the code server.

the other case, all code is loaded from a code server that the agent initialized on
agency ipc026. Migration times include in the second case the time to release the
code server at the end.

Figure 11.9 shows the result of our measurement. The dashed line shows the
migration times for an agent that always loads classes from its home agency. The
time depends on the code size and increases steadily with the size of the code that
must be downloaded over the wide-area network. If only a small class must be loaded,
the agent needs about 676 ms for the complete tour, and when loading the largest
code, it needs about 1453 ms. The solid line shows the results for the case that the
agent loads classes from a code server that is located in the local network (on agency
ipc026). Migration time depends on the code size, of course, but the increase is not
so steep. Even for the smallest agent, this type of migration only needs 494 ms,
which is an improvement of 17% as compared to the first migration type. For the
largest agent, the improvement is even higher. The agent needs 717 ms, which is an
improvement of more than 50%.

The experiment shows that it is worth to use code servers to improve the perfor-
mance of loading code. In the case that a code server could be placed at a node that
is accessible by a faster network than the home server, a code server makes sense.
Using code servers has no drawback, as it is without any cost to activate a code server
and it has only minor costs to release a code server after the agent has terminated.
In our measurements, sending the SATP message to release the code server had costs
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Figure 11.10.: Time for a migration to 5 agencies, where the agent uploads data
items either on its home server or on a near mirror server.

of less than 10 ms.

11.8. Effect of Mirrors

The last experiment considers the effect of a mirror server to reduce costs for loading
and updating data items. The scenario in this experiment consists of five agencies on
computers gonzo, ipc026, ipc047, ipc033, and ipc051. The agent consists of 3095 byte
of code and migrates using the PushToNext migration strategy without enabling the
code cache. All measurements were repeated 200 times.

The agent is started at gonzo and then migrates to ipc026, where it creates a data
item with 1000, 5000, 10 000, or 20 000 byte. In the first case, the data item is sent to
the agent’s home server, while in the other case, the agent initializes a mirror server
at ipc026. The agent then migrates to the other agencies, where it loads the data
item from the home resp. mirror server, modifies it, and uploads it again. Finally, if
a mirror agency exists, the data item is loaded from the mirror to the home agency.
Therefore, a data item is transmitted seven times between an agency and the mirror
server resp. the home agency.

The solid line in Figure 11.10 shows the migration time for the first case, when
data items are updated at the home agency. The migration time is linear dependent
to the data size and grows from 946 ms for the smallest data item up to 1582 ms
for the largest data item. The dashed line shows the time for the second case, where
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data items are uploaded at the mirror agency. The complete round-trip has now only
costs of 584 ms for the smallest data item, which is a speed-up of about 38% and
costs of only 887 ms for the largest data item, which is a speed-up of about 44%. The
reason for the speed-up is obviously the fact that the mirror server was accessible
over a high-bandwidth connection and six of the seven data transmission used this
type of network. Without the mirror server, all data transmission were done using
the low-bandwidth connection between Jena and Weimar. We can conclude that it
makes sense to activate a mirror agency for data uploading and downloading, if this
mirror agency can be accessed using a faster network type than the home agency.
The benefit of the mirror is the greater, the higher the network load is for data
transmissions between an agency and the mirror.
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Mobile agents provide a new and fascinating approach to the design and architecture
of distributed systems. They must be seen as a supplement to other, more tradi-
tional design paradigms, as for example the client-server paradigm. Mobile agents
have many advantages as compared to the client-server approach. In this thesis,
we focused on the performance argument that states that mobile agents are able to
reduce network load and processing time by shipping code to the data instead of
downloading data to the code.

The starting point of our research was the problem that the performance argu-
ment only holds under specific assumptions, while in other cases, today’s mobile
agents might cause higher network load as compared to the client-server approach.
Therefore, the software designer currently has the problem to decide which paradigm
should be used. The only solution published in literature so far suggests to esti-
mate the network load in both paradigms for a specific application or application
domain, based on a mathematical model, and choose the approach that produces
lower network load. We argued that this kind of decision is unsafe, as a change of
the parameters of the mathematical model might overset the whole decision.

The main hypothesis of this work was that it is imperative to analyze the drawbacks
of today’s mobile agents in order to find the reasons for their poor performance in
some situations.

In the first step we, therefore, analyzed the network load of today’s mobile agents
as compared to client-server techniques in several application scenarios. We found
that the simple migration technique of today’s mobile agents, which does not differ
from techniques used in mobile object systems, is the main reason of their poor
performance. Using mathematical models, we were also able to proof that in fact
mobile agents have inherent drawbacks which in certain situations prevent them from
ever being faster than client-server approaches.

