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Abstract

Efficient data transport in parallel computers build on sparse interconnection

networks is crucial for their performance. A basic transport problem in

such a computer is the k-k routing problem. In this thesis, aspects of the

k-k routing problem on r-dimensional meshes and OTIS-G networks are

discussed. The first oblivious routing algorithms for these networks are

presented that solve the k-k routing problem in an asymptotically optimal

running time and a constant buffer size. Furthermore, other aspects of the

k-k routing problem for OTIS-G networks are analysed. In particular, lower

bounds for the problem based on the diameter and bisection width of OTIS-

G networks are given, and the k-k sorting problem on the OTIS-Mesh is

considered. Based on OTIS-G networks, a new class of networks, called

Extended OTIS-G networks, is introduced, which have smaller diameters

than OTIS-G networks.
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Chapter 1

Introduction.

Parallel computers consist of (two or more) processors. To solve problems

efficiently these processors have to communicate with each other. There are

different communication methods possible, e.g.

• Communication via shared-memory. A theoretical parallel computer

model, in which communication is based on shared-memory, is referred

to as PRAM (parallel random access machine). A PRAM consists of

a global memory that is uniformly accessible to all processors. There

exists a global clock, enabling the processors to execute instructions

in a synchronous way. Communication among the processors is done

using the global memory.

• Communication via links. A parallel computer is modeled by a syn-

chronized network of processors connected by links. In such a network,

a direct communication between two processors is only possible if they

are connected by a link. For the communication of two non-connected

processors, data has to be transported through the network via a path

of directly connected processors.

1
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In this thesis, parallel computers based on communication via links are con-

sidered. Obviously, the efficiency of the communication depends on the

underlying connection network. Ideally, each processor is connected to any

other processor in the network, i.e., a complete graph is used as connection

network. Such a network would need O(n2) links to connect n processors.

This is considered infeasible, since such a completely connected network

would be far too expensive, even for a small number of processors. A small

constant number of links per processor would be feasible. In this work,

two kinds of connection networks are considered, r-dimensional meshes and

OTIS-G networks. The number of links per processor is bounded by 2r in

r-dimensional meshes and by dG + 1 in OTIS-G networks, where dG is the

number of links per processor in network G.

Especially for meshes the problem of efficient communication between pro-

cessors has been studied intensively in the last years. One of the best studied

communication problem is the problem where each processor has to send and

receive at most k packets, the k-k routing problem. In the last ten years,

many variants of this problem were solved efficiently [7]. For example, the

problem where each processor sends and receives exactly one packet, the so

called permutation routing problem, was solved on a two-dimensional mesh

with n processors in each dimension, in 2n− 2 steps and buffer size 32 [46].

This is the optimal number of steps for the permutation routing problem

on a two-dimensional mesh, i.e., the number of steps can not be reduced

any further. Nevertheless, some aspects of the k-k routing problem remain

unsolved. One is the problem of designing an oblivious routing algorithm

with a small buffer size for the r-dimensional mesh that solve the k-k routing

problem in a number of steps close to the best known lower bound. Even the

order of magnitude of the number of steps used by the best known oblivious

algorithms does not come close to the lower bound for the case of meshes of
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a dimension greater than two.

In an oblivious routing algorithm the path of a packet through the network

only depends on its source and destination processor within the network and

hence is indepent of the path of other packets. This property of oblivious

algorithms is interesting, since it allows one to design simple and hence

practical algorithms.

This work offers a substantial contribution to solving the problem. Itpresents

oblivious routing algorithms that solve the k-k routing problem on the con-

sidered networks in an asymptotically optimal number of steps and with a

small buffer size (O(k)), i.e., the number of steps achieved by these algo-

rithms differs from the optimal number by at most a constant factor.

OTIS networks have not been given the same attention as meshes. In these

networks electronical and optical links are used to connect the processors.

Additionally to oblivious algorithms, this thesis investigates some further

aspects of the k-k routing problem as the diameter and the bisection width

of the networks. Furthermore, a communication problem very similar to the

k-k routing problem is considered, the k-k sorting problem.

1.1 Outline of the Thesis.

In Chapter 2, basic definitions are presented. Shortly reviewing basic def-

initions in graph theory, the problems and model of computation under

consideration are introduced. The chapter concludes with a definition of

embeddings which are used in Chapter 3, Chapter 4 and Section 5.4 to

obtain the results.

In Chapter 3, r-dimensional meshes are defined and two problems on one-

dimensional meshes are solved. It is shown how to employ these results

to obtain solutions for r-dimensional meshes and other networks. Both
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problems discussed in this chapter play an important role in the design of

oblivious k-k routing algorithms for r-dimensional meshes in Chapter 4.

Chapter 4 is concerned with oblivious routing. It is shown that k-k routing

can be solved obliviously on a large class of networks of fixed degree (the

degree of such a network is independent of its size) in an asymptotically op-

timal number of steps with buffer size O(k). An oblivious algorithm is pre-

sented that solves the k-k routing problem on networks, for which a special

partitioning exists, and the result is applied to r-dimensional meshes. It is

shown that a deterministic and oblivious routing algorithm for r-dimensional

meshes of side length n exists that solves the k-k routing problem in O(kn
r
2 )

steps with buffer size O(k). For r > 2 and all k, the order of magnitude of

the running time is smaller than those of other deterministic and oblivious

algorithms with buffer size O(k) known before. For the case r = 2 and k = 1,

algorithms with an asymptotically optimal running time are known [14, 32]

and discussed in this chapter.

In Chapter 5, aspects of k-k routing on OTIS networks are discussed, or-

ganized in two parts. The first part, Sections 5.2-5.6, deals with OTIS-G

networks, the second part introduces Extended OTIS-G networks.

In Section 5.3 a lower bound for routing on OTIS-G networks is proved. An

OTIS-G network is a kind of hierarchical network. Its structure depends

on the structure of the graph G. An OTIS-G network, where G is a two-

dimensional mesh, is called an OTIS-Mesh. In Section 5.4, algorithms solv-

ing (full) k-k sorting problems on the OTIS-Mesh are presented. It is shown

how the technique of solving k-k sorting problems by all-to-all mappings can

be used to solve the problem on OTIS-Meshes. Rounding off Section 5.4,

lower bounds for k-k routing and k-k sorting on the OTIS-Mesh are given

and the obtained sorting algorithm is compared with sorting algorithms de-

signed for meshes. In Section 5.5, the results of Chapter 4 are applied to
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OTIS-G networks in order to obtain oblivious routing algorithms that solve

the k-k routing problem with O(k) buffer size. For all graphs G of fixed

degree, an asymptotically optimal running time is achieved. In Section 5.6,

the diameter of OTIS-G networks is determined. This leads to the definition

of Extended OTIS-G networks, where a few links are added to reduce the

diameter. Definition and some basic properties of Extended OTIS-G net-

works are given in Section 5.7.1. Section 5.7.2 is concerned with determining

shortest paths in Extended OTIS-G networks. Finally, in Section 5.7.3 the

diameter for several Extended OTIS-G networks is determined.

The following tables give a short summary of the most important results

and can be used as a guide through this thesis.

Oblivious routing on networks.

type network buffer size steps lower bound reference

full 1-1 M2,n 10 50n 2n-2 Section 4.4.2

k-k Mr,n
1, r > 1 k + 9 O(knr/2) Ω(knr/2) Section 4.4.2

k-k N = (V, E)2 O(k) O(k
√|V |) Ω(k

√|V |) Section 4.4.1

k-k OTIS-G network2 O(k) O(k|V |) Ω(k|V |) Section 5.5

G = (V,E)

1r-dimensional mesh of side length n
2some additional conditions have to be fulfilled
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Aspects of k-k routing in OTIS-G networks, G = (V, E).

type network result reference

lower bound general G max{2D(G) + 1, k
bw(G)} Section 5.3

k-k sorting G = M2,n buffer: k + 4, steps: Section 5.4.6

max{8n+o(n), 2kn+o(kn)}
obl. k-k G fixed degree buffer: O(k), steps: O(k|V |) Section 5.5

diameter general G 2D(G) + 1 Section 5.6

diameter Extended OTIS reduction, < 2D(G) + 1 Section 5.7.3

D(G) diameter of graph G, bw(G) bisection width of graph G



Chapter 2

Basic Definitions.

In this chapter we provide basic definitions and notations used throughout

this thesis. Special notations will be given in the chapters where they are

needed.

The set of integers is denoted by Z. N is the set of natural numbers, without

zero, N0 = N ∪ {0}, and [n] = {0, . . . , n − 1}. The cardinality of a set M

is denoted by |M |. The set of all subsets of M of cardinality two is written

as P2(M). For a function f : A −→ B and U ⊆ B the inverse image of U

is denoted by f−1(U). The set f−1(U) consists of all elements a ∈ A such

that f(a) ∈ U .

2.1 Basic Definitions in Graph Theory.

Graphs are a very important concept that is used throughout this thesis.

For definitions that can not be found here we refer the reader to any book

that gives an introduction into graph theory, e.g. [56, 36].

An undirected graph G = (V, E) consists of a finite set of nodes V and a

finite set of edges E, where each edge e ∈ E is an element of P2(V ). The

7
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size of a graph is the number of its nodes. Two nodes connected by an edge

are called adjacent. An edge e = {x, y} ∈ E is incident to x and y. All

nodes adjacent to a node x ∈ V are neighbours of x. The degree degG(x) of

a node x ∈ V is the number of its neighbours. The degree deg(G) of a graph

G is the maximal number of neighbours of a node in G. If all nodes in G

have the same degree, then G is called regular or deg(G)-regular. A family

of graphs has fixed degree if a constant c exists such that all graphs of the

family have at most degree c.

A path p between nodes x and y in G is a sequence

p = {u0, u1}, {u1, u2}, . . . , {ul−1, ul}

of edges such that u0 = x and ul = y. Path p uses edge e ∈ E if e =

{ui, ui+1} for i ∈ [l]. Path p uses node x ∈ V if x = ui for i ∈ [l]. The set of

nodes used by a path is denoted by V (p). The length |p| of a path p is the

number of its edges. We further stipulate that for each node an empty path

of length zero between x and x exists. A path in which each node is visited

at most once, i.e. ui 6= uj for 0 ≤ i < j ≤ l, is called simple. A simple

path p in G such that V (p) = V is called a Hamiltonian path. If u0 = ul

and |p| > 0, then p is called a cycle. An undirected graph G is connected

if for all nodes x, y ∈ V a path in G between x and y exists. For all nodes

x, y ∈ V in a connected graph, let dG(x, y) denote the distance of x and y,

i.e. the length of a shortest path between x and y in G. The diameter D(G)

of G is max{dG(x, y) | x, y ∈ V }.
For X, X ′ ⊆ V let CG(X, X ′) be the number of edges e in E such that

e∩X 6= ∅ and e∩X ′ 6= ∅. The bisection width bw(G) of G is min{CG(X,V−X)
|X| |

X ⊆ V, |X| = b|V |/2c}.
In a directed graph G = (V,E) every edge is directed from one node to

another, i.e. E ⊆ V × V . We denote a directed edge e from node x to node
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y by e = (x, y). We say that e is incident to x and y (and x, y are incident

to e). Paths and cycles in directed graphs are defined analogously to the

undirected case (for directed graphs we speak of paths from x to y). The

distance dG(x, y) from x to y is the length of a shortest path from x to y, if

a path from x to y exists and ∞ else. The diameter of a directed graph is

defined as in the undirected case.

A directed graph G is connected if for all nodes x, y ∈ V , a path in G from

node x to node y or a path from node y to node x exists. A tree G = (V, E)

with root r ∈ V is a directed graph (V, E) without cycles such that for all

x ∈ V a path from r to x exists. We denote a tree with root r by a triple

(V,E, r).

The directed version ~G of an undirected graph G = (V, E) is a directed graph

with node set V and edge set ~E. The set ~E can be obtained by replacing

every undirected edge e = {x, y} ∈ E by two directed edges (x, y) and (y, x).

Unless explicitly mentioned, we assume in this work that G is undirected,

connected and that it contains at least one node. If the node or edge set of

a graph G is not given explicitly, we will use VG to denote the node set and

EG to denote the edge set of G.

2.2 Definition of the Model.

2.2.1 Model of Computation.

A network can be described by an undirected and connected graph N =

(V,E). The set of nodes V represents the set of processors and the set E of

of edges represents the set of communication links. Each edge e = {x, y} ∈ E

represents a communication link between processors x and y.

The processors operate in a synchronous fashion, and communicate by send-
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ing packets over the communication links. To model the tranport of packets

we use the so called store-and-forward packet routing model. In this model

data is organized in packets and it is not allowed to send data not attached

to a packet. The packets are atomic entities, i.e., a packet must be stored

completely in a processor before it can be send to the next processor. Other

routing models, e.g., the wormhole routing model or cut-through routing

model, allow that a packet is partitioned into flits and spread out across one

ore more nodes. For an overview of routing models see [31].

In a single step, a processor receives a number of packets that were sent to

it by neighbouring processors in the previous step, perform some amount

of internal computation, and send a number of packets across its communi-

cation links to neighbouring processors. Packets that are received and not

send in the same step have to be stored in a buffer on the processor. For the

internal computations a processor possesses a processing unit and a local

memory and has access to the packets stored in the buffer or received from

neighbouring processors.

The bandwidth of a communication link is defined as the number of packets

that can be transmitted over the link in either direction in a single step. In

some parts of this work we allow that the links of the network have different

bandwidths. In this case, we will mention it explicitly. Unless explicitly

mentioned, we assume that the bandwidth of a link is one.

2.2.2 Routing Problems, Packets and Algorithms.

In this work, we consider aspects of routing. We analyse packet routing

problems. A packet routing problem on a networkN = (V,E) is the problem

of rearranging a set of packets in N such that every packet ends up at the

processor specified by its destination address. A packet routing problem

on network N can be described by a triple (P, src, dst), where P is a set
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�
�
�
�

source
address address

destination additional
information message

Figure 2.1: A packet used in routing.

of packets, and src, dst : P −→ [|V |] are mappings. For a packet p ∈ P,

src(p) and dst(p) are addresses of processors. The address of a processor in

N is determined by a fixed bijection I : V −→ [|V |]. In a packet routing

problem (P, src, dst) each packet p ∈ P is loaded in the processor specified

by address src(p) initially and has to be sent to processor specified by address

dst(p). We call the processor specified by src(p) source processor, source

node, or source of packet p, and the processor specified by dst(p) destination

processor, destination node, or destination of packet p.

A k-k routing problem is a packet routing problem in which each processor

is source and destination of at most k packets. If each processor is source

and destination of exactly k packets the problem is called a full k-k routing

problem. We call a full 1-1 routing problem a permutation routing problem.

We assume that each packet consists of four fields (see Figure 2.1), the

message field, the source address field, the destination address field, and

additional information field. The source and destination address field require

O(log |V |) bits and we restrict the size of the additional information field

to O(log k|V |) bits when we solve k-k routing problems. During routing,

we allow that the additional information field of a packet is changed by a

processor. All other fields of a packet are not allowed to be changed by a

processor.

In this thesis, we consider deterministic algorithms. We do not allow that

any random decisions are made by an algorithm.

We are interested in the number of steps required to route all packets to their
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destination in the worst case. We call the number of steps an algorithm

A requires to solve a problem in the worst case the running time of A.

We give upper and lower bounds for this value. Lower bounds for routing

problems are given by the diameter and the bisection width of a network,

e.g., algorithms that solve k-k routing problems on a network N have at

least a running time of max{ k
bw(N ) , D(N )}. We call these bounds diameter

and bisection bound.

Besides the running time, the buffer size an algorithm needs to solve a

packet routing problem is an important measure of its performance. We

define the buffer size of an algorithm as the maximal number of packets

that are located in any processor during the execution of the algorithm. This

includes packets that want to pass the processor. We assume that a packet

is absorbed when it reaches its destination processor. In the literature, there

are several different definitions for the buffer size of an algorithm. In one

definition (see e.g. [44]) each link of a processor has a link buffer, where

packets can be stored, and an additional buffer called injection buffer. The

task of the injection buffer is to store all packets for which the processor is

source. In this definition, the buffer size of an algorithm is defined as the

maximal number of packets in a link buffer. An algorithm for k-k routing

that has buffer size c under this definition can have a buffer size of up to

k + deg(N )c under our definition. In another definition (see e.g [46]), the

size of link buffers is restricted to one, but the processors have an internal

buffer to store packets. The buffer size of an algorithm under this definition

is defined as the maximal number of packets in any internal buffer. An

algorithm that has buffer size c under this definition can have a buffer size

of up to c+deg(N ) under our definition. We consider k-k routing algorithms

that have a bounded buffer size, i.e., the buffer size is O(k).

Another important aspect of an algorithm is its simplicity. One can hope
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that a simpler algorithm will be more practical. Unluckily it is very hard to

find a measure for the simplicity of an algorithm. Measures of simplicity for

an algorithm could be:

• The buffer size of an algorithm. Has it a buffer size of O(1), or not?

• The kind of paths used by the algorithm. E.g. are shortest or simple

paths used?

• The kind of routing strategy used by the algorithm. E.g. is the routing

algorithm adaptive or oblivious? Depends the path of a packet on

other packets or not?

• The control structure of an algorithm. Are only simple calculations

needed for the routing decision?

There are several other measures for simplicity possible. We consider in

this thesis oblivious routing algorithms. In the literature a formal definition

of an oblivious routing algorithm is hard to find. Very often an oblivious

routing algorithm is described as an algorithm where the path of a packet

only depends on its source and destination and is independent of other

packets in the network [49, 22, 41, 17, 32, 12]. Such a definition let room

for interpretations. We give a formal definition of an oblivious algorithm.

An element of a set X of packet routing problems on a network N is called

an instance of X on N and an algorithm that solves all instances of X on N
is an algorithm for X on N . In the case that X is the set of all k-k routing

problems on N , an algorithm for X on N is called an k-k routing algorithm

on N . If it is clear which network is meant, N is omitted.

Definition 2.1 Let N = (V,E) be a network and Path(N ) be the set of all

paths in network N . Let X be a set of packet routing problems on N and A
be a deterministic algorithm for X on N . Let
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path(A, (P, src, dst)) : P −→ Path(N )

be a mapping such that path(A, (P, src, dst))(p) is the path on which a packet

p ∈ P is sent from src(p) to dst(p) by A when algorithm A solves the

instance (P, src, dst) of X on N .

Algorithm A is called an oblivious routing algorithm for X on N , if and

only if a mapping

π : V × V −→ Path(N )

exists, such that for all instances (P, src, dst) of X on N the following holds:

∀p ∈ P : π(src(p), dst(p)) = path(A, (P, src, dst))(p).

2.3 Embeddings and Emulations.

There are two different kinds of strategies to emulate a network N1 by a

network N2. One possible strategy is to use static embeddings. In this

case every node in N1 is simulated by a fixed set of nodes of N2. The

other possible strategy is to use dynamic embeddings. In this case, in every

step, every node in N1 is simulated by at least one node of N2. Although

dynamic embeddings are known to be more powerful than static embeddings

(see [1, 21]) we will use static embeddings since they are sufficient for our

purpose. Furthermore, in a static embedding, the path a packet travels in

N2 to simulate a step of N1 depends not on the paths of other packets. We

need this property in this work in Chapter 4. For an overview of results for

static embeddings see [38].

A static embedding of a network N1 into a network N2 is a mapping

Φ : N1 −→ N2
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that maps nodes of N1 to nodes of N2 and edges of N1 to paths in N2. The

dilation of an embedding is defined as the longest path Φ(e) where e is an

edge of N1, i.e., the dilation of Φ is

max{|Φ(e)| : e ∈ EN1}.

The congestion of an embedding is the maximal number of paths Φ(e) that

uses an edge of N2, i.e., the congestion of Φ is

max{|{Φ(e) : e ∈ EN1 , Φ(e) uses e′}| : e′ ∈ EN2}.

Finally, the load of an embedding is the maximal number of nodes of N1

mapped to a node in N2, i.e., the load of Φ is

max{|Φ−1({v})| : v ∈ VN2}.

It is well known that, if an embedding of N1 in a network N2 with congestion

c, dilation d, and load 1 exists, an emulation of N1 by N2 with slowdown

O(c+d) exists, i.e., any T steps in N1 can be simulated in O((c+d)T ) steps

by N2 [30, 44]. Furthermore, if N1 and N2 are of fixed degree, then any

communication step in N1 can be simulated in O(c + d) steps by N2 using

only constant buffer size [44]. Hence we get

Theorem 2.2 ([30, 44]) Given two networks N1 and N2 of fixed degree.

If an embedding of a network N1 in a network N2 with congestion O(1),

dilation O(1), and load 1 exists, then any algorithm which needs T steps

and buffer size B on N1 can be performed by N2 in O(T ) steps with buffer

size B + O(1).



Chapter 3

Meshes and Basic Problems.

The family of mesh-connected networks is one of the most investigated fam-

ily of networks. Among other preferences the simple structure of mesh-

connected networks match the physical constrains for processor layout which

makes them interesting for the practice (e.g. J-Machine, Cray T3D). Fur-

thermore, the simple structure allows an efficient implementation of parallel

algorithms.

3.1 Definitions.

Definition 3.1 (r-dimensional mesh) Let n, r ∈ N. The mesh Mr,n is a

graph with node set [n]r and edge set

{{(x0, . . . , xr−1), (y0, . . . , yr−1)} | ∀i ∈ [r] : xi, yi ∈ [n],
r−1∑
i=0

|xi − yi| = 1}.

An edge where |xi−yi| = 1 for i ∈ [r] is called an edge of the i-th dimension.

The mesh Mr,n is called an r-dimensional mesh of side length n. Addition-

ally, M1,n is called a one-dimensional mesh of size n.

16
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Figure 3.1: The structure of M1,5.

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

M2,4 M2,4

Figure 3.2: The structure of M2,4.

For all r ∈ N, we call {Mr,n | n ∈ N} the family of r-dimensional meshes.

The family of r-dimensional meshes is of fixed degree.

Figure 3.1 presents two one-dimensional meshes of side length five. In the

left one the nodes are represented as boxes and the edges are represented as

lines. In the right one the edges of the mesh are not shown. In the following

we often use this style to present meshes. Figure 3.2 shows mesh M2,4 in

both styles.

For the analysis of the algorithms presented in this section we need the

following definition of intervals.

Definition 3.2 (interval) Let a, b ∈ N0, a ≤ b. The interval from a to b
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consists of steps a, a + 1, . . . , b − 1, b and is denoted with [a, b]. If we want

to exclude the first step, the last step, or the first and the last step of [a, b],

we write (a, b], [a, b), or (a, b), respectively.

3.2 Routing in One-Dimensional Meshes.

In routing algorithms for higher-dimensional meshes, routing on one-dimen-

sional submeshes is often used as a subroutine, since problems on the one-

dimensional mesh can be solved efficiently.

For example, given a one-dimensional mesh of size n, it is well known that

any distribution of packets over the n nodes can be routed to their desti-

nation in the optimal number of steps by a deterministic oblivious routing

algorithm using the farthest destination first queueing strategy (e.g. see

[47]).

In this section, we analyse algorithms on one-dimensional meshes which are

used as subroutines for algorithms in higher-dimensional meshes or other

networks later in this thesis. The problems solved by these algorithms differ

a little bit from standard routing problems.

In a standard static routing problem all packets are stored in buffers in the

processors initially. The task is to transport them to their destination as

fast as possible using a bounded amount of buffer size.

We consider a problem where packets are created during the routing process.

Such problems are called dynamic routing problems, e.g. see [4, 15]. We

further consider a static problem where a lower bound for the time difference

between the arrival of two packets at their destination is given.

The algorithms designed in this section route the packets on the shortest

paths to their destination. For any two nodes in an one-dimensional mesh

exactly one shortest path between these nodes exists. Hence the algorithms
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are oblivious algorithms.

To be able to use the algorithms on other networks we consider embeddings

of one-dimensional meshes into networks.

3.2.1 Embedding into Networks.

It is well known that a one-dimensional mesh of size n can be embedded into

any network of the same size with dilation O(1), congestion O(1) and load 1

[45, 18, 31]. In [31], Leighton gives an embedding of a one-dimensional mesh

of size n in a network of size n with dilation 3, congestion 2, and load 1.

Theorem 2.2 yields

Theorem 3.3 Any algorithm that needs T steps and has buffer size B on an

one-dimensional mesh of size n can be performed in O(T ) steps and buffer

size B + O(1) on any network of size n and fixed degree.

3.2.2 Routing with Bounds on Arrival Times.

In this section we solve routing problems (P, src, dst) on a one-dimensional

mesh of size m, where |src−1({i})| ≤ k, for all nodes i ∈ [m]. Every packet

p ∈ P belongs to a class c(p) ∈ N0.

We define

Px
def= {p ∈ P | c(p) = x}, x ∈ N0,

|x| def= |Px|, x ∈ N0, and

Cx
def= {c(p) | p ∈ src−1({x})}, x ∈ [m].

Let d be a mapping d : N0 −→ N that describes the minimal time difference

between the arrival of two packets of the same class at their destination.

Here we restrict our attention to problems where each packet leaves the
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network through node m − 1. If two packets of class c leave the network

through node m− 1 in steps t1 and t2, then |t1 − t2| ≥ d(c). To model this,

we introduce an additional virtual node m and let m be the destination of

all packets. We assume that a directed edge from node m − 1 to node m

exists and that packets are absorbed if they reach node m. This results in

the following problem.

Problem 1: Gap Routing. Given is a mapping d : N0 −→ N, k ∈ N0,

and a packet routing problem (P, src, dst) on a one-dimensional mesh of size

m equipped with an additional virtual node m. For all p ∈ P the value c(p)

is stored in the additional information field of p. All nodes i ∈ [m] know

d(c(p)) for all p ∈ src−1({i}).
A routing problem is a gap routing problem if and only if the following holds:

P1.1 ∀p ∈ P : dst(p) = m,

P1.2 ∀i ∈ [m] : ki
def= |src−1({i})| ≤ k, and

P1.3 ∀c ∈ N0,∀p1, p2 ∈ Pc, p1 6= p2: If p1 and p2 reach m in steps t1 and

t2, then |t1 − t2| ≥ d(c).

2

First we show a lower bound.

Lemma 3.4 If |P| > 1, then any algorithm solving an instance of Prob-

lem 1 needs at least max{(a), (b)} steps, where

(a)= m−max{i | i ∈ [m], ki > 0}+
∑

i∈[m] ki, and

(b)= max{m −max{i | Pc ∩ src−1({i}) 6= ∅, i ∈ [m]} + (|c| − 1)d(c) : |c| >
0, c ∈ N0}.
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Proof:

All packets have destination m. Hence all packets have to use the edge from

node m − 1 to node m. This needs at least
∑

i∈[m] ki steps. To use the

edge the packets have to reach node m. Thus any algorithm needs at least

m−max{i | i ∈ [m], ki > 0}+
∑

i∈[m] ki steps.

Two packets of class c have to arrive at node m with a time difference of

at least d(c) steps. Hence the last packet has to arrive at node m at least

(|c| − 1)d(c) steps after the first one. The first packet of class c can reach

node m not before step max{m − max{i | Pc ∩ src−1({i}) 6= ∅, i ∈ [m]}.
Hence at least max{m−max{i | Pc∩src−1({i}) 6= ∅, i ∈ [m]}+(|c|−1)d(c) :

|c| > 0, c ∈ N0} steps are needed. 3

Two packets of the same class have to reach node m with a time difference.

To accomplish this, every node i maintains a counter zc,i for each class c ∈ Ci,

where it counts the number of steps since the last packet of class c ∈ Ci has

left node i. With the help of this counter the node i decides whether a

packet is allowed to be sent to node i + 1 or not.

