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Abstract   

This thesis is organized as follows.  
 
Chapter 1 introduces the overall frame of the thesis: field of research, motivation, author’s 
contributions and structure.  
 
Chapter 2 presents an introduction and classification of the particular areas involved in this 
dissertation. Section 2.4 reviews the present research areas in wireless mobile communications 
with the objective to identify the application domain frame for this thesis work.  
 
Chapter 3 is devoted to Active Networks (AN). We build this thesis work on this fundament.  The 
review begins with introducing the reasons for the emergence of active software architectures 
followed by the challenges in modern communications to which they are exposed. Then, section 
3.2 describes the conceptual paradigm of Active Networking, the underlying Reference Model1, 
and a summary of the research approaches and the current implementation framework. Section 
3.3 is dedicated to the active network architectures with the goal to identify the patterns and 
trends in AN research in order to derive a genealogy of the upcoming idea of the Wandering 
Network. The expose includes a short review of the enabling technologies for active networking 
highlighting their key advantages. Section 3.4 reviews the domains of AN research with a focus 
on a variety of applications. Section 3.5 identifies the mainstream directions in AN research. A 
special attention is dedicated to the application of active networks in mobile communications. 
Finally, section 3.6 provides an overall analysis and discussion of the active network approach 
including a comparison of the network programming approaches. An outlook for further research 
and a summary with conclusions are given in sections 3.7, 3.8 and 3.9 respectively. 
 
Chapter 4 is devoted to the "hardware" branch of the Wandering Network hypothesis. Here we 
presents in detail some specific issues in Reconfigurable Computing as related to micro (chip) 
and macro (computer) component architectures used in present day networks. In section 4.2 
special attention is devoted to the implications of active networking and reconfiguration in 
defining today's network infrastructures. Here we address some open questions from the 
previous three chapters: mixing active and passive flows, flexibility vs. security and configuring 
vs. encapsulation. 
 
Chapter 5 presents the kernel of this thesis’ research, the Wandering Logic Intelligence (WLI). 
The exposé describes the general requirements and the future directions in active networking 
and related disciplines in order to define the architectural base of the WLI approach. The 
argumentation and the definition of the WLI architecture is given in section 5.2, followed by the 
four principles of the Wandering Network – Dualistic Congruence, Multidimensional Feedback,  
Self-Reference, and Pulsating Metamorphosis –, in section 5.3.  
 
 

                                                 
1 which is referred in this work’s genealogy as the First Generation (1994-1999). 
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Chapter 6 demonstrates the suitability of the WLI approach in a case study with the formal 
specification and test of an algorithm for active mobile ad-hoc routing in TLA+, the Temporal 
Logic of Actions technique.  
 
Finally, chapter 7 provides an overall evaluation of the thesis objectives, answers some final 
questions and concludes this work with directions for further research. 
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Zusammenfassung  

Diese Dissertation ist wie folgt organisiert.  
 
Kapitel 1 beschreibt den Rahmen der Dissertation: das Forschungsgebiet, die Motivation für 
diese Arbeit, die Beiträge des Autors und die Darstellungsstruktur.  
 
Kapitel 2 beinhaltet die Übersicht und die Klassifikation der einzelnen Bereiche, die Gegenstand 
der Dissertation sind. Sektion 2.4 untersucht die heutigen Forschungsgebiete in der drahtlosen 
mobilen Telekommunikation mit dem Ziel, die Anwendungsdomäne für diese Dissertationsarbeit 
zu identifizieren.  
 
Kapitel 3 ist den Aktiven Netzen (AN) gewidmet, dem eigentlichen Fundament der  Dissertation. 
Es beginnt mit einer Einführung in die Entstehung der aktiven Software-Architekturen. Weiter 
beschreibt es die Herausforderungen, denen sie sich in der modernen Telekommunikationswelt 
stellen müssen. Abschnitt 3.2 des Kapitels beinhaltet das konzeptionelle Paradigma der Aktiven 
Netze: das ihnen zugrunde liegende Referenz-Modell. Weiter folgt eine Zusammenfassung der 
Forschungsvorhaben und der gegenwärtigen Implementationsrahmen. Abschnitt 3.3 ist den AN-
Architekturen gewidmet und identifiziert Muster und Tendenzen in der AN-Forschung, um eine 
Genealogie der Idee des Wandernden Netzes abzuleiten. Das Exposé enthält eine kurze 
Übersicht der Enabling-Technologies für Aktive Netzwerke, indem es einige Schlüsselvorteile 
betont. Abschnitt 3.4 umschreibt die AN-Forschungsdomäne mit Fokus auf verschiedenen 
Anwendungen. Abschnitt 3.5 wichtet die Hauptrichtungen in der AN-Forschung. Insbesondere 
werden die Anwendungen von Aktiven Netzen in der mobilen Telekommunikation betrachtet. 
Schließlich liefert Abschnitt 3.6. eine allgemeine Analyse und Diskussion der AN-Methode 
einschl. eines Vergleichs der Netzprogrammierungsarten. Einen Ausblick für die weitere 
Forschung und eine Zusammenfassung mit entsprechenden Schlussfolgerungen geben die 
Abschnitte 3.7, 3.8 und 3.9. 
 
Kapitel 4 ist der Hardware-Seite der Hypothese über das Wandernde Netzwerk gewidmet. 
Einige Spezialthemen des Rekonfigurierbaren Computings, die bei Micro- (Chip) und Makro- 
(Computer) Komponenten-Architekturen in den heutigen Netzen genutzt werden, werden 
detailliert präsentiert. Besondere Aufmerksamkeit wird im Abschnitt 4.2 den Auswirkungen der 
Aktiven Netzwerke und des Rekonfigurierbaren-Computings auf die Definition der heutigen 
Netzinfrastrukturen gewidmet. Hier werden einige offene Fragen aus den vorangegangenen drei 
Kapiteln erörtert, wie das Mischen von aktiven und passiven Flows, Flexibilität vs. Sicherheit und 
Konfiguration vs. Encapsulation. 
 
Kapitel 5 stellt den Kern der Dissertation, die Wandernde-Logik-Intelligenz (WLI), dar. Das 
Exposé beschreibt die allgemeinen Anforderungen und die zukünftigen Perspektiven in Aktiven 
Netzen und verwandten Disziplinen, um die Architekturbasis der WLI-Methode zu definieren. Die 
Argumentation und die Definition der WLI-Architektur ist in Abschnitt 5.2 gegeben. Danach 
folgen in Abschnitt 5.3 die vier Prinzipien des Wandernden Netzes – Dualistische Kongruenz, 
Multidimensionale Rückkopplung, Selbst-Referenz (Selbstbezug) und Pulsierende 
Metamorphose.  
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Kapitel 6 demonstriert die Angemessenheit der WLI-Methode in einer Fallstudie mit der 
formalen Spezifikation und dem Test eines Algorithmus’ für aktives mobiles ad-hoc Routing in 
der TLA+-Technik (Temporal Logic of Actions).  
 
Schliesslich liefert Kapitel 7 eine allgemeine Auswertung der Thesen dieser Dissertation, 
atwortet einigen Abschlußfragen und beendet diese Arbeit mit Empfehlungen für die zukunftige 
Forschung.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 



Acknowledgements 

I wish to express my heartfelt thanks to all those who have given me their true appreciation and 
support over the years to carry out the work that has ultimately become my dissertation.  
 
My first dept is to my advisor, Prof. Dr.-Ing. habil. Dietrich Reschke, who offered me the 
opportunity to complete my work at the Technology University of Ilmenau and gave me a free 
hand with my research. He asked all the right questions and always demanded practical 
examples during the reviews of my work in progress. I am very grateful to his restless efforts in 
making me work towards bridging the gap between theory and practice. Thank you, Dieter. 
 
To my other mentor and thesis referee, Prof. Dr. Ken J. Turner from the University of Stirling 
who made time and effort beyond any duty to help turn this work into a dissertation. I have been 
greatly influenced by his research style that teached me how to put things together in a scientific 
way. This work has benefited from his detailed comments on every aspect. Thank you, Ken. 
 
I am also indebted to Prof. Dr.-Ing. habil. Jörg Lange from Siemens AG for his support during my 
stay at the company and for his prompt willingness to act as a second referee. His practical 
insights helped me answer some of the most critical questions in this work. Thank you, Jörg. 
 
In addition, I would like to express my special thanks to Prof. Dr.-Ing. habil. Ilka Philippow, Prof. 
Dr.-Ing. habil. Wolfgang Fengler and Prof. Dr.-Ing. habil. Winfried E. Kühnhauser for their 
valuable advises, comments and for participating in my thesis committee. 
 
Furthermore, I am grateful to my colleagues from the Dept. of Telematics of the Technology 
University of Ilmenau for their help and for creating a favorable working environment: Mrs. 
Elfriede Spors, Mrs. Silvia Benz, Mrs. Marion Koch, Dipl.-Ing. Claudia Bergmann, Dipl.-Inf. 
Martha Barberena Najarro, Dipl.-Ing. Peter Henkel and Dipl.-Ing. Martin Sauebrey. It is also my 
pleasure to acknowledge Mrs. Christa Kallenbach, Mrs. Katrin Dünkel, as well as Dipl.-Ing. 
Wolfgang Schulke and Prof. Dr.-Ing. Horst-Michael Groß for their support and for the excellent 
organization towards my thesis defense. 
 
I would also like to thank Dr.-Ing. Günter Hübel, Dr.-Ing. Peter Jackisch, Dr.-Ing. Werner Horn, 
Dr.-Ing. habil. Dang Hoang Hai, Dipl.-Inf. Jörg Deutschmann, Dipl.-Inf. Thorsten Strufe, Dipl-Inf. 
Ralf Döring, and Ralph Mielentz for their help and stimulating discussions. 
 
My deep appreciation to Dipl.-Phil. Helena Piprek for her true friendship over the years from 
whom I learned that there is no such thing as too much encouragement. Special thanks are due 
to my good friends: Commodore Alan John M. Donaldson, for his long-term intellectual 
companionship and unlimited source of humor, and Dr. Jayne Chace for her cheering 
enthusiasm and valuable advice in tough times. I also wish to thank to my dear friend Ursula 
Saar for her guidance and motivation along the way.  
 
Finally, I am grateful to my parents for believing in me and to all my family members for their 
dedication and support during the years of proof.  
 

 13 

http://www-ia.tu-ilmenau.de/IPI/FGT/martha.htm
http://www-ia.tu-ilmenau.de/IPI/FGT/martha.htm


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16 



TABLE OF CONTENTS 

Chapter 1:  Thesis Frame ..............................................................................................................................31 

1.1 Introduction.......................................................................................................................................31 

1.2 Motivation .........................................................................................................................................33 

1.2.1 Scope .....................................................................................................................................34 

1.2.2 Depth......................................................................................................................................36 

1.3 Contributions.....................................................................................................................................37 

1.3.1 The Wandering Logic Intelligence (WLI).................................................................................37 

1.3.2 The Wandering Network (WN)................................................................................................39 

1.3.3 The Two-Level Reconfigurable Intra-Node Profiling Scheme.................................................40 

1.3.4 The Secondary Shuttle Virtualization Level ............................................................................40 

1.3.5 The WLI Routing Algorithm.....................................................................................................40 

1.4 Thesis Structure................................................................................................................................41 

Chapter 2: Basic Definitions and Classification..............................................................................................43 

2.1 What are Active Networks ?..............................................................................................................45 

2.1.1 Present Active Network Models..............................................................................................48 

2.1.2 Basic Definitions .....................................................................................................................49 

2.1.3  Active vs. Passive Networks..................................................................................................51 

2.1.4 Major Challenges for Implementing an Active Network ..........................................................52 

2.2 What is Reconfigurable Computing ? ...............................................................................................53 

2.3 What are Adaptive Systems ?...........................................................................................................53 

2.4 Research Topics in Wireless Mobile Communications .....................................................................54 

Chapter 3: Active Networks ...........................................................................................................................57 

3.1 Introduction.......................................................................................................................................57 

3.2 Fundamentals ...................................................................................................................................58 

3.2.1 The Reference Model .............................................................................................................59 

3.2.2 Conceptual Paradigms ...........................................................................................................61 

3.2.3 The Active Node Approach.....................................................................................................65 

3.2.4 The Open Signaling Approach................................................................................................71 

3.3 Basic Architectures ...........................................................................................................................75 

3.3.1 Active Packets ........................................................................................................................75 

3.3.2 Active Nodes ..........................................................................................................................81 

3.3.3 Active Hybrid Architectures.....................................................................................................85 

3.3.4 Moderate Approaches to Active Networking...........................................................................90 

3.3.5 Spawning Networks................................................................................................................91 

3.3.6 Security Architecture ..............................................................................................................92 

 17 



3.3.7 Implementation Framework ....................................................................................................96 

3.3.8 Summary: The Pro-Active Arguments ....................................................................................98 

3.4 Applications ....................................................................................................................................100 

3.5 Mainstream Directions ....................................................................................................................108 

3.6 Analysis and Discussion .................................................................................................................111 

3.6.1 The Discrete Approach.........................................................................................................111 

3.6.2 The Integrated Approach......................................................................................................111 

3.6.3 Comparison of the Network Programming Approaches........................................................113 

3.7 Outlook ...........................................................................................................................................115 

3.8 Summary ........................................................................................................................................116 

3.9 Conclusions ....................................................................................................................................118 

3.9.1 The AN Approach .................................................................................................................118 

3.9.2 The Formal Approach...........................................................................................................120 

Chapter 4:  Reconfigurable Computing........................................................................................................123 

4.1 Overview.........................................................................................................................................123 

4.2 Scope .............................................................................................................................................124 

4.2.1 Applications ..........................................................................................................................125 

4.2.2 Computing Models................................................................................................................126 

4.3 Micro-Architectures.........................................................................................................................129 

4.3.1 Field Programmable Gate Arrays (FPGA) ............................................................................129 

4.3.2 Reconfigurable Computing ...................................................................................................130 

4.4 Macro-Architectures........................................................................................................................131 

4.4.1 The Road Ahead: An Adaptable Network .............................................................................131 

4.4.2 The Reconfigurable Router Architecture...............................................................................132 

4.5 Summary and Conclusions.............................................................................................................135 

4.6 Outlook ...........................................................................................................................................137 

4.7 Discussion ......................................................................................................................................137 

4.7.1 Mixing Active and Passive Flows..........................................................................................138 

4.7.2. Flexibility vs. Security ..........................................................................................................138 

4.7.3 Configuration  vs. Encapsulation ..........................................................................................139 

Chapter 5: The Wandering Logic Intelligence ..............................................................................................141 

5.1 Architectural Base...........................................................................................................................141 

5.2 The WLI Approach..........................................................................................................................143 

5.2.1. The Collision of the Intelligence Paradigms.........................................................................143 

5.2.2 Nomadic Services and Their Logic .......................................................................................144 

5.2.3 WLI Definitions .....................................................................................................................147 

5.2.4 Introducing the Wandering Logic Intelligence (WLI) .............................................................148 

5.2.5 Exploring The WLI Architecture ............................................................................................160 

 18 



5.3 The Wandering Network Principles.................................................................................................164 

5.3.1 The Dualistic Congruence Principle (DCP)...........................................................................164 

5.3.2 The Self-Reference Principle (SRP) .....................................................................................165 

5.3.3 The Multidimensional Feedback Principle (MFP) .................................................................165 

5.3.4 The Pulsating Metamorphosis Principle (PMP) ....................................................................167 

5.4 Yet Another Network-Network ........................................................................................................169 

5.5 Related Work ..................................................................................................................................172 

5.6 Conclusions ....................................................................................................................................176 

Chapter 6: Case Study – WLI Active Ad-Hoc Mobile Routing......................................................................179 

6.1 Scope and Motivation .....................................................................................................................179 

6.2 Constructive Background:  Routing in Mobile Networks .................................................................180 

6.2.1 Mobile Definitions .................................................................................................................180 

6.2.2 Investigation Framework.......................................................................................................184 

6.2.3 Related Work and Perspectives ...........................................................................................190 

6.3 Application Scenario: WLI Ad-hoc Mobile Routing Case Study ......................................................192 

6.3.1 Methodology .........................................................................................................................193 

6.3.2 The WLI Routing Algorithm...................................................................................................200 

6.3.3 Conclusions ..........................................................................................................................227 

6.4 Summary ........................................................................................................................................228 

Chapter 7: Evaluation and Outlook ..............................................................................................................231 

7.1 Extending the Principles of Network Design ...................................................................................231 

7.1.1 Introduction: Design Models .................................................................................................232 

7.1.2 The Horizontal Statics of Network Design: End-to-End Arguments ......................................234 

7.1.3 The Vertical Statics of Network Design: System Layering ....................................................237 

7.1.4 Conclusions ..........................................................................................................................238 

7.1.5 Capturing Horizontal and Vertical Dynamics:  The WLI Principles .......................................245 

7.2 Implementation Guidelines: Evolving the Wandering Network .......................................................248 

7.2.1 The Programmable Router Reference Implementation ........................................................249 

7.2.2   Reference Software and Hardware Execution Environments .............................................252 

7.2.3 Packet Organization .............................................................................................................260 

7.2.4 The WLI Addressing Concept...............................................................................................264 

7.3 Summary and Outlook: Network Technology Interfaces.................................................................268 

7.3.1 Vision and Reality: A Critical Overview of Active Networking ...............................................268 

7.3.2 The Step Ahead....................................................................................................................270 

7.4 Directions for Future Research .......................................................................................................279 

Glossary.......................................................................................................................................................285 

Bibliography .................................................................................................................................................291 

Active Networking..........................................................................................................................291 

 19 



Formal Methods.............................................................................................................................301 

[ Mobile ] Networking .....................................................................................................................303 

Reconfigurable Computing ............................................................................................................305 

Visions...........................................................................................................................................309 

WLI ………………………………………………………………………………………………………….311 

Appendix A: Maintaining Routing Information in a Wandering NetworK ......................................................319 

Appendix B: The Temporal Logic of Actions ................................................................................................327 

Appendix C: TLA+ Basic Modules ................................................................................................................335 

Appendix D: Autopoietic Theory – Definitions..............................................................................................341 

The Observer.................................................................................................................................342 

Fundamental System Attributes: Organization and Structure........................................................342 

Autopoiesis and Autonomy............................................................................................................342 

Domains and Spaces ....................................................................................................................344 

Structural Determination................................................................................................................344 

Structural Coupling ........................................................................................................................345 

Cognition as (Inter-)Activity............................................................................................................346 

 

 

 

 

 

 

 

List of Tables 
 
Table 1: Network elements and their “activation” ........................................................................................102 

Table 2: A comparison of the programmable network projects, [Camp99a].................................................110 

Table 3: Configurable computing machines and their usage .......................................................................125 

Table 4: Possible enhancements to the concept of active networks. ...........................................................156 

 20 



List of Figures 
Number Page 
Figure 1: The Genesis of Active Networking..................................................................................................31 

Figure 2: Exposé............................................................................................................................................42 

Figure 3: The basic views at (active software) programmable networks........................................................44 

Figure 4: The hyperactive network concept ...................................................................................................46 

Figure 5: The evolution of Wandering Networks ............................................................................................48 

Figure 6: The AN origin of the Wandering Network .......................................................................................50 

Figure 7: Active networks allow the asymmetric and asynchronous allocation of some application- and user-

specific parts of the service inside the network ........................................................................52 

Figure 8: Active network design approaches .................................................................................................59 

Figure 9: The Active Node reference model ..................................................................................................62 

Figure 10: The structure of an active packet and its mapping into an EE ......................................................64 

Figure 11: The software architecture of an active node .................................................................................65 

Figure 12: An Active Node configured in a) active mode and in b) passive mode .........................................66 

Figure 13: An Active Node application layer architecture...............................................................................69 

Figure 14: The OPENSIG domains of interest ...............................................................................................72 

Figure 15: The IEEE P1520 network API layered architecture ......................................................................73 

Figure 16: The capsule format .......................................................................................................................76 

Figure 17: The concept of capsule and its IP implementation........................................................................76 

Figure 18: The format of the ACTIVE IP Option field ........................................................................................77 

Figure 19: The logical flow of packets through an active node ......................................................................79 

Figure 20: The format of a datagram .............................................................................................................82 

Figure 21: The format of a capsule ................................................................................................................84 

Figure 22: The NetScript programmable virtual network engine ....................................................................88 

Figure 23: The emergence of a Spawning Network.......................................................................................92 

Figure 24: Resource distribution among multiple different EEs on a single active node................................98 

Figure 25: A protocol booster architecture ...................................................................................................105 

Figure 26: A protocol booster for error resilience of multimedia traffic in mobile wireless networks ............106 

Figure 27: An Active Router Controller (ARC) managing a set of forwarder/ routers...................................107 

Figure 28: Active Network architecture realized on an open programming platform....................................113 

Figure 29: Classification of computing developments within fixed models...................................................126 

Figure 30: Classification of computing developments within reconfigurable models....................................127 

Figure 31: Typical architecture of a reconfigurable multiple co-processor unit ............................................128 

Figure 32: A three-input lookup table (3 LUT) FPGA ...................................................................................129 

Figure 33: Example: spatial vs. temporal computing ...................................................................................130 

Figure 34: Basic router architecture.............................................................................................................132 

Figure 35: General model of an out-of-band reconfigurable router ..............................................................133 

 21 



Figure 36: Spatial vs. temporal organization of the in-band information ......................................................134 

Figure 37 A clustered SCP configuration for converged networks...............................................................144 

Figure 38: A centralized architecture for the realization of a mobile IN service............................................145 

Figure 39: A distributed architecture for the realization of a mobile IN service ............................................145 

Figure 40: Overall trend – increasing complexity of node related IN functionality........................................146 

Figure 41: A possible node utilization cycle .................................................................................................146 

Figure 42: An example of a FINE configuration ...........................................................................................147 

Figure 43: The Function Migration Principle of the Wandering Logic ..........................................................151 

Figure 44: The WLI’s basic assumptions .....................................................................................................153 

Figure 45: A WLI based adaptive media transcoder ....................................................................................157 

Figure 46: Embedding a WLI shuttle within the ANTS capsule....................................................................158 

Figure 47: Embeddings of and within the IP header field in comparison. ....................................................158 

Figure 48: The WLI flow model as integration of the RCM and AN..............................................................159 

Figure 49: Changing a netbot’s arrangement after arrival of a configuration shuttle....................................161 

Figure 50: A simple temporal network specification.....................................................................................162 

Figure 51: Configuring a virtual active node/netbot upon shuttle request. ...................................................163 

Figure 52: The feedback principle: using an active network fusion server for traffic control ........................166 

Figure 53: The Wandering Network as an ”n“-geneered evolution ..............................................................168 

Figure 54: Multiple AN functions ..................................................................................................................170 

Figure 55: A netbot’s internal functional organization ..................................................................................170 

Figure 56: Horizontal network wandering (ex-pulsing) - inter-node functional autopoiesis generated virtual 

outstanding networks of the same physical infrastructure ......................................................173 

Figure 57: Vertical network wandering (in-pulsing) – intra-node functional autopoiesis and generated virtual 

overlay networks over the same physical infrastructure .........................................................173 

Figure 58: The Wandering Network as an ad-hoc network evolution...........................................................177 

Figure 59: Encoding, transport, change and decoding of architectural information inside the Wandering Network

...............................................................................................................................................185 

Figure 60: Changing the semantics of routing by means of active packets .................................................186 

Figure 61: Evolving network activation.........................................................................................................187 

Figure 62: A multi-protocol active router architecture for ad-hoc networking ...............................................187 

Figure 63: A netbot, traversing the 2D space with a constant velocity. ........................................................194 

Figure 64: Schematic representation of the internal netbot’s architecture ...................................................195 

Figure 65: Netbot B detecting netbot A within its transmission range rt = g (P) ...........................................195 

Figure 66: Netbot B transports its second communicating environment CE+ to netbot A............................196 

Figure 67: A netbot with three communication environments, one of which is active ..................................197 

Figure 68: Two netbots building a temporary cluster ...................................................................................198 

Figure 69: A router agent with two active communication environments .....................................................199 

Figure 70: Multiple active communication environments on single van netbot.............................................200 

 22 



Figure 71: A communication environment manipulating the genetic structure of r-shuttles .........................203 

Figure 72: Projection: building and transporting r-trees ...............................................................................204 

Figure 73: Capturing: expanding and verifying r-trees .................................................................................205 

Figure 74: Projecting the inclusion of the sixth node of a wandering network..............................................205 

Figure 75: Capturing the inclusion of the 6th node of a wandering network..................................................206 

Figure 76: Introducing a Short-Cut...............................................................................................................207 

Figure 77: Projection of and capturing the exclusion of an intermediate node.............................................208 

Figure 78: Comparing transformational and reactive systems.....................................................................211 

Figure 79: A TLA building block for a network interface...............................................................................215 

Figure 80: A trace of the TLA toolset on the WLI-based ad-hoc routing algorithm.......................................216 

Figure 81: Propagating the reachability tree information in a wandering network........................................217 

Figure 82: The abstract ad-hoc routing model of a wandering network .......................................................218 

Figure 83: A component based model of a netbot’s I/O...............................................................................219 

Figure 84: The TLA+ specification of a FIFO queue.....................................................................................219 

Figure 85: A stepwise linear encoding of a netbot’s reachability tree ..........................................................220 

Figure 86: Maintaining a netbot’s reachability tree in TLA+..........................................................................221 

Figure 87: The routing behaviour of a netbot’s communication environment, section A ..............................224 

Figure 88: The routing behaviour of a netbot’s communication environment, section B ..............................225 

Figure 89: The routing behaviour of a netbot’s communication environment, section C..............................226 

Figure 90 Protocol entity mappings in the OSI-RM......................................................................................233 

Figure 91: A block-oriented approach to WN design and maintenance .......................................................246 

Figure 92: A layer-oriented approach to WN design and maintenance........................................................247 

Figure 93: The RadioActive network layering model, [BWG99] ...................................................................249 

Figure 94: A programmable router/switch and its port processor (PP) architecture.....................................251 

Figure 95: An Active Network Node (ANN) software architecture................................................................252 

Figure 96: An Active Network Node (ANN) hardware architecture ..............................................................254 

Figure 97: State information lookup through a selector tag labelling pipelined AA instances ......................255 

Figure 98: Main information flows through the processing engine kernel ....................................................256 

Figure 99: The DAN network level software architecture .............................................................................257 

Figure 100: A software-processing element (SPE) of the processing engine ..............................................258 

Figure 101: A hardware-processing element (HPE) of the processing engine.............................................259 

Figure 102: Programmable router architectures: (a) system organization with a processing engine at each port;

...............................................................................................................................................274 

Figure 103: Overall Architecture of the ABLE system, [RaSh00]; thick lines between components illustrate 

possible flows of data, thin lines – logical connections. ..........................................................276 

Figure 104: A symbol legend and the initial state (Step 0, t=0) of a Wandering Network. ...........................319 

Figure 105: Step 1 (a, b) – Establishing a contact between the first two nodes, A and B, of the wandering network 

and building/maintaining181 their initial reachability trees........................................................319 

 23 



Figure 106: Step 2 (a, b) – Establishing a contact to a new, third netbot C, expanding/building the reachability 

trees of the corresponding netbots (A and C), and transmitting the new structural information to their 

neighbors via r-shuttles. .........................................................................................................320 

Figure 107: Step 2 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (B and C) by 

the updating information contained in the r-shuttles. ..............................................................320 

Figure 108: Step 3 (a, b) – Establishing a contact to a new, fourth netbot D, expanding/building the reachability 

trees of the corresponding netbots (B and D), and transmitting the new structural information to their 

neighbors via r-shuttles. Furthermore, node A is serving as a router for the r-shuttles from B to C.

...............................................................................................................................................321 

Figure 109: Step 3 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C and D) 

by the updating information contained in the r-shuttles. Note that two nodes in a single step expand 

the r-tree at node D only (!!). ..................................................................................................321 

Figure 110: Step 4 (a, b) – Establishing a contact to a new, fifth netbot E, expanding/building the reachability 

trees of the corresponding netbots (B and E), and transmitting the new structural information to their 

neighbors via r-shuttles. Furthermore, node A is serving as a router for the r-shuttles from B to C.

...............................................................................................................................................322 

Figure 111: Step 4 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C, D and 

E) by the updating information contained in the r-shuttles. Note that three nodes in a single step 

expand the r-tree at node E only (!!). ......................................................................................322 

Figure 112: Step 5 (a, b) - Establishing a new contact between two present netbots in the network, A and D 

followed by expanding/building and maintaining their reachability trees. The propagation of the new 

connectivity information throughout the network is not provided here. ...................................323 

Figure 113: Step 6 (a, b) – Establishing a contact to a new, sixth netbot F, expanding/building the reachability 

trees of the corresponding netbots (B and F), and transmitting the new structural information to their 

neighbors via r-shuttles. Furthermore, nodes A and D are serving as routers for the r-shuttles from B 

to C. Redundant r-shuttle information obtained later at A, C and D is discarded....................324 

Figure 114: Step 6 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C, D, E 

and F) by the updating information contained in the r-shuttles. Note that four nodes in a single step 

expand the r-tree at node F only (!!). ......................................................................................324 

Figure 115: Step 7 (a, b) – Node B leaving the network by reporting the event to its neighbors via x-shuttles; x-

shuttle propagation to all present netbots; evaluation and update of the new reachability trees in all 

netbots of the wandering network in a single step only (!). .....................................................325 

Figure 116: Step 7.c – R-Tree maintenance after having node B left the wondering network. ....................325 

Figure 117: Step 8 (a, b)  from Step 6.d – Node A leaving the network by reporting the event to its neighbors via 

x-shuttles; x-shuttle propagation to all present netbots; evaluation and update of the new 

reachability trees in all netbots of the network in a single step only (!). ..................................326 

Figure 118: Step 8.c – R-Tree maintenance after having node A left the wondering network. ....................326 

 

 24 



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 25 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 26 



 
 
 
 
 
 
 
 
 
 
” Since I essentially knew nothing, I had an almost completely free choice ... “ 
 
 

   SIR FRANCIS CRICK,  “WHAT MAD PURSUIT” 
   BASIC BOOKS, NEW YORK, 1988, PP. 15-16. 
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THESIS OBJECTIVES 

In our view, active programmable networks provide a foundation for architecting, composing and 
deploying virtual network architectures through the availability of open programmable interfaces, 
resource partitioning and virtualisation of the networking infrastructure. A key challenge in this 
research is the synchronous development of programmable virtual networking environments 
based on configurable hardware architecture.  
 
The basic objectives of this thesis work are summarized as follows: 
 

1. This work regards next generation application-aware networks as adaptive systems 
consolidating both network element and infrastructure flexibility in software and 
hardware2. Thus, if a reconfigurable computing infrastructure is combined with adaptive, 
i.e. application and user specific (smart), and active (programmable) mobile networking, 
it will be possible to utilize almost all degrees of freedom (down to the gate and bit levels) 
in managing the network.  

 
2. It is evident that the complexity of such architectures is permanently increasing. In fact, 

an always growing, evolutionary model of changing software and hardware comes into 
being. In order to cope with this complexity of the growing network, it is necessary to 
effectively deploy integrated evolutionary models of the network, capable to describe the 
desired properties in a dynamic, relational and interdependent way which can be easily 
supported by formal methods and tools for specification and verification of the underlying 
architectures and algorithms. 

 
This thesis proposes a new theoretical and practical framework for designing evolutionary 
communication architectures and their services and applications. The leading ideas and 
scientific objectives of this work are summarized as follows: 

• to propose and demonstrate a flexible mechanism for network evolution based on the 
emergence and movement of functional units within a given physical infrastructure; 

• to discover a set of guiding design principles unifying the numerous ad hoc approaches 
in network evolution in a thorough logical framework providing the best available flexibility 
in software and hardware technology at a certain level of development; 

• to answer possibly directly to the question how to make a network like the future Internet 
and how to let it develop in order to provide the desired performance, quality, security, 
etc. features of importance to all users. 

• to define a highly flexible network model which is adaptable to a wide variety of tasks and 
applications; 

• to provide the formal means for the specification and verification of the generic temporal 
properties of active mobile nodes and packets; 

• to demonstrate the suitability of the theoretical framework on a practical example. 

                                                 
2 In this context, the notion of hardware is also enclosing nanotechnology molecular structures . 
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The theoretical goal of this dissertation is to provide an elaborated model leading to a formal 
theory (f.f.s.) for the design and verification of evolutionary (step-wise) adaptive systems based 
on active networks and configurable computing devices by means of temporal logic.  
 
Currently, routing issues in ad-hoc mobile networking are a difficult challenge for protocol 
designers, since rapid reconstruction of routes is crucial in the presence of topology changes. 
The primary concerns in ad-hoc mobile networks are bandwidth limitations and unpredictable 
topology changes. In such an environment, it is important to minimize disruptions caused by the 
changing topology for critical application such as voice and video. 
 
Therefore, the practical goal towards this thesis work is directed is the proof of the hypothesis 
that AN technology as an integral part of our theoretical approach delivers an appropriate 
methodology for automating the process of route adaptation, and hence of propagating topology 
changes within a dynamically changeable network infrastructure 
 
 
 

 
* * * 
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CHAPTER 1:  THESIS FRAME  

1.1 INTRODUCTION 

Active Networks (AN3) have been a subject of intensive empirical research for more than a 
decade, [Tenn99]. Figure 1 illustrates the main milestones in the evolution of active networking.  

The (Active) Network Evolution
Circuit Switched Network

Active Network

data data

data( header ) codedata( header ) code

Physical Layer

Data Link Layer

Execution 
Environments

code

Packet Switched Network

dataheader

Physical Layer

Data Link Layer

Network Layer dataheader

Custom code injected by applications 
and devices transforms the network 
into a more intelligent communication 
environment: a programmable network.

 

Figure 1: The Genesis of Active Networking 

In this work, we propose a possible next step in this process which can be simply denoted as a 
shift from user activity to network autonomy in terms of self-organization, self-maintenance and 
even self-creation and self-assembly as a typical characteristic not only of biological and artificial 
life systems ([MaVa80], [White00],[Sim01]). 
 
For the time being, a few general implementation strategies of Active Networking have been 
identified. Practical automation methods include such methods as multiple platform and system 
code support, node interoperability based on intermediate instruction encodings, on-the-fly 
compilation for optimization of common processing routines and operating system support for 
more specific strategies, such as path–based scheduling, protocol code reorganization, and low-
level extensibility.  
                                                 
3 The explanation of unfamiliar abbreviations can be found in the glossary at the end of this thesis. 
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In addition, research issues such as feasibility of capsules and code distribution schemes, 
security and performance optimization, resource management and fast introduction of new 
services have been on schedule.  
 
Most AN approaches investigate and implement to some detail the above technical issues within 
a specific solution. A few survey papers were published trying to provide directions and goals for 
engineering within the field ([Tenn97], [Weth99a], [BWG99]). These efforts were mainly focused 
on defining a framework for a common programming model of active networks. 
 
Recently, an integration and consolidation of the several different AN engineering approaches 
can be observed. This trend is particularly evident at technology frontiers with some innovative 
research fields such as deeply embedded networked systems, autonomous software, 
configurable computing, adaptive systems, etc.  
 
However, implementations have shown that every single network issue such as caching, routing, 
management, etc. can have a specific active network or open signaling solution. A number of 
basic requirements and concepts for enhanced virtualization has been collected to (self-) 
activate networking. Yet, there is still no general recipe to address all the problems with only one 
end-to-end active or programmable network. Despite the broad interest in the subject,   
[ChJa98], the “killer” network of the future has not been found yet. 
 
According to a DARPA review [Press99], XXI century networks will be:  
 

• active (i.e. programmable w. r. t. network management with dynamic distributed entities), 
• self-reconfigurable, 
• ad-hoc mobile,  
• self-organizing, and 
• truly open, i.e. security with no firewalls but traffic monitoring, (e.g. DREN4) 

 
This work is an attempt to address these future aspects of networking in a structured fashion 
with the intention to improve and accelerate evolutionary network design. The goal of this thesis 
is to unify the numerous ad-hoc approaches for network design by defining an overall conceptual 
framework for the specification and verification of (step-wise) evolutionary, autopoietic5 (i.e. self-
creating, [MaVa80]) communication architectures based on: i) active networks 
([Tenn97],[Calv98],[Camp99a]), ii) reconfigurable computing ([CoHa99], [BoPr00]), and iii) 
adaptive systems, [ACS].  
 
The three research fields were brought together in the working hypothesis for the following 
reasons. Firstly, active networking defines the principle, the strategy and the goal of our 
research. Secondly, configurable computing brings up the required detail and understanding 
within a context, the tactics and the approach. Thirdly, adaptive systems contribute to 
understanding the large field of heuristic approaches and techniques in AI for the purpose of 
organizing and optimizing wandering communications.  
                                                 
4 Defense Research and Engineering Network, http://www.hpcm.dren.net/Htdocs/DREN/DREN-HPCMO/.  
5 Appendix D provides some basic definitions in Autopoietic Theory. 
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Finally, mobile wireless multimedia communications provide a challenging perspective for 
applying our model for the design and verification of autonomous adaptive architectures 
([Sim94a], [SpMe99], [Sim00]).  
 
The following section presents the motivation for this work along with the scope, the depth and 
the objectives of the dissertation, followed by a review of the author’s contribution. 
 

1.2 MOTIVATION 

Active Networks (AN) pursue a similar role in the data network domain like the Intelligent 
Network concept in the telecommunications domain today: they were expected to provide the 
means for the rapid creation and introduction of new Internet services. For this reason, the 
pioneers of the AN idea suggested to shift more computation inside the network, thus 
compromising the “keep-it-simple” principle of present day Internet. Two key benefits were 
envisioned with the introduction of Active Networks, [TeWe96]:  
 

• rapid introduction of new applications for multimedia and e-business communications;  
• an acceleration of the pace of innovation by decoupling services from the underlying 

infrastructure.  
 
After almost 10 years research substantial progress in this area was achieved. However, the 
practical realization of Active Networks generated much controversy because of the serious 
performance and security concerns raised by the presence of untrusted code within the network. 
 
In order to build a real, working system, it was necessary to revise some of the original concept 
premises. In 1999, Wetherall reconsidered the vision for active networks in light of the 
experience in designing, implementing and using the ANTS toolkit [ANTS] which was based on 
the “capsule” design principle that adds extensibility for processing data by embedding code at 
the IP packet level, [Weth99b]. The evaluation was made in three areas that characterize a 
“pure” active network: i) approach: the capsule model of programmability; ii) safety: the 
accessibility of that model to all users; and iii) applications: prospective areas for practice.  
The following three paragraphs summarize the results of this analysis:  
 

• Approach: Capsules have proved a worthwhile model as a “clean means” for upgrading 
processing along an entire network path. This deployment model is considerably more 
powerful than the administrative upgrades practiced today. The efficient implementation 
of capsules depends on the upgrade demand frequency, on the amount of code and time 
window for loading and on traffic patterns for which code caching is effective. 

 
• Safety: The free network customisation by untrusted users has been partly successful. It 

is now possible to isolate different services from each other without trust or centralized 
control, but not to protect the network as a whole from untrusted services. To overcome 
this drawback in the general case, the capsule approach has fallen back on certification 
by a trusted authority until better solutions are found. However, this still allows easy 
software change and maintenance compared to standardization efforts today. 
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• Applications: It was found that the most compelling application of capsules is the 
network layer service evolution, rather than the migration of application code to locations 
within the network. Capsule code is well-suited to the task of introducing many variations 
of a service, which is valuable for experimentation. It is expected that capsule code will 
act in synergy with network embedded devices (caches and transcoders) to provide more 
effective network operation by careful feedback. 

 
The first argument affirms that the capsule approach provides a useful practical solution for code 
mobility in networks. If we discard the second argument of the evaluation, the safety issue, we 
find out that the most promising application is the network layer service evolution, which can be 
based on a large scale of means and mechanisms for traffic regulation feedback. 
 
Hence, we decided to continue our research from this point with the intentions: a) to enhance the 
capsule model and generalize these results for the AN paradigm as a whole, b) to expand the 
scope of network programmability and adaptability to the hardware layer, and c) to define a set 
of generic network design principles for the target application domain of service-usability-based 
network evolution.    
 

1.2.1 SCOPE 

The intention of this thesis is threefold: 
 

1. to organize and classify the broad range of existing and emerging approaches in active 
networking from the viewpoint of a reasonably evolving network infrastructure  w. r. t. 
market forces, effectiveness and usability by including the new dimensions of open 
network programmability, --  reconfigurable computing and adaptive systems, -- while 
focusing on the application domain of mobile communications;  

 
2. to define a model framework for a new, more dynamic and vivid generation of active 

networks based on a set of generic evolution principles;  
 

3. to demonstrate the application of the new model in mobile networking. 
 
The major goal of this work is to propose and to demonstrate a simple and flexible mechanism 
for network evolution based on the emergence, change and movement of functional units within 
a given physical infrastructure, which is aware of its own boundaries.  
 
Why do we need a systematics in programmable networking ? 
 
Recently, an integration and consolidation of the several different AN engineering approaches 
can be observed. This trend is particularly evident at technology frontiers such as deeply 
embedded networked systems, autonomous software, network-aware middleware, 
reconfigurable computing, adaptive systems, etc. However, implementations have shown that 
every single network issue such as caching, routing, management, etc. can have a specific 
active network solution. A number of requirements have been collected to activate the network. 
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Yet, there is still no general recipe to address all problems with only one end-to-end active 
network.  The “killer” network of the future has not been found yet.  
 
Along with the growing scope and number of ad-hoc solutions to active networking, the demand 
for their systematic categorization, evaluation and integration within a common research 
framework becomes increasingly evident.  
 
In particular, an evolutionary approach to active networking requires the development of 
common models for: a) the encoding of network programs in terms of mobility, safety and 
efficiency; b) the description and allocation of node resources; c) the built-in primitives and 
behavioral patterns available at each node. 
 
What do we expect from the classification of technologies ? 
  
By analyzing the diverse approaches to active and programmable networks, we are striving to 
derive some common solution patterns, which can be organized as a set of principles for active 
network design in order to develop a methodology for a particular problem domain.  
 
What is the purpose of the new network model ? 
 
The new network model has to be open, hierarchical and dynamically structured. It should be 
able to address specific problems in wireline and wireless communications architectures, 
services and multimedia applications in a unified fashion and with a great degree of 
differentiation, flexibility, and granularity both in hardware and software. The new model should 
be capable to describe new types of active mobile architectures, which are particularly 
characterized by: 
 

• flexible, multi-modal6 specialization of network nodes as virtual subnetworks; 
• mobility and virtualization of the net functions as hardware und software; 
• self-organization as multi-feedback-based7 topology-on-demand and a tool of the user-

oriented network evolution. 
 
In addition, the network elements in such an autonomous network architecture should be able to 
host different functional modules, and perform diverse network roles simultaneously, e.g. 
depending on the actual user location and/or environment characteristics. 
 
 
 
 

                                                 
6 The single network nodes can execute multiple functions, and thus perform multiple roles in the network, in parallel, 

such as e.g. a protokol booster, fusion server, etc., as sub-classes of the generic roles: server, client and agent 
. These functions can be realized as programmable software of configurable, i.e. resident, or plug-and-play 

hardware. 
7 i.e. user, application/protocol and buddies as network elements and functions delivering information for the self-

regulation.    

[Sim99c]
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Why did we select mobile networks as application domain ? 
  
In their prospective review “Next Century Challenges: RadioActive Networks”, [BWG99], Bose, 
Wetherall and Guttag stated that the key challenge in wireless networking were “to utilize the 
spectrum as efficient as possible given the current channel conditions and in the most effective 
way for each application”. The authors argued that it is difficult to achieve this target by 
conventional radio technology because “the physical layer functionality is fixed, while channel 
conditions and applications can change rapidly”. Accordingly, the RadioActive Networks, as an 
active offspring of the Software Radio approach ([Blu95]], [BoSh98]), were satisfying the 
requirement for an adaptable network architecture by drawing the strengths of software radio 
and active networks.  
 
We join this opinion with the claim that RadioActive Networks and other technology innovations 
the area of wireless communications such as active ad-hoc mobile networks [Tschu99a] belong 
to the first efforts to define the experimental field of evolutionary network design. These research 
areas project the living network of the future by investigating the feasibility of diverse short-term 
models for a long-term infrastructure.  
 
By addressing functional transformations in the communicating nodes on the border between 
hardware and software, we address the same goal in this thesis with the Wandering Network 
approach. For this reason, we selected mobile wireless communications as a target application 
domain. A case study, which demonstrates the capabilities of our approach, is given in chapter 
6. Section 2.4 provides an overall review of the research in mobile networks. 
 

1.2.2 DEPTH 

The ultimate goal towards we align this research is the creation of a model-based formal theory 
for the design and verification of (systematic) evolutionary, autopoietic (i.e. self-creating,   
[MaVa80]) architectures based on active networks, reconfigurable computing ([CoHa99], 
[BoPr00]), and adaptive systems [ACS]. We brought these three research fields together in our 
working hypothesis for the following reasons. Firstly, active networking defines the principle, the 
strategy and the goal of our research. Secondly, configurable computing brings up the required 
detail and understanding within a context, the tactics and the approach. Thirdly, adaptive 
systems contribute to understanding the large field of heuristic approaches and techniques in AI 
for the purpose of organizing and optimizing wandering media communications. Finally, the 
application field of multimedia communications provides a challenging perspective on applying 
the WLI approach to the design and verification of autonomous adaptive architectures [SpMe99], 
[Sim94b], [Sim00]. 
 
Our medium and long-term goals, which are not part of this work, are summarized as follows:  
 

• to provide a formal means for the specification and verification of the generic temporal 
properties of active mobile nodes and packets; 

• to support the reflexive dynamic adaptation of both mobile code (software) and node 
architecture (software and hardware); 
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• to provide the formal means for specification and verification of dynamic QoS and 
routing properties in active ad-hoc mobile networks at both application (service) and 
packet level; 

• to assist the formal transformation of systems’ properties into mobile code. 
 

1.3 CONTRIBUTIONS   

The essential novelties, ideas and contributions of this thesis are listed as follows: 

1.3.1 THE WANDERING LOGIC INTELLIGENCE (WLI) 

The Wandering Logic Intelligence (WLI) represents a hyperactive approach for the high-level 
specification of adaptive and evolutionary communications systems. It provides an open, 
hierarchical and dynamically structured model which allows to address specific problems in 
communications architectures, services and applications with a great degree of differentiation, 
formalization and flexibility that can be tracked down to the gate level.  
 
I. The WLI Framework: 
  

• An evolutionary adaptive system model  
 

• Four basic design principles and their characteristics: 
 

1. Dualistic Congruence 
2. Multidimensional Feedback 
3. Self-Reference 
4. Pulsating Metamorphosis 

• Knowledge quantum  
• Genetic transcoding 
• Network resonance 

 
• Generic architectures for netbots (active mobile nodes) and shuttles (active 

packets) which can transport executable genetic code about a node/network 
state/process. 

  
• Extending adaptability to four dimensions of network reconfiguration and 

programming: 
1. Applications 
2. Operating system resources 
3. Node hardware components 
4. Clusters of nodes 

 
• A two-level profiling scheme for functional components  in a reconfigurable 

network  architecture characterized by: 
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o horizontal inter-node functional wandering (self-organization) of the active nodes 
(netbots), called  1st Level Profiling, and 

o virtual vertical intra-node overlay functional wandering (self-organization), called 
2d Level Profiling 

 
as well as: 
 

o two special functional roles of reconfigurable netbot in the 1st Level Profiling: 
Replication and Next-Step for packet / function replication and netbot 
state temporal description respectively; 

o two special functional roles for Routing and Propagation of functionality in 
the 2d Level Profiling. 

 
II. The Netbot Abstraction 

 
• Active nodes can be mobile - hence the name netbots - and reconfigurable (in terms of 

software and hardware) during runtime. In WLI, reconfiguration is just another type of 
network service.  

 
• Depending on the class of service to be installed via shuttles onto an active node, a 

special manipulation of the shuttle in the execution environment may be applied including 
cashing of its contents and/or state to ensure awareness about the flow. The class of 
service is a new concept in WLI used to describe multiple code systems, either at the 
“byte level”, or at higher-layers associated with different service functions.  

 
• Active nodes (netbots) can adapt (themselves) to communications in such a way to best-

match the structure of the active packets (shuttles) at the time of delivery: the Dualistic 
Congruence Principle.  

 
 
III. The Shuttle Abstraction: 
 

• In WLI, shuttles can carry code and data (like capsules) not only for the execution within, 
but also for the upgrade/degrade and re-configuration of active nodes. Thus, shuttles can 
modify netbots. For this reason, the capsule APIs and the execution environments can 
be extended by special routines allowing the accommodation and execution of code that 
changes a netbot’s configuration and resources. In this way, new functionality can not 
only be delivered to and injected into the active node, but also distributed and optimized 
throughout the node itself.   

 
• In addition to the data related code contained in traditional capsules, shuttles provide a 

secondary layer of virtualization carrying genetic code which can be selectively invoked 
by special routines at the netbots to perform structural changes in the node/network 
architecture, e.g. to spawn/collapse a virtual (sub-)network, to expand/derive a new 
reachability (sub-)tree for routing,   chapter 6.  
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• The WLI formalism allows the creation of new capsules/shuttles (or the replication of 
“old” ones) in the intermediate active nodes under the supervision of the node operating 
system (NodeOS). Furthermore, a special class of shuttles, called pilots are allowed to 
replicate themselves and to create/remove/modify other capsules and resources in the 
network. Pilots have network administrator authorities. The term “resource” can be 
extended to an entire virtual active node. 

 
• In WLI, the network protocol itself can be particularly embedded within the shuttle. 

Furthermore, code distribution throughout the network and inside the nodes/netbots can 
be maintained by the shuttles themselves. A shuttle approaching a netbot can re-
configure itself becoming a morphing packet to match the netbot’s processing 
requirements: the Dualistic Congruence Principle. 

 
 
The essential characteristics of the WLI approach in this thesis work are listed as follows: 
 

1. Role Change: The role of the network node within a particular virtual architecture can 
change during its operation. The new functionality is either resident on the node and 
waiting to be activated, i.e. it is not yet involved in the next step virtual scheme, or 
transferred via Active Networking to the destination node. 

 
2. Parallel Roles: The execution of the parts of a distributed algorithm can be performed 

within the different roles of an active node’s/ netbot’s, configuration. 
 

• Node Genesis (“N”-geneering): encoding, embedding and transporting the structural 
information about a mobile node, the netbot, and its environment, such as e.g. rooting 
tree information, into a secondary virtual layer of the active packets / shuttles composed 
of node genes, “n”-genes. N-genes provide context-related information on HOW the 
basic code and data in the primary level of the shuttles should be processed. 

 
WLI defines a novel generic model for specification and verification of autonomous, evolutionary, 
and in particular, self-aware active ad-hoc mobile wireless networks.  
 

1.3.2 THE WANDERING NETWORK (WN) 

I.  We define a new type of communication network model, the Wandering Network 
(WN), based on a WLI framework which extends previous models of active 
programmable networks, by three essential characteristics: 

 
a. it is a real active network which means that it is truly programmable and 

reconfigurable, including the network hardware up to the gate level; 
b. it is a runtime extensible and exchangeable network in terms of both software and 

hardware components, i.e. a wandering network; 
c. it is an evolutionary network which realizes adaptive self-distribution and replication 

of sub-networks:  
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• by guided or autonomous node and component mobility in terms of hardware;  
• by including essential engineering information in the mobile code of the active 

packets and applying genetic transcoding mechanisms in the active nodes 
(netbots). 

 
II.  We define a genealogy classification system for Wandering Networks to 

accommodate the diversity of architectures and models of active, programmable and 
reconfigurable networks developed until now and to devise directions for future research. 

 
III.  In a WN, network functions can change their hosts (netbots), wander and settle down in 

other hosts, thus creating a valuable statistics about the frequency of usage of wandering 
functions in the network. The results obtained after a careful evaluation of this data can 
be used for the (self-)design of new network architectures and topologies.  

 
The Wandering Network approach differs from other research frameworks by two 
characteristics:  a) adaptable function migration, and b) pulsating metamorphosis. 
 

1.3.3 THE TWO-LEVEL RECONFIGURABLE INTRA-NODE PROFILING SCHEME   

A netbot’s internal functional organization according the WLI model (section 5.4, Figure 55). 
 

1.3.4 THE SECONDARY SHUTTLE VIRTUALIZATION LEVEL  

A shuttle’s internal functional organization according the WLI model (sections 7.2.3 and 7.2.4). 
 

1.3.5 THE WLI ROUTING ALGORITHM  

The major contribution of this thesis is a theoretical framework for constructing formal models of 
mobile communication architectures and algorithms illustrated with the WLI Adaptive Routing 
Algorithm for (Active) Ad-hoc Networks (WARAAN). It describes an autonomous adaptive 
routing architecture and protocol for mobile ad-hoc networks based on an instant auto-feedback 
for dynamic update of the reachability trees to compensate spontaneous network topology 
changes. The following contributions are unique for this thesis work: 

• Generic architecture of a WLI router  
• WLI routing model 
• Routing methodology 

o General conditions 
o Target oriented strategy decision 
o Maintenance 

• Reachability tree generation and maintenance 
• Propagating of the reachability information in the ad-hoc network 
• Routing algorithm: formal specification and test in TLA. 
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The new model provides a unified and structural approach for a flexible intelligent network of the 
new generation. This solution is not only applicable for out-band signaling „intelligent networks“, 
but also for the new generation of the so-called „programmable“, active networks where 
extensions, new services and new versions can be easily installed and configured in a usability 
driven manner.  
 
The main advantage of the Wandering Network approach is that it unifies the macro-world of 
active networking and the micro-world of configurable computing in a generic model, which 
reflects the intrinsic nature of intelligent communications. It facilitates the application design and 
allows sophisticated network growth, adaptation and rapid introduction of new services while 
supporting both engineering approaches by making only minor changes on the available 
infrastructure.  In this way, the WN architecture represents a vivid, scaleable object-oriented 
model for intelligent service provisioning and control when compared to the traditional OSI-like 
layered network architectures. 
 

1.4 THESIS STRUCTURE 

This thesis is organized as follows, Figure 2. In chapter 2 we present an introduction and 
classification of the particular areas involved in this dissertation. Section 2.4 reviews the present 
research areas in wireless mobile communications with the objective to identify the application 
domain frame for this thesis work.  
 
Chapter 3 is devoted to the Active Networks (AN). This is the fundament on which we build this 
thesis work.   
 
The review begins with introducing the reasons for the emergence of Active Networks and with 
the challenges in modern communications they are exposed to. Then, section 3.2 describes the 
conceptual paradigm of Active Networking, the underlying Reference Model8, and a summary of 
the research approaches and the current implementation framework. Section 3.3 is dedicated to 
the active network architectures with the goal to identify the patterns and trends in AN research 
in order to derive a genealogy of the upcoming idea of the Wandering Network. The expose 
includes a short review of the enabling technologies for active networking highlighting their key 
advantages. Section 3.4 reviews the domains of AN research with a focus on a variety of 
applications. Section 3.5 identifies the mainstream directions in AN research. A special attention 
is dedicated to the application of active networks in mobile communications. Finally, section 3.6 
provides an overall analysis and discussion of the active network approach including a 
comparison of the network programming approaches. An outlook for further research and a 
summary with conclusions are given in sections 3.7, 3.8 and 3.9 respectively. 

                                                 
8 which is referred in this work’s genealogy as the First Generation (1994-1999). 
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Figure 2: Exposé  

Chapter 4 is devoted to the "hardware" branch of the Wandering Network hypothesis. Here we 
presents in detail some specific issues in Reconfigurable Computing as related to micro (chip) 
and macro (computer) component architectures used in present day networks. In section 4.2 
special attention is devoted to the implications of active networking and reconfiguration in 
defining today's network infrastructures. Here we address some open questions from the 
previous three chapters: mixing active and passive flows, flexibility vs. security and configuring 
vs. encapsulation. 
 
Chapter 5 presents the kernel of this thesis’ research, the Wandering Logic Intelligence (WLI).  
 
The exposé describes the general requirements and the future directions in active networking 
and related disciplines in order to define the architectural base of the WLI approach. The 
argumentation and the definition of the WLI architecture is given in section 5.2, followed by the 
four principles of the Wandering Network - Dualistic Congruence, Multidimensional Feedback,  
Self-Reference, and Pulsating Metamorphosis -, in section 5.3.  
 
Chapter 6 demonstrates the suitability of the WLI approach in a case study with the formal 
specification and test of an algorithm for active mobile ad-hoc routing in TLA+, the Temporal 
Logic of Actions technique. Finally, chapter 7 provides an overall evaluation of the thesis 
objectives and concludes this work with directions for further research. 
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CHAPTER 2: BASIC DEFINITIONS AND CLASSIFICATION 

“But things are defined by their working and power;  
and we ought not to say that they are the same  

when they no longer have their proper quality …” 
 

ARISTOTLE (384-322 BCE.), POLITICS 
 
Along with the growing scope and number of ad-hoc solutions to active and programmable 
networking, the demand for their systematic categorization, evaluation and integration within a 
common research framework becomes increasingly evident. This chapter provides some basic 
descriptions and a classification structure of the target domain to be used in the sequel.  
 
There are two modern schools of thought addressing the next generation communication 
networks today9: Active Networks (AN), [DoDAN], and Open Signalling (OPENSIG), [OPENS], 
both referred to as Programmable Networking10. The OPENSIG approach has a 
telecommunications background and thus clearly separates network control from information 
transport. It has been primarily focused on programmable ATM switches, and recently --- on IP 
routers and mobile networks that provide some level of QoS support. The AN approach, in 
contrast, has been historically focused on IP networks, where the control and data paths are 
combined. Both communities share the common goal to go beyond existing approaches and 
technologies for design, deployment and management of new network services including a 
broad spectrum of projects with diverse architectural proposals. However, the OPENSIG 
advocates argue that open access to switches and routers can be provided by modelling 
communication hardware as distributed computing objects11 using a set of well-defined and 
standardized open programmable network interfaces [P1520] which allow service provides to 
manipulate the states of the network and create and manage new services using middleware 
architectures such as CORBA [Vin97]. On the other hand, the active networks community 
promotes the dynamic deployment of new services at runtime mainly within the existing IP 
networks and by means of mobile code (not signalling) as the main vehicle for program delivery, 
control and service creation.  
 
The OPENSIG approach, which is crucial for making the network more programmable, pursues 
the traditional view of separation between the different network layers. However, in Active 
Networks the granularity of control can range from the packet and flow levels through the 
installation of completely new switchware [Alex98a]. The term ‘granularity of control’ was defined 
by Calvert et al. [Calv98] and refers to the scope of switch/router behaviour that can be modified 
by a received packet. For instance, a single packet could boot a complete software environment 
seen by all packets arriving at the node, or the switch/router behaviour seen only by that packet.  

                                                 
9   [Camp99a] and still by mid July 2001. 
10 in terms of software (!); later in this work we will see that hardware can be also regarded as programmable. 
11  e.g. virtual switches , switchlets  and virtual base stations [ACKL98] [Chan96] [Merw97a]

 43 



Thus, Active Networks allow the customisation of network services at packet transport 
granularity, rather than through a programmable control plane and thus offer the maximum 
flexibility in support of service creation, yet at the cost of additional complexity to the 
programming model.  
 
Therefore, the AN approach is an order of magnitude more dynamic than the OPENSIG’s quasi-
static network programming interfaces which require a new round of standardization every time 
a new software or hardware technology is going to be used. Nevertheless, the OPENSIG 
approach provides the basic idea of network interfaces that we use in combination with the AN 
framework to define the scope of an evolving new generation of networks, the Wandering 
Networks.  Figure 3 illustrates the general unifying model of a programmable network12 for both 
the telecommunications and the Internet worlds as it was given by Campbell et al., [Camp99a].  
Since the rest of this work is going to be mainly focused on active networking technologies, we 
are adopting the terminology in the above reference which we call the Columbia Model with the 
consensus to use the terms “active” and “programmable” interchangeably.  
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M
anagem

ent plane
C

ontrol plane

Application layer

Transport layer

Network layer

Data link layer

Communication 

Model
Comptation

Model

communication and computation support

(Active Software) Programmable Networks: 
Architectural Viewpoints

��������������������������
��������������������������

������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��������� ��������� ��������� ��������� ��������� ��������� �������� �������� �������� �������� �������� �������� �������� �������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ���������� ���������� ���������� ���������� ��������� �������� �������� �������� �������� �������� �������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ��������� ��������� �������� �������� ��������� ��������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ��������� ��������� ���������� ���������� ���������� ����������� ����������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������
���������������

���������
���������

���������������
���������������

��������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������� �������� �������� ��������� ��������� �������� �������� �������� ������� ������ ������ ����� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ��������� ��������� ��������� ��������� ��������� ��������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ����������� ����������� ����������� ����������� ����������� ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������� ���������� ���������� ����������������

���������������
���������������

������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������� �������� �������� ��������� ��������� �������� �������� ��������� ��������� ��������� ��������� ��������� �������� �������� �������� �������� �������� �������� ���������� ��������� ��������� ��������� �������� �������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������� ������� �������� ��������� ���������� ���������� ���������� ����������� ����������� ����������� ���������� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

 
Figure 3: The basic views at (active software) programmable networks 

 
The following sections introduce the three main directives in modern computer science and 
engineering which are going to play a fundamental role in forming the future concept and reality 
of living networking: programmable networks, reconfigurable computing and adaptive systems.  
They stem from different research areas – computer science, electrical engineering, and artificial 
intelligence, and deal with quite different domains of knowledge: communication protocols and 
services, VLSI logic processor design and information system modeling.  
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12 The IP world is addressed by the front plane with the OSI layers, whereas the telecommunication world is given by 
the side plane. To emphasize the programmability of the network, the communication top plane has been extended 
with a computation model which means that the network nodes are actively performing operations on the packets. 
 