In the second step, we then analyzed the migration process of mobile agents in
detail and discussed design issues and the possibility of optimizations for agent mi-
gration. We proposed several improvements of existing migration techniques in order
to consider the specific requirements of mobile agent systems. In detail, we proposed
that mobile agents should not be transmitted as a single transmission unit, but code
and data items should be able to migrate independently. We suggested an adaptive
technique for code and data migration, where the agent can choose which pieces of
code and which data items should be transferred to which server. Additionally, we
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also proposed two new types of agencies, namely code servers and mirrors, the agent
can dynamically initialize in order to decrease execution time. We found that none
of the existing mobile agent systems is able to implement any of this improvements
and we, therefore, suggested and implemented our new Kalong mobility model.

In the third step, we specified this mobility model and a migration protocol, named
SATP. The most practical result of this thesis is a software component, named Kalong,
which provides services to migrate a mobile agent in a very flexible and fine-grained
way. Kalong can be seen as a virtual machine for agent migration, as it provides a
minimal and generally applicable set of commands to conduct the whole migration
process. As Kalong does not rely on any specific requirements of the surrounding
mobile agent system, we believe that it is possible to adapt Kalong to almost any
agent system. Kalong is extendable by the user and we presented several examples
to show that basic security problems of mobile agents can be solved within Kalong.

In the last step, we evaluated Kalong’s performance and especially the impact of
Kalong’s new features. We were able to show that the performance of mobile agents
greatly benefits from these new functions.

Clearly, further work is necessary to refine the results of this thesis. The most
important and most promising issue is, of course, the area of automated migration
strategies. We already implemented a software component to measure network load
and we are on the way to implement a technique for static and dynamic profiling of
mobile agents. Together, both components are the base for an automated strategy,
which itself can select the code units and data items to migrate in order to achieve
lowest network load. Another important issue is the refinement of the network per-
formance model that we unfortunately were not able to validate yet. The next step
with the Kalong software component is to couple it to other mobile agent systems,
as for example Semoa or Grasshopper. Finally, Kalong must be evaluated against
client-server based techniques in order to examine, whether mobile agents with so-
phisticated migration strategies can outperform traditional client-server approaches.

Further investigations have to be done to validate and finalize the Kalong approach.
However, we hope that the work described in this thesis already contributes to the
understanding of the migration process of mobile agents and opens new gates to
further thoughts.
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A. The Mobile Agent System Tracy2

A.1. Introduction and History of Tracy

This appendix introduces the Java-based mobile agent system Tracy that has been
developed by our team at FSU Jena during the last four years. In the following
sections, we will give a brief overview of the main features of Tracy. We decided to
move this description to an appendix as the development of Tracy was not part of
this dissertation project.

When our project group started research in the area of mobile agents in 1998, no
system available offered enough support for the main research issue we were interested
in: migration of mobile agents. Our first research hypothesis [Braun, 1999a,b], was
that the migration process of mobile agents should be optimized in order to increase
mobile agents’ performance as compared to the client-server-approach. All systems
available at the end of year 1998 only provided a single and most often very simple
migration technique. None of these systems could be adapted to the extent that
would have been necessary to implement our new ideas concerning efficient and high-
performance migration. Therefore, we decided to start the development of a new
mobile agent system from scratch. It was not our goal to develop the n-th mobile
agent system that is specialized to a specific research issue, but we wanted to build
a system that could be used for real-world application development. Therefore, we
made a considerable effort to provide services for agent communication, security of
mobile agents, an easy-to-use graphical user interface and several other features.

The first implementation of Tracy was done by the author in the first half of the
year 1999. The focus was to acquire first experiences with the implementation of the
migration process of mobile agents. Christian Erfurth supplemented this first proto-
type within his diploma thesis [Erfurth, 1999] by services for agent communication
and anonymous information exchange using a blackboard in the second half of 1999.
Sven Geisenhainer developed a graphical user interface for Tracy within his diploma
thesis [Geisenhainer, 2000] and several other students contributed parts of Tracy, for
example Chris Fensch (SSL transmission and data compression), and Steffen Grum-
bach (technique to monitor internal processes of Tracy). With the completion of our
first technical report about Tracy in September 2000 [Braun et al., 2000a], Tracy was
published on the Web for public download.