Definition 3.5 (transportable packet) A packet p stored on node i is

transportable in step t if and only if the following conditions are fulfilled in

step t:

• No packet enters node i from node i− 1.

• zc(p),i ≥ d(c(p)).

Now we give an algorithm for our problem. We assume that the buffers are

numbered. Initially the packets are stored in buffers 1, . . . , k.

Algorithm 1:

• Step t = 0, initialization:
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– ∀i ∈ [m] ∀c ∈ Ci : zc,i := d(c)− i.

• Step t ≥ 0:

1. ∀i ∈ [m]: If packet p enters node i, then send it to node i + 1. If

c(p) ∈ Ci, then zc(p),i := 0.

2. ∀i ∈ [m]: If no packet enters node i and there is at least one

transportable packet on node i, then choose the transportable

packet stored in the buffer with the smallest number and send it

to node i + 1. If packet p is sent to node i + 1, then zc(p),i := 0.

3. ∀i ∈ [m] ∀c ∈ Ci : If zc,i < d(c), then zc,i := zc,i + 1.

To analyse the algorithm the following definition is needed.

Definition 3.6 (rank of a packet) Let p, q ∈ Pc. Packet p is initially

stored on node i in buffer j and packet q is initially stored on node i′ in

buffer j′. We define p ≤c q :⇐⇒ i < i′ ∨ (i = i′ ∧ j ≤ j′)and rank(p,≤c)
def=

|{q ∈ Pc | q ≤c p}|. We say a packet p has rank l in class c if and only if

l = rank(p,≤c).

Algorithm 1 transports the packets of class c such that the packet of rank

i in class c is the i-th packet of class c that is sent to node m. Before this

can be proved in Lemma 3.7, we have to introduce some notations.

A node i sends up to |c| packets of class c to node i + 1. If node i sends

s ≤ |c| packets p1, . . . , ps of class c to node i + 1 in steps t1 < . . . < ts, then

we denote packet pj , 1 ≤ j ≤ s, by (j, c, i).

The following proofs use the value of zc,i in step t. By this we mean the

value of zc,i before 1. in step t of Algorithm 1.

Lemma 3.7 For all p ∈ P the following holds:
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(src(p)=i∧ c(p) = c ∧ j = rank(p,≤c)) =⇒ (∀i′, i ≤ i′ < m : p = (j, c, i′)).

Proof:

Proof by induction on rank j.

j = 1:

Let p be a packet such that src(p) = i, c = c(p) and rank(p,≤c) = 1. If

|src−1({i′})∩Pc| > 0, then i ≤ i′ < m (definition of rank). If |src−1({i})∩
Pc| > 1, then by the definition of the rank of a packet, no packet of class

c is stored on node i in a buffer with a smaller number than p is stored in.

Thus p = (1, c, i).

After a packet has begun to travel to its destination, it is not delayed any-

more. Hence no packet is able to overtake another packet. Therefore, we

can restrict our attention to i′ ∈ {i, . . . , m−1}, where |src−1({i′})∩Pc| > 0.

Assume |src−1({i′}) ∩ Pc| > 0, for i < i′ < m. Due to the initial setting of

zc,i, the first time when zc,i ≥ d(c) is in a step i. Let t1 be the step when p

is sent to node i+1. Then for all steps t ∈ [i, t1−1] a packet is sent to node

i + 1. These packets enter node i′ in steps [i′, t1 + i′ − i− 1] and are sent to

node i′ + 1. Due to the initial setting of zc,i′ , the first time zc,i′ ≥ d(c) is in

step ≥ i′. Hence no packet of class c is sent to node i′ + 1 before p is sent

to node i′ + 1. Thus p = (1, c, i′).

j > 1:

Let src(p) = i and c(p) = c and rank(p,≤c) = j. Let p = (x, c, i) for

1 ≤ x ≤ |c|. By induction hypothesis all packets with rank < j in class c

leave i before p. If packets of rank > j in class c are stored in i, then they

are sent to node i+1 after p (see definition of rank and 2. in the algorithm).

Hence p = (j, c, i).

It remains to show that p = (j, c, i′′) for i < i′′ < m. As in the case j = 1,

we can restrict our attention to i < i′′ < m, where |src−1({i′′}) ∩ Pc| > 0.
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Let p′ be the packet such that c(p′) = c, rank(p′,≤c) = j−1 and src(p′) = i′,

t0 be the step when p′ is sent to node i + 1, and t1 be the step when p is

sent to node i + 1. By induction hypothesis we know p′ = (j − 1, c, i) and

t0 < t1.

Let p′′ be a packet such that src(p′′) = i′′ > i and c(p′′) = c and t2 be the

step when p′′ is sent to i′′ + 1. We know from the induction hypothesis that

p′ = (j − 1, c, i′′), p = (x, c, i′′), and p′′ = (x′, c, i′′), where x, x′ > j − 1.

In step t0 counter zc,i is set to zero (by p′). Hence p can be sent to i + 1 not

before step t0 + d(c). Hence t0 + d(c) ≤ t1. In all steps t ∈ [t0 + d(c), t1 − 1]

a packet 6= p is sent to i + 1. These packets (we call them blocking packets)

reach node i′′ in steps t ∈ [t0 + d(c) + i′′ − i, t1 + i′′ − i− 1] and are sent to

node i′′ + 1. The packet p′ enters node i′′ in step t0 + i′′ − i and sets the

counter zc,i′′ to zero. Due to the induction hypothesis we have t0+i′′−i < t2.

Counter zc,i′′ is set to zero in step t0 + i′′ − i, so t0 + i′′ − i + d(c) < t2. In

steps t ∈ [t0 + i′′− i+d(c), t1 + i′′− i−1] packet p′′ is blocked by the blocking

packets. In step t1 + i′′ − i packet p enters i′′ and is sent to i′′ + 1, i.e., p is

sent to i′′ + 1 after p′ is sent and before p′′ is sent. Thus p = (j, c, i′′). 3

Lemma 3.8 Algorithm 1 solves the gap-routing problem. It has a buffer

size of k + 1.

Proof:

Every packet is routed to node m. Hence the algorithm solves the routing

problem. No packet is stored in a node. Hence in any step on any node

there are at most k + 1 packets.

It remains to show that P1.3 is fulfilled. Let c ∈ N0 such that Pc 6= ∅. We

show the following by induction on i ∈ [m].

(a) For all i ∈ [m]: If two packets p1, p2 ∈ Pc are sent to node i + 1 in

steps t1 and t2, then |t2 − t1| ≥ d(c).
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P1.3 follows by setting i = m − 1. Let p be a packet of rank 1 in class c.

Obviously (a) holds for all i ≤ src(p).

Now consider a node i > src(p). A node i′ exists, such that src(p) ≤ i′ < i

and Pc ∩ src−1({i′}) 6= ∅. Choose i′ maximal.

If Pc ∩ src−1({i}) = ∅, then (a) follows by an application of the induction

hypothesis on i′. If Pc ∩ src−1({i}) 6= ∅, then choose a packet p′ such that

src(p′) = i and c(p′) = c with minimal rank. Let j be the rank of p′ in class

c. By the induction hypothesis any two packets of rank < j of class c are

sent to node i′ + 1 with a time difference of at least d(c). By Lemma 3.7

these packets are sent to i + 1 before packet p′ is sent. Due to the counter

and the fact that the packets are not stored on their way to node m, node

i sends the packets of class c with correct gaps to node i + 1. Hence (a) is

fulfilled. 3

Now we analyse the running time of Algorithm 1.

Lemma 3.9 (Running Time of Algorithm 1.) For an arbitrary instance

of Problem 1 as defined above Algorithm 1 needs at most

m +
∑

i∈[m] ki + max{(d(c)− 1)(|c| − 1) | c ∈ N0}

steps.

Proof:

All packets have destination m. Let p be the first packet arriving at node

m. By Lemma 3.7 p has rank one in class c(p).

Let ic be the source node of the packet of rank one in class c. The first time

the counter zc,ic reaches value d(c) is in step ic. Hence the first packet (call

it p′) that is sent to a node has source node min{ic | c ∈ N0, |c| > 0}. Packet

p′ is in node i ∈ [m] in step i. Hence p = p′ reaches node m in step m.

Let t1 be the step when the last packet arrives at node m and let c be its
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class. We set T := [m, t1] and call a step t ∈ T empty if no packet arrives at

m in step t. We have t1 −m + 1 =
∑

i∈[m] ki + et, where et is the number

of empty steps in T . T is divided into |c| subintervals T0, . . . , T|c|−1 by the

arrival of packets of class c at m. For i ∈ [|c|] let Ti = [t0,i, t1,i] such that

exactly one packet of class c arrives at m during Ti. We choose Ti such that

the packet arrive in the last step, i.e. in step t1,i. We further set t0,0 = m

and t0,i+1 = t1,i + 1 for i ∈ {1, . . . , |c| − 1}. In T0 there are no empty steps

because zc′,i = d(c′) for c′ 6= c(p) if p (the first packet that arrives at m) is

sent to i+1. Hence et = 0, if |c| = 1. Now assume that |c| > 1. There are et

empty steps and |c| − 1 intervals with empty steps. Hence there exists one

Ti, i > 0 with at least d et
|c|−1e empty steps. A packet of class c is inserted

into node i if zc,i ≥ d(c). Hence d et
|c|−1e < d(c). 3

Now we consider full problems where d(c) depends on the number of packets

of class c. We assume that an upper bound for d(c)|c| exists.

Theorem 3.10 If k0 = k1 = · · · = km−1 = k > 0 and d(c)|c| ≤ m′ for all

c ∈ N0, then Algorithm 1 needs at most m + km + m′ steps and needs

a buffer size of k + 1. In this case a lower bound for the running time is

Ω(km). The algorithm uses at most O(k log m′ + m) bits per node for the

counter.

Proof:

We have
∑

i∈[m] ki = km. By Lemma 3.4 we obtain the lower bound. For

all c ∈ N0 we have (d(c)− 1)(|c| − 1) ≤ d(c)|c| ≤ m′. Hence

m +
∑

i∈[m] ki + max{(d(c)− 1)(|c| − 1) | c ∈ N0} ≤
m + km + m′.

The minimal value of a counter in a node is −m. The maximal value is m′.

Hence we need at most O(k log m′ + m) bits per node for the counters. 3
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Figure 3.3: An example for the problem considered in Section 3.2.3.

m− 10 1 2

(α0, β0, γ0) (αm−1, βm−1, γm−1)

I0 I1

(α1, β1, γ1) (α2, β2, γ2)

Im−1I2

...

Figure 3.4: A one-dimensional mesh of size m with m injectors.

In the case m′ ∈ O(km) Algorithm 1 solves instances of Problem 1 in an

asymptotically optimal number of steps.

Corollary 3.11 If k0 = k1 = · · · = km−1 = k > 0, m′ ∈ O(km), and

d(c)|c| ≤ m′ for all c ∈ N0, |c| > 0, then Algorithm 1 needs O(km) steps

and has a buffer size of k + 1. In this case a lower bound is Ω(km).

3.2.3 Dynamic Routing.

The problem discussed in this section is motivated by the problem of the

previous section. In Section 3.2.2 the algorithm produces a stream of packets

in which two packets of the same class reach node m with a certain time
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difference. Now assume that such streams of packets are produced in more

than one one-dimensional mesh and that all packets of one class have to

enter a one-dimensional mesh at different nodes to reach their destination

(see Figure 3.3).

We model this by a routing problem on a one-dimensional mesh of size m

(see Figure 3.4). For every node i ∈ [m] there exists an injector Ii that

creates packets with a certain creation rate. An injector Ii is able to insert

a created packet into node i. Injectors are known from the analysis of

dynamic routing problems [4, 15]. In dynamic routing problems it is often

assumed that packets are created with a certain probability and that their

destination is chosen according to a specified distribution. Moreover, no

bound for the number of created packets is given. Therefore, for dynamic

routing problems, the running time of an algorithm is not of interest. For

such problems stability, bounds on routing delays and buffers are of interest.

A more detailed description of dynamic routing problems can be found in

[4].

In our problem, the number of packets created by an injector is bounded.

Moreover, we have an upper bound for the period of time in which these

packets are created and we have a lower bound for the time difference be-

tween the creation of two packets.

Definition 3.12 ((α, β, γ)-injector) Let α, β ∈ N0, γ ∈ N. An injector

Ii, i ∈ [m] is an (α, β, γ)-injector if and only if the following conditions are

fulfilled:

1. Ii creates α packets.

2. Every created packet has destination m− 1.

3. The last packet is created after at most β steps.
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4. If two packets are created in steps t1 and t2, then |t1 − t2| ≥ γ. We

call γ the creation time of the injector.

2

An (α, β, γ)-injector Ii works in the following way. A created packet is

inserted into node i in step t if Ii is enabled in step t and no packet enters

node i in step t. The packets are created in the beginning of a step. Hence

a packet created in step t by Ii can be inserted into node i in step t and can

be sent to node i + 1 in step t.

It is very difficult to analyse such situations in general. We restrict us to

cases needed in Chapter 4. We do not allow that a packet can be created

at any time and we assume that the creation rate of an injector depends

on the number of packets created by the injector. Furthermore, we do not

allow that two or more created packets are in an injector in the same step.

This leads to the following two definitions.

Definition 3.13 An (α, β, γ)-injector is called a restricted (α, β, γ)-injector

with offset x, if the following conditions are fulfilled:

• If a packet is created in step t, then t ≡ x (mod γ).

• If a created packet is not inserted at most γ−1 steps after its creation,

then it is deleted by the injector.

Definition 3.14 Let k, T, T ′ ∈ N, T ′ ≤ T . For i ∈ [m] let Ii be an

(αi, βi, γi) injector. We call the set I = {I0, I1, . . . , Im−1} a set of (k, T ′, T )

bounded injectors if the following conditions are fulfilled:

• ∀i ∈ [m] : Ii is a restricted (αi, βi, γi)-injector with offset i, where
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– βi = T ,

– αi > 0 =⇒ γi = T ′
〈αi〉 ∈ N, where

〈〉 : N0 −→ N0

x 7→ 〈x〉 =





2l : ∃l ∈ N0 : 2l ≤ x < 2l+1

0 : else

• ∑
i∈[m] αi ≤ k,

Now we can present the problem considered in this section.

Problem 2: Dynamic Routing

Given is a one-dimensional mesh of size m, where every node i ∈ [m] has an

injector Ii and the set {I0, . . . , Im−1} is a set of (k, T ′, T ) bounded injectors.

In the beginning there is no packet on a node. The injectors have some

additional information (which is described later). The following two tasks

have to be fulfilled:

P2.1 Route all created packets to node m− 1.

P2.2 The maximal number of packets on any node in any step is 1.

2

For the rest of this section we assume that Ii, i ∈ [m] is an (αi, βi, γi)

injector and {I0, . . . , Im−1} is a set of (k, T ′, T ) bounded injectors for some

k, T ′, T ∈ N.

We route the packets in the one-dimensional mesh on the shortest path from

their source node (the node into which they are injected) to node m − 1.

After insertion, the packets travel to m−1 without delay, i.e., a packet that

reaches node i < m in step t is sent to node i + 1 in the same step and

reaches node i + 1 in step t + 1. Hence P2.2 is fulfilled.
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It is a little bit more complicated to fulfill P2.1. The above routing strategy

transports the packets like a conveyor belt. It moves packets one node

per step. In the following, the packets are transported within boxes on a

conveyor belt. The boxes are moved from node 0 to node m. Each box

consists of several slots. In each of these slots at most one packet can be

transported. An enabled injector can insert a created packet into a slot if

there is no packet in the slot. We call boxes intervals and slots steps. The

number of steps of an interval depends on the maximal number of packets

created by an injector. Let ı̄ ∈ [m] be any index such that αı̄ = maxi∈[m] αi.

Definition 3.15 (l-th interval, x-th step, length) Let i ∈ [m], αi > 0,

l ∈ Z. The l-th interval of Ii is the interval [lγı̄ + i, (l + 1)γı̄ + i) and is

denoted by Tl,i. For 1 ≤ x ≤ γı̄ we call lγı̄ + i + x − 1 the x-th step of the

l-th interval of Ii. The length of an interval is γı̄.

The next lemma follows directly from the above definition.

Lemma 3.16 Let s(p) ∈ [m] be the source of packet p, i.e., p is inserted

by injector Is(p). All packets p travel from node s(p) to node m− 1 without

delay, then the following holds: ∀i ∈ [m],∀l ∈ Z,∀x, 1 ≤ x ≤ γı̄:

If p is inserted by Ii in the x-th step of the l-th interval of Ii, then p reaches

node i′, i′ ∈ {s(p), . . . , m− 1}, in the x-th step of the l-th interval of Ii′.

The injector Iı̄ creates a maximal number of packets and has a minimal

creation time. Iı̄ can create one packet in each interval. For i ∈ [m], αi > 0,

we set δi
def= γi

γı̄
= 〈αı̄〉

〈αi〉 . Injector Ii creates at most one packet during δi

intervals. If Ii creates a packet in step t, then t = lδiγı̄ + i for a l ∈ Z, i.e.,

the packet is created in the first step of Tlδi,i. A packet created by injector

Ii in the first step of Tlδi,i will be deleted by Ii at the end of the γi-th step

of T(l+1)δi−1,i, provided it is in the injector at the end of this step.
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In the case an injector Ii inserts a created packet into node i in the first step

without a packet on node i, it could happen that long continuous sequences

of packets are built. These sequences prevent other injectors from injecting

their packets. We give an example for such a situation:

Example:

Assume that all injectors have a creation time of x < m. An injector Ii,

where i = rx + s, r, s ∈ N0, 0 ≤ s < x, is able to create a packet in steps

t, where t ≡ s (mod x). If injector Ii, i ∈ [x] creates a packet in step i and

inserts it into node i in step i, then a sequence of x packets is built that

passes node x in steps x, . . . , 2x − 1. If Ix creates a packet in step x, then

this packet has to be deleted by Ix in step 2x− 1. 3

We restrict the period of time in which the injectors are enabled to avoid

such situations. The purpose of this restriction is to bound the maximal

number of packets in a node during any period of time. We begin with the

following definition.

Definition 3.17 For all j ∈ N0 we define Uj
def= {i ∈ [m] | 〈αi〉 = 2j}. We

call an injector Ii, i ∈ Uj an injector of Uj. We further define

• ̄
def= max{l ∈ N0 | Ul 6= ∅},

• ∀j ∈ [̄ + 1] : θj
def= 2̄−j, and

• ∀j ∈ [̄ + 1] : sj
def=

⌊ |Uj |
θj

⌋
and rj

def= |Uj | mod θj.

Note that ı̄ ∈ U̄. The injectors of U̄−j , j ∈ [̄+1] create at most one packet

in 2̄−j = θj consecutive intervals. Furthermore, for all injectors Ii of Uj , we

have δi = θj .

For all injectors Ii of Uj , we calculate a value ηi ∈ [θj ] and enable injector Ii

in intervals Tl,i such that l ≡ ηi (mod θj) and disable Ii in all other intervals.
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Definition 3.18 We say an injector Ii, i ∈ [m], αi > 0, is enabled in

interval l ∈ Z if and only if l ≡ ηi (mod δi).

Our purpose is to bound the number of injectors that are enabled in an

interval l.

For all j ∈ [̄ + 1], we number the injectors of Uj from 0 to |Uj | − 1. For an

injector Ii of Uj with number x, we set ηi
def= x (mod δi).

Lemma 3.19 ∀j ∈ [̄+1]∀l ∈ Z : At most sj +1 injectors of Uj are enabled

in interval l, i.e. sj + 1 ≥ |{i ∈ [m] | αi > 0, injector Ii is an injector of

Uj , ηi ≡ l (mod δi)}|.

Proof:

There are sjθj + rj injectors of Uj . For all injectors i ∈ Uj , we have δi = θj .

Hence at most
⌈ |Uj |

δi

⌉
≤ sj +1 injectors of Uj are enabled in an interval l ∈ Z.

3

The following lemma is a simple consequence of Lemma 3.19.

Lemma 3.20 ∀l ∈ Z : At most
∑

j∈[̄+1](1 + sj) injectors are enabled in

interval l.

If T ′ is large enough, then P2.1 can be fulfilled.

Lemma 3.21 If T ′ ≥ 2̄ ∑
j∈[̄+1](1+sj), all packets travel from their source

node to m − 1 without delay, and each injector Ii, αi > 0, i ∈ [m] inserts

its created packets only in intervals Tl,i such that l ≡ ηi (mod δi), then each

injector is able to insert all of its created packets.

Proof:

An injector is able to insert at most one packet into a node during an interval.
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Due to Lemma 3.20 at most
∑

j∈[̄+1](1 + sj) injectors are enabled in an

interval.

An interval has length γı̄. It holds

γı̄ =
T ′

〈αı̄〉
=

T ′

2̄

≥ 2̄ ∑
j∈[̄+1](1 + sj)

2̄

=
∑

j∈[̄+1]

(1 + sj).

Thus each injector is able insert all its created packets. 3

Now we can give an upper bound for the time needed to solve an instance

of Problem 2.

Theorem 3.22 If all injectors Ii, αi > 0, i ∈ [m] know ηi, δi and γı̄, T ′ ≥
2̄ ∑

j∈[̄+1](1 + sj), and all packets travel from their source node to node

m − 1 without delay, then any such instance of Problem 2 can be solved

in T + T ′ + m steps. O(log T ′) bits are sufficient for each injector to enable

and disable it.

Proof:

Due to Lemma 3.20 every created packet can be inserted before it is deleted.

After T steps all injectors have created their packets. After at most T + T ′

steps all packets are inserted. After insertion a packet has to travel at

most m steps. Hence the last packet reaches its destination after at most

T + T ′ + m steps.

To enable and disable the injectors at the right times we have to store γı̄,

δi and ηi and we have to count steps in an interval and intervals. We need

to count up to max{δi | i ∈ [m], αi > 0} intervals. An interval consists of γı̄
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steps. For all i ∈ [m], αi > 0, we have ηi ≤ δi ≤ γi ≤ T ′. Hence O(log T ′)

bits are sufficient to enable and disable an injector. 3

Corollary 3.23 If all injectors Ii, αi > 0, i ∈ [m] know ηi, δi and γı̄, T ′ ≥
2̄ ∑

j∈[̄+1](1 + sj), and all packets travel from their source node to node

m− 1 without delay, then any such instance of Problem 2 can be solved in

2T + m steps.

We have shown an upper bound of 2T + m steps for the case T ′ ≥ ̄2̄ +

2̄ ∑
j∈[̄+1] sj . Unluckily ̄2̄ + 2̄ ∑

j∈[̄+1] sj can be very large. There exist

instances of Problem 2, where ̄ = blog2 kc1, for example in the case αi = k

for a i ∈ [m]. In this case

̄2̄ + 2̄ ∑
j∈[̄+1] sj ≥ 〈k〉 blog2 kc.

We now improve the condition on T ′ to T ′ ≥ 2̄ + k. We begin with an

extended version of Definition 3.17.

Definition 3.24 For all j ∈ N0 we define Uj
def= {i ∈ [m] | 〈αi〉 = 2j}. We

call an injector Ii, i ∈ Uj an injector of Uj. We further define

• ̄
def= max{l ∈ N0 | Ul 6= ∅},

• ∀j ∈ [̄ + 1] : θj
def= 2̄−j,

• ∀j ∈ [̄ + 1] : sj
def=

⌊ |Uj |
θj

⌋
, rj

def= |Uj | mod θj, and

• ∀j ∈ [̄ + 1] : Rj
def=

∑̄
i=j ri2i−j, xj

def=
⌊

Rj

θj

⌋
, yj

def= Rj mod θj.

For all j ∈ [̄ + 1] we number the injectors of Uj from 0 to |Uj | − 1. An

injector of Uj with a number from 0 to sjθj − 1 is called normal and an

injector of Uj with a number from sjθj to |Uj | − 1 is called special . For a

normal injector Ii of Uj with number x ∈ [sjθj ] we set ηi
def= x (mod δi).

1logarithm base 2
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Lemma 3.25 ∀j ∈ [̄ + 1]∀l ∈ Z : At most sj normal injectors of Uj are

enabled in interval l, i.e. sj ≤ |{i ∈ [m] | αi > 0, injector Ii is a normal

injector of Uj , ηi ≡ l (mod δi)}|.

Proof:

The proof can be done analogously to the proof of Lemma 3.19. There are

sjθj normal injectors of Uj . For all injectors i ∈ Uj we have δi = θj . Hence

at most sjθj

δi
= sj normal injectors of Uj are enabled in an interval l ∈ Z. 3

Lemma 3.26 ∀l ∈ Z : At most
∑

j∈[̄+1] sj normal injectors are enabled in

interval l.

Calculation of ηi for special injectors. First note that there are no spe-

cial injectors of U̄. Now we calculate ηi for special injectors of U̄−1, . . . , U0.

For this purpose we number the special injectors of Uj from 0 to rj − 1 for

all j ∈ [̄ + 1].

In the following bj ∈ {0, 1}θj for all j ∈ [̄+1]. We calculate the bj inductively

beginning with b̄. With their help we calculate ηi. We use the following

idea. An injector of Uj creates at most one packet in θj consecutive intervals.

Each of these θj intervals corresponds to one zero or one of bj . Every special

injector of Uj can change exactly one zero in bj into a one. The position of

the zero determines ηi (remember ηi determines the interval in which Ii is

enabled). If there are no more zeros in bj , i.e., bj = 1θj , then bj is set to 0θj .

Calculation of bj and ηi:

We set b̄ = 0 ∈ {0, 1}1. We denote the number of ones in bj by #1 bj (#0 bj

is defined analogously) and write ◦ for the concatenation of two words over

{0, 1}. If bj = a0 . . . aθj−1, ai ∈ {0, 1}, i ∈ [θj ], then ai is in the i-th position

of bj and is denoted by (bj)i. If ai = 0 and k = #0a0 . . . ai, then i is the

position of the k-th zero in a0 . . . ai. For a . . . a︸ ︷︷ ︸
k

we write ak.
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injector I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

α 1 1 5 6 7 8 17 9 5 6 10 16 6 7 32 18

γ 256 256 64 64 64 32 16 32 64 64 32 16 64 64 8 16

δ 32 32 8 8 8 4 2 4 8 8 4 2 8 8 1 2

Uj U0 U0 U2 U2 U2 U3 U4 U3 U2 U2 U3 U4 U2 U2 U5 U4

number 0 1 0 1 2 0 0 1 3 4 2 1 5 6 0 2

special 0 1 0 1 2 0 - 1 3 4 2 - 5 6 - 0

η 1 2 1 2 3 1 0 3 5 6 0 1 7 0 0 0

Table 3.1: An example for the calculation of ηi. (part 1)

For t ∈ [rj ] let Iit be the special injector of Uj with number t. Let j < ̄:

Case 1: 2#0 bj+1 ≤ rj

We set bj = 1rj−2#0 bj+10θj+2#0 bj+1−rj . If t < 2#0 bj+1 and kt ∈ [θj ] is

the position of the t + 1-th zero in bj+1 ◦ bj+1, then we set ηit
def= kt. If

2#0 bj+1 ≤ t < rj , then we set ηit
def= t− 2#0 bj+1.

Case 2: 2#0 bj+1 > rj

We set bj = bj+1◦bj+1 and change the first rj zeros of bj to one. Let kt ∈ [θj ]

be the position of the t + 1-th zero in bj+1 ◦ bj+1. We set ηit
def= kt.

Before we begin to proof an upper bound for the number of injectors enabled

in an interval we give an example.