Yet, recently they are increasingly sharing the same key problem: the network evolution while 
trying to answer the question: “How communication networks should be designed to allow easy 
and optimal upgrades in functionality and performance to provide reasonable and effective 
services in a rapidly changing environment at least adaptation and maintenance costs.”  A more 
detailed presentation and discussion is following in chapters 3 and 4 respectively.  

2.1 WHAT ARE ACTIVE NETWORKS ?   

Traditionally, the function of a packet switched network has been to deliver packets from one 
endpoint to another by performing only the processing necessary to forward packets towards 
their destination and enabling the sharing of transmission facilities so that packets may be 
efficiently moved between the interconnected systems. The processing within the network has 
been limited to routing, congestion control and quality of service (QoS) management. This kind 
of a networking is known as “passive”.  
 
Over time, as computing power becomes cheaper, more and more functionality is being placed 
inside the network, in nodes such as firewalls, Web proxies, multicast routers, and mobile 
proxies. Examples of such functionality include admission control (to guarantee delay and other 
performance characteristics for certain classes of users), explicit congestion notification (to 
enhance the congestion-adaptation of certain applications), packet filtering (to protect end 
systems from attempts to exploit security holes), TCP "ACK-spoofing" (to improve reliability over 
lossy links) and even content transcoding (to support the efficiency of multimedia applications). 
Along this path, several problems with “passive” networks have been identified: slow pace of 
network innovation (approx. 10 years from a prototype solution through standardization to a 
large-scale deployment), difficulty to integrate new technologies and standards into the shared 
network infrastructure, poor performance due to redundant operations at several protocol layers, 
and difficulty to accommodate new services in the existing infrastructure.  
 
In the absence of architectural support for providing better services to the users, network 
applications have adopted a variety of ad hoc services for performing user-driven computations 
at the network nodes. A need was felt to replace the numerous ad hoc approaches to network-
based computation, with a generic capability that allows the users to configure and program their 
networks.  
 
This innovative idea of enabling the user to configure and program the network architecture is 
called Active Networking. These programmable networks are “active” in two ways:  

a) routers and switches within the network can perform computations on user packets 
flowing through them; and  

b) users can “program” the network, by supplying their own programs to perform these 
computations.  

 
The first approach is known as Active Nodes and the second one -- as Active Packets. In this 
work we are extending the general view of network programmability defined in [Camp99a] to the 
node hardware and down to the switching circuit layer, and hence --- to the concept of a Real  
Programmable or a Hyperactive Network (Figure 4), which we are going to call simply Active 
Network in the sequel. The details of this model will be discussed later in this work.  
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Figure 4: The hyperactive network concept 

 
 
The present backlog of Internet services includes multicast, authentication and mobility 
extensions, Resource Reservation Protocol (RSVP), and Internet Protocol, Version 6 (IPv6). IP 
enables interoperability by defining a standard packet format and addressing scheme; although 
router implementations may differ, they implement roughly equivalent programs. Thus, the 
mechanisms for IP innovation are changing the IP service, which means changing everything 
(since IP is the basis for interoperability), or establishing overlays (e.g., the Mbone).  
 
In contrast, active nodes can support many different protocols and execute programs on data 
flowing through them, both provided by users. Instead of insisting that all the routers perform 
equivalent computations on every packet, active networks specify that all nodes support 
equivalent computational models (i.e. virtual instruction sets).  
 
Thus, active networks raise the level of abstraction to a virtual-virtual13 networking in which even 
such different protocol worlds as IP and ATM are regarded as a sort of transport [Zegura96]. In 
this way, interoperability is realized in a straightforward manner allowing applications to 
customize message processing to suit their purposes. In fact, due to the transparent behavior 
towards “pure” IP traffic, active networks are acting as “shadow” overlays inside present day IP 
networks by enabling effective, on-demand service deployment and management mechanisms.    
 
The dynamic control provided by active networks is potentially useful for a number of reasons. A 
few of them are described below: 
 
 
                                                 
13 because virtuality is realized not only at the application layer, but also at the lower OSI layers. 
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• rapid development and deployment of new services: This is the biggest benefit of 
Active Networks from the viewpoint of the network service provider. The shared 
infrastructure of the network currently evolves at a much slower rate than other 
computing services. Therefore, the deployment of any new service requires a lengthy 
standardization process, whereby everyone involved should agree on a generic 
procedure for a solution framework (the standard). This has led to a huge backlog in 
network services waiting to be universally deployed. RSVP and IPv6 are two well-known 
examples. The ability to change the behavior of network nodes on the fly is expected to 
simplify greatly the process of deploying new network services. 

• dynamic customization of network services and resource allocation:  At a finer level 
of granularity, Active Networks might enable users or third parties to create and tailor 
services to their particular topology, applications and even to prevailing network 
conditions. This should make it possible to develop a much richer class of applications 
than the ones that are currently deployed. 

• open network management and administration: Active Networks are open to deploy 
and administer. For researchers, a dynamically programmable network offers a platform 
for experimenting with new network services and features on a realistic scale without 
disrupting the regular network infrastructure. 

 
The overall scheme of active networking provides the base for an elaborate evolutionary model 
of future integrated application networks.  
 
In [Sim01] we defined a new network generalization for programmable active networks, which 
we call the Wandering Network (WN). The new concept is based on previous research in 
intelligent and smart networking [Sim96], [SiHo97], [Sim98], [Sim99c] and a formalism called 
WLI (the Wandering Logic Intelligence) [Sim99e], [Sim99f] which extends the Columbia 
University Model of a programmable network, [Camp99a], by three essential characteristics: 

1. it is a  hyperactive network which means that it is truly programmable and reconfigurable, 
including the network hardware up to the gate level; 

2. it is a runtime extensible and exchangeable network in terms of both software and 
hardware components, i.e. a wandering network; 

3. it is an evolutionary network which realizes adaptive self-distribution and replication of 
sub-networks:  

a. by guided or autonomous node and component mobility in terms of hardware;  
b. by including network engineering information in the mobile code of the active 

packets and applying genetic transcoding mechanisms in the active nodes 
(netbots). 

 
Essentially, we distinguish between four generations (Figure 5) of Wandering Networks (WN). 
The First Generation WN includes most of the traditional active network approaches as known to 
be programmable at the highest executing environment (EE) layer. The Second Generation WN 
addresses programmability at both EE and node operating system (NodeOS) layer. Some of the 
present AN systems can be classified to the 2G WN. The Third Generation WN addresses 
programmability at the last layer of networking, an active node’s hardware and switching 
circuitry, in addition to the 2G WN capabilities.  Some of the present AN systems such as ANON 
[Tschu97], Tempest [Merw97a], and Genesis [Camp99b] can be classified to the 2G WN. 
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We are not aware of any end-to-end network architecture that could be classified to the 3G 
WN14. Finally, the 4th Generation Wandering Networks is defined by adaptive self-distribution, 
replication and genetic transcoding techniques. This is the research domain of this work.  

Netbots

Shuttles

 
Figure 5: The evolution of Wandering Networks 

 

2.1.1 PRESENT ACTIVE NETWORK MODELS  

Active Networks (AN) has been a subject of intensive empirical investigation for more than a 
decade15. A number of different models have been proposed to implement active network 
architectures. Three major schools have been established until now: 

1. The "programmable switch" model: User code is downloaded out-of band into the 
network nodes and executed on the normal flow packets treated as the code’s data.  

2. The "capsule" model: Each packet is treated as a complete program to be executed at 
each node of the network being traversed by the packet.  

3. The “option”16 model: Some standard services or modules are residing in the network 
nodes. These are selected and invoked through options carried in the user's packet. The 
rest of the user's packet will be treated as data to be processed by the invoked routine.  

                                                 
14 Of course, hardware re-configuration and programming is possible in terminal devices and (to some extent) at the 

FPGA-level of some specialized cards in present day switches and routers. However, there is still no commercial 
product or research prototype that allows the runtime exchange of switching circuitry (plug-and-play modules) 
synchronized by driver updates in the operation system. 

15 According to a recent DARPA/ITO report , initial research began in the early 90ies.  [Tenn99]
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All these models belong to the 1st Generation Wandering Networks. Figure 6 illustrates the 
individual streams and topics of research in active and programmable networks following a 
personal view on a classification provided in [Camp99a]. It is evident that the classical AN 
approaches still dominate the field. Some of them will be discussed in more detail in chapter 3.  
 

2.1.2 BASIC DEFINITIONS  

What makes a net active ? Perhaps the most distinct feature of Active Networks (ANs) is that 
they do not clearly distinguish between network, transport, and application layers. An active 
network represents a programmable environment with accessible storage for running distributed 
programs and designing customizable network services to ensure application-specific 
processing.  
 
For the reason of understanding, we provide three basic definitions, which are going to be used 
in the sequel of this work. These definitions explain the differences between passive and active 
networks, and the related field of mobile agents.  
 

Basic Definition 1: A passive or traditional (packet switched) network is composed of: a) 
”smart/intelligent” hosts allocated at the edges of the network which perform computations 
on data up to the application layer, and b) ”simple/stupid” routers inside the network 
interconnecting the hosts and capable to perform computations only up to the network 
layer.  

 
Basic Definition 2: An active (packet switched) network allows intermediate routers to 
perform computations in the application layer. Besides, users can configure and program 
the network by injecting pieces of executable code into the network elements (“active 
nodes”, both hosts and routers), and thus by modifying their state and behavior. The 
executable code is embedded within the transmitted packets (“active packets”) along with 
the data exchanged between nodes of the network.  
 
Basic Definition 3: A mobile agent is an autonomous program or processor unit that acts 
on behalf of a user or another program or processor, and is capable of moving within the 
network under its own control. The mobile agent chooses why, when, and to where it will 
migrate upon evaluation of the executing environment it is currently operating in, as well 
as how to interrupt its own execution and continue it elsewhere on the network. The agent 
can communicate and return results and messages in synchronous and asynchronous 
fashion. 
 

In the extreme case, there may be no difference between internal active nodes and the end user 
ones, since both will be capable to perform the same computations on data. In addition, active 
packets can be ultimately complete programs with the data they require.  
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16 Initial research in AN was primarily focused on the first two network models. Yet, researchers are arguing that it is 
unlikely that a significant number of users will wish to perform network programming . 
 



 
 

 
Figure 6: The AN origin of the Wandering Network 
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The concept of a packet as a wandering program inevitably leads to the notion of intelligent 
agents and, in particular, of mobile software agents, which can be, regarded a specific class of 
the former. The similarity between the two approaches, active packets and mobile software 
agents, is obvious. Indeed, many of the active network architectures use mobile code techniques 
that are very close to mobile software agent technology.  
 
However, the idea of active networks is much more general. Active networks visualize the 
network as a collection of active nodes that can perform any computations, and a collection of 
active packets that carry code and are indeed programs. Under that viewpoint, a mobile agent 
may be regarded as a specific type of an active packet, and a mobile-agent-compatible node of 
traditional networks (which is required to execute the mobile agents) could be regarded as a 
specific type of an active node, since the latter is safe and secure.  
 
The fundamental difference between the two ideas is that active networks use the concept of 
network layer processing whereas mobile agent systems run as application programs. 
Therefore, an active network, which is programmable by definition, offers the deployment of 
mobile software agent technology as a kind of “primitive” option.  
 
The notion of processor should be regarded at the broad sense, e.g. from a VLSI device, 
through a plug-and-play terminal component, to a mobile base station controller or an ad-hoc 
networking vehicle and a space shuttle. The mobile agent paradigm proposes to treat the 
network as multiple agent-friendly environments and the agents as program entities or plug 
components that move from location to location-performing tasks for users.  
 

2.1.3  ACTIVE VS. PASSIVE NETWORKS 

Passive Networks (PN) such as the present day Internet are transporting user data between end 
terminals where intermediate nodes of the network are simply forwarding these data to other 
nodes based on look-up-tables. Active Networks (AN), in turn, represent a quantum leap in the 
network evolution. By providing a minimal set of programmable interfaces in network nodes, they 
open the resources, mechanisms and policies underlying their enhanced core functionality, and 
provide mechanisms for constructing or refining an infinite spectrum of new services from those 
elements. Thus, routers can support applications in performing computations on selected user 
data (Figure 7), while packets can carry programs for execution on routers and possibly change 
their state, configuration or execution environment. In other words, active networks support 
dynamic modification of the network behavior as seen by the user, which can be developed to a 
network-on-demand paradigm. 
 
The active network differs from traditional architectures primarily in what it does not specify. 
Instead of defining how the nodes work together to provide the network service (for instance, 
through best effort datagram delivery), the active network describes functional slots that must be 
instantiated to provide a particular network service. These slots create a new degree of freedom, 
a sort of slackware, i.e. idle functionality that can be invoked on demand in the network 
architectures, which in turn opens up the opportunity to speed-up network evolution and thus 
accommodate new network types, algorithms and applications. 
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Figure 7: Active networks allow the asymmetric and asynchronous allocation of some 
application- and user-specific parts of the service inside the network 

 
It is to be noted that programmability in network nodes is not a novelty. In fact, telephony 
networks including switches and their intelligent service control points, as well as packet routers 
are nothing else, but high-performance programmable machines, programmed to perform a 
specific task, i.e. call-switching, service control or packet-forwarding. What is new about the 
Active Networks is that they expose this programmable interface to the user. 
 
The frame presented in this work addresses a generation of active networks, where some 
converging technologies are going to be utilized to transform networks in a qualitatively new kind 
of expanding soft networking. 
 

2.1.4 MAJOR CHALLENGES FOR IMPLEMENTING AN ACTIVE NETWORK 

In order to be successful, any implementation of a programmable active network should satisfy 
the following requirements: 
 

• The network services should be usable: any active programming model will impose 
new and unfamiliar programming models and constraints on the user. For ease of use, it 
is important that these constraints should be as limited as possible. 

• The network should be highly flexible: Flexibility is the primary reason behind the 
Active Networks research. The network subsystem should be adaptable to a wide variety 
of tasks and applications. 

• The implementation should be secure: Security is expected to be the major obstacle 
to large-scale deployment of active networks in the future. 
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The network should guarantee high performance. Performance is usually the price that we have 
to pay for flexibility.  Therefore, the deployment of Active Networks should not create new 
bottlenecks in the network infrastructure. In particular, the implementation should provide for fast 
and transparent path processing of non-active packets. 
 

2.2 WHAT IS RECONFIGURABLE COMPUTING ? 

Reconfigurable computing is a relatively new, but important field of research in computer 
architectures, which began in the late 1980's. It is an attempt to bridge the traditional gap 
between hardware and software within the computing field. By placing the computationally 
intense portions of an application onto the reconfigurable hardware, the overall application can 
be greatly accelerated. This is because reconfigurable computing combines the benefits of both 
software and application specific integrated circuit (ASIC) implementations. This extra hardware 
is called the reconfigurable device, also known as Reconfigurable Computing Machine (RCM). 
The reconfigurable device allows designers to build part, or all of their design in hardware rather 
than software. Like software, the mapped circuit is flexible, and can be changed over the lifetime 
of the system or even during the execution time of an application.  
 
Reconfigurable hardware systems come in many forms, from a configurable functional unit 
integrated directly into a CPU, to a reconfigurable co-processor coupled with a host 
microprocessor, to a multi-FPGA (flexible programmable gate array) stand-alone unit. The level 
of coupling, granularity of computation structures and resources are key points in the design of 
reconfigurable systems. In addition, run-time reconfiguration provides a method to accelerate a 
greater portion of a given application by allowing the configuration of the hardware to change 
over time. Apart from the benefits of added capacity using virtual hardware, run-time 
reconfiguration also allows circuits to be optimized based on run-time conditions. In this way, the 
performance of a reconfigurable system can approach or even surpass that of an ASIC. 
 
Reconfigurable computing machines have shown the ability to accelerate greatly program 
execution, providing a high-performance alternative to software-only implementations for 
computation intensive applications such as DSP transcoding. Since Active Networks allocate 
more computation inside the network, RCM technology is of special interest for building 
programmable network-wide hardware overlays for multimedia and security based applications, 
which integrate (mobile) components from multiple network elements.  
 

2.3 WHAT ARE ADAPTIVE SYSTEMS ? 

The adaptive systems research in computer science involves the application level “adaptability” 
(e.g., multimedia presentation, user level security and communication), the processor and 
memory level (course grain architectures: cache hierarchies, multiprocessing), all the way down 
to the gate and devices level (e.g., programmable logic devices.). In this way, reconfigurable 
computing architectures represent adaptive systems if they are organized as reactive systems, 
i.e. if their programmable state is changed in response of external actions. 
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2.4 RESEARCH TOPICS IN WIRELESS MOBILE COMMUNICATIONS 

Kleinrock’s breakthrough paper on Nomadic Computing in 1995, [Klein95], defined the margins 
of a new discipline that combines the characteristics of computing, communications and mobility. 
He was the one who predicted a paradigm shift in the way telecommunications will evolve in 
future.  
 
The characteristics of nomadicity include independence of location, motion and communication 
platform while assuming the presence of access to remote data, systems and services. The 
notion of independence here does not refer to the quality of service one obtains, but rather to the 
user’s perception of a computing environment that automatically adjusts to the processing, 
communications and access available at a given moment. The ability to adjust all aspects of the 
user’s interaction (computing, communication and storage) in a transparent and integrated 
fashion is the essence of a nomadic environment. The key systems parameters include 
bandwidth, latency, reliability, delay, storage, processing power, interference, error rate, 
interoperability, user interface, etc. The values of all these parameters may change dramatically 
in a nomadic environment.   
 
According to Kleinrock, one of the key problems in this new world of mobile communications is 
to develop a complete system architecture and set of protocols for nomadicity.  
 
The nomadic protocols are required to meet the following basic requirements: 

• interoperation among different infrastructures 
• integrated, ad-hoc access to services 
• provision of graceful degradation of network services 
• scalability of address space, QoS, bandwidth, number of users, etc. 
• cooperation among system elements such as sensors, actuators, devices, network, 

operating system, middleware, services, applications, etc. 
 

In addition, the new platform has to satisfy the following criteria of wireless communications:  
• ability to deal with unpredictability of user behavior and network platform capability 
• ability to match the nature of the transmitted content to the bandwidth availability 

(compression, approximation, partial information, etc.) 
• maximum independence between the network and the applications from both, the user’s 

viewpoint and the development viewpoint 
 
The research fields, which are expected to help in providing the above requirements, are: 

• Integrated software framework representing a common virtual network layer 
• Location services (for people and devices) 
• Resource discovery 
• File discovery and predictive caching 
• Adaptive data base management and synchronization 
• Appropriate replication of services at various levels 
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Another research opportunity in developing the future “nomadic” networks paradigm is the 
provision of a reference model of nomadicity, which will allow a discussion to its attributes, 
features and structure in a straightforward fashion.   
The model should be able to explain: 

• System state consistency up to the level of files, database, applications, etc. 
• Functionality (bandwidth, infrastructure, nature and QoS of communication) 
• Locality, or awareness, i.e. how aware is the user of the local environment and the 

environment of the of users and their profiles   
 
The development of mathematical models of the nomadic environment should allow the study 
the performance of the network under various workloads and system configurations. 
 
A serious constraint in wireless communications, which creates a whole range of research 
problems, is the limited frequency spectrum set up by the laws of Maxwell and Shannon. 
Therefore, another major research theme in wireless networking is the profound exploration of 
all available degrees of freedom in utilizing the available resources within a given range. The 
spectral limit of GSM will be probably reached quite soon. Therefore, the driving force behind the 
3d Generation wireless systems were the ITU submissions IMT-2000 and the perceived needs 
for high-speed data transmission up to three mbps compared to 9.6 kbps in GSM. Among the 
leading UMTS/IMT-2000 proposals, CDMA/TDMA and W-CDMAOne are the ones providing a 
graceful upgrade from GSM. With optimized packet switching, data throughput is considerably 
increased (more than doubled) compared to data over voice circuits. However, the available 
bandwidth is going to oscillate during a transmission session because of the characteristics of 
the wireless link such as packet losses and delay jitter resulting from field interferences, 
handover and disturbing Internet traffic. These effects inevitably lead to unacceptable Quality of 
Service degradations of multimedia applications.  
 
Furthermore, although the bandwidth offered by wireless communication media varies over an 
broad range, the nature of the error rate, fading behavior, interference level, mobility issues, etc. 
for wireless are considerably different so that the algorithms and protocols require some new 
and different forms from the ones in wireline network [Katz95].   
 
The main reason for QoS degradations is that the existing Internet traffic control mechanisms 
such as TCP and UDP were primarily developed for the use in wired networks. Therefore, the 
wireless part of the packet network has to be treated separately17. The primary characteristics of 
wireless mobile networks are relatively lower bandwidth, intermittent connectivity, and higher 
error rates. Wired networks offer high bandwidth, steady connectivity, and very low error rates. 
Bandwidth-intensive or near real-time applications require special handling to surmount the 
limitations of wireless mobile networks. The main reasons for this dichotomy are:  
• Deficient resources, 
• Limited bandwidths in  wireless links, 

                                                 
17 For instance, the Wireless Access Protocol (WAP) is such an approach. However, it is completely orthogonal to the 
straightforward end-to-end IP QoS concept. WAP breaks the IP net into two parts and requires a complete exchange 
of the Internet protocol suite and applications.  
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• Failing transfer channels, 
• Limited energy supply. 
 
Therefore, bandwidth and resources (whatever they are) have to be shared or at least managed 
in an intelligent way. Some of the main research topics in this area are outlined as follows:  
 

• Supporting the development of new multimedia applications is of crucial importance for 
the market success of mobile wireless multimedia technologies. New applications have 
to be capable to serve in an adequate18, reasonable and reliable fashion.  

• Multimedia applications (in particular novel applications) for wireless communication 
require a higher performance, adaptability and flexibility of the networks in order to able 
to effectively use the limited RF spectrum and resources of the network. 

• Traditional protocol structures (IP) are based on the layer concept. There is no support 
for guaranteeing QoS between the layers. Because of the permanent fluctuations in the 
wireless channels, the QoS concept should be able catch with the prevailing dynamic 
changes and demands of the communication environment.  

• The new protocol versions should be developed with respect to the characteristics of the 
wireless networks19. In particular, the limited performance of the current mobile terminal 
equipment has to be taken into consideration. 

• Because of the spontaneous, dynamic nature of wireless mobile communications, 
multimedia routing should be increasingly considered in an application, QoS, user 
behaviour and infrastructure aware fashion. Ad-hoc, multi-hop approaches have to be 
systematically investigated to derive patterns and policies for adaptive system state 
changes towards an autonomous, self-organizing communication infrastructure. 

• Mobile wireless multimedia requires a flexible network topology on demand. 
 
Among these research issues, the evolution and the expansion of the mobile network as a 
whole, has not been investigated sufficiently until now. This subject defines the focus of the 
Wandering Network approach, which we advocate in this thesis.  
 
 

* * * 
 

                                                 
18 “All Bits are Not Created Equal” ( ). All networks also. Therefore, wireless communications should  be 

designed with the nature of the bits in mind.  
19 In most cases, new and custom protocols (such as WAP) are developed and deployed in the wireless network to 

meet user needs.  Unfortunately, the current network infrastructure is rigid, and the protocol stack in the network is 
usually fixed. To avoid the time-consuming standardization process, network protocols must possess the following 
properties to enable users to build their own modular, extensible and verifiable protocol frameworks  : 

• Modularity — decomposing complex protocols into smaller components, each implementing a piece of   
communication functionality; 

• Introspection — being able to access an existing protocol component and work with abstractions to it; 

• Intercession — being able to modify behavior of an existing protocol component. 

 

[Negr97]

[KuMi00]
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CHAPTER 3: ACTIVE NETWORKS 

“Iron rusts from disuse, stagnant water loses its purity,  
and in cold weather becomes frozen,  even so 

does inaction  sap the vigors of the mind.” 
 

LEONARDO DA VINCI  (1452 - 1519) 

3.1 INTRODUCTION 

In the 80ies Zander and Forchheimer worked on an experimental system (Softnet) in which 
packets of FORTH code were interpreted by network elements [ZaFo83]. Their objective was to 
improve the performance of processing software in a communicating environment.  Later, in the 
mid 90ies, the concept of active networking (AN) emerged in the DARPA research community 
while discussing the most familiar network problems: 

• the poor performance due to redundant operations at several protocol layers,  
• the difficulty of integrating new technologies and standards into the shared network 

infrastructure, and 
• the difficulty to accommodate new network services in the existing architectural model.  

 
Within traditional packet networks, such as the Internet, computation is extremely limited. 
Although routers may modify a packet’s header, they pass the user data without examination or 
modification. Furthermore, the header computation and the associated router actions are 
specified independently of the user process or application that generates the packet. For this 
reason, there is no way to influence the behavior of the network through the application itself. 
    
Active networking ([TeWe96], [Pso99]) represents a new paradigm in communications in which 
the nodes of the network are user-controllable by providing a programmable meta-level interface 
to the network (i.e., they offer an open execution platform on which user code can be executed). 
These networks are active in the sense that nodes (network elements) can perform 
computations on, and modify the packet contents. We can identify three typical application 
scenarios for active networking: firewalls, proxies and mobile terminals. The advantages of the 
new approach are summarized as follows: 

• Firewalls act as filters on packets. They implement application and user specific 
functions. Updating such functions or adding new features to them is complex. Active 
Networks allow the injection of software updates to firewalls by approved security 
vendors. 

• Web proxies are used for caching web pages. Today they are usually part of the end 
user organizations. Active networks allow caching at other specific points in the network 
(e.g. to support ad hoc multicast streams). 

• Mobile terminals in nomadic computing are characterized by different bandwidth 
requirements on the access network. Active networks offer the opportunity for effective 
service management on a per-user and per-connection basis. 
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The idea of messages carrying procedures and data (e.g. the message passing interface, MPI, 
[MPI]) is a natural step beyond traditional circuit and packet switching, which allows the rapid 
adaptation of the network to changing requirements of the execution environment.  
 
This program-based approach provides a foundation for expressing networking systems as the 
composition of many smaller processing elements with specific properties where services can be 
distributed and configured to meet the needs of particular applications. In addition, the overall 
network behavior can be observed and modified in terms of the properties of individual 
components. As mentioned in Chapter 1, we regard programming as extended to the hardware.  
 
This chapter is organized as follows. We continue with the basics of active networking in section 
3.2, and the underlying conceptual paradigms, followed by the Reference Model20 active 
networks and a summary of the mainstream directions and the current implementation 
framework. Section 3.3 is dedicated to the active network architectures with the goal to provide a 
classification based on the results of the surveys given in [TeWe96], [YeSi96], [Tenn97], 
[Calv98] and [Smith98]. The expose includes a short review of the enabling technologies for 
active networking highlighting their key advantages. Section 3.4 reviews the domains of AN 
research with a focus on a variety of applications. A special attention is dedicated to the 
application of active networks in mobile communications. Finally, section 3.5 provides an overall 
analysis and discussion of the active network approach. An outlook for further research and a 
summary with conclusions are given in sections 3.6, 3.7 and 3.8 respectively. 
 

3.2 FUNDAMENTALS  

Active networks apply active technologies, that are used today mainly at the network terminals 
and in the end-to-end network layer, to every network layer (Figure 8). They combine the 
properties of mobile agents, which carry mobile code from clients to servers with the properties 
provided by Web applets that transport mobile code from servers to clients. In short, active 
networks allow applications to dispatch computation to where it is required [TeWe96]. Thus, a 
single internal network node can be configured in several different ways to perform some 
dedicated tasks with the transferred data in the network.  
 
The idea behind active networking is to enable nodes to performing computation on packets in 
order to make the network adaptable to changing requirements of the environment. They are 
expected to facilitate a) the creation and introduction of new network services, and b) the 
deployment of new protocols for emerging applications. 
 
There are two basic approaches in active networking, discrete and integrated, depending on 
whether programs and data are carried discretely (i.e. within separate messages) or in an 
integrated manner. There are also two basic architectures in active networking according to the 
entities enabled with the property of “being active”, Figure 10: Active Packets (AP) and Active 
(Network) Nodes (ANN).  
 
                                                 
20 which is referred in this work’s genealogy as the First Generation (1994-1999). 
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Figure 8: Active network design approaches 

In addition, there is also a hybrid approach to active networking, which is based on both active 
packets and active nodes. We adopt the nomenclature used in [Tenn97] and [Camp99a] with the 
consensus to apply the term “active node” also to programmable (configurable) switches. 
 

3.2.1 THE REFERENCE MODEL 

In the following, we review the Wandering Network Reference Model which emerged out of the 
overall AN model developed at the DARPA active networks program, [DoDAN], and the 
generalized architecture of a programmable network defined by Campbell et al. [Camp99a] 
along with our own enhancements related to the network hardware components. This further 
generalization of the concept of network programmability in this work was necessary in order to 
distinguish between the basic AN attributes related to run-time extensibility and programmability 
of active applications and executing environments, and the enhanced ones emerging in some 
recent developments and addressing the lower layers of the AN architecture.  
 
Despite adopting some of the terminology proposed in [Calv98], [Camp99a], it should be noted 
that there is still no consensus on the provided definitions. As already mentioned in Chapter 2, 
the terms “active” and “programmable” will be used interchangeably.  
 
An active network (Figure 7) is a kind of store-and-forward network. It consists of a set of (active) 
nodes interconnected by transmission links. The purpose of the network is to share the 
transmission facilities.  
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The basic unit for multiplexing the transmission facilities is the (active) packet. The (end) user21 
is either the originator or the recipient of the packets carried by the network. Nodes receive 
packets from users and other nodes, perform computations based on their internal state and the 
control information (header) carried in the packet, and as a result of that computation may 
change its internal (soft) state and forward one or more packets towards other nodes or to users.  
 
The nature of the network service is defined by the behavior of the particular nodes in the 
network, and how users can control that behavior through coded information embedded in their 
packets. In present (passive) IP networks, where routers examine the destination address field 
of the IP header with internal routing tables to determine to which neighbor they should forward 
the IP packet, the role of user control over the network’s behavior is fairly limited to the range of 
values that can be placed in that field (and a few others) of the IP header. Active networks can 
offer new network services capable to evaluate the information contained in all of the packet 
headers.  
 
The network application-programming interface (network API) comprises those aspects of the 
network behavior that are visible to the end user. Open signaling networks [OPENS] have a 
clearly defined set of network APIs [P1520]. In active networks, the network API is a kind of 
virtual machine (VM) capable of interpreting different protocol languages representing the 
different views of the network. As the network evolves, the network API develops as well.  
 
The general approach to network programming [Camp99a] specifies an environment, which 
offers a set of network programming interfaces and tools for designing network architectures 
from building blocks in a similar way as constructing applications by using software development 
tools. These interfaces specify how programmable architectures are constructed in terms of: 
 

• network services, which the network architecture realizes as a set of distributed network 
algorithms and offers to the end systems; 

• network algorithms, which includes transport, signalling/control and management 
mechanisms; 

• multiple time scales, which impact and influence the design of the network algorithms; 
and finally 

• network state management, which includes the state that the network algorithms operate 
on (e.g., switching, routing, QoS, etc.) to support consistent services. 

 
Related to the network node level, such architecture environments address node kernels22 and 
define the common base functionality23 for:  a) how data is processed; b) what resources are 
available at the node; and c) how they are accessed. 
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21 Users are, in general, different from node/network administrations, which control the configuration and 

interconnection of network nodes. 
22 This is used to address the node operating system by both the Active Network and the OPENSIG communities. 
23 In the WLI network model presented in Chapter 5 we introduce two other definitions: a) how resources are 

configured, and b) how they are enhanced and exchanged.  



Programmable network architectures may range from simple best-effort forwarding architectures 
to complex mobile agent protocols that respond dynamically to changes in wireless QoS and 
connectivity. Given this diversity it is necessary that both24 network programming environments 
and node kernels are extensible and programmable to support the large variety of 
programmable network architectures.  
 
According to Campbell et al. [Camp99a], the node kernel25 represents the lowest level of 
programmability of the network. Yet, we argue that programmability does not stop at the 
operating system level. The network hardware26 can be also (re-)configured and programmed 
down to the gate level if required (Figure 4, the Hyperactive Network). This last level of 
programmability is reviewed in Chapter 4 (Reconfigurable Computing).  
 
The following section discusses in some detail the main concepts of active networking.  
   

3.2.2 CONCEPTUAL PARADIGMS  

3.2.2.1 Active Nodes 
Active nodes are programmable elements in an active network that enable the deployment of 
custom services and protocols. Initially, they emerged as programmable switches, [Tenn97], 
maintaining the existing packet/cell format, and providing a discrete mechanism that supports 
the downloading of programs. Later on, the term active node was introduced to include 
additional functionality which was able to change the data format (e.g. for the purpose of 
transcoding in video transmission).  
 
An active node plays a double role in the network. On the one hand, it has to be transparent for 
the present day IP traffic. It operates as a router. On the other hand, it has to perform a specific 
task on selected packets in accordance to its active function.  
 
The reference model of an active node is illustrated in Figure 9. It consists of a passive and an 
active part separated by a packet filter. The passive part contains the IP routing stack as we 
know it from present day Internet. The active part has been historically associated to local27 
protocol enhancements in the layers above the network known as the protocol booster 
approach, [Marc98]. However, recent research has shown that it can be also related to layers 
below the network (e.g. DLL, [Sim00], [SRBW01], Figure 26) to improve performance and error-
resilience, e.g. in video transmission.  

                                                 
24 These two levels of network programming were progressively associated with the First and the Second Generation 

Wandering Networks, respectively (  Chapter 1). 
25 Henceforth, the terms “node kernel” and “NodeOS” will be used interchangeably. 
26 This level of network programmability was associated with the Third Generation Wandering Networks (  Chapter 1). 

A detailed discussion of Configurable Computing follows in Chapter 4.  
27 for the particular active node only; this is an adaptation technique for dynamic protocol customisation to 

heterogeneous environments on an as-needed basis proposed by Bellcore and the University of Pennsylvania. The 
boosting mechanism is under control of a policy determining when augmentation of the protocol stack is required. 
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Figure 9: The Active Node reference model 

The basic Active Node components include: 
1. one or more execution environments (EEs), virtual machines (VMs) where active 

applications can be executed28; 
2. a node operating system, NodeOS, which manages the node’s resources and the 

communication inside the node on behalf29 of the EE, and 
3. the IP routing stack of the passive part. 

 
There are three layers of code running on each active node: active applications30 (AA), 
execution environment and NodeOS. The EEs role is to offer AAs a sufficiently high-level 
programming environment, whereas the NodeOS is responsible for multiplexing the node’s 
resources among the various packet flows. The AN reference model, i.e. the First Generation 
(1G) Wandering Networks, allows network programmability at the AA31 and EE layers. It defines 
a NodeOS interface to the EEs [NOSIS].  

                                                 
28  The Execution Environment corresponds to a Unix Shell for processing active packets. 
29   The NodeOS provides a programmable interface for the EE to the node’s resources. 
30 Not shown on Figure 9. For an illustration, please refer to Figure 12. An Active Application is a program loaded from 

active packets that implements a particular application (e.g. an application-level routing protocol in an overlay active 
ad-hoc network as shown in 

31 Application Level Active Networking (ALAN) 
[Gold01]). 
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The Second Generation (2G) WN considers also32 programmability at the NodeOS layer, 
whereas the Third One (3G) expands programmability to the resources layer. It requires a 
second NodeOS interface to the hardware components.  
 

3.2.2.2 Active Packets 
Active packets33 (or capsules) are executable programs (possibly containing data) which are the 
means of communication in an active network. They are characterized by a unique type and, 
optionally, a destination address, data, and program code in the form of methods that can be 
executed locally at any node in the active network. With the capsule approach, the passive 
packets of legacy architectures are replaced by active miniature programs that are encapsulated 
in transmission frames and executed at each node along their path. By injecting active (smart) 
packets into the active nodes to modify their behavior, applications are enabled to customize 
network resources for dynamic adaptation. Active (or smart) packets can also carry code in the 
form of application-specific protocol frameworks composed from custom protocols. 
 
Active (or smart) packets differ from the “passive” or (traditional) ones by the fact that besides 
structured data they also carry executable34 code. Active nodes, in turn, are executing on the 
arriving packets. They differ from the passive ones by the property that besides the simple 
processing at the transport layer (switching, routing), code can be executed at the higher layers 
up to the application. In this way, some tasks that have been initially allocated at the smart 
edges of the packet network can be performed now inside the network for some reason35.    
 
An active packet consists of two parts: the header and the payload (Figure 10). The header of 
the packet has a specific format and contains information about the protocol being used, about 
the target handlers, the entities that would process the packet on the intermediate nodes, the 
sender, the receiver and the device drivers. Generally, a target handler can be an execution 
environment, a classic IP router stack or a dynamic handler, e.g. a flow.  The NodeOS uses the 
Active Networks Encapsulation Protocol (ANEP, [Alex97]) in case that the target handler is an 
execution environment. It is also in charge of directing incoming packets to the corresponding 
target handler by analyzing the packet header.  
 
Currently, each implemented execution environment such as ANTS [WGT98], CANES [CANES] 
or PLAN [Hicks98] has a specific ANEP identifier assigned to it. The payload can contain data or 
pieces of code or both. Its length can vary from zero to the maximum length that will keep the 
whole packet within the SDU limits allowed by the underlying transport system. 
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32 2G active networks can be programmed at both EE and NodeOS layers where the NodeOS can be addressed in a 

twofold manner: a) indirectly, via the EE, and b): a) directly through a special interface. 
33 Note: Sometimes, active packets are refered to as mobile agents. Generally, this is not true, since mobile agents 

are application-layer software entities, which can be deployed in traditional networks without affecting the network 
architecture or functionality. In this work, we introduce the term pro-active agents when we want to address the 
specific network adaptation role of active packets or their aggregations as application layer entities.  

34 An active packet is self-contained and usually embedded within a single IP packet along with the data it is defined 
for. An applet is a complete executable program (mobile code) exchanged between networked computers.  

35 For instance, error detection and correction should not necessarily occur at the destination or source side      
respectively, if these procedures can be  performed more effectively at some active hop (proxy) inside the network. 
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Figure 10: The structure of an active packet and its mapping into an EE  

 
In some architectures, the executable code refers to the data of the same packet that carries the 
code. We call them compact36. Other architectures let packets transfer some identifiers or 
pointers to indicate which code should be executed on behalf of them. We call them related, 
because the executable code can be allocated: 
 

a) in some of the network nodes: node-related architectures;   
b) in some of the following packets of the same stream (or even a different stream37): 

packet-related architectures; or   
c) in both some active node(s) and some active packet(s), i.e. node-and-packet-related 

architectures.         
 
In addition, the active network defines mechanisms for code distribution and downloading since 
not all nodes need to have all the code that they can execute at a time. Finally, some 
architectures provide the user with some mechanisms to choose between lightweight code that 
is carried by active packets and heavyweight code that resides in the active nodes.  
 

                                                 
36 Traditional nodes can be also regarded as compact architectures from the viewpoint of code allocation since they 

execute code, which is local to them. Also, compact architectures can be configured to perform different tasks on 
packets. Chapter 7 provides a generalized definition of the active network architecture.  

37 consider, e.g., an audio / video synchronization. 
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The following two sections discuss the major characteristics of the two basic schools in network 
programming: Active Networks and Open Signaling. 
 

3.2.3 THE ACTIVE NODE APPROACH 

The software architecture of an active network node (ANN) consists of two parts (Figure 11), 
Execution Environments (EEs) and a Node Operating System (NodeOS). The EE is responsible 
for the implementation of the network API, while the NodeOS manages access to local38 
resources by EEs.  The architecture supports multiple network APIs simultaneously.  
 

EE 1 EE 2 IPv6

Mgmt
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Security 
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Policy DB

storechannels

Execution
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Figure 11: The software architecture of an active node 

Each execution environment represents a virtual machine defining a programming interface 
through which end-to-end network services are provided to users.  The NodeOS hides the 
details of the internal AN architecture (resource management, configuration, etc.) to the EE and 
the user.  The EEs, in turn, abstract most of the details of the external network environment (e.g. 
interaction with the user and other nodes and entities comprising the so-called principal) from 
the NodeOS. In addition, the NodeOS is responsible for the enforcement of security policies 
defined in terms of principals. 
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38 The WLI approach requires that the NodeOSs manage the configuration, the enhancement and the exchange of 
resources between the nodes through the corresponding EEs by building virtual resource sets (VRS). To create new 
behaviors of the node, we allow the injection and creation of own EEs on user request. Yet, deploying such 
“customer” VMs requires special resource management procedures which are not discussed further in this work. 
 



3.2.3.1 The Node Operating System 
Many network vendors integrate an operating system, a node kernel, within their switches and 
routers to configure and maintain the communication system functions of the network nodes. 
These system functions include signalling, control and management processes, as well as 
forwarding, inter-process communication and download of new boot images. Because of their 
proprietary nature, such operating systems offer limited support to evolving network 
programming environments and are practically closed to end users and third party providers.  
 
The Node Operating System (NodeOS) of an active node provides the basic functions from 
which EEs build the components of the network APIs. It manages the resources of the active 
node and mediates the demand for them basically by multiplexing the node’s communication, 
memory and computational resources among the various packet flows traversing the node.  
 
The NodeOS hides the details of resource management from the EEs, as well as execution 
environments from each other.  The resources of the node consist of:  

a) threads, computational resources such as CPU usage and data storage; 
b) memory in terms of memory pools for packet buffers and holding the EE-specific state;  
c) files for persistent storage; and 
d) channels directing packets to the target handler (e.g., an EE,  Figure 12). 
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Figure 12: An Active Node configured in a) active mode and in b) passive mode 
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The general computation model for programmable networks described in [Camp99a] (Figure 3, 
Figure 4) enables the programmability of the communication model. For instance, MIT’s 
Exokernel [Eng95] system is a flexible NodeOS which securely multiplexes machine 
resources and allows a great degree of application-specific customization of OS abstractions. 
 
The NodeOS uses domains to aggregate control and scheduling of the node’s resources 
through the NodeOS interface. A domain is the primary abstraction for addressing admission 
control, scheduling and accounting for packets. The NodeOS communicates with the EEs 
through an interface which is based for evolutionary reasons on established interfaces such as 
POSIX. Its primary role is to support classified packet forwarding39 at very high speeds. The 
secondary role of the NodeOS interface is to allow an extension or configuration of the 
underlying NodeOS itself. 
 
For reasons of simplicity and efficiency the NodeOS interface specification [NOSIS] does not 
provide the means for an EE to extend the NodeOS directly. In their generalized model for 
programmable networks, Campbell et al. [Camp99a] propose a low-level programming 
environment  which runs on switches and routers as a node kernel and provides a small set of 
node interfaces to support the manipulation of the node state (e.g. for access and control of the 
node’s resources) and the invocation of communication services.  
 
 

3.2.3.2 The Execution Environment 
The Network Programming Environment (NPE) illustrated on Figure 4 represents the 
“middleware glue” between executing network architectures and the node kernels themselves. It 
is composed of a set of execution environments spread out throughout the nodes of the network 
to support the dynamic deployment of network services and protocols.  
 
The NPE operates over a set of well-defined NodeOS interfaces and offers distributed toolkits 
for the creation of programmable network architectures while supporting different levels of 
programmability, programming methodologies, networking technologies and application 
domains.  The services offered by an network programming environment range from simple 
Remote Procedure Calls (RPC) between distributed network objects to sophisticated dynamic 
downloading of mobile code and fast compilation into an intermediate machine-independent 
representation.  
 
An execution environment defines the particular programming model for writing active 
applications. Each execution environment has an input channel for storing incoming packets to 
be processed and an output channel for placing outgoing packets, Figure 12. The execution 
environment provides a high-level interface for active applications, which are EE-specific. When 
a packet reaches an active node, depending on the target handler, it is either directed into an 
incoming channel of an EE, or into a cut-through channel. Usually, there is only one cut-through 
channel per node. This channel is used when the packet does not need to be processed which 
is the case e.g. with IP packets.  

                                                 
39  as opposed to running arbitrary computations in common, terminal operating systems. 
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The packet in a cut-through channel bypasses all execution environments and is sent directly to 
the routing stack to be forwarded to the next node. Any packet in a channel anchored to an EE is 
processed by the EE. The results of processing a packet vary depending on the content of the 
packet and also on the execution environment. Usually a packet (the same one or a new one) is 
put in the outgoing channel of the EE. This packet is then going through the routing process and 
sent to the next node. 
 
 

3.2.3.3 The Node Operation 
An active node is operating as follows. When an EE requests a service from the NodeOS, the 
request is accompanied by an identifier (and possibly by a credential) for the principal (also, the 
EE itself) in whose behalf the request is made. The NodeOS presents this information to the 
Security Enforcement Engine, which verifies its authenticity and checks that the node’s security 
Policy Database authorizes the principal to obtain the requested service or perform the 
requested operation.  
 
EEs are allowed to implement their own policies to enhance these of the node, but they may not 
override the NodeOS own policies. For exchanging packets between the EEs, the NodeOS 
implements communication channels consisting of physical transmission links (e.g. ATM, 
Ethernet, etc.), and the protocol stack processing associated with higher-level protocols (IP, 
TCP, UDP).  
 
When an active node receives a packet over a physical link, it classifies the packet based on the 
packet’s contents (i.e. headers); each packet is either assigned to an existing channel or 
discarded. The mapping of incoming packets to channels is controlled by a pattern of headers 
(e.g. an Ethernet type or a combination of TCP port and IP protocol numbers) specified by the 
EE when it creates the channel. It is the responsibility of the security engine to ensure that a 
given principal is allowed to create a channel with a particular pattern. Input channels are 
scheduled for processing, whereas output channels are scheduled for both processing and 
transmission.  
 
 

3.2.2.4 The Node State 
The active node state is always given by the active40 components present on the node (incl. the 
Active Applications, AAs), Figure 13. The notion of a next41 active state depends on the action 
that is taking place. When a packet arrives at a node, the next state of the node is one where the 
packet is buffered in some channel, in addition to whatever was present in the previous state. If 
a packet is being executed, the next state is rather one where the packet has been removed 
from some channel, with the rest of the node not modified.  
 
                                                 
40 Here we distinguish between active and non-active components on a node w. r. t. the concept of a virtual active 

node (VAN), a special feature of the WLI approach discussed later in chapter 7.  
41 The Next state construct is an essential part of the TLA formalism . Therefore, we assume that TLA is 

ideally suited to model and verify active networks with real-time constraints.  
[Lamp94]
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Active states (memory) provide a mechanism for active packets and active applications to 
temporarily store information. The use of (active) states for describing the configuration of an 
active node makes the task of formally specifying the node easier. Since the NodeOS provides 
an underlying interface to each EE, it can be assumed as in [KAD00], that from the EE’s 
perspective the network consists only of other execution environments of the same type. This 
filtered view is not only a good abstraction for formalizing the node model, but also the base for 
the WLI’s layered “shadow network” (multiple overlaying) principle described later in chapter 6. 
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Figure 13: An Active Node application layer architecture 

 
 
For instance, a 1G EE-centric node specification may look as follows in the PVS (Program 
Verification System) formalism [PVS] (and C, for comparison only): 
 
ActiveNode: TYPE = [#         |     typedef struct ActiveNodeSpec { 
   address:   Address,        | address  Address; 
   sendQ:     Queue[Pckt],   | sendQ  Queue(Pckt);  
   services:  set[SrvcID],  | services  set(SrvcID); 
   resources: set[RsrcID],  | resources  set(RsrcID); 
   policies:  set[PlcID],      | policies  set(PlcID); 
   data:     Resources         | data  Resources; 
#]    |     } *ActiveNodeSpec 
 

The address field represents the address of the node on which the particular EE is running. 
Each execution environment has a send queue, sendQ, used for buffering the outgoing packets.  
The EE mechanisms comprise services, resources and security policies. Services represent the 
programmable functionality of an active node which controls the node resources on behalf of the 
NodeOS. They can be resident, installed on or removed from the EE depending on the AA 
executed. The service identifier, SrvcID, is used to identify a service that is available to 
programs running in the execution environment.  
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The resources of an EE are the node resources allocated to that EE by the NodeOS. The 
resource and policy identifiers, RsrcID and PlcID, denote the specific resource and security 
policy respectively. The construct Resources defines all types of resources that an EE can 
have such as memory and routing tables. The node resources cannot be accessed directly by 
packets and must be exploited through a special set of services which are guided by security 
policies. Each resource must have a unique resource identifier and data type. The exact set of 
resources that are available to an EE is given by the set of resource IDs. 
SecureResource: TYPE    
 
RsrcID: TYPE ={   |    Resources: TYPE = [#  

secureResource,   |       secureResource:  SecureResource, 
registeredHosts,   |       registeredHosts: setoff[Adress], 

     routeTable,   |       routeTable:      [Address -> Address], 
registered   |       registered:      bool 

}             |    #] 
 
Two types of policy IDs are of particular interest, routePolicy and securePolicy, granting 
access to the routing table and the secure resources correspondingly: 
 
PlcID: TYPE = {   |  securePolicy: TYPE = [# 

routePolicy,   |     safetyPolicy:   SafetyPolicy, 
securePolicy,   |    livenessPolicy: LivenessPolicy, 
relaxedPolicy   | #] 

}  
 
There are two groups of security policies. The first group is used to restrict the access to 
services and guarantee safety of the nodes, while the second one monitors the use of security 
policies by the user to avoid a user’s policy monopolization of the node’s services, and hence – 
the node’s resources, and ensure liveness of the network. (The requirements for safety and 
liveness are mandatory constructs in temporal logic, [MaPn92]; they will be discussed in more 
detail in chapter 6.) A user’s safety policy has to be designed in such a way, that it should not 
restrict the use of a resource to that user only. On the other hand, the liveness policies should 
control the interaction of users’ policies in such a way that the running network is deadlock-free. 
These properties of the system can be easily modeled and verified by using a formal technique 
such as TLA [Lamp94].   
 
An active packet can be described in PVS as follows, Figure 10: 
 
ActivePacket: TYPE = [# 

ptype :  PacketType, % protocol ID 
thandler:  TargetHandler % ANEP ID, flow ID, etc. 
src :  Address,  % sender 
dest :  Address,  % receiver 
nhop :  Address,  % next node 
driver: DeviceDriver, % device driver ID  
payload :  Payload  % data and/or code 

#] 
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The first six fields describe the header of the packet. The resolution of the exact payload content 
for a specific packet is obtained from the ptype variable in the header: 
 
Payload: TYPE = [# 

getSecureResourcePayload: GetSecureResourcePayload 
#] 
 
GetSecureResourcePayload: TYPE = [# 

value : SecureResource,  
outgoing: bool 

#] 
 

3.2.4 THE OPEN SIGNALING APPROACH 

Although active networking targets to reduce the amount of standardization in service 
provisioning, there is still some effort required to integrate active solutions within the available 
infrastructure. The primary interfaces in a First Generation AN architecture are the user-EE 
interface (network API) and the EE-NodeOS interface. The EE-NodeOS interface may vary from 
node to node; all that is required is to provide a standard set of basic services to EEs. Beyond 
this interface, there are only a few features that require standardisation, mainly encodings that 
must be understood by both the end user and the NodeOS such as ANEP, the syntax and 
semantics of principal identifiers and security credentials, and the measurement units for 
resource allocation. 
The Open Signaling community (OPENSIG) represents the telecommunications industry 
approach to making the network programmable. It deals with methods for improving the network 
signaling system while providing “open”42 access to switches and routers using a set of 
programmable network interfaces to the different layers of the network elements. Emphasis is 
given on service creation and QoS. There is also a clear distinction between the transport, 
control and management planes. Physical network devices are regarded as distributed 
computing objects (e.g. virtual switches, switchlets [Merw97b], and virtual base stations) with 
well-defined open programmable interfaces. These open interfaces allow service providers to 
manipulate the states of the network using middleware toolkits such as TINA and CORBA in 
order to construct and manage new network services. The OPENSIG’s domain of interest begins 
with the Plain Old Telephone Service (POTS) and ends (currently) with real-time video services,   
Figure 14. 
 
Supporting this space is a challenge to the network signalling system. This challenge means 
different things for different networks:  

• For ATM networks, it means how to enrich its signalling capability to cope with multi-point 
and multi-media.  

• For telephony networks, it means how to enrich transport to include say data and video.  
• For IP networks, it means how to ensure the packet forwarding network supports QoS for 

voice and video. 
                                                 
42 This term is quoted because OPENSIG distinguishes in fact between different classes of network users. 
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Figure 14: The OPENSIG domains of interest 

 
The AN approach goes in fact beyond the OPPENSIG approach, especially when one considers 
the dispatch, execution and forwarding of packets based on the notion of "active packets". 
However, both communities share the common goal to go beyond existing approaches and 
technologies for construction, deployment and management of new services in 
telecommunication networks. Both trends include a broad spectrum of projects with diverse 
architectural approaches43. However, the OPENSIG approach clearly separates network control 
from information transport44 and is primarily focused on programmable switches that provide 
some level of QOS support. In contrast, projects under the AN umbrella have historically been 
focused on IP networks, where the control and data paths are combined. 
 
Recently, the IEEE standard project P1520 ([Bis98], [P1520]) on Programmable Interfaces for 
Networks is pursuing the OPENSIG approach in an attempt to standardize programming 
interfaces for network control and signaling on ATM switches, IP routers and mobile wireless 
networks. It proposes software application programming interfaces (APIs) for (active) networks 
based on IDL45, in particular - for service and signaling control, in a much more integrated and 
elaborated fashion than SS746 in circuit-switched intelligent networks and ATM.  
 
 

                                                 
43 For example, few AN projects consider every packet to be an active capsule and similarly few OPENSIG projects 

consider programmable network interfaces to be static. 
44 similar to the functional split between the SS7 net for signalling and the switching voice net in intelligent networks 
45 Interface Description Language 
46 Signalling System 7,   . [Fayn97]
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P1520 is developing a reference model separating end-user application semantics, value-added 
services, network-generic services, virtual network devices, and hardware and/or low-level 
software support. The project aims to establish programming interfaces between the levels of 
the reference model which are closely related to the two levels of abstraction in an active node, 
e.g. as described in the PLAN [Hicks98] and CANE [CANES] approaches.   
 
Figure 15 illustrates the different levels of the P1520 Reference Model for APIs for networks. In 
this model, there are levels, entities at each level, and interfaces between levels.  
 
At the value-added services level (V interface), the entities are end to end algorithms that add 
value to services provided by the third and lower levels by means of user-oriented features and 
capabilities, such as real time stream management, synchronization of multimedia streams and 
other capabilities beneficial to value-added service providers and end users. At the network-
generic services level (U interface) the entities are algorithms that deal primarily with the 
functioning of the network.  
 
At the virtual network device level (L interface) the entities are logical representations (objects) 
of certain state variables of these entities in the first level. All three levels comprise the software 
interfaces that are abstractions of the physical resources in the Physical Element (PE) level. 
Finally, the entities at the PE level are physical elements of the network, such as ATM and IP 
switches, and local exchanges in narrowband circuit-switched phone networks. 
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The interfaces between these layers provide the APIs that users use to build their programs. The 
uppermost V interface provides a rich set of APIs for writing highly personalized end-user 
software, often in the form of value-added services. These services generally do not deal directly 
with the communications process per se, but provide convenient features such as the Service 
Independent Building Blocks (SIBBs) in Intelligent Networks that enhance the value and 
experience of using the basic communication service. 
 
The second U interface deals with generic network services and allows users to make requests 
for connections. These connections may take the form of simple point to point connections, 
point-to-multipoint trees, or any general graph (as in the case of a VPN). The power of this 
interface comes from its generality, which in essence allows parameterisation of connection set-
up requests independent of the algorithm used in the connection set-up procedure. This 
separation between interface and implementation in principle would allow multiple connection 
management schemes to coexist in a single network. 
 
The third L interface defines the API to directly access and manipulate local network resource 
states. These could include VC/VP lookup tables in ATM or routing tables controlling IP 
forwarding. Finally, the bottom-most RCM (Reconfigurable Computing Machine) interface is not 
a programming interface but a collection of protocols that enable the exchange of state and 
control information at a very low level between a switch and an external agent. 
 
The reference model described above provides a high-level framework for positioning 
programming interfaces for networks. It is necessary to map this high-level model into existing 
networking technologies to be able to recognize the point at which “useful” programming 
interfaces may be obtained. 
 
The advantages of opening up application programming interfaces (APIs) for networks are 
many. First, there are the benefits associated with leveraging distributed object-oriented 
technology and modeling. These include benefits of object-oriented software engineering such 
as modularity, reusability, scalability, and reliability, which go a long way in reducing the service 
deployment cycle. Second, there are benefits of distributed computing, such as location-
transparent remote access and dynamic binding, which make it possible for third-party service 
developers to write applications that perform third-party call set-up and management. Third, 
incorporating programming interfaces in networks for developing control and management 
applications allows unprecedented separation of software and hardware.  
 
This, in turn, ensures that the end user gets the full benefit of competition in the marketplace. 
Fourth, there is now a separation of the signaling business from the transport business, 
permitting rich and flexible ways of dividing and segmenting the market. Finally, through 
gateways one can ensure that legacy interoperability will always be kept in the forefront. 
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3.3 BASIC ARCHITECTURES 

The diverse architectures of the First Generation Wandering Networks can be distinguished by 
the applied networking technology, [Camp99a], i.e. according to how activity is achieved at the 
network APIs [OPENS] or within the EE and the active applications [DoDAN]. In the following 
sections, we review the most representative architectures in some detail. 

3.3.1 ACTIVE PACKETS 

Most of the early active networks architectures follow the active packets approach, which is 
fundamentally characterized by the fact that the code is carried by the packets. The nodes are 
also active because they allow computations up to the application layer to take place. However, 
no active code resides in them. Therefore, the reason for calling these technologies “active 
packets” (AP) technologies is that active code is carried by the packets either to be executed on 
the data of the same packet that carries the code, or to be executed in order to change the state 
or the behavior of the node. 
 
The key question in all AP approaches is how to provide a rich and flexible programming 
environment without overloading the computing power of the managed node and without making 
the environment so complex that it cannot be secured easily. Examples of such architectures are 
the Active IP Option proposed at MIT [WeTe96], the Smart Packets project proposed at BBN 
Technologies [SmartP99], and the M0  [M0] architecture proposed at the University of California 
at Berkeley and at the University of Zurich.  
 
The ANTS architecture is the prototype system for most active network approaches, and 
consequently of the representative AP technology. In the following section, we review the ANTS 
components in some detail. 
 

3.3.1.1 On Capsules, Options and Protocols 
The behavioral pattern applied for packet processing and forwarding within a network is called 
protocol. The ANTS architecture is based on the protocol as a single unit for protection and 
customization of network processing; protocols are used by applications to configure the entire 
network. The different behavioral patterns are associated with different protocols. Each protocol 
is composed of a set (a sequence or flow) of related capsules associated with the corresponding 
behavior. This relation is called type of the protocol/capsule, Figure 16. 
 
A capsule (also called active packet), Figure 17, is the generalized replacement for (an IP) 
packet. ANTS considers its function as inclusion of a reference to a forwarding routine to be 
used to process the capsule at each active node. Of course, this function can be also extended, 
e.g.  to carry short programs in a special language to be interpreted and executed at each node 
as is the case with PLAN [PLANet].   
 