In year 2000, Jan Eismann supplemented our team and he implemented the pow-
erful concept of the Tracy domain manager [Braun et al., 2001a]. Several other new
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A. The Mobile Agent System Tracy2

features were implemented since then, as for example a multi-user concept and sev-
eral security features. Steffen Schreiber implemented a technique to collect network
performance information [Schreiber, 2002], which will be used to implement sophis-
ticated migration strategies later. Heiko Peter implemented techniques for decision
planning for mobile agents [Peter, 2002]. In 2002, Sven Geisenhainer ported Tracy
so that it can be used as an Enterprise Java Bean (EJB) component as part of an
Application Server. Jan Eismann ported Tracy to be executable on a PDA (Compaq
iPAQ) and proofed that mobile agents can also migrate using the Bluetooth protocol.

The Tracy team had the honor to present their system at the CeBIT fair in Han-
nover, Germany in 2001 and 2002. For this occasion, we developed several demo
applications, for example a prototype of a multi-user calendar application using mo-
bile agents as information carrier, a tool for planning business trips, where mobile
agents collect information using Web Services using the SOAP protocol, and a pro-
totype for an agent-based application where agents monitor stock quotes and inform
their owner about important changes. Tracy was evaluated to be used as major com-
ponent of an electronic marketplace for mobile agents [Braun et al., 2002; Kowalczyk
et al., 2002; Müller, 2002].

Since the beginning in 1999, in sum more than a dozen people have been member
of the Tracy project. Several students made their diploma theses within the Tracy
project. Since 2001, the Tracy team is member of the AgentLink European Network
of Excellence in Agent Research1 and an active member of the special interest group
on mobile agents (sigma)2.

A.2. Tracy Infrastructure

The Tracy infrastructure consists of several platforms, on each running a Tracy agent
server, which creates the environment for running several kinds of agents and offers
services for receiving and sending mobile agents over the network. Each agent server
is independent from the other, even though they are able to communicate with each
other. The architecture of the Tracy system is, therefore, the many times repeated
architecture of the singular agent server, see Figure A.1.

The agent server sits on top of a Java virtual machine (JVM), which is itself based
on top of an operating system. On top of a Tracy agent server there can execute one or
many applications that use it to host application-specific agents. It is not necessary
that there is a permanent connection between application and agent server. An
application can start an agent server temporarily to launch agents that immediately
migrate to another platform. In the same way, it is possible that an application only
connects occasionally to a running agent server, e.g. to check, whether new agents

1See http://www.agentlink.org for more information.
2See http://www.semoa.org/sigma for more information.
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Figure A.1.: Example for a Tracy infrastructure consisting of three platforms.

have arrived. If there is no application connected to the agent server, then the
agent server is able to offer services on its own. An agent server has a unique name
which consists of the host name and the logical agent server name, e.g. tatjana.cs.uni-
jena.de/fortknox.

It is possible to start multiple agent servers on a single platform by either starting
multiple agent servers on one Java virtual machine, or starting several virtual ma-
chines each executing one agent server. To distinguish several agent servers on one
platform, each server accepts incoming communication requests on a unique port. A
Tracy agent server can be configured while launching to accept communication on
arbitrary port numbers. However, in contrast to other agent systems, e.g. Aglets, in
Tracy the programmer needs no knowledge about these communication port num-
bers. A Tracy local name service (LNS) associates all logical agent server names of
one host with information about communication port numbers.

A.3. The Tracy Agent Model

A.3.1. Foundations

Our agent model consists of three types of agents. First, a system agent is a station-
ary agent that offers services related to the operating system on which the server runs,
e.g. file services, printing services, etc. Second, a gateway agent, which is also station-
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Agents

Stationary Agents Mobile Agents

System Agents Gateway Agents

Figure A.2.: Classification of software agents in Tracy.

ary, is responsible for the communication to software components outside the Tracy
architecture, e.g. legacy software, data base management systems, or even other mo-
bile agent systems. The third class of agents are mobile agents that are characterized
by the ability to migrate to other platforms, but have none of the above mentioned
permissions. Mobile agents are strictly controlled by the agent server, so that it is
impossible for mobile agents to access the underlying operating system or external
software components on other than its home platform.