Example:

Table 3.1 shows an instance of dynamic routing in a one-dimensional mesh of

size 16. We assume that {I0, . . . , I15} is a set of (k, T ′, T ) bounded injectors

where k = 154, T ′ = 256, and T = 512. For I0 Table 3.1 provides the

following: α0 = 1, γ0 = 256, δ0 = 32, 0 ∈ U0, I0 is a injector of U0 with
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number 0, I0 is a special injector of U0 with number 0, and η0 = 1. Injectors

I6, I11, and I14 are normal injectors. All other injectors are special injectors.

The special injector I15 is the only one for which its special number differs

from the normal one. I14 injects the most packets (32), hence we have ı̄ = 14

and ̄ = 5. We get an interval length of 8. The calculation of η for the

special injectors provides b5 = 0, b4 = 10, b3 = 1000, b2 = 10000000 = 107,

b1 = 107107, and b0 = 11105107107107. In the case of I15 the value of η15 is

computed as follows. I15 is the only special injector of U4 hence r4 = 1. Its

number (as special injector) is 0. We have 2#0 b5 = 2 and r4 = 1. Therefore

case 2 is fulfilled. The first zero in b5 ◦ b5 = 00 is in position 0. Hence we

get η15 = 0. In the case of I13 the value of η13 is computed as follows. I13

is a special injector of U2. Its number is 6. We have 2#0 b3 = 6. There are

seven special injectors of U2. Thus r2 = 7. So case 1 is fulfilled. We have

2#0 b3 = 6 < r2 = 7. Hence we set η13 = 6− 2#0b3 = 0.

At the first sight it surprises that we have five times a value of zero for η

and only one time a value of seven.

In Table 3.2.3 we give for all Ii, i ∈ [15] and for all l ∈ [32] the intervals

Tl,i in which Ii is enabled. If injector Ii is enabled in Tl,i, then we write

2 at the intersection of column Ii and row Tl,·. The maximal value of δ

in our example is 32 and hence we get the same table for l ∈ {32, . . . , 63},
l ∈ {−32, . . . ,−1}, l ∈ {64, . . . , 95}, l ∈ {−64, . . . ,−33} and so on. At most

five and at least four injectors are enabled in an interval. In the case that

five injectors are enable three of them are special injectors. If four injectors

are enabled, then two of them are special injectors. Note that five injectors

are enabled in Tl,· if and only if there is a one in position l of b0.

3

Lemma 3.27 For all j ∈ [̄] let Rj, xj, and yj be given as in definition
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I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

T0,· 2 2 2 2 2

T1,· 2 2 2 2 2

T2,· 2 2 2 2 2

T3,· 2 2 2 2

T4,· 2 2 2 2

T5,· 2 2 2 2

T6,· 2 2 2 2

T7,· 2 2 2 2

T8,· 2 2 2 2 2

T9,· 2 2 2 2

T10,· 2 2 2 2

T11,· 2 2 2 2

T12,· 2 2 2 2

T13,· 2 2 2 2

T14,· 2 2 2 2

T15,· 2 2 2 2

T16,· 2 2 2 2 2

T17,· 2 2 2 2

T18,· 2 2 2 2

T19,· 2 2 2 2

T20,· 2 2 2 2

T21,· 2 2 2 2

T22,· 2 2 2 2

T23,· 2 2 2 2

T24,· 2 2 2 2 2

T25,· 2 2 2 2

T26,· 2 2 2 2

T27,· 2 2 2 2

T28,· 2 2 2 2

T29,· 2 2 2 2

T30,· 2 2 2 2

T31,· 2 2 2 2

Table 3.2: An example for the calculation of ηi. (part 2)
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3.24. The following holds:

1. Rj = rj + xj+1θj + 2yj+1

2. xj ∈ {xj+1, xj+1 + 1}

3. (xj = xj+1) ⇐⇒ (rj + 2yj+1 < θj)

4. yj = rj + 2yj+1 mod θj

Proof:

1. Rj =
̄∑

i=j
ri2i−j

= rj + 2Rj+1

= rj + 2xj+1θj+1 + 2yj+1

= rj + xj+1θj + 2yj+1.

2. xj =
⌊

Rj

θj

⌋

= xj+1 +
⌊

rj+2yj+1

θj

⌋
.

The result follows directly from the fact that 0 ≤ rj + 2yj+1 < 2θj .

3. Follows from the proof of 2.

4. yj = Rj mod θj

= rj + xj+1θj + 2yj+1 mod θj

= rj + 2yj+1 mod θj

3

Lemma 3.28 ∀l ∈ Z : At most
∑̄

i=0
ri2

i

2̄ + 1 special injectors are enabled

in interval l.

Proof:

First note that for all j ∈ [̄ + 1] at most two special injectors of Uj are

enabled in l because there are rj < θj special injectors of Uj , i.e., only

ri ≤ θj − 1 zeros of bj are changed into ones.

We prove the following statements by induction on j:
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• ∀j ∈ [̄ + 1] : yj = #1 bj

• ∀j ∈ [̄ + 1]∀l ∈ Z: At most zj special injectors of U̄ ∪U̄−1 ∪ · · · ∪Uj

are enabled in interval l, where

zj =





xj : (bj)l = 0

xj + 1 : (bj)l = 1

Here we write (bj)l for (bj)l mod θj
.

The statements are fulfilled for j = ̄. If r̄−1 = 0, then x̄−1 = y̄−1 = 0 and

b̄−1 = 00. If r̄−1 = 1, then x̄−1 = 0, y̄−1 = 1 and b̄−1 = 10. Hence the

statements are fulfilled for j = ̄− 1.

Now let 0 ≤ j < ̄− 1. We distinguish two cases.

Case 0 ≤ 2#0 bj+1 ≤ rj:

Note that 0 ≤ #1 bj < θj . Using Lemma 3.27 and induction hypothesis we

get

#1 bj = rj − 2#0 bj+1 (case 1, page 37)

= rj − 2(θj+1 −#1 bj+1)

= rj − θj + 2#1 bj+1 (Def. θj)

= rj − θj + 2yj+1 (ind. hyp.)

= yj (Lemma 3.27)

We have rj − θj + 2yj+1 ≥ 0. So we get rj + 2yj+1 ≥ θj . Lemma 3.27

provides xj = xj+1 + 1. We have four subcases.

Subcase (bj+1)l = 0 ∧ (bj)l = 1:

Two special injectors of Uj are enabled in l. One special injector of Uj with a

number ≤ #0 bj+1 and one special injector of Uj with a number > #0 bj+1.

We have at most zj+1 enabled injectors of U̄ ∪ · · · ∪ Uj+1. Hence there are

at most zj+1 + 2 enabled injectors of U̄ ∪ · · · ∪Uj . It is (bj)l = 1. Hence by

definition zj = xj + 1. Thus we have have to prove that zj+1 + 2 ≤ xj + 1.
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zj+1 + 2 = xj+1 + 2 ( (bj+1)l = 0)

= xj + 1 ( xj = xj+1 + 1)

Subcase (bj+1)l = 0 ∧ (bj)l = 0:

We have zj = xj . One special injector of Uj is enabled in l (a special injector

with a number ≤ #0bj+1). We have zj+1 + 1 = xj+1 + 1 = xj .

Subcase (bj+1)l = 1 ∧ (bj)l = 0:

We have zj = xj . No special injector of Uj is enabled. We have zj+1 =

xj+1 = xj − 1 ≤ xj .

Subcase (bj+1)l = 1 ∧ (bj)l = 1:

We have zj = xj + 1. One special injector of Uj is enabled in l. We have

zj+1 + 1 = xj+1 + 1 = xj ≤ xj + 1.

Case 2 ·#1 bj+1 > rj:

Using Lemma 3.27 and induction hypothesis we get

#1 bj = rj + 2#1 bj+1

= rj + 2yj+1

= yj

We get rj +2yj+1 < θj and hence xj = xj+1. Note that in this case maximal

one special injector of Uj is enabled. Three subcases are possible.

Subcase (bj+1)l = 0 ∧ (bj)l = 1:

One special injector of Uj is enabled in l. We have zj+1 + 1 = xj+1 + 1 =

xj + 1.

Subcase (bj+1)l = 0 ∧ (bj)l = 0:

No special injector of Uj is enabled in l. We have zj+1 = xj+1 = xj .

Subcase (bj+1)l = 1 ∧ (bj)l = 1:

No special injector of Uj is enabled in l. We have zj+1 = xj+1 = xj .
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By Lemma 3.27 we get x̄ ≤ x̄−1 ≤ · · · ≤ x0. We have x0 + 1 ≤
∑̄

i=0
i2i

2̄ + 1

(see Definition 3.24). 3

Now we can bound the number of enabled injectors.

Lemma 3.29 ∀l ∈ Z : At most k
2̄ + 1 injectors are enabled in interval l.

Proof:

By Lemma 3.26 at most
∑̄

i=0 si normal injectors are enabled in l. By

Lemma 3.28 at most
∑̄

i=0
ri2

i

2̄ +1 special injectors are enabled in l. Remem-

ber that sj = |Uj |−rj

θj
and note that k ≥ ∑

i∈[̄+1] 2
i|Ui|. We get:

∑̄
i=0 ri2i

2̄
+

̄∑

i=0

si + 1 =
∑̄

i=0 2i|Ui|
2̄

+ 1

≤ k

2̄
+ 1

3

This leads to an improved version of Lemma 3.21.

Lemma 3.30 If T ′ ≥ k + 2̄, all packets travel from their source to node

m− 1 without delay and each injector Ii, αi > 0, i ∈ [m] inserts its packets

only in intervals Tl,i such that l ≡ ηi (mod δi), then each injector is able to

insert all of its packets.

Proof:

The proof can be done analogously to the proof of Lemma 3.21.

3

This yields
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Theorem 3.31 If all injectors Ii, αi > 0, i ∈ [m] know ηi, δi and γı̄, T ′ ≥
k + 2̄ and all packets travel from their source node to m− 1 without delay,

then any such instance of Problem 2 can be solved in T + T ′ + m steps.

O(log T ′) bits are needed for each injector to enable and disable it.

Proof:

The proof can be done analogously to the proof of Theorem 3.22.

3

In the following corollary we simplify the condition on T ′ a little bit.

Corollary 3.32 If all injectors Ii, αi > 0, i ∈ [m] know ηi, δi and γı̄, T ′ ≥
2k and all packets travel from their source node to m−1 without delay, then

any such instance of Problem 2 can be solved in at most 2T + m steps.

O(log T ′) bits are sufficient for each injector to enable and disable it.

Proof:

Observe that 2̄ ≤ k and T ′ ≤ T . 3

In a k′-k′ routing problem (on a higher dimensional mesh) a one-dimensional

(sub)mesh of size m is destination of at most k′m packets. Now assume that

these packets are inserted by a set of (k′m,T, T ′) bounded injectors, where

T ∈ O(k′m), and T ′ ≥ 2k′m, then we are able to route the packets to their

destination in O(k′m) steps with buffer size 1, provided every node i knows

ηi, δi and γı̄.

Corollary 3.33 Let k = k′m, T ′ ≥ 2k′m, T ∈ O(k′m). If all injectors

Ii, αi > 0, i ∈ [m] know ηi, δi and γı̄, all packets travel from their source

node to m− 1 without delay, then any such instance of Problem 2 can be

solved in O(k′m) steps.
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3.3 Conclusion.

We summarize the results of this section. We have achieved the following:

embedding: All presented algorithms work on networks of fixed degree

with a constant slowdown and at most constant additional buffer size.

gap routing: On a one-dimensional mesh of size m, we give an algorithm

that produces a stream of packets such that two packets of the same class

reach their destination with a given time difference. In the case that at

most k packets are stored on a processor initially and an upper bound of m′

for the product of the time difference and the number of packets in a class

exists, the last packet reaches its destination after at most m + km + m′ ∈
O(km + m′) steps. The algorithm routes the packets on a shortest path to

their destination, is oblivious, and has a buffer size of k + 1.

dynamic routing: We are able to solve special dynamic routing problems.

In the case that at most O(km) packets are created and some additional

requirements are fulfilled, we can give an algorithm that solve the problem

in O(km) steps, routes the packets on a shortest path to their destination,

is oblivious, and has a buffer size of one.



Chapter 4

Oblivious Routing.

This chapter considers k-k routing problems. We give an oblivious k-k

routing algorithm with running time O(k|VN | 12 ) and buffer size O(k) for a

network N for which a partitioning into blocks exists. Our main interest lies

in the design of oblivious k-k routing algorithms for r-dimensional meshes

of side length n. We achieve asymptotically optimal running times for these

networks.

4.1 Introduction.

The concept of oblivious routing strategies was introduced by Valiant in

[49]. A routing algorithm is called oblivious if the path of each packet only

depends on its source and destination node and is completely independent

of the paths of all other packets (for a formal definition see Definition 2.1

on page 13).

Therefore, the path on which a packet is routed to its destination can be

determined before the routing process starts. Furthermore, if all paths used

by packets are simple paths, it is sufficient that a processor maintains a table

46
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with one entry for each possible source and destination pair of a packet to

decide on which link a packet leaves the processor. Whenever such a table

exists for every processor, no calculations are needed to determine the next

link of a packet. In the case that the paths are not simple, more than one

entry for every source and destination pair is needed. Such tables can be

very large but often in structures as meshes similar source and destination

pairs use similar edges and hence the size of the table can be reduced at the

cost of some additional calculations.

Nevertheless, the restriction of allowed paths makes oblivious routing simple

and hence attractive. Furthermore, it is of theoretical interest how fast it

is possible to route packets under such restrictions. Hence oblivious routing

was considered in several publications, e.g. [2, 23, 41, 29, 16, 43, 3, 37, 40,

32, 9, 14, 13]. It was shown that the simplicity has its costs in the running

time. Borodin and Hopcraft [2] have shown an Ω(
√
|VN |

deg(N )3/2 ) lower bound

for oblivious permutation routing on a network N . In [16], Kaklamanis,

Krizanc, and Tsantilas improved this bound:

Theorem 4.1 (Theorem 6 in [16].) In any network with N nodes and

degree d, any oblivious k-k routing algorithm requires Ω(k
√

N/d+k/d) steps

in the worst case.

Since the family of r-dimensional meshes is of fixed degree, the above theo-

rem results in a Ω(kn
r
2 ) lower bound for oblivious k-k routing on r-dimen-

sional meshes with side length n.

Furthermore, Krizanc [22] has shown that any pure and oblivious permuta-

tion routing algorithm with buffer size O(1) on a network N needs at least

Ω(|VN |) steps. In a pure routing algorithm a packet have to move if the

next link of its path is not used by another packet.

In a network having a Hamiltonian path a trivial upper bound for the run-
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ning time of a pure and oblivious k-k routing algorithm with buffer size O(k)

is O(k|VN |). In r-dimensional meshes a Hamiltonian path exists. For these

networks it was unknown for a long time whether a deterministic, oblivious,

and non pure k-k routing algorithm with buffer size O(k) exists that beat

the trivial upper bound.

In [8, 9], the first oblivious permutation routing algorithms for r-dimensional

meshes with O(1) buffer size were presented that beat the bound. The algo-

rithm for a two-dimensional mesh of side length n has running time O(n3/2)

and buffer size O(1). The key observation in [8, 9] was that it is possible

to sort packets during oblivious routing. Furthermore, in [8, 9], a technique

to obtain oblivious permutation routing algorithms for higher dimensional

meshes using an algorithm for a two-dimensional mesh was presented. With

the help of this technique oblivious permutation routing algorithms with run-

ning time O(n(2r−1)/2) and buffer size O(1) were achieved for Mr,n, r ≥ 2.

In two subsequent papers, the results for the two-dimensional case were im-

proved. In [11, 14]1 an oblivious permutation routing algorithm with running

time O(n) and buffer size two2 was presented. In [12]3, the constant for the

running time of the algorithm was reduced at the cost of increasing the con-

stant for the buffer size. The permutation routing algorithm presented in

[12] has running time (2.954+ 8
√

d+8
d +2c)n and buffer size 2d+16

√
d+16+ 2

c
4

1The proof for the running time of O(n) given in the paper is based on a statement

which can shown to be wrong. A similar statement is also used in the proof of the running

time in [12]. We do not know whether this problem can be fixed or not, i.e., we are not able

to show that the algorithm uses O(n) steps and we are not able to construct a permutation

for which the algorithm uses ω(n) steps. We discuss the problem in Section 4.2 in more

detail.
2In the model in [11, 14] each link has an input and an output buffer of size 2. Using

our model the algorithm need a buffer size of sixteen.
3See footnote to [11, 14].
4This yields a buffer size of 8(2d + 16

√
d + 16 + 2

c
) in our model.
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for constants c and d such that c < 1
2 and d = 22l for an integer l.

An application of the techniques of [8, 9] and [12] results in an oblivious

permutation routing algorithm with running time O(nr−1) and buffer size

O(1) for Mr,n, r ≥ 2.

In [40], we improved these results. For Mr,n, r ≥ 2, an oblivious permutation

routing algorithm with running time O(nr/2 log n) and buffer size O(1) was

presented. A partitioning of the meshes into blocks and sorting of blocks

was used to achieve the result.

In [32], a new model for oblivious routing, the relaxed model, was presented.

In this model processors can freely send data to their neighbours, i.e., data

can be sent that is not accomplished to packets. Hence the model is not a

store-and-forward packet routing model. Nevertheless, the lower bound of

Theorem 4.1 holds. For both models, oblivious permutation routing algo-

rithms with a running time of O(n)5 and buffer size O(1) are presented for

the two-dimensional mesh. The algorithms transport the packets on shortest

paths from source to destination. In the algorithm for the relaxed model,

all packets take a strongly-dimensional path. In an r-dimensional mesh a

strongly-dimensional path p0p1 · · · pr−1 is a shortest path between two nodes,

where each pi is a simple path that uses only edges of the i-th dimension. In

the algorithm for the standard model, all packets take a weakly-dimensional

path. In a r-dimensional mesh a weakly-dimensional path pπ(1)pπ(2) · · · pπ(r)

is a shortest path between two nodes, where π ∈ Sr and each pπ(i) is a

simple path that uses only edges of the π(i)-th dimension. In [40, 10, 13],

weakly-dimensional paths are called elementary. There it was shown that

5A proof of the running time for one part (vertical routing) of their algorithm is missing.

Even a proof idea is not given. We are able to construct a very simple instance for which

the presented vertical routing algorithm uses ω(n) steps. We discuss the details of this

construction in Section 4.2.
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for r ≥ 3, r an odd integer, it is impossible to achieve the bound of The-

orem 4.1 in Mr,n using oblivious permutation routing algorithms where all

packets use elementary paths. More precisely, in [10, 13] an Ω(n2) lower

bound for M3,n and in [40] an Ω(n(r+1)/2) lower bound for Mr,n, r an odd

integer, for oblivious permutation algorithms where all packets use elemen-

tary paths was given. Therefore, to achieve the bound of Theorem 4.1 for all

r on Mr,n, we are not able to use elementary paths. The paths used by our

algorithm are not simple and hence they are not elementary. Furthermore,

we do not use sorting to achieve our result.

The rest of this chapter is organized as follows. In the next section we

discuss aspects of the oblivious permutation routing algorithms for the two-

dimensional mesh presented in [11, 14, 12, 32]. We point out some gaps

in the proof or design of these algorithms. In Section 4.3 we give a high

level description of our algorithm. In Section 4.4 we present an oblivious

k-k routing algorithm for a network N and r-dimensional meshes an in

Section 4.5 we give a conclusion and suggestions for further work.

4.2 Discussion of Previous Results.

4.2.1 The Algorithm Presented in [11, 14].

In [8, 9], the first oblivious permutation routing algorithm for meshes with

buffer size O(1) was presented that beat the bound of Theorem 4.1. In

[11, 14] a refined version of this algorithm was given and the first oblivious

permutation algorithm with an asymptotically optimal running time and

buffer size O(1) for the two-dimensional mesh was achived.

The proof of the running time in [11, 14] uses a statement for which we are

able to construct an counterexample. We do not know whether this problem
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can be fixed or not, i.e., we are not able to show that the algorithm needs

O(n) steps and we are not able to construct a permutation for which the

algorithm needs ω(n) steps. Here, we do not discuss the whole algorithm.

We restrict our attention to the problem, i.e., we give an example for which

the statement does not hold. For more details of the algorithm we refer the

reader to the original work.

The problem occurs in stage 3 of the algorithm. This stage is also called

critical zone. In the following, we describe the problem that is solved in

the critical zone, give the statement used in the proof, and construct a

counterexample. The notation we use to describe the problem differs from

the notation used in [11, 14].

Description of the Problem.

Given is a two-dimensional mesh of side length 2n, n ∈ N. Every node in

the set S
def= {(x, y) | x, y ∈ [n]} is source of at most one packet. Every

node in the set D
def= {(x, y) | x, y ∈ [2n]− [n]} is destination of at most one

packet. Let ki,j denote the number of packets in row i ∈ [n] with destination

in column j ∈ [2n]− [n].

(?) For all j ∈ [2n] − [n], i ∈ [n] and for any two packets p1, p2 initially

on node (i, x1), (i, x2), x1, x2 ∈ [n], x1 6= x2 with destination column j,

|x1 − x2| ≥
⌈

n
2ki,j

⌉
holds.

The packets first travel within the row to their destination column and enter

(if possible) the destination column. Then they travel within the column

to their destination node. The packets in column j ∈ [n] begin to travel to

their destination column in step 4(n − j − 1). They travel without being

delayed until they reach their destination column. Hence a packet initially

in column j with destination column j′ reaches its destination column in
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step 4(n− j − 1) + j′ − j.

The Statement and a Counterexample.

In the following let j ∈ [2n]− [n] be a fixed destination column. In [11, 14]

the following statement is claimed (section 4.4, time complexities).

For all i ∈ [n] and for any interval I of 2n
ki,j

steps the number of packets

in rows 0, . . . , i − 1 that reach their destination column j in interval I is

bounded by
2
∑i−1

l=0
kl,j

ki,j
≤ 2n

ki,j
− 2.

We now construct a counterexample for the above claim. We assume that

n is an even integer. We can place n packets with destination column j in

S. We place one packet on each node in the set {(x, n − 1) | x ∈ [n/2]} ∪
{(n/2, y) | y ∈ {0, 2, 4, . . . , n − 2}}. So we get ki,j = 1 for i ∈ [n/2] and

kn/2,j = n/2. Obviously (?) is fulfilled.

The n/2 packets in rows 0, . . . , n/2 − 1 reach column j in the same time

step. Due to the claim, the number of packets in rows 0, . . . , n/2−1 reaching

column j in an interval of four time steps is bounded by two. Hence the

bound for the number of packets is not correct. Even the order of magnitude

is not correct. The reason is that no ceilings are used in the calculation of

the bound. A corrected bound for the number of packets is

2
∑i−1

l=0

⌈
kl,j

ki,j

⌉
.

We will give no proof of this new bound here. For our example the new

bound provides n as an upper bound for the number of packets.

In [12] the basic proof idea used in section 4.2 is similar to that used in

[11, 14] but it is a little bit more complicated. A similar statement to that

discussed above is obtained. For this statement a counterexample can be

constructed analogously.
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4.2.2 The Algorithm Presented in [32].

In [32] an oblivious permutation routing algorithm for the two-dimensional

mesh of side length n with running time O(n) and buffer size O(1) was

presented. The algorithm consists of several parts. One part is called vertical

routing (section 5 in [32]). In vertical routing a dynamic routing problem

on a one-dimensional mesh of size n is solved. In [32] an algorithm for

vertical routing was proposed and it was shown that it has a buffer size of

at most three. It was claimed that the algorithm solves the problem in O(n)

steps but no proof and no proof idea was given. We restrict our attention

to the vertical routing and focus our attention to the running time of the

algorithm. Details concerning the buffer size are left out. In the following,

we describe a simplified version of the problem, give the algorithm, and

construct examples such that the algorithm needs ω(n) steps.

For more details of the algorithm we refer the reader to the original work.

The notation we use to describe the problem differs from the notation used

in [32].

Description of the Problem.

Given is a one-dimensional mesh of size n and at most n packets. Each node

is destination of at most one packet. Let ki be the number of packets with

destination node > i that are inserted into node i, i.e., ki packets use the

edge from i to i + 1. Every node i ∈ [n] knows ki and k′i
def=

∑i

j=0
kj

n (in [32]:

k′i = α′({i, i + 1}) and ki = α(ri), where ri is the edge on which the packets

are injected into node i).

Description of the Algorithm.

Every node i ∈ [n] maintains a rational state variable 0 ≤ qi < 1. The initial

state of the variable is qi = 0 for all i ∈ [n]. A node sends a packet to its
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neighbouring node only if it is enabled. A node i is enabled if and only if

qi + k′i ≥ 1. In a step a node i ∈ [n− 1] does the following.

• If it is enabled and has some packets, then one of them is sent to i+1.

• All incoming packets are stored.

• qi = (qi + k′i) − b(qi + k′i)c. The new value of qi is used in the next

step.

Examples that Needs ω(n) Steps.

We assume that n is an even integer. The construction uses the fact that

the change of the state variable qi depends on k′i. Is k′i a small value, then

qi does not change very much and hence the node i is not enabled for many

steps.

Hence we assume that k0 = 1, k2 = 0, . . . , kn−1 = 0 and that the packet

inserted into node 0 has destination n − 1. For all i ∈ [n − 1], we get

k′i = 1/n. The algorithm starts with t = 0. Hence at the beginning of step

t:

qi(t) = k′i · t− bk′i · tc.

Therefore, each node is enabled in step c(n − 1), c ∈ N and is not enabled

in all other steps. So the packet, inserted into node 0 in step t = 0, has to

wait Ω(n) steps at each node and needs Ω(n2) steps to reach the destination

node.

This problem can be solved by enabling all nodes i for which ki = 0 holds

in all steps.

Now assume that k0 = 1, . . . , kn
2
−1 = 1, kn

2
= 0, . . . , kn−1 = 0 and all packets

have a destination in {n
2 , . . . , n− 1}. We get k′i = i+1

n for i ∈ [n
2 ] and k′i = n

2
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for i ∈ {n
2 , . . . , n−1}. That means a node i ∈ [n2 ] is enabled in at most i+1

of n steps and hence a packet has to wait up to n/(i+1) steps in node i, i.e.,

in total it has to wait ω(n) steps. For example, choose n =
∏m

i=1 i, m > 2.

Hence for all i ∈ {1, . . . ,m}, we have n
i ∈ N. Let p be a packet on node 0

in step 0 and assume that p use a link in a node if the node is enabled. It is

easy to see that the packet reach node i, 0 < i ≤ m, in step n
∑i

j=1
1
j (For

i ∈ {0, . . . , m− 1}, k′i|n and hence qi reaches n exactly.). Hence the packet

needs Ω(n log m) steps to reach node m.

4.3 High Level Structure of the Algorithm.

We divide the network N into blocks. We have two different kinds of blocks,

the source blocks and the destination blocks. The node sets of the source and

destination blocks are both partitions of VN . Every source block has one

exit node and every destination block has an entry node for every source

block. A node in a destination block is an entry node for at most one source

block. We assume that for every source block directed paths from the exit

node to its entry nodes exist such that the paths of a source block form a

directed tree. Furthermore, we assume that each edge of ~EN is used by at

most one tree. We call the directed path connection paths.

In the algorithm, we arrange the packets within the source blocks such that

two packets with the same destination block6 leave their source block at

the exit node with a sufficient large time difference. This is done by the

algorithm presented in Section 3.2.2 (gap routing). After a packet has left

its source block, it travels to its destination block using a connection path.