The capsule contains an identifier for the corresponding protocol based on a fingerprint of the 
protocol code. This identifier is used for de-multiplexing to a forwarding routine in the same 
sense as the Ethernet type and the IP version. 
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Figure 16: The capsule format 

Deriving a capsule ID from the protocol code has the benefit that protocols and capsules can be 
quickly allocated in a decentralized manner. Thus, active nodes can easily verify for themselves 
(without any external trusted parties) whether the obtained code belongs to a capsule/protocol, it 
pretends to correspond. 
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Figure 17: The concept of capsule and its IP implementation 
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3.3.1.2 Active IP Option   
The ACTIVE IP Option ([WeTe96], Figure 18) was used by the ANTS project to implement the 
capsule concept in a standard IP packet (IPv4/IPv6). It describes an extension to the IP options 
mechanism that supports the embedding of program fragments in datagrams and the evaluation 
of these fragments as they traverse the network. Present day passive packets are replaced by 
active capsules, miniature programs, which are executed as they travel. Capsules can invoke 
predefined primitives that interact with the local node environment, and leave information behind 
in a node that they have visited. Subsequent capsules can carry code that depends on this 
information.  
 
Active options can perform routing, copying, and merging functions. The processing environment 
allows ambient network conditions to be examined, the current datagram to be dispatched, and 
additional datagrams to be constructed and sent. The state of the node may also be modified.  
 

IP header               IP options (IPv6 / IPv4)                user data

IP packet

active:63 (var) If {[node] == [destination]} (reply_ip …)code:Tcl

type length value

ACTIVE Option

 

Figure 18: The format of the ACTIVE IP Option field 

The capsule approach is an “in-band” approach in the sense that capsules carry the code along 
with the data on which it operates. Two options are defined. The first is used to carry program 
fragments, which may be encoded in a variety of languages. The second is used to query an 
active router for the languages it supports. Backward compatibility is automatically achieved 
because Internet hosts silently ignore options they do not recognize. Since the scheme is based 
in an extension of the IP Options mechanism, the capabilities of the technology are limited (for 
example, arbitrary protocols cannot be deployed). The language used in the first implementation 
of the architecture is TCL. The processing is done by a stripped-down TCL interpreter resulting 
in a restricted environment conceptually similar to that of Safe-TCL. This is the only means by 
which security and safety issues are addressed.  
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3.3.1.3 Smart Packets 
The Smart Packets project at BBN and the University of Kansas aims the application of AN 
technology to network management and monitoring [SmartP99]. The project implements two 
important design principles. The first one is that programs must be completely self-contained to 
avoid the need for persistent states in a router. This means that programs have to fit entirely into 
one packet, so they cannot be more than 1 KB long, - and the packet should not be fragmented. 
The second principle is that the operating environment must provide safety and security, since 
packets containing executable code are potential hazards. In addition, a special cross-network 
protocol, called Active Network Encapsulation Protocol (ANEP) ensures the portability and 
interoperability among different active networks projects within the DARPA active networks 
program [Alex97].  
 
Smart packets represent elements of in-band and out-band mobile code based on Java classes. 
They propagate state information of the nodes in the form of serialized objects and carry 
identifiers for authentication purposes. The mobile code is bound to and delivered with an IP 
data packet.  
 
Active nodes offer a set of resource abstractions and primitives, which can be accessed by the 
smart packets: 

• resource controllers, which provide interfaces to node resources; 
• node managers, which impose static limits on resource usage; and 
• state managers, which control the amount of information that smart packets may leave 

behind at an active node. 
 
The active node supports a feedback-scheduling algorithm to allow partitioning of CPU cycles 
among competing tasks and a credit-based flow-control mechanism to regulate bandwidth 
usage. Each smart packet is allocated a single thread of CPU and some amount of node 
resources. The active code’s lifetime at the destination node is only the time to execute it 
completely. The packets are not allowed to leave any state in the intermediate nodes.  
 
Active nodes also include router managers that support both default routing schemes and 
alternative routing methods carried by smart packets. Before processing, Figure 19, packets are 
authenticated by taking a cryptographic hash of the non-mutable fields of the packet and 
comparing it to a certificate attached to the packet. Then, network management and monitoring 
programs generate smart packets, which are encapsulated within ANEP packets. The latter are 
encapsulated within an IP packet. Then smart packets are sent either to an end host or to each 
router in a hop-by-hop manner along the path to an end host. In the first case, the content of the 
smart packet is executed in the end host47 and the results are returned back to the originating 
application. In the second case, the content is executed in all intermediate nodes. An ANEP 
demon located in each node is responsible for both injecting and receiving smart packets and for 
offering a secure environment, called virtual machine, for executing the programs. 
 

                                                 
47  sometimes even without packet transmission: compare the straight line in Figure 19 denoting some signaling 

between the packet originator and the intermediate node which results in data processing at the originator side. 
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The smart packets’ code can be written in either Sprocket, a high-level language much like C, or 
Spanner, an assembly language. Sprocket programs are compiled into Spanner code, which is 
assembled into a compact machine-independent binary encoding, that is placed into program 
packets. According to the authors, the reason why two new programming languages are used is 
that the already existing languages require space < 1 Kbyte and that none of them had compact, 
platform-independent encodings. The runtime system for Spanner includes support for 
accessing network management variables (MIBs) efficiently, but there is no access to system 
calls or memory outside the current packet or its declared dynamic variables. 
 
As far as security is concerned, smart packets achieve the correct operation of a router and its 
configuration by evaluating programs conservatively (i.e., if a virtual machine does not know how 
to handle a situation it quits execution and sends an error packet back to the source of the 
program), by checking whether a program comes from an authorized user, by checking the data 
integrity of a program in each node, and by placing limits on the execution of programs, such as 
offering a resource-limited environment. 
 
Applying the SmartPacket approach to network management has the following advantages: 

• The returned information can be controlled and managed according to the needs. 
• The management rules can be shifted from the management centres to the programs. 
• The monitoring and control loop is shortened. 

 
Smart packets capabilities are indirectly limited by two reasons: first, the programs must be at 
most 1 KB long; second, the functionality provided by the project is limited and tailored to 
network management applications. The positive part is that the performance of the technology 
should be good comparing to other active packets approaches. However, we are not aware of 
any results proving this yet. 
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Figure 19: The logical flow of packets through an active node 
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The smart packets approach has been used to program enhanced HTTP and SMTP services 
that show some performance benefits over conventional HTTP and SMTP by reducing 
excessive ACK/NACK responses in the protocols. A beacon routing scheme supports the use of 
multiple routing algorithms within a common physical IP network based on smart packets. 
 
3.3.1.4 The M0 Architecture  
The messenger in the M0 system [M0] is similar to the capsule or the smart packet. Messengers 
are programs exchanged between M0 nodes. There are four elements inside the M0 node: 
concurrent messenger threads, a shared memory area, a simple synchronization mechanism, 
and channels toward neighboring nodes. 
 
An independent and anonymous thread of control executes each messenger. These threads 
have their own private memory space; they are fully protected from each other. Messenger 
threads can deposit arbitrary data structures under self-chosen names so that other threads can 
access them. Thread queues are a way to serialize the execution of threads in order to avoid 
race conditions.  
 
Channels enable messenger threads to send new messenger packets to neighboring nodes. 
The current M0 implementation maps messenger transmission to UDP, Ethernet, or serial-line 
communications. 
 
Messenger code is written in the M0 language. M0 is a high-level language that inherits from 
PostScript the main concepts of operand, dictionary, and execution stack, as well as the main 
data manipulation and flow control operators. The M0 interpreter is written in C. M0 has no 
explicit code caching or code loading functionality. The code is shipped with every messenger.  
 
This works quite well for small protocols where the code is only a few bytes long. For large code 
sizes, messengers implement their own caching method by storing the code in the shared 
memory area of a node under a chosen name. This option allows the deployment of any 
protocol, no matter how complex it is. Therefore, the M0 architecture appears to be more 
powerful than the previous two architectures. 
 
Each M0 node manages its own resources independently of other nodes. All resources have 
price tags, which depend on the node’s actual load for a given resource and on the demand from 
the running threads. Messenger threads are charged for their activities. When they run out of 
money, they are silently removed form the system. On arrival, each messenger thread obtains 
an account with some start money. The amount is sufficient to do some exploration inside the 
node and eventually send out another messenger. There is no authentication between M0 
nodes, nor has a messenger any identity attached to it that would allow authentication. Safety-
related questions on resource consumption have to be handled by controlling the flow of money. 
Access control for system resources is controlled by agreements between messengers and the 
system. M0 provides some basic cryptographic operators that can be invoked by a messenger. 
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3.3.2 ACTIVE NODES 

In the active nodes approach, the packets do not carry the actual code, but instead carry some 
identifiers or references to predefined functions that reside in the active nodes. The packets are 
active in the sense that they decide which functions are going to be executed on their data, and 
they provide the parameters for these functions. However, the actual (heavyweight) code resides 
in the active nodes; the packets do not carry it.  
 
This is why these technologies are called “active nodes” technologies. The motivation for such 
architecture is that the active packets approach suffers from performance-related problems 
because both safety and security requirements are huge, or capability related problems because 
the only way to minimize the security and safety issues is by restricting the programs that are 
carried in packets (e.g., Smart Packets or PLAN/SNAP packets). Examples of “active nodes” 
architectures are CANES proposed at Georgia Institute of Technology, the ANN/DAN 
architecture proposed at Washington University and at ETH Zurich, and the ANTS architecture 
proposed at MIT. 
 
3.3.2.1 Composite Active Network Elements 
The CANEs project at Georgia Tech and the University of Kentucky [CANES] aims to define and 
apply service composition rules as a general model for network programmability. A composition 
method is used to construct composite network services from components. It is specified as a 
programming language with enhanced language capabilities that operates on components to 
construct programmable network services. Attributes of a good composition method include high 
performance, scalability, security and ease of management.  
 
Features of well-structured composition methods combine: 

• control on the sequence in which components are executed; 
• control on shared data among components; 
• invocation methods, which are defined as events that cause a composite to be executed;  
• division of functionality among multiple components, which may either reside at an active 

node or be carried by packets. 
 
The CANEs approach aims to define a composition method that optimises all of the above 
points. The CANEs definition of service composition encompasses the OPENSIG approach to 
network programmability indicating how different approaches to programmable networking 
complement each other by addressing the same goal from different perspectives. 
 
LIANE is a composition method proposed within the CANEs project and incorporates all of the 
aforementioned features. The key idea of LIANE is that services are composed from basic 
underlying programs that contain processing slots. Users insert programs for customisation in 
these slots. LIANE attempts to construct dynamic, trustworthy services from unreliable base 
services. It is not tied to a particular language, although its prototype implementation is in C++, 
but relies on a reduced programming model that gives a pre-decided amount of flexibility to the 
dynamic environment. The advantage is that the required security analysis can be limited. Some 
efforts are under way to apply LIANE to classes of multicast service and to provide verifiable 
safety assertions about the behaviour of composed services.  
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In the CANEs architecture, users control the invocation of predefined network-based functions 
through control information in packet headers [H1, H2]. Users can select from an available set of 
functions to be computed on their data and can supply parameters as input to those 
computations. The available functions are chosen and implemented by the network service 
provider, and support-specific services. Thus, users are able to influence the computation of a 
selected function but cannot define arbitrary functions to be computed.  
 
This approach has some benefits with respect to incremental deployment, security, and 
efficiency. However, it seems to be slightly restrictive because only the functions that have been 
pre-loaded can be called upon. Each of the functions that a node supports has a unique 
identifier. Each packet has a set of headers, which specify the identifier of one or more functions 
to be applied to the packet and parameters to be supplied to those functions. When the packet is 
processed, the function identified by each header is applied, resulting in updating of the node’s 
state and possibly modification of the rest of the packet. Thus, for each function f, and each 
parameter value p, there is a particular subset of the node’s generic state information that is 
relevant to f and parameter p. Functions cannot modify or use parts of the node state that are 
not relevant. 
 
The strength of active networking can be realized by incremental addition of user controllable 
functions. Each function is precisely defined to support a specific service. The introduction of a 
new active networking function involves specification of its identifier, of the parameters 
associated with it, and of its semantics. Once a function is specified, each provider or vendor is 
free to implement it in a manner consistent to the specifications. The CANEs definition of service 
composition comprises the OPENSIG approach to network programmability. 
 
This approach has backward compatibility in that not all users have to be aware of the active 
functionality in the network, and not all nodes have to support the same functions. The scheme 
may have low flexibility and restricted capabilities but it achieves high performance because 
security can be easily addressed. 
 

3.3.2.2 Distributed Code Caching   
The packets in Distributed Code Caching for Active Networks (DAN) architecture [DAN] contain 
a finite sequence of function identifiers, and parameters for the functions. The functions are 
daisy-chained in the sense that one function calls the next according to the order of the 
identifiers in the packet. Depending on the type of node that the packet is processed upon and 
the packet’s content, only a subset of the functions may be called. Thus, the packet may be 
interpreted as a sequence of function identifiers fi 2 ...fiN ,as shown in Figure 20, with a distinct 
set of parameters P1...PN . The first function is not indicated by any identifier but is derived from 
the context in which the packet processing starts (e.g., a packet received by an Ethernet card 
results in the calling of Ethernet input function).  
 
 
 
 

 

 

fi2 fi3 P1 P2 PN
… ….. 

Figure 20: The format of a datagram 
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If the node is unable to locate a function, it temporarily suspends the processing of the packet 
and calls a “code server” for the implementation of the function. The code server is a well-known 
node in the network, which provides a library of functions for different types of operating systems 
from various developers. Once the module is downloaded, it is permanently stored locally on the 
node in order to prevent more downloads of the same module. Code servers are put in a 
hierarchy for the best possible distribution of active modules. 
 
The option of downloading modules differentiates this technology from the previous one. DAN is 
more flexible because new functionality can be deployed and then just added to the code 
servers. If a node needs a new module it can easily download it. In the previous technology, the 
network manager should add to each node all the functions that they may need. 
 
The active modules provided by the code servers are programmed in a high-level language such 
as C and compiled into object code. Once the node loads the functions, they are in no way 
different from the ones compiled into the network at run time. Thus, all functions run at high 
speed and the performance is good. However, downloading a function on demand causes some 
delay that reduces the overall performance. A possible solution is to download the modules 
before they are needed. 
 
Security concerns are addressed by using well-known code servers, which authenticate 
themselves and give the node the possibility to check the module’s sources, and by providing 
digitally signed modules from well-known developers only.  
 
The security problem is thus reduced to the installation of a rule, which enables the node to 
choose the right code server, and a database of public keys to check the developer’s signature. 
In addition, even if the module sources and the modules are authenticated, network 
administrators may restrict the set of developers from which they accept modules. 
 

3.3.2.3 Active Node Transfer System   
The Active Node Transfer System (ANTS) is an active network toolkit developed at MIT 
[WGT98], where arbitrary new protocols are automatically deployed at both intermediate nodes 
and end systems by using mobile code techniques. The ANTS approach is focused on 
standardizing the particular communication model, rather than individual communication 
protocols such as IP, UDP, etc. The major design goal is to build a system that allows the rapid 
transfer and deployment of protocol code across the network. The network is viewed as a 
distributed programming system. The model is designed to support many protocols 
simultaneously, in such a way that only the parties that use a protocol (i.e. not the entire 
networking community) have to agree on how it is built and used. ANTS has been slightly 
modified at MIT to set up the Practical Active Network (PAN) test-bed. ANTS uses Java as 
programming language, and the Java Virtual Machine as runtime environment. These features 
make ANTS suitable for a variety of applications. The architecture is based on three concept 
schemes: capsules, active nodes, and code distribution system. 
 
In ANTS, capsules are the replacements for packets. They represent the most dynamic means 
of code and service deployment in the network. Their function is to include a reference to the 
forwarding routine to be used to process the capsule at each active node.  
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Therefore, references and forwarding routines in ANTS is the equivalent to identifiers and 
functions in DAN, respectively. Some routines are “well known” in that, they are available at 
every active node. Other routines may be application specific. Typically, they will not reside at 
every node but will be transferred to a node by a code distribution mechanism before the 
capsules of that type can be processed for the first time.   
 
The code distribution system works on a Request-Response pattern, ultimately getting 
transferred to all the nodes that the first packet of a flow traverses. Subsequent packets can then 
use the code without the overhead of transporting it. 
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Figure 21: The format of a capsule 

elated capsule types form a code group. The forwarding routines of a code group are 
ansferred as a unit by the code distribution system. Related code groups form a protocol. 
rotocols are the units by which the network as a whole is customized by the applications. 
apsules identify their type and the protocol to which they belong. When a capsule arrives at a 
ode, a cache of protocol is checked. If the required code is not all present, a load request for 
e missing portion of the capsule type and protocol is sent to the upstream neighbor and the 

apsule put to “sleep.” When the upstream neighbor receives the request, it answers 
mediately (if possible) and sends the requested code. When the downstream requester 
ceives the code, it caches it and if all the required code becomes avail-able, it “wakes” up the 

leeping capsule. If requests for code remain unanswered, sleeping capsules are discarded. On-
emand loading and caching is also used in DAN. However, while in ANTS loading takes place 
etween neighbor active nodes, in DAN loading takes place between code servers and nodes. 

he capsule format is shown in  Figure 21. The capsule carries an identifier for its protocol and 
e particular capsule type within the protocol. The identifier is based on a fingerprint of the 

rotocol code in order to reduce the danger of protocol spoofing and to allow protocols and 
apsule types to be allocated quickly and in a decentralized fashion. The remainder of the 
apsule has a shared header that has fields common to all capsules, a type-dependent header, 
nd a payload. The shared header has the source and destination addresses, as well as the 
formation about resource limits to be enforced by nodes. 

he protocols need to be executed within a restricted environment that limits their access to 
hared resources. Active nodes play this role. During the processing, active nodes are 
sponsible for the integrity of the network and handle any errors that may arise. Small tasks are 

ot to be authenticated, but are to be protected by the safety mechanisms of mobile code 
chnology. The use of primitives that manipulate shared logical resources, e.g., updates to the 
uting tables, must be authenticated. Each capsule has a resource limit that functions as a 

eneralized Time To Live (TTL) field. The nodes decrease this field as resources are consumed 
nd nodes discard capsules when their limit reaches zero.  
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Finally, forwarding routines are expected to run to completion locally and within a short time, and 
their memory and bandwidth consumption is bounded. 
 
ANTS is based on Java. The security of the implementation lies in the Java system itself. The 
choice of Java has allowed the researchers to evolve their architecture quickly but at the cost of 
less control over resources usage and lower absolute performance.  
 
Recently, an enhanced version of ANTS, known as PANTS, has been proposed at the University 
of Sidney [Fern00]; it opens the run-time configuration of the NodeOS resources to the EEs. 
 

3.3.2.4 Liquid Software 
The Liquid Software approach at the University of Arizona ([Hart96], [Hart99]) is designed to 
build up communication-oriented networked systems with the purpose is to move and transform 
data efficiently. In order to achieve this, liquid software implementations use a modified Java 
Virtual Machine that that allows liquid software to have fine-grained control over the allocation of 
the system's resources, such as CPU cycles, I/O buffers, and link bandwidth. 
 
The Liquid Software architecture is based on Java as programming language. However, 
compared to the other components of the system, a Java runtime is much slower. To offset this 
speed differential and make the active code more efficient, liquid software uses the following two 
techniques: 
 

• Java-to-C translators in conjunction with C compilers, thus avoiding the need to interpret 
code at runtime; 

• compilers that run quickly at the point of execution. 
 
These architectural implementations allow liquid software to be as usable and flexible as 
possible, while maintaining performance and security. 
 

3.3.3 ACTIVE HYBRID ARCHITECTURES 

Active packets can carry code efficiently only when the code is relatively simple and restricted. 
On the other hand, active nodes can efficiently provide any code. However, this code is 
predefined because it should reside in the active node or at least to one node from which it can 
be downloaded. In the active packets and nodes approach, active packets carry actual code and 
other more complex code resides in active nodes. Therefore, the merits of the two previous 
approaches exist in one system. Usually, such architectures allow users to choose either the 
one or the other approach according to the nature of their application. A typical example is the 
SwitchWare architecture proposed at the University of Pennsylvania. The NetScript architecture, 
proposed at Columbia University, follows its own approach toward programmable networks. 
However, it will be presented here, as it is relatively similar to the active packets and nodes 
approach in general. 
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3.3.3.1 The SwitchWare Architecture  
SwitchWare ([Alex98a], [GNS98]) developed at the University of Pennsylvania attempts to 
balance the flexibility of a programmable network against the safety and security requirements in 
a shared network such as the Internet. It uses a layered architecture to provide a range of 
different flexibility, safety and security, performance, and usability tradeoffs. The three layers 
defined in SwitchWare are Active Packets, Switchlets, and Active Router Infrastructure. The first 
layer realizes the active packets approach, while the second one --- the active nodes approach. 
At the operating system level, an active IP-router component is responsible for providing a 
secure foundation that guarantees system integrity. 
 
In SwitchWare, active packets carry programs consisting of both code and data, and replace 
both the header and payload of a conventional packet. SwitchWare offers a two-level 
programming interface to the user. At the lower level are mobile-code packets which carry 
lightweight programs that invoke node-resident service routines supported by active extensions. 
The active extensions themselves are always resident on the nodes, where they are loaded by 
the system administrators or authorized users. The first use of an Active Packet injects the code 
into the network, and the SwitchWare nodes execute the code in each packet along its delivery 
path. The mobile code decides the delivery path itself, but cannot explicitly leave state behind at 
nodes and can access state only through clearly defined interfaces furnished by active extension 
software. There is much less requirement for testing and verification in the case of active 
packets than for active extensions, given the confidence that lower level security checks have 
already been applied to active extensions. 
 
The active extensions are loaded explicitly into each network processing element that will need 
them, all separate from data delivery. Active extensions are loaded into secure active routers 
through a set of security mechanisms that include encryption, authentication and program 
verification. The correct behaviour of active extensions can be verified off-line by applying 
'heavyweight' methods, since the deployment of such extensions is done over slow time scales.  
 
SwitchWare uses a domain specific functional scripting language, PLAN (Programming 
Language for Active Networks, [Hicks98]) for the mobile-code packets, and Caml, a general 
purpose functional programming language, for the active extensions. PLAN is a lightweight 
language48 allowing resource limited computation without the need for authentication. However, 
it also performs authorized actions when required. Its programs are made secure by greatly 
restricting their actions. To compensate for this limitation, PLAN programs address routines, 
called switchlets, which can authenticate or use other more heavyweight mechanisms to provide 
security on an as needed basis. A PLAN program consists of code, plus an indication of which 
function should be executed first when the program arrives at a router, plus any data that makes 
up the arguments of that function. 
                                                 
48 PLAN is a strongly-typed functional language with a similar syntax to those of ML [MTH90]. It supports standard 
programming features such as functions and arithmetics and features common to functional programming like lists 
and the list iterator fold. The restriction is that functions cannot be recursive and that there is no unbounded looping 
which heps to guarantee that PLAN programs are terminating. It is a part of a two-level hierarchy architecture 
SwitchWare PLAN programs/packets are similar to UNIX shell scripts which provide control over utility functions like 
sort and grep. 
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Switchlets form the middle layer of the SwitchWare Architecture. While active packets alone are 
deliberately limited in power for speed, but active packets combined with switchlets can 
implement arbitrary protocols or functionality.  
 
Switchlets can be dynamically loaded across the network, but they execute entirely on a 
particular router. Thus, they are base functionality or dynamic extensions rather than “mobile 
code.” In the current implementation, switchlets are written in Caml. Switchlets can be subjected 
to heavier-weight security checks than active packets can. They are statically type-checked on 
arrival at a router and some may even carry cryptographic signatures. Because of the heavy 
checking procedures, switchlets can be given more latitude to access facilities in the router that 
active packets cannot. Thus, they can create or change the state of the router, as well as to 
directly access to the routers’ network interfaces. 
 
The active router infrastructure is the solid base upon which active packets and switchlets are 
built. The security of the SwitchWare architecture as a whole is granted in this layer. Below that 
layer is SANE, an architecture which provides a minimal set of trust assumptions, the ability to 
securely bootstrap the remainder of the system when the trust assumptions are met, and 
authentication and naming service for code that is loaded. 
 
The key point of the SwitchWare Architecture is the layered architecture with functionality 
partitioned between layers based on the flexibility and security tradeoffs required at each layer. 
Higher layers of the system provide more restricted functionality, but less security risk and very 
good performance. Lower layers provide arbitrary functionality but, due to the increased security 
issues, they are not very fast. In general, there is a good tradeoff among security, flexibility, and 
performance. 
 
 

3.3.3.2 The NetScript Architecture  
The NetScript project [NetScript] at Columbia University concentrates a functional language-
based approach to program networks efficiently using universal language abstractions. Unlike 
other active network projects that take a language-based approach Netscript is being developed 
to support Virtual Active Networks as a programmable abstraction. It is a strongly typed 
language, which creates universal abstractions for programming network node functions. 
Abstractions can be systematically composed, verified and maintained.  
 
A distinguishing feature of Netscript is that it seeks to provide a universal language for active 
networks in a manner that is analogous to postscript. Just as postscript captures the 
programmability of printer engines, Netscript captures the programmability of network node 
functions. 
 
NetScript provides architecture for programming networks, architecture of a dynamically 
programmable network device/node, and a language called NetScript for building network 
software on a programmable network. NetScript uses also delegated agents to program and 
control the functions of intermediate network devices/nodes. It allows the mobile code to invoke 
remotely services resident on the active node.  
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The NetScript scripting language is being used to compose basic services into more complex 
ones. Using Netscript interpreters as the runtime environment, programmers can create a 
dataflow mesh of processes on select network nodes with explicit input and output ports.  
 
The programming language is implemented in Java, and the dataflow abstractions are mapped 
to Java classes. The dataflow mesh becomes a network service that is applied to select data 
packets within the network. Within the runtime environment are primitives to control the 
instantiation of services on the remote nodes. 
 
NetScript views a network as a collection of virtual network engines (VNEs) interconnected by 
virtual links (VLs). VNEs can be programmed by NetScript agents to process packet streams 
and relay these streams over VLs to other VNEs. The collection of VNEs and VLs define a 
NetScript virtual network (NVN). NetScript provides a language to program the NVN. A physical 
node may be executing many VNEs and a VL may correspond to a collection of physical links 
and nodes that interconnect VNEs. A VL can also interconnect any number of VNEs to handle 
broadcast links. 
 
The architecture of the VNE is shown in Figure 22. The Agent Services layer provides a multi-
threaded execution environment to support delegation, execution, and control of agent 
programs. It also supports message communication services among agents. The Connectivity 
Services module is responsible for interacting with the underlying physical environment to 
allocate and maintain VLs to neighboring VNEs. It provides a library of primitives used by 
NetScript programs to control the allocation of VL resources, and the scheduling and 
transmission of packets over VLs. Packets contain a minimal NetScript encapsulation header 
that identifies the stream to which they belong. When a packet arrives at a VNE, the run-time 
environment uses this header to pass it to the programs, which process this stream.  
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Figure 22: The NetScript programmable virtual network engine 
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The active packets of the scheme are the NetScript packets and the active nodes are the VNEs. 
Communication services provided by the VNE are local and permit interaction with neighboring 
VNEs only. 
 
The NetScript language is a dynamic dataflow language designed specifically for 
communications-based tasks. It can operate on streams of packets. It is based on simple object-
oriented principles, so that programmers can override default operators with customized 
versions of their own. 
 
A NetScript program consists of a pool of communicating threads. These threads communicate 
through message streams that connect inputs to outputs of executing programs. Communicating 
programs can be geographically distributed. NetScript provides a universal abstraction of a 
programmable networking device because constructs hide the heterogeneity of networking 
devices behind simple abstractions. 
 
The main difference between NetScript and other architectures is the focus on the 
programmability of networks. Here, the main assumption is that a single language based on the 
right model can greatly simplify protocol construction and allow flexibility in experimenting with 
appropriate programming features. Another difference is that NetScript treats the network as a 
single programmable abstraction rather than a heterogeneous collection of programmable 
intermediate nodes and end-nodes. 
 
 

3.3.3.3 The Magician Architecture 
Magician [Kulk98] is a toolkit that provides a framework for creating SmartPackets as well as an 
environment for executing the SmartPackets. Magician is implemented in Java. In Magician, the 
executing entity is a Java object whose state has to be preserved as it traverses the active 
network. Serialization preserves the state of an object so that it can be transported or saved, and 
recreated later. 
 
Magician provides a model in which an active node is represented as a class hierarchy. Every 
protocol is derived from an abstract base protocol. Every active node provides some basic 
functionality in the form of certain default protocols (e.g., routing). Users may prefer to utilize 
these default protocols if they do not wish to implement their own schemes. To foster privacy 
and safety, a unique state is created for each invocation of the protocol. State that is common to 
all invocations of a protocol is inviolable and accessible only to users that have appropriate 
authorization. Providing each user with a protected copy of the state enables the user to 
customize his/her, state if necessary. 
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3.3.4 MODERATE APPROACHES TO ACTIVE NETWORKING 

Among the different approaches to active networking, there are also a few architectures, which 
are based on a moderate philosophy of “limited activeness” and co-existence with the IP world. 
In the following, two of them are described. 
 

3.3.4.1 The Darwin Approach for Resource Management and QoS Provisioning 
The Darwin Project [Chan98a] at Carnegie Mellon University is developing a middleware 
environment for the next generation IP networks with the goal of offering Internet users a 
platform for value-added and customizable services. The Darwin project is focused toward 
customizable resource management that supports QoS. Architecturally, the Darwin framework 
includes Xena, a service broker that maps user requirements to a set of local resources, 
resource managers that communicate with Xena using the Beagle signaling protocol, and 
hierarchical scheduling disciplines based on service profiles. The Xena architecture takes the 
view that the IP forwarding and routing functions should be left intact. It allows only restricted 
use of active packet technology in the system.  
 
Alongside the IP stack, Darwin introduces a control plane that builds on similar concepts such as 
those leveraged by broadband kernels ([CHLL96], [Laz97]) and active services, [Arb98]. The 
Xena architecture is programmable and incorporates active technologies in a restricted fashion. 
A set of service delegates provides support for active packets. Delegates can be dynamically 
injected into IP routers or servers to support application specific processing (e.g., sophisticated 
semantic dropping) and value-added services (e.g., transcoders). A distinguishing feature of the 
Darwin architectural approach is that mechanisms can be customized according to user specific 
service needs defined by space, organization and time constraints. While these architectural 
mechanisms are most effective when they work in unison, each mechanism can also be 
combined with traditional QoS architecture components. For example, the Beagle signaling 
system could be programmed to support RSVP signaling for resource reservation, while the 
Xena resource brokers and hierarchical schedulers could support traffic control. 
 

3.3.4.2 The AS1 Approach to Active Services 
In contrast to the main research stream in active networking, Amir et al. [AMK99] argue for the 
preservation of all routing and forwarding semantics of the present day Internet architecture by 
restricting the computation model to the application layer.  
 
The Active Services version 1 (AS1) programmable service architecture enables clients to 
download and run service agents at strategic locations inside the network. Service agents called 
servents are restricted from manipulating routing tables and forwarding functions that would 
contravene the IP-layer integrity. The AS1 architecture is programmable at the application layer 
and contains a number of architectural components: 
 

• a service environment, which defines a programming model and a set of interfaces 
available to servents; 

• a service-location facility, which allows clients to ‘rendezvous’ with the AS1 environment 
by obtaining bootstrapping and configuration mechanisms to instantiate servents; 
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• servents are launched into the network by an active service control protocol (ASCP), 
which includes an announce-listen protocol for servers to manage session state 
consistency, soft-state to manage expiration due to timeouts and multicast damping to 
avoid flooding the environment with excessive servents; 

• a service management system, which allocates clusters of resources to servents using 
admission control and load balancing of servents under high-load conditions; 

• a service control system, which provides dynamic client control of servents once 
instantiated within an AS1 architecture; 

• a service attachment facility, which provides mechanisms for clients that can not interact 
directly with the AS1 environment through soft-state gateways; and 

• a service composition mechanism, which allows clients to contact multiple service 
clusters and interconnect servents running within and across clusters. 

 
AS1 supports a range of application domains such as the MeGa architecture, an active media 
gateway service, where servents perform application-level rate control and transcoding 
techniques. 
 

3.3.5 SPAWNING NETWORKS  

In [Camp99b], the authors describe spawning networks, a new class of programmable networks 
that automate the creation, deployment and management of network architectures “on-the-fly”. 
The term “spawning” is analogous to the definition of spawning child processes in operating 
systems. Such processes operate typically over the same hardware as the parent process. This 
approach pursued at the Columbia University in New York envisions programmable networks as 
having the capability to spawn not processes but complex network architectures [Camp99c].  
 
Thus, larger networks can spawn into distinct "child" virtual networks with their own transport, 
control and management systems (Figure 23). A child network operates on a subset of its 
"parent's" network resources and in isolation from other spawned networks.  
 
Spawned child networks can support the controlled access to communities of users with specific 
connectivity, security and quality of service requirements [Camp99d]. The enabling technology 
behind spawning is the Genesis Kernel [Camp99b], a virtual network operating system that 
represents a next-generation approach to the development of network programming 
environments. 
 
A key capability of Genesis is its ability to support a virtual network life cycle process for the 
creation and deployment of virtual networks through: 

• profiling, which captures the “blueprint” of a virtual network architecture in terms of a 
comprehensive profiling script; 

• spawning, which executes the profiling script to set-up network topology, and address 
space and bind transport control and management objects into the physical 
infrastructure; and 

• management, which supports virtual network designing and resource control. 
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A Next Step in Active Network Virtualization 
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Figure 23: The emergence of a Spawning Network 
 
 
Virtual networks, spawned by the Genesis Kernel operate in isolation with their traffic being 
carried securely and independently from other networks. Furthermore, “child” networks, created 
through spawning by “parent” networks inherit architectural components from their parent 
networks, including life cycle support. Thus, a child virtual network can be a parent (i.e., 
provider) to its own child networks, creating a notion of “nested virtual networks” within a virtual 
network. 
 

3.3.6 SECURITY ARCHITECTURE 

Active and programmable networks retain all of the security concerns from traditional networks. 
The users of the active network will be concerned with the authenticity, the integrity and the 
confidentiality of the data communicated through the network. But the movement of arbitrary 
computation into the infrastructure of the network introduces additional security concerns at each 
level of the architecture. Whereas the concern in traditional networks is focussed on the 
possibility of damage to user data and end-nodes, active networks must also be concerned with 
the possibility of damage to the robustness of the active network as a whole through the agency 
of the active code in the active packets. The active nodes in the infrastructure could be harmed 
by active code, either by modification of the node state or denial-of-service attacks through 
excessive resource usage. The execution environments themselves implement their own 
services and resources that are subject to damage from the active code. Consequently, the 
security protections must follow the movement of computation into the infrastructure, so that the 
network, each node and each EE is properly protected.  
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The network has no single entity to provide its protection; the protection of the robustness of the 
network as a whole must be built into the design of the individual nodes and EE’s. For 
example49, some existing EE’s have defined a network resource that is consumed during an 
active packet’s traversal of a node. This resource prevents a single active packet from placing 
an infinite demand on the network. Another example is SNAP (Safe and Nimble Active Packets), 
[Hicks01a], a special-purpose active networking programming language which has been 
designed for practical application and scores highly in safety, efficiency and flexibility. It is an 
expression-limited bytecode language which programs cannot compromise node integrity and 
cannot consume an unlimited amount of global or local network resources.  
 
The key safety and efficiency gains of SNAP over PLAN come from its model of resource usage. 
There are no function calls, and all branches and jumps are constrained to move forward 
through the program, thus preventing looping50 and causing the number of instructions to be 
limited by the program length. The execution of SNAP programs consumes time, space and 
bandwidth linearly to the length of the program.  
 
3.3.6.1 Node Security 
In contrast to the network, protection of an active node or execution environment can be self 
enforced. The active nodes protect themselves by ensuring that activity within the node on 
behalf of the active packet is safe and properly authorized. Safety can be ensured by the use of 
a variety of techniques, such as safe languages or software fault isolation. Authorization is 
expressed in terms of access to portions of the node state, either to protect its confidentiality 
(e.g., preventing unauthorized exposure of any keying material used to cryptographically protect 
the node’s communications) or its content (e.g., preventing unauthorized modification of the 
node configuration parameters). Authorization is also expressed in terms of limitations on 
resource usage. The fundamental motivation for such limitations is to prevent denial-of-service 
attacks against the node (and thereby indirectly against the network). Validating the source 
authenticity and integrity of the active code are crucial in ensuring proper authorization. If the 
source can be spoofed, then the node can be deceived into taking actions, based on the 
apparent source, which will cause harm. If the active code can be changed, then it can be made 
to perform actions other than those intended by the author, possibly inducing harm as a result. 
 
The execution environments offer services and resources, composed from the node services 
and resources, to the active code. Consequently, the EE will want to ensure that active code that 
uses or accesses its resources or services has the proper authorization. It will want to protect 
the integrity, the authenticity and even the confidentiality of those services and resources. 
 

                                                 
49 The techniques presented below outline the basic research issues in AN security w.r.t. application level networking.  

A thorough examination of AN security at each network layer and their impacts on end-to-end security can be found 
in . 

50 which permits to prove several safety properties about the language.  

[Brown01]
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3.3.6.2 Authorization 
Authorization in active networks is the fundamental security service that must be provided to 
protect either the active node or the execution environment. The difficulty is in providing a 
mechanism for authorization that is suited to the scale of active networks - anything from an 
enterprise network governed by a single administration with a homogeneous model and policy to 
a wide area network including a multitude of authorization models and policies.  
 
For scalability and manageability, authorization cannot always be expressed in terms of unique 
entities and single services or resources. Aggregates of entities must be created, identified by 
some security attribute that policy relates to authorization for access to services and resources.  
 
For further abstraction, the services and resources could be similarly aggregated and identified 
by security attributes, so that authorization is decided using the requesting entity’s security 
attribute and the service’s or resource’s security attributes. These aggregates could be any of 
the aggregates that have been widely used in creating secure systems, such as roles, groups, 
and an ordered set of labels, domains or types. 
 
3.3.6.3 Security Policy Enforcement 
Users and other entities in the network (e.g. other nodes) are represented by an abstraction 
called the principal. This principal may be some user, or the EE itself. Security policies are 
defined in terms of principals and the NodeOS is responsible for the enforcement of these 
policies authorizing the access to the NodeOS services and resources. Because the flows are 
the requesters of memory, threads, and channels, a principal must be associated with each flow 
as it is created. Yet, it is not necessary that each flow have a separate principal. 
 
In keeping with the spirit of active networks, it should be possible to modify the policy 
dynamically. Dynamic modification of the policy requires a separation of the storage of the policy 
and the enforcement of the policy into a policy database and an enforcement engine (Figure 11) 
respectively. The enforcement engine in the NodeOS refers to the policy database to decide 
each controlled access. Thus, changes to the policy database, possibly through active code, can 
effect in an immediate change in policy.  
 
Security policies are invoked as follows. When an EE requests a service from the NodeOS, the 
request is accompanied by an identifier for the principal on whose behalf the request is made. 
The NodeOS presents this information to the enforcement engine, which verifies the authenticity 
and checks whether the policy database authorizes the principal to receive the requested 
service or perform the requested operation. It is the authorization of this principal that decides 
the accesses and usage of a flow.  
 
Security policies are implemented in a “nested” hierarchy scenario within the active network. 
Thus, execution environments may invoke their own policies to augment those of the node. For 
instance, an EE may offer specialized routing services and a routing table to the active code it 
executes. The execution environment has a policy governing who is allowed to use the routing 
table, who is allowed to update the routing table, and who is allowed to use the routing services.  
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However, each of these services and resources is composed from services and resources 
provided by the NodeOS and access to the NodeOS level objects must be decided in 
accordance with the Node OS policy. The NodeOS policy and the execution environment policy 
may conflict. There is no guarantee that the NodeOS policy for access to the memory pool that 
underlies the routing table, for example, meets the execution environment’s policy. Therefore, 
the NodeOS policy must be enforced but it must be possible for the execution environment to 
enforce a stricter policy. The “local” EE policies are not allowed to override the NodeOS policies.  
 
There are several ways to divide the responsibility for enforcement of policy between the 
execution environment and the NodeOS. For instance, an EE could choose to delegate all 
authorization decisions to the NodeOS51. Another, easier solution would be for the execution 
environment to enforce its own policy, with its own policy database and its own enforcement 
engine. Indeed, the execution environment cannot be prevented from performing authorization 
checks of its own for a service or resource it provides. If it denies access, then the access or 
usage is not provided52. After the execution environment has decided to grant access to a 
service or resource, it will attempt to access the NodeOS services and resources from which its 
own services and resources are constructed. The NodeOS can enforce its own policy when 
deciding access to the underlying NodeOS services and resources. 
 
When making use of the NodeOS services and resources, the execution environment may or 
may not indicate the principal associated with the active code that induced the request. There is 
no way to force the execution environment to do so, as the execution environment may make 
requests unrelated to any active code. If it does not indicate the principal behind the request, 
then the NodeOS makes the decision based on the principal associated with the execution 
environment’s flow. The execution environment would be accountable for the usage of NodeOS 
resources. However, the NodeOS cannot ensure that the execution environment enforces the 
NodeOS policy in this case. It must trust the execution environment to manage the resources 
granted to it in accordance with the NodeOS policy. This means that the NodeOS must 
communicate its policy to the execution environment on start-up, as an initial policy database. 
 

3.3.6.4 Identification of Principals 
The final problem remains the distribution of the representation of principals and their 
authorizations. In the trusted environment of an enterprise network, it may be possible to store 
identifiers and security attributes directly in the packet. In such an environment, the meaning of 
identifiers and the policy governing such identifiers are known everywhere and the source and 
integrity of the packets is trusted53.  
                                                 
51 This would require that the execution environment communicate to the NodeOS its policy governing access to 

those NodeOS services and resources that underlay each of its own services and resources. In response, the 
NodeOS would have to be capable to partition the resources it has associated with the execution environment 
according to the “local” EE’s policy. 

52 In turn, a NodeOS policy cannot guarantee provision of an new service for a channel that is anchored in an EE. It 
must trust that the EE will perform the service. 

53 For instance, NFS packets carry the UNIX user ID and user’s group ID used in making file access checks between 
the file server and the client. The user ID’s and group ID’s are trusted to have the same semantics, represent the 
same principal, throughout the NFS network. 
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However, in more wide spread and heterogeneous environments, identification of principals and 
their authorizations can not presumed to be widely known, uniform or trusted. A system of 
authorities must be established who can attest to the authorizations granted to a principal. 
 
In an un-trusted environment, cryptography is used to create a binding of principal and 
authorizations and the packet. Normally, the principal is associated with a key that is used to 
provide some cryptographic service for the principal. An authority binds the keying material and 
some designation of the authorization of the principal into a certificate or credential.  
 
The credential carries the digital signature of the authority, using a key bound to the authority. 
An infrastructure of authorities is created, with authorities attesting to the binding of keys to other 
authorities. Finally, the credential must be bound to the packet by the initiator to prevent its use 
in another packet. The usual mechanism is to employ the key represented in the credential to 
cryptographically bind the packet and credential with a digital signature. 
 
One active packet can contain the credentials of multiple entities. The authorizations associated 
with the initiator of the packet are clearly important to security. The authorization of the author of 
the active code could be important in some node policies. Relevant attributes of the code, such 
as the proof for proof-carrying code or evaluations of its quality by independent authorities, might 
be part of some node policies. A significant challenge in active networks will be to create enough 
uniformity of security requirements that application developers can comply with these 
requirements and effectively use the security features of the network, while still maintaining the 
flexibility to tailor security services to the purposes of the applications and individual networks. 
 
Finally, the source authenticity and integrity of the packet must be maintained to derive any 
assurance from the credentials contained in the packet. When the principal threat is from 
external intruders, protection of the integrity of the packet between neighboring active nodes can 
be accomplished with low cost symmetric cryptographic algorithms using shared keys. This 
ensures that the packet coming from a neighboring node has not been modified in transit. 
However, when it is not possible to trust implicitly every active node in the network, more 
assurance than just the immediate source of the packet is needed. Hence, the ultimate source 
and integrity of the packet must be ensured. A digital signature that binds a credential to a 
packet also provides this protection if the credential is associated with the source of the packet. 
 

3.3.7 IMPLEMENTATION FRAMEWORK 

3.3.7.1 Code Distribution Mechanisms 
Code distribution mechanisms such as the Active Network Encapsulation Protocol54 (ANEP, 
[Alex97]) provide the capability to route the active packets to a specific EE at a node. Thus, a 
packet needs to contain an ANEP header in order to be processed by an EE.  
 
                                                 
54 Inside their headers, active packets are carrying identifiers for the target handler, the operating element they should 

be are delivered to. ANEP is used when the target handler is an executing environment, but it can be also an IP 
router state or a dynamic handler (e.g. a flow). 
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The ANEP header includes a type identifier (TID) field. If a particular EE is present at a node, 
packets containing a valid ANEP header with the appropriate TID will be routed to the 
appropriate EE. Some TIDs are assigned to specific execution environments. By setting up the 
appropriate channels, EEs can also process legacy traffic from end systems which are not 
active-aware. 
 

3.3.7.2 Service Creation and Composite Network Services 
An essential feature of the network API inherited from the IN domain is the ability to compose 
new network services from a set of service independent building blocks (SIBBs) known as 
components. The network API includes a “mini-compiler” for services, a composition mechanism 
which performs in a similar way as the Service Creation Environment for intelligent networks to 
produce a composite service from components.  
 
The modular approach to service design allows price reduction (reusable software) and better 
proof of correctness of the overall service specification. A composite service may perform on a 
single active node or on a set of active nodes. The implementation of the network API can 
support a variety of techniques among which are: 
 

• Selection schemes: the choice of a specific service from a fixed set.  
• Turing-complete language: the generation of an infinite set of components using the 

sequence control mechanisms of a programming language, (ANTS [WGT98]; 
components installed in the active node as Java servlets called by the Java composite 
service). 

• Special-purpose language: a service creation language restricted to preserving certain 
desirable properties of the composite service, (SwitchWare [Alex98a], PLAN [Hicks99] 
and NetScript [YeSi96], [NetScript]). 

• Event-based framework: incorporating dynamic behaviour into a composite service by 
structuring the process as an event-driven computation and binding the code modules to 
specific events; this approach has been used for composing micro-protocols in the X-
kernel [BS95], and for injecting customer specific programs into an underlying program of 
the active node which provides a basic service through a set of processing slots 
associated with execution points of the underlying program, LIANE [Calv98]. 

 

3.3.7.3 Quality of Service Policy  
The provision of QoS is ensured by the NodeOS’ scheduling mechanisms which control the 
access to the processing and transmission resources of the active node in such a way that each 
user’s traffic appears to have its own virtual machine and/or virtual link. When channels are 
created, the requesting EE specifies the desired policy by the scheduler(s). Such policy may 
include the reservation of a specific amount of bandwidth for traffic on the channel, channel 
bundling for excess traffic, or isolation from other traffic on the channel and fair sharing of 
available bandwidth with other channels. 
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3.3.7.4 ABone 
The Active Bone (ABone) [Bra98] is a research test-bed used for testing EEs and deploying 
Active Applications (AAs) which use the EEs. The ABone nodes are currently UNIX machines 
operating the anetd (active net demon) program which performs active network node 
management, such as initiating EEs. Currently, the ABone is flat, although Braden’s proposal 
[Bra98] suggests that a hierarchy based on locally-administered Ahosts at edges and 
intermediate Arouters at the core may accelerate progress towards the goal of a 1000+ node 
Active Network. Currently, the ABone supports ANTS, NetScript and PLAN/Alien.  
 

3.3.8 SUMMARY: THE PRO-ACTIVE ARGUMENTS 

The architectures for AN execution environments described in this section have all been 
developed for different active applications and with different purposes in mind. They all represent 
the variety of software approaches in which programmability can be introduced into the network. 
The list is not exhaustive, but gives an overview of the various methodologies that can be 
adopted. Figure 24 illustrates how different EEs can co-exist on a single active node.  
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Figure 24: Resource distribution among multiple different EEs on a single active node 
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3.3.8.1 Why are Active Networks needed ? 
The dynamic control provided by active networks is potentially useful for a number of reasons. A 
few of them are described below: 
 

• rapid development and deployment of new services. This is the biggest benefit of 
Active Networks from the viewpoint of the network service provider. The shared 
infrastructure of the network currently evolves at a much slower rate than other 
computing services. Therefore, the deployment of any new service requires a lengthy 
standardization process, whereby everyone involved should agree on a generic 
procedure for a solution framework (the standard). This has led to a huge backlog in 
network services waiting to be universally deployed. RSVP and IPv6 are two well-known 
examples. The ability to change the behavior of network nodes on the fly is expected to 
simplify greatly the process of deploying new network services. 

 
• dynamic customization of network services and resource allocation.  At a finer level 

of granularity, Active Networks might enable users or third parties to create and tailor 
services to their particular topology, applications and even to prevailing network 
conditions. This should make it possible to develop a much richer class of applications 
than the ones that are currently deployed. 

 
• open network management and administration. Active Networks are open to deploy 

and administer. For researchers, a dynamically programmable network offers a platform 
for experimenting with new network services and features on a realistic scale without 
disrupting the regular network infrastructure. 

 

3.3.8.2 Major Challenges for Implementing an Active Network 
In order to be successful, any implementation of a programmable active network should satisfy 
the following requirements: 
 

• The network services should be usable: any active programming model will impose new 
and unfamiliar programming models and constraints on the user. For ease of use, it is 
important that these constraints should be as limited as possible. 

• The network should be highly flexible: Flexibility is the primary reason behind the Active 
Networks research. The network subsystem should be adaptable to a wide variety of 
tasks and applications. 

• The implementation should be secure: Security is expected to be the major obstacle to 
large-scale deployment of active networks in the future. 

 
The network should guarantee high performance: performance is usually the price that we have 
to pay for flexibility.  Therefore, the deployment of Active Networks should not create new 
bottlenecks in the network infrastructure. In particular, the implementation should provide for fast 
and transparent path processing of non-active packets. 
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3.4 APPLICATIONS 

Active networks enable the introduction of new applications that rely on network-based services. 
In the following, we present a short review of the most representative ones. 
 
Active Network Management could track and repair network problems without having a 
working connection between the concerned component and the management server. The 
conventional approach is to poll managed devices from a management station (e.g. an SMP in 
Intelligent Networks), requesting the values of variables and checking for anomalies (e.g. via 
SNMP). This centralized approach of intelligence which is still suitable for telephony services, 
may result in processing and communication bottlenecks when multi-layered, multi-session 
applications such as video conferencing are deployed. 
 
Further, the poll-and-check approach severely limits the ability to track problems in a timed and 
efficient manner. Active networking automatically distributes network management. Many 
network management tasks consist of collecting data, such as event counts, most of which are 
local. Hence, network components such as routers can take on a degree of responsibility for 
monitoring themselves (e.g., by injecting customized monitoring and diagnostic programs into 
their nearest neighbors). Furthermore, active technologies can be used to implement 
sophisticated approaches to network monitoring and event filtering. Thus, distributed intelligence 
can be used to filter out uninteresting events from exception indications in a differentiated 
fashion. 
 
An active node may tailor management data and policies according to the local network behavior 
and delegate control depending on its own status. Finally, active networks provide the flexibility 
necessary to improve fault detection and to update the survivability policies, which govern the 
node response to correlated failures, such as those caused by earthquakes or malicious 
intruders. Several projects such as NetScript [YeSi96], SmartPackets [SmartP99], Active Engine 
[[RaSh00] and SwitchWare [MMN01] apply AN technology for improving network management. 
 
Active Caching addresses self-organizing caches that determine dynamically where to place 
themselves depending on current demand for data. The caching of objects close to the clients is 
an important technique to reduce both network traffic and response time for Web applications. 
For example, web proxies that cache pages of information of a multi-user service could benefit 
from network-based computation and storage. A further argument in favor of using active 
technologies for Web caching is that a significant fraction of web pages is dynamically computed 
and not susceptible to passive caching. This suggests the development of schemes that support 
active caches, which store and execute programs that generate these pages.  
 
Hierarchical caching schemes such as Harvest [ChDN96] can reduce the latencies experienced 
by individual users and the aggregate bandwidth consumed not only by relocating the cached 
information, but also the caches themselves. The cache nodes are presently configured 
manually and located near the edges of the network (static hierarchy), i.e. at nodes within the 
end-user organizations. These systems could be extended to adapt to dynamic conditions by 
allowing nodes of the hierarchy to be located at strategic points within the networks of Internet 
access providers and inter-exchange carriers.  
 

 100 



Furthermore, active networking can deploy routing mechanisms for cache requests to pre-
configured cache locations [LWG98]. In addition, caches can be made aware about the contents 
of nearby caches at each network node [BCZ98]. Finally, a scaleable, adaptive Web caching 
architecture can be realized using AN techniques and application layer protocols [Zhang98].  
 
Active Security and Safety issues address user-aware network protection. Security problems 
may result e.g. in malfunctioning networks, loss of privacy, or attacks against other parts of the 
network. Protection of information means that the right information gets to the right people at the 
right place and time. Security and safety in networks are major concerns since programs run on 
sensitive components like routers. Despite the progress achieved in networking forums 
([Bore94], [GMcG95], [ATab96]) the active approach may accelerate the design of an integrated 
mechanism that governs all network resources. This eliminates the need for multiple 
security/authentication systems operating independently at each communication protocol layer 
and allows the user to program in security policy for the network on a per-user or per-use basis.  
 
The most promising techniques include: 

• authentication of packets (author and ID of packet) 
• monitoring & control restricting packet access to resources based on ID and other criteria 
• limitation techniques allowing to specify time and range limits 
• code carrying proof of the correctness when given specification 
• fault tolerant systems 
• encryption 
 

Finally, a formal approach using rigorous specifications and language-enforced-type safety can 
be used to reason about the protection policies and the mechanisms of their implementation. 
 
Other candidates for applying active techniques are such network services as: 
 
Active Congestion Control (ACC). There will always be applications that prefer to use best-
effort service and dynamically adjust rate. The sender adaptation model has worked well with IP 
networks. However, it has well-known bottlenecks: difficulty to detect congestion and determine 
the increase in available bandwidth, time required to detect congestion and adjust rate. The 
observation is that the application knows how to adapt to congestion, while the network knows 
when to adapt. Thus, we have to move advice about the adaptation into the network. It is 
reasonable to insert buffers along the network that work according to the available bandwidth, 
convert data, and provide connection-aware, application-aware and semantic data dropping (e.g. 
in MPEG, drop P and B frames).  
 
Due to its flexibility and presence in the network, active networking offers considerable promise 
for improving congestion control ([Bhat96], [ASNS97]. This promise has been explored in the 
design of Active Congestion Control [Fab98], [Fab02] (ACC). ACC takes advantage of state and 
programmability to improve feedback congestion control by reducing the delay with which 
congestion is signalled to sending systems. ACC packets contain small (e.g., 4–8 byte) 
characterizations of the state of the endpoint’s congestion feedback scheme (perhaps a 
congestion window size at the sender).  
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Category Description 
Firewalls Firewalls implement filters that determine which packets should be 

passed transparently and which should be blocked. Although they 
have a peer relationship to other routers, they implement application 
and user specific functions in addition to packet routing. The need to 
update the firewall to enable the use of new protocols is an 
impediment to their adoption. In an active network, this process can 
be automated by allowing applications from approved vendors (e.g. 
McAffee) to authenticate themselves to the firewall and inject the 
appropriate modules into it. 

Web proxies Web proxies provide a user-transparent service tailored to the 
serving and cashing of Web pages. Cash nodes can be located near 
the edges of a network and close to the end user. With an active 
network, this system can be extended in a hierarchical way by 
allowing cache nodes to be located (moved) at strategic points 
within the network. 

Nomadic routers 
 

Nomadic routers are interposed between an end system and the 
network. These modules observe and adapt to the means in which 
the end system is connected to the network (ISDN, LAN, etc.). An 
active network can intelligently decide to perform more file caching 
or link compression when the end system is connected through a 
low bandwidth link and invoke additional caching security 
(encryption) when operating away from the home office. 

Transport 
gateways 
 

Transport gateways are nodes located at strategic points that bridge 
networks with different bandwidths and reliability characteristics (e.g. 
at the junctions between wireless and wired networks). An active 
network can support QoS for mobile access to wired networks by 
allowing TCP snooping to retain per-connection state information at 
wireless base stations. 

Application 
servers 
 

Application-specific gateways support services such as the 
transcoding of images among video conference users with different 
bandwidth constraints, as well as voice and handwriting recognition. 
In an active network, a server’s functionality can be requested, 
configured, designed and injected by the user himself.  

 
Table 1: Network elements and their “activation” 55 

 
When congestion occurs at a router, in particular, when a packet is dropped, the router (1) 
determines what congestion window size will result presuming the packet is dropped, (2) deletes 
packets that would not be sent with this new window size, and (3) informs the sender of the new 
window size. 

                                                 

55 adapted from [Tenn97] 
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As noted by Faber [Fab98], nodes beyond the congestion point see traffic which looks as if the 
sender had reacted instantly. Thus, ACC is particularly powerful in network contexts which have 
large bandwidth * delay characteristics. ACC was evaluated by applying the basic model in the 
context of TCP/IP congestion control (thus ACC was presumed to be embedded in IP routers). 
The simulation studies showed that ACC can achieve up to an 18% improvement in throughput 
when traffic is bursty. 
 
Other promising AN techniques for congestion control include the Active IP option, [WeTe96], 
and the Configurable Active Node Elements (CANEs56,   [CANES]).   
 
Active Reliable Multicast (ARM). The traditional IP multicast service hides the details of the 
routing topology and the number and location of receivers from the user. For unreliable multicast 
this approach does certainly make sense, as it allows scaling to larger applications. However, 
this model is inappropriate when reliable data delivery to all receivers is required. For instance, 
losses typically affect all receivers downstream in the multicast tree. Active networking can 
reduce the delay and transmission resources and avoid overloading the transmitter by making 
receivers aware about their neighborhood. The responsibility for multicast retransmissions is 
spread out throughout the receivers. This can be achieved by using caches at the (active) 
network nodes [LWG98], or by including information about a node’s state and processing in the 
transmitted (active) packets [PPV98] for controlled redirection. Furthermore, the active approach 
is useful for applying such multicast techniques as: 

• suppressing negative acknowledgements (NACKs) for originators known to be repaired 
in a short time (duplicate NACK suppression to inhibit NACK implosion); 

• using “best-effort” caching of multicast data: dynamically moving caches for multicast and 
repair packets to “strategic” routers (e.g. such before lossy57 wireless links); and 

• using “local” multicasts in the retransmission scheme to reduce bandwidth: selectively 
sending repair packets to only hosts that requested them. 

 
ARM has the desirable architectural properties that not all nodes need be active, and that there 
are no “necessary” routers in the loss recovery scheme. The result is a robust scalable system 
for reliable multicast, which shows significant benefits (in recovery latency, scalability, reduced 
bandwidth required for recovery, etc.) 
 
Active Merging and Distribution of Information. Existing systems are based on a service that 
provides an extremely limited function (i.e., the copying of IP packets) without support for 
application-specific distribution, let alone network-based storage or information fusion. However, 
the era of multi-user, multi-site applications has already begun with Mbone. Many applications 
require network-based services to support the merging and distribution of information. 
  

                                                 
56 based on triggers indicating congestion control and examining the flow state to derive advice about how to reduce 

the amount of data 
57 e.g., the improved loss-recovery of the MIT’s ARM architecture comes from 3 sources: a) duplicate NACK 

suppression which inhibits NACK implosion; b) best-effort caching of multicast data for recovery in case of 
retransmission; c) local multicasts in retransmission which reduces the required bandwidth for such data.  
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Active QoS Management. Network congestion or lossy links can significantly degrade the 
quality of application streams. The adaptation of a transmitter to the network conditions is 
featured by latency (the time for detecting the condition, react, and transmit the adapted data to 
the receiver) and performance decrease (uncontrolled packet loss and non-optimal throughput 
during the adaptation period, which can be compensated e.g. by an AN fusion server). By re-
allocating the adaptive processing into the network, the appropriate type of adaptation can occur 
at the required node and time. Efforts in this area include transparent in-line protocol “boosters”,  
e.g. by adding forward error correction over error-prone links [Bakin97], intelligent discard 
strategies [BCZ97], active plug-ins [Deca99] and end-to-end ANN feedback [SpMe99] for 
preserving the MPEG-2 video quality at network congestion points.  
 
Protocol Boosters are protocol elements that can be inserted into or removed from existing 
protocols with the intention of building protocols dynamically and on request ([Feld98], [Marc98]).  
They do not require re-implementation of existing protocols and applications.  
 