In Tracy each agent has a globally, i.e. within the Tracy system, unique name
as identifier and a home platform on which it was created. Both do not change
after the agent was initialized. The creation can be initiated either from outside the
Tracy agent server, e.g. using the TracyAPI, or the graphical user interface or from
inside the server, e.g. by another agent. The execution of an agent can be suspended,
i.e. stopped temporarily, and resumed, i.e. started again. An agent can be asked
to quit itself, or can be killed by a user (not by other agents), e.g. if a malicious
agent consumes system resources. Mobile agents can migrate to other Tracy agent
servers, see Section A.3.4. Agents can communicate with each other either by using
asynchronous messages, or by leaving information on a blackboard, see Section A.3.3.

One of the main differences to other mobile agent systems is the fact that Tracy
does not support any kind of remote communication, i.e. you cannot send messages
to an agent on another agent server. This restriction comes from our interpretation
of mobile agents: an agent must move to the destination platform, if it wants to
communicate to other agents over there.

A.3.2. Accessing the Host via System and Gateway Agents

The distinction between mobile and stationary agents is mainly a result of security
problems. Because of the ability to migrate, mobile agents are considered to be
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an insecure part of the agent system. So we cannot grant unrestricted access to the
host. System and gateway agents are stationary agents which are not able to migrate.
Therefore, these agents are considered to be secure and they may access the host. If
mobile agents need to access the host, we use stationary agents as a dynamic interface
and as a security wall. They act as so called system agents. If mobile agents must
be able to use local applications to solve their tasks, they may access them using
gateway agents. This kind of stationary agent acts again as a dynamic interface and
a security wall.

However, security is not the only aspect to be considered: gateway agents connect
local applications to the agent server. The application speaks with the agent server via
a gateway agent and other agents may speak with the application via a gateway agent,
as well. Thus, gateway agents act also access filters for the associated application.
In Figure A.3 the various types of available agents are illustrated. Stationary agents
expand the possibilities of the agent server. Local applications can be connected
with the agent server and so the features of the applications can be joined with the
possibilities of the agent server. In addition, the possibilities of the agent server
can be expanded by system agents, e.g. a specific (virtual) infrastructure could be
created.

A.3.3. Communication between Agents

Mobile agents are a design paradigm for distributed computing, in which a mobile
agent migrates to another platform to fulfill a user-defined task. This task can be
done better at the remote platform or can be done only at the remote platform. The
agent needs to connect to operating system services, to a data base, or to another
local running application at the (remote) platform. In the last section we have
discussed that these services are integrated in the agent server via stationary agents.
In addition, the agent server can provide more services by simply running more
stationary agents. Thus, the mobile agent must be able to communicate with system
and gateway agents to do its job and to get access to any information.

In Tracy, agents may communicate with each other directly. This is done using
asynchronous messages and not via direct method calls between agent objects. The
latter effects an agent in a direct way which is a contradiction to the concept of agent
autonomy. Thus, in Tracy, messages which will be exchanged between agents are
like mails. All of the three types of agents can exchange these mail-messages. Every
agent has a mailbox in which new mails are stored. The agent can decide on its
own how to handle these mails. It can decide to accept mails or not by closing its
mailbox (even temporarily). So, the autonomy of an agent can be preserved. To
send a message the agent needs to know the name of the receiving agent.

The reader could have the impression that we provide also remote communication.
However, Tracy does not support any kind of remote communication, i.e. an agent
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Mobile agents

Gateway agents

System  agents

Blackboard

Application(s)

Java Virtual Machine (and Operating System)

Tracy Agent Server

Figure A.3.: Architecture of a Tracy server from the programmer’s point of view.

cannot send messages to another agent residing on a different agent server. Even
if both agent servers were to reside on the same host sending mails between them
would not be possible. This restriction is a result from our interpretation of mobile
agents: an agent must move to the destination platform, if it wants to communicate
to other agents over there. Remember that local applications can send and receive
messages via gateway agents only. Another feature is that the user can send messages
to agents by using the TracyGUI.

Agents can communicate with each other not only by using asynchronous mes-
sages. Communication is also possible by leaving information on a blackboard via
an interface integrated in the Agent Manager (see Figure A.3). In this second kind
of communication, which is an indirect one, the agent puts some information on
the blackboard like an announcement in a newspaper. Other agents can read this
announced information from the blackboard via a symbolic name. We think the
blackboard is another basic approach to provide information deposited by an agent,
by the agent server, or by an application. For example, the agent server deposits in-
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formation on the blackboard about services provided by the server. The blackboard
is a mean to provide persistent data, too.

The blackboard itself is organized like a file system – there are directories and
files. A directory is a container for files and other directories, where as files can only
contain data of some specific types, like plain text, XML, HTML, graphic files, etc.
Each entity might have an owner who defines grants to other agents to read or write
this item.