The packet enters its destination block at an entry node and travels to its

6That means that the destination nodes of the two packets belong to the same desti-

nation block.
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destination node. To solve the problem of edge congestion at the entry nodes

we use dynamic routing of Section 3.2.3. The path of a packet within the

source and destination block is not simple and hence it is neither a shortest

nor an elementary path.

4.4 Oblivious k-k Routing.

4.4.1 Oblivious k-k Routing on Networks.

The aim of this section is to present an oblivious routing algorithm that

solves k-k routing problems (P, src, dst) on a network N . A lower bound

for the running time of such an algorithm is Ω(k|VN | 12 ). We do not focus

our interest to multiplicative or additive constants. We give an algorithm

with running time O(k|VN | 12 ) and buffer size O(k).

In this section we need a partitioning of the network N into blocks.

Definition 4.2 (Partitioning of N ) Let N = (V, E) be a network, t1, t2 ∈
N. We call ((Si)i∈[t1], (Di)i∈[t2], (entryi)i∈[t2], (Vi, Ei, exiti)i∈[t1]) a (t1, t2)-

partitioning of N if and only if

1. (Si)i∈[t1] and (Di)i∈[t2] are two partitions of V such that

• ∀i ∈ [t1]: The graph NS,i
def= (Si, E ∩ P2(Si)) is connected.

• ∀i ∈ [t2]: The graph ND,i
def= (Di, E ∩ P2(Di)) is connected.

2. ∀i ∈ [t2]: entryi : [t1] −→ Di is an injective mapping.

3. ∀i ∈ [t1]: Ti
def= (Vi, Ei, exiti) is a directed tree with node set Vi, edge

set Ei, and root exiti such that

• exiti ∈ Si,
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• Vi ⊆ V , Ei ⊆ ~E, and

• ∀j ∈ [t2] : entryj(i) ∈ Vi.

4. ∀e ∈ ~E : |{i ∈ [t1] | e ∈ Ei}| ≤ 1

We call the subnetworks NS,i of N source blocks and the subnetworks ND,i

of N destination blocks. In the following we write Si instead of NS,i and Di

instead of ND,i.

For i ∈ [t1], j ∈ [t2], we call the directed path in Ti from root exiti to

entryj(i) the connection path from Si to Dj, entryj(i) entry node of Si

in Dj, exiti exit node of Si, the nodes in entryj([t1]) entry nodes, and the

nodes exit0, . . . , exitt1−1 exit nodes.

Let s1 = max{|Si| | i ∈ [t1]}, s2 = max{|Di| | i ∈ [t2]}, and s3 =

max{max{dTi(exiti, x) | x ∈ Vi} | i ∈ [t1]}. We call (s1, s2, s3) the size

of the partitioning.

In the rest of this section we assume that a (t1, t2)-partitioning of size

(s1, s2, s3) of N exists and that N is of fixed degree, i.e. deg(N ) ∈ O(1). A

shortest (directed) path from node x to node y in N is denoted by x =⇒∗ y.

Each source and destination block of N is connected. Let n be the size of

a block. We are able to embed a one-dimensional mesh of the size n with

load 1, congestion 2, and dilation 3 into the block (see Section 3.2.1). Using a

step by step simulation, any algorithm designed for a one-dimensional mesh

of size n can be performed on a block of the same size with a slowdown of

sd ∈ O(1) and additional buffer size ab ∈ O(1) (Theorem 3.3). In a step by

step simulation, using an embedding Φ, all packets sent from node i to node

i + 1 or sent from node i + 1 to node i, i ∈ [n− 1], use path Φ({i, i + 1}) in

the block. Hence an algorithm remains oblivious if we use such a simulation.

So we can assume that Si, i ∈ [t1], (Di, i ∈ [t2]) is a one-dimensional mesh

of size |Si| (|Di|).
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Let X ∈ {S, D} and let v, v′ be two nodes of block Xi, |Xi| = n. In the

following algorithm, we route a packet p on a cycle from node v to v in Xi.

This means, that p is transported along the cycle

v =⇒∗ n− 1 =⇒∗ 0 =⇒∗ v

in Xi.

We also route p from v to v′ in Xi. If v ≤ v′ ≤ n − 1, this means that p is

transported along the path

v =⇒∗ v′.

If 0 ≤ v′ < v, p is transported along the path

v =⇒∗ n− 1 =⇒∗ v′.

The definition of the partitioning of N allows that an edge is used by a

source block, a destination block, and a connection path. To avoid edge

congestion, packets are transported in only one of these three structures

in a step in part two and three of our routing algorithm. Packets in source

blocks are transported in steps ≡ 0 (mod 4), packets in connection paths are

routed in steps ≡ 1 (mod 4), and packets in destination blocks are moved

in steps ≡ 2 (mod 4) and ≡ 3 (mod 4).

The oblivious k-k routing algorithm consists of three parts. In part 1, pack-

ets are transported within the source blocks. In all source blocks Si and for

all destination blocks Dj , the number of packets in Si with a destination in

Dj is calculated. This value is used in the second and third part. In part 2,

every source block sends at most one packet to every destination block.

The values calculated in part 1 are transported to the destination blocks by

these packets. In part 3, an instance of gap routing in the source blocks

and an instance of dynamic routing in the destination blocks is solved. The
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gap routing ensures that any two packets reach their destination block with

a sufficient large time difference and so dynamic routing can work prop-

erly. Furthermore, in part 3, two kinds of packets move in the destination

blocks. We call them phase 1 and phase 2 packets. These two kinds of

packets compete for the edges in the destination blocks. To avoid conges-

tion, phase 1 packets move in steps ≡ 2 (mod 4) and phase 2 packets move

in steps ≡ 3 ( mod 4). The packets routed by dynamic routing in part 3

are phase 1 packets. Therefore, in part 3, the dynamic routing algorithm is

active in steps ≡ 2 (mod 4) and the gap routing algorithm is active in steps

≡ 0 (mod 4).

The k-k Routing Algorithm for Network N . We denote the number

of packets in source block Si with destination block Dj by mi,j and set

ni,j
def= max{0,mi,j − 1}. If src(p) ∈ Si, then sb(p) = i and if dst(p) ∈ Dj ,

then db(p) = j.

Algorithm KKOblivious.

1. In every source block Si, send every packet p on a cycle from src(p)

to src(p). During this routing, every node s ∈ Si determine nsb(p),db(p)

by counting, for p ∈ src−1({s}). Store nsb(p),db(p) in the additional

information field of p. Furthermore, in every source block Si and for

every destination block Dj , choose a packet pi,j such that db(pi,j) = j

(if one exists).

2. In every source block Si and for every destination block Dj , send

packet pi,j (if it exists) to node dst(pi,j) along the following path:

Route packet pi,j from node src(pi,j) to node exiti in Si. If pi,j reaches

exiti, route it to node entryj(i) ∈ Dj in such a way that only edges

of the connection path from Si to Dj are used. In destination block

Dj route packet pi,j on a cycle from entryj(i) to entryj(i). In the
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beginning of the cycle pi,j is a phase 1 packet until it reaches node

0 (In the case entryj(i) = 0 the packet pi,j is a phase 1 packet until

it reaches node 0 for the second time). Afterwards pi,j is a phase 2

packet. During the routing on a cycle pi,j delivers ni,j to nodes in

the set entryj([t1]) and the nodes in Dj calculate values for dynamic

routing (this is described later). Route pi,j from entryj(i) to dst(pi,j)

in Dj .

3. In every source block Si solve the following instance of gap routing.

Here di : N0 −→ N is the function that gives the lower bound for the

time difference in block Si. There are t2 classes. A packet p belongs

to class j ∈ [t2] if and only if dst(p) ∈ Dj .

Instance of gap routing

• The destination of a packet is to reach the node |Si| − 1 and to

leave it.

• The source of a packet p is node src(p). Hence there are at most

k packets on each node initially.

• For j ∈ [t2], we set di(j) =
⌊

4ks2
〈ni,j〉

⌋
, if ni,j > 0.

If a packet in Si with a destination in Dj leave node |Si| − 1, then

route it (without delay) to node exiti in Si (If |Si| − 1 = exiti, then

route it to node entryj(i) using the edges of the connection path from

Si to Dj). If it reaches exiti, route it to its destination along the same

path as the packet in part 2, i.e., route it to node entryj(i) in Dj using

the edges of the connection path from Si to Dj . In Dj route it on a

cycle from entryj(i) to entryj(i) (the routing from node entryj(i) to

node |Dj | − 1 is done by dynamic routing) and from entryj(i) to its

destination node. As in part 2 the packets are phase 1 packets until
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they reach node 0 in Dj (in the case entryj(i) = 0 until they reach

node 0 for the second time). Afterwards they are phase 2 packets.

Route packets, that reach node entryj(i) in Dj , to node |Dj | − 1 by

solving the following instance of dynamic routing.

Instance of Dynamic Routing

• The nodes in Dj simulate the injectors. They simulate a set of

(k′j , T
′
j , Tj) bounded injectors, where

– k′j =
∑

l∈[t1] nl,j ,

– T ′j = 4〈k′j〉, and

– Tj = O(ks1 + ks2 + s3).

A node l ∈ Dj such that l = entryj(i) for i ∈ [t1] simulate an

injector which injects ni,j packets into node l.

• The destination of a packet is node |Dj | − 1 in Dj .

(Remark: A packet in destination block Dj that reaches node |Dj |−1

in dynamic routing is routed to node 0 without delay.)

Technical Details and Analysis of the Algorithm.

We assume that all nodes know s1, s2, s3, and k and that they are able

to determine the source and destination block of a packet from its source

and destination address field. The additional information field of a packet

is used in different ways.

• Information whether a packet is routed within a soure block, destina-

tion block, or along a connection path is stored.

• Information whether a packet is a phase 1 or a phase 2 packet is stored.
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• The value of ni,j is stored.

The additional information field of a packet is used by the nodes for routing

decisions. The routing decisions for packets moving within the blocks are

simple. In a block of size n a node does the following with packets moving

within the block: node 0 sends all packets to node 1, node 0 < i < n − 1

sends all packets coming from node i−1 to node i+1 and all packets coming

from node i+1 to node i−1, and node n−1 sends all packets to node n−2.

The generalization to the case that an embedding Φ is used is clear and

hence omitted. The routing decisions for packets moving along a connection

path or for packets that have to leave their (source) block can be done by

the nodes using a table with an entry for each possible destination block.

Packets that reach their entry node, say node i, in a (destination) block are

moved (after their injection) in direction of node n− 1 (0 if i = n− 1).

Part 1:

In the beginning at most k packets are on a node. In every source block

Si, i ∈ [t1], every packet is sent on a cycle from its source to its source. If

in Si a packet with destination block Dj , j ∈ [t2] exists, then one of these

packets can be chosen by a node, e.g., node 0 choose the first packet destined

for a destination block, which visits node 0, by setting a bit in the additional

information field of the packet. To do this, node 0 has to store at most one

bit per class. The number of bits can be reduced to one, provided there at

least t2 nodes in the source block. In this case a node chooses at most one

packet.

Part 1 can be done in at most O(ks1) steps and with a buffer size of k + ad

(+ad due to the simulation).

Part 2:

In a source block Si, i ∈ [t1], the packets pi,j travel to their destination by
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using the paths described in the algorithm. The length of such a path is

at most 2s1 + s3 + 4s2. During this routing congestion occurs at the entry

places. Here we give priority to packets traveling within the destination

block. At most ks2 packets enter a destination block in part 2. Hence a

packet is blocked at most ks2 times. Therefore part 2 can be done in at

most O(s1 + s2 + s3 + ks2) steps.

A node belongs to a source and a destination block. Furthermore, it can

be node in at most deg(N ) trees and it can be an entry node. At most

k packets are stored in a node initially, ad additional packets can be on a

node due to the simulation, two additional packets can be on a node in a

source block, deg(N ) additional packets can be on a node due to the trees,

four additional packets can be on a node in a destination block (two phase 1

packets and two phase 2 packets), and one additional packet can be on an

entry node. Therefore, at most k + ad + deg(N ) + 8 packets are on a node

in a step.

In part 2, values for dynamic routing in part 3 are calculated. We assume

that the destination block Dj has n nodes. In a destination block the entry

nodes have two jobs. They are nodes in a block and they insert packets

into a block. An entry node l inserts packets into node l. In a destination

block, a node that is not an entry node is an injector that inserts no packets.

Such injectors can be ignored. We call an injector that inserts no packet

into a block inactive and an injector that inserts packets into a block active.

Also entry nodes can be inactive. An active injector Il, l ∈ [n] needs to

know ηl, δl and γl̄ to work properly. (Remember, γl̄ is the interval length,

δl · γl̄ is the creation time of Il, and ηl describes the intervals in which Il is

enabled.) This values can be calculated by the node using the information

carried by packets pi,j . We remind pi,j is routed on a cycle from entryj(i)

to entryj(i) in Dj and transports ni,j . Let Il be an active injector in Dj
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such that entryj(i) = l. We have

• γl̄ = max{ T ′
〈ni,j〉 | i ∈ [t1]}, where T ′ = 4〈∑l∈[t1] nl,j〉, and

• δl = max{〈ni,j〉|i∈[t1]}
〈ni,j〉 .

It is easy to see node l in Dj can compute γl̄ and δl using ni,j , i ∈ [t1].

The value of ηl is computed using the method described on pages 35 to 38.

In the following, we use the notation of Definition 3.24 and describe how ηl

is computed. Let Il be an active injector in Dj such that entryj(i) = l and

〈ni,j〉 = 2j′ for a j′ ∈ N0. Il is an injector of Uj′ in Dj . For all injectors t of

Uj′ we have δt = θj′ . Node l counts |Uj′ | and sets θj′ = δl. Furthermore, it

counts |{l′ ∈ Uj′ | l′ < l}| to get an unique number in [|Uj′ |]. We denote this

number by ul. With the help of θj′ , |Uj′ | and ul, each node l decides whether

it is a normal injector or a special injector of Uj′ . If ul < θj′

⌊
|Uj′ |
θj′

⌋
, then l

is a normal injector with number ul. Otherwise, it is a special injector with

number ul mod δl. In the case l is a normal injector, it sets ηl = ul mod δl.

In the case l is a special injector, node l computes ηl as described on pages 36

to 38. To do this, node l has to compute b̄, . . . , bj′ . To compute b̄, . . . , bj′

it computes r̄, . . . , rj′ . To compute r̄, . . . , rj′ it counts |U̄|, . . . , |Uj′ |.
Part 3:

We begin with an analysis of gap routing in Si, i ∈ [t1]. Due to Theorem 3.10

this instance of gap routing can be done on a one-dimensional mesh of size

|Si| in at most |Si|+k|Si|+8ks2 ≤ 10k max{s1, s2} steps using a buffer size

of at most k + 1. Hence O(k(s1 + s2)) steps and a buffer size of k + ad + 1

is needed.

Now we analyse dynamic routing in Dj , j ∈ [t2]. We have to check whether

the instance of dynamic routing in Dj is well defined. We check the defini-

tions 3.13, 3.14 and whether the nodes are able to simulate a set of (k′j , T
′
j , Tj)

bounded injectors, where k′j =
∑

l∈[t1] nl,j , Tj = O(k(s1 + s2) + s3), and
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T ′j = 4〈k′j〉. Obviously k′j packets (in part 3) have a destination in block Dj .

Let l be an entry node of Dj such that entryj(i) = l and ni,j > 0. We have to

check wether l is able to simulate a restricted (ni,j , O(k(s1 + s2)+ s3),
4〈k′j〉
〈ni,j〉)

injector with offset x ∈ |Di|. Exactly ni,j packets enter block Dj at l. Hence

l is able to create ni,j packets. We have ni,j ≤ k′j and so
4〈k′j〉
〈ni,j〉 ∈ N. Gap

routing needs O(k(s1 + s2)) steps and a connection path has a length of at

most s3. Therefore, the last packet reaches l after at most O(k(s1 +s2)+s3)

steps and so the last packet can be created by l after at most O(k(s1+s2)+s3)

steps, provided at most O(k(s1 + s2) + s3) steps elapse between the arrival

of a packet and its creation. It is clear that node l is able to simulate an

injector with any creation rate and any offset, provided it is able to store an

unbounded number of packets.

So the instance is well defined and the nodes of Dj are able to simulate the

injectors, provided the node can store an unbounded number of packets.

Now we consider how many packets node l have to store to simulate an

injector. If two packets with source in Si and destination in Dj reach node l

in steps t1 and t2, then |t2− t1| ≥
⌊

4ks2
〈ni,j〉

⌋
due to gap routing in Si. We have

k′j ≤ ks2. Therefore, in any period of
4〈k′j〉
〈ni,j〉 consecutive steps, at most one

packet with source in Si and destination in Dj reaches node l. Hence node l

need at most a buffer size of two to simulate a restricted injector with offset

l and creation rate
4〈k′j〉
〈ni,j〉 . It has to store one packet that waits to be created

and one packet that waits to be inserted.

We have T ′j ≥ 2k′j . Due to Corollary 3.32 at most 2Tj +|Dj | steps are needed

to solve the instance of dynamic routing on a one-dimensional mesh of size

|Dj |. We have 2Tj + |Dj | = O(k(s1 + s2) + s3).

After dynamic routing, a packet has to travel along a path of at most O(s3)

length. Hence all packets have reached their destination after O(k(s1+s2)+

s3) steps.
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The maximal number of packets on a node in a step in part 3 is k + ad +

deg(N ) + 9 (see part 2: +1 at the entry nodes).

This yields

Theorem 4.3 Let N be a network of fixed degree for which a (t1, t2)-parti-

tioning of size (s1, s2, s3) exists.

1. Algorithm KKOblivous is a k-k routing algorithm on N . It has a

running time of

O(k(s1 + s2) + s3) steps

and a buffer size of O(k).

2. Algorithm KKOblivious is an oblivious k-k routing algorithm.

Proof:

1. Follows from the above discussion.

2. In part 1, each packet cycles from its source node to its source node

in its source block. In part 3 (or part 2), each packet moves from

its source node to the exit node of its source block, then it moves to

an entry node in its destination block using a connection path, in the

destination block it cycles one time from the entry node to the entry

node and then it moves to its destination. Hence the path of a packet

only depends on its source node and its destination node.

3

Now we discuss some further aspects of the routing algorithm. As mentioned

above the nodes calculate several values. The calculation of η for special

injectors in part 2 of the algorithm needs O(ks2) bits. In part 1, the choice
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of pi,j need O(t2) bits and the calculation of ni,j need O(k min{s1, s2}) bits.

In part 3, at most O(log ks2) bits are needed per node (see Theorem 3.10

and Theorem 3.31). Hence at most O(ks2 + t2 +log ks1) bits are needed per

node.

Finally, we analyse the size of the additional information field. As seen in

the above discussion, we store ni,j in this field. Hence O(log k min{s1, s2})
bits are needed. We can reduce its size to O(log min{s1, s2}), if we send

ni,j ≥ min{s1, s2} by using up to k packets. Each of these packets transports

a value of at most
⌈ni,j

k

⌉
. The (worst case) running time is not affected, but

we have to store up to k packets in an entry node in part 2. Hence a buffer

size of 2k + ad + 7 is needed in part 2.

This yields

Theorem 4.4 (Oblivious Routing on N .) Let N be a network of fixed

degree for which a (t1, t2)-partitioning of size (s1, s2, s3) exists. Then an

oblivious k-k routing algorithm on N with running time O(k(s1 + s2) + s3)

and buffer size O(k) exists. The algorithm needs at most O(ks2 + t2 +

log ks1) bits on each node for calculations and at most O(log |VN |) bits in

the additional information field of each packets to store information.

4.4.2 Oblivious k-k Routing on r-Dimensional Meshes.

If a partitioning of Mr,n of size (O(n
r
2 ), O(n

r
2 ), O(n

r
2 )) exists, then anO(kn

r
2 )

oblivious k-k routing algorithm for Mr,n using O(k) buffer size exists. We

specify such a partitioning of Mr,n in this section. We distinguish two cases,

even r > 1 and odd r > 1. For r = 1 oblivious k-k routing can be done in

O(kn) steps with a buffer size of O(k) by an algorithm using shortest paths

and the farthest destination first queueing strategy [47].

In this section x =⇒∗ y denotes a shortest directed path from node x to
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node y in ~Mr,n.

Even r > 1.

We give an (n
r
2 , n

r
2 )-partitioning of Mr,n. We use the set [n]

r
2 as index set

for the source blocks, destination blocks, entry places, and exit places.

We begin with the case r = 2.

1. For i ∈ [n], we set Si
def= {(i, x) | x ∈ [n]}.

2. For i ∈ [n], we set Di
def= {(x, i) | x ∈ [n]}.

3. For i, j ∈ [n], we set entryj(i)
def= (i, j) ∈ Dj .

4. For i ∈ [n], we set Ti
def= (Si, Ei, exiti), where exiti = (i, n − 1) and

Ei = {((i, x), (i, x− 1)) | x ∈ {1, . . . , n− 1}}.

It is easy to see that ((Si)i∈[n], (Di)i∈[n], (entryi)i∈[n], (Ti)i∈[n]) is an (n, n)-

partitioning of M2,n of size (n, n, n− 1).

Example:

Figure 4.1 shows a (4, 4)-partitioning of M2,4 of size (4, 4, 3). In the upper

right corner the figure shows the four source blocks S0, . . . , S3 and the four

exit places exit0, . . . , exit3 (black boxes). Each source block is built by a

row of the mesh and consists of four nodes. In the lower right corner the

figure shows the four destination blocks D0, . . . , D3 and the entry nodes

entry0(3), . . . , entry3(3) (black circles). Each destination block is built by

a column of the mesh and consists of four nodes. In the lower left corner

the figure shows the four trees T0, . . . , T3. Four connection paths are shown.

In tree Ti the connection path from exiti to entry0(i) is shown. All other

connection paths are subpaths of these four paths.

In Figure 4.2 the path of a packet with source node s and destination node

d is shown. On the left side the path of a packet in part 1 of the routing
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D0 D1 D2

S0

S1

S2

S3

exit0

connection path from exit3 to entry0(3)

connection path from exit0 to entry0(0)

T0

T1

T2

T3

(0, 0)(0, 1)(0, 2)(0, 3)

(1, 0)(1, 1)(1, 2)(1, 3)

(2, 0)(2, 1) (2, 3)

(3, 0)(3, 1) (3, 3)

entry0(3) entry3(3)

(2, 2)

(3, 2)

exit3

D3

Figure 4.1: A (4, 4)-partition of size (4, 4, 3) of M2,4.

algorithm is shown. It is possible that a packet travels to its destination in

part 2 or in part 3 of the algorithm. In both cases the paths are equal. The

path is shown on the right side.

3

In the literature, the permutation routing problem on two-dimensional mesh-

es is one of the most studied problems. We calculate the running time of

KKOblivious for this case. We have r = 2 and k = 1. The paths in the

source and destination blocks are edge disjoint. The connection paths and

the paths in the destination blocks are edge disjoint, too. So we are able to

move the packets in the source blocks within steps ≡ 0 (mod 2), along the

connection paths in steps ≡ 1 ( mod 2) and in the destination blocks in steps

≡ 0 (mod 2) and ≡ 1 (mod 2). We get the following running times.

1. Part 1 can be done in 2n− 2 steps.
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part 2 or part 3part 1

connection path from S0 to D2path in S0 (gap routing)

s

d

s

dynamic routing

path in D2

d

Figure 4.2: Path of a packet in oblivious routing.

2. The length of a path of a packet in part 2 is at most 6n. A packet can

be blocked by at most n packets at an entry node. Hence part 2 can

be done in at most 14n steps.

3. In source block Si we have di(j)n ≤ 8n, for all j ∈ [n]. Hence gap

routing in part 3 needs at most 2(1 + 1 + 8)n steps (Theorem 3.10).

The connection path has length n. So the last packet reaches an entry

node at most 22n steps after the beginning of part 3. The injectors

have a creation time of at most 4n and hence the last packet can be

inserted at most 22n+2(4n) = 30n steps after the beginning of part 3.

After the insertion a packet has to travel along a path of at most 4n

length to get to its destination. Note that we can move the packet in

each step. Hence the last packet reaches its destination after at most

34n steps.

Algorithm KKOblivious needs at most 50n steps and a buffer size of 10

on M2,n, if k = 1. The fastest permutation routing algorithm on M2,n needs

2n − 2 steps and has a buffer size of 32 (+4 for passing packets) [46]. The

number of steps of this algorithm is optimal. The oblivious permutation

routing algorithm presented in [12] achieve a running time of approximately

3n steps with a buffer size of > 100000 and a running time of 20n steps with
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a buffer size7 of 304.

Now we consider the case r > 2.

1. For i ∈ [n]
r
2 , we set Si

def= {(i, x) ∈ [n]r | x ∈ [n]
r
2 }.

2. For i ∈ [n]
r
2 , we set Di

def= {(x, i) ∈ [n]r | x ∈ [n]
r
2 }.

3. For i, j ∈ [n]
r
2 , we set entryj(i)

def= (i, j) ∈ Di.

4. For i ∈ [n]
r
2 , we set Ti

def= (Si, Ei, exiti) and exiti = (i, n−1, . . . , n−1) ∈
[n]r. We define Ti as union of directed paths from exiti to entryj(i)8,

j ∈ [n]
r
2 . Let j = (j0, . . . , j r

2
−1). The path from exiti to entryj(i) is

given as follows.

exiti =

(i, n− 1, . . . , n− 1︸ ︷︷ ︸
r/2

) =⇒∗

(i, j0, n− 1, . . . , n− 1︸ ︷︷ ︸
r/2−1

) =⇒∗

(i, j0, j1, n− 1, . . . , n− 1) =⇒∗

... =⇒∗

(i, j0, . . . , j r
2
−2, n− 1) =⇒∗

(i, j0, . . . , j r
2
−2, j r

2
−1) =

(i, j) = entryj(i).

It is easy to see that ((Si)i∈[n], (Di)i∈[n], (entryi)i∈[n], (Ti)i∈[n]) is an (n
r
2 , n

r
2 )-

partitioning of Mr,n of size (n
r
2 , n

r
2 , r

2(n− 1)).

7This is the smallest possible buffer size of their algorithm. We use our model to

calculate this buffer size. In their model the corresponding value is 38.
8The directed path from exiti to entryj(i) is the connection path from Si to Dj
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Odd r > 1.

We set r′ = r−1
2 , m = d√ne and s =

⌊
n
m

⌋
. Obviously s ≤ m and m ∈ O(n

1
2 ).

We use the set [n]r
′ × [s] as index set for the source blocks, destination

blocks, entry places, and exit places.

We begin with the case r = 3. Hence r′ = 1.

1. For i ∈ [n], j ∈ [s− 1], we set

S(i,j)
def= {(i, y, x) | x ∈ [n], y ∈ [n], jm ≤ y < (j + 1)m}.

It is |S(i,j)| = mn = O(n
3
2 ).

2. For i ∈ [n], we set

S(i,s−1)
def= {(i, y, x) | x ∈ [n], y ∈ [n], (s− 1)m ≤ y < n}.

It is |S(i,s−1)| = mn + (n mod m) · n = O(n
3
2 ).

3. For i ∈ [n], j ∈ [s− 1], we set

D(i,j)
def= {(x, y, i) | x ∈ [n], y ∈ [n], jm ≤ y < (j + 1)m}.

It is |D(i,j)| = mn.

4. For i ∈ [n], we set

D(i,s−1)
def= {(x, y, i) | x ∈ [n], y ∈ [n], (s− 1)m ≤ y < n}.

It is |D(i,s−1)| = mn + (n mod m) · n.