Protocol booster architectures, also called Performance Enhancing Proxies (PEP), integrate 
performance-enhancing functionality that can be located at the edges of the wireless part of the 
network. These protocol boosters operate transparently without the need to modify the existing 
IP suite. To enable efficient operation the boosters have to be designed for specific applications. 
For the case of TCP applications, IP booster architectures can double TCP throughput even 
under noise propagation conditions. Real-time video conferencing applications require other 
specific booster functionalities.  
 
The boosting principle is illustrated on Figure 25. Host A and B act as server and client in an 
application scenario (e.g. video streaming) respectively. Since the network segment between the 
router R and client B is congested for some reason, the router acts as a bit rate adaptation proxy 
for the specified part of the network. Such architectures are well known and preceded research 
in Active Networks. Because the methodology for dynamic construction allows rapid 
development of specialized protocols from modules (servlets, netlets, etc.), this technique has 
the advantage of increasing both protocol performance and the rate of network technology 
evolution. Thus, Active Networks provide an ideal infrastructure for implementing protocol 
boosters. 
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Figure 25: A protocol booster architecture 

By design, the boosting mechanism is under control of a policy, which determines when 
augmentation is required. Thus, many portions of a protocol stack execute only as necessary, 
permitting significant increases in performance relative to general-purpose protocols.  
 
Building protocols dynamically in this manner can aid both protocol performance and the rate at 
which the network technology evolves, because specialized protocols can be developed rapidly 
and implemented at desired locations in the network.  
 
Protocol boosters have been initially developed for error and congestion control, but they can be 
applied for nearly any kind of local protocol stack enhancement or adaptation. Figure 26 
illustrates the realisation of a DLL feedback mechanism as a protocol booster for multimedia 
traffic in a performance enhanced proxy (PEP, [BKGM00], [Sim00]) at the edge of a wireless 
access network, e.g. as a front-end to an UMTS radio node controller (RNC).   
 
The idea behind is that the DLL protocols in the radio access network, -- packet data control 
(PDCP), radio link control (RLC), radio resource control (RRC) and media access control (MAC) 
-- ,  have much closer “look” at the network perturbances than the upper layer multimedia 
application (e.g. an MPEG-7 streaming video), so that important information about delay, frame 
loss and traffic congestion on the air interface can be much faster detected in a client proxy 
(than on the client itself) to be selectively reported to the application in the server enabling a 
real-time adaptive bit rate encoding compensating the (temporary) failures. 
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The Protocol Booster Concept:  Embracing IP 
or of Mobile Multimedia Traffic
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Figure 26: A protocol booster for error resilience of multimedia traffic in mobile wireless networks 

Active Router Control (ARC) [SAMS98] represents an option for rapid deployment of active 
technology to enhance the existing Internet where active elements/routers serve as an 
enhanced programmable management and measurement system. An example for such a 
configuration is shown in Figure 27 using a set of routers as a logical “router in a room”. 
 
The basic active “cloud” can be replicated throughout the Internet, with the active elements using 
the managed Internet routes as link layers. A set of active nodes can be grafted into a larger 
collection of routers and forwarders to create an active Internet. Researchers at the University of 
Washington have proposed a similar idea in their Detour [SAAB98] project, but using a high-
performance workstation cluster to provide a different blend of computing performance. 
 
Active Routers are obviously the key elements of future networks. Recently, some new 
approaches ([Kell00], [SHB00]) addressed routers directly to support applications and improve 
network performance at congestion points or at the edges (on a per-user basis). 
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Figure 27: An Active Router Controller (ARC) managing a set of forwarder/ routers 

 
Active Applications. Application Level Active Networking, ALAN [Fry99], is a framework for 
deploying applications on Active Networks, developed at the University of Technology, Sydney. 
The ALAN system consists of regular clients and servers, such as WWW browsers and servers, 
located on the Internet or Intranet. Communication between servers and clients is enhanced by 
Dynamic Proxy Servers (DPS) located at optimal points of the end-to-end path between the 
server and the client. There may be more than one DPS involved in an end-to-end path. It is 
possible to download protocol entities onto the DPS infrastructure. These protocol entities, 
proxylets, then act as filters or enhanced protocol functionalities that improve the level of service 
between servers and clients. Proxylets may be obtained from protocol servers, or Web servers, 
owned by network operators or value added service providers. ALAN implementations include 
such applications as WWW streaming audio and hypertext (html) transcoding.  
 
Another approach to support active applications is based on specialized servers such as the on-
line auction servers which collect bids from clients for items and provides the current price of an 
item on request. Given the time-scales with which such servers can operate (short) and the 
possible delays in packet arrival in an internet (long), outdated (i.e., lower than the current price) 
bids can arrive. Depending on the scale of the auction, these bids, which have become 
irrelevant, can generate considerable server load.  
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The active protocol suggested by Legedza, et al., [LWG98], deletes low bids with active 
elements embedded in the network connecting client and server. When the server becomes 
busy, it enables these elements and periodically updates their notion of the current price. In 
dropping low bids, they thus serve as proxies for the server in its attempts to focus on relevant 
bids. 
 

3.5 MAINSTREAM DIRECTIONS  

The three basic Active Networking approaches outlined in Chapter 2, -- the “option” model, the 
“programmable switch” model and the “capsule” model , -- have been realized in a number of 
architectures with the main objective to establish some level of programmability in the network.   
 
At the same time, other projects with open signaling and “pure” IP application background have 
been carried out into designs and test-beds pursuing with the same goal, yet expecting a more 
moderate impact  on the  present day telecommunications infrastructure. 
 
In their survey of programmable networks, Campbell et al. [Camp99a] introduce four basic 
characteristics along which they classify the diverse research approaches with respect to their 
generalized framework architecture (Figure 3): 
 

• networking technology, which implicitly limits the level of programmability that can be 
delivered to the higher levels. For instance, some technologies such are more “QoS 
programmable”,  (e.g., ATM), scalable (e.g., Internet) or limited in bandwidth availability 
(e.g., mobile networks); 

 
• level of programmability, which indicates the method, granularity and the time scale over 

which new services can be introduced into the network infrastructure. This in turn is 
strongly related to language support, programming methodology or the middleware 
architecture. For example, distributed object technology can be based on RPC and 
CORBA [Vin97] or mobile code [WGT98] methodologies resulting in quasi-static,   
[OPENS], or dynamically composed  network programming interfaces,  [DoDAN]; 

 
• programmable communications abstractions, which indicate the level of virtualization and 

programmability of networking infrastructure requiring different middleware and network 
node support (e.g., switch/router, base station). For example, programmable 
communications abstractions include virtual switches [Laz97], switchlets [Merw97b], 
active nodes [NOSIS], universal mobile channels [LC98] and virtual active networks 
[NetScript]; and 

 
• architectural domain, which indicates the targeted architectural or application domain 

(e.g., signaling, management, transport). This potentially determines certain design 
choices and affects the construction of architectures, and services offered, calling for a 
wide range of middleware support. Examples include, composing application services 
[Arb98], programmable QoS control [Laz97] and network management [SmartP99]). 
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Psounis [Pso99] presents a simple qualitative comparison of the programmable networks 
approaches with respect to the above characteristics aligned to the generalized Columbia Model 
for programmable networks, [Camp99a]. Aside from the above characteristics, these 
architectures differ from each other in the following details: 
 

• Language expressive power: The "languages" that can be used to "program" the 
network nodes poses a wide range of expressive power and functionality. On the one 
hand, there are "languages" consisting of a simple list of fixed sized-parameters that 
select from pre-defined sets of choices for (re-)configuration. Such a system provides for 
easy-to-enforce security and simple fast-path optimizations of the traditional packets. The 
current IP Internet and active networks architectures belonging to the “option” school, 
use such a "language". On the other hand, there are also Turing-complete languages 
capable to specify and perform any programming task. Security is a major concern for 
such a paradigm, and strict type-safety and other checks have to be maintained. 

 
• Statefulness: This refers to the ability of active packets to install state on the network 

nodes. The present simple IP network does not allow installation of state; however, most 
AN implementations allow user packets to install soft state on the nodes. 

 
• Granularity of control: This refers to the visibility that modifications introduced to 

network nodes by active packets should have. The granularity ranges from making these 
modifications visible to all nodes on the way of a packet, to making them visible only to 
the packet making the modification. The first approach raises serious security issues. 
Therefore, it is not adopted by any implementation. The latter is implemented in the 
current IP architecture and some proposed Active Networks designs. Most Active 
Networks designs speak of implementing per-flow granularity, which is intermediate to 
the two alternatives mentioned above. 

 
The rising interest of the research society ever since, and recent discussions at international 
forums such as IETF, testify that active networking is a promising approach for network evolution 
which allows the rapid introduction of new services and techniques for their deployment without 
the necessity of time-consuming standardization. 
 
One of the major advantages of active networking is that distributed computing algorithms can 
be more easily implemented and quickly deployed in an active network environment. The goal of 
most recent AN research is the further development of the distribution and virtualisation 
paradigms in order to enable active networks (a) to generate some parts of their virtual 
architectures “on demand”58 (e.g. a the Genesis project [Camp99b]) and (b) to predict their own 
behaviour [Bush00] while targeting some predictive optimisation strategy, such as traffic control 
[BKEG00], resource reservation ([Galt01a], [Galt01b]) or network management [BuKu01]. This 
research concentrates on the development of distributed computing techniques, such as logical 
processes (e.g. spawning, concatenation, etc.) by means of the design and analysis of new 
types of architectures and algorithms, e.g. Active Virtual Network Management Prediction, 
[AVNMP].  
                                                 
58 We will see how the “on-demand” service approach will shift to self-organization in ad-hoc active mobile networks later in this work. 
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Table 2: A comparison of the programmable network projects, [Camp99a]. 
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This development let us conclude that Active Networking enters a new phase in the beginning of 
the 21st century which leads towards actively adaptable self-organizing network architectures.   
 

3.6 ANALYSIS AND DISCUSSION 

The primary goal of active networking is to accelerate network evolution by replacing the various 
ad hoc approaches to network-based computation with a generic capability that allows users to 
program and configure their networks at will. In programmable switches, separating the injection 
of programs from the processing of messages is particularly attractive when the selection of 
programs is made by network administrators rather than individual end users. In contrast, the 
capsule approach allows the embedding of user data within the capsules, thus providing user 
specific option for processing these data. In the following, we discuss the usability of the two 
basic approaches in active networking, the discrete and the integrated approach. 

3.6.1 THE DISCRETE APPROACH 

The processing of messages may be separated architecturally and conceptually from the 
injecting of programs into the node, with a separate mechanism for each function. This 
preserves the current distinction between in-band data transfer and out-of-band management 
channels well known in intelligent networks. Thus, users would first inject their custom 
processing routines into the desired programmable network nodes (routers, switches) and thus 
configure the network. Then they would send their packets through these nodes much in way as 
they do this with legacy nodes today. When a packet arrives at an active node its header is 
examined, and the appropriate program is dispatched to operate on its contents. 

Separate mechanisms for loading and execution might be valuable when program loading must 
be carefully controlled. Allowing operators to load dynamically code into their routers would be 
useful for router enhancement, and thus lifetime network extension, even if the programs do not 
perform application- or user-specific computations.  In the Internet for instance, loading code can 
be restricted to a router’s operator who is equipped with a back door through which they can 
dynamically load code. This entry would at least authenticate the operator and might perform 
extensive checks on the code being loaded. 

3.6.2 THE INTEGRATED APPROACH 

A generalized view of active networks regards every message or capsule passed between the 
nodes of network as an active packet, i.e. a program (or at least an instruction) which may 
include embedded data. There is some guaranteed code present to each node. Some code is 
then being transferred between the nodes using a distribution protocol, such as ANEP. In 
addition, familiar application control mechanisms such as push and on demand loading, pre-
fetching and caching are used as well.  
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When a capsule arrives at an active node, it is processed by a mechanism identifying its 
boundaries, possibly using the traditional link-layer framing mechanisms. Then, the capsule’s 
contents are disassembled to a transient execution environment where they can safely be 
evaluated. The execution of a capsule results in the scheduling of zero or more capsules for 
transmission on the outgoing links.  
 
The effect may be also a change of the non-transient state of the node. Programs run to a 
completion or self-suspension at a node. A node state can be one of the following: 

• Soft state, cannot be relied upon 
• Querying environment 
• Capsule creation and manipulation 
• Capsule control (e. g., forwarding) 
• Capsule scheduling 

 
Node states can be stored as data and communicated via active packets throughout the 
network, thus enabling states changes of other nodes along the route.  
 
The main distinction characteristics between active packets and mobile agents are two: 

o Mobile agents have data state (variables) and execution state (e.g. stack) whereas 
Active Packets do not have state included;  

o Active Packets can be executed throughout almost all OSI layers whereas mobile agents 
are typically applications (layer 7). 

 
Figure 28 illustrates a typical hybrid AN architecture supporting open programmable interfaces 
for value-added services, [P1520].  

Despite the clear separation of concepts, layers and interfaces, active networks are considerably 
complex in their design which inevitably leads to failures at some point.  

We strongly believe that deploying elaborate formal specification and verification techniques 
such as PVS used at NASA Langley [NASAL] will improve the test and accelerate the design 
processes of active networks. 

Currently, the research community is divided concerning the usefulness of active networks. On 
the one hand, active networks provide a much more flexible network infrastructure, with 
increased capabilities to easily grow and introduce new services. On the other hand, they are 
obviously more complex than traditional networks and raise considerable security issues. 
 
The argument against active networks is that the Internet is successful today because of its 
simplicity; by making the networks “active” things may get very complicated. The argument for 
active networks is that it is a very promising and innovative idea; a variety of useful network 
services that involve processing at inter-mediate nodes will be made possible and the use of 
such services is likely to lead to better end-to-end performance for applications [WLG98]. 
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Figure 28: Active Network architecture realized on an open programming platform 

 

3.6.3 COMPARISON OF THE NETWORK PROGRAMMING APPROACHES   

3.6.3.1 Open Programmable Interfaces 
The use of open programmable network interfaces is evident in many programmable network 
projects discussed in this survey. Open interfaces provide a foundation for service programming 
and the introduction of new network architectures. The xbind broadband kernel supports a 
comprehensive Binding Interface Base using CORBA/IDL to abstract network ATM devices, 
state and control. A number of other projects focused on programming IP networks (e.g., ANTS, 
Switchare, and CANEs) promote the use of open APIs, which abstract node primitives, enabling 
network programmability and the composition of new services.  
 
Many network-programming environments shown on Table 2 take fundamentally different 
approaches to providing open interfaces for service composition. The programming methodology 
adopted (e.g., distributed object technology based on RPC, mobile code or hybrid approaches) 
has a significant impact on an architecture’s level of programmability; that is, the granularity, 
time scales and complexity incurred when introducing new APIs and algorithms into the network.  
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Two counter proposals include the xbind and ANTS APIs. While the ANTS approach to the 
deployment of new APIs in extremely flexible presenting a highly dynamic programming 
methodology it represents a complex programming model in comparison to the simple RPC 
model. In contrast, the xbind binding interfaces and programming paradigm is based on a set 
of CORBA IDL and RPC mechanisms.  
 
In comparison to capsule-based programmability, the xbind approach is rather static in nature 
and the programming model less complex. These approaches represent two extremes of 
network programmability. 
 
One could argue that quasi-static APIs based on RPC is a limited and restrictive approach. A 
counter argument is that the process of introducing and managing APIs is less complex than the 
capsule-based programming paradigm, representing a more manageable mechanism for service 
composition and service control. Similarly one could argue that active message and capsule-
based technologies are more ‘open’ because of the inherent flexibility of their network 
programming models given that capsules can graft new APIs onto routers at runtime. The 
xbind approach lacks this dynamic nature at the cost of a simplified programming environment. 
Other projects adopt hybrid approaches. For example the mobiware toolkit combines the static 
APIs with the dynamic introduction of Java service plug-ins when needed [BCK97]. A clear 
movement of the field is to open up the networks and present APIs for programming new 
architectures, services and protocols. As we discuss in the next section the field is arguing that 
the switches, routers and base stations should open up ultimately calling for open APIs 
everywhere. 

 
 
3.6.3.2 Virtualization and Resource Partitioning 
 
Many projects use virtualization techniques to support the programmability of different types of 
communication abstractions. The Tempest framework [Merw97a] presents a good example of 
the use of virtualization of the network infrastructure. Low-level physical switch interfaces are 
abstracted creating sets of interfaces to switch partitions called switchlets. Switchlets allow 
multiple control architectures to coexist and share the same physical switch resources (e.g., 
capacity, switching tables, name space, etc.). Typically, abstractions found in programmable 
networks are paired with safe resource partitioning strategies that enable multiple services, 
protocols and different programmable networking architectures to coexist. Virtualization of the 
network in this manner presents new levels of innovation in programmable networks that have 
not been considered before. All types of network components can be virtualized and made 
programmable from switches and links [Chan96] to switchlets [Merw97a], active nodes [NOSIS], 
routelets ([Camp99b], [Camp01]) and virtual networks ([Merw97b], [Camp99b]). 
 
The NodeOS interface [NOSIS] provides a similar abstraction to node resources. The use of 
open interfaces allows multiple network programming environments (or execution environments 
using active networking terminology) to coexist within a common physical node architecture. In 
this case, the ANEP [Alex97] protocol provides encapsulation as a mechanism for delivering 
packets to distinct execution environments. 
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Using encapsulation in this manner allows for different overlay execution environments (e.g., 
ANTS, Switchware, or Netscript) to execute on the same router using a single, common node 
kernel. The notion of virtualization is not a new concept, however. Similar motivation in the 
Internet community has led to the advent of the Mbone. New directions in the virtualization of the 
Internet have prompted the proposal for X-bone [ToHo98], which will provide a network-
programming environment capable of dynamically deploying overlay networks.  
 
Other projects such as Supranet [DeFe97] advocate tunneling and encapsulation techniques for 
the separation and privacy among coexisting, collaborative environments. 
 
 
3.6.3.3 Programmable Virtual Networking 
 
The dynamic composition and deployment of new services can be extended to include the 
composition of complete network architectures as virtual networks. The Netscript project 
[YeSi96] supports the notion of Virtual Active Networks [NetScript] over IP networks. Virtual 
network engines interconnect sets of virtual nodes and virtual links to form virtual active 
networks. The Tempest framework [Merw97b] supports the notion of virtual networks using safe 
partitioning over ATM hardware. Tempest offers two levels of programmability. First, network 
control architectures can be introduced over long time scales through a ‘heavyweight’ 
deployment process. Second, ‘lightweight’ application-specific customization of established 
control architectures takes place over faster time scales. The abstraction of physical switch 
partitions within the Tempest framework has led to the implementation of multiple coexisting 
control architectures. The Tempest strategy aims to address QoS through connection-oriented 
ATM technology and investigates physical resource sharing techniques between alternative 
control architectures. Both Darwin [Chan98a] and Netscript [NetScript] projects support the 
notion of sharing the underlying physical infrastructure in a customized fashion as well. As 
discussed in the previous section, the NodeOS [NOSIS] project also provides facilities for 
coexisting execution environments. 
 

3.7 OUTLOOK 

The network programming abstraction provides a powerful platform for user-driven 
customization of the infrastructure, allowing new services to be deployed at a faster pace than 
can be sustained by vendor-driven consensus and standardization activities. The ability to 
download new services into the infrastructure will lead to a user-driven innovation process in 
which the availability of new services will be dependent on their acceptance in the marketplace. 
Active networks present an opportunity to change the structure of the networking industry from a 
mainframe mindset, in which hardware and software are bundled together, to a virtualized 
approach, in which hardware and software innovations are decoupled.  However, as it will be 
shown later in this work, configurable computing can provide an additional flexibility of the 
programmable active network nodes, which can virtually couple again software with hardware on 
demand.  
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3.8 SUMMARY  

The emergence of new technologies supporting encapsulation, transfer, safe and efficient 
execution, and interposition of programs and program fragments is one of the reasons why it is 
now possible to build active networks. At the same time, in the fields of operating systems and 
programming languages, issues relating to mobility, efficiency, and safety have been addressed.  
From all the above one can conclude that there is a user “pull” and a technology “push” towards 
a new way of thinking about the network ([Tenn96a], [Tenn97]): the user “pull” stems from the 
paradigms that “violate” the traditional properties of the network while the technology “push” 
stems from the fact that until recently it was not technologically possible to treat programs as a 
set of encapsulated and moving code fragments. 
 
Conventional (passive) nets rely on agreements about protocols. The following problems with 
conventional protocol architectures led to the emergence of active networks:   
 
• Long standardization process, 
• Too high protocol stacks 
• Poor performance due to redundant operations at several protocol layers, 
• Emerging need of computations within the network, 
• Difficult integration of new technologies(e.g. IPv6), 
• Difficult accommodation of new services and applications in the network. 
 
The active packets approach suffers from performance-related problems because safety and 
security requirements are huge. In an effort to reduce the security burden and thus increase 
performance, some researchers have decided to restrict the functionality of the programs carried 
by the active packets, resulting in architectures with decreased capabilities. M0 is the only 
architecture within the active packet approach that can provide arbitrary functionality, thanks to 
its novel caching technique. 
 
The active nodes approach has good performance because security issues are much less than 
in the previous approach. However, the flexibility of the relevant architectures is limited. In an 
effort to increase flexibility, DAN and ANTS architectures have adopted a scheme where code is 
downloaded on demand and is cached for future use. As a result, these two technologies can 
easily deploy any new arbitrary protocol. Nevertheless, downloading code on demand causes 
some delay that reduces the overall performance. 
 
The combination of both approaches seems to be very appealing. SwitchWare architecture 
realizes this idea by the use of a layered architecture, and manages to provide a range of 
different flexibility, safety and security, performance, and usability tradeoffs. Finally, NetScript 
architecture proposes a novel viewpoint where the network is treated as a single programmable 
abstraction. Activity of nodes and packets offers a considerable flexibility in networking allowing 
new functionality, better performance and faster deployment of protocols and services, yet, at 
the cost of diffuse separation between the OSI layers, unclear security and performance 
decrease when flexibility is not needed.  
 
Active networks are consistent with the end-to-end argument of service provisioning:  
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• they provide a generic interface, available to all users; the cost of the interface is one-
time cost (infrastructure). 

• they allow users to select network services more precisely; the cost of providing a service 
is paid only by those applications using it. 

 
Active networks were expected to replace traditional IP networks, [Gutt97].  
 
The following few paragraphs summarize the essential characteristics of the AN approach: 
 
 

• Active59 Packets (APs or capsules) replace the packets of traditional IP networks; they 
carry data and code responsible for the processing of this data at specialized (active) 
network nodes. A series of APs sharing common information within the network are 
grouped into a protocol. The protocol provides a network service; it is the basic element 
for network customization and protection.  

• Active network nodes (ANN) replace selected nodes within the IP network and its 
terminals (routers, switches, hubs, bridges); they execute the active packets of a protocol 
and maintain the protocol state. Unlike ordinary nodes, active nodes provide an API for 
capsule processing routines, and execute those routines safely by using operating 
system and programming language techniques.  

• A code distribution mechanism60 ensures that AP/capsule processing routines are 
transferred automatically and dynamically to the active nodes where they are required. 

The above model supports the programming, the introduction and the deployment of new 
network services by a generalized form of packet forwarding based on the following premises for 
safety and security [WGT98]: 
 

•   Active forwarding routines, like traditional ones, are expected to run to completion locally 
and within a short time. Because of the risk for malicious usage, they are intentionally 
limited61 in their capabilities such as global memory and bandwidth consumption, which 
are bounded by a lifetime or Time-To-Live (TTL) period.  

•  The forwarding routine of an AP/capsule is set at the sender and may not change as it 
traverses the network; nor may capsules belonging to one protocol create capsules or 
access state belonging to a different protocol within the network. Thus, transmission 
channels are isolated and one user may not control the processing of another user's 
capsules in unintended ways.  

                                                 
59 In the classical definition, an AP/capsule is also “passive” (i.e. not autonomous) during the end–to-end transport 

over the network; its activation proceeds at the destination node or at predefined intermediate nodes. The WLI 
approach, however, reveals some additional capabilities of the active packets.  

60 This component does not exist in traditional IP networks, and is handled by the AN system, not by the service 
provider. 

61 A possible solution to this problem could be e.g. the periodical transmission of an “authentication” capsule applying 
an already  negotiated coding scheme in previous transmissions.  
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•   Depending upon the node's available resources and security policies, some active nodes 
may not execute particular forwarding routines, but rather perform “default” IP-like 
forwarding.  In addition, some forwarding routines may self-select nodes at which it is 
useful to perform their specialized processing depending on the location of the node and 
its capabilities.  

 
According to the AN model, a new network service is defined as a protocol structure in terms of 
the different AP/capsule types or types (data) and their processing methods or routines (code).  
An application can immediately use the specified service by supplying the protocol definition to 
the local node, starting sending, and receiving the appropriate AP/capsules. 
 

3.9 CONCLUSIONS 

3.9.1 THE AN APPROACH 

Active networks are a “quantum jump” in the evolution of packet-switched networks from simple 
packet forwarding engines to elaborate processing and communication environments. By 
providing programmable interfaces in network nodes, they expose to their resources, 
mechanisms and policies and allow the dynamic modification of the network behavior on a per-
node, per-packet and per-user base.  
 
Active networking has a wide application range and the potential for solving many of the 
problems identified in current “passive” networks. There are various applications where active 
networks can be beneficial. Network management, congestion control, reliable and efficient 
multicasting, and active caching are some of them. However, current research in active network 
architectures and their applications assist solely the examination of their usefulness, 
applicability, and efficiency. Yet, no existing active system is flexible enough to anticipate and 
accommodate the future needs of the network. The scope of future updates in present active 
networks is too restricted.  
 
Most systems offer plug-in extensibility abstracting future changes through a pre-defined 
interface. Allowing network nodes to be extended by dynamically loading code which addresses 
only pre-defined future changes is not sufficient enough to enable true network evolution (ANN: 
[ASNS97], [YeSi96]; AP: [WGT98],[Hicks98]).  
 
For instance, because capsules are the only plug-in, much of the ANTS system [WGT98] is not 
subject to change. This includes the code distribution service, the entire node-programming 
interface, the packet arrangement and disarrangement code, the packet code cache, the 
security enforcement policies, etc. If some aspect of the node API, or the distribution protocol, 
needs to be changed, then the entire node architecture have to be changed, recompiled and 
redeployed. In general, this reasoning applies to other AN systems such as SmartPackets 
[SmartP99], and PLANet [PLANet99].  
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Recently, Hicks [Hicks99] proposed a new technique, the dynamic software updating,  which 
allows to add new functionality to a predefined structure and change any functional part of the 
system or its type at anytime (incl. runtime) without anticipation by the programmer. Such 
developments appear very promising.  
 
However, the implementations that have been built at the various research sites have not been 
tested in large-scale networks so far. It is not very clear how the available experimental results 
would generalize to a large-scale network like the Internet. Before deriving any provable 
conclusions, it is necessary to deploy and test the performance of the diverse active network 
technologies under real conditions in ABone62, analogous to the Mbone for multicasting.  
 
The problem with large-scale experiments is that they also take too much time and require a lot 
of coordination work. Besides, testing any new incremental idea requires almost the same and 
often even more and more time and effort. For instance, what about hardware upgrades in active 
networking ?  The network is changing all the time. We think that ideas have to underlay some 
“mental” tests in a scientific manner before being offered as RFCs. Formal methods are 
providing a good scientific base for engineering research. In this work, we impose an additional 
requirement for evolutionary active networks, namely the one of dynamic hardware upgrade and 
reconfiguration of active nodes. We claim that the Wandering Logic Intelligence (WLI) is a 
suitable formal technique for specifying and verifying such systems.   
 
There are two basic tradeoffs in active networking:  

1) between security levels and performance, and  
2) between usability/flexibility and complexity.  
 

A lot more can be done to address the security and programmability issues in active networking. 
However, it is very difficult to say now where the security-performance tradeoff can be optimized. 
“Conservative” approaches toward active networks may yield satisfactory results, particularly in 
combination with the emerging mobile software agent technology. As for the usability/flexibility 
issue, a compromise could be reached. Nevertheless, the complexity has to be manageable. 
The optimal line of the flexibility–complexity tradeoff is also hard to draw. ABone may be used to 
find optimum solutions for both tradeoffs. However, a try-and-error approach usually takes too 
much time, especially in a large-scale environment. This is where formal models can help to 
accelerate the experimental research and find the real boundaries of applying AN technologies. 
 
The AN approach does not simplify service programming per se, as it requires heuristic 
treatment of well-known problems such as packet and protocol state loss, changing routes and 
concurrency. Therefore, users are not expected to program their services, but rather to construct 
and configure them following the Intelligent Network SIBB model through selection between 
protocols offered by service providers or third party software vendors. Furthermore, it is not the 
task of protocol designers to consider how to distribute the processing routines throughout the 
network, nor worry about interaction with other protocols (except in case of resource reservation 
at the active nodes). Active networking pursues the just-in-time (JIT) introduction of new network 
services and applications.  
                                                 
62 a DARPA-sponsored active network in which active nodes communicate via tunneling through the Internet using 

UDP . [Abone]
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Therefore, the business model assumes that network operators are supposed to be interested in 
generating traffic in their infrastructure, and thus open their architectures for use, despite the 
enormous security and safety overheads.  
 
Finally, there are several tradeoffs to be made when introducing new Internet services with the 
active networking paradigm, [WLG98]:   

• Protection is based on the inability to specify processing for another user's packets and 
the encapsulation of protocol state by the associated capsule processing routines.   

• Allocation is based on the limited resources that will be granted to each packet by the 
network nodes.   

• Performance is based on the simple event-driven processing model and the ability to 
tailor processing to the diversity of heterogeneous networks, including those in which 
only some nodes may be active. 

 

3.9.2 THE FORMAL APPROACH 

Active networks represent complex structures and mechanisms imposed by the hard (but 
necessary) technology challenges described earlier in this chapter (Motivation). In addition, 
evolutionary models and requirements for dynamically adaptive software increase the difficulty in 
designing such architectures because of the inclusion of new technologies. Therefore, the 
application of methods and tools capable to specify and validate the desirable semantics of such 
architectures in the early design stages, before implementation, are highly desirable and 
recommendable.  
 
Formal techniques, such as process algebras, graphical notations, state machines, set theory 
and models in logic proved to be the appropriate means for this task ([HeMa96], [Harry96]). In 
particular, programming languages such as LOTOS, Estelle and SDL were specifically 
developed for telecommunications [Turn93].  
 
In fact, the gap between AN models, specifications and the actual code at system level could be 
quite big. Therefore, formal techniques are expected to bridge (or essentially reduce) this gap by 
providing adequate models and a good mathematical reasoning basis for system assurance 
using logic languages assisted by mechanical specification and verification tools such as 
computer algebra systems, graphical design browsers, proof checkers, and automated and 
interactive theorem provers. The goal of these formal approaches is to prove that the desired 
static and dynamic properties of the system (code and architecture) are correct and safe. 
 
Basically, a configurable network is characterized by both node and packet programmability and 
adaptability. In addition, active packets transport mobile code. In this work, we postulate that 
active nodes can be also mobile63, for instance as mobile platforms such as vehicles or wearable 
user terminals.  
 
                                                 
63 In fact, assuming that routers can be mobile is a true challenge for routing protocols even at the presence Mobile IP 

and IPv6. Yet, this is inevitable step ahead in the entering the Cosmos. Perhaps the recent NASA initiative of Vint 
Cerf, the InterPlanet Protocol, is already addressing this issue. 
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The formal approach requires that all these properties of the active system be described in a 
formal way, such as a calculus or logic. Furthermore, the formal language should support 
generic design features such as openness, distribution and object-orientation. Active networking 
requires that programs be transmitted across the communication substrate and loaded into a 
range of platforms. This implies the development of formal specification techniques and common 
models for the encoding of network programs, the built-in primitives available at each node, and 
the description and allocation of node resources. 

 
However, irrespective of anyone’s concerns about the future, active networks enter its second 
age. Currently, there are two driving forces in AN research: 

• the possibility for automatic upgrade of network protocols, and 
• the possibility to program and deploy the intermediate node functions through 

simple, open, and rapid interfaces and processes without the need of 
standardization committees or vendors’ lobbies.  

 
Given these two opportunities, it is well worth trying. In any case, perhaps the problem is not 
whether networks should be programmable or not, but deciding on paradigms that will program 
them efficiently. 

 
In this chapter, we have discussed the state-of-the-art in programmable and active networks. We 
have presented the conceptual paradigms, the reference model, the basic architectures and the 
mainstream directions in research.  
 
The generalized architecture of a programmable network comprises communication and 
computation models into the architecture and opens interfaces to the underlying hardware.  
 
Active Networks devise a paradigm shift in network design towards higher levels of network 
programmability following the principles of: 
 

• separation of hardware from software; 
• management of hardware as software; 
• availability of open programmable interfaces to all levels of network granularity; 
• virtualization of the networking infrastructure; 
• tools for rapid creation and deployment of new network services; and 
• safe resource partitioning and coexistence of distinct network architectures over the 

changing physical networking hardware. 
 
Active programmable networks provide a foundation for architecting, composing and deploying 
virtual network architectures through the availability of open programmable interfaces, resource 
partitioning and the virtualization of the networking infrastructure. The key challenge in this 
research is the synchronous development of programmable virtual networking environments 
based on configurable hardware architecture.  
 
 

* * * 
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CHAPTER 4:  RECONFIGURABLE COMPUTING 

"Reconfiguration  after failures reflected STAR [project] concepts...  
One advantage of distributed systems is that interfaces can be  

simpler than in a system using a central computer. 
 Each local computer is responsible for its own timing and control."  

 
GALILEO – TRUE  DISTRIBUTED  COMPUTING  IN  SPACE,  

DISTRIBUTED  COMPUTING  ON  BOARD VOYAGER  AND  GALILEO 
http://www.hq.nasa.gov/office/pao/History/computers/Ch6-3.html 

 
 

"Over the weekend,  the reconfiguration of the spacecraft following the  
completion of the Attitude and Articulation Control Subsystem  

in-flight mode was completed on Saturday.”  
 

February 1, 1993 
GALILEO STATUS REPORT  

http://seds.lpl.arizona.edu/ftp/spacecraft/GALILEO/gs02.01.93 
 
  

4.1 OVERVIEW  

Reconfigurable computing is a relatively new field of research, which emerged in the late 1980's 
to fill the gap between hardware and software by achieving much more performance than 
software while maintaining higher level of flexibility than hardware. It is an aggregation of “hard-
wired” computation, one that performs series of routine computations, e.g. signal processing, 
using Application Specific Integrated Circuits (ASICs), and the flexible, or “soft-wired”, i.e. the 
programmable one, which performs computations using general-purpose (micro)processors 
capable to execute series of instructions provided entirely in software.  
 
The most common devices used for reconfigurable computing are Field Programmable Gate 
Arrays (FPGAs). FPGAs consist of a matrix of logic blocks and an interconnection fabric or 
“mash” (Figure 32). Both, the functionality of the logic blocks and the connections between them 
can be modified, i.e. configured or programmed by downloading bits of configuration data into 
the hardware. FPGAs allow designers to manipulate gate-level devices such as flip-flops, 
memory and other logic gates. However, FPGAs have also some inherent disadvantages such 
as bit level operation and inefficient performance for logic operators and ordinary arithmetic. 
Therefore, many researchers have focused on a more general and higher level models of 
configurable computing systems such as PADDI [ChRa92], rDPA [HaKr95], DPGA [Tau95], 
MATRIX [[MiDH96], RaPiD ([Ebel97], [ECF97]), Raw ([Wain97a], [Wain97b]) and Garp 
([HaWa97],[CHW00]). 
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Reconfigurable computing is different from the von-Neumann paradigm of computing and 
requires computational models different from conventional models. The ability to implement an 
application in hardware provides an opportunity to exploit the inherent concurrency of digital 
circuits. That is, the device can be configured, or partitioned, into multiple subsystems - all of 
which could run concurrently with each other.  
 
One major goal of reconfigurable computing systems is to exploit the fine grain and the coarse 
grain parallelism in applications, which allows a functional split and adaptation of the hardware to 
specific computations in each application to achieve higher performance than software. 
Applications are mapped onto reconfigurable architectures by analyzing the computations 
performed. The partitioning of an application’s computations between the microprocessor and 
the reconfigurable hardware is performed manually or by means of (semi-)automatic tools. The 
obtained results are compiled into executable code on the microprocessor and hardware 
configurations on the reconfigurable hardware.  
 
Before the computation can be executed, the reconfigurable hardware needs to be configured 
using the configuration information. Thus, configurations can be updated at run-time to execute 
a different set of operations from the application.  
 
Currently, hybrid architectures, which integrate programmable logic and interconnect along with 
a microprocessor on the same chip, the so-called “systems on a chip” (SoC), are being 
developed. On-chip integration of reconfigurable logic reduces the memory access costs and the 
reconfiguration costs.  SoC systems are used in almost any network device. 
 

4.2 SCOPE 

With the dawn of multimedia and wireless communications, reconfigurable computing is often 
associated with the ability to modify a computer’s system hardware architecture during an 
application’s runtime, and in particular – in real time. Current computers are fixed hardware 
systems based upon microprocessors. With each new generation of microprocessors, the 
application’s performance increases only incrementally. Traditional fixed hardware may be 
classified into three categories:  logic (Gate Arrays, PALs, etc.), embedded control (controllers, 
e.g. ASICs and custom VLSI devices) and computers (microprocessors).   
 
Reconfigurable computing systems are those computing platforms whose architecture can be 
modified by the software to suit the application at hand. To obtain maximum performance or 
throughput an algorithm must be molded into a hardware (ASIC, DSP. etc.).  
 
Thus, dramatic improvements in the performance of the system are achieved through the 
“hardwiring” of the algorithm. In a reconfigurable system, these hardwiring takes place in an 
“interpreter”-like manner on a function-by-function basis as the application evolves.  
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Recently, advances have been made in the integration of compilers within reconfigurable 
architectures such as Garp, [CHW00], and PipeRench64. In this way, digital circuits can be 
programmed and swapped into a reconfigurable computing system on demand by a software 
application during execution time. Reconfigurable systems take advantage of spatial parallelism 
while reducing temporal overhead of load store, branch operations and instruction decoding.  
 
Since this work is concerned with the design of new generations networks, the subject or 
reconfigurable (or programmable hardware) is reviewed from two perspectives: a) micro-
architectures, related to the VLSI (gate) level up to a PC board or a handheld mobile terminal 
level, and b) macro-architectures, addressing configurable servers, switches, routers, etc. What 
follows is a short review of applications and computing models related to the “micro” level. The 
“macro” perspective was already discussed in the previous chapter (Active Networks).  
 

4.2.1 APPLICATIONS 

Over the last decade, reconfigurable computing machines (RCM) have demonstrated significant 
potential for a range of applications. Many of these tasks (e.g. real-time signal processing) are 
computation-intensive and have high throughput requirements. Other applications are inherently 
complex (e.g. real-time speech recognition). In general, conventional microprocessor-based 
architectures fail to meet the performance needs for most of the locally centralized65 applications 
in the realms of long multiplication [Vuill96], genetic algorithms ([GrNe96], [SMP99]), image 
processing [AtAb95], signal processing [TeBu00], cryptography [Dand00], genomic database 
search [LeMe95], etc. Automatic target recognition, feature extraction, surveillance, video 
compression are among those applications that have shown performance improvements of over 
an order of magnitude when implemented on configurable systems [Man97]. Other applications 
are parallel computations, stream processing, template matching, image filtering, etc. 
 

Co-processors Applications 
Intelligent embedded controllers  
(e.g. laser controller) 

High-bandwidth graphics and 
communication processing  
(e.g. wireless multimedia) 

I/O channel processors  
(e.g. protocol converter, database accelerator) 

Bit-slice (and bit-tweed) functions 

Image processing; enhanced video/ multimedia  
(e.g. image processor, transcoder) 

Complex algorithms  
processing streams of integers 

DSP function acceleration Image/audio/video processing 
 

Table 3: Configurable computing machines and their usage 
 

                                                 
64 http://www.ece.cmu.edu/research/piperench/. 
65  i.e. performed on a single processor or a cluster of processors on a desk-top PC, a workstation or an embedded 

system. 
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Configurable computing systems have been considered to be suitable solutions for dedicated 
signal and software processing,   Table 3. As we will see later in this chapter, they may also 
provide the technology for the next generation dynamic networking.  
 

4.2.2 COMPUTING MODELS   

We distinguish between two computing models, fixed (Figure 29) and flexible (Figure 30), 
historically w. r. t. hardware, and thus defining the corresponding market segments, but basically 
reflecting the three layers in development both in software and hardware, and hence defining the 
application areas: computers, embedded control and logic. In this chapter, we refer to 
applications as to specifically hardware applications.  
 

Logic

Embedded 
Control

Computer

Fixed Computing Models

Hardware / Markets Software / Applications

µProcessors
x86

68000
PowerPC

Embedded 
Controllers

68000
TM33xx

Traditional 
Logic Design
Gate Arrays

PALs

Glue Logic
State Machines

Peripherals
Data Paths

 

Figure 29: Classification of computing developments within fixed models 

Further, within the flexible computing model in Figure 30 we classify reconfigurable hardware 
into three categories:  
 

• Logic: FPGA 
• Embedded Control: Reconfigurable co-processors, tightly coupled FPGAs to traditional 

systems 
• Computers: completely reconfigurable computing platforms using FPGAs in a system 

designed for general purpose computing; high-end reconfigurable computers address the 
switches, servers and routers of the flexible hardware macro architectures.    

 
 126 



In addition, we expand this model to a fourth level or category, the networking dimension, by 
addressing configurability of sets of network nodes, which are composed of configurable 
elements of the other three layers. This model is going to provide the “hardware base” of the 
wandering logic intelligence (WLI) referred later in this work. The WLI’s software base, which 
comprises the basic principles of active networking, has been discussed in the previous 
sections.  
 
The leading idea behind WLI is that we wish to devise a set of guiding design principles unifying 
the numerous ad hoc approaches in network evolution in a thorough logical framework providing 
the best available flexibility in software and hardware technology at a certain level of 
development. We wish to give a possibly direct answer to the question of how to make a network 
like the future Internet and how to let it develop in order to provide the desired performance, 
quality, security, etc. features of importance to all users. 
 

Logic

Embedded 
Control

Computer

Re-configurable Computing Models

Hardware / Markets Software / Applications

High-Performance 
Computing
Application 
Acceleration

VR Applications

Diagnostic
Multipurpose Logic

Field Upgrades

µProcessors

Traditional 
Logic Design

Embedded 
Controllers

 

Reconfigurable 
Computer

Reconfigurable 
Logic

Reconfigurable 
Coprocessor

Figure 30: Classification of computing developments within reconfigurable models 
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MPU Memory I / O

Reconfigurable 
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Host Bus

Reconfigurable 
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Co-Processor

PCI Bus

Dedicated Functions
e.g. Implementing Different
Image Processing Algorithms

A Reconfigurable Processor Unit (RPU)

 

Figure 31: Typical architecture of a reconfigurable multiple co-processor unit 
 
Networking differs from local, centralized processing in that load and performance, in terms of 
computational intensity and application specifics vary in both space and time. Increasing 
resources and their capacity and performance is, of course, the long-term goal in network 
development. Yet, available resources are often over-dimensioned in the very beginning for 
usage at some peak rate or number, and later, when this rate or number is reached, they are not 
re-usable with advancing technology (in terms of physical limits). In fact, networks are 
expensive, because of not being exploited in an effective way over time.  
 
However, there is another option. To move.  Moving people across the network to guarantee 
QoS and effectively use the resources is outdated. What remains is to move code and data, and 
to re-configure resources at runtime, i.e. to mobilize them (in some way) to be close to the user.  
 
Figure 31 depicts the starting point of our investigations in terms of hardware, the familiar 
example of a reconfigurable processor unit (RPU). What we focus on is the expansion of this 
model to networking over time, both in terms of software and hardware: the adaptive, 
evolutionary networking.   
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4.3 MICRO-ARCHITECTURES 

4.3.1 FIELD PROGRAMMABLE GATE ARRAYS (FPGA) 

With the introduction of the Field Programmable Gate Array (FPGA, configurable logic chips) in 
the early 80’s, hardware engineers were empowered to implement chip level designs without 
having to fabricate a chip. As these devices and their software tools matured, the use of FPGAs 
expanded from testing and verification of digital systems to in-system design.  
 
FPGAs perform the function of a custom LSI circuit (e.g. a gate array, ASIC) and are user-
programmable.  They were originally designed as alternatives to mask configured gate arrays, 
the bit processing elements implementing the logic gates, and the programmable interconnect 
replacing selective gate wiring [Trim92]. 
 
Currently, they are used as glue logic for design of adaptable systems and coprocessor devices. 
FPGAs are also used to emulate other component architectures, and are applicable for rapid 
prototyping. Increasingly, FPGAs have been applied as spatial computing devices for recursive 
and parallel processing (Figure 33). They have proved themselves a feasible alternative to the 
temporal computing model (ALU) as being the fastest or most economical way to solve highly 
parallel and recursive problems such as signal and image processing, DNA sequence matching 
and cryptographic search. SRAM based configurations can be reprogrammed on the fly by 
downloading different configuration bits into the SRAM memory cells. The future SRAM based 
FPGAs will invoke a completely new generation of computing applications.  
 

L  U  T L  U  T

L  U  T L  U  T
In te rco n ne ct

C o n fig u ra tio n  
M e m o ry

A c tio n  
L o g ic

F lip -F lo p

C o n fig u ra tio n  
M e m o ry

3

A  th re e -in pu t loo kup  ta b le  (3 -L U T ) F P G A

 

Figure 32: A three-input lookup table (3 LUT) FPGA 
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An FPGA is an array of bit processing units whose function and interconnection can be 
programmed after fabrication.  Most traditional FPGAs use small lookup tables to serve as 
programmable computational elements. As shown on Figure 32, the look up tables are wired 
together with a programmable interconnect, which accounts for most of the area in each FPGA 
cell. Commercial devices usually have 4-input lookup tables (4-LUTs) for the programmable 
processing elements because they are area efficient [Rose90].   
 

4.3.2 RECONFIGURABLE COMPUTING 

Computing with FPGAs is called configurable computing because the computation is defined by 
configuration bits in the device that controls each gate and interconnect how to behave. Like 
processors, FPGAs are programmed after fabrication to solve virtually any computational task 
that fits in the device’s finite state and operational resources. This impermanent, post-fabrication 
customizability distinguishes processors and FPGAs from custom functional blocks (e.g. ASICs) 
which are operationally set during fabrication and implement only one function or a very small 
range of functions. 
 
Unlike processors, the primitive computing and interconnect elements in an FPGA hold only a 
single device-wide instruction66. Without undergoing a lengthy reconfiguration, FPGA resources 
can be reused only to perform the same operation from cycle to cycle. Thus, tasks are 
implemented by spatial composition of primitive operators, i.e. by linking them with wires. In 
contrast, traditional processors temporally compose operations by sequencing them in time, 
using registers or memory to store the intermediate results, Figure 33.  
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Figure 33: Example: spatial vs. temporal computing 
 

                                                 
66 Here, the term “instruction”  refers to the set of bits controlling one operational cycle of the FPGA. 
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The single-instruction-per-active-computing-unit limitation in FPGAs provides an area 
advantage, at the cost of restricting the size of computation described at the die at any point in 
time. Thus, a single reconfigurable device often can compute, in a single cycle, a desired 
computation such as a filter operation that takes a processor or a DSP hundreds of cycles and 
MHz power to evaluate even simple filter taps. The FPGA might require tens of cycles latency to 
compute a result, but because it performs the computation as a spatial pipeline composed of 
many active computing elements, rather than sequentially reusing a small number of computing 
elements, it achieves a higher throughput. 
 
An FPGA has a better performance for two key reasons, both due to the spatial organization: 

1. FPGA exploit more parallelism per cycle; with less instruction overhead, the FPGA 
performs more active computations onto the same silicon die area as the processor. 

2. FPGAs can control operations at the bit level, but processors can control their operations 
at the word level. As a result, processors often waste a portion of their computational 
capacity when operating on narrow-width data. 

 
Thus, through pipelining, a FPGAs extracts more computational capacity from a silicon die than, 
e.g. a RISC processor. When operating on short data items, FPGAs have a potential for a 
second order-of magnitude advantage in computational density over processors [DeHon00]. 
However, the problem with FPGA is that it is difficult to pipeline a particular design in an 
adequate fashion to achieve such a high clock rate. Conventional FPGA architectures and 
engineering methodology make it difficult to contain interconnect delays and reliably target clock 
rates near the device’s peak capacity. This is in turn an opportunity for formal models and 
simulation techniques to help finding the most appropriate split between software and hardware 
designs.   
 

4.4 MACRO-ARCHITECTURES 

4.4.1 THE ROAD AHEAD: AN ADAPTABLE NETWORK 

The experiences collected with recent developments in run-time reconfigurable (RTR) hardware 
and hardware/ software co-design techniques enable the design of dynamically reconfigurable 
high-performance switches, which are expected to improve both the performance and 
functionality of future network routers. The combination of speed and flexibility offered by these 
devices has been the key to much recent work in networking hardware ([HaSk96], [McH97], 
[Hess99]). With suitable computation and interface modules, stream processing has the potential 
to enable hardware-level configuration and packet processing at line speeds.  
 
The achieved results provide the basis for a hardware-reconfigurable network. A prototype of a 
reconfigurable router was proposed in [LHAM99]. In [Hess99] the authors present its 
implementation using RTR FPGAs. The following section shortly describes this architecture, 
which is used later as a reference model. 
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4.4.2 THE RECONFIGURABLE ROUTER ARCHITECTURE 

 
 
Figure 34 shows the basic architecture of a typical router. It consists of a set of input and output 
ports that are connected via an interconnection architecture, which is controlled by a routing 
engine running on top of the router operating system. The interconnection architecture can 
deliver either packets or pointers to packets to assist in transport from port to port.  
 
To improve performance, each port may have one or more processors. The routing engine is 
used to process routing protocols and to perform a route lookup. The result of the lookup 
function is a forwarding table, which is used by a forwarding engine to determine where the 
packets should go. Forwarding engines can be located within the input/output port devices or as 
separate port devices. 
 
The activities towards designing a flexible router operating system can be categorized into two 
areas: open signaling and active networking. In open signaling, a set of application programming 
interfaces (APIs) is defined so users can access, in a standard way, information stored within a 
router. In active networking, as we have seen in the previous sections, new protocols and 
services can be injected at run-time. An active network has the advantage that it not only 
provides a uniform (software) signaling interface, but also a platform-independent mobile code. 
Thus, programs written for the vendor A’s router hardware can, by itself, migrate and run on 
vendor B’s router hardware. In fact, we consider open signaling as a part of the larger goal of an 
active programmable network, [Camp99a]. 
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Figure 34: Basic router architecture 
 

 132 



4.4.2.1 The Out-of-Band Reconfigurable Router 
 
Figure 35 shows the general model of the reconfigurable out-of-band router, i.e. a router that is 
separately programmed from the packet flow passing through it (the OPENSIG approach, 
[OPENS]).  
 
The router operating system provides the resource management and route protocol processing, 
and it would have the capability to receive, authenticate, and install any new protocols as 
required. Once a new protocol code is loaded into the operating system, it is partitioned and 
scheduled according its functionality for execution. The latter can be performed on a general-
purpose processor for the application-specific code and on reconfigurable hardware (e.g. an 
FPGA) for the computing-intensive code. For example, the routing engine of a typical IP switch 
may receive up to 50 route updates per second, [IBM96]. A general-purpose CPU processes this 
information. Furthermore, there may be hardware assistance to perform the actual route lookup 
using custom VLSI implementations that are based on content addressable memories (CAMs) or 
some hardware processing of a trie structure [[PeZu92]. A VLSI implementation typically only 
supports IP route lookups. Software route lookups are completely performed using trie structures 
([WVTP97], [DBCP97]) – the software can be modified to support other protocol types.  
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Figure 35: General model of an out-of-band reconfigurable router 

Thus, a routing engine may consist of: 
• a dedicated hardware to perform route lookups,  
• a general-purpose CPU to process the routing protocols and provide network control,  
• special-purpose hardware to support the packet processing ([KVE95], [DCP95]).  

 
The hardware used by the routing engine on Figure 35 only processes the headers of IP 
packets. The reconfigurable approach of [Hess99] allows processing of both headers and data. 
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4.4.2.2 The In-Band Reconfigurable Router 
The in-band, or stream-based router (Programmable Active Network approach, [Camp99a]) is 
reconfigured by programs sent along with the data to be routed through the same network 
interfaces. Processing streams is performed in a somewhat similar manner as processing 
capsules in active networks; the difference is in the internal architecture of the router (active 
node) which reflects the arrangement of the stream packets, the flow of capsules or both of them 
(in the hybrid version), Figure 36.   
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Figure 36: Spatial vs. temporal organization of the in-band information 

The stream programming information configures a RCM for the computation task on the user 
data that follows, whereas active network capsules contain code (or a reference to it) which is 
destined to process the data in the capsule itself (and some of the capsules to follow). 
Therefore, generally stream programming is associated with spatial computing, whereas capsule 
programming – with temporal computing in the network node.  
 
Stream-based computing is based on the use of self-guiding streams of programming 
information and user data to perform a computational task [BiAt97]. Stream-based approaches 
have been used in other configurable hardware applications in the realm of signal processing 
[SwAt99]. Within a reconfigurable router, the stream programming header can be viewed as a 
protocol, and the data as the packets. The advantage of the stream-based paradigm is that 
the information stream can be viewed as a network flow with switching and other features 
defined by the programming header (!). In addition, the stream-based programming concept 
can be extended so that the packets arriving at the router are stream-based, i.e. by a stream-
based active network. The Wandering Logic Intelligence model gives preference to the 
hybrid approach. Thus, shuttles (active packets in WLI) have a dual nature. A RCM node or an 
active one can e.g. interpret them. In turn, netbots (network elements) are in general both RCM 
and active nodes in terms of hardware and software respectively.  
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In addition, the model postulates that active nodes must best match the structure of the active 
packets at the time of delivery. WLI uses the abstraction of a Logical Computing Element (LCE) 
to address the two schemes in computing, spatial and temporal (as a distributed resource). 
 
Because the stream processor is similar to a fine-grained, super-pipelined processor, results are 
produced on each clock pulse. If the clock speed is equivalent to the line speed, then stream 
processing can operate at line speed, with a finite amount of latency. This simplifies design by 
allowing packets destined to be discarded, to be dropped at the end of the pipeline; otherwise, a 
mechanism must be developed to discard the packet while it is entering and being processed by 
the pipeline. Because of the pipeline design, the stream-based processor relies on a modular 
and configurable set of functional units. Furthermore, stream modules can be strung together to 
provide a desired functionality.  
 
In a fully configurable stream processor, one can add, remove, and modify modules and 
interconnects on the fly. In addition, modules can be developed independently which greatly 
simplifies the implementation of a design. If a module later in the stream needs results from a 
module earlier in the stream (e.g. the result of the route lookup in the case of the reconfigurable 
router), packets may be accompanied through the processor by a small amount of additional 
data, which contains calculations from various modules on a separate data bus. Because the 
algorithm is known in advance and the amount of additional information is known, a stream 
interface controller (SIC) within each module can ignore, pass on, or use the information as 
needed. 
 

4.5 SUMMARY AND CONCLUSIONS  

Recent developments in networking technology testify the trend for ever-increasing user demand 
for more functionality from their network devices, including quality-of-service and policy routing, 
multicasting, firewalls, network address translation, mobile nodes, etc. Run-time flexibility in 
network devices is clearly a problem that must be solved, as future networks will be multi-
functional, heterogeneous, and scalable in nature. 

As future network architectures are supposed to become highly adaptable [MNK97] and active 
[Tenn97], they will require development of flexible routing and nodal processing architectures. In 
addition, if route-processing time exceeds 0.27 ms for IP switching, the number of packets that 
can be switched drops significantly [LinMcK97]. As line speeds increase towards terabit 
switching, the upper bound on route processing time restrictions will become more stringent, 
which will eventually cause problems for systems that rely only on software algorithms to 
perform active network reconfiguration.  
 
FPGAs proved the flexibility of a general processor at near-ASIC speeds, yet at a cost much 
lower than that of a custom ASIC. Computations and data that would fit on a single chip only by 
sequentially reusing a single CPU a decade ago can be fully implemented in a spatial data 
pipeline on a single FPGA today. As available silicon continues to grow, we can fit even more 
computational problems into single dies using spatial data flow, thus off-loading processors and 
increasing the range of feasible applications.  
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The competition between the “active school” and the “configurable school” in network design, as 
we observe in the case of routers will continue in the years to come.  However, combining both 
approaches brings more benefits, especially when the referee is formal logic.  
 
The widely quoted “90/10 rule” states that 90 % of the program runtime is consumed by 10% of 
the code. The rule reflects the fact, that only small portions of the software become the 
performance bottlenecks consuming the largest part of the total computation time. Balancing 
code is necessary for completeness, but its execution speed does not limit performance.  
 
Consequently, a hybrid approach (in terms of hardware) such as the GARP architecture 
[HaWa97], couples a processor with a configurable computing array. The array computes the 
application’s performance-limiting portions (10% code/ 90% time) with high parallelism on 
densely packed spatial operators. The processor, in turn, deals with the computation’s non-
critical portions (90% code / 10% time) into minimum space. Yet, nothing argues against feeding 
the processor with some “active” portion of data, i.e. extending the hybrid approach to software.  
 
Finally, why should not we use the same advantage in the network domain ? The compromise 
that can be derived by means of formal logic could involve some performance test benchmarking 
(in both software and hardware) for the user perspective of the best fit of the application. As 
reported in [SiMi94] and [Sim94a], this proved to be a suitable approach in meeting praxis with 
some hybrid theory model (at least for video communications). Yet, in order for architecture to be 
checked that way, it has to provide all possible degrees of flexibility from the very beginning.  
 
The reconfigurable router is an important step in this direction, because it enables the creation of 
both `actively reconfigurable networks. We define a reconfigurable (adaptable) network as those 
network elements which stay in direct relationship to each other and use the reconfigurable 
aspects of the computing system in real time following automatically a certain management 
policy requested on demand when an application (or a group of them) decides which network 
configuration is required. 
 
Are reconfigurable networks the right solution to future communications ? Definitely ---  not 
alone. 
 
Reconfigurable networking can essentially contribute to develop active networks, scalable 
multicast packet caching algorithms, and new quality-of-service switching algorithms. Yet, it is 
not flexible enough, at least not as much as thought and software.   
 

In fact, spatial and temporal hardware computing and networking designs are 
mutually complementary; they depend on technology developments and define 
the performance and the quality of software implementations. Therefore, fast 
hardware reconfiguration and efficient forwarding algorithms along with an 
integrated software/hardware application life cycle support comprise a realistic 
complementary approach to active networking to meet future network demands.   

 
We consider active networking and configurable computing as very promising research 
approaches in adaptable systems design for the next few years to come. Both of them have 
some drive towards convergence. 
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Personally, we believe in the unification of the two system approaches. However, the 
requirements on future communications systems, especially in the wireless domain and in the 
era of mobility and multimedia, will rise continuously with an increasing rate of complexity. 
Without a formal base, we cannot get a clear picture of what is really going on in networking 
today. For a couple of decades, formal description techniques, such as SDL, LOTOS and 
Estelle, have proved to be valuable tools for the developer in designing and verifying network 
protocols and services. They are broadly accepted in industry and are still used along with 
modern programming environments such as UML and Java in different areas. Using formal 
methods will even gain on weight in planning and verifying practical network solutions in future.  
 

4.6 OUTLOOK 

In the mid 1990s, thanks to increasing transistor and interconnection densities, a new form of 
reconfigurable element emerged: the reconfigurable data path came in response to the call for 
more parallelism and higher performance in the now larger ICs. Reconfigurable data paths have 
coarser-grained reconfigurable units than the FPGA; they can accommodate reconfigurable 
nibble, byte, or wider ALUs. They also provide a slightly more regular, but still configurable 
interconnection fabric, while maintaining plenty of registers and local memory.  
 
In this way, the fabric lets programmers map regular computation-intensive operations (e.g. 
encoding of multimedia data) in a spatially pipelined manner onto the device, while clock speeds 
remain close to those in CPUs with custom ALUs. In near future, coherent application-
development environments will let a program’s small but time-consuming kernels map to a 
reconfigurable coprocessor, while the remaining part of the program is executed to run on a 
traditional instruction-set processor.  
    