Besides reading and writing blackboard entities, directories and files can be ob-
served by agents. An agent will be informed about any change of the observed entity
by a message. An agent can become active when a specific blackboard entity has
changed its value. Other events are adding and deleting blackboard entities. Remem-
ber that local applications can only write and read information from the blackboard
via gateway agents.

Based on these two kinds of communication, by messages and with the use of the
blackboard, we have a loose coupling between agents, between agents and the agent
server, and between agents and associated applications. The user (via the graphical
user interface), or an associated application can use messages to communicate with
agents and so agents can also receive commands. There are also broadcast messages
which can be sent by the GUI for administrative purposes and by the agent server
for system state propagation, e.g. send a system failure using a broadcast message.

A.3.4. Agent Migration

When a mobile agent wants to migrate to another platform, the underlying mobile
agent system (MAS) is responsible for marshaling of code and state information that
must be transmitted to the destination platform. Normally, the state consists of the
program counter, the value of all variables, and the call stack. The MAS on the
destination platform has to unmarshal this package and start the agent. As we have
seen in Chapter 5 current mobile agent systems offer various ways to migrate mobile
agents.

The Tracy mobility model bases on the Kalong resp. the MDL component presented
in Chapter 7 on page 113. It gives the programmer more influence on the migration
strategy, and even the transmission strategy the agent should take. In particular, it
allows the programmer and the agent to modify the migration strategy according to
local circumstances. A sophisticated migration strategy based on our model would
be in a position to transmit all agent’s code when migrating outside a fire wall, and
transmit only necessary code when the home platform can be reached easily.

In our model, only the mobile agent itself can initiate the migration process by
invoking one of the go-commands, which we will explain later. To provide some kind
of agent server initiated migration, we include the following concept: each agent has
the ability to react to incoming messages, dispatched from other agents or the agent
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server itself. A mobile agent may receive a message with the suggestion to leave
the platform, e.g. in case of system failure. It depends on the agent’s programmer,
whether he cares about those messages or not. Only the agent server is allowed to
send such migration invitations.

From the programmer’s viewpoint we currently offer a weak form of mobility, in
which an agent can start a migration by a go-command that is parameterized by the
name of the destination platform and the name of the method that should be invoked
next. A mobile agent can use one of the following commands to start the migration
process:

1. go( destination, method ), as described above

2. go back( method ), initiates a migration back to the last platform the agent
came from, and

3. go home( method ), initiates a migration back to its home platform.

As already said, the mobile agent can also influence the migration strategy, and
the transmission strategy that should be used for the next transfer. Both can be de-
clared by optional parameters of the go-commands, e.g. go( destination, method,
"pull-per-unit") to choose the pull-per-unit migration strategy. A mobile agent
can define a default migration strategy and a default transmission strategy that will
be applied for each migration. If the agent could not be transmitted successfully
to the destination platform, the agent is reactivated on the residing platform and a
pre-defined method with name migrationFailed is invoked.

A.3.5. Agent Security

Agent security was of major interest for the implementation of the Tracy agent server
and many security related services are already provided. However, Tracy is not a
security-centric mobile agent system, as for example Semoa, but we are on the way
to improve Tracy to solve some open problems.

Security is implemented as part of several components of a Tracy server and we
will only give a brief overview on the problems we have faced so far.

First of all, agents are protected against each other on the level of Java language.
In Tracy, each agent has its own class loader and its own thread group, and Tracy
prevents agents to have references to each other as far as possible. To protect the
agent server and the underlying host against malicious agents, we use the Java sand-
box technique. Permissions are granted on the base of the agent’s owner information
and the last visited agency, and can be modified dynamically.

Services that are provided to protect agents code and data were already described
in Section 9.1.3. The MDL migration component offers several extensions on top of
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Kalong to protect data items so that they are only readable at selected agent servers
or not modifiable at all. An agent’s immutable state and its code is digitally signed
with the agent owner’s private key. Each agency must digitally sign the complete
agent before sending it to the next destination. The migration component inspects
agent code with regard to probably malicious code sequences. On the level of network
transmission, Tracy offers to send all agent information using the SSL protocol.

A.4. The Architecture of a Tracy System

We will now have a look at the overall architecture of an agent-based system. An
agent-based system is a host that uses a Tracy server as a substantial component to
offer services to external agents, or consumes services of other agent servers using
their own mobile agents. Different types of agent-based systems are distinguished
by the way the agent server is connected to other applications on that host. In
Figure A.4 we see five different configuration types for an agent-based system. The
dashed-line box stands for a host on which a Tracy agent server is running. We
omit to depict the Java virtual machine and the Operating System. All hosts are
connected using a network.