5. For i, i′ ∈ [n], j, j′ ∈ [s], we set

entry(i′,j′)(i, j)
def= (i, j′m + j, i′) ∈ D(i′,j′).
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6. For i ∈ [n], j ∈ [s], we set T(i,j) = (V(i,j), E(i,j), exit(i,j)). We define

T(i,j) as union of directed paths from exit(i,j) to entry(i′,j′)(i, j), i′ ∈
[n], j′ ∈ [s]. The root exit(i,j) of T(i,j) is the node (i, jm, j). For

i, i′ ∈ [n], j, j′ ∈ [s] the path from exit(i,j) to entry(i′,j′)(i, j), is given

as follows

exit(i,j) =

(i, jm, j) =⇒∗

(i, j′m + j, j) =⇒∗

(i, j′m + j, i′) =

entry(i′,j′)(i, j).

It is not hard to see that

((S(i,j))(i,j)∈[n]×[s], (D(i,j))(i,j)∈[n]×[s], (entry(i,j))(i,j)∈[n]×[s], (T(i,j))(i,j)∈[n]×[s])

is an (sn, sn)-partitioning of M3,n of size

(mn + (n mod m) · n,mn + (n mod m) · n, (s− 1)m + (n− 1)).

Example:

If n = 16, then m = s = 4. We give an example of a (64, 64)-partitioning of

M3,16 of size (64, 64, 27).

Figure 4.3 shows the source and destination blocks of the partitioning.

Figure 4.4 shows a subnetwork of M3,16 consiting of nodes nodes {(i, x, y) |
x, y ∈ [16]}, i ∈ [16]. It shows the four source blocks Si,0, . . . , Si,3 and the

four exit nodes exit(i,0), . . . , exit(i,3) in the subnetwork. Figure 4.5 shows

connection paths from exit(i,2) to entry(i′,j′)(i, 2), where i′ ∈ {0, 15} and
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(a)

S(15,0)

S(0,0)

S(0,3)

S(15,3)

four nodes
one node

sixteen nodes

(b)

D(0,3)

D(0,0) D(15,0)

D(15,3)

Figure 4.3: Source and destination blocks in M3,15.

(a) Source blocks (b) Destination blocks.

j′ ∈ {0, 1, 2, 3}. All other connection paths from exit(i,2) to entry(i′,j′)(i, 2),

i′ ∈ [15], j′ ∈ [4] are subpaths of these paths. Hence these connection paths

build tree T(i,2). Figure 4.6 shows all connection paths in the subnetwork.

Note that the directed trees are edge disjoint but not node disjoint.

3

Now we consider the case r > 3. Hence r′ > 1.

1. For i ∈ [n]r
′
, j ∈ [s− 1], we set

S(i,j)
def= {(i, y, x) | x ∈ [n]r

′
, y ∈ [n], jm ≤ y < (j + 1)m}.

It is |S(i,j)| = mnr′ = O(n
r
2 ).

2. For i ∈ [n]r
′
, we set

S(i,s−1)
def= {(i, y, x) | x ∈ [n]r

′
, y ∈ [n], (s− 1)m ≤ y < n}.

It is |S(i,s−1)| = mnr′ + (n mod m)nr′ ∈ O(n
r
2 ).
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S(i,1)

S(i,0)

S(i,2)

S(i,3)

exit(i,2) = (i, 8, 2)exit(i,0) = (i, 0, 0)
exit(i,1) = (i, 4, 1) exit(i,3) = (i, 12, 3)

Figure 4.4: Source blocks and exit nodes.

In this figure i ∈ [16]. The figure shows a subnetwork of M3,16 consisting of nodes

{(i, x, y) | x, y ∈ [16]}. It shows source blocks S(i,0), . . . , S(i,3) and exit nodes

exit(i,0), . . . , exit(i,3).

3. For i ∈ [n]r
′
, j ∈ [s− 1], we set

D(i,j)
def= {(x, y, i) | x ∈ [n]r

′
, y ∈ [n], jm ≤ y < (j + 1)m}.

It is |D(i,j)| = mnr′ .

4. For i ∈ [n]r
′
, we set

D(i,s−1)
def= {(x, y, i) | x ∈ [n]r

′
, y ∈ [n], (s− 1)m ≤ y < n}.

It is |D(i,s−1)| = mnr′ + (n mod m)nr′ .

5. For i, i′ ∈ [n]r
′
, j, j′ ∈ [s], we set

entry(i′,j′)(i, j)
def= (i, j′m + j, i′) ∈ D(i′,j′).
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entry(0,0)(i, 2)

exit(i,2)

entry(15,0)(i, 2)

entry(0,1)(i, 2) entry(15,1)(i, 2)

entry(15,2)(i, 2)
entry(0,2)(i, 2)

entry(0,3)(i, 2) entry(15,3)(i, 2)

Figure 4.5: Connection paths from exit(i,2) to entry nodes.

This figure shows connection paths from exit(i,2) to entry(i′,j′)(i, 2), where

i′ ∈ {0, 15} and j′ ∈ {0, 1, 2, 3}. These paths build tree T(i,2).

Figure 4.6: Trees in a partitioning of M3,16.

This figure shows all connections paths in the submesh. These paths build trees

T(i,0), . . . , T(i,3).
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6. Let q = (q0, . . . , qr′−2) ∈ [n]r
′−1. For i ∈ [n]r

′
, j ∈ [s], we set T(i,j) =

(V(i,j), E(i,j), exit(i,j)). We define T(i,j) as union of directed paths from

exit(i,j) to entry(i′,j′)(i, j), (i′, j′) ∈ [n]r
′ × [s]. The root exit(i,j) of

T(i,j) is the node (i, jm, j, q) ∈ [n]r. For i, i′ ∈ [n]r
′
, j, j′ ∈ [s] the path

from exit(i,j) to entry(i′,j′)(i, j), where i′ = (i′0, . . . , i′r′−1), is given as

follows

exit(i,j) =

(i, jm, j, q0, . . . , qr′−2) =⇒∗

(i, j′m + j, j, q0, . . . , qr′−2) =⇒∗

(i, j′m + j, i′0, q0, q1 . . . , qr′−2) =⇒∗

(i, j′m + j, i′0, i
′
1, q1 . . . , qr′−2) =⇒∗

... =⇒∗

(i, j′m + j, i′0, . . . , i
′
r′−2, qr′−2) =⇒∗

(i, j′m + j, i′0, . . . , i
′
r′−1) =

entry(i′,j′)((i, j)).

Let I = [n]r
′ × [s] and q0 = · · · = qr′−2 = 0. Then

((S(i,j))(i,j)∈I , (D(i,j))(i,j)∈I , (entry(i,j))(i,j)∈I , (T(i,j))(i,j)∈I)

is an (snr′ , snr′)-partitioning of Mr,n of size

(mnr′ + (n mod m) · nr′ , mnr′ + (n mod m) · nr′ , (s− 1)m + (n− 1)r′).

Combining the results for even and odd r > 1 we get the following theorem.
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Theorem 4.5

Algorithm KKOblivious is a k-k routing algorithm on Mr,n, r > 1, with a

running time of O(kn
r
2 ) steps and a buffer size of O(k). The running time

matches the lower bound of Theorem 4.1 asymptotically.

If an additional information field of size O(log k+log n) is allowed, then the

buffer size can be bounded by k+9. If an additional information field of size

O(log n) is allowed, then the buffer size can be bounded by 2k + 8.

Proof:

For the buffer size see the discussion at the end of the previous section and

note that the trees in the partitionings are node disjoint. 3

4.5 Conclusion.

In this chapter we presented an oblivious k-k routing algorithm with an

asymptotically optimal running time and buffer size O(k) for r-dimensional

meshes and networks N for which a (t1, t2)-partitioning of size (O(|VN | 12 ),

O(|VN | 12 ), O(|VN | 12 )) exists. Although the algorithm has a small buffer size

and an asymptotically optimal running time there remain open problems.

• simple paths, shortest paths: One important idea leading to our

algorithm is counting. In the source blocks, we count the number of

packets destined for a destination block and in the destination blocks,

we count values for dynamic routing. This counting is done on cycles.

Thus, the path of a packet is not simple and hence is not a shortest

path. We do not know whether it is possible to design a k-k routing

algorithm for Mr,n with a running of O(kn
r
2 ) and buffer size O(k) that

uses shortest paths.



4.5. CONCLUSION. 79

• constants: The constants of our algorithm are large. For example,

on M2,n we need 50n steps and a buffer size of 10. The case r = 2 and

possibly the case r = 3 is of practical interest. Hence a reduction of

the constants for these cases is of interest.

• number of bits used: The number of bits used on a processor for

calculations is large. Hence a reduction of this number is of interest.

• complexity of calculation: The calculation of η is complex. Pos-

sibly the dynamic routing problem can be solved efficiently without

calculating η. Here further research is needed.

• buffer size: It would be interesting to know how far the buffer size

can be reduced. For example: Is it possible to design an oblivious

permutation routing algorithm for Mr,n with a running time O(n
r
2 )

and buffer size 1?



Chapter 5

OTIS Networks.

This chapter investigates several aspects of routing on OTIS networks. In

particular, we show that for any OTIS-G network of fixed degree an oblivious

k-k routing algorithm with an asymptotically optimal running time and

buffer size O(k) exists. We give a k-k sorting algorithm for the OTIS-Mesh

whose running time comes close to the bisection and diameter bound. We

extend the definition of OTIS-G networks and achieve a reduction of the

diameter by a factor of approximately two for several networks G.

5.1 Introduction.

In the computing community there is a growing interest in optics. Optical

interconnections are an interesting alternative to electronic interconnections.

They provide high interconnectivity and large bandwidth. So optical net-

works have gained much attention in our days. However, electronic intercon-

nections have advantages, too. They perform better for small distances [6].

The Optical Transpose Interconnection System (OTIS) proposed in [35] de-

fines networks in which optical and electronical links are used.

80
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The processors in an OTIS network are partitioned in groups where the

connections within the groups are realized by electronic links and the con-

nections among the groups are realized by optical links. Observations in

[33] have shown that it is favorable to choose the size of the groups equal

to the number of groups. Afterwards only OTIS networks were considered

where the number of groups are equal to the number of processors in the

groups [58, 52, 51, 53, 39, 34]. Here we also restrict our attention to this

case. In an OTIS network a processor p of group g is connected via an op-

tical link to processor g of group p. The electronical connections within the

groups are given by the topology of the group, where the group can be any

(connected) graph G. An OTIS network, where the groups are isomorphic

to a graph G is called an OTIS-G network.

Several parallel algorithms have been developed for different OTIS-G net-

works recently, e.g. algorithms for routing [5, 50, 52, 42], sorting [42, 39],

selection [42], data movement [51], matrix multiplication [54], and image

processing [55]. The majority of these algorithms have been designed for

the OTIS-M2,n network [50, 42, 51, 54, 55]. Such a network is also called an

OTIS-Mesh. We consider the k-k sorting problem on the OTIS-Mesh and

give an algorithm with buffer size k+4 whose running time comes close to

the bisection and diameter bound. Up to now the k-k sorting problem was

not considered on the OTIS-Mesh1 or other OTIS-G networks. In addition

to k-k sorting on the OTIS-Mesh, oblivious routing on OTIS-G networks is

considered. The results of the previous chapter are applied and A k-k rout-

ing algorithm for OTIS-G networks, where G is a graph of fixed degree, with

an asymptotically optimal running time and O(k) buffer size is achieved.

A lower bound for many basic parallel problems, including routing and sort-

ing problems, is the diameter of the network. Hence reducing the diameter

1In [39], we have presented k-k sorting on the OTIS-Mesh.



82 CHAPTER 5. OTIS NETWORKS.

gives the possibility to design faster algorithms for these problems. The di-

ameter of OTIS-G networks is reduced by adding at most one (optical) link

to each processor g in group g. These additional links do not increase the

degree of the network. The resulting networks are called Extended OTIS-G

networks. Several graphs G are investigated: hypercubes, one- and two-

dimensional meshes and rings. It is shown that the extension is optimal in

the following sense. Each addition of links to processors g in groups g in an

OTIS-G network that does not increase the degree of the network results in

a diameter of equal or greater size. Furthermore, if G is regular, then any

addition of links to the OTIS-G network that does not increase the degree

of the network results in a diameter of equal or greater size.

The rest of this chapter is organized as follows. In the next Section the

definition of OTIS-G networks is given. A lower bound for routing in OTIS-

G networks is presented in Section 5.3. The k-k sorting problem on the

OTIS-Mesh in ivestigated in Section 5.4. Oblivious routing is considered

in Section 5.5. Finally, the diameter of OTIS-G and Extended OTIS-G

networks is calculated in Section 5.6 and Section 5.7.

5.2 Definition of OTIS-G Networks.

We begin with the definition of OTIS-G networks.

Definition 5.1 (OTIS-G) Let G = (V, E), |V | > 1, be a graph. The

OTIS-G network (or OG network for short) is a graph with node set VG×VG

and edge set Eo ∪ Ee, where

Ee = {{(g, p), (g, p′)} | g, p, p′ ∈ V ∧ {p, p′} ∈ E}

is the set of intra-group or electronic links and
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Eo = {{(g, p), (p, g)} | p, g ∈ V, p 6= g}

is the set of inter-group or optical links. We use ←→o to denote optical links

and ←→e to denote electronical links.

In the case that G is a two-dimensional mesh (a ring, a hypercube) we call

OTIS-G an OTIS-Mesh (OTIS-Ring, OTIS-Hypercube).

For all g ∈ VG we call the graph Gg with node set {g} × VG and edge set

{{(g, p), (g, p′)} | p, p′ ∈ V, {p, p′} ∈ EG}

group g of OTIS-G.

It follows directly from the definition of OTIS-G networks that each of its

|VG| groups is isomorphic to G. If {Gn | n ∈ N} is a family of graphs of

fixed degree, { OTIS-Gn | n ∈ N} is a family of fixed degree.

Figure 5.1 presents an OTIS-M2,2 network. The network consists of groups

(0, 0), (0, 1), (1, 0), and (1, 1). The intra-group links are shown as solid lines

and the inter-group links are shown as dashed lines.

5.3 A Lower Bound for Routing on OTIS-G Net-

works.

We prove a lower bound for k-k routing2 on an OTIS-G network. The proof

is based on a bisection and diameter argument. Note that the following

lower bound is independent of the bandwidth of optical links.

Theorem 5.2 Any k-k routing (sorting) algorithm on an OTIS-G network

requires at least max{2D(G) + 1, k
bw(G)} steps in the worst case.

2and k-k sorting
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group (1,1)group (1,0)

group (0,1)group (0,0)

(0,1)

(0,1) (0,1)

(1,1)

(0,0) (0,0)

(0,0)

(1,0)

(1,1)

(0,0) (0,1)

(1,1)

(1,1)(1,0)

(1,0) (1,0)

node
(1,1,0,1)

Figure 5.1: The structure of OTIS-M2,2.

This figure shows intra-group links (electronical links) of OTIS-M2,2 as

solid lines and inter-group links (optical links) as dashed lines.
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CG(V, V ′) edges between V and V ′

|VG| groups

V

V’

V

V’

one group

Figure 5.2: An OTIS-G network divided in two areas.

Proof:

By Theorem 5.18 the diameter of an OTIS-G network is 2D(G) + 1.

Let V ⊆ VG such that CG(V,VG−V )
|V | = bw(G) and |V | =

⌊ |VG|
2

⌋
. Let V ′ =

VG − V and V1 = (VG × VG)− ((V × V ) ∪ (V ′ × V ′)). See Figure 5.2. Then

• COG
(V1, (VG × VG)− V1) = |VG|CG(V, V ′) and

• |V1| =
⌊ |VG|2

2

⌋
.

We have
⌊ |VG|2

2

⌋
= |V | · |VG|. Therefore

bw(OG) ≤ |VG|CG(V,V ′)⌊
|VG|2

2

⌋ = CG(V,V ′)
|V | = bw(G).

Note that no optical link connects a node of set V1 with a node of set

VG × VG − V1. Hence the lower bound is independent of the bandwidth of

optical links. 3

5.4 Sorting on the OTIS-Mesh.

In this section we discuss the k-k sorting problem on OTIS-M2,n networks3.

3We present similar results in [39].
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5.4.1 Preliminaries

An OTIS-M2,n network consists of n4 nodes. The n4 nodes are grouped

in n2 two-dimensional meshes of side length n. The connections between

the n2 meshes are built according to the OTIS law: A node p in mesh g is

connected to node g in mesh p, g, p ∈ [n]2. If we place the n2 meshes as a two-

dimensional mesh of side length n (see Figure 5.1) a node ((gr, gc), (pr, pc))

of the OTIS-M2,n network lies in the mesh in row gr and column gc. Within

this mesh the node lies in row pr and column pc, gr, gc, pr, pc ∈ [n]. Instead

of ((gr, gc), (pr, pc)) we simply write (gr, gc, pr, pc).

Sorting problems are similar to routing problems. In a k-k sorting problem

each processor is source and destination of exactly k packets, where each

packet contains a key (in the message field) drawn from a totally ordered

set. The packets are assumed to lie in k layers within the processors. A pair

consisting of a processor and a layer is called a place. An indexing of places

is a bijection I : [n]4 × [k] −→ [kn4]. The goal in k-k sorting is to arrange

the packets such that the packet containing the i-th smallest key is moved

to the place with index i− 1. Analogously to routing, a 1-1 sorting problem

is called a permutation sorting problem.

For general k, the k-k sorting problem was not considered so far by other

authors on the OTIS-Mesh. For permutation sorting Sahni and Wang pre-

sented in [51] a deterministic algorithm with running time 11n+o(n) without

considering its buffer size and Rajasekaran and Sahni presented in [42] a ran-

domized algorithm with running time 8n + o(n) and buffer size O(1). We

present a k-k sorting algorithm with running time max{8n + o(n), 2kn +

o(kn)} and buffer size k + 4.

We solve the sorting problem by using sorting with all-to-all mappings. In

the next section, we describe how to sort with all-to-all mappings. After-
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wards, we present an embedding of M4,n in the OTIS-M2,n network, give

basic definitions and notations, present the all-to-all mapping and the sort-

ing algorithm. Finally, we give a lower bound for routing and sorting on

OTIS-M2,n networks and conclude with a comparison of the sorting algo-

rithm with algortihms designed for meshes.

For the rest of the section we choose ε ∈ R such that 0 < ε < 1 and assume

that nε ∈ N.

5.4.2 Sorting with All-to-All Mappings.

The aim of this section is to describe how to sort in a network with the help

of an all-to-all mapping that distributes data uniformly within the network.

This sorting method is well known and was introduced in [25]. A similarity

between sorting with all-to-all mappings and Leighton’s Columnsort [30]

exists. We repeat the ideas of sorting with all-to-all mappings, give the

results, explain their correctness and present their realization in the OTIS-

Mesh. Finally, we shortly discuss how sorting based on all-to-all mappings

can be used to solve routing problems.

For sorting with all-to-all mappings, we divide the network into l blocks of

equal size and each block into l subblocks of equal size called bricks. Hence

there are l blocks of size |VN |
l and l2 bricks of size |VN |

l2
in the network (we

assume that l2||VN |). The blocks have an index from 0 to l − 1 and the

bricks in each block have an index from 0 to l − 1. We choose the indexing

of the places such that all indices in block i are smaller than the smallest

index in block i + 1 for i ∈ [l − 1]. We want to solve a k-k sorting problem

by using sorting with all-to-all mappings.

Roughly speaking sorting with all-to-all mappings consists of the following

five steps.
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1. Sort each block.

2. Perform an all-to-all mapping.

3. Sort each block.

4. Perform an all-to-all mapping.

5. Sort all pairs of blocks.

The correctness of the sorting method follows from the 0-1 principle [20].

In the first step, the blocks are sorted such that the brick with index i (called

brick i) in a block gets all packets containing a key with rank ≡ i (mod l).

So, after step 1, the number of ones in any two bricks i, i′ within a block

differs at most by one. In the second step, from every block the contents of

one brick, i.e., the packets in the nodes of the brick, is sent to every block.

To be more precise, if ata1,i : [l] −→ [l] describes this first transport, i.e.,

ata1,i(j) = k if the contents of brick j in block i is transported to block k

(we omit to describe where the contents of brick j is transported to in block

k), then for all i ∈ [l] the mapping ata1,i is bijective. After the transport,

the number of ones in any two blocks of the network differs at most by l. In

the third step of the method, the blocks are sorted such that the keys of all

packets in brick i of the block are smaller than the smallest key of a packet in

brick i+1 of the block, i ∈ [l]. So at most one brick in a block contains zeros

and ones. We call a brick that contains zeros and ones dirty. Assume that

all bricks contain the same number of packets and assume further that the

number of packets is at least l. Remember that the number of ones in any

two blocks differs at most by l after step 2 of the sorting method. Therefore,

if in blocks i and i′ dirty bricks with index di and di′ exist, then the above

condition on the number of packets in a brick implies |di − di′ | ≤ 1. So the

index of the dirty brick in the blocks differ at most by one. In the fourth
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step, the all-to-all mapping transports the contents of the brick j in block

i to block j, i.e. ata2,i(j) = j for all i, j ∈ [l]. After the second all-to-all

mapping at most two blocks contain dirty bricks and these blocks have index

i and i + 1 for an i ∈ [l − 1]. Hence step 5 concludes the sorting.

The running time of a k-k sorting algorithm based on sorting with all-to-all

mappings depends on the running time for sorting the blocks in steps 1,

3, and 5 and the running time for performing the two all-to-all mappings.

A lower bound for routing an all-to-all mapping is given by the diameter

and halve the bisection bound. The running time for sorting the blocks in

step 1, 3, and 5 depends on the size of the blocks and the maximal number

of packets in a processor at the beginning of the sorting. The running time

for step 5, in which pairs of blocks are sorted, additionally depends on the

distance between two blocks of a pair. To bound the maximal number of

packets in a processor in the beginning of step 3 and step 5, we need that

the all-to-all mappings in step 2 and step 4 are designed such that each brick

in a block receives the contents of one brick.

As seen in the above discussion, the sorting method only works correctly if

any brick contains at least l packets. In the case of k-k sorting on a network

N , this implies

l3 ≤ k|VN |. (5.1)

In the case of the OTIS-Mesh, it is possible to embed M4,n in OTIS-M2,n

with constant dilation, constant congestion and load 1. So every algorithm

for M4,n can be performed with a constant slowdown on OTIS-M2,4. For

r-dimensional meshes of side length n, inequality 5.1 results in blocks with

at least n2r/3

k1/3 nodes. Hence we are able to choose blocks of side length

nε, 2
3 ≤ ε < 1. Thus, step 1 and step 3 can be done in O(knε) steps.

Furthermore, in r-dimensional meshes a continuous indexing of the blocks

can be used. In a continuous indexing of blocks, any two blocks with index
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i and i+1 are neighbouring. Therefore, step 5 can be done in O(knε) steps.

The diameter bound for an r-dimensional mesh is r(n−1), and the bisection

bound is kn
2 . Therefore, the running time is dominated by the time required

to perform the all-to-all mappings ([24, 25, 26, 27, 28]).

Implementing the all-to-all based k-k sorting for M4,n on OTIS-M2,n, using

the embedding results in an asymptotically optimal running time of the

sorting algorithm. However, the constants of the running time of such an

algorithm are very large. We use the embedding in step 1, 3, and 5 to sort

the blocks with a running time O(knε), ε < 1. For the OTIS-Mesh the main

task is to find an efficient algorithm for the all-to-all mapping.

Routing with Sorting. Sorting with all-to-all mappings can be applied

to solve routing problems. In [25, 27, 28] a detailed description can be found.

Obviously a full k-k routing problem can be solved by solving a k-k sorting

problem. A problem occurs when there are less than k|VN | packets in the

network. In this case, instead of sorting the blocks in the third step, we

route a packet in block j destined for block i to brick i in block j. It is easy

to see that this routing sends at most k|VN |
l2

+ l packets to a brick in a block.

Hence we have to move at most l packets destined for brick i to brick i− 1

or brick i + 1. In the case of r-dimensional meshes this additional routing

in the blocks can be done efficiently ([25, 27, 28]).

5.4.3 Emulation of M4,n by OTIS-M2,n.

An emulation of a four-dimensional mesh by an OTIS-Mesh was first de-

scribed in [58]. The emulation uses an embedding of M4,n into the OTIS-

M2,n network. The embedding maps node (i, j, k, l) of M4,n to node (i, j, k, l)

of OTIS-M2,n, i, j, k, l ∈ [n]. The edges of M4,n are mapped to paths in the

OTIS-M2,n network in the following way ([58, 39]):



5.4. SORTING ON THE OTIS-MESH. 91

1.) i, j, l ∈ [n], k ∈ [n− 1]:

{(i, j, k, l), (i, j, k + 1, l)}
7→

(i, j, k, l) ←→e (i, j, k + 1, l)

2.) i, j, k ∈ [n], l ∈ [n− 1]:

{(i, j, k, l), (i, j, k, l + 1)}
7→

(i, j, k, l) ←→e (i, j, k, l + 1)

3.) j, k, l ∈ [n], i ∈ [n− 1]:

{(i, j, k, l), (i + 1, j, k, l)}
7→

(i, j, k, l) ←→o (k, l, i, j) ←→e (k, l, i + 1, j) ←→o (i + 1, j, k, l)

4.) i, k, l ∈ [n], j ∈ [n− 1]:

{(i, j, k, l), (i, j + 1, k, l)}
7→

(i, j, k, l) ←→o (k, l, i, j) ←→e (k, l, i, j + 1) ←→o (i, j + 1, k, l)

5.) If (i, j) = (k, l) the first optical link in 3.) and 4.) is omitted.

6.) If (i + 1, j) = (k, l) the second optical link in 3.) is omitted and if

(i, j + 1) = (k, l) the second optical link in 4.) is omitted.

This describes an embedding of M4,n into an OTIS-M2,n network with dila-

tion 3, congestion 8, and load 1.

With the help of the embedding it is possible to emulate M4,n with constant

slowdown and at most four additional buffers.



92 CHAPTER 5. OTIS NETWORKS.

Theorem 5.3 Any algorithm that needs T steps and a buffer size of B on

M4,n can be performed in 14T steps with a buffer size of B +4 on an OTIS-

M2,n network.

Proof:

We use the embedding described above and a step by step simulation.

A node (i, j, k, l) in the OTIS-Mesh simulates node (i, j, k, l) of the four-

dimensional mesh. To simulate one communication step the following sim-

ple communication schedule consisting of fourteen steps is used. All packets

that have to use a path of 1.) or 2.) are sent in the first step. These packets

reach their destination after one step. There are at most four packets in a

node that have to use a path of 3.), 4.), 5.), or 6.). Packets that have to

use a path of 3.), 4.), or 6.) are sent in step 2, one in step 5, one in step

8, and one in step 11. Packets that have to use a path of 5.) are sent in

step 3, step 6, and so on. A fixed order, which is the same on all nodes,

is used to send the packets, i.e., all processors (i, j, k, l) send a packets to

neighbour (i + 1, j, k, l) in step 2 (3), to neighbour (i − 1, j, k, l) in step 5

(6) and so on. For the traveling packets at most one additional buffer is

reqired on a processor after step 2. Now we consider a node (i, j, k, l), where

(i, j) 6= (k, l), i.e. packets on this node do not use a path of 5.). After step 1,

at most four packets on this node have to be sent, after step 2 at most 3,

after step 5 at most 2, and so on. So an additional buffer size of at most

four is needed. On a node (i, j, k, l), where (i, j) = (k, l), there are at most

four packets after step 2, three packets after step 3, and so on. In step 3,

nodes receive packets via an optical links. So node (i, j, i, j) does not receive

a packet. Therefore, an additional buffer size of at most four is needed. The

last packet reaches its destination in step fourteen. 3

If we assume a bandwidth of four for the optical links in the OTIS-Mesh,

then we can achieve a faster simulation of the four-dimensional mesh.
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Theorem 5.4 If every optical link has a bandwidth of at least four, then

any algorithm that needs T steps and a buffer size of B on M4,n can be

performed in 3T steps with a buffer size of B +4 on an OTIS-M2,n network.