4.7 DISCUSSION 

The rapid growth of networking has created an ever-present demand for higher performance and 
throughput. Meanwhile, the network standards are in constant flux, and must continuously 
evolve to provide the latest support for security, integrated services, and other enhancements 
(such as the latest version of the Internet Protocol, IPv6). Thus, network designers have to 
choose a technology that is flexible enough to keep up with the latest standards while providing 
the highest possible performance. 
 
Much research has recently been done in active networks, which increase network flexibility by 
allowing the routers to be reprogrammed, often at the cost of lower throughput. A reconfigurable 
router implemented on a Reconfigurable Computing Machine (RCM) can provide the flexibility 
required for active networking while approaching the high throughput of inflexible application-
specific integrated circuit (ASIC)-based routers. Active networks [Tenn97] and open signaling 
[OPS97] are the recent attempts to reconcile the seemingly contradictory goals of flexible and 
fast routing. While these techniques have shown much promise in improving the flexibility of 
networks, there remains some concern about their possible effects on performance.  
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The flexibility requirements of active networks suggest the use of general-purpose processors 
for implementing the software reconfiguration algorithms, but there is little indication that 
contemporary general-purpose processors will operate fast enough to meet throughput 
requirements. On the other hand, application-specific integrated circuits (ASICs) that can be 
relied upon for maximum router throughput cannot meet any of the goals for network flexibility. 
 
In the previous two chapters, two recent trends in network research were identified: 

• The outwards, hardware-driven approach: expanding reconfigurable computing from the 
locally centralized processing areas (desk-top and workstation computing) to distributed 
processing in the network domain while address network elements, such as 
reconfigurable routers;  

• The inwards, software-driven approach: active networks and software processing 
technology in the physical layers, such as software radio. 

 
These two approaches are in fact complementary and are driven towards convergence. The 
following criteria/tradeoffs are becoming characteristic for the design of the descending network 
architectures. 
  

4.7.1 MIXING ACTIVE AND PASSIVE FLOWS 

If we deploy an active network over the current Internet, do we need also a specific addressing 
and routing scheme for active packet processing and transfer separate from the Internet traffic ? 
 
The answer is that one of the most exciting possibilities of the Active Networks is their ability to 
mix active and passive flows in a transparent manner.  Using a specific addressing and routing 
scheme could result in having only a "configurable network", rather than an active network. On 
the other hand, dealing with active packets in a passive network remains a challenge, especially 
when we consider fragmentation or dynamic routing. 
 
There is some ongoing research67 on this topic and submitted proposals toward a possible 
solution, e.g. by embedding AN information in routing protocol schemes. However, some active 
applications may require an, - at least -, static route, so that the first implementations will most 
probably deploy virtual circuit like mechanisms. 
 

4.7.2. FLEXIBILITY VS. SECURITY 

How the wireless network can support the deployment of new services and applications ?  
 
This is a non-trivial question, since it addresses the kernel of the design problem, the trade-off 
between flexibility and expectations: a new networking architecture must be open and extensible 
enough to accommodate new services, but at the same time also restrictive enough to meet 
performance and security requirements.  

                                                 
67 http://search.ietf.org/internet-drafts/draft-galand-an-routing-00.txt 
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4.7.3 CONFIGURATION  VS. ENCAPSULATION  

Lets us consider a reconfigure router being used within an active network and receives a packet 
that is a capsule. The router will decode the packet, if it contains software code, and then send 
the code to a general-purpose CPU for compilation and hardware/software partitioning. After the 
partitioning is performed, appropriate portions of the code can be installed in the hardware and 
the code can now process the next incoming packet.  
 
Alternatively, the packet can contain a hardware reconfiguration description. It can be directly 
installed into an available reconfigurable processing engine. This strategy provides complete 
reconfiguration of the router without human intervention and little, if any, knowledge of hardware 
design is required. 
 
Using a reconfigurable router, all the operator has to do is:  
 

1) send another active network packet with new code to the router, or 
2) install the new code using a terminal interface.  

 
The change is all at the hardware layer, is all performed at run-time, and is performed without 
requiring detailed knowledge of how the operating system kernel works.  
 
These features are especially important to regular users who do not care to know any details 
about how the network operates. In this, we could have a customizable network in much the 
same manner we configure our Linux desktop environment with the KDE toolkit.  
 
The basic premise behind deploying a configurable router in an active network is, however, the 
support for dynamic hardware/software co-design within the switch architecture, which allows 
traditional software-based routing code to be automatically mapped onto the hardware when and 
as needed. This feature is an important first step towards the realization of active networks. We 
believe that formal methods can do a lot in the pre-design of such systems.   
 
The reconfigurable routing and switching technologies can also be applied to base stations and 
radio network controllers for mobile networks. 
 
 
 
 

* * * 
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CHAPTER 5: THE WANDERING LOGIC INTELLIGENCE 

“The meshes of the net of Heaven are large;  
far apart, but letting nothing escape.” 

 

                                                

LAO TSE 

5.1 ARCHITECTURAL BASE 

Like most networks, an active network (AN) consists of an interconnected group of nodes 
executing a common runtime. The nodes are linked across a LAN/WAN via point-to-point or 
shared medium channels. The system is built on the link layer services of the channels to 
provide network layer services to distributed applications.  
 
Unlike IP, the network service provided by an active network is not fixed, but flexible;  in addition 
to providing IP-style routing and forwarding, the AN allows applications to introduce new 
protocols into the network by specifying the routines to be executed at the intermediate network 
nodes instead of the simple IP forwarding service. As a result, the applications may delegate a 
portion of their processing into the network.  
 
The active network approach pursues three goals in network protocol design. All of them 
describe more innovative forms of engineering than currently achieved on the Internet: a) 
distributed development and use of new protocols by mutual agreement among the interested 
parties, rather than the centralized (standardized) one; b) dynamic (runtime) introduction and 
deployment of new protocols; c) simultaneous use of a variety of different network layer 
protocols.  
 
In the following paragraphs, we introduce the desired characteristics of a new type of 
hyperactive network architecture, which represent the base of the WLI model described in this 
chapter. 

 
• Active nodes can be mobile and reconfigurable (in terms of software and hardware) 

during runtime. Reconfiguration could be just another type of network service.  
 

• Depending on the class of service to be installed onto an active node, a special 
manipulation of the capsule in the execution environment may be applied (including 
cashing of its contents and/or state) to ensure awareness about the flow. The class of 
service is a new concept in WLI used to describe multiple code systems, either at the 
“byte level”68, or at higher-layers associated with different service functions such as 
encoding/decoding of MPEG video streams.  

 
 

68 as e.g. the support of native Intel x86 object code and JavaVM code in a heterogeneous active network (which this 
is the case of PAN [Nygr99]) 
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• Active nodes can adapt (themselves) to communications in such a way to best-match the 
structure of the active packets (shuttles) at the time of delivery. 

 
• Capsules could carry code and data not only for the execution within, but also for the 

upgrade/degrade and re-configuration of active nodes in terms of software and hardware. 
In this way, active nodes can be modified. For this reason, the capsule APIs and the 
execution environments could be extended by special routines allowing the 
accommodation and execution of code that changes a netbot’s configuration and 
resources. In this way, new functionality could not only be delivered to and injected into 
the active node, but also distributed and optimized throughout the node itself.   

 
• In addition to the data related code, capsules could also carry genetic code which can be 

selectively invoked by special routines at the active nodes to perform structural changes 
in the node/network architecture (e.g. to spawn/collapse a virtual (sub-)network, to 
expand/derive a new reachability (sub-)tree for routing,   chapter 6, etc.). 

 
• It could be useful to allow the creation of new capsules (or the replication of “old” ones) in 

the intermediate active nodes under the supervision of the node operating system 
(NodeOS). Furthermore, a special class of capsules could be capable to replicate 
themselves and to create/remove/modify other capsules and resources in the network. 
The term “resource” could be extended to an entire virtual active node. 

 
• The network protocol itself could be particularly embedded within the capsule. 

Furthermore, code distribution throughout the network and inside the nodes can be 
maintained by the capsules themselves. A capsule approaching a netbot could re-
configure itself becoming a morphing packet to match the netbot’s processing 
requirements. 

 
A capsule could also have some additional activity properties for code distribution and code 
execution. The Wandering Logic Intelligence (WLI) ([Sim99e], [Sim99f], [Sim02a]) is a new 
approach, which introduces an extended concept of a secondary encapsulation level to model 
evolutionary active and configurable mobile networks.  
 
The medium-term goals of the WLI approach which are not part of this work, but are going to be 
pursued in a future research project, are summarized as follows:  

• to provide a formal means for the specification and verification of the generic temporal 
properties of active mobile nodes and packets; 

• to support the reflexive dynamic adaptation of both mobile code (software) and node 
architecture (software and hardware); 

• to provide the formal means for specification and verification of dynamic QoS properties 
in wireless networks at both application (service) and packet level; 

• to assist the formal  transformation of the systems properties into mobile code, 
• to simulate system behavior previously to implementation.  
 

The following sections introduce the WLI framework.  
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5.2 THE WLI APPROACH 

5.2.1. THE COLLISION OF THE INTELLIGENCE PARADIGMS  

There is a definite distribution of functions and roles among network components within 
outbound-signaling circuit-switched (telephony based) Intelligent Network. (Of course, there is 
also a distinct distribution of roles and functions in present day packet switched networks: 
servers, switches, routers, proxies and terminal equipment. The example is taken for 
demonstration purposes.) 
 
Thus, the standard SCP-IP relationship is e.g. not simply the client-server one (typical for data 
networks), but rather a processor-coprocessor delegation of service logic (e.g. playing 
announcements and collecting user input) to a subordinate unit, the Intelligent Peripheral, which 
delivers back some result to the Service Control Point. The SCP then continues to control the 
flow of the service in the well-known main () routine manner. Even in a distributed IN, Service 
Nodes are not supposed to serve each other in the common ‘’data packet’’ sense, but rather to 
have a local (centralized) control over certain resources, services and subscribers. In addition, 
ongoing IN standardization do not consider alternative network technology integration 
paradigms, but rather extend the SS7 model by ROSE functionality, such as e.g. invoking 
functions (ETSI INAP CS-2, [Fayn97]).  
 
On the other hand, the packet data world is handling intelligence not in a call flow but rather in 
an application-oriented way while addressing variable bandwidth technology and OSI protocol 
stack permutations such as e.g. running SS7 over69 TCP/IP.  
 
Such developments are a clear sign that the layered architectures and the fixed treatment of IN 
functions, databases and services can no longer exist in a heterogeneous distributed network 
under rapid development. Even sculptured object paradigms such as CORBA, TINA, or DCOM 
and powerful IN architectures based on ‘’clustered, multi-protocol SCPs“ (Figure 37) cannot 
handle all aspects of the network evolution as far as they remain rigid. One major aspect of the 
network has been neglected until now: it is temporal and living, i.e. changing.  
 
For example proprietary IPs can grow up to autonomous multiprotocol ‘’virus-like’’ CTI point 
solutions hiding micro data networks in themselves.  
 
A time for change in network design thinking has come. Now, we have the chance to adopt a 
stepwise approach for building the kernel of a new communications cell … Where could we 
start? Perhaps flexible nomadic intelligence may be an option. 
 

                                                 
69    http://www.ttiweb.com/corporate/press/ssip-pr.htm 
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Legend: 
 
PLMN           Public Land Mobile Network     ATM Asynchronous Transfer Mode 
PSTN           Public Switched Telephone Network     STM Synchronous Transfer Mode 
ISDN            Integrated Services Data Network     RADIUS Remote Access Data Interface User Service 
INAP            Intelligent Network Application Protocol     TCP/IP Transport Control Protocol / Internet Protocol 
ISUP            ISDN User Part (Protocol)          MPoA Multiple Point of Access 
SCP             Service Control Pont         HLR Home Location Register 
M-SCP         Mobile SCP      POP3 Post Office Protocol, Version 3 
RSCP           Remote SCP      IMAP4 Internet Message Access Protocol, Version 4 
IP                 Intelligent Peripheral          SMTP Simple Mail Transfer Protocol 
B-IP             Broadband Intelligen Peripheral     HTTP HyperText Transfer Protocol 
CSI              Customer Services Interface     WebCSC       Web (based) Customer Services Control 
MAP            Mobile Application Protocol          CAP CAMEL Application Protocol 
 

Figure 37 A clustered SCP configuration for converged networks 

In the following, we will show how flexible intelligent network elements can be used for 
functionally integrated multimode logic control in advanced nomadic intelligence architectures 
that offer completely new perspectives for communication services in converged networks. 
 

5.2.2 NOMADIC SERVICES AND THEIR LOGIC 

The idea of migrating service functionality comes out of traditional network convergence 
solutions such as the One Number Service (ONS) for fixed and mobile networks. Figure 38 and 
Figure 39 illustrate two possible variants to realize this service architecture. The essential 
difference between them is the location of the Service Resource Function (SRF). We can simply 
ask what would come out to being if we let this function roam between the network elements for 
the reasons of evolution, effective resource utilization, adaptability and QoS guarantee. 
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To assist new services and customers, intelligent networks require permanent upgrades in 
hardware and software components, which are not always optimally exploited at their location 
(Figure 40). Even a distributed architecture, which dedicates certain resources for local usage, is 
not adapting (not yet) to variable load and service usage. 

* IP == Intelligent Peripheral  =/= Internet Protocol
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SMF

SMP
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IP*

SSF
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SSP
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Mobile Service Provisioning
in a Centralized Intelligent Network

 

Figure 38: A centralized architecture for the realization of a mobile IN service 
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Figure 39: A distributed architecture for the realization of a mobile IN service 
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Thus, next to HOW, the question of WHERE to physically implement an IN function has always 
been crucial for network designers to provide for more efficient and effective services. Now, in 
the era of platform independent object-oriented technology this subject obtains a new thread: 
mobility. Therefore, we have two choices:  
• a non-deterministic worst-case-dimensioned service within a rigid network architecture 

requiring software and hardware upgrades, or  
• a deterministic service within a dynamically configurable network architecture, FINE, based 

on autonomous nomadic services taking care for software updates and optimal utilization of 
hardware resources to a certain grade that can be proved by algorithms.  

 
SC F  + SD F :         N um ber T ranslation, V P N , ...

SC P  + SD P  +      V oice R ecognition, U M S, ...

SC P  + SD P  + SR F  +   :   L ocal O perators, ...

SC P  + SD P  + SR F  + SSF  +   Internet T elephony ...  

SR F    :  

SSF

G W F   : 

Figure 40: Overall trend – increasing complexity of node related IN functionality 

In some cases, it seems reasonable to temporarily enact and allocate/move different services 
and their resource areas depending on the eventual customer demands, instead of permanently 
increasing the functionality and the capacity of the network elements (Figure 41). 
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This implies an event-driven, i.e. deterministic, redistribution of roles among the network 
elements (in particular, client, server and agent) to satisfy network performance and user 
demands on service configuration, availability and QoS (Figure 43). 
 
In the following sections, we provide a few definitions which are going to be used in this work. 
 

5.2.3 WLI DEFINITIONS  

The following definitions provide the base for SmartNet [Sim98], a new generation IN 
architecture we used to define the WLI formalism, Figure 42: 
 

WLI Definition 1: A Flexible Intelligent Network Element (FINE) is a configurable multi-
mode active network element. It can be deployed in a single, dual or triple mode of 
operation as independent (I), dependent (D) and autonomous (A) unit w. r. t. 
communicating services, i.e. as server, client or agent (proxy) accordingly. All three 
modes can be active at the same time at different layers of functional abstraction as far as 
this does not conflict with basic system design principles. A FINE may be a physical entity 
(active node), a piece of software (service component, active packet) or a virtual sub-
network by itself.   

 
There is no distinction between network internal and peripheral elements. Even network 
terminals can be regarded as FINEs operating in some of the three modes.  
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Figure 42: An example of a FINE configuration 

WLI Definition 2:  The FINE Architecture (FINEA) is a versatile network intelligence 
construction of FINEs and links between them. Each link may be unidirectional or bi-
directional and carry one or more channels. The FINEA has a dynamic, temporal 
character; all elements and links between them are temporal functions. FINEs and links 
can be created, re-configured or removed in every new state of the network. FINEs can 
temporarily adopt certain roles in the network. It is required that 

• agents be assigned to negotiate about the distribution of roles among FINEs at a 
certain level of abstraction (active network), and 

• data, functions (service logic) and roles (modes) migrate upon request from one 
FINE node to another, thus allowing for dynamic network configuration. 
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WLI Definition 3: Nomadic FSLs (flexible service logic) are the smallest autonomous 
service elements (SDUs) known as features (functions) including data (PDUs), also as 
parameters (variables) and database contents70, and being transferable from one (fixed or 
mobile) node of the network to another to provide intelligence on demand.  

 
Thus, the FINE model leads to a self-configurable, adaptable, and domain-aware intelligence 
architecture where network properties such as database and feature mobility are parts of the 
service itself.  Although the FINE approach has an IN telephony origin, it can be used to virtually 
model any type of network. 
 
This simple model offers a unified and structured evolutionary approach to intelligent network 
design and configuration which addresses the two basic architectures, centralized and 
distributed IN and allows for a flexible, but deterministic (event-driven) spread of intelligence 
across the network matching user demands wherever and whenever required.   
 
This approach allows for effective treatment of problems such as feature interaction (multi-
protocol capability), service mobility, database updates, etc. The FINE model can be easily 
implemented using approaches such as JTAPI (Java Telephone API, [JTAPI]) for applications 
and the Agent Transfer Protocol [ATP] for transferring service logic as mobile agents between 
networked computers.  
 
The FINE architecture presents a new service view at IN (in ODP terms) when compared to the 
classical vertical and horizontal layering of intelligence in networks. It can be centralized, 
distributed or both at the same time depending on the network size, architecture, service 
configuration, performance, scheduling and QoS requirements, as well as on the subscriber and 
service migration flow.  
 
This paradigm can be used as a unified, vivid object-oriented IN model where the roles of the 
network elements (SSP, SCP, SMP, SN, IP, servers, routers, CPE, etc.) are temporary and on 
demand. Within the FINE paradigm of a dynamically configurable intelligent network, services 
and their logic are gaining a new value by becoming autonomous and truly mobile entities 
throughout the nodes of the network reaching even the terminals to turn them temporarily into 
agents, clients or servers whenever and whenever required.  
 
Thus, service logic can be transferred, installed and mounted on demand among the FINE 
Controllers and the terminal equipment to provide optimal resource utilization and QoS. This is in 
fact one of the major objectives of active networking.  
 

5.2.4 INTRODUCING THE WANDERING LOGIC INTELLIGENCE (WLI) 

Recent research on active networks approaches the problem of effective service provisioning 
not by moving services along network nodes, but rather by using the means of (mainly Java 
driven) object-oriented encapsulated software technology up to the deepest layers and elements 
of network protocols.  
                                                 
70 Encoding, security and data-split are considered to be part of an FSL’s contents scheme. 
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No matter of whether we talk about a NetScript language [YeSi96] to program functions for 
sophisticated packet stream processing in network nodes, evolving to form capsules or 
datagrams carrying code  [TeWe96] by reference, or “smart packets” [SmartP99], switchlets or 
“active packets” [Alex98a], CANEs or “Composable Active Network Elements” [Zegura96], -- in 
all these works the search for data and process customization beyond the limits of performance, 
up to the application, up to the user needs is so evident, as it was with the definition of different 
QoS layers  matching the OSI-centric communications model in the mid 90ies. The belief creates 
the reality. This holds until the next change of the paradigm. Yet, we still miss the quantum jump, 
the profound networking uncertainty equation.   
 
For the time being, there are two approaches to improve an application’s performance: a service 
oriented and a network oriented, both considered as objects, both strictly separated in hardware 
and software. Programming is mainly a soft method that leaves certain options and degrees of 
freedom to adjust a model’s behavior towards a desired result. If a high-level abstraction 
program performs well, it is then translated into a “lower” language and eventually split into 
modules and instructions that fit the hardware and thus better perform. Finally, if this works well, 
the entire program is being molded into silicon to match the “click- to-switch” or “be there” 
requirement and perform for the best. Further improvements are only due to the physics.  
Unfortunately, there is no way back … (yet)…to check if the things could work the other way up.   
 
If you have a new idea, you need a new model that most probably needs a new language to 
express its axioms, predicates etc. logic constructs.  The trouble with modern computer science, 
however, is that it still lacks the freedom of the Greek philosophy era. Every problem is 
digitalized and reduced to a set of objects and functions (both corpuscles) that express the same 
formalism in the broad sense. Be in hardware or software, it is the same logic and the same 
programming language, no matter whether we unfold services or inject pro-active capsules into 
network nodes. What we miss is the analogous wave in the digital world, the sparking process 
that describes the quantum nature of evolving multiple realities, some kind of a free, Wandering 
Logic Intelligence.    
 
5.2.4.1 The WLI Model 
The WLI model represents an instantiation of the FINE architecture mapped to the description of 
an active network with adding the details of mobile components, [Sim99e].  
 

WLI Definition 4:  A Wandering Network is a FINE architecture71 defined by the following 
characteristics:  

1. A network element can exchange its functional modules72 and thus perform 
different tasks in different deployment modes / roles. Each mode is characterized 
by an operational state. The network element can perform multiple roles 
simultaneously. There are three generic deployment modes:    

• Independent (Server), 
• Dependent (Client), 
• Autonomous (Agent). 

                                                 
71   Definitions 4-6 in the previous section. 
72 The functional modules can be aggregated either in software or in hardware, or both in software and hardware. 
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2. Each element can acquire a certain role or a functional task in the network with 
reference to a particular sort of transmission or network constellation. The 
transmission sort defines a distinct form of executing the information transfer in a 
network. It is related to a certain subset of network elements which participate a 
transmission session, e.g. a conference or a multicast group, following a 
structured functional scheme (the constellation), called morpheme. As soon as a 
new element joins or leaves the morpheme, a new transmission session is 
started. The roles of the network elements can be re-distributed or re-defined 
within the new session. The transmission sorts can build hierarchical relationships 
among each other.  

3. The network constellation, the morpheme, represents a configuration of network 
elements, which are related in a certain way to each other. It reflects the active 
network topology w. r. t. a particular transmission sort for the correspondingly 
active transfer session. A morpheme is uniquely identified through a variable 
parameter or a function, called state of the network. Since transmission sorts can 
be hierarchically constructed, network constellations and their states can be 
hierarchical as well.  

4. A network element can participate in one or more morphemes and thus perform 
multiple roles or deployment modes simultaneously. Each one of these roles of 
the network element is described through a state vector, called index of the 
network element within the particular constellation (morpheme).  The constituents 
of a morpheme can smoothly exchange their roles during a transfer session. The 
storage and the transfer of state indices accompany this role exchange. The state 
index of a morpheme, the state, is composed of the state indices of its 
constituents.  

5. The network element, called netbot, is an aggregate of roles and functions, which 
are described with its state vector. A netbot’s role or a deployment mode can be 
enhanced or modified with new functions as time passes. These changes are 
registered as new information, called facts, in the state vector of the network 
element. Netbots are capable to exchange facts.    

6. The organization of knowledge quanta inside a netbot or within a shuttle flow is 
called logic in WLI. The new type of network is called wandering, since shuttles 
enable the transmission of knowledge quanta, and hence the network evolution. 
The intelligence73 of a wandering network at a certain point of time is an 
aggregation of its logics and their interplay.   

 
The Wandering Network approach differs from the well-known research frameworks of Open 
Signaling and Active or Programmable Networks essentially through two characteristics:  

(i) adaptable function migration, and  
(ii) pulsating metamorphosis (to be discussed later).  

 
In this way network, functions can change their hosts (netbots), wander and settle down in other 
hosts, thus creating a valuable statistics about the frequency of usage of wandering functions in 
the network74. The results obtained after a careful evaluation of this data can be used for the 
design of new network architectures and topologies.  

                                                 
73 We provide this explicit definition of the term intelligence in context of a Wandering Network to avoid further 

speculations and interpretations about its meaning as this was noted by Bateson, [Bate72]. 
74 e.g. in connection with the maintenance of a Virtual Home Environment for end users. 
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Figure 43 illustrates the migration principle of the Wandering Logic75. It shows two network 
elements known as Service Nodes in Intelligent Networking, SN1 and SN2. 

Wandering Logic: The Migration of Functions 
Between Two Interconnected Service Nodes 

SNC

RP
RCI

SN1 SN1’

CU

SM SCI

SN2’SN2

CU

SM

SDF

SCF

RP

SNC

 

Figure 43: The Function Migration Principle of the Wandering Logic 

The first network element contains the functionalities of a Service Node Controller (SNC) and a 
Resource Platform (RP), whereas the second element contains a Switching Matrix (SM) and a 
conferencing unit (CU). Both network elements are interconnected. At some point of time, the 
Service Control Function (SCF) and the Service Data Function (SDF) can wander from SN1 to 
SN2.  
 
This can be performed76 upon request, through signaling or as a result of some kind of an 
automatic mechanism in response of an application event of some change of the operation 
environment to adapt to some transmission/user criteria such as congestion, cost, QoS, etc. In 
this way, a network element can require additional functional modules for it is depending on the 
service, the user location and the actual environment. This theoretical framework does not claim 
to be final; rather, it can be regarded as a stepwise, upgrading approach of creating and using 
dedicated domain libraries to treat a particular subject of interest.  
 

                                                 
75 The term ”logic“ has an IN heritage. It usually stands for the so-called Service Logic (SL) , which denotes the 

components of a network service. An SCF can control several different service logics. Through the migration and 
the new creation of the SCF in another network node, the corresponding SLs wander throughout the network as 
well. The classical IN model does not consider the interoperability of the IN functions with their environment, i.e. 
with the host and its resources. This is possible now with the new WLI model. Nevertheless, we have limited 
ourselves first to the plain migration and execution of IN functions in different network nodes, which can be 
compared to the operation of mobile agents or AN capsules in a kind of  “sand box“ on the new host.   

76 either via software transport (e.g. a java mobile agent), or activation/deactivation of resident software on the nodes. 
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In WLI, active nodes and active packets are called netbots and shuttles 
correspondingly. The main distinction from other AN approaches elsewhere is 
that the programmable active nodes (netbots) and their components are 
considered mobile77 and reconfigurable in terms of both software and hardware. 
Netbots may move in some direction with a constant velocity.  
 
Furthermore, shuttles differ from capsules in the property that they can carry 
genetic code (in addition to the “passive” executable code) which is capable to 
invoke structural changes in the network (e.g. to create overlays or generate 
computing elements).  
 
The WLI approach represents a next step of network virtualization and evolution 
based on the Wandering Network Principles (Section 5.3), an autonomous 
hyperactive network.  

 
Next, we distinguish between decks (a netbot’s resource areas) and docking ports (the 
execution environments for shuttles). The last nautical definition is reserved for the NodeOS as a 
Cockpit. A sequence of shuttles moving in one direction along a channel is called flow. A flow 
may contain multiple control schemes, i.e. protocols defining network services. A set of netbots 
sharing the same flow is called a fleet of that flow. Following the FINEA approach, the elements 
of the WLI architecture have a temporal character, i.e. they can be created, configured and 
removed (on demand) upon actions. The WLI model comprises a mobile active network with 
both nodes (netbots) and packets (shuttles) being active (i.e. executable) and reconfigurable. 
Thus, a netbot processing shuttles in a docking port can change its state and re-configure its 
decks and links for further actions. It can also change the state of the shuttle (provided, an 
adequate permission is given78).  
 
On the other hand, a shuttle approaching a netbot can re-configure itself becoming a morphing 
packet to provide the desired interface at the docking port and match a netbot’s requirements.  
This operation can be based on the destination address and on the class of the netbot included 
in this address. The assumption in this case is that the sender netbot was not taking care about 
arranging this for the shuttle (e.g. in a broadcast session).  
 
According to the classification in the previous section, the Wandering Logic Intelligence (WLI) 
represents a hybrid approach to active networking. It is an open, hierarchical and dynamically 
structured formal model which allows to address specific problems in communications 
architectures, services and applications with a great degree of differentiation and flexibility that 
can be tracked down to the gate level. In the following, we discuss in detail the WLI framework.  
 

                                                 
77 We introduced this feature mainly for the reason of satisfying service requirements in wireless networks such as 

resource management for QoS. This interferes of course with the definition of today’s ”mobile networks” which 
consider that only terminals are mobile, but not routers or base transceiver stations.   

78 Note the generalized properties as compared to the capsule approach, . In terms of WLI, IP packets and 
capsules are passive carriers of data and code. A truly active packet, should be somewhat autonomous. Therefore, 
shuttles are more likely to be classified as mobile micro-agents. 

[Tenn97]
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5.2.4.2 Fundamentals – The Netbot-Shuttle Dualism 
Netbots and shuttles are the main elements of the WLI model. On the one hand, they include 
and refer the basic components of common [passive79] packet switched networks, packets and 
nodes correspondingly. On the other hand they are intended to reflect the fundamental dualistic 
substance of net-working per se as both a complementary and a redundant spatial-temporal 
entity-relationship diagram of programmed ongoing events in terms of information processing 
and distribution schemes.   

Netbot Shuttle

Netbot Properties Shuttle Requirements|=
t’

Shuttle PropertiesNetbot Requirements =|
t

1.The properties of the shuttle must always ( � ) satisfy ( =| ) 
the requirements of the netbot at the moment of arrival ( t )

2. The properties of the netbot must always ( � ) satisfy ( |= ) 
the requirements of the shuttle at the moment of departure ( t’ )

 

Figure 44: The WLI’s basic assumptions 

 
The philosophy behind our approach is that both netbots and shuttles are representing the very 
same THING, the NET. Ultimately, we can “pack” a netbot into a shuttle and “unpack” a shuttle into 
a netbot. Figure 44 illustrates the WLI’s basic temporal formulas. Under properties and 
requirements, we understand an element’s characteristics as a function of time.  

We regard shuttles as portions, bits or quanta of information. The same holds for the netbots. 
They simply have another representation and function in the network. This is essential for the 
WLI approach.  
                                                 
79 Again, using the term “passive” in the context of networking is somewhat controversial; this is the reason why we 

use it in brackets. Transport layer protocols (TCP, XTP) provide already flow control mechanisms. Higher layer 
protocols such as RTP, RTCP and RSVP even address resource reservation and QoS maintenance issues which 
is, of course, some kind of activity.  
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We selected this view to describe the system and reason about it with passing time. This is the 
domain of temporal logic. As we deal with communications, we consider not exactly the method 
of delivering the information between two spatially remote points, but rather the goal and the 
result in terms of properties satisfying requirements. For instance, in transmitting video, our goal 
is to deliver within the timing constraints possibly the same quality (and thus, induce the same 
sensual perception) at the receiver as it was at the sender.  
 
It is not our concern how to fulfill this requirement: by applying transport control mechanisms, 
integrating error-resilient algorithms in the decoder, implementation issues (DSP, ASIC or 
FPGA), or simply by triggering a “play” function on a previously stored video file at the receiver80. 
The method is defined81 as property of the system.  
 
In this way, we can check different options previously to encoding, including the ones with 
configurable hardware and functional split between software and hardware, if we consider the 
required details.  In TLA, we can even include performance measurements as properties of the 
system ([Sim94b], [SiMi94]). 
 
In the following, we describe the main properties of netbots and shuttles in terms of their 
composite elements and classes of functions. As we will see later in this work, these properties 
can be refined, if required, in a particular problem treatment. 
 
 
5.2.4.2.1 The Netbot 
A netbot’s functions or services are usually allocated in and performed by the Cockpit (NodeOS). 
However, depending on the system hypothesis to be verified, they may be also distributed 
throughout the decks (resources). 
 
 
5.2.4.2.2 Common Primitives 
The services built into each netbot might include several categories of operations/actions: 

• primitives that allow the (active) packet itself to be manipulated (e.g., by changing its 
header, payload, and/or length): type processShuttle; 

• primitives that provide access to the node s environment (e.g., node address, time of 
day, and link status): type accessNodeEnv; and  

• primitives for controlling packet flow (e.g., forwarding, copying, and discarding): type 
controlFlow.  

 
Additional primitives might provide access to node storage and scheduling (type 
accessNodeStorage and type accessNodeScheduling), for example, to facilitate 
rendezvous operations that combine processing across multiple packets. 

                                                 
80 This will, of course, not work with live video conferencing; the example is only to illustrate the goal. 
81 This implies some hypothesizing and an opportunistic style in system design. Then we use the means of formal 

logic to verify the different alternatives with the problem constraints. 
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5.2.4.2.3 Resources and Their Allocation  
Beyond encodings and primitives, there must be a common model of node resources and the 
means by which policies governing their allocation are communicated. The resources to be 
modeled include physical resources (type PhysResources), such as transmission bandwidth, 
processing capacity, and storage, as well as logical resources (type Logical Resources), 
such as routing tables and the node s management information base. Safe resource allocation is 
an area that requires considerable attention.  
 
Active nodes will be embedded within the shared network infrastructure, so their designs must 
address a range of sharing issues that are often brushed aside in the design of programmable 
systems destined for less public environments. 
 
5.2.4.2.4 The Shuttle 
The following list provides some important characteristics of the shuttle concept.  
 

• A shuttle can be turned into a component, or an even netbot, or a fleet upon processing 
by the NodeOS and interactions with other shuttles and netbot services.  

• The shuttle is of temporary nature. Its life span comprises creation, assembling, transfer 
(incl. re-routing), activation and execution. 

• A shuttle represents a morphing packet, i.e. its contents can be filtered out, re-configured 
or adapted to a netbot’s actual state previously to processing. 

• The tail is optional. It can be used for policy differentiation, e.g. in sorting shuttles. 
• After entering the node, shuttles transfer the execution control to the cockpit, unless 

there is some code with a particular mission82 that has to be granted by the cockpit 
before executing itself.   

 
The main advantage of the WLI approach is that it unifies the macro-world of active networking 
and the micro-world of configurable computing in a generic model, which reflects the intrinsic 
nature of intelligent communications. It facilitates the application design and allows sophisticated 
network growth, adaptation and rapid introduction of new services while supporting both 
engineering approaches by making only minor changes on the available infrastructure.   
 
In this way, a WLI architecture represents a vivid, scaleable object-oriented model for intelligent 
service provisioning and control when compared to the traditional horizontal and vertical OSI-like 
layered network architectures. 
 
5.2.4.3 The Evolution of the ANTS Reference Model   
 
In the following, we review the ANTS reference model for a programmable network architecture 
and discuss its expansion within WLI framework. Table 4 summarizes the basic characteristics 
of the ANTS architecture, [WGT98], along with the available options for extension (in italic).   
                                                 
82 The only type of “viruses” which are allowed in WLI are the pilot shuttles which have to authenticate themselves as 

being administrator agents.  Of course, future model enhancement may consider multiple types of pilots, if found for 
appropriate.   
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Active Nodes Active Packets 
• Have structure that could be re-

configured with time. 
• May accommodate some 

residential program code for 
processing packets. Could support 
multiple code schemes83 to define 
classes of services. 

• Do processing on packets. Could 
be processed by packets. Could do 
some processing on themselves. 

• Could be mobile. 

• Have structure that could be re-
configured with time. 

• May carry program code, but do not 
execute it.  Could support multiple 
code schemes. Could carry some 
code for AN configuration. 

• Are processed by nodes. Could do 
some processing on nodes84. Could 
do some processing on 
themselves85. 

• Are mobile. 
 

Table 4: Possible enhancements to the concept of active networks. 
 
WLI generalizes capsules in shuttles as relatively autonomous components including both 
programs and data possibly encoded in some special language with corresponding references to 
nodes and other shuttles within the same or a different flow (protocol).  The “special language” is 
also a generalization, allowing us to address in a uniform way even hypermedia content 
information such as MPEG-4 along with the corresponding encoding/decoding routines or 
references to them in some active network nodes or protocols (Figure 45, [Sim00]). Furthermore, 
we consider security as a part of the flow encoding mechanism. Using code derivatives for 
identifying shuttles to guarantee per-protocol protection (as in ANTS’ capsules) is simply one 
method using the standard security mechanisms of Java programming (sandboxing and Java 
bytecode verification, [Weth99a]).  
 
This approach is probably sufficient in the case of “static” nodes deploying a particular protocol 
and generating the corresponding flow of capsules. However, in a dynamically reconfigurable 
netbot architecture, it may happen that two or more different sources, being (virtually!) active 
nodes, participate (i.e. generate capsules of) the same protocol that has been possibly initiated 
by one of them; the latter node even may does not exist anymore (in terms of protocol 
deployment). Furthermore, the shuttle sequence of a protocol may be split upon departure from 
a node and before reaching the “next hop” for some efficiency reason such as building a new 
virtual active node. All this requires a better authentication procedure of the generated code.  
 
What is appealing in the WLI model is that we allow (and if used, we require!) a per-shuttle code 
protection when interfering with the protocol states is also allowed (opposite to ANTS), e.g. for 
pilots. This “individual” encoding is embedded within the code of selected shuttles during their 
assembly in the active nodes. The distribution of the decoding keys for pilots follows a special 
scheme, which is not subject of the present work.  
 

                                                 
83 In fact, PAN, the successor of ANTS, already supports this at the byte code level, .  
84 provided, that they are allowed to. 
85 previously to entering the nodes. 

[Nygr99]
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Figure 45: A WLI based adaptive media transcoder  

 
Next, we regard the case of “well-known” forwarding routines or bootstrapping network services 
(such as the ANTS code distribution scheme) available at all active nodes as trivial and therefore 
do not include them in the general WLI framework. Instead, we focus on the application specific 
aspects of the wandering logic where programming code neither resides on, nor is transferred to 
a “node-by-node” distribution scheme previously to capsule/shuttle processing at the active 
nodes (which is the ANTS case). Being analogous to ANTS capsules, shuttles in WLI are 
transferred between active nodes along generic link-layer channels. To support IP-only routing in 
a heterogeneous network of active and non-active nodes, shuttles can be embedded within 
ANTS capsules, e.g. using the ACTIVE IP Option field in standard IP packets (Figure 46).  
 
The overall structure of a WLI shuttle with the above implementation as compared to the ones of 
an RTP packet and a Mobile IP packet is illustrated on Figure 47. Encapsulating information is 
one of the main principles in network engineering. We are looking to identify some basic 
structural patterns in protocols that can be used for the formal specification of a follow-up model. 
 
A special feature of WLI is that because of the dynamically reconfigurable nature of the active 
nodes discussed in the next section, not only an update of the type-dependent header of a 
shuttle during network traversal is possible, but also all the information of the usually “static” 
common header (source and the destination addresses, resource limits to be enforced by the 
nodes, etc.) is changeable, [WGT98]!    
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Figure 47: Embeddings of and within the IP header field in comparison. 
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A code group in ANTS is a collection of related capsule types whose forwarding routines are 
transferred as a unit by the code distribution system (Figure 48). WLI regards code distribution 
as an external autonomous process that can be generated, e.g. as a WAVE procedure 
([DSB96], [Sap96], [Sap99]), or observed in the network. Its definition can be included a priori or 
a posteriori to the WLI model. We are not going to discuss such details in this work. 
 
In WLI, a flow represents an “active stream” of shuttles, being the generalized model of 
capsules, which integrate different services in a single module (Figure 48). The data/code tuples 
with the different number of red dots represent different types of protocols/services in terms of 
the ANTS model. Some of these services are designated to configure the receiver netbot/node 
for processing the next incoming tuples and shuttles in the sequence. This flow is produced from 
data/code tuples being multiplexed and de-multiplexed into shuttles at each end of the tunnel 
correspondingly. The shuttle delivery and the resource requirements should be verified with the 
resource availability and priority policies (incl. conflict management at the receiver side).   
 
A shuttle flow can comprise [passive] packets, capsules and shuttles; in terms of WLI, they all 
are different classes of shuttles: P, C, and S, respectively. To recapitulate: a packet carries only 
data, a capsule --- (pointers to) programs and data, and a shuttle – also programs and data, 
whereas we distinguish two kinds of them: for shuttle processing and for netbot re-configuration. 
 
 

STREAMcode codedata data

RCM

AN

CAPSULEcode data CAPSULEcode data

FLOW

WLI required ship configuration to process the next shuttles

shuttle

 

Figure 48: The WLI flow model as integration of the RCM and AN 
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5.2.4.4 Active Nodes and Netbots 
The task of providing sufficient network protection simultaneously to the most desired 
component flexibility/adaptability along with a consistent view of the network itself and its 
resource allocation in a dynamically changeable environment is not trivial at all. Yet, the key 
difficulty in designing programmable networks is comprised in how to allow nodes to execute 
user-defined programs while preventing unwanted interactions.   
 
The ANTS approach considers the execution of protocols within a restricted environment that 
limits their access to shared resources. Active nodes realize this by exporting an API for use by 
application-defined processing routines, which combine these primitives using the constructs of 
a general-purpose programming language (e.g. Java) rather than a more restricted model, such 
as layering.  They also supply the resources shared between protocols and enforce constraints 
on how these resources may be used during protocol execution. Here we review the ANTS node 
design and its enhancements in WLI. 
 

5.2.5 EXPLORING THE WLI ARCHITECTURE 

The general architecture of an active node was described in chapter 3 (Active Networks). Then, 
an overview of the WLI’s netbot architecture was given earlier in this section (The WLI Model). 
Now, we are going to describe the first level details of an active node/netbot from our viewpoint 
to a reconfigurable active network. 
 
As we formulated earlier in this chapter, the basic WLI principle (Figure 44) states that the netbot 
architecture reflects the shuttle structure at some previous step86. Figure 49 illustrates the re-
configuration of a netbot upon arrival and processing of a dedicated shuttle. This action implies a 
new arrangement87 of resources within the netbot, if there are no conflicts with running 
processes and reservations. Determining which resources and parameters have to be changed 
to meet the shuttle/agent requirement is a different task from the one of distributing this 
knowledge throughout the network, say by means of  the Resource ReSerVation Protocol 
(RSVP,   IETF RFC 2205-9), to guarantee the resource availability when the transmission takes 
place. It is the role of the Cockpit (NodeOS) to negotiate with the shuttle configuration program 
and to find out the right solution, or eventually to discard the shuttle requirement. As we deal 
with temporal logic, we are not interested in the implementation details, but on the goal or the 
expected result. 
 
Figure 50 represents a simple temporal specification of a netlike schematic as referred in 
[Sim88], [Sim89] and [Sim90]. The layout of the graphic is unimportant for the moment. What are 
we interested in, is the essence of the underlying mesh as a concept in time (t).  We have an 
interconnect of four nodes (c1-c4) and four links (l1-l4) as initial state of the system at the moment 
T.  
 

                                                 
86 For the moment, we exclude recursion in the WLI model. 
87 Depending on the implementation policy, the re-configuration can be limited, localized. or negotiated. 
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Figure 49: Changing a netbot’s arrangement after arrival of a configuration shuttle. 
 
 
The specification shown on the right-hand side of the image is composed of two parts: one for 
the nodes with the links given as parameters, and one for the links with the nodes given of 
parameters. The two specifications are not complementary, but ambiguous, since they describe 
the same architecture from different viewpoints. This is what we call perceptual dualism. The 
information is provided in such a form, because of the need to be verified (!) before being stored 
or acting upon it.  
 
This kind of object specification/recognition88 and verification has been thoroughly investigated in 
cognitive studies on 3D vision, e.g. [Hoff98]).  
 
The change of the architecture on Figure 50 at the moment T’ (e.g. in result of a shuttle arrival 
and processing as the one shown on Figure 49), i.e. adding the link l5 between nodes c3 and c4,  
can be captured in a second dual node-link specification on the left-hand side describing only 
that change. This is all we need at the moment T’ to recognize the new architecture, provided 
that we have stored and know the old one at the moment T.  
 

                                                 
88 Vision is highly vivid, structured, rich on information, and yet easy to control in human beings ( ). This is 

most probably the reason why the study of vision have been investigated with such a great interest for many years 
in cognitive science. Therefore, we use the imaging analogy in perception to explain our approach to describing 
functional network awareness in terms of the WLI concepts. 

[Hoff98]
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Figure 50: A simple temporal network specification 

 
This scheme of providing -as for differential changes in time has been used for years to 
describe motion images in MPEG format. The benefit of the WLI model is that e.g. visual content 
information, such as image encoding and decoding is only one particular service for conveying 
information by means of packets/capsules. What we can do more with capsules/shuttles in a 
configurable active network is that we not only record a “still image” of the desired change/re-
configuration in an active node/netbot, but also an entire sequence or even causal branches of 
sequences of changes to be invoked in that node/netbot. This is what we regard as a 
programmable network.   
 
Finally, the WLI model allows the generation of a “virtual” active node/netbot, a logical network 
element that emerges by reserving resources from neighboring network elements as shown on 
Figure 51. This may be the result of a node/netbot re-configuration upon arrival and processing 
of shuttles or of other out-of-band signaling mechanisms (protocols) between the neighboring 
structures. The virtual node/netbot could be also a temporal characteristic of the active network, 
which is desirable upon request. 
 
In the next chapter, we will discuss the application of the WLI technique in the area of wireless 
networking in more detail.  
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Figure 51: Configuring a virtual active node/netbot upon shuttle request. 

 
For the time being, it is important to note that in the case of in-band signaling for re-configuring 
active nodes/netbots via active packets/shuttles, it is indifferent (from viewpoint of temporal logic 
and WLI) whether the netbot/node activates a link to an existing resource on its own corpus, or it 
borrows that resource from a neighboring node/netbot and establishes a link to it. In terms of 
WLI, the netbot Σ on Figure 51 appears to be turned into the netbot Σ’ at the moment T’ upon 
arrival and processing of the shuttle σ.  
 
Herewith, the netbot Σ’ is a virtual one generated from the netbot Σ (at the moment T) by 
“removing” two of its components (c5 and c6) and two of its links (l3 and l4) and by borrowing 
another component (c7) from the netbot χ and establishing two links to it from the components c1 
and c2; the previously removed link identifiers (l3 and l4) are reused.   
 
There are two mechanisms to produce a new module in WLI: a) by inclusion from a neighboring 
netbot, and b) by installation of software in an existing resource of the netbot or through 
switching hardware to another configuration of the netbot. In WLI/TLA we formulate this result as 
producing the virtual netbot Σ’ from the netbot Σ upon processing of the shuttle σ. This is what is 
necessary to be specified in order to be able to prove whether certain properties of the system 
satisfy some desired requirements. 
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5.3 THE WANDERING NETWORK PRINCIPLES 

The scientific contribution of this work is to propose and demonstrate a simple and flexible 
mechanism for network evolution based on the emergence, the change and the movement of 
functional units within a given physical infrastructure, which recognizes its own boundaries. Such 
a network is known as an autopoietic system. The following definition is closely related to the 
one given by Maturana and Varela in [MaVa80] and revised in [Mat00]. 
 

WLI Definition 5: A Wandering Network (WN) is a dynamic composite entity realized as a 
unity of a closed set of productions of mobile nodes, called netbots, such that through 
their interactions in composition and decomposition (programming, adaptation, 
configuration, reflection, etc.) at all functional levels they define the network as self-
creating, i.e. as an autopoietic system by: 

• recursive constitution of the same system of productions that produced the 
netbots and their communication patterns, and 

• specification of the network extension in terms of its commuting components 
defined and its boundaries determined by the end-users as a dynamic entity apart 
from the surrounding environment, invoking the desired changes in the 
information infrastructure. 

 
The WLI model is based on four general principles, [Sim02a]: 
 

1. Dualistic Congruence 
2. Self-Reference  
3. Multidimensional Feedback  
4. Pulsating Metamorphosis 

 
In the following four sections, we introduce these principles as fundamental frame of the 
Wandering Network. The Dualistic Congruence describes the kernel property of a WLI 
architecture. The next two principles are broadly used in modern software/hardware system 
design and network engineering. They are adopted and generalized for the purpose of this work 
from published research in the areas of active networking, configurable computing and adaptive 
systems. The fourth principle is closely related to advances in natural sciences and in particular 
to concepts and ideas in neurobiology and biophysics.  
 

5.3.1 THE DUALISTIC CONGRUENCE PRINCIPLE (DCP) 

This principle was already addressed earlier in this chapter in the WLI definition. The Wandering 
Logic model is based on: a) the dual nature of the ploions, the active [mobile] network 
component abstractions in their two manifestations, netbot (active mobile nodes) and shuttles 
(active gene-coded packets), and b) on their congruence.  
 
The Dualistic Congruence Principle states that a netbot’s architecture reflects the shuttle’s 
structure at some previous step and vice versa. Figure 44 illustrates these mutual implications 
of the netbot-shuttle behaviors expressed in temporal logic. 
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Thus, netbots are both reconfigurable computing machines and active mobile nodes in terms of 
hardware and software. Shuttles transport software which can activate / replace netbots and 
their components/aggregates. A netbot processing shuttles can change its state and re-
configure its resources and connections a posteriori for further actions. In addition, it can adapt 
(itself) a priori to communications in such a way that it best-match the structure of the active 
packets (shuttles) at the time of delivery.  Finally, a netbot can also change the state of a shuttle. 
 
Shuttles, in turn, can be e.g. interpreted by a reconfigurable computing element inside a netbot 
to build and/or invoke new functions. A shuttle approaching a netbot can re-configure itself 
becoming a morphing packet to provide the desired interface and match a netbot’s 
requirements. This operation can be e.g. based on the destination address and on the class of 
the netbot included in this address.  
 

5.3.2 THE SELF-REFERENCE PRINCIPLE (SRP) 

WLI Definition 6: The following characteristics identify a wandering network as self-
referring:  

 
1. Mobile nodes, netbots, are living entities: they can be born, live and die. Netbots 

can also organize themselves into clusters based on one or more feedback 
mechanisms. Communication between the netbots is realized through 
exchanging programs and data by means of shuttles, active packets, which may 
also contain encoded structural information about the netbots or parts of the 
network itself. The structural information can be used to maintain the operation of 
the network as a whole, as well as to invoke desired or necessary changes in the 
infrastructure through service utilization and components’ feedback. 

     
2. Each netbot knows best its own architecture and function, as well as how and 

when to display it to the external world. Netbots are required to be fair and 
cooperative w. r .t. the information they display to the external world; otherwise 
they is excluded from the network community.  

 
3. Each netbot can acquire or learn some other function and extend its architecture 

by some additional functional components in software or hardware, as well as to 
become a (temporary) aggregation (a cluster) of other nodes with a joint 
architecture and functionality. 

 
The Self-Reference Principle addresses the autopoiesis and autonomy properties of the AN 
elements. 
 

5.3.3 THE MULTIDIMENSIONAL FEEDBACK PRINCIPLE (MFP) 

The feedback principle in network engineering is well known in protocol design for applications 
such as traffic control. However, not all degrees of freedom have been exploited until now. 
Active networking introduces a new paradigm for this mechanism, which can be spread out to 
any service, device and application in a communicating environment.  
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Active networking introduces a new paradigm for this regulation mechanism, which can be 
spread out to any service, device and application in a communicating environment. The reason 
is that the network offers much better opportunities to address traffic issues on a per-service 
basis than the terminal devices alone.  
 
For instance, an application for facility management such as gas pipeline monitoring allows each 
user to see composite images constructed by fusing information obtained from a large number of 
sensors via autonomous mobile “web” cameras over a wireless network. Each sensor in the 
network can be observed by a number of users, who will have different requirements concerning 
the encoding and presentation of the information they access.  What should be provided in this 
case first is a set of core-differentiated services on a per-user and per-flow base for feedback-
enabled monitoring and traffic adjustment for QoS provisioning in real-time, Figure 52.  
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Figure 52: The feedback principle: using an active network fusion server for traffic control 

This actually corresponds to a dynamic change (re-configuration), - in fact, a programmability 
and adaptability (as means) to ensure dependability89 (the reason) -, of the network topology and 
resources in multiple dimensions.  
 
An active network provides a couple of means for such a solution. Here is where the multiple 
dimensions come from.  
 

                                                 
89 This is a generalized concept and thus differs from definitions given in the area of fault tollerance. 
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For instance, the AN Fusion Server on Figure 52 can be enabled anywhere within the network. 
Since, each active node controls its own resources, this implies a manipulation of the traffic on a 
per-(active)-node and a per-configuration basis. Then, an active packet may contain some 
network, user or application related data starting from look-up tables and personal 
configurations, and ending with programs such as encoders, compilers and even compiler-
compilers to be mounted on the destination node: the per-(active)-packet and per-method 
dimensions.  
 
Furthermore, merging data within the network reduces the bandwidth requirements of the users’ 
who are located at its (low-bandwidth) periphery. Also, user-specific multicast services within the 
network reduce the load on the sensors and the network backbone. Therefore, a traffic 
adaptation on a per-multicast branch base is also possible.   
 
In addition, the routers and switches of an active network perform customized computations on 
the messages flowing through them: the per-message dimension. For example, the operator of 
an active network could send a trace program to each router and arrange for the program to be 
executed under certain conditions when their packets are processed.  
 
Besides, active routers could also interoperate with legacy routers, which transparently forward 
datagrams in the traditional manner. Addressing subsets of legacy routers for interactions 
defines another dimension, the per-interoperability-task one.  
 
Finally, the traffic processing can be customized via a set of differentiated auxiliary services on a 
per-application, per-session and even on a per-data-link basis in terms of OSI.  
 

5.3.4 THE PULSATING METAMORPHOSIS PRINCIPLE (PMP) 

We call the generic process of network self-creation and self-organization the Pulsating 
Metamorphosis Principle (PMP), Figure 53.  
 

WLI Definition 7: The evolution of the Wandering Network is determined by the Pulsating 
Metamorphosis Principle (PMP), stating that: 
 

1. There are two types of moving network functionality from the center to the 
periphery and vice versa inside a Wandering Network, which are referred to as 
pulsating metamorphosis: horizontal, or inter-node, and vertical, or intra-node, 
transition90.  

2. A net function can be based on one or more facts (events, experiences). The 
combination of net function and facts is called a knowledge quantum (kq) in the 
WLI model. Knowledge quanta are a new type of capsules, which are distributed 
via shuttles in the Wandering Network. Net functions and facts can be recorded 
by, stored in and transmitted between the netbots. They can be selectively 
processed inside the netbots and distributed throughout the Wandering Network 
(WN) in an arbitrary manner.  

 

                                                 
90    d Fi ly.  Figure 56 an gure 57 respective
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3. A net function can emerge on its own (the autopoiesis principle) by getting in 
touch with other net functions (i.e. states and net constellations), facts, user 
interactions or other transmitted information. The function defines the network 
and vice versa. This new property of the network is called network resonance.   

 
4. Network elements are living entities. They can encode and decode their state in 

knowledge quanta. This mechanism is called genetic transcoding. 
 

5. Facts have a certain lifetime in the Wandering Network. This lifetime depends 
from the clustering of facts inside the netbots (knowledge base), as well as from 
their transmission intensity, or bandwidth (known as “weight”). As soon as a fact 
does not reach its frequency threshold, it is deleted to leave space for new facts. 
Since net functions are based on facts, their lifetime (and hence, the life time of 
the corresponding network constellations) depends on the facts. Which facts 
determine the presence of a particular function inside the Wandering Network is 
defined individually for each function. Through the exchange and generation of 
new facts, it is possible to modify functions in order to prolong their lifetime. The 
lifetime of a knowledge quantum is defined by the lifetime of its network function. 
A modification of a net function is determined by a new set of knowledge quanta. 

 

Wandering Networks 
The WLI Approach: Morphing Roles, Replication, 

Genetic Transcoding and Adaptive Self-Distribution 
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Transcoding

Figure 53: The Wandering Network as an ”n“-geneered evolution   

The network resonance91 is the leading WLI characteristic. It can be regarded as a kind of 
adaptive meta-policy for network development. 
 

                                                 
91 The analogy of this special property of the Wandering Network is known in the biology as the Sheldrake’s theory of 

the morphing resonance, [Shel81]. 
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With its help, clusters and constellations of network elements or their functions can be (self-) 
correlated and/or (self-) organized in groups, classes and patterns and stored in the cache of the 
single nodes/netbots or in the (centralized) long term memory of the network, in order to be used 
later as a decision base or as a development programs for particular processes in the network 
(e.g. service location, customer care, billing, etc.).   
 
The WLI Definitions 4-7 describe the concept of the Wandering Network.  
 
The WLI idea differs from the current research approaches for network evolution known as Open 
Signaling and Active/Programmable Networks.  
 
The above four principles define the overall concept framework of the Wandering Network, 
[Sim01], [Sim02a]. In the following, we will discuss the impact of this approach on future network 
architectures.  
 

5.4 YET ANOTHER NETWORK-NETWORK  

Now, how shall we induce more activity in a Wandering Network ? For instance, we could 
allocate different netbot or active node classes depending on their role (function) within the 
network. For instance, Wetherall and Tennenhouse [WeTe96] define 4 basic classes of capsule 
mechanisms or network functions :  
 

1. Fusion : the active node is delivering less data than it receives e.g.  filtering of an 
MPEG-4 video stream content.  

 
2. Fission : the active node is delivering more data than it receives, e.g. generating 

additional packets for multicasting 
 

3. Caching : the active node stores incoming data for later use upon request, e.g. storage 
of web pages for local processing and reducing the data flow 

 
4. Delegation92: the active node is performing tasks on behalf of another active node which 

are delegated by means of capsules, e.g. becoming a unified messaging node which 
migrates closer to a nomadic user while she moves    

 
The WLI approach extends this role framework with the concept of (re-)configurable and 
programmable functional specialization of the node both in terms of hardware and software 
(Figure 54). To retain the simplicity of the WLI model93, we postulate that each active node (or 
netbot) can be assigned exactly one single function at a time. Thus, an active node could 
behave e.g. as a fusion server during a session, and then to obtain the assignment of becoming 
a network cache proxy for another session.  

                                                 
92 Note: the active node configiration itself can be delegated, 
93 for a general view on the node structure, please refer to section. 

Figure 54. 
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We distinguish between modal (basic) functions resident at each node/netbot and auxiliary 
(optional) ones that can be transported, installed and enabled via capsules/shuttles to be later 
customized by the user. By default, we consider that each function is assigned a single “registry” 
execution environment (EE) with the modal functions being priorized for access. 
 
Kulkarni and Minden, [KuMi99], propose seven classes of protocols in active networks, some of 
which could be regarded as specific instantiations of the ANTS capsule mechanism classes:  
 

1. Filtering (fusion): packet dropping or some other kind of bandwidth reduction technique; 
2. Combining : (fission): joining packets from the same stream or from different streams; 
3. Transcoding : transforming user data / content into another form; 
4. Security Management : capsule authorization and resource access control; 
5. Network Management : self-configuration, self-diagnosis, self-healing via event 

reporting, accounting, configuration management and workload monitoring; 
6. Routing Control :  overlaying and managing several virtual topologies on top of the 

same physical network infrastructure as an application-layer service;  
7. Supplementary Services : adding new feature to the packets without altering, but 

depending on their contents, e.g. content-based buffering.  
 
WLI regards the above two classification schemes, with exception of the routing control, as a 
horizontal inter-node functional wandering (self-organization) of the active nodes (netbots),   
Figure 56. We call the capsule mechanisms (functions) identified by Wetherall and Tennenhouse 
“First Level Profiling”, and the protocol classes (functions) of Kulkarni and Minden – “Second 
Level Profiling”.  
 
In WLI routing control is considered as a special class of virtual vertical intra-node overlay 
functional wandering (self-organization) which is interdependent from all of the other functional 
classes (node roles),   Figure 57. For instance, we can generate a QoS oriented network 
topology on demand. 
 
The two schemes of functional autopoiesis, horizontal inter-node and vertical intra-node 
wandering are operating in parallel to realize an adaptive virtual topology by utilizing the 
pulsating metamorphosis principle (PMP) which opens a new dimension of hyperactivity in 
networking. 
 
In order to address the performance enhancements, we included the protocol boosters as an 
additional class to the categorization of Kultarni and Minden along with an instantiation of the 
delegation mechanism of Wetherall and Tennenhouse. Furthermore, we combined the security 
and network management classes into one single class.  Finally, we assigned two additional 
roles to the First Level Profiling: Replication and Next-Step for packet / function replication and 
netbot state description respectively. 
 
To complete the model, routing and propagation of functionality were included in the Second 
Level Profiling as dependants of the caching class which refers in turn as a bootstrapping 
mechanism to the node state (Next Step) and all other instances of the functional classes in the 
First Level Profiling.  Figure 55 illustrates the netbot organization according to this scheme.  
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The first two roles of the First Level Profiling correspond partially to the functions “Forward and 
Copy” (FaC) and “Oracle” suggested by Raz and Shavitt, [[RaSh00] to enhance the AN 
architecture framework. A capsule/shuttle replication could be quite useful for deploying 
knowledge-based services such as selective “activation” of the network topology and thus 
adding an additional level of flexibility to the AN model (e.g. to change a node’s routing algorithm 
and/or table).  
 