The first example (fortknox) shows a host running only a Tracy agent server. In
this case, the agent server must be able to offer services on its own, either by system
agents that were started along with the agent server, or by a blackboard that was
initialized from a connected data base. The complexity of services that such an agent
server can offer depends on the available system agents.

An agent server may run stand-alone for its whole life-time, but can also be tem-
porarily connected to a graphical user interface, as shown in the second example
(palmyra). The graphical user interface to control an agent server is named Tra-
cyGUI. It can be started along with the agent server, but might also be closed in the
mean time and relaunched again later. Using TracyGUI an agent server can be com-
pletely monitored and controlled: All agents’ activities can be viewed, new agents
can be started, existing agents can be killed, and the blackboard can be modified.

The graphical user interface always tries to depict an almost real image of the
underlying agent server. As a consequence, each arriving agent, each console message
that an agent wants to print, and each blackboard modification is visible to the user
almost in real-time. Unfortunately, it is a very expensive task to keep a graphical
user interface up to date, and it slows down the whole agent server noticeable. As a
consequence, a graphical user interface should only be executed when the user wants
to control or view the agent server explicitly.

The remaining three examples in Figure A.4 show hosts on which an application
uses an agent server to offer services to foreign agents, or use services of other agent
servers using their own mobile agents. It is the privilege of applications to start
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Figure A.4.: Five configuration types of an agent-based system.

gateway agents (see Section A.3) that are able to offer services within the agent
server and direct requests to the connected application.

In the first case (pizgloria), there is an application written in the Java programming
language that accesses a Tracy agent server using the Java Remote Method Invocation
(RMI) technique [Sun, 2002]. In this case, application and Tracy agent server are
loosely coupled – the only connection is established by method calls using the Tracy
Remote Interface. This interface defines methods to control and monitor an agent
server to other Java-based applications. In the simplest case the application resides
on the same host as the agent server. However, it is also possible that application
and agent server reside on different hosts (not pictured in Figure A.4). To protect
an agent server against applications, basic security checks are already implemented.

In the second case (crapkey), the coupling between these components is very strong.
In this case the Tracy agent server is an embedded software component within an
Java-based application. The application uses the TracyAPI to control the agent
server. Additionally, Tracy can also be used as Enterprise Java Bean within an
application server.

The fifth example (goldeneye) in Figure A.4 shows a type of configuration where
on top of the Tracy Remote Interface there is a component, called Tracy Web Server,
that offers a Web interface for a Tracy agent server to a user. By using this Web
interface a user can do some control and monitoring actions but has no full access, as
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Figure A.5.: The Tracy graphical user interface.

opposed to the graphical user interface described above. The user can start agents,
view the agent’s control messages, and kill agents. However, the user has no rights
to view or modify the agent server’s blackboard. The Tracy Web Interface is able to
handle multiple users in parallel and offers each of them an own private agent space.
Of course, it is not allowed to control or even view agents that are owned by other
users.

A.5. Managing Tracy Networks

The Tracy Domain Manager Service is an approach to construct and evolve a network
of mobile agent servers. It can be seen as a service that is indispensable for mobile
agents to move through the network automatically. Without such a service the
programmer of a mobile agent must code the agent’s itinerary into its business logic.

The basic concept we employ is that of a logical agent server network. We define a
logical network as an undirected graph in which vertices represent agent servers and
an edge exists between a pair of vertices if there is the possibility to transmit mobile
agents between the corresponding servers. Not all agent servers must be able to
exchange mobile agents due to different transmission protocols, firewalls or private
subnetworks that are only reachable via a gateway server. A logical network is a
necessary prerequisite for a mobile agent to move through the network automatically.
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Figure A.6.: Topology of our logical agent server network. An edge between a pair
of vertices indicates that the corresponding agent servers know each
other.

On each server it can ask a stationary agent, or a service, for the neighboring agent
servers and decide to which it will migrate to next. Without such a network service
the agent’s programmer has the obligation to code the agent’s itinerary into its
business logic. While this is sufficient in some applications and in small networks,
it is not reasonable to define an agent’s route in a world wide network, for example.
In such an environment mobile agents must be able to define their itinerary on their
own. They must be in a position to react to unreliable network connections and
unreliable agent servers and, therefore, possibly modify their itinerary on the fly.