Proof:

We use the embedding described above and a step by step simulation of the

network. We need three steps. All packets that use paths of 1.) or 2.) use

an electronical link in the first step and reach their destination after one

step. For these packets no additional buffer size is needed. All other packets

have to travel a distance of at least two and at most three and have to use

up two optical links, one in step 1 and one step 3. Packets of 5.) do not

travel in step 1 and packets of 6.) do not travel in step 3.

In step 2, each processor receives at most 4 packets via an optical link. Note

that a node (i, j, i, j) is not able to send a packet via an optical link in step 1

but it also receives no packets via an optical link in step 2. The packets that

reach a processor via an optical link in step 2 have to leave it via different

electronical links. There are four electronical links and so every packet is

able to leave the node in step 2. Thus at most four additional buffers are

needed in step 2.

In step 3, all packets reach a node via an electronical link. At most four

packets reach a node (i, j, k, l). If (i, j) = (k, l), then the processor (i, j, k, l)

is destination of these packets. Otherwise, the packets are sent to their

destination via an optical link. Hence an additional buffer size of at most 4

is required. 3

5.4.4 Substructures in the OTIS-Mesh.

In the following, we define blocks, superblocks, and bricks. A block is the

realization of a four-dimensional submesh of M4,n in the OTIS-M2,n network.
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Figure 5.3: Superblocks, blocks, and bricks in an OTIS-Mesh network.

A superblock is a collection of blocks and a brick is the cut of a block and

a mesh. We give the formal definitions.

For a, b ∈ [n] we write M(a, b) for the group (a, b) of the OTIS-M2,n net-

work. For a, b, c, d ∈ [n1−ε] the block B(a, b, c, d) of side length nε consists

of processors (i, j, k, l), where anε ≤ i < (a + 1)nε, bnε ≤ j < (b + 1)nε,

cnε ≤ k < (c + 1)nε, and dnε ≤ l < (d + 1)nε. For a, b ∈ [n1−ε] the

superblock SB(a, b) consists of blocks B(a, b, c, d), where c, d ∈ [n1−ε]. If

the cut of block B(a, b, c, d) and mesh M(i, j) is not empty, we call it brick

of block B(a, b, c, d) and denote it by < a, b, c, d, i, j >. The cut of block

B(a, b, c, d) and mesh M(i, j) is not empty if and only if anε ≤ i < (a+1)nε

and bnε ≤ j < (b + 1)nε. Figure 5.3 shows meshes, blocks, superblocks, and

bricks. The filled black boxes build one block. Each of these filled boxes is

one brick of the block.
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There are n2(1−ε) superblocks, n4(1−ε) blocks, and n4(1−ε)n2ε bricks in an

OTIS-M2,n network. Each superblock consists of n2(1−ε) blocks and each

block consists of n2ε bricks. To describe the all-to-all mapping we need some

indexings. We introduce indexings for meshes, blocks, superblocks, bricks,

and processors. We use row-major indexing for most of the structures: The

processors in a brick, the bricks in a block, the blocks in a superblock, and

the superblocks within an OTIS-Mesh.

In Section 5.4.5 we use a blocked row-major indexing of the blocks in the

OTIS-Mesh, i.e., the index j of a block B in the OTIS-Mesh can be written

as j = j1n
2(1−ε) + j2, where j1 is the index of the superblock SB in which

B lies and j2 is the index of B in the superblock. For example, the index of

block B(a, b, c, d) in the OTIS-Mesh is (an1−ε + b)n2(1−ε) + cn1−ε + d. For

sorting with all-to-all mappings (Section 5.4.6) we need a different indexing

of the blocks in the OTIS-Mesh. Each block of the OTIS-M2,n network can

be seen as a block in M4,n. Since we use an embedding of M4,n into the

OTIS-Mesh to sort the OTIS-Mesh, we need a continuous indexing of the

blocks in M4,n. In Section 5.4.6 we use an arbitrary continuous index of the

blocks in M4,n.

Now we give the definitions of the indexings. Brick < a, b, c, d, e, f > has

index (e − anε)nε + (f − bnε) in block B(a, b, c, d). Block B(a, b, c, d) has

index cn1−ε + d in superblock SB(a, b). If a block B in superblock SB has

index x and brick BR in B has index y, then we call BR as brick x in block

y. Processor (e, f, g, h) has index (e−a)nε+(f−b) in brick < a, b, c, d, e, f >.

If a processor P in brick BR has index z, we call P processor z in brick x.

5.4.5 All-to-All Mapping.

This section describes how an all-to-all mapping can be implemented on the

OTIS-Mesh. To achieve our target we first perform a k-k routing of the
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packets in the meshes to distribute the contents of the bricks within the

superblock. Afterwards we use the optical links. This step distributes the

packets of a brick to the bricks of one block. Then we perform a k-k routing

in the blocks to collect these packets in one brick of the block. Finally, we

perform a k-k routing in the meshes to distribute the bricks to the blocks

in their destination superblock.

Algorithm Brick Transport.

1. Within all superblocks do: Move the packets from brick j in block i to

brick j in block (i + b j
nε c) mod n2(1−ε), 0 ≤ j < n2ε, 0 ≤ i < n2(1−ε).

2. For all processors do: Use the optical links to move all packets from

processor (e, f, g, h) to processor (g, h, e, f).

3. Within all blocks do: Move the packets from processor j in brick k to

processor k in brick j, 0 ≤ j, k < n2ε

4. Within all superblocks do: Move the packets from brick j in block i

to brick j in block (i + (j mod nε)) mod n2(1−ε), 0 ≤ j < n2ε, 0 ≤ i <

n2(1−ε).

Theorem 5.5 (Running Time of Algorithm Brick Transport.)

If every processor holds at most k packets, then algorithm Brick Transport

can be performed with buffer size k +4 in max{4n+ o(n), kn+ o(kn)} steps.

Proof:

A superblock consists of n2ε meshes. These meshes build nε rows (columns)

of meshes (see Figure 5.3). Each row (column) consists of nε meshes. We

number these rows (columns) from 0 to nε − 1.

We consider a mesh in row x and column y of meshes in a superblock. It

contains n2(1−ε) bricks from n2(1−ε) blocks. Each brick in the mesh has index
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j = xnε + y within its block. Step 1 does not change the index of a brick.

Hence step 1 moves the packets within a mesh.

The bricks in a mesh build n1−ε rows (columns) of bricks. Each such row

(column) contains n1−ε bricks. A brick in row x′ and column y′ of bricks

in the mesh belongs to a block with index x′n1−ε + y′ in the superblock.

These block indices of the bricks within a mesh yields a row-major indexing.

Step 1 shifts the packets by x bricks with respect to this indexing, i.e., the

packets are shifted from a brick with (block) index x′nε + y′ and to a brick

with (block) index x′n1−ε+y′+x mod n2ε. Therefore, step 1 is a k-k routing

in a mesh. Furthermore, step 1 transports any two bricks in a row (column)

of bricks to different columns (rows) of bricks. Hence it can be done by first

performing a k-k routing in the rows (columns) and then performing a k-k

routing in the columns (rows). Both, the first and the second routing, have

a very simple structure. Assume that we first route within the rows. Then

all packets moving to the right (left) in the first routing have to travel the

same distance. The distance is (x mod n1−ε)nε (left: (n−(x mod n1−ε)nε)).

Note that the distance is the same for all meshes in a column of meshes.

All packets moving up (down) in the second routing have to travel the same

distance. The distance is nε
⌊

x
n1−ε

⌋
(down: (n − nε

⌊
x

n1−ε

⌋
)). Again the

distance is the same for all meshes in a row of meshes. We use the technique

of packet colouring to halve the running time. In a mesh M(a, b) we colour⌈
k
2

⌉
packets on processor (a, b, c, d) black and

⌊
k
2

⌋
white if and only if c+d is

even, and
⌈

k
2

⌉
packets white and

⌊
k
2

⌋
packets black else. We route all black

packets first within the rows and then within the columns and all white

packets first within the columns and then within the rows.

We use the farthest destination first queuing strategy to route the packets.

So step 1 can be done with a buffer size of at most k + 4 in 2n + O(1) steps

for k ≤ 4 and in kn
2 + o(kn) steps for k > 4 (e.g. see Lemma 1 in [19]).
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Step 4 can be done analogously to step 1. Step 4 shifts the packets by y

bricks with respect to the (block) indexing of the bricks in a mesh. Hence

step 4 can be done with a buffer size of at most k + 4 in 2n + O(1) steps for

k ≤ 4 and in kn
2 + o(kn) steps for k > 4.

Step 3 is a k-k routing in a block. By Theorem 5.3 and [25] step 3 can be

performed in o(kn) steps with a buffer size of at most k + 4.

Step 2 needs k steps and a buffer size of k. 3

In the following we observe where the packets of a brick are moved to by

algorithm Transport Bricks.

Lemma 5.6 Algorithm Brick Transport moves the packets from brick <

a, b, c, d, e, f >, a, b, c, d ∈ [n1−ε], anε ≤ e < (a + 1)nε, bnε ≤ f < (b + 1)nε,

to brick < a′, b′, c′, d′, e′, f ′ >, where

a′ =
⌊

z
n1−ε

⌋

b′ = z mod n1−ε

c′ =
⌊

z′
n1−ε

⌋

d′ = z′ mod n1−ε

e′ = e + (c′ − a)nε

f ′ = f + (d′ − b)nε

z = (cn1−ε + d + e− anε) mod n2(1−ε)

z′ = (an1−ε + b + f + (d′ − 2b)nε) mod n2(1−ε).

Proof:

Let < a, b, c, d, e, f > be a brick. We use the definition of a′, b′, c′, d′, e′, f ′, z,

and z′ as given in the lemma.

Step 1 moves the packets of < a, b, c, d, e, f > to brick < a, b, c′, d′, e, f >.

Step 2 and step 3 moves them to brick < c′, d′, a, b, e + (c′ − a)nε, f + (d′ −
b)nε > and step 4 moves them to brick < a′, b′, c′, d′, e′, f ′ >.
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Remark: Step 2 in combination with step 3 moves brick < a, b, c, d, e, f >

to brick < c, d, a, b, e + (c− a)nε, f + (d− b)nε >. Thus these steps define a

permutation on the set of bricks in the OTIS-Mesh. 3

Now we consider the case ε = 2
3 . For this case the number of blocks in the

OTIS-Mesh is equal to the number of bricks of a block.

From the above observation we know that algorithm Transport Bricks

moves the packets from a brick to another brick. Let B be the set {(B,BR) |
B is a block in the OTIS-Mesh and BR is a brick in B} and let ata : B −→ B,

where ata(B, BR) = (B′, BR′) if and only if algorithm Transport Bricks

moves the packets from brick BR in block B to brick BR′ in block B′.

We have to show that each brick of a block receives the contents of one

brick and that each block receives one brick from every block, i.e., we have

to show that ata is bijective and for all blocks B, B′ in the OTIS-Mesh

|ata({(B, BR) | BR is brick in B}) ∩ {(B′, BR) | BR is brick in B′}| = 1

holds.

Theorem 5.7 For ε = 2
3 Brick Transport realizes an all-to-all mapping,

i.e., ata is bijective and for all B,B′ ∈ B

|ata({(B, BR) | BR is brick in B}) ∩ {(B′, BR) | BR is brick in B′}| = 1.

Proof:

We consider block B(a, b, c, d). First we observe that each block in the

OTIS-Mesh gets packets from exactly one brick of block B(a, b, c, d).

Block B(a, b, c, d) consists of bricks < a, b, c, d, e, f >, where an
2
3 ≤ e <

(a + 1)n
2
3 , and bn

2
3 ≤ f < (b + 1)n

2
3 .

In the case ε = 2
3 Lemma 5.6 yields
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a′ =
⌊

z

n
1
3

⌋

b′ = z mod n
1
3

c′ =
⌊

z′

n
1
3

⌋

d′ = z′ mod n
1
3

e′ = e + (c′ − a)n
2
3

f ′ = f + (d′ − b)n
2
3

z = (cn
1
3 + d + e) mod n

2
3

z′ = (an
1
3 + b + f) mod n

2
3 .

The mappings e 7→ (cn
1
3 + d + e) mod n

2
3 from {an

2
3 , . . . , (a + 1)n

2
3 − 1} to

[n
2
3 ] and f 7→ (an

1
3 + b + f) mod n

2
3 from {bn 2

3 , . . . , (b + 1)n
2
3 − 1} to [n

2
3 ]

are bijective. Hence

{an
2
3 , . . . , (a + 1)n

2
3 − 1} × {bn 2

3 , . . . , (b + 1)n
2
3 − 1} −→ [n

1
3 ]4

(e, f) 7→ (a′, b′, c′, d′)

is a bijective mapping. Thus for all B,B′ ∈ B

|ata({(B,BR) | BR is brick in B}) ∩ {(B′, BR) | BR is brick in B′}| = 1

holds.

Now we show that ata is bijective. From the definition of algorithm Brick

Transport follows that step 1 and step 4 define permutations on B. As

noted in the proof of Lemma 5.6 the combination of step 2 and step 3

defines a permutation on B. So ata is bijective. 3

The above proof can be extended to the case where n2(1−ε) divides nε. In

such a case every block receives n6(ε− 2
3
) bricks from every block, i.e., ata is

bijective and for all B, B′ ∈ B:

|ata({(B, BR) |BR is brick in B})∩{(B′, BR) |BR is brick in B′}|=n6(ε− 2
3
).
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To see this, note that for e ∈ [nε] the mapping

e 7→ (cn1−ε + d + e− anε) mod n2(1−ε)

hits every value in [n2(1−ε)] exactly n3(ε− 2
3
) times.

In such a case we combine n6(ε− 2
3
) bricks to one large brick. Note that the

number of large bricks is equal to the number of blocks and that in the case

ε = 2
3 a large brick consists of one brick.

5.4.6 The Sorting Algorithm.

An indexing of the blocks in the four-dimensional mesh is also an indexing

of the blocks in the OTIS-Mesh. We assume that g is a continuous indexing

of the blocks in the four-dimensional mesh. The algorithm sorts the OTIS-

Mesh with respect to the indexing induced by g, i.e., the index of a place

((a, b, c, d), l), (a, b, c, d) ∈ [n]4, l ∈ [k] is k · |B| ·g(B)+hB((a, b, c, d), l). Here

B is the block in which (a, b, c, d) lies, g(B) is the index of block B, and hB

is an indexing of the places in B.

For a block B, we denote by gataB(j) the brick in B whose packets are

transported to block j with respect to g if algorithm Brick Transport is

performed.

We use blocks of side length n
2
3 and sort them with the simulation technique

of Section 5.4.3. As all-to-all mapping we use Brick Transport for ε = 2
3 .

Algorithm Sort.

1. (a) Sort all blocks.

(b) Within all blocks B: Transport the packet with the i-th largest

key in the block to brick gataB(i mod n
4
3 ), 0 ≤ i < kn

8
3 .

2. Perform an all-to-all mapping (Brick Transport, ε = n
2
3 ).
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3. (a) Sort all blocks.

(b) Within all blocks B do: Transport the packet with the i-th largest

key in the block to brick gataB(
⌊

i

kn
4
3

⌋
), 0 ≤ i < kn

8
3 .

4. Perform an all-to-all mapping (Brick Transport, ε = n
2
3 ).

5. Sort all pairs of blocks (2i, 2i+1) (with respect to the indexing within

the blocks), 0 ≤ i < n
4
3

2 . Sort all pairs of blocks (2i−1, 2i), 0 < i < n
4
3

2

(with respect to the indexing within the blocks), (pairs of blocks with

respect to g).

Theorem 5.8 For all k algorithm Sort is a k-k sorting algorithm on the

OTIS-Mesh with a buffer size of k + 4. It has a running time of 8n + o(n)

steps, for k ≤ 4, and 2kn + o(kn) steps, for k ≥ 4.

Proof:

The OTIS-M2,n network consists of n4 nodes. In the case ε = 2
3 we have n

4
3

blocks and each block has n
4
3 bricks. For all k the inequality 5.1 is fulfilled.

By [25] and the discussion in Section 5.4.2 algorithm Sort solves the k-k

sorting problem.

Step 1a and step 3a are k-k sortings within blocks and steps 1b and step 3b

are k-k routings within blocks. So these steps can be performed with the

simulation technique of Section 5.4.3. Hence steps 1, 3, 5 can be achieved

in o(kn) steps with the buffer size k +4 (e.g. see [25, 19, 7]). For step 2 and

step 4 see Theorem 5.5. 3

The generalization of algorithm Sort to blocks with side length nε, 2
3 ≤ ε <

1, where n2(1−ε) divides nε is straight forward and is left out.
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Figure 5.4: An OTIS-Mesh divided in two areas X and Y .

5.4.7 A Lower Bound for Sorting on the OTIS-Mesh.

Now we prove a lower bound for k-k routing and k-k sorting. The proof is

based on a bisection argument. Note that in the following proof only elec-

tronical links connect the two areas. Hence this lower bound is independent

of the bandwidth of the optical links.

Theorem 5.9 Any k-k sorting (routing) algorithm on the OTIS-Mesh re-

quires at least max{4n− 3, 1√
2

kn (≈ 0.707kn)} steps in the worst case.

Proof:

Look at Figure 5.4. There are two areas of processors denoted with X and

Y . For c = 1√
2

both areas consist of c2n4 processors. Note that there is

no optical link between a processor of area X and processor of area Y . We

have COM2,n
(X, Y ) = cn3. Hence bw(OM2,n) ≤ 1

cn . Note that 4n − 3 is the

diameter of OTIS-M2,n (see Theorem 5.18). 3
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5.4.8 A Comparison with Mesh Algorithms.

In this section, we compare algorithm Sort with sorting algorithms designed

for meshes. Although the OTIS-M2,n network consists of n2 two-dimensional

meshes M2,n it is not fair to compare Sort with sorting algorithms for two-

dimensional meshes since we have an Ω(kn2) lower bound for k-k sorting on

M2,n2 . A reasonable mesh for a comparison is a four-dimensional mesh. The

structure of the OTIS-Mesh is similar to the structure of a four-dimensional

mesh but there are also differences. M4,n and the OTIS-M2,n network have

the same number of processors and the same diameter (up to one) but the

OTIS-Mesh has a smaller bisection width (see Section 5.4.7) and its degree

and number of links is by a factor of 5
8 smaller. Hence it is not surprising

that algorithms for M4,n have a better running time.

We compare the performance of algorithm Sort with the fastest k-k sorting

algorithms for the four-dimensional mesh. In the case k = 1 the fastest

known 1-1 sorting algorithm for M4,n with buffer size O(1) requires 5n+o(n)

steps [48]. This algorithm makes copies of the packets during the sorting.

It is by a factor of 5
8 faster than Sort. The fastest algorithm on M4,n with

buffer size O(1) that does not make copies needs 6n + o(n) steps [48]. Both

algorithms have a similar structure to Sort. The main difference lies step 2

and step 4 of Sort. In step 2 Sort distribute the packets in the whole

network. The M4,n algorithm in [48] distributes the packets within a centre

region of the network and in step 4 it routes the packets from the centre

region to their destination. As a consequence packets have to travel shorter

distances and so the faster running times are achieved. The centre region

consists of all processors that have a distance of at most n from the centre

of M4,n (processor (bn
2 c, bn

2 c, bn
2 c, bn

2 c)). This region contains about half of

the processors of M4,n. Due to the structure of the OTIS-Mesh it seems

hard to find such a region in it. Furthermore, step 2 and step 4 of the M4,n
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algorithm uses the fact that two so called unshuffle permutations can be

routed distance-optimally on M4,n. This requires the full link capacity of

the mesh (i.e. all 8 directions). Hence it seems unlikely that this method

can be used to design a faster algorithm for the OTIS-Mesh. Finally, an

algorithm based on this method need a larger buffer size than Sort since we

have to store more than one packet per processor in the centre region.

Sorting on M4,n in the case k ∈ {2, . . . , 15} has received less attention in the

literature. Hence we do not compare our algorithm for this case.

For the case k ≥ 16 the sorting algorithm for M4,n of Kunde in [25] asymp-

totically matches the bisection bound of kn
2 . Hence it is four times faster

than Sort. The algorithm has a buffer size of k and uses sorting with all-

to-all mappings. The running time of Sort is a factor of at most 2
√

2 away

from the bisection bound. The running time of Sort could (possibly) be

reduced to the half by overlapping shifts, performed in step 1 and step 4 of

algorithm Brick Transport, in different meshes of a superblock. For the

remaining factor of
√

2 we do not know whether it exists due to the weakness

of the lower or upper bound. Here further research is necessary.

If we assume a bandwidth of at least four and a k-k sorting algorithm for the

four-dimensional mesh with a running time of max{4n + o(n), k n
2 + o(kn)}

steps, then the simulation (Theorem 5.4) of the algorithm would result in a

max{12n+o(n), 3kn
2 +o(kn)} step algorithm on the OTIS-Mesh. For k ≥ 8

such an algorithm would be faster than algorithm Sort.

5.5 Oblivious Routing on OTIS-G Networks.

In this section, we give a (|V |, |V |)-partitioning of size (|V |, |V |, O(|V |)) of

an OTIS-G network, where G = (V, E). We use the set V as index set for

the source blocks, destination blocks, entry places, and exit places.
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1. The groups of OTIS-G are the source and destination blocks, i.e., for

all v ∈ V we set Sv
def= {v} × V and Dv

def= {v} × V .

2. For all v, v′ ∈ V , we set entryv(v′)
def= (v, v′) ∈ Dv.

3. For all v ∈ V , we set Tv
def= (Vv, Ev, exitv), where Vv = ({v} × V ) ∪

(V × {v}), exitv = (v, v) ∈ Sv, and Ev = Esp ∪ {((v, v′), (v′, v)) | v′ ∈
V, v 6= v′}. Here Esp are the edges of a directed spanning tree of Gv

with root (v, v) (i.e. a directed tree that consists of all nodes of Gv

and has root (v, v)).

Note that entryv′(v) ∈ Tv, for all v′ ∈ V . Tv is a directed tree for all v ∈ V .

We get:

((Sv)v∈V , (Dv)v∈V , (entryv)v∈V , (Tv)v∈V )

is a (|V |, |V |)-partitioning of OTIS-G of size

(|V |, |V |, O(|V |)).

By Theorem 4.3 and Theorem 4.1 we get:

Theorem 5.10 Algorithm KKOblivious, given in Section 4.4.1, is an

oblivious k-k routing algorithm on OTIS-G with running time O(k|VG|) and

buffer size O(k). A lower bound for oblivious k-k routing in OTIS-G is

Ω( k|VG|
deg(G)).

Proof:

An OTIS-G network consists of |VG|2 nodes. The lower bound follows from

Theorem 4.1. The upper bound follows from Theorem 4.3. 3

Corollary 5.11 If G is of fixed degree, then an oblivious k-k routing algo-

rithm on OTIS-G with running time O(k|VG|) and buffer size O(k) exists.

The running time asymptotically matches the lower bound of Theorem 5.10.
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5.6 Diameter of OTIS-G Networks.

In this section, we give the diameter of an OTIS-G network. In [50] the

diameter of an OTIS-Mesh and in [52] the diameter of an OTIS-Hypercube

was determined. Both results have similar proofs. These proofs have in-

spired the result of this section. In [5] the diameter of an OTIS-G network

and a proof idea is given.4

We begin with a notation for shortest paths. We use x ←→∗
g y for a shortest

path between nodes x and y in Gg. In general, more than one shortest path

between two nodes exists. Hence x ←→∗
g y describes a set of paths. We use

←→∗ to describe a path w, e.g., we write path w as x ←→∗
g y ←→o z. In

such a case, we mean a path w = w1w2, where w1 is a shortest path between

x and y (in Gg) and w2 is a path between y to z that uses one optical link.

All such paths have the same length. Hence |w| is used todenote their length.

It is possible that no such path exists (e.g. see Theorem 5.17). In such a

case |w| = ∞.

We say a path p uses k optical links if k = |{e ∈ EOG
: p uses e and e is an

optical link }|.
We analyse shortest paths in OTIS-G networks. A path in an OTIS-G

network uses zero or more optical links. The following two lemmata show

that a shortest path uses at most two optical links.

Lemma 5.12 Let OG = (V,E) be an OTIS-G network and s = (g, p), t =

(g′, p′) ∈ V, p, g, p′, g′ ∈ VG. Let w be a path between s and t in OG that

uses k > 2, k odd, optical links.

If g 6= g′, then a path w′ between s and s exists such that

• w′ uses one optical link,
4The result of this section was achieved independently of [5].
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• |w′| ≤ |w| − k + 1, and

• |w′| = dG(p, g′) + dG(g, p′) + 1.

If g = g′, then a path w′ between s and t exists such that

• w uses no optical link,

• |w′| ≤ |w| − k, and

• |w′| = dG(p, p′).

Proof:

In the following, we decompose w in k + 1 subpaths which use no optical

link and k paths of length one which use optical links.

Let k = 2l − 1, l > 1. W.l.o.g. we write w as

(g0, p0) ←→∗
g0

(g0, p1)

←→o (p1, g0)

←→∗
p1

(p1, g1)

←→o (g1, p1)
...

...

←→∗
gl−1

(gl−1, pl)

←→o (pl, gl−1)

←→∗
pl

(pl, gl),

where p0, . . . , pl, g0, . . . , gl ∈ VG, pi 6∈ {gi−1, gi}, i ∈ {1, . . . , l− 1}, pl 6= gl−1,

and g0 = g, p0 = p, pl = g′, gl = p′.

In w (sub)paths between nodes pi and pi+1 in group gi, i ∈ [l − 1], exist.

By the triangle inequality and the fact that all groups are isomorphic to G,

the sum of the length of these paths is greater or equal to the length of a

shortest path between p0 and pl in group g0.
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In w also (sub)paths between gi and gi+1 in group pi+1, i ∈ [l], exist. The

length of these paths is greater or equal to the length of a shortest path

from g0 to gl in group pl.

If g = g′, then pl = g0 = g and we define w′ = (g0, p0) ←→∗
g0

(pl, gl). Thus

|w′| = dG(p, p′) ≤ |w| − k.

Otherwise let w′ be

(g0, p0) ←→∗
g0

(g0, pl) (path in group g0)

←→o (pl, g0)

←→∗
pl

(pl, gl). (path in group pl)

Since g 6= g′ we have g0 6= pl and hence w′ exists. Path w uses k > 2 optical

links and path w′ one. Hence we get |w′| ≤ |w| − k + 1. It holds

|w′| = dG(p0, pl) + dG(g0, gl) + 1 = dG(p, g′) + dG(g, p′) + 1.

3

Lemma 5.13 Let OG = (V,E) be an OTIS-G network and s = (g, p), t =

(g′, p′) ∈ V, p, g, p′, g′ ∈ VG. Let w be a path between s and t in OG that

uses k > 2, k even, optical links.

If g 6= g′ and p 6∈ {g, g′}, then a path w′ between s and t exists such that

• w′ uses two optical link,

• |w′| ≤ |w| − k + 2, and

• |w′| = dG(p, p′) + dG(g, g′) + 2.