The Next-Step function operates as an internal programmable switch which stores the next node 
role to come. It is a standard module for each node/netbot. Since most of the network traffic 
carries large amounts of rich multimedia content, a transcoding function for congestion control 
and local, feedback-enabled content-, user- and resource-dependent QoS management appears 
to be also useful. 
 
The new model provides a unified and structural approach for a flexible intelligent network of the 
new generation. This solution is not only applicable for out-band signaling „intelligent networks“, 
but also for the new generation of the so-called ”programmable“, active networks where 
extensions, new services and new versions can be easily installed and configured in a usability 
driven manner.  
 

5.5 RELATED WORK 

The following three examples should illustrate the author’s contribution and the new qualities of 
Wandering Logic approach [SiRe02a], [SiRe02b]. 
 
Example 1: Servents. The AS1 approach (section 4.3.5.2) to programmable Active Services 
[AMK99] enables operators (but not end customers) to download and run service agents 
(servents) at strategic locations inside the network. All routing and forwarding semantics of the 
present day Internet are preserved by restricting the computation model to the application layer. 
AS1 supports a range of application domains such as active media gateway services where 
servents perform application-level rate control and transcoding techniques. 
 
Servents can be regarded as a mobility extension of the SIBB (Service Independent Building 
Blocks) concept in Intelligent Networks towards next generation customizable architectures. 
However, restricting computation to the application layer only, creates a substantional 
management overhead even if only a few custom services are required.   
 

The AS1 architecture is complex and under control of the network operator only. 
It represents a complete service creation and distribution factory and contains 
such utilities as a service definition environment, a service-location facility, a 
service resource management system, a service client dynamic control system, 
and a service composition mechanism. Servents are not aware of the underlying 
hardware topology. They are not autonomous. AS1 is not capable to dynamically 
track or reflect end user behavior, “on-demand” or threshold-related, and cannot 
guarantee optimal utilization of network resources. The active services cannot be 
automatically switched off or removed to release node resources.    
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From our viewpoint, servents belong to the second level profiling class of the application layer 
horizontal inter-node functional wandering under operator control. They represent a part of the 
WLI architecture model which is not self-regulating yet.   
 
Example 2: Switchlets.  Switchlets represent the middle layer of the SwitchWare architecture 
(3.3.3.1, [Alex98a], [GNS98]). They provide base functionality or dynamic extensions to active IP 
routers to guarantee security on an as needed basis. Switchlets can be dynamically loaded 
across the network, but execute entirely on a particular router. In combination with active 
packets, they can implement arbitrary protocols or functionality.  
 
The Tempest approach (3.3.4.2, [Merw97b]) regards switchlets as logical network elements 
resulting from the partition of ATM switch resources to allow the introduction of alternative 
control architectures into an operational network. Each switchlet has a well-defined open 
programmable interface for dynamic updates as lightweight services. 
 

The above definitions of switchlets address flexible and trade-off capable 
architecture models for the underlying hardware and network infrastructure. 
However, these models are still under the “manual” control of the operator. Thus, 
their programmability reflects the way of how this operator perceives the network 
and its development, but not necessarily the ones of the different user classes. 
Although being capable to flexibly utilizing network resources, they cannot 
predict, follow and dynamically adapt to user behavior patterns.   

 
Switchlets belong to the network layer horizontal inter-node functional wandering. 
However, if a particular switchlet function is a) either replaced for some reason 
(performance, fault, etc.) by a lower layer reconfigurable hardware component 
(e.g. a DSP transcoder chip, which is not the case in current architectures), or b) 
replicated and transported to an upper application layer (executing environment) 
in order to be then transmitted to another node as a servent, we speak of an 
upwards vertical functional wandering. Of course, the “downloading” of this 
network function in the destination node through an application layer gateway is 
called downwards functional wandering. This is a typical capability and unique 
property of the Wandering Network (the Pulsating Metamorphosis Principle) 
compared to other active and programmable architectures.  

. 
 
Example 3: Routelets. The Genesis approach ([Camp99b], [Camp01]) introduced the routelet, 
the open programmable virtual router node, a basic abstraction of a spawning network 
architecture. Routelets represent the transport environment, the lowest-level operating system 
support dedicated to a virtual network. A virtual network is defined by a set of routelet 
interconnected by a set of virtual links. While routelets process packets along a programmable 
data path at the internetworking layer, control algorithms (e.g., routing and resource reservation) 
are considered programmable using the virtual network kernel. Thus, the transport environment 
represents a programmable data path at a router. Genesis routers are capable of supporting 
multiple routelets, which are components of distinct virtual networks that share computational 
and communication resources. 
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Although spawning networks created the notion of “nested (children) virtual 
networks” within a virtual network which are capable a) to inherit properties of the 
parent network(s) and b) to implement a set of overlay protocols on demand94, 
they are still not “lively pulsating” like a Wandering Network. The Genesis kernel 
lets virtual networks spawn and grow in one direction only, from parents to 
children, but not across the network.  
 
For instance, the spawning mechanism can expand a wired customer network to 
support an extra set of wireless protocols for these customers, but it cannot 
automatically “zip-and-pack” itself (and the routelets, of course) to another 
geographical site even for a single nomadic customer (who may ask for the same 
virtual home network environment) where the appropriate hardware infrastructure 
already exists. Routelets can be generated, clustered and programmed to provide 
the functionality of a virtual router, but they cannot be “unwrapped”, redistributed 
or selectively destroyed following a simple rule, e.g. a service usability threshold. 
Despite representing a further step towards network virtualization and growth, 
they do not provide any evolutionary mechanism for self-configuration and self-
distribution.  

 
Finally, even being programmable entities, servents, switchlets and routelets do not necessarily 
implement interdependent feedback signaling mechanisms to adapt per se to some changing 
condition of the communicating environment.  
 
Although they provide some degree of function replacement and mobility within the network, 
these “classic” AN abstractions are not based on a particular self-regulation principle, such as 
the Dualistic Congruence, Self-Reference or Pulsating Metamorphosis, which belong to the 
foundations of the Wandering Network. 
 
The Wandering Logic Intelligence is a unifying, and though, a new, evolutionary network design 
concept based on the four principles of self-organization defined in this thesis (Section 5.3).  
 
Almost any network application from the extensive list discussed in section 3.4 (firewalls, 
web proxies, nomadic routers, transport gateways, application servers, etc.,   Table 1) can 
be realized in a more vivid, flexible and sophisticated fashion following the WLI paradigm, 
e.g. by mobilizing and programming the modal and/or auxiliary roles of the reconfigurable intra-
node profiling architecture on Figure 55. Presenting a realization scenario for each one of the 
above applications is beyond the scope of this work. However, detailed discussions of the 
WARAAN algorithm, a special case study within our target domain (wireless networks) for 
applying the WLI model to autopoietic routing in active ad-hoc mobile networks is 
presented in chapter 6.   
 

                                                 
94 e.g. at the boundary between different network infrastructures which is the case of an internationally roaming mobile 

professional user 
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5.6 CONCLUSIONS 

Computing and networking are two models of the human brain, and thus of intelligence per se, 
related to processing and distribution of information. In fact, they are two perspectives (micro 
and macro) of the same concept.  
 
The WLI hypothesis states that we can understand (and possibly optimize and improve) 
computing and communication processes by applying the analytical approach known in natural 
sciences of including further details of the “black box”, the network elements, into the information 
exchange model (the protocol, the capsules, the shuttles). We claim that the deepest nature of 
Information (processing) is Communication (development) and this dualism is manifested in the 
wandering essence of intelligence per se, the WLI.   
 
Now, let us consider the “active mess” as the extreme case of applying all known active network 
approaches to the existing legacy infrastructure and standard communication protocols 
simultaneously in a single network (the Internet!). Then, let us also apply the ‘surgery’ 
requirement that network resources can be configured, used and managed to the deepest 
possible layer, under consideration of security and safety constraints (!), and on customer 
request by means of active networking and configurable computing.   
 
One of the basic principles of active networking was that it should facilitate the rapid introduction 
of new services and applications without the interference of standardization. How shall we 
recognize the different shuttle flows, protocols along with the occupied and free resources? 
Where are the limits of this integration of software and hardware?  
 
We hope that the WLI hypothesis will not explode into defining a whole network cosmology. On 
the contrary, we believe that understanding networking is quite simple (by its nature) and that it 
is sufficient to apply only a few of the available numerous options for implementing a 
characteristic in order to obtain the desired result. For instance, a shuttle differentiation policy 
can be based on such a simple principle95 as the code division mechanism used in CDMA. To 
us, this appears to represent a much more general low as the ones in natural sciences (of 
course, within a certain application area).  
 
The same might be the case with such network technologies as ATM, OFDM, etc. They could be 
organized as principles of, say, a General Networking Theory96. However, in order to explore this 
in a scientific manner, we need the apparatus, the math, the logic, the calculus or at least the 
hypothesis of “What could be out there?”. All we need to come closer to the desired result are 
the means of:  a) writing down “how-all-this-may-work-together”, and b) examining the above 
hypothesis with the selected means in a stepwise, scientific manner, plus c) changing the 
means, if they are not found of appropriate. Upon this, we can design a prototype from the 
model and test is it works well.  
 
                                                 
95 We are not going to discuss further details of the WLI model in this dissertation, except the ones described in the 
implementation part. We regard the development of WLI policies as a free research field.    

96 The shift of networking from an engineering discipline into a real science is probably not so far away.  
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We believe that we can start here with temporal logic, and then extend this formalism whenever 
found for appropriate. If we miss the proper tools, they can be developed in parallel to the WLI 
methodology …  
 
A configurable network is characterized by both node and packet programmability and 
adaptability. In addition, active packets transport mobile code.  
 

 
Figure 58: The Wandering Network as an ad-hoc network evolution 

 
In this work, we postulate that all nodes can be also mobile, e.g. as mobile platforms such as 
vehicles or wearable user equipment97. In other words, the WLI domain comprises active mobile 
ad-hoc networking. Chapter 6 is devoted to a case study in this area. Figure 58 illustrates a 
snapshot of such an “always being under construction” Wandering Network, where the different 
shapes of the nodes represent different functionalities at a given moment. The formal approach 
requires that all these properties of the active system be described in a formal way, such as a 
calculus or logic. In addition, the formal language should support generic design features such 
as openness, distribution and object-orientation. 
 
 
 

* * * 
 
 

                                                 
97 User equipment (CPE) does not necessarily refer to network terminals; it may be configured to route or serve in 

behalf of some other user in the neighborhood. 
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CHAPTER 6: CASE STUDY – WLI ACTIVE AD-HOC MOBILE ROUTING 

“Felsen sollten nicht Felsen und Wüsten Wüsten nicht bleiben ...“ 
 

J. WOLFGANG VON GOETHE 
SEPT. 6TH, 1776,  HERMANNSTEIN / ILMENAU    

6.1 SCOPE AND MOTIVATION 

The goal of this thesis is to provide a generic design methodology, referred to as the Wandering 
Logic Intelligence (WLI), for reasoning about autonomous networked systems. Ultimately, the 
methodology is aiming to deliver a formal98 recursive design model of the discourse domain, 
further referred to as the Wandering Network [Sim01], which has been defined as a superset of 
the worlds of evolving active networking and configurable computing viewed from the 
perspective of biological autopoietic systems ([Mat75], [Var79], [MaVa80]).  
 
However, it is not the task of this work to deliver the complete proof the Wandering Network 
model. This thesis’ main goal is a) to identify the major design principles in active networking 
and configurable computing and b) to demonstrate their application in a methodologically sound 
way to a practical problem in the area of network engineering. 
 
Chapter 2 reviewed the various characteristics of Active Networks and noticed that the scope of 
their application is very broad, starting from network management through dynamic caching and 
multimedia filtering to spawning networks. 
 
The two basic claims of deploying Active Networks in network design are: 

• code mobility: free choice of where and how to perform packet processing; 
• state mobility: free choice of where and how to place states within the network. 

 
In short, AN is about remote programming and re-configuration of network nodes to deploy non-
standard protocols and coding techniques. However, Active Networking as a design concept 
should not be only limited to programming the single network nodes. It carries a much greater 
potential of being able to create an overall life-cycle system design methodology, which can 
have an enormous impact on future network generations.  
 
This thesis claims that the AN approach can be further extended with the WLI methodological 
framework99 by monitoring spontaneous changes in network topology and node behaviour 
(functionality) in a way which can enable the self-deployment, [Tschu99c], and self-organization 
and re-production [Min94] of the entire network architecture inside and outside the nodes.  

                                                 
98 in the sense that we want to prove mathematical theorems about the behaviour of artificial self-maintaining 

systems. 
99 a step-by-step life cycle of (re-)design-verification-deployment-feedback. 
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As we already noticed in Chapter 2, WLI is treated in this work as a system oriented design 
methodology, whereas Active Networking and Reconfigurable Computing -- as enabling 
technologies. We hope that understanding the WLI concept in terms of an evolving formal 
design methodology will help moving research efforts towards a self-maintaining and 
reproductive active network architecture. 
 
The subject of this chapter is the description of a suitable protocol and architecture for mobile 
ad-hoc networks based on virtual active topologies, which allow adaptable behavior of the 
network due to node mobility. It is assumed that there exists a channel access protocol 
withholding disruption and interference problems in the network. In the method that we propose, 
network nodes are allocated addresses depending on their physical connectivity and address 
availability. In general, each node can be assigned a single address. However, in some cases 
nodes (netbots) may have more than one address. 
 

6.2 CONSTRUCTIVE BACKGROUND:  ROUTING IN MOBILE NETWORKS 

The next section provides some helpful definitions used later in this chapter.  
 

6.2.1 MOBILE DEFINITIONS 

6.2.1.1. Mobile Network 
A mobile network is a network in which some of its nodes (endpoints and/or routers/switches) 
change location relative to each other. The ends or leaves of the network, called mobile 
terminals (MT) or mobile hosts (MH) may move among stationary (fixed) routers/switches (R/S). 
On the other hand, router/switches may move over stationary endpoints (e.g. in satellite 
networks), or both MTs and R/Ss may move independently (e.g. in packet radio networks).  
 
Depending on the mobility of the ends and intermediate nodes of the network, we distinguish 
between four general classes of networks, three of which are said to be mobile: 

 
 

Interim.               
End  

Fixed Terminals Mobile Terminals 

Fixed R/Ss Wire-line Cellular 
Mobile R/Ss Satellite Packet Radio / Ad-hoc 

Mobile 
 

 
The different requirements of these types of networks are reflected in the different organizations 
of their topologies and functions. In particular, we are interested in packet radio or ad-hoc mobile 
networks where both R/Ss and MTs are mobile.  
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A network of mobile wireless switches that employ radio communications is generally called 
packet radio network100 (e.g. DARPA PRNET [KGBK78], [JuTo87] SURAN [ShWe87]). Tactical 
military communications require survivable, adaptive networking where R/S mobility is an 
important advantage. Recently, there has been a growing interest on civil networks of mobile 
switches101 [PeBh94]. Such networks are referred to as ad-hoc102 mobile networks and are 
conceptually identical with packet radio networks.   
 

6.2.1.2 Ad-Hoc103 Mobile Network  
Currently, there are two kinds of mobile wireless networks. The first one is known as 
infrastructured networks. These are those networks with fixed and wired gateways. The bridges 
for these networks are known as base stations. A mobile unit within these networks is connected 
to and communicates with the nearest base station that is within its communication radius. As 
the mobile travels out of range of one base station and into the range of another, a handoff 
occurs from the old base station to the new one and the mobile is able to continue 
communication seamlessly throughout the entire network. Typical applications of this type of 
networks include office wireless local area networks, GSM networks and recently, GPRS and 
UMTS networks. The second type of mobile wireless network is the infrastructureless mobile 
network, commonly known as an ad-hoc network.  
 
Infrastructureless networks have no fixed routers. All nodes are capable of movement and can 
be connected dynamically in an arbitrary manner. Nodes and of these networks function as 
routers which discover and maintain routes to other nodes of the network. Example applications 
of ad-hoc networks are emergency services and rescue operations, meetings or conventions in 
which persons wish to share information and interposition operations in inhospitable 
environments quickly. In the rest of this work, we are going to use the following definition: 
  

Mobile Definition 1: An ad-hoc network is a dynamically reconfigurable wireless mobile 
network with no fixed architecture or central point of administration. It represents a 
radically distributed architecture with the following characteristics: 

• all nodes/hosts can be deployed as clients and as servers. 
• each node/host is mobile and acting as a router/switch. 
• nodes/hosts and relationships/routes between them are of temporary nature; they 

can emerge and disappear spontaneously in the network.  
 
Ad-hoc mobile networks are deployed in applications such as disaster recovery and distributed 
collaborative computing.  
 
Mobility of routers/switches (R/S) raises quite different and much more challenging 
organizational issues than those in cellular networks.  
 
                                                 
100 An overview of the subject is given in 
101 or mobile hosts with the ability to perform switching functions 
102 ad-hoc [latin: ad-hūc,  “even more”], a term adopted by the IEEE 802.11 subcommittee. 
103 ad-hoc, ad-huc : 1) until now, (and) yet. 2) still, and more,  moreover. 
 
 

[LGT98]. 

 181 



Routing and multicasting in ad-hoc mobile networks face the challenge of delivering data to 
destinations through multi-hop routes in the presence of node movements and topology 
changes. In particular, rapid response to R/S movement requires autonomous organization 
mechanisms. The primary design problem in packet radio networks is the one of clustering the 
mobile switches into groups. This problem is motivated by two considerations: (i) spatial reuse of 
the control channel, in terms of frequency (FDMA), time (TDMA) or spreading code (CDMA), and 
(ii) reducing the information overhead. 
 
The AN approach to ad-hoc mobile networking is a good entry point towards the goal of realizing 
dynamically adaptable autonomous systems by enabling the user to customize the behavior of 
the network elements by abstraction (virtualization) and re-programming, ([Tschu99b], [Chin00]). 
However, a user is still the (single) Observer of the system who provides a close snapshot view 
at the network at a single moment, or a sequence of (programmable) moments. In fact, he or 
she may have different views of the network at the same time or at different times. In addition, 
there may be not only one but also many users, each one of them with their different views at 
the network. Consequently, the user, the Observer along with his/hers views at the network is a 
part of the network itself by being involved in a recursive feedback mechanism, a fact that has 
been realized earlier in natural sciences such as physics and biology.   
 
The above definition of an ad-hoc mobile network is closely related to the WLI model described 
in this work. The enhancements of the Wandering Network are summarized as follows: 

1. Each host/node can simultaneously maintain one or more of the following roles 
(deployment modes) w. r. t. a communication path: (a) dependent (client), (b) 
independent (server), or (c) interdependent (agent, proxy, both client and server). 

2. The functionalities of nodes/hosts are freely reconfigurable and re-programmable both in 
hardware and in software and can move/migrate from node to node.  

3. There is set of principles for self-organisation and self-maintenance w. r. t. points 1. and 
2. which keep the network going within a changing environment until at least two nodes 
remain present along with the communication path between them. 

  

6.2.1.3 Routing System 
A routing system in mobile networks should be able to manage node mobility in such a way that 
the communication endpoints are unaware of their relative movement or of the movement of the 
network itself. We define a routing system as a set of component functions for: 

• monitoring the network topology and services (incl. mobility of nodes and services); 
• monitoring the usage of network services to predict the required changes in topology and 

service provisioning; 
• distributing this information for use in route (re-)construction, node function re-distribution 

+ topology (re-)design; 
• locating session endpoints; 
• constructing and selecting routes;  
• forwarding traffic according to selected routes; 
• adjusting network topology to the service usage life cycle.  
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The routing system is responsible for deriving routes that meet the service requirements 
imposed by the end users. Changes in the network or session state may invoke changes to 
existing routes in order to maintain their feasibility. Such changes have a direct impact on the 
provided QoS and occur more frequently than in fixed wire-line networks. The routing system is 
required to detect and quickly respond to such state changes in order to minimize the 
degradation of services in existing sessions by utilizing minimal network capacity for maximum 
throughput and customer satisfaction.   
 

6.2.1.4 Ad-Hoc Mobile Routing  
There are two classes of routing protocols in ad-hoc mobile networks [RoToh99]: a) table-driven 
(TD), and b) source-initiated on-demand driven (SIOD). A number of algorithms have been 
proposed for both routing schemes. The table-driven protocols attempt to maintain consistent, 
up-to date routing information in the ad-hoc mobile nodes while responding to changes in the 
network topology by propagating updates throughout the network in order to maintain a 
consistent network view. The source-initiated on-demand driven protocols do not require 
periodic route updates; they create routes by initialising a route discovery and maintenance 
process only when desired by the source node. When a node requires a route to a destination, it 
initiates a route discovery process within the network. This process is completed when the route 
is found or all possible route permutations have been examined. Once a route has been 
established, it is maintained by some form of route maintenance procedure until either the 
destination becomes inaccessible along every path from the source, or until the route is no 
longer desired. 
 
The TD ad-hoc mobile routing scheme is similar to the connectionless approach of forwarding 
packets, without regard to when and how frequent such routes are desired. A route to every 
other node of the network is always available, yet it requires frequent updates of the routing 
tables which lead to a significant signalling overhead as the network grows and the node mobility 
increases. Table driven routing protocols include among others Destination Sequenced Distance 
Vector Routing (DSDVR), Clusterhead Gateway Switch Routing (CGSR), and the Wireless 
Routing Protocol (WRP). 
 
In the SIOD routing scheme, routing is not performed instantly; when a node requires a route to 
a new destination, it has to wait until this route is discovered. While TD protocols mainly support 
shortest path as QoS metric, only a few SOID protocols address QoS. While both schemes, TD 
and SIOD, support flat104 routing philosophy and only some of the SIOD algorithms feature 
multicast capability. Source initiated on demand routing protocols include such protocols as Ad-
hoc On-demand Distance Vector Routing (AODVR), Dynamic Source Routing (DSR), 
Temporary Ordered Routing Algorithm (TORA), Associatively Based Routing (ABR) and Signal 
Stability Routing (SSR).  
 
For a detailed review and comparison of the current ad-hoc mobile wireless routing protocols 
please refer to the study of Royer and Toh [RoToh99]. 
 
                                                 
104 except for the Cluster Gateway Switch Routing (CSGR) table-driven protocol which uses hierarchical cluster head-

to-gateway routing scheme. 
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MULTICAST 
Multicast is regarded as the key ad-hoc mobile network service to support multi-party wireless 
communications.  Since the multicast tree is no longer static, the multicast routing protocol must 
be able to cope with node mobility and cluster management including multicast membership 
dynamics (e.g. join and leave) by maintaining QoS for each single node. This means that it is 
inadequate to consider QoS merely at the network level without regard to the underlying media 
access control (MAC) layer [LiGe97]. 
 
 
MOBILITY PREDICTION 
To accommodate highly mobile nodes (such as aeroplanes) while consuming a minimal amount 
of network resources, the routing system must be capable of predicting future node locations in 
addition to responding to current movements of the node. By tracking the non-random mobility 
patterns of the mobile nodes’ behaviours, one can predict the future state of network topology 
and perform route reconstruction proactively in a timely manner. In addition, by using the 
predicted information for changes in the network topology, it is possible to eliminate 
transmissions of control packets otherwise needed to reconstruct the route and thus reduce 
overhead. In [SLG00], the authors propose and evaluate the effectiveness of various schemes to 
improve routing protocol performances by using mobility prediction.  
 
Currently, it is not clear which particular algorithm or class of algorithms is the “best” for all ad-
hoc mobile scenarios105. However, ad-hoc mobile routing approaches have introduced a number 
of new paradigms, such as exploiting user’s demand and the use of location, power and 
association parameters. Adaptability and self-configuration are the key features of these 
approaches. Today, the major challenges for ad-hoc mobile wireless networks include: (i) 
multicast, (ii) QoS support, (iii) location-aided routing, and (iv) power aware routing.  
 
The main concern in routing is, however, to find an efficient logical topology on top of the 
physical infrastructure and to design suitable routing procedures enabling the high performance 
of the network. Active networks allow the superposition of virtual network architectures on top of 
physical architectures in two dimensions: 1) vertically, throughout all network layers and 2) 
horizontally, throughout the different elements of the network.  
 

6.2.2 INVESTIGATION FRAMEWORK 

Active Networks emerged with the major design goal to accelerate the rapid introduction and 
deployment of new network protocols and services. The preliminary goal of the research 
programs in Active Networking during the 90ies were: 
  

• to identify hidden assumptions in the “classical” type of networking (incl. both in-band and 
out-band signaling), and  

RoToh99]

• to invert (explore) the design space.  

                                                 
105 A comprehensive review of ad-hoc routing protocols is given in [ . 

 184 



Previous work in this area summarized and reviewed in research (e.g. [WGT98], [WLG98], 
[Weth99b] and [Chin00]) delivered satisfactory results. The long-term goal of Active Networks is 
to simplify the network through programming in order to design more complex (e.g. adapting, 
self-configuring, self-deploying, autopoietic, etc.) architectures.  
 
An essential characteristic of the WLI approach is the inheriting ability to spread out 
information about architectural changes among the nodes/netbots of the Wandering 
Network instantly by encoding executable re-construction (genetic) instructions within 
the transported shuttles – the so-called “network” genes, N-genes, (Figure 59). 

The Propagation of Architectural Changes 
in a Wandering Network 
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Figure 59: Encoding, transport, change and decoding of architectural information inside the 
Wandering Network 

 
This is another unique feature, which differentiates the Wandering Network from all 
previous approaches in active and programmable networks. For this reason, we selected 
the subject of routing in ad-hoc mobile networks for a case study to demonstrate the 
feasibility of the WLI approach to network evolution. 
 
The goal towards we are striving in of this thesis is the proof of the assumption that AN 
technology as an integral part of the WLI approach delivers an appropriate methodology for 
automating the process of route adaptation, and hence of propagating topology changes within a 
dynamically changeable network infrastructure. [The mechanism proposed in this work is a 
combination of user-initiated feedback mechanism of tracking user mobility with network-centric 
adaptation and maintenance of connection hand-off and service requirements within each traffic 
session. For this reason, network monitoring is distributed between the nodes of the network.] 
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Routing issues in ad-hoc mobile networking are a difficult challenge for protocol designers, since 
rapid reconstruction of routes is crucial in the presence of topology changes. The primary 
concerns in ad-hoc mobile networks are bandwidth limitations and unpredictable topology 
changes. In such an environment, it is important to minimize disruptions caused by the changing 
topology for critical application such as voice and video. Furthermore, agreeing on which 
algorithm is the”best” may even be more challenging. By using an active network approach we 
can (a) delay this decision until run-time, and (b) hopefully dissolve it by letting different routing 
algorithms run in parallel, [Tschu99a]. 
 
In the next section we are going to discuss the application of the WLI approach to adaptive multi-
protocol routing and QoS maintenance in ad-hoc mobile networks.  
 
 
6.2.2.1 General Model  
 
Figure 60 and Figure 61 illustrate the paradigm shift in routing semantics by using the AN 
approach in communications. 

M oving R outing Semantics to the Active Space

payload

b) dynam ic (executab le) ro uting semantics in an active  packet fo rmat: 

a) fixed f ield header semantics in a (passive) data packet fo rmat:  

payload.. header fieldssource 
address

destination 
address

previous 
address

route selector

options

 

Figure 60: Changing the semantics of routing by means of active packets 

 
In [Tschu99a], the author proposes a hybrid active networking approach for ad-hoc networking 
which maintaining two modes: a) a passive mode for plain data forwarding, and b) an active 
mode for active node re-configuration.  
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Simplifying the Network by Dynamically Re-Configuring Computing 
in the Nodes and Layering the Traffic inside the Network
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Figure 61: Evolving network activation 

Thus, an active (hybrid) router/switch forwards data in the passive mode and uses active 
packets for signalling in the active mode, Figure 62.  
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Figure 62: A multi-protocol active router architecture for ad-hoc networking 
 



A similar approach is applied in the WLI case study for routing in ad-hoc mobile networks as a 
kind of meta-routing deployment scheme. Here, special active routing packets are used for 
realizing the signalling and the selection and deployment of the appropriate routing protocol 
within a multi-protocol executing environment. 
 
The essential point in adopting WLI approach as a leading concept in the ad-hoc mobile 
routing case study is that we can not only invoke “on demand” a specific protocol to 
route a distinct packet based on the feedback messages from the neighbouring nodes 
which are carried by the active packets (shuttles), but also significantly simplify the entire 
messaging and evaluation scheme of the routing protocol by including executable 
architectural information.      
 

6.2.2.2 The Target Domain: Ad-Hoc Mobile Routing  
In their study about active services in wired and wireless networks, Kulkarni and Minden defined 
routing as a distinct class of AN protocols. The following benefits of active networks have been 
identified, [KuMi99]: 
 

• 
classes of routes; 

Overlaying several virtual topologies on top of the same physical infrastructure in AN 
helps applications create different 

• Applications can use their  which is derived from the virtual topology 
defined by the application; 

own routing protocol

• Several  can be implemented and deployed (e.g. GPS/GIS 
based routing along with distance-vector routing, etc.); 

routing strategies in parallel 

• The primitives of a protocol of a routing class AN service require: 
o information about the  of the neighboring nodes ports
o information about the queue sizes at the ports 

 
While keeping these frame in mind, we decided to demonstrate the practical application of the 
WLI model on routing in ad-hoc mobile networks. We selected this research domain not only 
because it is a very promising research area which attracted the recent interest of the active 
networks community ([Tschu99b], [Gold01]), but mainly because it best matches the Wandering 
Network philosophy ([Sim99f], [Sim01], [Sim02a]). 
  
Traditional routing relies on distributed routing databases, maintained by the operators either in 
the network nodes or in specialized management nodes. There is  for routing 
information in ad hoc mobile networks.  

no guarantee

 
In mobile ad-hoc networks, we face two challenges in routing management:  

• all nodes are potentially mobile, and  
• each node can spontaneously join or leave a communications session.  

 
Therefore, new techniques are required to address routing in ad-hoc mobile networks. Active 
Networking is probably the closest starting point to tackle effectively the problem of tracking and 
propagating information about dynamic changes in the network topology in a predictable, 
distributed manner. 
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However, applying network-centric intelligent techniques to solve routing and other problems in 
mobile ad-hoc networks rise is going beyond the original paradigm of programmable active 
networks leads to more autonomy in service provisioning. Hubaux et al. [Hub01] argue that self-
organization in mobile ad hoc networks is introducing some new and attractive perspectives in 
telecommunications: 
 

1. Self-organization can bring a paradigm shift in the way networks are organized that can 
even lead to fundamental change in the relationship between Information technology and 
society; 

2. Infrastructure-less, self-organizing network means more freedom; the network is 
deployed by the end-users and not by the operators, or some other party 

3. Ad-hoc mobile self-organization is characterized by:  
o quick propagation of changes in topology or reachability 
o quick adaptation of the network w. r. t. these changes 

 
The major assumption in applying the WLI model for this application domain is: the more 
a node knows about its neighbors and environment, the better it can serve the ad hoc 
mobile community. For instance, the delivery rate of the two-hop variant of the GEDIR  
algorithm [LiSt98] can be improved significantly if each mobile ad hoc node is aware of its 2 -
hop neighbors, i.e. the neighbors of its neighbors.  

106

nd

 
It is evident that answering the question of how much of that “neighborhood” knowledge is 
required to effectively solve routing problems in mobile ad-hoc networks is not trivial, as the data 
overhead grows with the link-state tree expansion and some information might be redundant, 
dubious and even irrelevant. The solution can depend on the specific topology, on the node 
mobility and capacities, on the traffic characteristics, etc.  
 
However, it is at least clear that many unexpected situations such as the count-to-infinity 
problem or the dubious split-horizon problem [Tan96], which may occur due to spontaneous 
changes in the network topology, could be avoided or prevented107, if the mobile nodes were not 
only evaluating instant messages sent from their neighbors about changes in their rooting tables, 
but also capable to superposition and interpolate the different perspectives of the entire network 
as seen by all nodes in parallel at a given moment.  
 
In other words, if mobile nodes, netbots, were capable to recognize the different network 
topology patterns reported by the surrounding environment, they could be able to 
participate actively in using and changing these patterns to fit some optimization criteria 
such as shortest path routing or best QoS.  
 

                                                 
106 GEographic DIstance Routing 
107 It should be noted here that to answer the question about the net transparency in the views of the single netbots is 

not a trivial task even if all nodes tell the truth about themselves and their environments; in general this depends on 
some additional model details and parameters such as power, channel assignment, etc. 
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6.2.3 RELATED WORK AND PERSPECTIVES 

In his thesis, Chin [Chin00] investigated the viability of applying active networking technologies 
to routing in mobile communications. In this work, various benefits of ANs were demonstrated 
through extensive simulation studies in unicast and multicast routing for IP and ATM networks.  
The author concluded that AN-based protocols manifest the following benefits in mobile 
networks: (i) efficient adaptation to mobility, (ii) reduced signaling overheads, (iii) high reuse of 
allocated network states, (iv) extensibility, (v) topology independence, and (vi) scalability.  
 
The following two sections summarize the major results of this work.  
 
 

6.2.3.1 General Advantages 
 
STATES  
ANs promote iterative reuse of allocated states for both connection-oriented and multicast 
connections. For instance, a connection in mobile ATM networks can be iteratively updated to 
maximize reuse. Similarly, multicast states at routers/switches can be preserved in such a way, 
that only parts of the multicast tree can be affected.  
 
Since in ANs allow computation at each (active) router/switch, routers/switches can make their 
own decisions based on the available information residing at their site or at their neighboring 
routers/switches and determine locally whether updates are necessary or not.  In this way, the 
core network elements make their own decisions rather than the end-host(s). 
 
SIGNALING 
The main source of signaling overheads in a conventional network is the examination of 
routers/switches for data to be processed at the end-hosts. Because signaling messages are 
local in ANs, this procedure is not required anymore.  
 
The message overheads are minimal compared to solutions deployed from the end-hosts, since 
computation in active networking is distributed among the (active) routers/switches. For 
instance, there is no need to obtain a snapshot of the multicast tree before any adaptation can 
be performed. Local computations can be performed when events happen and not after.  One 
can even use some heuristic approach to predict even the occurrence of events at active 
router/switches, e.g. node movement detection by means of GPS/GIS technology. This is 
especially important in the case of congestion control where it is important to isolate the 
congestion and to notify the end-hosts of the congestion state. 
 
FILTERING 
Active routers/switches can play an active role in filtering out redundant signaling messages. In a 
multicast service, unnecessary path optimization and join the core nodes to conserve bandwidth 
can remove messages. The ability to filter out redundant messages is crucial in ensuring the 
scalability of the protocol as the number of subscribers grows. 
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Active routers/switches can be also extended with a number of useful network services. For 
instance, they may host some programs that can be used as protocol boosters or for providing 
different QoS to different parts of the multicast tree. 
 
 

6.2.3.2 Advantages for Mobile Networks 
 
ROUTING 
 
In mobile networks, routes need to be updated frequently, even more so in multicast 
communications, particularly when the host migrates. Therefore, it is crucial that these updates 
are performed as soon as possible. In [Chin00], the author has shown that TCP’s performance 
improves significantly with the faster arrival of binding updates. The case of local computation at 
the router/switch becomes even more essential in connection with QoS provisioning. Solutions 
that reallocate QoS after each host’s migration are not useful when there are a large number of 
subscribers in a multicast session.  
 
By using AN-based protocols, updates can be only performed on desired parts of the network, in 
the connection path or multicast tree.  
 
 

6.2.3.3 Open Issues 
 
ACTIVE PROGRAM LOCATION 
 
The deployment model, presented in [Chin00] for wireless multicasting, considers only 
routers/switches that are on the communication path. As a result, strategic positioning of 
programs is not required.  
 
The way in which active programs should be positioned within the network has not been studied 
sufficiently until now in the AN community. For instance, in [SRBW01] the authors investigate a 
remote socket architecture implementing a protocol booster concept [Feld98] in a front-end 
proxy node for wireless links. The performance results of the system are quite satisfactory when 
used as a single node. However, this and other works in the area still cannot answer the 
question how many such nodes are required and where the active programs should be 
positioned in order to have an optimal solution.  
 
In fact, strategic program positioning actually defeats the purpose of having AN. One benefit of 
active networks is their topology independence. In mobile networks, strategic program 
positioning is infeasible because of the frequent host migrations. However, deploying active 
programs within a session alongside signaling messages, on the communication path facilitates 
the identification of dynamic strategic points, which may be important in some areas such as 
routing in ad-hoc mobile networks (AMN).  
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6.3 APPLICATION SCENARIO: WLI AD-HOC MOBILE ROUTING CASE STUDY 

In terms of a physical realization, the Wandering Logic Model can be probably best suited by the 
concept of an autonomous Active Ad-hoc Mobile Network (AAMN).  Therefore, we selected ad-
hoc mobile networking as application domain to demonstrate the benefits of the WLI approach. 
Unlike cellular wireless networks, an ad-hoc mobile wireless network does not have any fixed 
communication infrastructure. In other words, for an active connection, the end host as well as 
the intermediate nodes can be mobile. Furthermore, each host acts as a router and moves 
following an arbitrary scheme. Therefore, routes are subject to frequent disconnections.  
 
The proposed WLI model use shuttles (i.e. active packets / mobile code) to control the routing 
state in mobile nodes. The following assumptions are guiding the WLI routing model: 
 

1. The Self-Reference Principle: Each netbot knows best its own configuration and routing 
state, as well as how and when to display it. This information can be encoded in shuttles 
and propagated throughout the network. The netbot also maintains its own reachability 
tree  w. r. t. a particular transmission session, a netbot’s role, application ID, or each 
data flow transfer ending at it.  

108

 
In addition, each netbot always provides true  (fair) information about its connectivity to 
other nodes. Of course, some selection/filtering mechanisms might be applied to different 
subsets of nodes depending on some self-maintenance and performance optimisation 
criteria; it is not required that a netbot always tells the entire information about its state.  

109

 
Finally, netbots are supposed to be communicative and cooperative . There might be 
different mechanisms to stimulate their cooperativeness in providing their resources to 
other netbots such as the nuglets referred in [BuHu01]. 

110

 
2. The Multidimensional Feedback Principle: A reachability tree can be dynamically 

verified and updated with the corresponding reachability trees (or parts of them) of other 
netbots. This “directed” routing information is periodically verified against and updated by 
the network topology patterns contained in a special kind of routing shuttles, r-shuttles, 
which periodically traverse the netbot.    

 
                                                 
108 In general, mobile nodes may run several different applications (e.g. multicast sessions) allocated to different 

subsets of the network. They are also serving as routers for other nodes. We used the term “reachability tree” 
instead of the well-known routing table for two reasons: (i) the ultimate goal of a routing algorithm is to determine 
the shortest path to each destination which may be the node itself; therefore, a routing tree rooted at the sink 
represents a loop-free set of paths which can be best maintained at the sink itself; (ii) routing trees contain 
interconnection patterns that can be easily verified against and matched with other patterns carried by shuttles. 

109 The treatment of un-trusted systems such as e.g. the Byzantine Generals problem is not part of this work. 
However, even when following this assumption, the restrictions of footnote 107 do still apply.   

110 Fairness rules for node cooperation is an interesting research issue because of the limited performance of the 
mobile nodes which are required to serve as routers for their neighbours. In general, a trade-off between “routing for 
others” and the own tasks’ maintenance should be considered. It is clear, that each node can serve only a limited 
number of neighbours depending on its own configuration and power consumption. In general, the more power the 
netbot has, the more neighbours it can access and the more hops it can send its packets to.  
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6.3.1 METHODOLOGY 

The WLI methodology addresses the following subjects in ad hoc mobile communications: 
 

1. An on-demand exchange of communication environment (CE) functions can take place 
as soon as the netbots approach each other the reach of their active CEs. 

 
2. There is a set of fixed, network nodes (“docked” netbots) for power recharging and 

complete update/renewal of CEs by the “agile” netbots. 
 

3. The newly acquired CEs such as (parts of) routing algorithms are loaded in the 
configuring EE which assembles the functional pieces into a program in the netbot. 

 
4. Re-routing shuttles: re-routing the next available: state-of-the link, state-of-the-node, 

entire RT. 
 

5. Predictability: including prediction information in the shuttle, e.g. expected congestion. 
 

6. Select different strategies for routing based on a “benefits” plan and feedback about 
power consumption, traffic threshold values, QoS requirements, creditability, event-
based. 

 
7. Information about the positioning of netbots is generally managed via GPS/GIS access. 

 
8. Intelligently managing data about “neighbours of the neighbours” to ensure predictability. 

 
9.  “Living Routing Tree”, tracking how agile the netbots are: classes of netbots. 

 
10. Updating RTs depending on the traffic patterns. / Recognizing routing patterns: topology. 

 
11. A netbot can promptly select a routing strategy upon evaluating the current RT state. 

 
12. If the netbot is not able to find a solution, it can deploy 2-3 algorithms in parallel (incl. 

measurements) and select the best solution. 
 

13. There are 3 parts of the methodology: 
• General conditions 
• Target oriented strategy decision 
• Maintenance 

 
Let us consider the following mobile ad-hoc routing scenario for routing within a wandering 
network. Initially, there is a single netbot traversing the 2D space as illustrated on Figure 63. The 
legend explains the main components of the architecture. It is essential, that the netbot can only 
communicate within a certain transmission range r (an allocated radio channel) which is a 
function of its power consumption.  Figure 64 explains the internal netbot architecture. 

t 
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Figure 63: A netbot, traversing the 2D space with a constant velocity. 

The netbot is able to exchange shuttles with other netbots via docking ports, virtual interfaces 
(APIs) which open communication channels from activated communication environments (CEs).  
 
Let us now have a second netbot, B approaching the first one, A, as shown on Figure 65. Note, 
that netbot B has two transmission ranges (radio channels), the one of which is identical with this 
of netbot A.  
 
As soon as both netbots are close, enough to each other, their common communication 
environments CE are activated (automatically) and they start exchanging messages. Then, node 
B learns from node A that the last one has some information to “upload” for node C that is 
currently out of the scope of the two nodes. Netbot B looks back in its communication history 
(“netbot log”) and informs A that it has met C in the fleet W, a cluster group of netbots which can 
be accessed through the cluster head or “van” F according B’s last record. B cannot take A’s 
load even if it is ready to pay 2.000 nuglets for it, since B has a very tight schedule to deliver its 
own load to the destination haven D. Besides, B’s capacity is almost completely used to take 
someone else’s data on board.  
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CE: Communication Environment

Legend :
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Figure 64: Schematic representation of the internal netbot’s architecture 
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Figure 65: Netbot B detecting netbot A within its transmission range r  = g (P) t
 
However, B suggests A to try to route A’s data to the fleet W, since it has some free processing 
capacity that can be used for as less as 10 nuglets per terabit (npt) at the moment. Precondition 
is that netbot A has the newest communication environment CE+ that extends the operating 
radio spectrum, and thus the transmission range, which is also used inside the fleet W. B, 
suggests A to upload CE+ free. A agrees. CE+ is then uploaded from B to A by means of 
shuttles as shown on Figure 66.  
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Figure 66: Netbot B transports its second communicating environment CE+ to netbot A 

There is nothing special in this action, which simply performs a function’s transfer from one 
mobile node to another. This procedure does not necessarily need to be realized by 
means of WLI. It only shows that a netbot can acquire a new capability to perform its 
mission, in our case - a new radio channel encoding which improves its transmission 
range to access its destination111 remotely.  
 
Until now, we illustrated only how a single netbot can continuously develop and exchange new 
functionalities in WLI, such as e.g. a new communication protocol or an update of an old one. 
This is a typical feature of Active Networks.  
 
One can regard communication environments as dedicated EEs, which can be not only node 
resident and activated upon request, but also uploadable and exchangeable like active 
applications (AA). Figure 67 shows an example of such a developed communication architecture 
where only one CE was initially available. Note that all three CEs can be active in parallel w. r .t. 
different communication domains, a typical WLI characteristic.   

                                                 
111 It should be noted, that in mobile ad hoc networking, the delivery trade-off really goes between mobility (distance 

tracing) and remote access (data tracing). If a netbot knows (i) where its destination is (e.g. by using GPS/GIS 
technology), (ii) it is fast enough to get close to the target ahead of its schedule and (iii) it can upload the data 
through a fast link docking channel, this netbot does not really need to make complex computations on how and 
where to route in a complex multi-hop ad hoc environment (which is certainly required for fixed nodes). It could 
simply “move there” and deliver the data. 
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Figure 67: A netbot with three communication environments, one of which is active 

Now, both netbots have the same communication environments and can participate in larger ad 
hoc mobile networks supporting these two environments as shown on Figure 68. Both netbots 
can decide (a) to split and follow their initial destinations, or (b) to build a temporary cluster (by 
changing their directions and velocities) and maintain a constant distance d to facilitate further 
communications. 
 
While (a) does not deliver the desired result directly, the interesting part begins with (b). Thus, 
we consider that A and B decided to stay together for a while by keeping a distance d between 
them with the original speed and destination of B. To make the case even more interesting, we 
assume that there is no navigational help such as GPS of where the node C might be. Let us 
assume that A does not have any routing table. Let us assume the same for netbot B, yet with 
the condition that B has a reachability tree, r-tree , including netbot C in its history. 112

                                                 
112 R-trees may be hierarchically indexed because of the different kinds of transfer, domain and content they serve. 

 197 



Distance vector between two ships 

Legend :

(Passive) Communication Environment (CE) rt Transmission Range

Netbot’s  Velocity Power / Performance Source

NetbotOS
d

Netbot A

resources

CErt = w (P)
P

P

d Docking Port

Netbot B

NetbotOS

d

dd

rt = g (P)

CE

rt = w (P)
CE + P

CE + d

rt = g (P)

d = const.

d 

v

VB = f (x,y,z,t) = const.
VA = VB = const.

 

Figure 68: Two netbots building a temporary cluster 

 
We postulate also that B has information about some other netbots’ “netbot routing logs” with 
their reachability trees that may contain a useful  route to C cached in B’s history file while 
being traversed from their routing shuttles, r-shuttles, previously to meeting A. Thus, netbot B 
can transfer this information or parts of it to A in the same way as it did with the communication 
environment.  

113

 
Then, both netbots, B and A, can try to verify the different pieces of C’s reachability information 
(distributed processing) and derive a hypothesis of how to optimally route from A to C in case 
that such a route or an entry point to the fleet W does exist. This hypothesis should be checked 
and updated again and again with newly arriving r-shuttles carrying r-trees from their sources 
until an upstream connection to C or a gateway to W, where C is supposed to be, can be 
established. We call the encoded r-trees inside the r-shuttles, r-genes , and the process of 
encoding and decoding them - r-geneering. 

114

 
 

                                                 
113 The good news is that such reachability trees of netbots or  “vanguards”  (vans) may can be encoded in the 

shuttles along with some useful information such as time, location, destination and constant speed to predict their 
emergence and prepare the transfer or routing in some access area in advance. 

114 There are different kinds of node genes, n-genes, in WLI. Some of them, such as the r-genes, are responsible for 
encoding the routing state of the network from the netbot’s perspective, whereas others are used to describe some 
other node information, such as e.g. the EE history.  
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Let us now consider that one of the two netbots, e.g. A  (Figure 69), can establish a direct 
connection to C, which is supposed to be a single node (in case that it does not belong to a 
fleet), a van itself, or a gateway (border) netbot of some fleet W. In this case, netbot B can 
communicate to netbot C via netbot A using a different access spectrum range, common to A 
and C. Netbot A performs as a router agent for B and C in delivering information between them. 
Therefore, it has two active communication environments for each connection. 

115
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Figure 69: A router agent with two active communication environments 

The WLI Principle of triggering simultaneous multiple roles inside a node allows the automatic 
activation and self-adjustment of different communication environments, i.e. different algorithms 
or parts of a distributed algorithm based on a feedback for the different  distance ranges and the 
access spectrum, in parallel. This kind of network activity is similar to the sentient computing 
approach, [Add01], in adapting a communication environment to a particular user profile. 
However, in the WLI case this adaptation is: a) performed on a mutual base in a multiple nodes 
environment, and b) including dynamic changes in the behavior, i.e. of the profile, of the 
particular network elements. Therefore, each communication environment is dynamically 
adaptable to the characteristics of the particular connection for which it is responsible.  
 
There can be multiple CEs active on a single netbot. For instance, Figure 70 shows the 
communication of information between the netbots B and C via a second van D that happens to 
maintain a third connection inside or outside its own fleet, etc. The only limitations in deploying 
multiple communication environments are power and resource consumptions, as well as the 
performance degradation of the acting CEs.  
                                                 
115 We call A, a fleet head of the netbot set (A,B) in WLI, which should be considered as a synonym of a “cluster head” 

as referred in the ad-hoc networking literature . 
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An instant change of a netbot’s role, e.g. a van assignment is also possible; it depends on the 
environment conditions and the movement and activity of the single nodes within the cluster 
(fleet). Therefore, a wandering network represents a second  order autopoietic system 
[MaVa80]. 
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Figure 70: Multiple active communication environments on single van netbot 

6.3.2 THE WLI ROUTING ALGORITHM 

Let us now consider a scenario of the emergence of a wandering network. We point out that this 
example solely illustrates the capability of the WLI approach to handle routing in active ad-hoc 
mobile networks in a comprehensive, straightforward manner.  
 
The algorithm is called WARAAN, WLI Adaptive Routing Algorithm for Active Ad-hoc Networks, 
[Sim02b]. It is a Gnutella-like protocol [GNUT] which is not limited only to large scale peer-to-
peer networks and evolves its full potential in ad-hoc mobile networks where the algorithm can 
be layered with a few other routing algorithms and policies depending on the application context.  

                                                 
116 A first order autopoietic system maintains the stable, i.e. adaptable recursive, operation of its interactions inside the 

system itself, such as e.g. the internal metabolism of an organic cell. In our case, this corresponds to the self-
maintenance of the active nodes themselves. 
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Our example is based on the notion of an attributed non-terminal which was defined by Vogt, 
Swierstra, and Kuiper as a part of their milestone work on Higher-order Attributed Grammars 
(HAG), [VSK89], which is turn based on the historical contributions of Kastens [Kast80] and 
Knuth [Knuth68] on the semantic of context-free languages. In the past 30 years, attributed 
grammars have proved to be appropriate means for structured modelling in many language-
based application areas such as pattern recognition, [TsFu80], graphics systems design, 
[BaZa89], electronics and logic circuit programming, [Holm97], as well as neural networking 
[HuBr98]. Because the goal of all routing algorithms is “to discover the sink  trees for all 
routers”,   [Tan96], and because of the simple linear encoding of parsing  trees generated by the 
production rules of a context-free grammar, we preferred to use the HAG model in our WLI 
routing scenario with some modifications, instead of generating a more complex network model 
based on a general formal approach such as the graph grammars, [Goet88]. Moreover, the 
universality of higher-order tree transducers was recently motivated again by Noll and Vogler 
[NoVo01] for a series of applications. 
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We assume that the routing state of the wandering network is completely described by 
the set of reachability trees (r-trees) T  of the individual netbots in the network. A 
reachability tree is the replacement for a routing table in WLI. 

R

  
Mobile Definition 2: A reachability tree (r-tree), T , is a dynamic directed tree structure 
allocated in the operating communication environment of a WLI netbot and responsible for 
the base routing in a Wandering Network. The root of the r-tree is always the host netbot. 
The leaves and the intermediate nodes of the tree are the corresponding netbots from 
which the host netbot can be reached. Each netbot is responsible for: 

R

1. maintaining its r-tree by collecting information from the shuttles traversing that 
netbot;  

2. forwarding shuttles to other destinations; and  
3. reporting changes in the own r-tree structure, such as establishing new 

connections or cancelling old ones, to its neighbours.  
 
A modified higher-order attributed grammar  (HAG) represents our model for the netbot’s 
reachability tree. 

118

 
In our model, each node except the root represents an attributable virtual non-terminal. This 
means that at every single moment the r-tree can be expanded or collapsed at such a virtual 
non-terminal. They are synthesized attributes of this non-terminal represent the computed 
potential links to other netbots of the network. 
 

6.3.2.1 Informal Description   
Let us now go back to the construction  of reachability trees in WLI and assume two single 
netbots, A and B, freely traversing the two dimensional space.  

119
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117 To emphasise the netbot-related nature of the routing path generation in WLI, we decided to use the term 

“reachability tree” in this work. 
118 The formal definitions can be found in the appendix. 
119 The complete scenario for constituting a wandering network of  up to six netbots of the same fleet and than back to 

three and four netbots is given in the appendix. 



There is no connection established between them . Thus, each netbot contains only one single 
element in its reachability tree: itself, the root. Then, at some point of time both netbots approach 
each other within their access range. One of them, say A, initiates a connection protocol with the 
other netbot. The opposite side replies positively and the connection is established.  Next, each 
netbot constructs a new branch of its reachability tree ending at the new neighbour.   

120

 
At the next moment, a new netbot C approaches A and requests a connection. Upon a positive 
reply the connection is established and the local r-trees at each node are extended by the new 
branch. However, this time both B and C are unaware of the fact that they may contact each 
other by letting A to route the shuttles between them. Therefore, netbot A is required to inform 
each one of its neighbours about the existence of other members  in the network. This is 
achieved by encoding and encapsulating the correspondingly “missing branch” information as 
executable r-genes (reachability genes) into the r-shuttles  (routing shuttles) which A transmits 
to its neighbours. Instead of a destination address and a TTL-counter (time-to-live), each r-
shuttle is carrying an encoded tree branch called a q-tree (quest tree) it is required to traverse 
until being discarded at the end nodes . The communication environment can manipulate  
both the q-genes and the r-genes of an r-shuttle in order to update their information,   Figure 71. 
In case that netbot C also has some neighbors it can route to, it is required to send this 
information via r-shuttles towards A, which in turn takes care to distribute it along the remaining 
branches of its reachability tree.  

121
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123 124

 
Generating a new branch  of the r-tree on a netbot and dispatching r-shuttles to inform the 
neighbours about the change can be performed simultaneously. Besides, the same procedure is 
performed simultaneously on both sides of the newly established connection.  

125

                                                 
120 For the sake of simplifying the example, we postulate that all netbots have only one access range (frequency), so 
that the network is constructed within the same fleet. This implies the existence of only one fleet head which we define 
as the netbot which establishes the first connection (the originator). Of course, this role can be later transferred to 
other netbots depending on the changing environment of the network.   
121 We postulated in WLI that fairness and cooperation are a must. All kinds of hiding and manipulating information for 

any reason are not subject of this work.  
122 Reachablity shuttles in this scenario are much more likely to be regarded as dedicated mobile agents, ff. 
123 Of course, an r-tree update method using an IP-like final destination and a TTL-counter could be also applied to 

guide the r-shuttles and limit their rotation in the network. However, since r-shuttles have a particular role to inform 
the netbots on their path about changes in the r-tree of their originating netbot, it does not make much sense to 
generate multiple instances of them at the originator for each single node in the branch (multiple destinations). 
Moreover, r-tree updates are supposed to occur much seldom than the actual packet transmission between the 
netbots. Furthermore, while traversing the branch, a part of it may simply disappear for some reason, so that the r-
shuttle can be discarded at the intermediate node. In addition, we use this case study to demonstrate that the WLI 
shuttles may carry multiple instances of encoded structural information: here – one for the r-tree change of the 
originating node and one for the q-tree to be traversed by the r-shuttle. We claim that this executable information 
does not overload the r-shuttle because of the limited number of ad-hoc netbots communicating on the path (up to 5 
hops between two fleet clusters of a second degree hierarchy).     

124 Please note again that fairness has the highest priority in autopoietic WLI networks. 
125 There are two essential differences between Higher-order Attributed Grammars (HAGs) and reachability trees.  

Firstly, whereas a higher order attributed grammar is constituted of terminals, non-terminals, and inherited and 
synthesized attributes, a reachability tree is constituted only of non-terminals which can be attributed later by 
synthesized attributes. Secondly, whereas a HAG can be only expanded by a branch in a parsing tree, a 
reachability tree can be expanded and collapsed, at any single node of the tree.   
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Figure 71: A communication environment manipulating the genetic structure of r-shuttles 

 
These are two important advantages of the distributed WLI routing algorithm. We claim that by 
using the r-tree and q-tree types of encoding in the shuttles, the updated routing information is 
sent effectively to all affected nodes of the network. The computing overhead for encoding and 
decoding the r-trees should be considered as minimal because of the event related character of 
the reachability tree updates. 
 
Figure 72 illustrates  the first two steps of the WLI routing algorithm , the projection phase: 126 127

i) Connect (X, Y) & Build (T’ ,T’ ), and X Y
ii) Inform (X, Y, T  ,T ). X Y

 
We call the second phase of the WLI algorithm the capturing one. It starts with the evaluation of 
the incoming shuttles and the expansion of the r-trees at the referred non-terminals by the 
“missed branches” encoded in the r-genes. 
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126 The coloured circles denote acting nodes with the red one being the new netbot joining the network. The oval 
legends display the (parts of the) r-tree contents represented in the particular elements with the colour ones being 
active in the particular step of the algorithm. The shuttles on the figures are assumed to contain q-genes.      
127 The notion is taken for the general case of two netbots X and Y and their reachability trees TX and TY . The prime 
sign upon T means the next state or the change of the reachability tree. 
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Figure 72: Projection: building and transporting r-trees  

 
As soon as the r-shuttles arrive at their destinations, they are guided to the corresponding 
communication environment responsible for the link they come from. The CE then unpacks the 
“missing branch” information encoded in the r-genes, which are part of the executable code 
carried by the r-shuttle, and verifies it with the structure of its reachability tree. If the delivered 
information is redundant, it is discarded. For instance, this happens when the r-tree has been 
already constituted that way that the r-gene information represents a sub-branch of the netbot’s 
r-tree (perhaps by a previously delivered shuttle from some other source ). In case that the 
“new branch” information is a really new one, the CE takes care for expanding the r-tree at that 
virtual non-terminal which is assigned to be a root in the sub-tree encoded in the corresponding 
r-gene,   Figure 73, step iii.  

128

 
Finally, the reachability trees of all netbots are verified against each other (Figure 73, step iv) by 
broadcasting periodically r-shuttles containing the entire r-tree to the neighbors which analyze 
the incoming information on their side with the local tree structure and send back their feedback 
to the originating node. If no feedback is registered on, a connection after some period has 
elapsed, the associated link is considered for failed and the change is reflected in the local r-tree 
and reported to the neighbors. If the requested netbot is only an intermediate station on the path 
of the shuttle, the responsible CE updates the netbot’s reachability tree by the r-shuttle’s 
information and forwards it to the next hop on the shuttle’s path. If there are any new structural 
changes on the shuttle’s route ahead known by the CE, the shuttle’s q-tree is updated .   129

                                                 
128 Please refer to the complete 6-netbot example in the appendix. 
129 The r-tree can be also updated if there has been some recent changes in the source netbot connectivity known for 

some reason by the intermediate netbot, provided that the intermediate netbot is allowed to make such changes.  
For the moment, we assume the following: once being encoded in an r-shuttle, the r-tree remains unchanged (read-
only).       
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Figure 73: Capturing: expanding and verifying r-trees 
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Figure 74: Projecting the inclusion of the sixth node of a wandering network 
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Figure 74 and Figure 75 illustrate the more complex example of updating the r-trees in “three-
nodes-ahead” evolving ad-hoc architecture . Note, that the same four steps – Connect, 
Inform, Expand and Verify -, are taking place every time a new netbot joins the fleet. This 
is because of the distributed and parallel nature of the WLI algorithm which complexity  is 
estimated to be O (4 + m), where “m” is the maximum number of hops throughout all r-trees in 
all nodes participating the network.  

130

131
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Figure 75: Capturing the inclusion of the 6  node of a wandering network th

Note that the small coloured circles inside the netbots A and D in step ii on Figure 74 denote  
the dual nature of the node in two consecutive steps: a) it acts as a virtual non-terminal  (  
[VSK89]) which expands its r-tree at some node upon evaluating the first incoming r-shuttle 
which delivers new information about the connectivity of that node, and b) it acts as a router/ 
filter/replicator  for all other incoming shuttles with the same r-gene content from that node.   

132

133

                                                 
130 Please refer to the appendix for tracking the consecutive steps of the network expansion.  
131 Note: the above assumption holds for flat hierarchies, i.e. the ones with only one level of interaction: the fleet or the 

local cluster as an ad-hoc distributed network (i.e. without a “head”). In case that new hierarchies are introduced, 
we have to adjust  the algorithm to match the emerging levels and architectures of interaction. However, even then, 
the number of steps of the algorithm is progressive, yet limited which allows us to easily combine our approach with 
some well-known multi-level clustering strategies in ad-hoc mobile networking such as [ , , . 
In each O(x) formula we imply 1 step for verification

GeTs95] [Shar96] [Iwa99]
 at the end of the cycle. 