Our approach has a two-level structure, where agent servers within a subnetwork
are combined into a domain, which is limited to subnetworks. All agent servers within
a single domain enlist at a central server, which is called domain manager, compare
Figure A.6. Domains can be connected to each other so that mobile agents can also
reach agent servers in other domains. Connecting and disconnecting of agent servers
to the network works fully automatic and dynamic. Our approach is multi-agent
based, i.e. several stationary and mobile agents communicate to each other to build
and evolve the logical network. It does not depend on any specific mobile agent
system. Although we have implemented our approach on top of our mobile agent
system Tracy it is designed to be portable to any other mobile agent system with
minimal effort.

Main characteristics of our approach are its robustness in failure situations and its
high performance, which is shown by results of a first evaluation [Braun et al., 2001a].
For example we can guarantee that at any time there exists a domain manager for
each domain. If a domain manager crashes (because its host agent server crashes) all
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remaining agent servers vote for becoming the new domain manager. If the original
domain manager is relaunched, it can reclaim this role.

Currently, in all other mobile agent systems, it is only possible to manage a single
stand-alone agent server by using some kind of console or graphical user interface.
In a logical agent server network, the administrator can obtain an immediate view
of all agent servers. In the Tracy system there is already an approach to use this
information in combination with its graphical user interface which can be dynamically
connected to other running agent servers to administrate them, e.g. to start and stop
agents or just for checking the status of the server.

A.6. Tracy’s Software Architecture

Our first implementation of a Tracy server was a three layer architecture. The upper
layer contained the core agent server functionality and all services as for example
agent communication and the blackboard as described in Section A.3 on page 269.
The intermediate layer was responsible for the agent migration process, and the lowest
layer implements several network transmission protocols [Braun et al., 2000a].

The main problem with this architecture is that all services for agents are static
part of the upper layer. It exists a basic class Agent that contains methods to
access all these services, e.g. to communicate to other agents, to access the central
blackboard service, or to initialize the migration process in case of mobile agents.
This has the consequence that it means considerable effort to add new services to
this architecture, as it is necessary to adapt class Agent for each new service. The
inflexible structure of services prevents dynamic installation of new services during
run-time. Another problem with this first architecture is that the implementation of
the migration model is hard-wired in the same way and it is not possible to provide
more than one migration model in parallel in a single agent server.

Therefore, we decided to re-design the Tracy server architecture to make it more
flexible, compare Figure A.7. The architecture of a Tracy2 server is comparable to
a micro-kernel architecture [Buschmann et al., 1996] as used in several operating
systems [Tanenbaum, 2001]. This micro-kernel provides only few basic services in-
dispensable for an agent-based system. This micro-kernel only requires functions of
a Java virtual machine in version 1.2, which make it very easy to port it to limited
mobile devices.

The main function of the micro-kernel is to provide a thread pool to execute agents
and control their life-cycle. A thread-pool is a data structure that manages several
Java thread objects and assigns an already running thread to an agent that is going
to be executed. This technique significantly increases the overall performance of
agent execution. The thread-pool is secure in so far as agents have no chance to
access and tamper with thread objects of other agents currently executed. From the
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Figure A.7.: Software architecture of Tracy2.

micro-kernel’s view, the only requirement for an agent is that it implements the basic
Java interface Runnable. The agent’s life-cycle consists of only two states: Running
and Waiting. The latter state means for an agent that it is not currently executed
(especially it does not have an associated thread) and currently waiting to become
active again, for example by receiving a message.

On top of the micro-kernel there is an agency that manages all agents that are
currently residing at this platform using an agent directory independent, whether they
are currently running or waiting. The agency provides basic functions for agents to
inform about their environment, for example to find other agents on this platform.
The agency offers functions to start and stop agents and uses the micro-kernel for
these tasks. Each agent is registered with the agency when it is started. It makes no
differences, whether the agent is started locally or has migrated to this agent server.
The agent directory entry exists for the whole life-time on the local platform, even
when the agent is waiting. It is deleted when the agent leaves the server by migration
or when the agent is killed.

Additionally, an agency has the task to manage the so-called features, which is
our concept to provide services within Tracy2. For each service, as for example
inter-agent communication, blackboard, migration, etc., there exists a single feature
component. Features can be added dynamically to an running agent server, they
can be stopped (for example in case of an error) and restarted later. Features must
be registered with the agency under a user-defined name, which equals the name by
which an agent (or other features) can access this feature later.