If g 6= g′, p = g, and p 6= g′, then a path w′ between s and t exists such that

• w′ uses one optical link,

• |w′| ≤ |w| − k + 1, and
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• |w′| = dG(p, p′) + dG(g, g′) + 1 = dG(g, p′) + dG(p, g′) + 1.

If g 6= g′, p 6= g, and p = g′, then a path w′ between s and t exists such that

• w′ uses one optical link,

• |w′| ≤ |w| − k + 1, and

• |w′| = dG(p, g′) + dG(g, p′) + 1 = dG(g, p′) + 1.

If g = g′, then a path w′ between s and t exists such that

• w uses no optical links,

• |w′| ≤ |w| − k, and

• |w′| = dG(p, p′).

Proof:

The proof can be done analogously to the proof of Lemma 5.12. Let k =

2l, l > 1. W.l.o.g. we write w as

(g0, p0) ←→∗
g0

(g0, p1)

←→o (p1, g0)

←→∗
p1

(p1, g1)

←→o (g1, p1)
...

...

←→∗
pl

(pl, gl)

←→o (gl, pl)

←→∗
gl

(gl, pl+1),

where p0, . . . , pl+1, g0, . . . , gl ∈ VG, pi 6∈ {gi−1, gi}, i ∈ {1, . . . , l}, and g0 =

g, p0 = p, gl = g′, pl+1 = p′.
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In w (sub)paths between pi and pi+1 in group gi, i ∈ [l], exist. By the triangle

inequality and the fact that all groups are isomorphic to G, the sum of the

length of these paths is greater or equal to the length of a shortest path

from p0 to pl+1 in group p0.

In w (sub)paths between gi and gi+1 in group pi+1, i ∈ [l], exist. By the

triangle inequality the sum of the length of these paths is greater or equal

to the length of a shortest path from g0 to gl in group gl.

If p 6∈ {g, g′}, then p0 6= g0 and p0 6= gl. Let w′ be

(g0, p0) ←→o (p0, g0)

←→∗
p0

(p0, gl)

←→o (gl, p0)

←→∗
gl

(gl, pl+1)

Path w uses k > 3 optical links and path w′ two. Hence we get |w′| ≤
|w| − k + 2. It holds

|w′| = dG(g0, gl) + dG(p0, pl+1) + 2 = dG(g, g′) + dG(p, p′) + 2.

If p = g′ and p 6= g, then p0 = gl and p0 6= g0. Let w′ be

(g0, p0) ←→o (p0, g0)

←→∗
p0

(gl, pl+1).

Path w′ consists an optical link and a shortest path in g0 between g0 and

pl+1. This path is of shorter or equal length than a path in group g0 from

node g0 to node gl = p0 to node pl+1. Thus |w′| ≤ |w| − k + 1 and |w′| =

dG(p, g′) + dG(g, p′) + 1 = dG(g, p′) + 1.

If p 6= g′ and p = g, then g0 6= gl and p0 = g0. Let w′ be

(g0, p0) ←→∗
g0

(g0, gl)

←→o (gl, g0)

←→∗
gl

(gl, pl+1)
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Path w′ consists of a shortest path in group g0 between p0 = g0 and gl, a

shortest path in group gl between g0 = p0 and pl+1 and one optical link.

Thus |w′| ≤ |w| − k + 1 and |w′| = dG(g, g′) + dG(p, p′) + 1 = dG(p, g′) +

dG(g, p′) + 1.

If p = g′ = g, then w′ = (g, p) ←→∗
g (g, p′), |w′| ≤ |w| − k, and |w′| =

dG(p, p′). 3

Now we determine a lower bound for the length of a path that uses one or

two optical links. Remember that the only possibility to come from a group

g to a group g′, g 6= g′, is to use optical links.

Lemma 5.14 Let OG = (V, E) be an OTIS-G network and s = (g, p), t =

(g′, p′) ∈ V, p, g, p′, g′ ∈ VG. Let w be a path between s and t in OG that

uses one optical link. Then g 6= g′ and |w| ≥ dG(g, p′) + dG(g′, p) + 1.

Proof:

Path w uses one optical link. Assume {(g, x), (x, g)}, x ∈ VG, is the optical

link. Then g 6= x by the definition of OTIS networks. Path w is a path

between (g, p) and (g′, p′). Hence x = g′. This yields g 6= g′.

Any path between s and t that uses one optical link has to use this link

between nodes (g, g′) and (g′, g). Hence |w| ≥ dG(p, g′) + dG(p′, g) + 1. 3

Lemma 5.15 Let OG = (V, E) be an OTIS-G network and s = (g, p), t =

(g′, p′) ∈ V, p, g, p′, g′ ∈ VG. Let w be a path between s and t in OG that

uses two optical links. Then |w| ≥ dG(g, g′) + dG(p′, p) + 2.

Proof:

Path w uses two optical links and is a path between (g, p) and (g′, p′). Hence

w uses one optical link between nodes (g, x) and (x, g) and another between

the nodes (y, g′) and (g′, y), where x 6= g and y 6= g′. Thus x = y and

|w| ≥ dG(p, x) + dG(g, g′) + dG(y, p′) + 2 ≥ dG(p, p′) + dG(g, g′) + 2. 3
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Now we consider the case where both nodes are in the same group. We show

that the shortest path in such a case is a path within the group.

Lemma 5.16 Let OG = (V,E) be an OTIS-G network and s = (g, p), t =

(g, p′) ∈ V, p, g, p′ ∈ VG. A shortest path between s and t in OG uses no

optical link. Furthermore, dOG
(s, t) = dG(p, p′).

Proof:

By Lemma 5.13 and Lemma 5.12 we know that a shortest path uses zero,

one, or two optical links. By Lemma 5.14 we know that one link is not

possible, by Lemma 5.15 we know that a path between s and t that uses

two optical links has at least a length of dG(p, p′)+2. In Gg a shortest path

between s and t has length dG(p, p′). 3

The following theorem describes shortest paths in an OTIS-G network.

Theorem 5.17 (Shortest Paths in OTIS-G Networks.) Let OG be an

OTIS-G network and s = (g, p), t = (g′, p′), p, g, p′, g′ ∈ VG. Let path

p(s, t) be given as follows:

If g = g′, then p(s, t) is a shortest path between p and p′ in Gg.

If g 6= g′, then p(s, t) is the shortest of the two paths p1(s, t) and p2(s, t).

• p1(s, t)
def= (g, p) ←→∗

g (g, g′) ←→o (g′, g) ←→∗
g′ (g′, p′),

• p2(s, t)
def= (g, p) ←→∗

g (g, p′) ←→o (p′, g) ←→∗
p′ (p′, g′) ←→o (g′, p′).

(In the case p′ ∈ {g, g′} the path p2(s, t) does not exist and we set |p2(s, t)|
= ∞.)

Then |p(s, t)| = dOG
(s, t).

Furthermore, if g = g′, then p(s, t) = dG(p, p′) and if g 6= g′, then |p(s, t)| =
min{dG(g, p′) + dG(g′, p) + 1, dG(p, p′) + dG(g, g′) + 2}.
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Proof:

The case g = g′ follows from Lemma 5.16.

In the case g 6= g′ a shortest path between s and t uses one or two optical

links. Path p1(s, t) uses one optical link, is a path from s to t, and has length

dG(p, g′) + dG(p′, g) + 1. By Lemma 5.14 there is no shorter path between s

and t that uses one optical link.

If p 6∈ {g, g′}, then p2(s, t) exists, uses two optical links, is a path between s

and t, and has length dG(g, g′)+dG(p, p′)+2. By Lemma 5.15 no shorter path

between s and t that uses two optical links exists. If p ∈ {g, g′}, then p2(s, t)

does not exist. In this case dG(g, g′)+dg(p, p′)+2 ≥ dG(p, g′)+dG(g, p′)+2

and since g 6= g′ the shortest path between s and t uses one optical link and

has length dG(p, g′) + dG(g, p′) + 1. 3

Now we are able to determine the diameter of an OTIS-G network.

Theorem 5.18 (Diameter of OTIS-G ([5, 50, 52]).) The diameter of

an OTIS-G network is 2D(G) + 1.

Proof:

By Theorem 5.17 D(OG) ≤ 2D(G) + 1.

Remember that |VG| > 1. Hence there exists nodes p, g, p 6= g in VG such

that dG(p, g) = D(G). Consider nodes s = (g, g) and t = (p, p) in OG.

Theorem 5.17 yields dOG
(s, t) = 2dG(p, g) + 1 = 2D(G) + 1. 3

The proof of the theorem shows that nodes (g, g) and (p, p) in an OTIS-

G network have maximal distance when dG(g, p) = D(G). Furthermore,

a node (g, g) is not incident to an optical link and has degree degG(g) <

deg(OG). Any node (g, p), where g 6= p, is incident to one optical link and

has degree degG(p) + 1 ≤ deg(OG). This observation is the motivation for

the introduction of Extended OTIS networks.
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5.7 Extended OTIS-G Networks.

In this section, we reduce the diameter of OTIS-G networks. We extend

the definition of an OTIS-G network by adding optical links to nodes (g, p),

where g = p. These additional links do not increase the degree of the

network.

5.7.1 Basic Definitions and Properties.

We begin with the definition of an Extended OTIS-G network.

Definition 5.19 (Extended OTIS-G network using f .)

Let G = (VG, EG), |VG| > 1, be a graph and f : VG −→ VG be a mapping

such that f ◦ f = idVG
. The Extended OTIS-G network using f (or XG,f

network for short) is a triple (V,E, f), where (V,E) is an undirected graph

with node set V = VG × VG and edge set E = Ee ∪ Eo ∪ Ef , where

Ee = {{(g, p), (g, p′)} | g, p, p′ ∈ VG ∧ {p, p′} ∈ EG},
Eo = {{(g, p), (p, g)} | p, g ∈ VG, p 6= g}, and

Ef = {{(g, g), (f(g), f(g))} | g ∈ VG, f(g) 6= g}.

We call edges in Eo optical links, edges in Ee electronical links, and edges in

Ef f-links. We use ←→o to denote optical links, ←→e to denote electronical

links, and ←→f to denote f-links.

We observe some simple properties following directly from the definition of

an XG,f network (V, E, f):

• |V | = |VG|2 = |VOG
|.

• |E| = |VG||EG|+ |VG|2−|VG|
2 + |{x|f(x)6=x}|

2 = |EOG
|+ |{x|f(x) 6=x}|

2 .

• degXG,f
((g, p)) = degOG

((g, p)) = degG(p) + 1 if g 6= p.
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• degXG,f
((g, g)) = degOG

((g, g)) + 1 = degG(g) + 1 if f(g) 6= g.

• degXG,f
((g, g)) = degOG

((g, g)) = degG(g) if f(g) = g.

• If f has no fixed-point and G is a regular graph, then XG,f is a deg(G)+

1-regular graph.

• XG,id is isomorphic to OG.

• D(XG,f ) ≤ 2D(G) + 1, [5, 50], Theorem 5.18.

• An OTIS-G network can be embedded into an Extended OTIS-G net-

work using f with dilation, congestion and load one. Hence algorithms

for OTIS-G networks can be performed in Extended OTIS-G networks

using f without any delay.

We assume f 6= id. Thus an x ∈ VG exists such that f(x) 6= x. In the case

f = id is allowed, we note it explicitly.

5.7.2 Shortest Paths in Extended OTIS-G Networks.

Before we start, we introduce some notations for paths. We use x ←→∗ y

for a shortest path between x and y in XG,f , x ←→∗
−f

y for a shortest path

between x and y in XG,f taken from the set of all paths between x and y in

XG,f without an f -link, and x ←→∗
g y for a shortest path between x and y

in Gg.

We say a path p uses k f-links if k = |{e ∈ EXG,f
: p uses e and e is an

f -link }| edges of the path are f -links.

A path in XG,f that uses no f -link is a path in OG, and a path in OG is a

path in XG,f that uses no f -link. We get the following lemma.

Lemma 5.20 Let (V, E, f) be an Extended OTIS-G network using f , s =

(g, p), t = (g′, p′) ∈ V, p, g, p′, g′ ∈ VG and p(s, t) as in Theorem 5.17.
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Then |p(s, t)| = dOG
(s, t) = |s ←→∗

−f
t|.

Proof:

Path p(s, t) uses no f -link. Hence |p(s, t)| ≥ |s ←→∗
−f

t|. A path between s

and t in XG,f that uses no f -link is a path between s and t in OG. Hence

|s ←→∗
−f

t| ≥ dOG
(s, t). Theorem 5.17 yields dOG

(s, t) = |p(s, t)|. 3

A path that uses k f -links can be decomposed into k + 1 subpaths that

use no f -link and k paths of length one that use one f -link. These k + 1

subpaths have a special form. Their first or last node or both of them have

the form (x, x), x ∈ VG. Before we begin to analyse the length of paths

with f -links, we analyse these special paths. The following lemma can be

obtained by Theorem 5.17.

Lemma 5.21 Let (V,E, f) be an Extended OTIS-G network using f and

s = (g, p), t = (g′, p′) ∈ V, p, g, p′, g′, g 6= g′ ∈ VG. Then the following

holds:

• If p = g or p′ = g′, then dOG
(s, t) = dG(p, p′) + dG(g, g′) + 1.

• If p = g and p′ = g′, then dOG
(s, t) = 2dG(p, p′)+ 1 = 2dG(g, g′) + 1 =

2dG(p, g′) + 1 = 2dG(p′, g) + 1.

In both cases a shortest path between s and t uses one optical link.

Now we analyse paths using exactly one f -link.

Lemma 5.22 Let (V,E, f) be an Extended OTIS-G network using f , s =

(g, p), t = (g′, p′), X = (x, x) ∈ V, p, g, p′, g′, x ∈ VG, f(x) 6= x. Let

p(s, t, X) be a path of the following form.

p(s, t,X) def= s ←→∗
−f

(x, x) ←→f (f(x), f(x)) ←→∗
−f

t
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Then path p(s, t,X) is a path between s and t. It uses one f-link (at node

X) and has length dG(g, x) + dG(p, x) + dG(g′, f(x)) + dG(p′, f(x)) + 1 +

δx, where

δx =





0 : x = g and f(x) = g′

1 : x = g xor f(x) = g′

2 : x 6= g and f(x) 6= g′.

Proof:

By Lemma 5.20 and Lemma 5.21:

|p(s, t, X)|= dOG
((g, p), (x, x)) + dOG

((f(x), f(x)), (g′, p′)) + 1

= dG(g, x) + dG(p, x) + dG(f(x), g′) + dG(f(x), p′) + 1 + δx.

3

It is obvious that the number of used f -links used by a shortest path in an

Extended OTIS-G network depends on the choice of f . A desirable property

of a shortest path would be if it uses at most one f -link. This can be achieved

if we choose f such that it respects dG.

Definition 5.23 Let G = (VG, EG) be a graph and f : VG −→ VG a map-

ping. We say f respects dG if and only if dG(x, y) = dG(f(x), f(y)) for all

x, y ∈ VG.

We observe a simple property.

Lemma 5.24 Let G = (VG, EG) be a graph and f ◦ f = idVG
. Then f

respects dG ⇐⇒ dG(x, f(y)) = dG(f(x), y) for all x, y ∈ VG.

Proof:

Let x, y ∈ VG and a = f(x), b = f(y).
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=⇒: dG(x, f(y)) = dG(f(x), f(f(y))) = dG(f(x), y).

⇐=: dG(x, y) = dG(x, f(b)) = dG(f(x), b) = dG(f(x), f(y)). 3

Now we prove that a shortest path in XG,f uses at most one f -link provided

f respects dG.

Lemma 5.25 Let (V, E, f) be an XG,f network, f respects dG, and s =

(g, p), t = (g′, p′) ∈ V, g, p, g′, p′ ∈ VG.

If a path w between s and t in XG,f exists that uses k ≥ 2 f -links, then there

exists a path w′ between s and t such that w′ uses at most one f -link and

|w′| < |w|.

Proof:

W.l.o.g. we can assume that w is of the following form
(g, p) ←→∗

−f
(m1,m1) ←→f (f(m1), f(m1))

←→∗
−f

(m2,m2) ←→f (f(m2), f(m2))

←→∗
−f

...
...

...

←→∗
−f

(mk,mk) ←→f (f(mk), f(mk))

←→∗
−f

(g′, p′), where

m1, . . . ,mk ∈ VG, and {m1, . . . , mk} ∩ {f(m1), . . . , f(mk)} = ∅.
Lemma 5.20 provides
|w| = dOG

((g, p), (m1,m1)) +
∑k−1

i=1 dOG
((f(mi), f(mi)), (mi+1,mi+1)) +

k +

dOG
((f(mk), f(mk)), (g′, p′)).

By Lemma 5.21 we get

dOG
((g, p), (m1,m1)) ≥ dG(p,m1),

dOG
((f(mi+1), f(mi+1)), (mi,mi)) = 2dG(mi, f(mi+1)) + 1, and

dOG
((f(mk), f(mk)), (g′, p′)) ≥ dG(f(mk), p′).
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Thus

|w| ≥ dG(p,m1) +

2
∑k−1

i=1 dG(mi, f(mi+1)) +

2k − 1 +

dG(p′, f(mk)).

For even k ≥ 2, we construct a path w′ between s and t. Path w′ uses no f -

link and is of equal or shorter length than w. For odd k ≥ 3, we decompose

w into a path pk−1 using k − 1 ≥ 2 f -links and a path using one f -link.

Then we apply the result for even k on pk−1. So we can assume that k ≥ 2

is even. We first consider the case g 6= g′:

w′ = (g, p) ←→∗
g (g, m1)

←→∗
g (g, f(m2))

←→∗
g (g, m3)

...
...

←→∗
g (g,mk−1)

←→∗
g (g, f(mk))

←→∗
g (g, g′)

←→o (g′, g)

←→∗
g′ (g′,m1)

←→∗
g′ (g′, f(m2))

←→∗
g′ (g′,m3)

...
...

←→∗
g′ (g′, mk−1)

←→∗
g′ (g′, f(mk))

←→∗
g′ (g′, p′).

We get for the length of w′:
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|w′| = dG(p,m1) +
k−1∑
i=1

i odd

dG(mi, f(mi+1)) +

k−2∑
i=2

i even

dG(f(mi),mi+1) +

1 +
k−1∑
i=1

i odd

dG(mi, f(mi+1)) +

k−2∑
i=2

i even

dG(f(mi),mi+1) +

dG(p′, f(mk)).

Function f respects dG. We obtain dG(mi, f(mi+1)) = dG(f(mi),mi+1). So

|w′| < |w|.
In the case g = g′ the path w′ is the nearly the same as in the case g 6= g′.

Only the optical link between (g, g′) and (g′, g) is not used. So we have

|w′| < |w| for this case. 3

Plugging the results of the above lemmata together we get:

Theorem 5.26 (Shortest Paths in Extended OTIS-G Networks.)

Let G = (VG, EG) be a connected graph, XG,f = (V, E, f), f respects dG,

and s = (g, p), t = (g′, p′) ∈ V , g, p, g′, p′ ∈ VG. If g 6= g′, then a shortest

path between s and t has length min{1+ dG(g′, p)+ dG(g, p′), 2+ dG(p, p′)+

dG(g, g′), 1+min{dG(g, x)+ dG(p, x)+ dG(g′, f(x))+ dG(p′, f(x))+ δx | x ∈
VG, f(x) 6= x}}. If g = g′, then a shortest path between s and t has length

dG(p, p′).

Proof:

Due to Lemma 5.25, we have to consider paths using at most one f -link.

Case g 6= g′: By Lemma 5.22 a shortest path between s and t using one

f -link at node (x, x) has length 1 + dG(g, x) + dG(p, x) + dG(g′, f(x)) +
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dG(p′, f(x)) + δx. Lemma 5.20 provides that

|s ←→∗
−f

t| = 1 + min{dG(g′, p) + dG(g, p′), 2 + dG(p, p′) + dG(g, g′)}.

Case g = g′: By Lemma 5.22 a path between s and t that uses one f -link

has a length > dG(p, p′). 3

5.7.3 Diameter of Extended OTIS-G Networks.

Theorems 5.26 and 5.17 give information about the length of a shortest path

between two nodes. This will be used in the following sections to give upper

and lower bounds for the diameter of XG,f for some graphs G. A trivial

upper bound for the diameter of XG,f is 2D(G) + 1, (Theorem 5.18).

We begin with a lower bound for the diameter of XG,f (f = id included).

In the following FG = {f | f : VG −→ VG, f ◦ f = id}.

Theorem 5.27 For all f ∈ FG: D(XG,f ) ≥ D(G) + 1.

Proof:

Case |VG| = 2: There are two possibilities for XG,f . See Figure 5.5, (b), (c).

In (c) we have f(0) = 1 and f(1) = 0. In (b) and (c) the diameter is at least

D(G) + 1.

Case |VG| > 2: Choose g, p ∈ VG such that dG(p, g) = D(G). There exists a

p′ ∈ VG − {p, g} such that {p, p′} ∈ EG or {g, p′} ∈ EG. W.l.o.g. we assume

that {p, p′} ∈ EG. So dG(g, p′) ≥ D(G)− 1. Set s = (g, p) and t = (p′, p).

We have g 6= p′. Hence a shortest path w between s and t in X uses f -links

or optical links. If it uses optical links but no f -links, then dXG,f
(s, t) =

min{1 + dG(g, p) + dG(p′, p), 2 + dG(g, p′) + dG(p, p)} ≥ D(G) + 1. Now we

consider the case that w uses at least one f -link. Path w is undirected.

Hence it describes a path from s to t and a path from t to s. Consider for
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(a)

(b) (c)

1,1

0,0 0,1 0,1

1,0 1,11,0

0,0

0 1

Figure 5.5: Extended OTIS-G networks, |VG| = 2.

Case |VG| = 2 in proof of Theorem 5.27.

(a) G, (b) XG,id, (c) XG,f .

a moment the (directed) path from s to t. Let (x, x) be the node where

the first f -link starts and let (y, y) be the node where the last f -link ends.

Further, let w1 be the (sub)path (in w) between s and (x, x) and w2 be the

(sub)path (in w) between (y, y) and t. Path w is a shortest path and hence

also w1 and w2 are shortest paths. We have |w| ≥ |w1|+ |w2|+1. In w1 and

w2 no f -link is used. From Lemma 5.21 follows that |w1| ≥ dG(p, g) = D(G)

and |w2| ≥ dG(p, p′) = 1. Therefore |w| ≥ D(G) + 2. 3

For the example in Figure 5.5 D(XG,f ) = D(G) + 1 holds.

In the following, we analyse the diameter of XG,f for some special graphs G.

We consider hypercubes, rings, and meshes. We give f such that the diam-

eter of XG,f is optimal, i.e. for all f ′ ∈ FG we have D(XG,f ) ≤ D(XG,f ′).

5.7.3.1 Hypercubes.

Definition 5.28 (Hypercube) An n-dimensional hypercube Hn=(Vn, En)

is a graph with node set Vn = {0, 1}n and edge set
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1010

Figure 5.6: HCN(2,2).

This figure shows optical links as dashed lines, f -links as dotted lines, and

electronic links as solid lines.

En = {{(x0, . . . xn−1), (y0, . . . , yn−1)} | xi, yj ∈ {0, 1}, ∑k∈[n] |xk − yk| = 1}.

The distance between nodes x, y ∈ {0, 1}n in Hn is the number of different

bits of x and y, i.e. dHn(x, y) =
∑

k∈[n] |xi xor yi|. Hence the diameter of

Hn is n.

Let x be the complement of x ∈ {0, 1} and x = (x0, . . . , xn−1), x ∈ {0, 1}n.

For x ∈ {0, 1}n, we set fn(x) def= x. Note that fn respects dHn . The Extended

OTIS-Hn network using fn is isomorphic to the Hierarchical Cubic Network

of size n denoted by HCN(n, n) in [57]. In [57] it was shown that the

diameter of HCN(n, n) is n+b(n+1)/3c+1. Figure 5.6 shows an HCN(2, 2)

network.

Theorem 5.29 For all f ∈ FHn: D(XHn,f ) ≥ n + b(n + 1)/3c+ 1.

Proof:
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The proof uses ideas of the proof of Theorem 5.27.

Let s, t be two nodes of XHn , s = (g, p), t = (g′, p′), w a shortest path

between s and t, and m = b(n + 1)/3c. First, we assume that n > 1 and

hence m > 0.

Case n mod 3 = 0: In this case 4m + 1 = n + b(n + 1)/3c+ 1. Set g = 03m,

p = 0m1m1m, g′ = 1m1m0m and p′ = 1m0m1m. If there are no f -links in w,

then |w|= min{1+dHn(g, p′)+dHn(g′, p), 2+dHn(g, g′)+dHn(p, p′)}= 4m+1.

If there are f -links in w, we choose w1, w2 and x, y as in the proof of theorem

5.27. We get |w| ≥ |w1|+ |w2|+ 1 = dHn(g, p) + dHn(p, p′) + 1 = 4m + 1.

Case n mod 3 = 1: In this case 4m+2 = n+b(n+1)/3c+1. Set g = 03m+1,

p = 0m1m1m+1, g′ = 1m1m0m+1 and p′ = 1m0m1m+1. We get |w| ≥ 4m + 2.

Case n mod 3 = 2: In this case 4m = n+b(n+1)/3c+1. This case is a little

bit more complicated. To show the bound we have to consider two pairs of

source and destination processors. First, set g = 03m−1, p = 0m1m1m−1,

g′ = 1m1m0m−1 and p′ = 1m0m1m−1. If w uses no f -link, then |w| ≥ 4m.

If w uses an f -link, then |w| ≥ 4m, provided f(g) 6= g′. If f(g) = g′, then

we can only conclude that |w| ≥ 4m − 1. Now, we consider s1 = (g1, p1),

t1 = (g′1, p′1), g1 = g, p1 = 1m−10m1m, g′1 = 1m−11m0m, p′1 = 0m−11m1m.

Again we are able to conclude that a shortest path between s1 and t1 that

uses no f -link has length ≥ 4m and that a shortest path between s1 and

t1 that uses an f -link has length ≥ 4m, provided f(g) 6= g′1. One of the

distances dXHn,f
(s, t) or dXHn,f

(s1, t1) is at least 4m.

If n = 1, then n + b(n + 1)/3c + 1 = 2. All possibilities for XH1,f can be

seen in Figure 5.5. 3

Corollary 5.30 The function fn is optimal for the diameter of the Ex-

tended OTIS-Hn network using f , i.e., for all f ∈ FHn we have D(XHn,f )

≥ D(XHn,fn).
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Corollary 5.31 Any addition of links to an OTIS-Hn network that does

not increase the degree of the network results in a diameter of at least n +

b(n + 1)/3c+ 1.

Proof:

The n-dimensional hypercube is n-regular. Nodes (g, p), g, p ∈ Vn, p 6= g,

of the OTIS-Hn network have degree n + 1. Nodes (g, g), g ∈ Vn, of the

OTIS-Hn network have degree n. Therefore, without increasing the degree

of the network, links can only added between nodes in {(g, g) | g ∈ Vn}. 3

5.7.3.2 Rings.

Definition 5.32 (Ring) A ring Rn = (Vn, En) of size n > 1 is a graph

with node set Vn = [n] and edge set En = {{i, (i + 1)mod n} | i ∈ [n]}.

In a ring of size n the length of a shortest path between node x and node y

is min{|x− y|, n− |x− y|}. If n is an odd integer, then the diameter of Rn

is n−1
2 . If n is even, then D(Rn) = n

2 .

Figure 5.7 shows an Extended OTIS-R3 network using f , where f(0) =

2, f(1) = 1, and f(2) = 0.