132 The new link computed and assigned to the r-tree by the local CE after decoding and evaluating the r-gene of the 
incoming r-shuttle is a new synthesized attribute of the virtual non-terminal “netbot”. 

133 in case that meanwhile there has been established a new link ending at that node which is not considered in the q-
tree of the incoming shuttle at the time of its encoding in the source netbot.  
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In case that a new, direct link is established between two netbots which already communicate  
through other nodes, the “shortcut” is passed through as a new branch in the r-trees of the both 
netbots as shown on Figure 76. Then, in the same step of the algorithm, each r-tree is depth-
searched again to eliminate the dummy links and relocate the remaining branches on a shortcut 
path. For instance, in our case the link (B,D) is cancelled in the r-tree of netbot A, since there 
exists a shorter path from D to A. Analogously, the link (B, A) is cut through in the reachability 
tree of netbot D because D and A are now communicating directly, and not via B.  

134

 
However, since A leads to C on that path and there is no other way for C to reach D, except 
through A, so the (A, C) branch is relocated, i.e. expanded, at the newly generated A. The 
complexity of this part of the WLI algorithm is O (4).   
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Figure 76: Introducing a Short-Cut 

 Finally, let us consider the propagation of the r-tree changes when a netbot leaves the fleet for 
some reason (failure, movement, etc.) as shown on Figure 77.  Firstly, the netbot can leave the 
network gracefully by informing its neighbours for his intention. Secondly, even if the netbot is 
going to leave the network spontaneously, this case can be reduced to the graceful one.   
 

                                                 
134 i.e. both netbots are already present as virtual non-terminals in each others’ r-trees 
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Figure 77: Projection of and capturing the exclusion of an intermediate node 

 
Each netbot can maintain an alarm shuttle (a-shuttle) containing an a-gene with the first level of 
the netbot’s reachability tree which includes the direct neighbours as leaves. The a-shuttle has a 
unique identifier that can be recognized by any netbot in the network. When the netbot intends to 
leave the network, it fires replicas of the alarm shuttle in all directions as a last action before 
going to inform its neighbours about this event. The a-shuttle is updated as soon as the first level 
netbot connectivity changes. This function is maintained in parallel with the rest of the netbot’s 
activities and does not require a specific schedule . 135

 
As soon as the a-shuttle reaches a netbot, its a-gene is unpacked and the local r-tree is updated 
with the new information. If the same shuttle comes later, e.g. from another line, its content is 
simply discarded and the shuttle is forwarded to the outgoing lines. Alarm shuttles may 
implement a TTL data field such as in the common data packets to spare the q-gene and though 
to limit their circulation in the network.  
 
The complexity of this part of the algorithm is O (3+m), where “m” is the maximum number of 
hops throughout all r-trees in all nodes participating the network. This value includes the firing of 
the shuttles (1), the collapse of the r-trees in each netbot (2), and the verification of the r-trees 
(3), which may take several steps depending on the newly emerged topology of the network, but 
though regarded by us as a single linear step.  

                                                 
135 For instance, it can be performed each time a new link is established or an old one is cancelled.  
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6.3.2.2 The TLA Specification Technique 
In the following, for understanding the WLI ad-hoc algorithm specification, we shortly introduce 
the major concepts of Temporal Logic (TL) and its Lamport’s extension, the Temporal Logic of 
Actions (TLA). Further details about these formalisms can be found in [MaPn92], [Lamp94] and 
[Lamp01]. Appendix B provides a compact reference guide to TLA. 
 
Temporal Logic (TL) was first defined by J.A.W. Kamp [Kamp68] in 1968 and introduced by Amir 
Pnueli [Pnu77] in 1977 as a specification language for reactive and concurrent systems. 
Temporal Logic is an extension to conventional propositional logic, the type of logic that exists in 
almost any software program or hardware model, such as a C statement: 
 

if ((x > 0) && ((y == 2) || (x < z + y))) {...} 
 
Propositional logic considers atomic propositions (like x > 0 or y == 2) and operators such as 
and, or, and not. Temporal Logic introduces temporal operators which allow us to describe 
the temporal properties of a system. For instance, a requirement like: “now x>0 and y>0 

 (in the future)” can be specified as “{x>0} && {y>0}”. Similarly, the 
expression “  x >0 and y > 0  x == y + z”, can be written as follows: 
“{  x> 0} && {y > 0}  {x == y + z}”. 

sometime <>
next until

() U
 
Temporal Logic introduces the following future operators: 

• Next, written  as () or as (+), which asserts about a property holding the during next 
time unit (during the next cycle). 

136

• Always (in the future), written as [] or as [+], which asserts about a property being 
true always in the future. 

• Sometime (in the future), written as <> or as <+>, which asserts about a property 
being true sometime in the future. 

• Until, written as U (e.g. ρ U ψ), which asserts about a property or assertion ρ being true 
until sometime in the future when property ψ becomes true. 

 
These future operators have corresponding past operators: 

• Previous, written as (-), which asserts about a property holding the during previous 
time unit (during the previous cycle). 

• Always in the past, written as [-], which asserts about a property being true always in 
the past. 

• Sometime in the past, written as <->, which asserts about a property being true 
sometime in the past. 

• Since, written as S (e.g. ρ S ψ), which asserts about a property or assertion ρ being true 
since sometime in the past when property ψ became true. 

 

                                                 
136 Some unary temporal operators such as Next may use a prefix and/or a postfix notation as e.g. the prime operator 

(“‘”)  in “x’”.   
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Some temporal logics divide temporal assertions about a system’s behaviour into safety vs. 
liveness properties.   
 

Temporal Definition 1: Safety - no matter what inputs are given and no matter how 
choices are resolved inside the system design, the system will not get into a specific 
undesirable situation, such as emission of undesirable outputs, or undesirable modes of 
operation being reached. 

 
Temporal Definition 2: Liveness - some desired configuration will be visited eventually, 
or some output will be generated eventually.  

 
Safety properties can be used to verify that certain necessary relationships between signals 
always hold, such as a request signal must always be low for at least one cycle prior to an 
acknowledge signal going high.  
 
Safety properties are typically described using the Temporal always operator (the [] box). For 
example, we can write using the “()” next cycle operator:  

 []({readySignal == 1} → (){ackSignal == 0}) 
and read  

always readySignal == 1  implies next   ackSignal == 0 137

 
The example: 

 []({readySignal == 1} → (-){ackSignal == 0}) 
is read:  

always readySignal == 1  implies  before  ackSignal == 0 138

 
Liveness properties are typically described with the temporal eventually operator (the <> box). 
For example:  
 

<>{out1==1} && ()()[]{out2 < 2} && (-){out3==0} 
 
is read: “eventually, sometime in the future, out1==1, and, two cycles later and thereafter 
out2<2, and a cycle earlier out3==0”.  
 
Hardware setup and hold properties in Temporal Logic are safety properties. For example, the 
dmaRdy signal requires 1 cycles address setup time:  
 

[]{dmaRdy==1} → (-)Stable1(Addr) 
 
where Stable1(Addr) means that Addr is stable for 1 cycle. The above expression 
illustrates how Temporal Logic caters for assertions about the past as well as the future.  
 

                                                 
137 i.e. one cycle later 
138 i.e. one cycle earlier 

 210 



6.3.2.2.1. Temporal Logic and Reactive Systems  
There are two categories of system behavior (Figure 78):  
 

(a) Transformational (Sub-)Systems are those that have all inputs ready when 
invoked and the outputs are produced after a certain processing period. 
Examples of Transformational Systems are data acquisition and multimedia 
compression systems (in software and hardware) or even a simple computation 
procedure. 

 
(b) Reactive (Sub-)Systems never have all its inputs ready -- the inputs arrive in 

endless and perhaps unexpected sequences. It is virtually impossible to write a 
transformational program that implements a controller such as this. In fact, most 
controllers are by definition reactive, not transformational, with application 
domains ranging from process control, military, aerospace, and automotive 
applications to DSP, ASIC design, medical electronics, and similar embedded 
systems (e.g. a traffic-light controller, the Pathfinder mission).  

A 
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System

timeInputs
Ready

Outputs
Ready

A 
Reactive 
System

time

Transformational vs. Reactive Temporal Systems

 
 

Figure 78: Comparing transformational and reactive systems 

Whereas a transformational (sub-)system performs an internal, dedicated, and often time-
independent function, almost every system has a reactive component, because it is seldom 
isolated from the surrounding environment. On the contrary, the reason that the system exists is 
typically to collaborate or interact with some entity or entities in its environment. Thus, sending, 
receiving, recognizing and ordering sequences of data such as the behavior of a communication 
protocol is an event-driven, undeterministic, activity within a reactive system.   
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Temporal Logic defines a formal way for asserting and specifying program behaviour as a 
function of time. It also provides the adequate formal means for reasoning about time-critical 
characteristics of reactive systems. For instance, a traffic-light controller needs to assert: 
 

[]((RedOn → <> GreenOn) && (GreenOn → <> RedOn)) 
 
which reads: “always (i.e., now and any time in the future), either the lights are red, in which 
case there exists a time further in the future where lights will be green, or lights are green, in 
which case there exists a time in the future where lights will be red”. 
 
Statecharts are often considered as an adequate specification language for automata and 
hence for communication protocols. In our opinion (which is the commonly accepted 
opinion in the research community), statecharts are  a specification formalism, even 
though they are a very good high-level design tool. The difference can be shown in the 
following example which can be easily described using a TL assertion.  

not

 
Every time in the future where isReady==1, one of the following should be true:  
a) x==1 in the preceding cycle, x==0 in the following cycle, and starting at the following cycle 

y==1 until some cycle further in the future where z==0. 
b) z==0 since some cycle in the past when y==1 occurred followed by y==0 a cycle later. 
 
In temporal logic we can write: 
 
[]({isReady ==1}  -> ( 
   ((-){x==1) && {x==0} && ()({y==1} U {z==0})) ||  //  (a) 
        ( {z==0} S ({y==1} && (){y==0}) )           //  (b) 

  )) 
 
One can try to construct the corresponding statechart or state diagram for these assertions. She 
will realize that she is starting to implement the specification using a state-based tool, an 
implementation which is far more complex (typically exponentially or even larger in size), 
unintuitive, and error-prone. In short, an implementation is not a good specification vehicle.  
 
6.3.2.2.2. Advocating TLA  
In the beginning of his seminal paper on TLA [Lamp94], Leslie Lamport argues: 
 

"Reasoning about 5000 lines of C would be a Herculean task, but we can reason 
about a one-page abstract algorithm. By starting from a correct algorithm, we can 
avoid the timing-dependent synchronization errors that are the bane of concurrent 
programming. If the algorithms we reason about are not real, compilable 
programs, then they do not have to be written in a programming language.” 

 
This introduction clearly identifies the main reason for which we also decided to use TLA to 
specify formally the WLI routing model.  
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The referred example in the above citation was the distributed spanning-tree algorithm used in 
the DEC’s Autonet local area network [Schr90]. According to Lamport, the algorithm could be 
described in about one page of pseudo-code, but its implementation required about 5000 lines of 
C code and 500 lines of assembly code . 139

 
The temporal logic of actions (TLA) is both very flexible and adequately expressive. It is a 
combination of two logics: a logic of actions and the standard temporal logic (TL). TLA is mostly 
applied to reasoning about concurrent systems (algorithms) which is supported by ordinary 
mathematics formulas.  
 
A concurrent algorithm is usually specified with a program. Concurrent programs are more 
complex than simple procedural programming languages. Correctness of the algorithm means 
that the program satisfies a desired property. The main goal of TLA specifications is to detect 
algorithmic errors. 
 
In TLA, both systems (algorithms) and their properties are specified by formulas in the same 
logic. The assertion that a system meets its specification and the assertion that one system 
implements another are both expressed by logical implication. Thus, the essence of a TLA 
specification is a theory stating that the correctness of the algorithm implies the property of the 
system, where implies is the ordinary logical implication. 
 
TLA is very simple; its syntax and complete formal semantics are summarized in about a page 
(Appendix B). Yet, TLA is extremely powerful, both in theory and in practice. It uses ordinary 
mathematics, plus some temporal logic to express safety and liveness properties, and has the 
usual modularity, binding and hiding features one needs from a specification language. The 
ability to express ordinary mathematics without change is very important for real-time 
behavioural properties of the system such as dynamic QoS parameters. There are no research 
needs to be done on how to incorporate these in the specification. Lamport has already shown 
how to treat real-time, and statistical parameters are just defined as mathematical formulas in a 
TLA module. In this way, all system properties may be expressed as a conjunction of a safety 
property with a liveness property. 
  
Other formal methods like Petri Nets do not express liveness properties of any 
specification.  Liveness is essential for quality of service (not just liveness but also 
timeliness!). Process-algebraic approaches do not explicitly express arbitrary liveness 
properties either. Extensions to both Petri Nets and process algebras to incorporate 
certain timing features and statistical features have been proposed. However, the 
advantage of TLA is that we do not need to figure out whether some proposed extension 
is a good or a bad idea. It can be just put in the model in ordinary mathematics formulae, 
as it is. 
 
We consider the following main reasons for using TLA  as a description technique for the WLI 
model: 

+

                                                 
139 Assembly code was needed because C has no primitives for sending messages across wires. 
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1. Formalization: TLA  is a complete formal language, with a precise syntax and formal 
semantics.  It has two specific characteristics: 

+

a. TLA  does not allow the specification of Boolean valued variables to avoid the 
problem of formalizing Boolean arrays x[e] which leads to complicated syntactic 
and semantic rules and undefined formulas when allowing expressions of the 
form [](x[e]). 

+

b. TLA  also does not allow types because they do not lead to completely formal 
definitions. Instead, Lamport uses operators to generate the required data 
structures. 

+

 
2. Realm of Applicability: Formal languages often have limited realms of applicability. Not 

all system properties of interest can be expressed in one single language .  The TLA  
technique does not have built-in primitives for real-time systems or procedures, but it can 
easily specify a quite broad class of communicating systems. 

140 +

 
3. Simplicity: TLA  is simple enough for practical applications . In addition, TLA  

specifications can be written in ASCII . Hence, we join the Lamport's claim [Lamp93] 
that a language which can define the Riemann’s integral in 15 lines is powerful enough to 
express any mathematical concepts likely to arise in real specifications. 

+ 141 +

142

 
4. Practical Orientation: There are quite many formalisms for system specification, but 

only a few of them are also practical methods supported by tools. It is hard to define a 
language that is powerful enough to handle practical problems and yet has a precise 
formal semantics. 

 
5. Verifiability: An important reason for selecting a formalism is how good it is for formal 

verification.  A method based on logic has an advantage over one based on another 
formal language (such as LOTOS and SDL) because one does not have to translate from 
the specification language to a logic for reasoning. TLA works well in practice because 
most of the reasoning is in the domain of actions, the realm of “ordinary'' mathematical 
reasoning and because the use of temporal logic is minimal to simplify the reasoning .  
One reason is that the deduction principle, from which one deduces P => Q by 
assuming P and proving Q, is invalid for most modal logics . 

143

144

 

                                                 
140 For example, the Duration Calculus e real-time properties, but it cannot express simple liveness. 
141 The specification of a gas burner introduced in  and discussed in  requires continuous 

mathematics such as the definition of  the Riemann integral a�b (f) over the closed interval {a,b} of real numbers. 
142 Lamport’s typesetter program TLATEX [Lamp01] produces pretty-printed TLA+ specifications directly from ASCII. 
143 Modal Logics, such as Temporal Logic and the Duration Calculus, are more difficult to use than Ordinary Logic. 
144 Engberg et al.  have found that formalizing temporal logic reasoning to be much more difficult than 

formalizing ordinary mathematical reasoning.  Temporal logic proofs that look simple when done by hand can be 
tedious to check mechanically. However, they claim that mechanical verification of TLA proofs is feasible largely 
because it involves very little temporal logic. 

[RRH93] can defin

[RRH93] [Lamp93]

[Eng92]
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By using the TLA technique, it is possible to verify a service component against itself for the 
properties of safety and liveness. This is a very important requirement for communicating 
systems, since it provides a clear statement about the functional correctness of the system 
before any code is generated. In this way, we spare the phase of software verification and 
development time to redesign a probably wrong component is saved. 
 
6.3.2.3 Formal Description 
Our specifications are based on a few module examples recently published by Lamport in his 
book draft on TLA145, [Lamp01]. TLA+ specifications provide a coherent and concise way of 
communicating a design. They are formal descriptions to which tools can be applied for finding 
errors in the design and for testing the system. For instance, Figure 79 illustrates the 
construction of a reusable asynchronous network interface in TLA out of a stand-alone module. 
The interested reader is further kindly advised to consult the above reference, as well as 
Appendices B and C of this thesis work for detailed descriptions. 
 

 
 

Figure 79: A TLA building block for a network interface 

                                                 
145 For further details about the Temporal Logic of Actions (TLA), the reader is kindly asked to refer to the TLA web 

page: http://www.research.compaq.com/SRC/personal/lamport/tla/.  
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We have generated and verified the WLI routing algorithm with the WinEdt146 text editor and the 
TLA tools provided in the above source145: the TLATEX typesetter, the SANY Syntax Analyser, 
and the TLC Model Checker running on Sun’s JRE-SE-1.3.1 under Windows 2000.  Figure 80 
demonstrates the run down of the three phases of model checking for the example in Figure 79 
with the TLA toolset: i) syntax analysis (parsing and semantic processing of external modules), 
ii) TLA type setting, and iii) model checking.  In the following, we provide a step-by-step 
description of the core part of our adaptive routing specification for an active ad-hoc mobile 
wireless network.  

Lamport’s TLA Toolset : SANY Syntax Analyser,
TLATEX Typesetter and TLC Model Checker 

 

Figure 80: A trace of the TLA toolset on the WLI-based ad-hoc routing algorithm 

Figure 81 illustrates the propagation of the reachability tree information between two netbots in a 
wandering network.  The top part of this figure represents the horizontal network architecture, 
whereas the bottom’s part – a vertical view of it.  In each netbot, we clearly identify routing 
related communication environments (CE) operating upon input and output channels (inChan, 
outChan) with their FIFO queues (in, out) of length q.  
 
To simplify our model to a level suitable for formalization, we allocated the above entities inside 
the NodeOS. Nevertheless, a network object such as the CE happens to maintain its 
image/instantiation at the application level in order to operate with other executing environments. 
This functionality which may be related to other characteristics of the network such as QoS 
control and maintenance can be additionally provided to the core description we are currently 
interested in this case study – the WLI-based active ad-hoc routing. 

                                                 
146 http://www.winedt.com  
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The essential characteristic of our WLI model is the dynamically adaptable routing algorithm and 
the propagation of the reachability tree information by means of the so-called r-shuttles which 
contain executable descriptions of the changes inside a reachability tree (structural code) in r-
genes, as well as the always actual routing descriptions (navigation code) in q-genes.  
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Figure 81: Propagating the reachability tree information in a wandering network 

The most important aspect when starting the formal design of a system is the level of abstraction 
or the “grain of atomicity” and the choice of what system changes and where they have to be 
represented as a single step or a sequence of steps in behaviour . TLA  is particularly effective 
at revealing concurrency errors. Since the purpose of our specification is to catch errors caused 
by the synchronous interaction of concurrently executing components, we avoid describing 
unnecessary details of the data structures.  

147 +

 
Figure 82 represents the main netbot abstractions of our routing-related model of the wandering 
network that are formally described and discussed below in TLA  [Lamp94].  +

 
There are three types of entities we use in this model: a communication channel, an active 
communication environment (CE), and a reachability tree. Two of them , the communication 
channel and the CE of a netbot can be represented as a set of FIFO queues operating on 
shuttles as shown on Figure 83.  

148
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147 A coarser- grained specification is simpler than the finer-grained one. However, finer-grained specifications are 

more accurate. 
148 The reachability tree (RT) and the implementation of the routing algorithm itself with its shuttle processing 

functionality in the communication environment can be modelled as processor and memory specifications. 
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Figure 82: The abstract ad-hoc routing model of a wandering network 

 
According the TLA system model, it consists of three parts: 
 

• a header, containing declarations of variables, constants and external interface 
(extensions ) of the specification, as well as a predicate about the initial state of the 
system optionally followed a type invariance  predicate;  

149

150

• a body, consisting of predicates and actions describing state changes of the system 
which are directly addressed by the next step predicate at the end , and  151

• the tail, addressing the entire specification of the module as a single conjunction of the 
initial state definition and an always repeating sequence of next steps introduced by the 
temporal operator □.  

 
The tail part may also contain additional temporal logic formulas addressing theorems and proof 
rules for the safety and liveness conditions of the system specification.  
 

                                                 
149 Appendix D provides the complete description of the external TLA+ modules used in this work. 
150  TLA is an untyped logic. 
151  predicates, actions and functions in TLA are defined in a precedence order of appearance. 
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Modeling A Ship’s I/O 
as a Sequence of FIFO Queues 
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inChan FIFO Queue
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Figure 83: A component based model of a netbot’s I/O 

The TLA  specification of a single FIFO queue is given on Figure 84.  +

FIFO 
Sender ReceiverBufferin out

q

SenderAction

Buffer Actions

Receiver Action

 

Figure 84: The TLA  specification of a FIFO queue  +
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The core part of our WLI-based ad-hoc mobile routing algorithm is the specification of the 
dynamical development and maintenance of a netbot’s reachability tree as a function of its own 
and its’ neighbours connectivity to the environment based on the trusted , instant information 
exchange among the netbots.  

152

 
What we are interested in is an effective method to encode tree structures in a linear form in 
order to implant them as executable, or parsing,   information into shuttles which in turn transport 
this information to other netbots. We selected a LISP like encoding of the tree structure which 
can be easily parsed and updated on the receiver side. An example of such an encoding and its 
stepwise development is illustrated on Figure 85.  
 
From step 1 through step 10 the connectivity of netbot/node A is stretched out to other ad-hoc 
nodes of the WLI network. Every new level of descendants in the tree hierarchy is enclosed by 
interlocking braces where the children of a parent node are separated by commas. Steps 11 and 
12 represent the disconnection of two nodes, C and F respectively, where in the first case the 
whole C branch is taken out of the A’s reachability tree (r-tree).   
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Figure 85: A stepwise linear encoding of a netbot’s reachability tree 

Next, Figure 86 describes the complete maintenance of a netbot’s reachability tree in TLA . +

 
                                                 
152 A Wandering Network is an autopoietic system, and hence by definition, - not a playground for the Byzantine 

generals problem. Of course, a netbots’ communication environment is assumed to provide at least a minimal level 
of a “sandbox” security prevention.   
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Figure 86: Maintaining a netbot’s reachability tree in TLA  +
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Essentially, the module CERtreeMaint (Communication Environment Reachability tree 
Maintenance) is constituted of the three basic parts of a TLA specification (header, body and tail) 
where significant descriptions are separated in segments by horizontal lines and comments are 
given in a grey shadowed background. 
 
The header part extends the standard TLA modules [Lamp01] for natural numbers, sequences, 
graphs and BNF grammars. It also declares the variables which lead to specifying a netbot's 
identifier, as well as the type invariance definition stating that no two netbot’s identifiers (e.g. IP 
addresses, or simply names) are the same. Furthermore, the header entails a description of the 
initial state of the reachability tree, RTree_Init, characterized by the conjunction of the type 
invariance statement, the r-tree "flat-embracing" encoding (token string, Figure 85) Rtree 
containing only the root of the tree, the empty token string of the root's children, and the zero 
length variable addressing the last child element of the netbot’s reachability tree.    
 
The body part of the module is constituted of three action descriptions of the changes to take 
place in a netbot’s reachability tree when a new netbot/node joins the network or an old one 
leaves it:  

• DelNode (n) takes an old node’s identifier as an argument and removes it along with its 
descendants (the entire tree branch) from a netbot’s r-tree without leaving the empty 
spaces in the encoded token string shown on Figure 85.   

• Add1Node (n) takes a new node’s identifier as an argument and includes it as a direct 
descendant (1st degree parenthood) along with its own children (if any) into a netbot’s 
reachability tree. This action is performed after establishing a connection between a new 
netbot and its “entry point” into the network and exchanging the first r-shuttles between 
them.   

• Add2Node(s) takes a new node’s identifier as an argument and includes it as an indirect 
descendant (2  degree parenthood) in some branch of a netbot’s reachability tree. This 
action is performed after obtaining a forwarded r-shuttle with the information of some 
netbot’s branch extension resulting from a new node’s joining the network.  

d

 
The IF-THEN-ELSE statements address details of the preconditions required to perform the 
required changes in an r-tree’s structure. The definitions of the unfamiliar operators can be found 
in the standard basic modules about sequences, graphs and natural numbers in the appendix C 
of this work.  
 
The module’s body is terminated by the RTree_Next definition stating that the next state of a 
reachability tree can be one of the above three actions.  
 
The tail of the specification contains a temporal formula about the entire r-tree specification, 
RTree_Spec, which is represented as a logical conjunction of the initial state RTree_Init and an 
always occurring next state RTree_Next where the state variables are given as indexed 
arguments. Finally, the tail part is concluded by a theorem stating that a correct RTree_Spec 
specification always implies type invariance of the reachability tree. 
 

* * * 
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A part of the behaviour of a netbot’s communication environment w. r. t. realising the WLI routing 
algorithm, the module InnerCEInstanced, is illustrated on Figure 87 through Figure 89. The grey 
shadowed comments are either explaining some detail of the specification or referring to 
placeholders for further module enhancements. In the above description, we addressed in detail 
and for demonstration purposes only the segments of the algorithm responsible for the 
maintenance of a node’s reachability tree.   
 
The introducing section of the specification (A) on Figure 87 begins with the header part as an 
extension of the previously described module CERtreeMaint and the declaration of the variables 
and constants. In addition, two assumptions have been included as comments, as well as a 
“ZERO” operator (Z) as placeholder for further system refinements. In the remaining part of the 
figure, two equivalent descriptions are given: one for the input channel of a netbot’s 
communication environment, and one for its output channel. Each one of these descriptions 
describes the corresponding instantiation of an asynchronous channel following the standard 
frame of a FIFO sequence provided in [Lamp01]. 
 
The specification continues with Figure 88 and the core operations upon a recognized r-shuttle 
inside the “buffer” of a netbot’s communication environment. The presentation begins with a type 
invariance statement for the CE’s buffer, followed by the standard RBuf_Init operator. 
Characteristic for the evaluation of this part of the description are the transported shuttle tree 
content, Stree, of some netbot’s “flatly” encoded r-tree structure or part of it as 
incremental/decreasing network connectivity, and the shuttle identifier, Sid, defining the shuttle 
as a leaving one (fired when a netbot leaves the network), belonging to a netbot’s own 
neighbours, or to some of its neighbours’ neighbours of degree  ≥ 2.  The CE buffer section of 
the module’s body part includes two main actions: 1) fetching the r-shuttle from the input 
channel, RShuttle_Fetch (p), and 2) update of the netbot’s r-tree based on the r-shuttle 
information from the input buffer channel, RTree_in_Up.  The result of these actions is 
summarized as a logical conjunction in the operator RBuf_Proc (p) addressing the CE’s buffer 
processing. The Z placeholders refer to actions which are not part of the specification yet.   
 
A few details of the algorithm that should be considered in an extended version of the routing 
algorithm have been included as comments at the end of the RBuf specification on Figure 88. 
 
The final part of the WLI-based CE’s routing specification shown on Figure 89 represents a 
version of the Lamport’s FIFO queue description (Figure 84, [Lamp01]) which is enhanced by 
the reachability tree initiation predicate RTree_Init introduced in the CERtreeMaint module, and 
the RBufExec action addressing RBuf_Proc and the characteristic active network processing 
inside a netbot’s  communication environment.   
 
The next step in applying our WLI approach to dynamic routing in ad-hoc wireless mobile 
networks is the verification of the TLA specification against conditions for safety and liveness (to 
be defined), and finally - the code generation (Java, C++).  
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Figure 87: The routing behaviour of a netbot’s communication environment, section A 
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Figure 88: The routing behaviour of a netbot’s communication environment, section B 
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Figure 89: The routing behaviour of a netbot’s communication environment, section C 

 

 226 



6.3.3 CONCLUSIONS 

Ad-hoc networks provide a completely new way for realizing mobile communication when no 
fixed infrastructure is available. Path selection is one of the key points in designing such 
networks, since there is no base station as in cellular networks, which can access all other 
stations via broadcast. Traditional routing algorithms are not very effective in ad-hoc networks 
with dynamic topologies. For this reason, existing algorithms has to be expanded or new 
algorithms developed. Big clusters of mobile nodes are usually supported by hierarchical 
approaches in routing, since algorithms like DSDV cannot scale very well. In particular, the 
transmission benchmarks in wired and wireless networks such as authentication/security, timing 
and QoS differ for knowledge about the characteristics of the lower layers. For instance, 
information about interferences at the physical and the data link layers can essentially contribute 
to finding a suitable route between two mobile stations.  This task becomes even more difficult to 
treat when the fluctuations in node connectivity (e.g. channel and bandwidth availability) 
spontaneously change. Therefore, adaptive routing algorithms, which are capable to adjust to 
changing environmental conditions in order to maintain a negotiated QoS, are highly desired in 
ad-hoc networking.  
 
In this chapter, we demonstrated the application of the WLI approach for autopoietic (self-
creating) reachability tree maintenance to support adaptive routing in active mobile ad-
hoc networks. We proposed Wandering Network architecture, a methodology and a high-
level distributed routing algorithm, which fulfill the requirements for fast update and 
propagation of the connectivity information in a dynamically changing environment. This 
pure application layer algorithm does not consider any low layer feedback information 
such as wireless channel interference labeling and weighting to select a route. It is not an 
optimization algorithm either. The WARAAN algorithm solely demonstrates the 
applicability of active network technology, extended by the WLI framework, to 
maintaining and distributing connectivity information along existing links in a 
dynamically changing network topology.  The algorithm was tested for correctness and 
can be implemented next in an arbitrary distributed programming platform.  
 
Nevertheless, it is wrong to expect that there will be a universal ad-hoc routing algorithm for any 
kind of application networking scenario with minimal computing overhead and maximum 
performance and reliability. Much more, we should work towards an expanding and on-demand 
configurable set of routing plug-in modules reflecting the particular conditions of the network. 
Therefore, in order to provide a custom solution which includes additional networking information 
such as the direction/symmetry, synchronicity or the quality ranking (interferences, noise/signal 
ratio) of a connection, the r-tree update algorithm, and hence a netbot’s CE functionality, 
presented on Figure 87 through Figure 89 have to be extended by further modules addressing 
the specific features of the desired methodology which can be activated on demand or when 
certain conditions are fulfilled.  
 
Active networking, the WLI model frame and the TLA formal technique provide excellent 
means for generating solutions in such a complex application domain as mobile ad-hoc 
networking. The autonomous dynamic updates of a netbot’s reachability tree are only an 
example for the suitability of the WLI approach to addressing autopoietic processes in 
evolutionary networking.  
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6.4 SUMMARY  

Science is a method of perceiving, describing and verifying. In this regard, it also determines 
how we see the world and what we reason about it. In that the perceiver in science is a human 
being, by virtue of our sensory organs, there are limitations constraining what can be and is seen 
at any given time. As such, science changes as our ability to perceive changes. As technology 
and engineering are our natural means to expand our senses and explore the world, they enable 
science or development of thought. Science in turn generates a new order of things and results 
obtained by technology; it provides the new goals and directions. 
 
Until recently, both software and hardware were separated concepts. The design principle was: 
“Stop the hardware to run/configure the software, or stop the software to run/configure the 
hardware”, at least in terms of evolutionary technology. This is because software is more flexible 
and hardware is more powerful (by default).  Active networking and configurable computing 
already began to integrate the design in parallel networking solutions. The advantages of these 
approaches have been presented in the previous sections. Doubtlessly, top-front research areas 
such as software radios and virtual hardware are very challenging. Yet, at this point, we started 
asking WHY and HOW.   
 
Therefore, we defined our future scientific task as to discover and keep track of the 
synthetic patterns of networking, both in software and hardware design, by using formal 
methods and developing their apparatus.  
 
We defined the Wandering Logic Intelligence (WLI) as an evolving model of Wandering 
Networks. WLI generalizes AN capsules in shuttles as relatively autonomous mobile 
components including both programs and data possibly encoded in a language with (semantic) 
references  to netbots and other shuttles within the same or a different domain/flow (protocol).  153

 
The following enhancements of the traditional AN models are achieved with the Wandering 
Network approach: 
 

• Active nodes may be mobile, - hence the name netbots -, and re-configurable (in terms 
of software and hardware). In addition to traditional active nodes, shuttles can also 
modify  netbots.   154

 
• A netbot’s runtime re-configuration can be invoked by internal procedures or upon 

execution of newly arrived shuttles. Autonomous mobile hardware components 
(netbots) take care for delivering their own “driver” routines (mobile code) at “docking 
time” on the netbot. 

                                                 
153 This language should be capable to address in a uniform way even such issues as hypermedia content (e.g. 

MPEG-4/7) and related knowledge-based management systems along with the corresponding encoding/decoding 
routines or references to them in dedicated active network nodes or protocols. 

154 The capsule APIs and the execution environments can be extended by special routines allowing the 
accommodation and execution of code that changes a netbot’s configuration and resources. In this way, new 
functionality can not only be delivered to and injected into the active node, but also distributed and optimized 
throughout the node itself. 
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• Active packets are called shuttles and carry code and data for the upgrade/degrade 
and re-configuration of netbots. In addition, shuttles can carry genetic information 
about the netbots’ architecture and their communication patterns. 

 
• A code distribution mechanism ensures that shuttle-processing routines are transferred 

automatically and dynamically to the netbots where they are required. In a Wandering 
Network, code distribution throughout the network and inside the netbots can be 
maintained by the shuttles themselves. 

 
In addition, the WLI model allows the creation of new capsules/shuttles (or the replication of “old” 
ones) in the intermediate active nodes under the supervision of the NodeOS. In addition, a 
special class of shuttles, called  are allowed to replicate themselves and to 
create/remove/modify other capsules and resources in the network. 

pilots

 
The essential contributions of the WLI approach in this work are listed as follows: 
 

•  The role of the network node within a particular virtual architecture can 
change during its operation. The new functionality is either resident on the node and 
waiting to be activated, i.e. it is not yet involved in the next step virtual scheme, or 
transferred via Active Networking to the destination node. 

Role Change:

 
•  The execution of the parts of a distributed algorithm can be performed 

within the different roles of an active node’s/ netbot’s configuration. 
Parallel Roles:

 
•  encoding and embedding the structural information about 

a mobile node, the netbot, and its environment, such as e.g. rooting tree information, into 
a secondary level of virtualization of the active packets/ shuttles composed of n-genes 

Node Genesis (“N”-geneering):

 
We hope that with this work we were able to describe what we have perceived about the nature 
of the phenomenon called networking. In fact, most of the ideas appear to be familiar and 
intuitive to anyone. Yet, it is difficult to specify and arrange them in a beautiful model, and then 
start investigating it by asking questions, hypothesizing and providing both experimental and 
theoretical proofs to fill up the gaps of such an overall principle as active information (to quote 
David Bohm) when applying it to recent developments in communication technology. In the next 
chapter, we will provide the formal specification and the verification of the WLI model within the 
context of an UMTS engineering scenario.  
 
Yet, a lot more has to be done from now on to stabilize the base of this emerging formal 
explanation of networking w. r. t. the empirical results provided by enabling engineering 
technologies such as Java/JINI, CORBA, TINA and WAVE ([Sap96], [Sap99]), and to prove the 
feasibility of this approach in a series of experiments. Perhaps we should start first with 
integrating concepts from “more humanitarian” computing disciplines such as artificial 
intelligence and neuroscience, which already have their own methods of approaching network 
intelligence. This is why we finish this chapter with citing Kepler: “All scientific statements must 
be testable by observation.”  
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CHAPTER 7: EVALUATION AND OUTLOOK 

“... mathematical logic itself looks like a language that is naturally capable of evolution. ... In this context, ... it seems 
possible that a system of logic of the future could be translated into a form corresponding to a system of the present 

time with the addition of a few axioms that give what is needed to give the potentialities of the future system.“ 
 

John F. Nash Jr., Hierarchical Introspective Logics 
http://www.math.princeton.edu/jfnj/texts_and_graphics/LOGIC/talk.CMU/ 

 
 

 
In this chapter, we are going to discuss a few interesting research issues in Active and 
Programmable Networking, which are closely related to the WLI model and its implementation. 
System layering and end-to-end arguments (E2EA) are common design guidelines which are 
widely accepted in present day networks. In Chapter 5 we have provided four additional 
principles for evolutionary design associated with the Wandering Network. Therefore, section 7.1 
is devoted to the principles of network design and discusses the WLI implementation framework 
w. r. t. system layering, E2EA and the WN principles. Next, section 7.2 reviews the practical 
realization of the Wandering Network. It presents a possible scenario for the WLI evolution from 
present day programmable architectures followed by a discussion about the realization of the 
shuttle addressing scheme. Then, section 7.3 provides a summary and conclusions of the thesis 
by defining the network technology interfaces required to open the path towards WLI 
architectures. Finally, section 7.4 concludes this chapter with directions for future research.  
 

7.1 EXTENDING THE PRINCIPLES OF NETWORK DESIGN     

Communication networks are layered systems with physical transmission links as their 
lowermost layer. While most of the networks in use today have been developed independently 
and without a common model, their various layers can be reasonably mapped onto the seven-
layer Open Systems Interconnection (OSI) Reference Model proposed by ISO, [OSIRM]. 
Layered system design is an approach of designing a large system by partitioning its functions 
into a hierarchy of layers. It provides important advantages to the system designer such as 
separation of concern, multiple levels of abstraction and layer isolation which simplify the 
complexity of large systems.  
 
On the other hand, discussions of the implementation of various functions in a communication 
network often include some form of an “end-to-end argument” which is in fact a set of 
architectural principles that guide the placement of functions within a distributed system 
[Saltz81]. Such principles are often interpreted to prevent the implementation of any kind of 
higher-level function within a network.  
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The layered system model and the end-to-end arguments have been helpful in the design of 
modern layered protocols. In the context of active networks, however, which take the non-
traditional view of a programmable network infrastructure, the interpretation and application of 
these design principles is an open question. In this section we are going to answer three 
important questions: 
 

1. Do active networks fulfil the End-to-End Design Arguments ? 
2. Does an active network violate the layering principles ? 
3. How can we consolidate classical network design with active networking ?   
 
 

7.1.1 INTRODUCTION: DESIGN MODELS 

 
In the following, the architectures we talk about represent theoretical models, recommendations 
and guidelines which are and can be particularly implemented in practice.  
 
A system is expected to enable the application to deliver the required application by the user 
efficiently. Therefore, the design of a system is a significant factor influencing its applications’ 
efficiency. It is desirable to divide the system into manageable parts to reduce its complexity. 
Layered system design is one such way of decomposing a large system by partitioning its 
function into a hierarchy of layers such that the functions at layer N are implemented in terms of 
the functions provided by layer N-1, with the bottom layer being the basis of this vertical 
recursion, Figure 90. Each layer in the hierarchy typically provides its function at a higher level of 
abstraction than the layer below. The layered approach provides such advantages like 
separation of concern, multiple levels of abstraction, and isolation among layers.  
 
In general, system layering serves is a good design model. However, there are situations where 
a particular layered system design may have limitations which can restrict application efficiency. 
In this context, it is important to note that while layering is critical to the description of protocols 
and protocol families, it is not necessary for implementation, and indeed may be harmful to a 
high-performance implementation. In such cases, applications naturally expect the system 
function to be modified or customized to deliver better application efficiency. Therefore, a 
system’s implementation may occasionally violate model-based system layering in order to 
address a system function efficiently. This holds not only for current proprietary products (e.g. 
routers by Cisco, 3Com, etc.), as well as for prototype solutions such as implementations of the 
DARPA’s Active Network program, and of course for the WLI framework presented in this thesis 
work. 
 
The reason for this can be e.g. the additions to a piece of data as it passes down the protocol 
stack. If the implementation is strictly layered as illustrated on Figure 90, then the user data has 
to be copied three or more times in the process. A truly efficient implementation can generally 
come along only with one copy, RFC 817. In UNIX terms, this should also be the copy from user 
to kernel space. For instance, in a special-purpose router it is normal to arrange that most 
packet data be never copied, at least for straightforward cases.  
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Another example of the violation of layering for performance, in this case overhead minimisation 
is given in the header compression. For instance, a compressed 256+ header byte packet has 
1.9% header overload, whereas an uncompressed 256+ header byte packet has 13.5% 
overhead. Therefore, this method is very valuable. Nevertheless, it is a complete violation of the 
layering principle, since the CSLIP/PPP implementation has to look up the protocol stack to the 
IP and TCP layers to perform the compression. (In fact, only TCP, which is connection-oriented, 
benefits from this compression. NFS over UDP, which sends many packets to and from the file 
server, does not, since although there's a logical connection, there isn't one at the UDP level, 
since UDP is not connection-oriented.) Furthermore, firewalls and proxies also tend to violate not 
only the “network layering”, but also the “end-to-end principle” as do some routers.  
 
In fact, from the viewpoint of implementation, Active Networks and WLI also tend to violate the 
layering principle, which is also usual for other techniques practiced today. Nevertheless, as a 
(formal) specification approach, both approaches underlie the same common rules which open 
systems have been designed until now.    

(N-1)-protocol

(N)-protocol

(N)-sevice.request

(N)-PDUs

(N-1) SAP (N-1) SAP

(N)-entity

(N-1)-entity

(N)-entity
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(N) SAP (N) SAP

(N-1)-SDU

(N)-SDU

(N-1) PDUs

(N)-sevice.indication

(N+1)-layer

(N)-layer

(N-1)-layer

The OSI Reference Model

 

Figure 90 Protocol entity mappings in the OSI-RM 

 
In a study on the interaction between layered system design and application efficiency spanned 
over the domains of computer architecture, computer operating systems and communication 
network, performed by Sawant [Saw01], the analysis shows that better application efficiency is 
achieved if the system exposes its low level function to the application, and allows the 
application to do the customisation suitable for its requirements.  
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This result is known as the “API framework” (API = Application Programming Interface). In his 
thesis, Sawant demonstrates that the End-to-End Arguments principle provides a very practical 
framework and a useful set of criteria to determine which functions to be placed a priori at lower 
layers for better application efficiency.  
 
This is another welcome argument in favor with the present-day programmable active networks 
paradigm. However, API’s are usually placed in the higher system layers and are therefore in a 
way “pre-programmed”, and thus fixed, non-extensible which requires careful function placement 
at the lower layer a priory to programming it.  
 
In order to be able to accommodate any new application efficiently and to maintain it during the 
lifetime of a system, it is necessary:   

• to program deeper layers of the system design (including the bare machine, the 
hardware), and  

• to reconfigure the function placement during deployment of the system. 
 
Therefore, the WLI approach addresses these two issues in a straightforward manner. In the 
following, we discuss layered system design in some more detail w. r. t. Active Networks and 
WLI. 
 
  

7.1.2 THE HORIZONTAL STATICS OF NETWORK DESIGN: END-TO-END ARGUMENTS  

 
The end-to-end arguments are system design principles intended to help determine where to 
place services in a subsystem. The key points of the classical end-to-end arguments can be 
summarized as follows , [Saltz81]: 155

 
1. Allocation (A1) – A function should be placed at a lower layer only if it can be 

completely defined at that layer. 
 
2. Adequacy (A2) – A lower layer implementation of a function, based on incomplete 

information about upper layers’ requirements, can turn out inadequate.  
 

3. Arrangement (A3) – Partial implementation of a function in a lower layer for 
performance reasons is allowed, if this layer substantially improves the performance of 
other parts of the system. The design must be done carefully because, 

a) the lower layer may not be able to achieve the performance target for 
the reason given in A1. 

b) the lower layer being common to many applications, the applications not 
needing the function can end up paying for it anyway. 

 

                                                 
155 The naming was provided by the author for the purpose of comparison, s. ff.  
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At first sight, it might seem that network programmability is the true antithesis of the end-to-end 
arguments which state that “a function or service should be carried out 
within a network layer only if it is needed by all clients of that 
layer, and it can be completely implemented in that layer”; hence the 
assumption that adequate function placement is a design issue rather than a deployment 
characteristic.  
 
End-to-end arguments address design more than implementation and implementation more than 
execution; they suggest who should provide the code, not where it should run. On the other 
hand, programmability may allow a network client to implement precisely the service it needs 
even in a short-term planning, an outcome that is consonant with end-to-end arguments. 
Therefore, according to Saltzer, Reed and Clark [E2EC], applying end-to-end arguments to 
network programmability in a general, yet definitive, way may be impossible, because of the 
wide range of realization possibilities. Instead, they suggest that the specifics of each particular 
active networking idea would benefit from evaluation in light of the end-to-end principle. Thus, 
“activation” and programmability of networks can be also regarded as  of 
these well-accepted design principles.  

a natural extension

 
In particular, we consider the following arguments, [BCZ97C]: 
  

1. In active networks, the network service can be tailored to the user’s requirements . By 
definition, the end-to-end argument views the network as a monolithic entity that provides 
a single type or quality of service to all users, i.e. either reliable or best-effort transport. 
Active networks allow service customisation by providing an interface which supports 
multiple configurable or programmable services. Originally, “active networking” refers to 
the placement of user-controllable computing and other resources in the communication 
network, where they can be utilized by applications that need those capabilities [Tenn97]. 
An active network supports a user–network interface allowing the nodes of the network to 
be programmed by the user/application to provide a desired functionality, such as 
routing. The level of programmability might range from a Turing-complete programming 
language to a set of predefined, user-selectable functions whose behaviour can be 
controlled through parameters.  

156

2. An “end-to-end argument “provides a rationale for moving a function upward in a layered 
system closer to the application that uses the function” [Saltz81]. According to this 
principle, a computer network, as part of the “lower layers” of a distributed system, 
should avoid  attempting to provide functions that can be better implemented in the end 
systems, especially if some applications might not benefit from such functions at all. The 
classical example of such a moving function is reliable transfer. The network can go to 
great lengths to protect against and recover from losses in the network, but an 
application that requires reliability will generally have to protect against other sources of 
error; in that case the network’s efforts are redundant. On the other hand, applications 
that do not need reliability would still have to pay for it (e.g., through reduced throughput 
and latency). 

157
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156 This aspect of active networks relates to end-to-end arguments in general. 
157 This argument is controversial to the Intelligent Network (IN) model, [Fayn97], in circuit switched 

telecommunication networks.  



3. It is desirable to combine application and network information to optimise application 
performance. Some services can best be supported or enhanced using:  

a) information that is only available inside the network, i.e. the network may 
have information not available to the application, and the timely use of 
that information can significantly enhance the service seen by the 
application. Examples of information that is first (or only) available to the 
nodes of the network include: 
• the time and place where congestion occurs, [Tenn97]; 
• global patterns of access to objects retrieved over the network (e.g., 

Web pages); in particular, the location of “hot spots,” or points in the 
network where requests for objects are highly correlated in time and 
space, [ClTe90]; 

• the location of packet losses within multicast distribution trees.  
b) information that is only available in the applications, i.e. applications 

may have information that is needed by the network in order to fully 
optimise performance. Examples of this type of information include: 
• existence of dependencies among application data units (e.g. audio 

and video in a MPEG stream); 
• variations in importance of data units, incl. retransmission if lost; 
• other transmission context information such as whether or not it is 

acceptable to service a request using cached data. 
 
The essence of a good end-to-end argument is that the performance cost of using an interface 
should vary with the application. For example, applications that need only a best-effort datagram 
delivery service should not suffer reduced performance because of the increased flexibility of the 
interface. On the other hand, any performance penalty for customizing network behaviour (e.g., 
signalling overhead, or taking packets off the “fast path”) must be more than offset by improved 
end-to-end performance delivered to the ultimate users. These performance costs will be 
determined ultimately by the primitives and composition mechanisms provided by the active 
network architecture. Therefore, Bhattacharjee, Calvert, and Zegura identify the following 
principles as the key end-to-end arguments applying to the placement of functionality in [active] 
networks, [E2EC]: 

2. Active Adequacy (AA2) – {absent}. 
3. Active Arrangement (AA3) – 

• The amount of support for any given end-to-end service in the network is an 
engineering trade-off between the performance seen by the application and the cost 
of implementing the support. However, these principles do not rule out support for 
higher-level functionality within the network. Rather, they require that the interface to 
such functionality be carefully designed; that costs and benefits of such support be 
calculated; and that the engineering trade-off be carefully evaluated. 

• If not all applications will make use of a service, it should be implemented in such a 
way that only those applications using it have to pay the price of supporting it in the 
network. 

1. Active Allocation (AA1) – Some services require the knowledge and help of the 
endsystem-resident application or user to implement, and thus cannot be implemented 
entirely within the network. 
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7.1.3 THE VERTICAL STATICS OF NETWORK DESIGN: SYSTEM LAYERING  

 
The layered model has the following qualities which make it a helpful system design tool: 
 

1. Separation of concerns. Each layer provides a solution to a certain part of the overall 
problem, and the layer above it can build upon that solution to address another part of 
the problem. For instance, the lowermost layer in a communication network provides the 
physical transmission link and the data link layer makes this link appear free of 
transmission errors. Also, the lower layer of an operating system can provide a generic, 
secure mechanism for processor control transfer which can be used for implementing 
various scheduling policies at a higher layer. 

 
2. Successively higher levels of abstraction. A network protocol stack converts a physical 

bit transmission facility into a communication channel for exchanging application level 
data units. Computer architectures can be utilized at increasing levels of abstractions via 
machine language, assembly language and high-level language.  

 
3. Flexibility through multiple alternatives. An upper layer can provide various abstractions 

for a specific function from the layer below. A transport layer can provide connection-less 
and connection-oriented services using a single network-level packet delivery service 
(e.g. UDP and TCP in the TCP/IP Internet architecture.) Applications can choose from 
various high level languages supported on particular computer architectures. 

 
4. Isolation. Ideally, a change made to layer N would, at most, cause changes to layer N+1. 

All the layers above layer N+1 are isolated from these changes. The network layer of the 
TCP/IP network model isolates the transport and application layers from underlying 
physical network technologies. The machine language of a microprocessor architecture 
isolates the object code targeted for the architecture from the changes to its 
implementation. A Java bit code isolates the application from the underlying architecture. 

 
System implementations can benefit from using layering to exploit the above qualities of the 
layered model. However, there are situations, when a layered design can restrict or reduce 
application efficiency. The loss of efficiency can have various forms such as reduced flexibility, 
lost of performance, or even lack of function, and it is commonly attributed to causes like the 
cost of indirection resulting from (inadequate) abstractions which may not reflect the specifics of 
the particular implementation.  
 
For instance, to ensure secure operation, operating systems commonly restrict applications’ 
access to OS resources and services through the system call interface.  
 
The applications are restricted to use the abstractions provided by this interface and are required 
to pay the cost of the indirection. This can lead to loss of performance and reduced flexibility for 
some applications. Besides, if these abstractions are not adequate for an application, this 
restricted access can mean a choice between using an inadequate function or a complete non-
availability of the function. Another example is the wireless access. It is characterized by a 
completely different behaviour of the network when compared to the wired Internet.  
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Therefore, the main reason for QoS degradations is that the existing Internet traffic control 
mechanisms such as TCP and UDP were primarily developed for the use in wired 
networks. Therefore, the wireless part of the packet network expects a different traffic control 
which has to be treated separately in order to address the specifics of the wireless link. The 
Wireless Access Protocol (WAP) is such an example. It breaks the IP net in two parts and 
requires a complete exchange of the Internet protocol suite and applications which leads to 
performance degradation. Besides, WAP is completely orthogonal to the end-to-end IP QoS 
concept. It cannot provide a lasting solution. 
 
The more fundamental cause of the reduced application efficiency is usually the lack of access 
to the low level system function. The above mentioned causes of lower efficiency can be 
addressed if the application has access to the low level system function. A system which 
dynamically extends the low level function for better application efficiency by application-specific 
customisation, but without tightly binding of any application specific function into the lower layer, 
is highly desirable. 
 
The layered model represents a bottom-up design. Any high level abstractions provided by a 
system represent its assumptions about application requirements. Therefore, it is reasonable to 
provide default abstractions which are carefully designed to satisfy the requirements of a large 
number of applications and save them the effort of developing their own abstractions. The widely 
used TCP/IP Internet protocol suite provides end-to-end transport abstractions for best-effort 
network service illustrates this point.  
 
On the other hand, when the default high-level abstractions are not adequate, the system should 
enable applications to develop their own abstractions. These abstractions can hope to be as 
effective as the default abstractions only if they have an access to the same low level system 
function as the default abstractions.  
 
Finally, the lower layer functions exposed by system have to be generic enough, and do not 
make any application-specific assumptions, otherwise we face recursive design.  
 
 

7.1.4 CONCLUSIONS   

 
The results of the previous two sections can be summarized as follows:  
 
The basic premise with the classical end-to-end arguments and the layering principles for 
system design is the idea that a lower layer should support the widest possible variety of 
services and functions to permit applications that cannot be anticipated at design-time. In 
other words, minimize the lower-layer functionality through selection of the most common 
transport characteristics, take processing out of the way, and let the higher layer do its 
application adaptation. This widely accepted approach implies that end-to-end arguments have 
two complementary goals which manifest the organizational differentiation between higher and 
lower system layers: 
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• Higher-level layers, being more specific to an application, are free (and thus expected) to 
organize lower-level network resources to achieve application-specific design goals 
efficiently (application autonomy) 

• Lower-level layers, which support many independent applications, should provide only 
resources of broad utility across applications, while providing to applications a usable 
means for effective sharing of resources and resolution of resource conflicts (network 
transparency). 

 
Thus, moving functions and services upward in a layered design, closer to the application(s) that 
use them, increases the flexibility and autonomy of the application designer to apply those 
functions and services to the specific needs of the application. Therefore, programmability in a 
lower layer can be considered as a means to postpone design choices upward in the 
layering, closer to the application, and later in time, even though the resulting functions may 
actually take place inside the network. 
 
Active networks provide end-to-end system designers with more choices for function placement. 
Successful system design still requires making correct choices which depend on the details of 
the particular problem being solved. Yet, the key task in active network design is to identify the 
cases in which the performance gains and enhanced capabilities justify the cost incurred 
in deploying an active networking architecture. Therefore, active networks can be 
considered as a further enhancement of the network capability. 
 

However, while making lower layers more active or programmable is likely to enhance 
the applications’ autonomy and flexibility to adapt to a changing environment, the 
potential risk accompanying this advantage is that programmable lower layers may 
reduce the network transparency, i.e. the predictability of the network behaviour. 

 
Why is network transparency so important ? 
 
The end-to-end argument is similar to the RISC  principle, [Rad82]: building a complex function 
into a network implicitly optimises the network for one particular set of applications while 
substantially increasing the cost of a set of potentially valuable applications that may be 
unknown or unpredictable at design time. Establishing a general programming interface can 
therefore lead to complex and unpredictable interactions among independently designed 
applications and independently acting users.  

158

 
Since lower-level network resources are shared among many different users with different 
applications, the complexity of potential interactions among independent users rises with the 
complexity of the behaviours that the users or applications can request.  
 
For instance, when the lower layer offers a simple store-and-forward packet transport service, 
interactions take the form of end-to-end delay that can be modeled by relatively straightforward 
queuing models.  
                                                 
158 Reduced Instruction Set Computing (RISC): Computer architectures which expose a minimal instruction set with 

fast processor implementation to optimize high-level language compilers for using the large number of registers and 
instruction pipelining to achieve better application efficiency.  
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Adding priority mechanisms (to limit the impact of congestion) that are fixed at design time adds 
modest complexity to models that predict the behavior of the system. However, relatively simple 
programming capabilities, such as allowing packets to change their priority dynamically within 
the network, may create behaviors that are intractable to model, in the same way that the simple 
rules of cellular automata such as Conway’s Game of Life [BCG82] can lead to remarkably 
complex behavior. 
 
End-to-end arguments and the layering principle do not oppose active networking per se. 
Instead, to maintain the largest degree of network transparency, they strongly require that the 
semantics of any active features be carefully constrained so that interactions among 
different users of a shared lower level can be predicted in order to use the services and 
functions of that active layer.  
 
Saltzer, Reed and Clark note that getting the semantics of active enhancements right is a major 
challenge in programmable networking, since wrong active enhancements are likely to be worse 
than none at all. They claim that even though active networking is not governed by end-to-end 
arguments, there are not practical examples of a sufficiently simple, flexible, and transparent 
programming semantics suitable for use in lower levels of networks, [E2EC]. Nevertheless, we 
regard this issue is an additional pro-argument for the application of formal techniques in active 
network design. Engineering with logic improves the predictability which is so important for all 
users of a shared network, including those that do not use the programmability features.   
 
On the other side, Partridge, Strayer, Schwartz, and Jackson from BBN claim that active 
networking could have a place in every network layer — except the internet layer — where end-
to-end arguments discourage “activation”, [E2EC].  
 
In the following, we summarize their arguments which correctly reflect the present situation with 
active networking. We also deliver our own comments where appropriate. 
 
Application Layer: easy activation (Java applets, CORBA). Active networking clearly enhances 
the performance for higher layers.  
 
Transport Layer: non-trivial, but a possible case. Application Layer Framing (ALF), [ClTe90], 
argues that applications are better placed than transport protocols to determine how their data 
should be packetized and transmitted over the network. Current transport protocols offer a 
limited set of communications paradigms. Hence, the transport layer would benefit from 
programmability, which in turn would enhance the performance of the application layer. 
Nevertheless, the experience with fair sharing of network resources among users imposes the 
restriction that transport protocols should be constrained to certain behavioral norms ([Jac88], 
[JaRa88], [FlJa98], e.g. the transport protocols’ reactions to congestion. In particular, while a 
programmable transport layer could enhance higher-layer performance, it could also require new 
functionality at higher and lower layers to ensure that erroneous or malicious transport-layer 
programs do not violate transmission rules.  
 
How to impose behavioural norms on a program is an open question, and until it is solved, 
adding programmability to the transport protocol potentially violates the end-to-end argument.  
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Yet, this is exactly our pro-argument of how network design has to be done. Every single 
improvement at one layer has to be evaluated at all layers, since behavioural norms require a 
cross-layer functional consistency. 
 
Network Layer: most serious conflict. The purpose of the network layer is to achieve universal 
connectivity and communication between arbitrary numbers of heterogeneous devices. The 
difficulty is that it is hard to find a way that active networking could enhance this service, while 
easy to find ways that active networking harms this service. 
 
The most important argument contra active networking in the network layer is the following. 
When a packet’s path is affected by some code carried in the packet or, worse — in someone 
else’s packet —,   the chances that the packet will reach the destination are reduced 
considerably. Programs are buggy, and there is still no effective way to prove the correctness of 
a nontrivial program (except that everybody commits to using formal tools, which still cannot 
prevent malicious behavior). When the delivery of a packet depends on code execution at each 
node in the route, the packet is at the mercy of poorly implemented, damaged, or out-of-version 
execution environments.  
 
Since the code can use any of thousands of variables as conditionals in determining a delivery 
path, every communications path is therefore unique. If a user’s packet program does not work, 
only this user has the necessary knowledge to debug her mix of programs and data to figure out 
why. At the same time, because the range of actions a packet can take has been increased, the 
damage that a malicious program — say, one that copies packets at each node — could inflict 
would be magnified exponentially and made harder for network operators to stop.  
 
However, this argument is more likely to address a “generation problem” than an engineering 
constraint. Safety is definitely a serious problem, but nodes in future autonomous self-healing 
networks will be able to take care about themselves and the programs they are hosting.  
 
Another contra argument of active networking in the network layer is that it adds a great deal of 
complexity to the very simple process of forwarding a packet. In present day Internet, a router 
has only three choices when presented with a packet: to transmit the packet, to delay (queue) 
the packet, or to discard the packet i.e. to throw it away. The simplicity that ensures 
interconnectivity, the fundamental feature of the internet layer, resists the complexity that 
programmability brings. 
  
Partridge et al., [E2EC] claim that all active networking can do in the network layer is to increase 
the customer’s flexibility to choose among these options, and thus to increase the risk that the 
choice is the incorrect one. Nevertheless, the above argument does not represent an 
engineering constraint either, but rather reflects a belief based on the present day state-of-the-
art networking. Thus, fears of too complex programmable systems in the late 1980s, which led to 
selecting device polling as network management policy, are overcome now.  
 