The consequence of this very flexible concept is that an agent (which still is any
object of type Runnable) must use a new technique to access features. As there does
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not exist a basic class for agents that provides methods to access each feature, we
use the concept of so-called context objects. To communicate to a single feature,
an agent must request its context object by calling a static method of class Context
using the name of the feature. The following example shows an agent that in line 11
requests its context object for the message features (whose name is msg). In line 16
a message is sent to an agent whose name is Goldfinger. The example does not show
how to receive messages from other agents.

1 import org.taf.tracy2.Context;
2 import org.taf.tracy2.features.message.∗;
3

4 public class SampleAgent implements Runnable
5 {
6 protected IAgentMessageContext amc;
7

8 public void run()
9 {

10 if( amc == null ) {
11 amc = (IAgentMessageContext)Context.getContext( ”msg” );
12 amc.openMailBox();
13 }
14

15 Message message = new Message( ”Goldfinger”, ”offer”, ”gold bar” );
16 amc.sendMail( recipientName, message );
17 }
18 }

The migration feature uses the Kalong migration component as described in Sec-
tion 9.2.2 on page 193.

This basic architecture only provides a single agency. As an extension it is also
possible to construct a multi-agency agent server, where two or more separated agen-
cies exist in parallel. Each agency has its own set of features and all agents and
all features of a single agency are strictly separated from those at other agencies.
However, all agencies still run within the same Java virtual machine and on top of
the same micro-kernel, which makes it possible to execute two different agencies on
a single computer system in parallel. The motivation of a multi-agency server is to
separate different agent-based applications in a very strict sense.

From the programmer’s point of view, the new Tracy2 design is compatible to the
first version of Tracy, which makes it very easy to migrate to the new version of Tracy.
No agents must be modified, but they can be reused without any changes. However,
they must be compiled again, because basic classes have changed. Of course, these
agents cannot benefit from new services that are implemented for the Tracy2 agent
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”sehr gut“).

1998–2003 Wissenschaftlicher Mitarbeiter bei Prof. Dr.Wilhelm R. Rossak
am Lehrstuhl für Softwaretechnik der Friedrich-Schiller-Universi-
tät Jena.

Jena, 03. Feburar 2003

283





Index

Acharya
[Acharya et al., 1997], 70, 74

Adobe Systems
[Adobe Systems, Inc., 1999], 17

Aerts
[Hammer and Aerts, 1998], 61, 81

Agent profiling, 222
AgentTCL, 19, 70, 72, 88, 228
Aglets, i, iii, 19, 39, 51, 61, 68, 74, 77–

79, 86, 91, 104, 114, 148, 207,
216

mobility model, 77
Aho

[Aho et al., 2000], 88
Ajanta, 19
Amme

[Amme et al., 2001], 89
Anjum

[Jain et al., 2000], 38
Arnold

[Arnold and Gosling, 2000], 15, 51
Avvenuti

[Avvenuti and Vecchio, 2000], 53

Baldi
[Baldi and Picco, 1998], 24
[Baldi et al., 1997], 24

Barbeau
[Barbeau, 1999], 90

Barton
[Gray et al., 2001], 38

Batista
[Silva et al., 2000], 228

Baumann
[Baumann et al., 1998], 19, 25
[Baumann, 1995], 71
[Hohl et al., 1997], 92, 109
[Iqbal et al., 1998], 26
[Straßer et al., 1997], 19, 68, 73

Baumgartner
[Wang et al., 2001], 70

Belle
[Belle and D’Hondt, 2000], 71

Bettini
[Bettini and Nicola, 2001], 70

Bic
[Fukuda et al., 1996], 17

Birrell
[Birrell and Nelson, 1984], 10, 17

Boggs
[Boggs, 1973], 17

Bosch
[Bosch and Mitchell, 1998], 257, 258

Bradley
[Bradley et al., 1998], 91, 237

Bradshaw
[Bradshaw, 1996], 13, 18, 265
[Gray et al., 2001], 38
[Suri et al., 2000], 70

Braun
[Braun et al., 2000a], 267, 279

285



Index

[Braun et al., 2000b], 74, 93
[Braun et al., 2001a], 267, 278
[Braun et al., 2001b], 74, 93
[Braun et al., 2002], 268
[Braun, 1999a], 267
[Braun, 1999b], 267
[Erfurth et al., 2001a], 90
[Erfurth et al., 2001b], 90
[Kowalczyk et al., 2002], 149, 268

Breedy
[Gray et al., 2001], 38
[Suri et al., 2000], 70

Breugst
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