In a ring of size n, for all x ∈ Vn an y ∈ Vn exists such that dRn(x, y) =

D(Rn). Hence in an OTIS-Rn network for each node (x, x) a node (y, y)

exists such that dORn
((x, x), (y, y)) = 2D(Rn)+1. If f respects dRn and has

at least one fixed-point, then the distance of at least one pair (x, x), (y, y)

remains 2D(Rn) + 1 in an Extended OTIS-Rn network.

Lemma 5.33 If f ∈ FRn, f respects dRn and {x | f(x) = x} 6= ∅, then

D(XRn,f ) = 2D(Rn) + 1.

Proof:

There are x, y ∈ Vn such that f(x) = x and dRn(x, y) = D(Rn). Let w
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1,0

1,2

1,1

2,0

2,2

2,1

0,0

0,2

0,1

Figure 5.7: The structure of XR3,f .

This figure shows XR3,f , where f(0) = 2, f(1) = 1, and f(2) = 0. Note

that D(XR3,f ) = 2D(R3) + 1 = 3. Optical links are depicted as dashed

lines, f -links as dotted lines, and electronic links as solid lines.

be a shortest path between (x, x) and (y, y). If w uses no f -link, then

|w| = 2D(Rn)+1 (Lemma 5.20). If w uses f -link {(z, z), (f(z), f(z))}, then

|w| ≥ dORn
((x, x), (z, z)) + dORn

((y, y), (f(z), f(z))) + 1

≥ 2dRn(x, z) + 2dRn(y, f(z)) + 1

= 2dRn(f(x), f(z)) + 2dRn(y, f(z)) + 1

≥ 2dRn(f(x), y) + 1

= 2dRn(x, y) + 1

= 2D(Rn) + 1.

3

Corollary 5.34 For odd n there is no f ∈ FRn such that f respects dRn

and D(XRn,f ) < 2D(Rn) + 1.

Proof:

For odd n a function f ∈ FRn has a fixed-point. 3

For x ∈ Vn and even n, we set
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0,0

0,1

0,2

0,3

3,0

3,1

3,2

2,0

2,1

2,2

2,3

1,0

1,2

1,3 1,13,3

Figure 5.8: The structure of XR4,f4 .

Optical links are depicted as dashed lines, f -links as dotted lines, and

electronic links as solid lines.

fn(x) def= (x + n
2 ) mod n

=





x + n
2 , x < n

2

x− n
2 , x ≥ n

2 .

Figure 5.8 presents XR4,f4 . The following lemma shows that fn respects

dRn .

Lemma 5.35 For even n ≥ 2 the function fn : Vn −→ Vn has the following

properties:

1. fn ◦ fn = idVn

2. fn respects dRn

3. ∀x, y ∈ Vn : dRn(x, fn(y)) + dRn(x, y) = D(Rn).

Proof:
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y

f (y)

f (x)

x

Figure 5.9: Mirror property of fn.

1. Let x ∈ Vn. fn(fn(x)) = (x + n) mod n = x.

2. Let x, y ∈ Vn. If x, y < n
2 or x, y ≥ n

2 , then |fn(x) − fn(y)| = |x − y|
and hence dRn(fn(x), fn(y)) = dRn(x, y). If x < n

2 and y ≥ n
2 or

x ≥ n
2 and y < n

2 , then |fn(x) − fn(y)| = n − |x − y| and hence

dRn(fn(x), fn(y)) = dRn(x, y).

3. Let x, y ∈ Vn. Observe that fn mirrors x at the centre of the ring

(see Figure 5.9), i.e. dRn(x, fn(x)) = n
2 = D(Rn). Hence dRn(y, x) +

dRn(y, fn(x)) = D(Rn).

3

For Extended OTIS-Rings Lemma 5.22 can be simplified. For these networks

it is sufficient to calculate a minimum of four elements.

Lemma 5.36 Let p, p′, g, g′ ∈ Vn, S = {p, fn(p′), g, fn(g′)}, and δx defined

as in Lemma 5.22. Then

min{dRn(p, x) + dRn(g, x) + dRn(p′, fn(x)) + dRn(g′, fn(x)) + δx | x ∈ Vn}
=

n + min{dRn(p, x) + dRn(g, x)− dRn(p′, x)− dRn(g′, x) + δx | x ∈ S}

Proof:
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For x ∈ Vn we define

gx : [n + 2] −→ N0

y 7→ dRn(x, y mod n)

For all y ∈ [n + 1] it holds gx(y + 1)− gx(y) ∈ {−1, 1}.
In the case gx(y + 1) − gx(y) = 1 and y ∈ [n + 1], we say gx increase at y

and in the case gx(y + 1)− gx(y) = −1 and y ∈ [n + 1], we say gx decrease

at y.

For x > 0, y ∈ {1, . . . , n}, we get:

If gx decrease at y − 1 and increase at y, then y = x.

If g0 decrease at y − 1 and increase at y, then y = n.

For ∅ 6= X ⊆ Vn consider the function

hX : [n + 2] −→ N0

y 7→ ∑
x∈X

gx(y).

For all y ∈ [n + 1] it holds hX(y + 1) − hX(y) ∈ {−|X|, . . . , |X|}. For

y ∈ [n+1] we say hX increase at y if hX(y +1)−hX(y) > 0, hX is constant

at y if hX(y+1)−hX(y) = 0, and hX decrease at y if hX(y+1)−hX(y) < 0.

Now we prove

min{hX(y) | y ∈ {1, . . . , n}} = min{hX(y) | y ∈ X}. (5.2)

If hX is constant at y for all y ∈ {1, . . . , n}, then 5.2 holds. If h is not

constant for all y ∈ {1, . . . , n}, then y′ ∈ {1, . . . , n} exists such that hX(y′) =

min{hX(y) | y ∈ {1, . . . , n}} and hX increase at y′ and hX decrease at y′−1

or is constant at y′ − 1.

If function hX increase at y′ and hX decrease at y′ − 1 or is constant at

y′ − 1, then at least one function gx, x ∈ X decrease at y′ − 1 and increase

at y′. So y′ mod n ∈ X. Hence 5.2 holds.
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Function fn respects dRn . Therefore

dRn(p, x) + dRn(g, x) + dRn(p′, fn(x)) + dRn(g′, fn(x))

=

dRn(p, x) + dRn(g, x) + dRn(fn(p′), x) + dRn(fn(g′), x).

Setting X = S in 5.2 provides

min{dRn(p, x) + dRn(g, x) + dRn(fn(p′), x) + dRn(fn(g′), x) | x ∈ Vn}=
min{dRn(p, x) + dRn(g, x) + dRn(fn(p′), x) + dRn(fn(g′), x) | x ∈ S}.

Lemma 5.35 yields dRn(fn(p′), x) = n
2 − dRn(p′, x) and dRn(fn(g′), x) =

n
2 − dRn(g′, x). Furthermore, δx = 2 for x ∈ Vn−S and δx ≤ 2 for x ∈ S. 3

We show that the length of a shortest path is at most n
2 +2. The proofs are

based on exhaustive case distinction.

In the next two lemmata, we show that in some cases the length of a path

that uses no f -link can be bound from above by n
2 + 2.

Lemma 5.37 Let p, p′, g, g′ ∈ Vn, w1 a shortest path between p and g in

Rn, and w2 a shortest path between p′ and g′ in Rn. If V (w1)∩ V (w2) 6= ∅,
then min{dRn(g, g′) + dRn(p, p′) + 2, dRn(g, p′) + dRn(p, g′) + 1} < n

2 + 2.

Proof:

We set a := dRn(g, g′)+ dRn(p, p′)+ 2 and b := dRn(g, p′)+ dRn(p, g′)+ 1. If

a+b < n+4, then min{a, b} < n
2 +2. The following three cases are possible.

Case w1 uses p′ and g′.

In this case dRn(g, g′) + dRn(p, p′) = dRn(g, p′) + dRn(g′, p) = d(g, p). Hence

a + b ≤ 2dRn(g, p) + 3 ≤ n + 3.

Case w1 uses g′ but not p′.
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Figure 5.10: Cases for the proof of Lemma 5.38.

In this case dRn(g, g′) + dRn(g′, p) = dRn(g, p). There are two subcases.

Subcase w2 uses p. There are two possibilities. First n = dRn(p, p′) +

dRn(p, g′) + dRn(g, g′) + dRn(p′, g) and second dRn(p′, g) = dRn(p, p′) +

dRn(p, g′)+ dRn(g, g′). For both possibilities we get a+ b ≤ n+3. Subcase

w2 uses g. There are two possibilities. First n = dRn(p, g′) + dRn(g, g′)

+ dRn(g, p′) + dRn(p, p′) and second dRn(p, p′) = dRn(p, g′) + dRn(g′, g) +

dRn(g, p′). For both possibilities we get a + b = n + 3.

Case w1 uses p′ but not g′.

The proof can be done analogously to the case w1 uses p′ and g′. Write p′

where g′ occurs and vice versa. 3

Lemma 5.38 Let p, p′, g, g′ ∈ Vn, w1 be a shortest path between p and g

and w2 a shortest path between p′ and g′ in Rn. If V (w1) ∩ V (w2) = ∅ and

dRn(p, g)+dRn(p′, g′) ≥ n
2 , then min{dRn(g, g′)+dRn(p, p′)+2, dRn(g, p′)+

dRn(p, g′) + 1} < n
2 + 3.

Proof:

We set a := dRn(g, g′) + dRn(p, p′) + 2 and b := dRn(g, p′) + dRn(p, g′) + 1.

There are two possible cases. See Figure 5.10. In case 1, we have dRn(p, g)+

dRn(g, g′)+dRn(g′, p′)+dRn(p′, p) = n. So dRn(p, g)+dRn(p′, g′)+a = n+2

and hence a ≤ n
2 + 2 follows.

In case 2, we have dRn(p, g) + dRn(g, p′) + dRn(p′, g′) + dRn(g′, p) = n. So
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dRn(p, g) + dRn(p′, g′) + b = n + 1 and hence b ≤ n
2 + 1 follows. 3

Now we show that if a path with no f -link has a length greater than or equal

to n
2 + 3, then there exists a path that uses one f -link and has a length of

at most n
2 + 2.

Lemma 5.39 Let p, p′, g, g′ ∈ Vn, S := {p, fn(p′), g, fn(g′)}, w1 a shortest

path between p and g in Rn, and w2 a shortest path between p′ and g′ in

Rn. If V (w1)∩V (w2) = ∅, dRn(p, g)+dRn(p′, g′) < n
2 and min{dRn(g, g′)+

dRn(p, p′) + 2, dRn(g, p′) + dRn(p, g′) + 1} ≥ n
2 + 3, then n + min{dRn(p, x) +

dRn(g, x)− dRn(p′, x)− dRn(g′, x) + δx | x ∈ S} +1 < n
2 + 3.

Proof:

We set a := dRn(p, g), b := dRn(p, p′), c := dRn(p, g′), d := dRn(g, p′),

e := dRn(g, g′), and f := dRn(p′, g′). Let x1 := n − b − d + f + δf(p′) + 1,

x2 := n − c − e + f + δf(g′) + 1, x3 := n − b − c + a + δp + 1, x4 :=

n − d − e + a + δg + 1, and x5 := min{x1, x2, x3, x4}. Observe that x5 =

n + min{dRn(p, x) + dRn(g, x) − dRn(p′, x) − dRn(g′, x) + δx | x ∈ S} +1,

a + f < n
2 , e + b ≥ n

2 + 1, and d + c ≥ n
2 + 2. There are twelve possible

positions for p, p′, g, g′. See Figure 5.11.

This results in four cases:

1. e = d + f : x2 = n− (c + d) + δf(g′) + 1 ≤ n
2 + δf(g′) − 1 ≤ n

2 + 1.

2. d = e + f : x1 = n− (b + e) + δf(p′) + 1 ≤ n
2 + δf(p′) ≤ n

2 + 2.

3. d = a + b: x4 = n− (b + e) + δg + 1 ≤ n
2 + δg ≤ n

2 + 2.

4. e = a + c: x4 = n− (c + d) + δp + 1 ≤ n
2 + δp − 1 ≤ n

2 + 1.

3

Now we consider the case n = 2.
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Figure 5.11: Cases for the proof of Lemma 5.39.
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Lemma 5.40 D(XR2,f2) = 2 and for all f ∈ FR2: D(XR2,f ) ≥ 2.

Proof:

See Figure 5.5. 3

Before we calculate the diameter for the Extended OTIS-Rn network using

fn, we give a lower bound for the diameter.

Theorem 5.41 Let n ∈ N. For all f ∈ FRn: D(XRn,f ) ≥ n
2 + 2.

Proof:

The case n = 2 follows from Lemma 5.40.

For n > 2 the proof is similar to the proof of Theorem 5.29, case n mod 3 =

2. We omit the details and only give s, t, s1 and t1.

Case n = 4m for m > 0: s = (0,m), t = (3m, 2m), s1 = (0, 3k), t1 = (k, 2k).

Case n = 4m+2 for m > 0: s = (0, 2m+2), t = (2m, 2m+1), s1 = (0, 2m),

t1 = (2m + 2, 2m + 1). 3

Corollary 5.42 For even n > 0 any addition of links to the OTIS-Rn net-

work that does not increase the degree of the network results in a diameter

≥ n
2 + 2.

Now we are able to conclude that for all even n > 0 the diameter of the

Extended OTIS-Rn network using fn is D(Rn) + 2.

Theorem 5.43 (Diameter of XRn,f .) For even n > 0 the diameter of the

Extended OTIS-Rn network using fn is n
2 + 2 = D(Rn) + 2.

Proof:

By Theorem 5.41 D(XRn,f ) ≥ D(Rn) + 2.

Let (p, g), (p′, g′) be two nodes of XRn,fn . By Lemma 5.39, 5.38, 5.37, and

5.36:
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min{(a), (b), (c)} ≤ n
2 + 2, where

(a) = 1 + dRn(g′, p) + dRn(g, p′),

(b) = 2 + dRn(p, p′) + dRn(g, g′), and

(c) = min{dRn(g, x) + dRn(p, x) + dRn(g′, f(x)) + dRn(p′, f(x)) + δx | x ∈
Vn, f(x) 6= x}}+ 1

Theorem 5.26 yields D(XRn,f ) ≤ n
2 + 2. Note that n

2 + 2 = D(Rn) + 2.

3

5.7.3.3 One-dimensional Meshes.

For x ∈ [n], we set

fn(x) def= n− x− 1.

Function fn respects dM1,n . Figures 5.12, 5.13 present XM1,4,f4 and XM1,5,f5 .

For one-dimensional meshes a lemma similar to Lemma 5.36 for rings can be

obtained and used to show that the diameter of an Extended OTIS-M1,n net-

work using fn is n. We present another way to proof this. The proof uses the

fact that in XM1,n,fn an subgraph exists that is isomorphic5 to XM1,n−2,fn−2 .

For example, the subgraph (VXM1,5,f5
∩ {1, 2, 3}2, EXM1,5,f5

∩ P2({1, 2, 3}2))

of XM1,5,f5 is isomorphic to XM1,3,f3 and the subgraph (VXM1,4,f4
∩ {1, 2}2,

EXM1,4,f4
∩ P2({1, 2}2) of XM1,4,f4 is isomorphic to XM1,2,f2 .

Lemma 5.44 Let n ∈ N, n > 3. The subgraph (VXM1,n,fn
∩ {1, . . . , n −

2}2, EXM1,n,fn
∩P2({1, . . . , n−2}2) of XM1,n,fn is isomorphic to XM1,n−2,fn−2.

5If graph G′ is isomorphic to graph G via an isomorphism f , then XG′,f ′ is isomorphic

to XG,f◦f ′◦f−1 .
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0,0 0,1 0,2 0,3

1,0 1,1

2,1 2,2 2,3

3,1 3,2 3,33,0

1,2 1,3

2,0

Figure 5.12: The structure of XM1,4,f4 .

Optical links are shown as dashed lines, f -links as dotted lines, and

electronic links as solid lines.

2,0

1,4

2,2 2,3 2,4

3,0 3,2 3,3 3,4

4,0 4,2 4,3 4,4

1,0

0,40,0 0,1 0,2 0,3

4,1

3,1

2,1

1,1 1,2 1,3

Figure 5.13: The structure of XM1,5,f5 .

Optical links are shown as dashed lines, f -links as dotted lines, and

electronic links as solid lines.
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Proof:

Let X = (VXM1,n,fn
∩ {1, . . . , n − 2}2, EXM1,n,fn

∩ P2({1, . . . , n − 2}). The

isomorphism maps node (x, y) of X to (x− 1, y − 1) of XM1,n−2,fn−2 . 3

Theorem 5.45 The diameter of the Extended OTIS-M1,n network using fn

is n.

Proof:

D(XM1,n,fn) ≥ n follows from Theorem 5.27. We prove the theorem by

induction on n ≥ 2 using Lemma 5.44. For n = 2, see Figure 5.5. For

n = 3, see Figure 5.12. Now we assume that n > 3. We denote the subgraph

(VXM1,n,fn
∩{1, . . . , n−2}2, EXM1,n,fn

∩P2({1, . . . , n−2}2)) of XM1,n,fn as core

and the rest of the graph as border. By induction hypothesis a shortest path

within the core has length ≤ n− 2. So we only have to observe paths from

the border to the border and from the border to the core. Let M := M1,n

and X := XM,fn . We use the results of Theorem 5.17 and Lemma 5.22

for the construction. First, we consider paths from border to border. Let

p, g ∈ [n].

1. A path between (0, p) and (g, 0): Use path p1((0, p), (g, 0)) (Theo-

rem 5.17). Path p1((0, p), (g, 0)) has a length ≤ n. So dM ((0, p), (g, 0))

≤ n.

2. A path between (0, p) and (g, n−1): For g < p use path p2((0, p), (g, n−
1)) (Theorem 5.17). For g ≥ p use p( (0, p) , (g, n−1) , (0, 0)) (Lemma

5.22). In both cases the path has at most length n. Hence dM ((0, p)

, (g, n− 1)) ≤ n.

3. A path between (0, p) and (n−1, g): For g < p use path p1((0, p), (n−
1, g)). For g ≥ p use p((0, p), (n− 1, g), (0, 0)) (Lemma 5.22). In both

cases the path has at most length n. Hence dM ((0, p), (n− 1, g)) ≤ n.
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4. A path between (0, p) and (0, g): A shortest path in group 0. Thus

dM ((0, p), (0, g)) ≤ n.

5. A path between (p, 0) and (n−1, g): For g < p use path p2((p, 0), (n−
1, g)). For g ≥ p use p((p, 0), (n− 1, g), (0, 0)) (Lemma 5.22). In both

cases the path has at most length n. Hence dM ((p, 0), (n− 1, g)) ≤ n.

6. A path between (p, 0) and (g, n−1): For g ≤ p use p1((p, 0), (g, n−1)),

for g = p + 1 use p((p, 0), (g, n − 1), (p, p)) and for g > p + 1 use

p((p, 0), (g, n− 1), (0, 0)). Thus dM ((p, 0), (g, n− 1)) ≤ n.

7. A path between (p, 0) and (g, 0): The case p = 0 and g = n −
1 is covered by the above cases. For p = n − 1 and g = 0 use

p1((n − 1, 0), (0, 0)). For all other cases use p2((p, 0), (g, 0)). Hence

dM ((p, 0), (g, 0)) ≤ n.

8. A path between (n − 1, p) and (n − 1, g): A shortest path in group

n− 1. Thus dM ((n− 1, p), (n− 1, g)) ≤ n.

9. A path between (n− 1, p) and (g, n− 1): Use p1((n− 1, p), (g, n− 1)).

Hence dM ((n− 1, p), (g, n− 1)) ≤ n.

10. A path between (p, n − 1) and (g, n − 1): Cases p = n − 1 and g = 0

and p = 0 and g = n− 1 are covered by the above cases. For all other

cases use p2((p, n− 1), (g, n− 1)). Thus dM ((p, n− 1), (g, n− 1)) ≤ n.

Now we consider the case border to core. All nodes of the border without

the nodes {(0, 0), (0, n−1), (n−1, 0), (n−1, n−1)} have distance of at most

two from the core and hence for these nodes the result follows by induction.

So we have to consider shortest paths between nodes of {(0, 0), (0, n−1), (n−
1, 0), (n − 1, n − 1)} and the core. Let i, j ∈ {1, . . . , n − 2}. If we do not

mention that a f -link is used, then a path using no f -link has length ≤ n.
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1. dX((0, 0), (i, j)) ≤ n. For i + j > n− 1 use the f -link at (0, 0).

2. dX((0, n− 1), (i, j)) ≤ n.

3. dX((n− 1, 0), (i, j)) ≤ n.

4. dX((n − 1, n − 1), (i, j)) ≤ n. For i + j < n − 1 use the f -link at

(n− 1, n− 1).

3

Corollary 5.46 The function fn is optimal for the diameter of the Ex-

tended OTIS-M1,n network using f , i.e. for all f ∈ FM1,n: D(XM1,n,f ) ≥
D(XM1,n,fn).

Proof:

D(XM1,n,f ) ≥ n follows from Theorem 5.27. 3

5.7.3.4 Two-dimensional Meshes.

For (x, y) ∈ [n]× [n], we set

fn((x, y)) def= (n− x− 1, n− y − 1).

Function fn respects dM2,n . Figure 5.6 shows an Extended OTIS-M2,2 net-

work using f2 and figure 5.14 shows an Extended OTIS-M2,3 using f3.

As in the case of one-dimensional meshes an subgraph of XM2,n,fn exists

that is isomorphic to XM2,n−2,fn−2 .

Lemma 5.47 For n > 3 the subgraph (VXM2,n,fn
∩{1, . . . , n−2}4, EXM1,n,fn

∩ P2({1, . . . , n− 2}4)) of XM2,n,fn is isomorphic to XM2,n−2,fn−2.

With the help of the above lemma, we prove D(XM2,n,fn) = 2n.
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Figure 5.14: The structure of XM2,3,f3 (without optical links).

Only electronic and f -links are shown.

Theorem 5.48 The diameter of the Extended OTIS-M2,n network using fn

is 2n.

Proof:

The proof that D(XM2,n,fn) ≤ 2n can be done analogously to the one-

dimensional case and is omitted.

For s = ((0, 0), (1, 0)) and t = ((0, 1), (n−1, n−1)) we have dXM2,n,fn
(s, t) =

2n and hence D(XM2,n,fn) = 2n. 3

Theorem 5.49 The diameter of the Extended OTIS-M2,n network using an

f ∈ FM2,n is greater than or equal to 2n.

Proof:

The proof is similar to the proof of Theorem 5.29, case n mod 3 = 2. We

omit the details.
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We give s, t, s1 and t1: s = ((0, 0), (1, 0)), t = ((0, 1), (n − 1, n − 1)),

s1 = ((0, 0), (0, 1)), t1 = ((1, 0), (n− 1, n− 1)). 3

Corollary 5.50 The function fn is optimal for the diameter of the Ex-

tended OTIS-M2,n network using f , i.e. for all f ∈ FM2,n: D(XM2,n,f ) ≥
D(XM2,n,fn).

5.8 Conclusion.

In this chapter we investigated aspects of routing in OTIS-G networks. We

gave lower bounds for k-k routing and sorting algorithms in these networks

and succeed in constructing a fast k-k sorting algorithm with a small buffer

size for the OTIS-Mesh. We did not succeed in matching the bisection or

diameter lower bound for the OTIS-Mesh. Further research is necessary

to improve the lower or upper bound. We further showed that OTIS-G

networks are well suited for oblivious k-k routing, i.e., an oblivious k-k

routing algorithm with an asymptotically optimal running time and a buffer

size of O(1) exists for these networks, provided G is of fixed degree. We

determined the diameter of OTIS-G networks. This led to the definition of

Extended OTIS-G networks, where we reduced the diameter of an OTIS-G

network by adding links such that the degree of the network is not increased.

We succeed in giving optimal extensions for hypercubes, rings of even size,

one-dimensional meshes, and two-dimensional meshes.
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Theses of the dissertation.

1. Efficient data transport in parallel computers build on sparse inter-

connection networks is crucial for their performance.

2. A basic data transport problem in such a computer is the k-k routing

problem, in which each processor (computer) sends and receives at

most k packets.

3. The family of mesh-connected networks is one of the most investi-

gated family of networks. Among other preferences its simple structure

makes meshes interesting for theory and practice.

4. For meshes the problem of efficient communication between processors

has been studied intensively in the last years. One of the best stud-

ied problem is the k-k routing problem. In the last ten years, many

variants of this problem were solved efficiently, but some aspects of

the problem remain unsolved. One of these unsolved problems is the

problem of designing an oblivious routing algorithm that solve the k-k

routing problem with a small constant buffer size and in a number of

steps close to the best known lower bound.

In an oblivious routing algorithm the path of a packet through the

network depends only on its source and destination and hence is inde-

pendent of the path of other packets. This characteristic is interesting,

since it allows the design of simple and hence practical routing algo-

rithms.

This thesis offers a substantial contribution to solving the problem of

oblivious k-k routing. An oblivious k-k routing algorithm for meshes is

presented that solves the problem in an asymptotically optimal number

of steps with buffer size O(k). Furthermore, the proposed routing
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algorithm can also be applied to OTIS and other networks and solve

the problem in an asymptotically optimal number of steps and O(k)

buffer size for a large class of these networks.

5. Lower bounds for the number of steps needed to solve the k-k routing

problem on a network are given by the diameter and bisection width

of a network.

6. In the computing community there is a growing interest in optics. Op-

tical interconnections provide high interconnections and large band-

width. However, electronic interconnections have advantages, too.

They perform better for small distances. OTIS networks (Optical

Transpose Interconnection System) are networks in which optical and

electronical links are used.

In this work the diameter and upper bounds for the bisection width

of OTIS networks are determined and lower bounds for the number

of steps needed to solve the k-k routing problem are given. Based on

this results, a new class of networks, called Extended OTIS networks,

is introduced, which have smaller diameter than OTIS networks.

7. The k-k sorting problem is a data transport problem very similar to the

k-k routing problem. Algorithms that solve the k-k sorting problem

can be used to solve the k-k routing problem. An algorithm for the

OTIS-Mesh is given that solves the k-k sorting problem with buffer

size O(k) in a number of steps that comes close to the diameter and

bisection lower bound.
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Zusammenfassung

Für die Leistungfähigkeit von Parallelrechnern, die über ein Verbindungsnet-

zwerk kommunizieren, ist ein effizienter Datentransport entscheidend. Ein

grundlegendes Transportproblem in einem solchen Rechner ist das k-k Rout-

ing Problem. In dieser Arbeit werden Aspekte dieses Problems in r-di-

mensionalen Gittern und OTIS-G Netzwerken untersucht. Es wird der

erste vergessliche (oblivious) Routingalgorithmus vorgestellt, der das k-k

Routing Problem in diesen Netzwerken in einer asymptotisch optimalen

Laufzeit bei konstanter Puffergröße löst. Für OTIS-G Netzwerke werden

untere Laufzeitschranken für das untersuchte Problem angegeben, die auf

dem Durchmesser und der Bisektionsweite der Netzwerke basieren. Weiter-

hin wird ein Algorithmus vorgestellt, der das k-k Sorting Problem mit einer

Laufzeit löst, die nahe an der Bisektions- und Durchmesserschranke liegt.

Basierend auf den OTIS-G Netzwerken, wird eine neue Klasse von Netz-

werken eingeführt, die sogenannten Extended OTIS-G Netzwerke, die sich

durch einen kleineren Durchmesser von OTIS-G Netzwerken unterscheiden.
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