Today, programmability of the network management system is considered as an enormous 
advantage, which enhances performance and eliminates needless data mining and analysis 
work by sending the program directly to the data it needs to observe and report about.  
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For instance, the CANEs architecture, [Meru99], allows the users to select from available set of 
functions to be computed on their data at the network nodes and to supply parameters to their 
computations. The functions are chosen and implemented by the network service provider. In 
this way, , not only for 
access, but also for manipulation by higher layers. Therefore, the CANEs approach to 
programming the network layer does not contradict the original E2E argument which suggests 
who should provide the function, not where it should run. In fact, CANEs dynamically extends 
the low-level function for better application efficiency by application-specific customization of 
system function, but without tightly binding any application specific function into the lower layer. 

CANEs exposes the low-level network function in a controlled manner

 
The CANEs model can be used by applications for influencing network’s response to congestion 
control. The packet loss recovery due to congestion control often renders other related data 
which are useless for the application. For example, an MPEG-2 stream consists of I, P and B 
frames, where P and B frames can possibly require other frames in order to be properly 
decoded. Thus, if an I-frame has been discarded, the corresponding P and B frames should be 
better discarded as well. The CANEs programmable congestion control defines reduction 
techniques (e.g. partial packet discard, group of pictures level discard), and makes them 
available to applications such as video streaming and conferencing. An application can define 
data units based on application semantics, and an application flow can provide advice to the 
network about which reduction technique to use to discard application data units for that flow. 
When triggers indicate the need for congestion control, flow state is examined for advice about 
how to reduce the quantity of data. The network node is not required to take the advice, and may 
apply generic bandwidth reduction techniques.  
 
As the results of experiments in [BCZ97C] show, this approach significantly reduces the amount 
of data discarded at the receiver. In other words, less network bandwidth is consumed carrying 
the useless traffic, which in turn, helps to reduce the congestion.  
 
In addition, by using formal verification techniques in future network design, selecting the right 
choice will not be a serious burden anymore, even at much higher complexity of the packet-
operating program. System verification, cooperative customer interfaces and improved network 
technology are the contra-arguments of the contra-argument. There is nothing wrong with a 
higher complexity as long as it delivers a better application performance. There is only work 
ahead to do. 
 
The Subnet and Link Layers — active networking is a useful feature. Adding programmability 
to the subnet and link layers, e.g. downloading code to update and run the appropriate signaling 
protocol, has the potential to both enhance performance and eliminate some higher-layer 
functions. 
 
The Physical Layer — a positive logical conclusion. In a Wandering Network we envisage even 
more sophisticated systems at the physical layer where e.g. an autonomous mobile hardware 
component such as an all-purpose PCMCIA card or a multifunctional self-assembling gallium-
arsenide-on-silicon-on-polymer chip can plug in [itself] into a free slot of a [mobile] router, 
download the appropriate medium access control (MAC) layer protocol, such as 100 Mb/s 
Ethernet (either Base-T or AnyLAN) or FDDI, and proceed to transmit and receive packets.  
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From the above discussion on system layering and end-to-end arguments, we conclude that 
Active Networking has yet a well motivated right to live. 
 

Active Networking,  — if applied correctly —, represents  
a useful extension of the end-to-end arguments  

at all system layers. 
 

The “correct” implementation of Active Networks can be realized either through explicit functional 
restriction and control, or via formal verification of the critical network design. Exporting 
application-specific functionality out to the periphery has been a useful design principle for many 
years. The end-to-end arguments arose from work on secure operating system kernels in the 
Multics project ([SCS77], [Reed77]) and work on end-to-end transport protocols in LANs and the 
Internet experiment [CPR78]. John Cocke took a similar approach and his colleagues on the role 
of compilers in simplifying processor design which led to the RISC architecture [Rad82] by 
suggesting to move functionality from lower layers to more application-specific layers.  
 
Security research in Active Networking has been mainly focusing on application layer networking 
and on the development of safe languages (SNAP, PLAN, etc.) and restricted execution 
environments (SANE). Until recently, little attention has been paid to the more critical question 
on the effect of flow manipulation on end-to-end security. In his thesis, Brown, [Brown01], 
examines the threat model implicit in Active Networks and develops a framework of security 
protocols in use at various layers of the networking stack, in particular w. r. t. their utilization for 
multimedia transport and flow processing. After thorough examination of the various problems in 
providing end-to-end security in Active Networks (vulnerability to attacks on intermediaries, 
coercion, etc.), the author concludes that it is not reasonable to allow active routers to access to 
the contents of network flows without seriously degrading the functionality they provide. 
Therefore, Brown proposes the enhancement of watermarking with the idea of splitting trust 
throughout the network in order to provide end-to-end security. In sections 7.2.3, 7.2.4 and 7.3.3 
we discuss how the WLI model integrates the results of this novel research. 
 
Today, the increased diversity and complexity of the network traffic imposes the requirement for 
distributed, and thus, for increased, but effective processing inside the network, locally and 
dedicated to where and when the specific traffic problems emerge.  
 
Therefore, the question of enhancing the effects of system layering and end-to-end arguments 
gains on importance.  Active Networking is a first step in the right direction. 
 

In the previous sections we have seen that even critical network layer programmability such as 
the CANEs approach to congestion control does not conflict with the E2E arguments, unless it 
loses control over the constraint of who is providing this extra functionality (the application node). 
Another example is the Exokernel operating system, [Eng95], which securely multiplexes and 
exports physical resources and allows the library OS to compose them for desired application 
efficiency. Besides, as long as the active network guarantees that only the applications that use 
this mechanism are required to pay its cost, while other applications can use the traditional 
mechanisms, everything should be alright.  
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Finally, as Bhattacharjee et al. argue, some services can best be supported or enhanced using 
information that is available only inside the network [BCZ97C], instead of applying an end-to-end 
control scheme, because of the very little information available at the ends of the network.  
 

 
While taking into account this historical argument, some cooperative AN approaches do not 
require re-implementation of existing protocols and applications. Protocol booster architectures, 
also called Performance Enhancing Proxies (PEP), integrate performance-enhancing 
functionality that can be located at the edges of the wireless part of the network. These protocol 
boosters operate transparently without the need to modify the existing IP suite. To enable 
efficient operation the boosters have to be designed for specific applications. For the case of 
TCP applications, IP booster architectures can double TCP throughput even under noise 
propagation conditions. In fact, the Internet community is already evolving towards activation. 
For instance, IETF is working on implementing some practical Active Networking ideas such as 
a recent RFC proposal  from Cisco Systems.  159

 
Finally, to end, we summarize that the end-to-end arguments are useful engineering guidelines, 
which are unfortunately not always considered in practical network designs. In the previous 
sections, we have shown that even such self-evident Internet equipment like firewalls, proxies 
and some routers violate this principle. The Wireless Access Protocol (WAP) is perhaps the best 
commerce-driven example, which breaks the rules (and the network in two parts) without ever 
being able to improve neither performance, nor service usability !  
 
Therefore, this example demonstrates how seriously careful system design and end-to-end 
interoperability have to be carried out to avoid ending with an immature product. We have shown 
that Active Networking have the potential to improve system performance by enhancing the 
existing design principles with more application-specific directives. 
 
For this reason, we decided to investigate in detail the entire discussion around the end-to-end 
arguments at the end of this work, because they are the premise for the next step we are 
working to, the Wandering Network. 

The most critical question which remains, however, is the one about the necessity of complete 
re-design and re-implementation of the existing protocols and applications which are already 
based on the IP protocol suite architecture in the case that active network architectures prove to 
be more effective than today’s simple Internet. The cost of such an “updating” reform of the 
Internet to the needs of modern communications is tremendous. It would take many years to 
define a pay-off business model and coordinate the process worldwide. This is the real fear that 
makes ISPs and network suppliers represented in the telecom standardization oppose a change 
towards a new generation of radical active network architectures, — sometimes by involving 
such arguments in the discussion as the “end-to-end” principles, but often using them without a 
proof. The cost of the Internet was nothing, or almost nothing. (It is doubtful that DARPA will 
ever mention the real cost of the Internet project.) Who is going to oppose such an argument ? 
The Internet was simply there; ready for use, although not for the same purpose in mind it was 
once designed.  

                                                 
159 http://www.ietf.org/internet-drafts/draft-shore-friendly-midcom-00.txt  
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7.1.5 CAPTURING HORIZONTAL AND VERTICAL DYNAMICS:  THE WLI PRINCIPLES  

Today, it is unclear yet what architectures and service models will define the basis for the next-
generation Internet. As Matyasovszki and Flanagan state [MaFl01], the fact that the evolution of 
the Internet is surrounded by uncertainty is due to the lack of cohesiveness and clear 
purpose in network technology design; the history of MPLS development proves how many 
misconceptions can arise.  
 
An active network differs from traditional architectures primarily in what it does not specify. 
Instead of defining how the nodes work together to provide the network service, the active 
network describes functional slots that must be instantiated to provide a particular network 
service. These slots create an idle functionality that can be invoked on demand in the network 
architectures. Besides, some on-demand functional blocks could be placed in such a way to 
unify the functionality of two or more OSI layers.   
 
Therefore, we decided to extend the ad-hoc rule of letting out specification in network 
design to an acceptable degree of autonomy, but consistency and self-determination 
through adaptability as known from eco-systems and cellular automata such as the Conway’s 
Game of Life [BCG82].  
 
As we found in the previous sections, everything is allowed, as long as we remain conform to the 
fundaments of system design. Thus, extending and refining these principles is natural. Even 
Saltzer, Reed and Clark agreed that the “end-to-end arguments are one of several important 
organizing principles for systems design”, [E2EC]. While an end-to-end argument can 
facilitate the design-time function placement that leads to a more flexible and scalable 
architecture, there can be different situations where other principles or goals have greater 
weight.   
 
Then, what about evolutionary networking, the WLI domain ? Who can tell which services will be 
broadly used in 20 years in order to implement their functional interfaces in present-day low 
network layers ? And what can be stated about a short-term functional dynamics within a rapidly 
changing environment such as mobile communication?  
 
While generalizing the conclusions of the previous section, we realized that functional slots could 
be placed anywhere and anytime in an active node as illustrated on the figures two and three 
below: in the application layer, in the network layer, and even in the physical layer (as assumed 
in the WLI approach). The only requirement is that each consequent arrangement of the 
functional blocks of the active element:  

a) improves the previous one in terms of performance, capacity, scalability, etc., and  
b) retains the operational consistency of the single layers and between the layers as 

suggested by the system layering and the end-to-end arguments principles.  
 
This is the basic rule of the Wandering Network. In other words, if a particular implementation, 
such as lossless video transmission, tends to violate the network layering principles, e.g. by 
establishing explicit communication channels from applications to network-layer middleboxes 
(routers/switches, firewalls, etc.), this modification is eligible only if the system improves its own 
performance and the one of the entire network community.  
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Furthermore, statically designed networks for the worst case conditions do not make the best 
use of resources which may vary in time. Also, they are not capable to incorporate future 
technology changes, and thus be long-term adaptive to their environment. WLI reflects the 
network dynamics of functional split, movement and merge throughout the entire life cycle of an 
evolutionary network. Therefore, we regard the four principles of the Wandering Network 
(Section 5.3), — Dualistic Congruence, Self-Reference, Multidimensional Feedback and 
Pulsating Metamorphosis —, as essential enhancements of the basic principles of system 
layering and E2E design.  

 

Figure 91: A block-oriented approach to WN design and maintenance 

 
In the first case, a block composition requires an “off-site” assembly of new functional elements 
which are then moved to, installed, tested and executed at run-time as blocks in the free slots of 
a Wandering Node. The latter assumes a parallel (CPU) or a replica (memory) architecture to 
switch between the hot-spot and the “drive-in” plugin during installation and test. In the second 
case, we have a piece-by-piece layer-wise on-site integration of new functionality at each single 
layer which is moved, installed and verified “in the order of appearance” with the node 
environment. 

b) System Compositiona) Block Composition

Figure 91 and Figure 92 illustrate the two major techniques for construction and maintenance of 
a Wandering Network functional node (netbot), the block-oriented and the layer-oriented 
approach, respectively. Whereas the left-hand side of the figures represents the composition of 
new functional elements (in colour) corresponding to the particular layers of the node – 
application, network (OS) and physics (SoC, COTS, etc.)  –, the right hand side show the entire 
system composition.  
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a) Layer Composition b) System Composition
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Figure 92: A layer-oriented approach to WN design and maintenance 

This model holds not only for the internal organization of wandering nodes (netbots), but also for 
their external organization (and virtualisation) into hierarchical clusters of network processors. 
Compliance of the new functionality to the programmable interfaces at each layer, in terms of 
single components and as blocks of them, must be guaranteed a priori to test and deployment.  
 
At the end of this section we provide a concept summary of the WLI design principles: 
 

The Wandering Logic Intelligence extends the classical software-based programmable 
Active Network model with an introspective (w. r. t. a information-architecture/shuttle-
netbot consistency, Dualistic Congruence Principle) and self-aware (i.e. state-driven, 
Self-Reference Principle) adaptive enhancement/reduction, exchange, movement, 
creation and development of functional elements/blocks from the application through the 
network into the physical platform of a wandering node (netbot) and vice versa using an 
event-based hierarchically cascaded addressing scheme, thus integrating the concepts 
of reconfigurable and autonomous mobile computing into an overall design framework for 
self-organizing Wandering Networks which are transformed (Pulsating Metamorphosis 
Principle), but not controlled or managed by some authorized network party or entity, — 
and therefore, autopoiesized ([Sim02a], [Mat00], [Luhm86], [MaVa80]) as a response to 
and exclusively by the implicit multiple feedback (Multiple Feedback Principle), – by 
means of n-genes transported inside active packets (shuttles) –, of the user community 
on using the network information content and physical resources.  
 
A Wandering Network is an evolutionary network.   



The following section provides the practical argumentation behind the WLI concept w. r. t. state-
of-the-art technology considerations and results from recent research. Particular attention is 
given to the hierarchical programmability of netbots and the “n-geneered” structure of shuttles.  
 
Additional information about most recent developments in active networks, parallel and 
distributed system architectures, nano- and molecular devices, as well as cluster and grid 
computing can be found in the proceedings of the latest IEEE conferences: [DANCE02], 
[IPDPS02], [ISVLSI], and [CCGrid02]. 
 

7.2 IMPLEMENTATION GUIDELINES: EVOLVING THE WANDERING NETWORK 

First, when we speak about reconfiguring, programming and wandering elements and nodes, we 
mean the physical layer. Today, we are relatively far away from the vision of vivid, autonomous, 
self-assembling “flying” chips which plug and play themselves in the free slots of communication 
devices to match customer demands and serve for the benefit of humankind.   
 
However, a first step towards these dynamic physical layers has been made by software radio 
([BHM01], [BIW99]) and RadioActive Networks, [BWG99]. A software radio is a wireless 
communication device in which the physical and data link layer functions are implemented in 
software. This enables (re-)programming of a single wireless device to use diverse coding, 
modulation and access protocols. In addition, new services and standards can be easily 
introduced and deployed in this way as software upgrades without the risk of upgrading the 
entire physical infrastructure, [ShBo99]. 
 
Software radio also provides the flexibility to adapt dynamically any aspects of the physical layer 
of a wireless communication system to meet the constraints imposed by rapidly changing 
environments, user demands or administrative regulations by providing improvements in 
performance as well as bandwidth and battery life utilization, [BHM01].  
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Figure 93: The RadioActive network layering model, [BWG99] 

 
Speaking in terms of the network layer model and the end-to-end arguments, software radio 
exposes more functionality from the physical layer for flexible utilization by the upper layers, 
Figure 93. Intuitively, this functionality could be not only offered at system set-up, but also during 
the system deployment phase, thus updating, replacing and combining complete functional 
blocks in software.  
 
This is already a sort of network wandering. 

 

7.2.1 THE PROGRAMMABLE ROUTER REFERENCE IMPLEMENTATION  

 
Today, most Internet routers, such as large backbones increasingly implement standard 
datagram processing without special features like IP options completely in hardware, – e.g. 
ASICs on every port which have high-bandwidth access to a local table of routes, – to raise 
performance and keep up with link speeds. The router CPU is only involved in processing of 
non-standard datagrams, basically – an Active Networking idea, and in implementing control-
path functionality like routing protocols. 

 

 
However, active networking is application-specific for a potentially large number of applications 
which means that the overall AN architecture should be open and programmable.  
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On the other hand, AN processing extends the amount of time spent on a single packet, which 
means that performance becomes a critical issue and requires the selective choice between 
different hardware architecture models such as pipelining and parallelization.  
 
Therefore, to maintain the trade-off between performance and flexibility, the router hardware 
must be also programmable. For this reason, a variety of high-performance AN router 
implementations such as P4 for protocol boosters [HaSm97], AMnet for heterogeneous multicast 
[Metz99], ANPE [Wolf99] for diverse benchmark services (encryption, media transcoding, 
reliable multicast), as well as dedicated media architectures, – stream processing ([Lee99], 
[Bust01a]) and multicast video distribution [Kell00], – have been designed (and successfully 
tested) as a combination of a general-purpose CPU and FPGA circuits in the Processing Engine 
(PE), [Deca99], of the Port Processors (PP), Figure 94.  In this way, the CPU takes care of the 
most active functions applied to a customer packet, whereas the FPGA implements functions 
which are particularly performance critical; both are programmable on-the-fly and integrated as 
Processing Element structures in the Active Processor Chip (APC). 
 
To understand the role of the programmable hardware components, we start with reviewing the 
system organization and operation of an active router introduced in Chapter 4. The router 
architecture is based on a scalable cell switching fabric which connects to external links through 
active Port Processors (PP) (Figure 94, left-hand small image). The switching fabric can be 
implemented e.g. as a multistage network, thus supporting external bit rates up to 2.4 Gb/s and 
can be configured to support hundreds or thousands of PPs. The active router’s Port Processors 
perform packet classification, active processing and fair queuing. The Control Processor (CP) 
provides a control and management interface to the external world and implements routing 
algorithms and other high-level operations. 
 
Passive flow packets are directly passed from the input port at which they first arrive to the 
output port where they are to be forwarded. Active flow packets are typically queued for 
processing at the input port where they arrive, and then forwarded to the corresponding output 
port (after processing). Note, that active packet processing in pure programmable software 
Active Nodes is performed in the Execution Environments of the application layer. A 
programmable hardware router, however, can realize a combination of both methods: EE and 
PE based. Of course, active processing can be also performed at the output port, if appropriate. 
To provide maximum flexibility, active packets can be sent from the input port where they arrive 
to another port for active processing, before being finally forwarded to the required outgoing link. 
This allows a system-wide load balancing. 
 
The Port Processors consist of a Transmission Interface (TI), a Packet Classification and 
Queuing chip (PCQ), a Filter Memory (FM), a Queuing Memory (QM) and Active Processing 
Chips (APC), Figure 94. The Transmission Interface contains the optoelectronic and 
transmission formatting components. The Packet Classification and Queuing chip performs 
classification of arriving packets to determine how they are to be processed and where they are 
to be sent. It also manages queues on both input and output sides of the Port Processor. 
Packets can be assigned to queues in a fully flexible fashion (e.g. on a per-flow or per-aggregate 
base). The queues can be rate controlled to provide guaranteed QoS. The PCQ has two 
memory interfaces, one to a Filter Memory used for packet classification, and one to a Queue 
Memory used to store packets waiting processing or transmission. 
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The active processing is realized by one or more Active Processor Chips, each containing 
several on-chip processors with on-board memory.  Each APC has also an external memory 
interface providing access to additional memory which is shared by the processors on the chip. 
The APC processors retrieve active packets from the QM, process them and write them back out 
to the corresponding outgoing queue. The processing elements are arranged in a daisy-chain to 
avoid multiple APC interfaces to the PCQ (Figure 101 for details). The active processing 
capacity can be scaled by incorporating fewer or more APCs at each port. 
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Figure 94: A programmable router/switch and its port processor (PP) architecture 

 
Systems with small amount of active processing can sacrifice APCs at most ports. Instead, 
active packets can be forwarded to other ports with APCs. However, once the design decision is 
made, the process is irreversible (at least at run-time) and the router may experience congestion 
upon a strong continual traffic (whatever the load-balancing scheme might be). At this point, the 
WLI concept of automatically adaptive processing capacity at run-time by means of a mobile 
self-organizing hardware regulated via state-feedback between transport infrastructure and 
processor “farms” could provide the required reversible solution in future. 
 
The Port Processors are operating as follows. When packets are received from the 
Transmission Interface (TI), the headers are passed to the Packet Classifier (PC) which 
evaluates the flow and assigns a tag to the packet. To provide the required flexibility, a fast 
general flow classification algorithm is required, such as the one in [SSV99]. 
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At the same time, the whole packet is passed to the Queue Controller (QCTL) which segments 
the packets into cells and adds it to the corresponding queue.  
 
Depending on the QoS requirements, either per-flow or aggregate queues are allowed. The filter 
database (FM) decides whether flows are aggregated or handled separately. 
 
In the following, we discuss in some detail a possible realization scenario of a Wandering 
Network based on the above architecture. Our intention is to illustrate how WLI extends the idea 
of exchangeable software and hardware functional blocks towards a flexible, autonomous, self-
organizing system and how programming (or adaptability) can be performed “down to the gate” 
level. 
 

7.2.2   REFERENCE SOFTWARE AND HARDWARE EXECUTION ENVIRONMENTS 

 
We start from a hybrid high-performance communication platform integrating today’s IP and 
ATM worlds, [PST95], which has been extended and optimised to accommodate the Active 
Networking idea of the DAN project described in Chapter 3, [Deca98], through the Active 
Network Node (ANN) architecture shown on Figure 95, [Deca99]. This platform is also a 
reference point for the critical overview in section 7.3.1. 

EE2: DANEE1: ANTS EE3: IP

 

Figure 95: An Active Network Node (ANN) software architecture  
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We selected ANN/DAN as starting point of our discussion for the following reasons: 
 

1. It is a well-designed and tested AN architecture of both a programmable software and 
high-performance programmable hardware router/switch which is representative for 
the advantages of Active Networks against today’s passive networks. 

 
2. It is a technology-aware solution which integrates both ATM and IP worlds in an 

evolutionary way (which is also characteristic for the WLI approach)  a) through 
programmable COTS interface hardware, and b) in a typical AN software fashion by 
virtualizing the IP routing procedure in a special execution environment which 
implements Router Plugins, [Deca98b], or active extensions software. 

3. It maintains multiple execution environments (ANTS, DAN and IP) which have been 
demonstrated to interoperate very well for the target domain of high-bandwidth and low-
latency applications.  

 
4. It provides the reference point for the EE based implementation of network overlays; 

The IP protocol stack is viewed as (yet) another Execution Environment, i.e. a virtual 
machine, with the special property that the other EEs can not work without IP since they 
use it for routing and forwarding. 

 
5. It provides the reference point for the platform based implementation of network 

“underlays” as Dynamic Hardware Plugins (DHP), [TTL01] to realise diverse 
processing algorithms, protocols and variations of them which we regard as the 
archetypes of WLI netbots, the building blocks of self-organizing and mutually 
exchangeable software and hardware components. 

 
The rest of this section is dedicated to a functional review of this architecture and its 
enhancement with w. r. t. a possible WLI implementation scenario. 
 
The hardware architecture of the DAN’s Active Network Node consists of a set of Active Network 
Processing Elements (ANPE) connected to a scalable ATM switch fabric, [Chan97], Figure 96. 
The ANPE comprises a general-purpose processor, a large FPGA and memory; it is connected 
to the backplane via the ATM Port Interconnect Controller (APIC) chip, [Zub95].  
 
Figure 96 illustrates also an example for load balancing which is going to be discussed later in 
more detail. A data flow comes into the ANN at ANPE A and goes out at ANPE D. The active 
processing is done in ANPE C since ANPE A is heavily loaded and the load-sharing algorithm of 
the Control Processor (Figure 94) directed the flow to ANPE C which finally directs the flow to 
the ANN connected to ANPE D. Thus, ANPE A and ANPE D switch the flow entirely in hardware 
without CPU intervention through the APIC. The Control Processor (CP) provides an external 
control interface and manages the Port Processors (PP); it is responsible for maintaining flow 
classification data structures and filters, as well as binding flows to applications at each Port 
Processor via flow identifiers. In larger systems, the CP may be a shared memory 
multiprocessor (or a network processor, [WoFr02]) matching the needs of the specific 
configuration. 
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ANPE – Active Network Processing Element
APIC  – ATM Port Interconnect Controller]

Legend:

ATM “Backplane”

APIC
FPGA

CPU

Cach
e

Bus Interface

MemoryAPIC
FPGA

CPU

Cach
e

Bus Interface

Memory

APIC
FPGA

CPU

Cache

Bus Interface

Memory APIC
FPGA

CPU

Cach
e

Bus Interface

Memory

to other ANN to other ANN

to other ANN to other ANN

A

C

B

D

ANPE AN

ANPE ANPE

PE 

Cache

CPU

Cache

CPU

Cache

____  Load Balancing

input

output

 

Figure 96: An Active Network Node (ANN) hardware architecture 

Within this context, active plugins (or Active Applications, AAs), – code blocks implementing 
application-specific network functions, [Deca99a], – are downloaded and installed on the Active 
Network Node upon a reference in a datagram, through a special configuration packet, or by an 
administrator intervention, Figure 97.  
 
Active plugins can create instances, – flow-specific configurations of active plugins, where the 
individual properties of instances are EE and plugin specific. For example, an IP instance 
consists of the code that forwards the packet and the required information about the interface on 
which the packet has to be forwarded. However, all instances use the same well-defined API 
that embeds them into the system.  
 
In Chapter 6 we demonstrated how reachability trees in active ad-hoc networks can be 
automatically updated through incorporating structural changes into r-shuttles to enable a 
vivid routing procedure with the WARAAN algorithm. The ANN/DAN approach uses a similar 
method for forward propagation of state information with the packets of a flow.  
 
Here, the EE of an upstream node can request a selector from the NodeOS to label a chain of 
AA instances, initiated after plugin download by a local executing environment, [Deca99], 
[KRWP01] that has been created upon arrival of the first few packets of a packet flow. The 
selector is included then within a special SAPF packet, (Simple Active Packet Format, [TD98]) 
which is inserted into the subsequent packets of the same flow to enable the downstream node 
to efficiently lookup the state information using hashing and thus directly assign the flow state 
information to the packet, Figure 97.  
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Figure 97: State information lookup through a selector tag labelling pipelined AA instances 

The flow lookup based on selectors is implemented by the Selector Dispatcher. Some detail of 
the selector lookup procedure is explained on Figure 98. While plain IP packets are forwarded 
according the standard routing procedure (classification, header processing, output queuing), 
active packets move through configured kernel plugins with the active function dispatcher 
passing the packets to instances of plugin objects (AAs), instantiates objects or triggers 
download of plugin classes as needed. In addition, the SAPF packets which propagate the 
selector label for the pipeline of instantiated active plugins corresponding to the current packet 
flow are undertaken a streamlined processing using the pre-established state.  
 
Thus, the processing of an active packet in the beginning of the flow determines the path of 
execution of the subsequent packets in that flow. (The overall procedure of event-based 
charging and execution of software extensions/plugins upon packet arrival is illustrated on 
Figure 99. The interested reader is kindly asked to refer to [Deca99] for further details on it.)  
 
This is an essential advantage when compared to the processing overhead of a per-packet 
initialisation, chaining and execution of AA/plugin instances. However, this characteristic does 
not appear to be sufficient enough to leverage the performance of an Active Network Node. 
Therefore, researchers direct their efforts towards optimising also the hardware part of 
programmable router/switch architectures, e.g.  [LMA98], [Hess99], [HMPZ99], [LHAM99].  
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Figure 98: Main information flows through the processing engine kernel 

 
That hardware often replaces software for the reason of performance even in non-traditional 
areas such as routing [PeZu92] is a well known fact. However, the step from an FPGA switching 
board (Chapter 3) to on-the-fly programmable routers ([HaSm97], [HaSm98]), and then to high-
performance multi-port extensible routers, [Kuhns02], is a very small one, but difficult to 
implement. Nevertheless, apart from implementation details, a programmable router is a network 
device for providing application deployment mechanisms. 
 
In general, there are two basic schemes for delivering network applications to a programmable 
router today: 
 

1. passive applications deployed at session setup via signalling protocols, and 
 

 
Both of them are usually realized in software. However, optimal router architectures must be 
able to utilize the flexibility available in software and the performance offered by reconfigurable 
hardware. 

2. active applications/extensions/plugins requested by incoming packets or carried by the 
packet for execution on the programmable router.  
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Figure 99: The DAN network level software architecture 

 
Therefore, in the following we discuss in some detail the practical Dynamic Hardware Plugin 
(DHP) idea proposed by Taylor and his colleagues from the Washington University in St. Luis, 
[TTL01], which provides the basis of high-performance multi-port extensible router architecture, 
[Kuhns02], and hence appears to be the next step on the way towards future autonomous 
Wandering Logic Intelligence architectures. Note, that here we address only WLI related 
characteristics. Additional information about design issues for high-performance active routers 
can be found in [Wolf99], [WoTu01] and [WoFr02]. 
 
The DHP architecture is based on reconfigurable hardware for Active Processor Chips (APC), 
Figure 94, which provides a flexible and scalable mechanism for implementing high-performance 
programmable multi-port routers by enabling multiple networking applications to be dynamically 
loaded and run into a single hardware device, thus providing a flexible functionality and 
distribution of the flow processing in terms of hardware. DHP can support a broad spectrum of 
computationally intensive applications such as encryption and streaming data services (e.g. 
video conferencing) which can benefit from parallelization and pipelining with dedicated on-chip 
logic and memory resources for each plugin as well as arbitrated access to two types of off-chip 
memory.  
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The starting point for discussing the Dynamic Hardware Plugins idea is the router architecture 
presented in [WoTu99] which already provides a scalable software processing environment 
using elements with multiple RISC cores (Active Processor Chip on Figure 94) on a single 
device and is suitable to hardware processing integration, Figure 100. The Hardware Processing 
Element in Figure 101 implements the Dynamic Hardware Plugins (DHP) architecture on a 
single FPGA or a hybrid ASIC/FPGA chip to add flexible, parallel hardware processing capability 
to the Port Processor.  
 
The idea of Taylor et al., [TTL01], is to use the hardware processing elements as an extension 
(or replacement) of software processing elements in a dynamic fashion, i.e. during run-time.  

 

Figure 100: A software-processing element (SPE) of the processing engine 

 
To provide a scalable solution, Taylor and team propose a hot-plugin architecture where HPEs 
are arranged in a ring via a standard interface over Input Output Controller (IOC). Daisy-chain 
rings can be operated at higher clock frequencies than busses due to their simple point-to-point 
connections. Also, single plugin can make use of the full ring bandwidth if necessary. Since the 
bandwidth required between the QCTL and the entire set of HPEs (APC chips, Figure 94) can 
be bounded by the link bandwidth (assuming that each active packet passes once from the 
QCTL chip to a HPE/APC and is returned once), this fact does not create a bandwidth 
bottleneck. 
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Figure 101: A hardware-processing element (HPE) of the processing engine 

While an IOC is provided for each hardware plugin, two IOCs interface to upstream and 
downstream HPEs. The upstream IOC may interface to another processing element or directly 
to the PCQ, Figure 94. The downstream IOC interfaces only to other HPEs. The upstream IOC 
contains an additional port to the Application Controller. When new applications are to be loaded 
into the hardware plugins, the upstream IOC must pass control messages and application data 
to the Application Controller. While a hardware plugin undergoes reconfiguration, the associated 
IOC passes data to the next IOC in the ring. This mechanism allows applications to be 
dynamically loaded into hardware plugins without interrupting the flow of data through the 
processing ring. 
 
Finally, like a software API, hardware plugins must have access to a static set of ports for data 
I/O, control, and external memory through a standardized hardware plugin interface. The latter 
includes off-chip SRAM and DRAM interfaces, IOC interface, and Application Controller 
interface. Each application may also define its own interface to on-chip RAM. 
 
In this way, a single SPE of the Processing Engine can be extended by one or more HPEs to 
raise the performance of the router’s ports. Each HPE supports a broad spectrum of applications 
through dedicated on-chip logic and memory resources, as well as access to two types of 
arbitrated off-chip memory resources. DHPs provide applications with the reconfigurable logic 
and memory resources to process data flows. In this context, hardware plugins are the physical 
hardware structures that may be configured to implement various networking applications.  
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The reconfigurable logic resources include logic gates, lookup tables, flip-flops, multiplexers, 
demultiplexers, and signal routing matrices. On-chip Random Access Memory (RAM) may be 
configured to implement queues and multi-port memories. 

 

 
The question of when it will become possible to automatically physically exchange software and 
hardware processing elements on “as needed” basis, as the WLI model envisions, is almost 
intuitive. Recent research is already going in this direction. The mere fact that hardware is going 
to be exchanged and activated upon network feedback during deployment, even when being a 
priory mounted “on-board”, testifies that the next step of network evolution will be the one of self-
organizing autonomous mobile components as it is pretty usual with satellite and spacecraft 
equipment today. The complete answer is only a question of time: in particular, if we take into 
consideration the pace of research in nano-technology.  
 
In October 2001 physicist Hendrik Schon and chemists Zhenan Bao and Hong Meng from Bell 
Labs unveiled a transistor with a single-molecule channel length. But that device could only be 
fabricated as a matrix of a few thousand molecules that worked in tandem. A month later, the 
same team has succeeded in fabricating molecular-scale transistors that can be individually 
controlled, [BLA01]. Autopoiesis is also about control, the self-control induced by multiple 
feedback of the environment, [Bate72]. The new breed of Wandering Networks is not far away.   
 

7.2.3 PACKET ORGANIZATION   

The question of whether the shuttle model with its internal complex organization of differently 
encoded genes is a suitable abstraction for the practical realization of WLI architectures is also 
critical.   
 
In fact, we cannot find any reasonable arguments against the idea of extending a packet’s 
contents with additional information (binary or not) about the state of the network. The only 
contra arguments could arise for implementation considerations related to the current state of 
technology. The usage of the Active IP Option field at the very beginning of AN research 
discussed in Chapter 3 confirms this assumption.  
 
This basic research work that has begun long ago with the treatment of diverse isolated 
research problems (IP multicast, QoS, routing, etc.) to monitor the network and deliver the data 
for its long-term planning, is currently developing towards investigating diverse ad-hoc solutions 
to understand the subject of short-term network behaviour accompanied by integration of 
properties (because of increased multimedia traffic), along with pattern recognition and 
prediction of user behaviour. For instance, a multimedia multicast stream is characterized by a 
number of QoS properties which can be conditionally set “downwards” on a per-user-preference” 
base and “upwards” on a per-user-membership-base. The user membership status can be 
defined in turn by other users and/or by the network behaviour. 
 

The potential advantages of the DHP architecture in gaining performance and flexibility for a 
diversity of network applications has been demonstrated in a series of implementation case 
studies of the Advanced Encryption Standard (AES) in terms of software, FPGAs and ASICs.  
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There are different ways to express this hierarchical packet-user relationship: as options or tags, 
as strings, tables, trees, graphs, attributes or even grammars. But, without regard to which 
approach has been selected, at some point the expressional limits of a practical frame such as 
the IP packet format is reached and other means are required.  
 
The more complex the communication structure becomes, the more inclined is the research 
community to favour elaborate descriptive means such as specialized protocols and language 
approaches. Active Networks supporting language based secure EEs such as PLAN (Packet 
Language for Active Networks), [Hicks98], and SNAP (Safe and Nimble Active Packets), 
[Hicks01a], are not the exception in this statement.  
 
However, what holds for the plain IP world should hold for the active IP world as well. The EEs 
and the packet structure should be kept as simple as possible. Unfortunately, this is not always 
the case. Whereas PLAN is a rich and highly flexible general purpose active packets language, it 
is too complex to target such problems as ad-hoc routing in mobile networks. Even a compilation 
into SNAP [Hicks01b], which offers significant resource usage safety and achieves much higher 
performance compared to PLAN, (of course, at the cost of flexibility and usability),  may be 
inappropriate base to solve certain performance related problems.  
 
Therefore, we claim that packet research is not completed to favour application level processing 
only. As shown in the previous section, in near future some traditional EE-centric operations on 
active packets can be shifted and dynamically distributed among the PEs at the switch ports, 
and namely - at runtime, and according to WLI - even upon “download/call” of autonomous 
mobile hardware extensions/plugins.  
 
This potential functional shift, (or Vertical Function Wandering: the Pulsating Metamorphosis 
Principle, [Sim02a]), between higher and lower processing layers which can be also intentionally 
invoked as a part of some (self-)regulation mechanism (e.g. load balancing) and provides an 
additional degree of freedom to adapt to the changing conditions of the networking environment.   
 
Therefore, WLI regards the “semantics” of the functional wandering process at a second 
abstraction level within the structure of a capsule/shuttle as genes, encrypted data 
structures or “code of the code”  which are interpreted or executed at special conditions.  Genes 
are shuttle attributes that have the advantage of providing dedicated and structured conditional 
information in addition to transporting code and data (as usual in active packets) which can 
change the “purpose” and the “orientation” of a shuttle content. Thus shuttles are able to 
communicate in a direct efficient way not only WHAT and WHERE, but also HOW their content 
should be used.  
 
A typical example of telling how a packet should be processed are error detection and protection 
schemes such as forward and cyclic error correction (FEC, CRC) as well as watermarking 
techniques. Since the compressed video stream is sensitive to error, video transmission over 
error-prone wireless channels requires both: i) error protection by channel coding and ii) error 
resilience by source coding. Digital watermarking techniques have shown potential not only in 
data hiding ([HaGi97], [LLB97]), but can also be used to improve error resiliency as shown in 
[CHL01], [Chen02]. 
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This essential difference between active packets and shuttles allows to easily integrate (if 
required) different traffic and workload sensitive state information vectors within a particular 
shuttle flow which are related to that flow only (e.g. congestion control, resource allocation, 
routing policy, etc.), by reducing the messaging overhead and latency time for reacting to 
dynamic changes in the communication environment through more differentiated utilization of 
the peripheral programmable/exchangeable router/switch circuitry when compared to EE-centric 
solutions.  
 
In Chapter 6 we demonstrated how a small shift from a more complex descriptive technique 
such as routing tables into a less complex one - reachability trees, which are encoded and 
transmitted inside packets, can bring substantial performance benefits to ad-hoc networks. Note, 
these does not need to be special r-shuttles carrying genes or even capsules in the AN sense; 
the linear tree encoding can use the IP option field. 
 
Shuttle architectures are shifting the capsule model one step ahead towards active agency. 
They are an important complementary part of the code mobility infrastructure and deserve 
special attention. 
 
The WLI approach is oriented towards the integration of different active packet system formats 
into a two-layer flexible, configurable and efficient transport unit format: i.) application (WHAT / 
WHERE) and ii.) network (HOW / WHERE) with the goal to reduce unnecessary processing 
complexity at the application level (EE-centric) in an optimised way. The design of these 
components should be derived on a per-function/per-application base form exact specifications 
and measurements within the target domain.  
 
The efficiency of shuttle processing should be proportional to the conformance degree of the 
shuttle-netbot architecture to the Dualistic Congruence principle.  
 
Since there is no practical implementation of the WLI model for the time being, there are still no 
benchmark mechanisms to measure this value. Yet, in the rough approximation of static, i.e. 
unchangeable architectures we can regard the processing of genetic information inside a shuttle 
during node traversal as equivalent to encryption/ decryption procedures.  Then, we can refer to 
some elaborate benchmark measurements with security background in Active Networks.  
 
According to a study carried out by Scott Alexander et al. on the SANE architecture, [ANSPrice], 
the basic operations required for authenticating packets require a 33% overhead relative to 
unauthenticated packets. We assume the same maximum overhead with encoding/decoding the 
second abstraction level in shuttles associated with a gene. With this value as reference, we 
obtain theoretically already 66% overhead at each side (for the worst case of genes contained 
inside code, with the assumption of a linear no-loop execution) which represents a substantial 
difference against plain packets.  
 
Despite this fact, the time required for the additional processing of encrypted genes when 
measured in CPU cycles appears to be diminishing when compared to the roundtrip latency of a 
peer-to-peer request-response. Besides, processing overhead can be easily overcome by a 
higher processor rate and faster algorithms both in software and hardware. The fact that genes 
may carry important time-critical system information should be also taken into consideration. 
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Finally, it is interesting to note the effect of the processing overhead on providing security, or “n-
geneering” in the general encryption scheme in the shuttle architecture in WLI. In their study, 
[ANSPrice], Alexander et al. identified two architectural paths to high performance: 
 

1. via sufficient restriction (or richer semantics) of actions of each active packet, so that no 
authentication is required - the “RISC” approach in EEs, e.g. the PLAN system. 

 
2. via active extensions (active applications or software plugins) as they pay the cost of 

authentication only once for a flow of packets even if this can be a large number of 
packets such as a customer’s attendance in a ¾ hour video-conferencing session. 

 
In the second case, a “soft-state” active caching scheme such as the one used in the ANTS 
environment appears to be sufficient for ad-hoc initiation and stable flow transmission over fixed 
networks. However, a wireless mobile environment provides various temporally unstable 
sources of disturbance and interference which have to be recognized individually even on a per-
packet base, so that the above active cache-control scheme cannot be used with the same 
success. Therefore, a second level of virtualization within the packets themselves in terms of 
specialized genes (for the sources of packet transformation) as proposed in WLI realizes a more 
target-oriented dynamic traffic registration and response scheme which cannot be only handled 
by simple changing. Further in their report, the authors talk about a promising research area to 
leverage performance in secure, and by analogy – WLI, environments. This is the reduction of 
the packet size through very high-level languages “or some other compression scheme” in order 
to allow a wider range of active packets/extensions. This is exactly what WLI achieves by means 
of genes within the shuttles.  
 

Conclusion 1: In WLI, both performance and encryption are achieved by distribution and 
diversification of communication sources and network re-sources. 

 
Nevertheless, a particular implementation of the WLI architecture and exact measurements in a 
test environment are required to verify the above hypothesis. With the same motivation in mind, 
the US National Institute of Standards and Technology (NIST) has recently initiated the Active 
Networks Measurement project160  which intends to devise and validate a means to express the 
CPU time requirements of a mobile-code application in a form that can be meaningfully 
interpreted among heterogeneous nodes in a network. 
 
However, even if we obtain some reasonable results about measuring performance and other 
benchmarks in a particular implementation, we cannot be ever certain of where to define 
functionality, when seen from a long-term development. Therefore, we decided to rely on 
wandering and its automation.  
 
 
 

                                                 
160 http://w3.antd.nist.gov/active_nets.shtml 
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7.2.4 THE WLI ADDRESSING CONCEPT 

 
At this point, we will direct our attention to a key question in the overall concept of the Wandering 
Network.  
 
How hardware can be actively managed down to the gate level ? 
 
In other words, how can we make sure that we can program every single component ?  
 
We are going to illustrate now the WLI addressing concept with an example which is based on a 
particular solution in the DAN approach. Following the line of thought in [Deca99], we can make 
an important distinction between the first few packets and subsequent packets of a flow. In 
ANN/DAN, the reception of the first packets of a flow usually causes the plugins to create an 
instance for the new flow. If the packet is passed to multiple instances, these instances are 
chained together in a “soft” pipeline which operates like a programmable hardware vector 
processor on the passing-through packets.  
 
The interesting discovery that Decasper and his colleagues make with this scheme is the 
following. While the plugin instance creation per flow introduces a certain processing overhead 
with the first few packets, the pay-off of this procedure were “dramatic”, so the authors, for 
subsequent packets. In other words, no demultiplexing (as in the case with the selector packet) 
and no routing lookup are required ! Note that all flow specific information is that of a “soft-state” 
and can be automatically removed when no packets of a given flow are received within a given 
period. The operations of instances are reduced to only those which vary from packet to packet 
of the same flow.  
 

Now, the breaking point in our Gedanken-Experiment with the WLI’s “n-geneering” idea, 
– the introduction of a second virtualisation level within active packets as genes, – is the 
very last sentence. Note, that this is exactly the same ∆-scheme that media encoding 
formats such as MPEG and MJPEG use to encrypt motion within subsequent frames 
of “static” images before being split into packets!  Also, another, even more interesting 
point is that some recent effective compression techniques, and in particular – error-
resilient algorithms161 for video transmission over unreliable connections (e.g. a wireless 
link) are based on including more context-sensitive (in terms of both image context and 
transmission environment context)  information, – on a server-client or hop-by-hop 
(transcoder proxy) base, – into the image format in order to reproduce it correctly at the 
destination site.    
 

The only differences between the first and the second approach, – Active Networking and 
network-centric video transcoding –, are the ones of application domain and operational 
semantics of the supplied information – communication content (data and more) or 
communication environment (signaling) as packetized snapshots (“soft states”).  
                                                 
161 e.g. generic ([CCH98], [YWL02]) or specialized methods such as use of real-time labeling [LLB97], scalable 

compression and TCP-friendly control ([TaZa98], [TaZa99]) or wireless DLL control [MeiFa99], as well as multiple 
states in streams, [Apo00], and their optimal distribution of intra/inter macro blocks ([ZRR01], [ZT01]).   
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Note: The Processing Engine at the port level performs the same function, yet less 
programmable, as the Execution Environment at the application level of an Active Node: 
it has the task to operate on active packets. 

 
In a packet model, both kinds of information can be transmitted in different flows or multiplexed 
in the same flow as designated (marked) packets as in the case of the selector discussed above. 
In both cases, the incoming packets are split and delegated for evaluation to different execution 
environments or active applications/extensions/plugins inside the Active Node. This may 
become a fairly complex and time-consuming procedure, especially when a CPU-controlled long 
virtual pipeline of instantiated software plugins emerge to support the processing of a particular 
flow at the application layer. Besides, the already processed “marked” packets have to be 
scheduled again in the outgoing flow which requires additional resources. Therefore, the issue of 
operating active packets at the application layer creates some serious considerations about the 
resulting performance of AN implementations. 
 
The download and instantiation of plugins triggered by passing-through packets to organize 
Active Applications on demand is only one sort of feedback mechanism which leads to a self-
regulated traffic – if all bits were equal. (In general, there can be many kinds of feedback 
schemes working in parallel and influencing each other to conduct and process information 
about the state of the network, e.g. [JaRa88].) But this is not the case for multimedia in general. 
So, what does happen with the information content during transmission ? Usually, some packets 
get lost in a connectionless network. This can be critical in some cases when they contain 
information about interpreting subsequent and/or preceding packets.   
 
Multimedia packets have a second level of context-oriented “structural” semantics (e.g. 
association with I, B or P frames in MPEG) which has to be treated selectively. How do 
compression methods and Active Networks realize this ? Perhaps the best recent example in 
compression techniques that illustrate our idea of integrating instant network behaviour into state 
“genes” is the multiple description coding, [Goy01]. Active Networks, on their part, try to isolate 
functional layers where a distinct technique can be implemented and justified. For instance, 
Tschudin et al. ([TLG00], [WDT00], [Tschu00]) propose a simple forwarding layer in terms of 
both implementation and performance to enable delay-sensitive audio data streaming over ad-
hoc networks. The method is based on a controlling pattern: active packets permanently monitor 
the connectivity to setup and modify the routing state.  
 

Conclusion 2:  N-genes realize a secondary level of virtualization inside the shuttles of a 
Wandering Network, thus allowing a compact structured representation and multiple 
descriptions coding of the transported information content. 

 
Do we have any other option to reduce the processing overhead ? 
  
Yes, through packet size reduction, differentiation and distribution by means of layered 
encoding/encryption inside the packets. What we propose with WLI is a much broader 
perspective of providing multiple context-sensitive feedbacks for automatic traffic regulation 
through introducing a second degree of virtualisation at the packet level which is also capable of 
shaping the network topology itself based on the intrinsic dynamic properties of the involved 
entities (netbots, shuttles and their interrelationships).  
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Genes allow us also to integrate multiple feedback mechanisms (states) into individual active 
packets. Then, the n-geneered active packets, shuttles, can be recognized, distributed and 
directly processed with all their context information at the ports of the Active Node, instead of 
being delegated for processing to some EE/AA at the application layer. Note, that we do not 
deny, but only extend the virtualisation model of an Active Network at the packet level which is 
expected to leverage the performance in combination with EE/AA-oriented processing.  
  

Conclusion 3:  Forward and backward propagation of state information and complex 
structural changes can be realized through specialized genes inside the shuttles. 

 
The above idea, when combined with the concept of automatic flow management162 becomes 
very powerful; because it allows integrating transmitter and network behavior information into the 
packet itself on its path to the receiver, which can be instantly used, distribute resources at 
arrival time, i.e. without a priori reservation procedure. A redistribution of resources, and hence 
flow redirection (either internal or external), is undertaken only if new information arrives which 
exceeds the internal resource balancing scheme of the netbot.   
   

Thus, n-genes can be regarded as implicit packet/shuttle representational and/or operational 
mechanisms which:  
 

1. encode structural information at another abstraction level inside a packet (shuttle) while 
hiding details from inadequate processing environments.  

 
2. enable distributed processing of this information in dedicated, yet programmable and 

exchangeable elements of the active node (netbot) through flexible hierarchical event-
based addressing. 

 
The first point declares that EEs do not need to be available on the node by the time the packet 
arrives or even later when the communication is finished; i.e. we don’t need to make all possible 
active nodes in a network know any content representation (formats) and transmission 
(protocols) technique on the active packets that flow through them, unless an expected ‘state of 
the node’ is matched by the packet carrying the corresponding n-gene.     
 
In the second point, the implicit addressing scheme in WLI introduces a requirement for 
conformance with the Self-Reference and Dualistic Congruence Principles where this 
information is used for verification purposes. It declares a relative addressing scheme which can 
be spread out from network grid architectures to the gate level of port processors.  By “relative” 
we mean that through genes containing themselves data and code (as active packets do), 
nodes/netbots are able to also change the next-hop address within them, i.e. to select the type 
of a particular component which determines HOW to process the shuttle. Note: if the required 
element cannot be found, or downloaded, it can be created. 
 

                                                 
162 e.g., the subsequent packets do not require redirection to another resource once the flow has been identified by 

the selector, [Deca99]. 
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This option not only allows us to minimize the amount of processing on a single node and 
distribute it inside the network, [Deca99], but also to spread it out within the node itself, e.g. in 
the port processors instead of the CPU only, and even to decide about structural changes (e.g. 
software and hardware download) in the node’s architecture when a particular threshold value of 
“usage” is reached.  
 

Conclusion 4: Reports about local netbot structural changes can be further propagated 
throughout the network by being encoded within the genes of the shuttles traversing 
these netbots, thus causing desired (reversible) mutations in the entire network topology.  

 
Therefore, the WLI addressing scheme has an instantaneous character; it cannot only be 
defined explicitly through physical addresses, but also implicitly through the actual state of the 
node (netbot) and the ones of the arriving shuttles, which is encoded in their genes. Therefore, 
we call this addressing scheme “autopoietic” and not a controlled one. 
 
A matching procedure of both “states” decides about redirection to other nodes or which 
resources are going to be used on the same node. In this verification procedure we refer again 
to the requirement for conformance with the WLI’s Self-Reference and Dualistic Congruence 
Principles.  We regard the matching procedure itself as a kind of dynamic NAT (Network 
Address Translation) function which can also decide about resources at different hierarchies 
inside the node.  
  

Conclusion 5: N-genes realize an ad-hoc cascaded addressing scheme in Wandering 
Networks upon evaluation of the shuttle and netbot (or clusterhead in case of a virtual 
sub-network) states.  

 
The addresses of a software or hardware processing elements are encoded in a-genes which 
are altered every time a state matching procedure occurs. Thus, external IP-addressing can be 
combined with internal, functional addressing. For instance, the addressing inside an Active 
Processing Chip (Figure 94) is carried out according the following scheme, [TTL01]: 
 

1. The ring protocol of a Hardware Processing Element (HPE) on Figure 101 transfers fixed 
size data units with a busy/idle bit in the first word of each transmission slot. The first 
word also includes a flow control bit vector with one bit for each IO Controller (IOC) on 
the chip; thus, an IOC can set its bit to signal congestion.  

2. A second bit vector is used to enable fair access to the ring. Each plugin with data 
queued for transmission on the ring sets its bit and paces its transmissions on the ring 
based on the number of bits set by other plugins. Additional fields in this word identify a 
ring and slot number of the destination application for the packet.  

3. The ring number identifies a unique processing element in the chain, while the slot 
number specifies the hardware plugin containing the destination application. For packets 
requiring processing by more than one application, the third bit vector is modified to 
address the next application. Upon completion of a packet, applications identify the 
correct ring and slot number of subsequent applications via locally available state 
information. 
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The above addressing scheme can be realized through a shuttle-netbot state matching 
procedure according to the WLI’s Dualistic Congruence Principle.    
 

Conclusion 6: The WLI model combines the advantages of: 
 

1. passive media encoding techniques, recently developing towards multiple description 
coding, (the Multidimensional Feedback Principle), and  

2. state-guided active processing which should be developed towards functional 
movement, (the Pulsating Metamorphosis Principle)  by a programmable compact 
representation at the packet (shuttle) level composed of:  
• active content (transported data and/or code) as in traditional active packets; 
• active semantics in terms of:  

o interpretational data, e.g. the address of an executing environment, the 
identifier of a particular plugin pipeline instantiation, [Deca99], or a linear 
representation of a tree structure (WARAAN, Chapter 6) used by EEs/AAs 
or by the semantics code within that gene, and/or  

o executable code, a program which operates directly on the active content 
or interprets the semantics data in a gene)  that modify/restore the active 
content) in terms of genes. Note that both parts of the shuttle do not need 
to be together; in this case the “action semantics” is reduced to the packet 
flow model. 

 

7.3 SUMMARY AND OUTLOOK: NETWORK TECHNOLOGY INTERFACES 

This section summarizes previous research and reviews the contribution of the WLI approach.  

7.3.1 VISION AND REALITY: A CRITICAL OVERVIEW OF ACTIVE NETWORKING 

Let us recall the basic characteristics an Active Network as they are committed to the state-of-
the art technology.  
 

1. A Passive Network (PN) is a packet switched IP network consisting of conventional non-
terminal network elements (NEs) such as switches and routers, and terminals, such as 
clients or servers. The functions of the network components in a Passive Network are 
fixed, i.e. unchangeable. 

 
2. An Active Network (AN) is an extension of the Passive Network, which permits a more 

flexible adaptation to a complex and changing communication environment by 
accommodating at least one programmable and/or reconfigurable non-terminal NE at 
run-time, known as Active Network Node (ANN). 

 
3. Active Network Nodes are composed of three layers: 

• Execution Environments (EEs) which host Active Applications (AAs),  
• (Extensible) NodeOS, and  
• Programmable/ reconfigurable hardware. 
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The presence of at least the first one of the these layers classifies the NE as an Active 
Node; the ANN layers can be developed, programmed or reconfigured independently 
from the rest of the system architecture; the communication between the them is realized 
through well-defined interfaces. 
 

4. Mobile code is transported in an Active Network via Active Packets (AP) or through 
downloads of active extensions/ plugins to build AAs on an Active Node. Of course, 
this does not exclude the presence of mobile agents in an Active Network, as it has been 
the case in a passive network. 

 
5. Both active and passive networks are control architectures, which mean that they are 

regulating the network traffic based on a set of rules (protocols) which have been 
established a priori to deployment. Even if some recent research investigates the options 
of predicting network behavior ([Galt01a], [Galt01b], [Galt02]), it is still directed toward 
extending the control model framework. In the case of an Active Network, the control 
plane of an Active Node is split into two other sub-planes, network operator control 
plane and user control plane. The latter enables the user to program the behavior of 
his/her application in response to network-centric signaling and to participate directly in 
the reservation and distribution of network resources on its path.   

 
Active Networks of the first generation have achieved a substantial progress towards their main 
goal of providing a more flexible network layer, [TeWe96]. However, performance and security 
concerns are raised by the presence of mobile code in the network.  
 
The most comprehensive evaluation of the experience with the design, implementation and 
deployment of Active Networks w. r. t. the original vision in their early research stage was given 
by Wetherall, [Weth99b]. In his report the author reviews the qualities of and the results 
achieved with the ANTS toolkit at MIT within three years of research (1996-1999).  
 
Wetherall’s evaluation is structured along three areas that characterize a “pure” active network:  

• the capsule model of programmability; 
• the accessibility of that model to all users; and 
• the applications that can be constructed in practice. 

 
The results of his analysis are summarized as follows: 
 

1. Capsules have proved a worthwhile model, because they provide a clear solution for the 
automatic upgrade of processing along an entire network path. This model of deployment 
is considerably more powerful than the selective ad-hoc administrative upgrades 
practiced in packet switched networks today. However, the efficient implementation of 
capsules depends on the amount and on the demand (i.e. upgrading frequency) of code 
to be loaded, as well as on traffic patterns for which code caching becomes effective. 

 
2. Accessibility by any un-trusted user who can freely customize the network was partly 

successful. The ANTS developers have managed to isolate different services from each 
other without trust or centralized control, but not to protect the network as a whole from 
un-trusted services.  
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To accomplish the latter in the general case, a fall-back solution of certification by a 
trusted authority was chosen until better solutions are found163.  

 
3. Application of capsules that appeared to be most compelling was the network layer 

service evolution, rather than the migration of application code to locations within the 
network. It was found that capsule code is well-suited to the task of introducing many 
variations of a service, and hence valuable for experimentation. Wetherall envisioned 
that capsule code would act in synergy with network embedded devices such as caches 
and transcoders, which are deployed by other means, for the benefit of both.  

 
Active Network implementation scenarios, which confirm the above results, can be found 
elsewhere in the research literature. In the following, we provide a few examples, which illustrate 
the third argument. 
 
Regarding the first and the third conclusion in [Weth99b], we argue that the enhancement of the 
capsule model by means of genes, as proposed in the WLI approach (Sections 7.2.3 and 7.2.4), 
will enable the transmission of context-sensitive details of the information content (including 
multiple feedbacks for its processing at the destination site), which not only extends the 
secondary layering (EEs/AAs to process capsules at the application layer) of the classical ‘pure’ 
AN model with a complementary level of virtualisation at the packet/capsule/shuttle side 
(Dualistic Congruence Principle), but also four characteristics of the genetic structure which 
provide are special advantages of the WLI model vs. other approaches: 

1. Integration of diverse content encoding techniques164 (incl. encryption).  
2. Instant and implicit state transportation within shuttles which enables autopoietic load 

balancing throughout the different layers of the Wandering Network 
3. Event-based hierarchical dynamic addressing of the processing elements  
4. Network migration capability (for further study). 

 

7.3.2 THE STEP AHEAD  

The enhancements to the Active Network model proposed in the WLI framework are 
summarized as follows. 

1. A Wandering Network (WN) is an extension, but an orthogonal construct when compared 
to an Active Network. Fairness as a restrictive rule in formal logic (TLA, [Lamp94]) is a 
key concept in WLI, which allows guaranteeing simplicity165 in communications through 
distributed166 “self-control”, i.e. self-organization rather than through delegating this 
function to dedicated elements in the network. It serves to report, verify and punish 
malicious behavior. 

                                                 
163 The impact of security on performance issues was thoroughly investigated by Alexander et. al. on the SANE 

architecture, [ANSPrice]. In Section 7.2.3 we mentioned the evaluation of the processing overhead through 
encription in connection with the genetic organization of the shuttle. The interested reader is kindly asked to refer 
for further details on this subject to the above paper and recent studies in this area. 

164 referred in [Weth99b] as network embedded devices which are “employed by other means”. 
165 No interactions that favor a “Byzantine General” type of behavior, [LSP82], are tolerated in a Wandering Network.  
166 A centralized control is not possible at all in a Wandering Network which is always “under construction”. 
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Therefore, a WLI network can be realized as an additional overlay of an active ad-hoc 
mobile network, but all nodes within this overlay, are required to commit to fair 
behavior167. 

2. Netbots are mobile, self-assembling Active Nodes accommodating functionality both for 
their own use and requested by their peers. A netbot is characterized by the same three 
layers as the ones of an active node; however, all of them should be present to classify a 
network element as a netbot. Although these layers can emerge independently from 
each other and from and the rest of the system architecture, the communication between 
them is realized through interfaces which develop along with the corresponding layers. 
Automatic downloads of active extensions/plugins inside a netbot is performed also in 
terms of functional hardware components, thus enhancing an Active Node’s capability.  

3. Shuttles transport the mobile code in a Wandering Network; they accommodate a second 
level of encrypted/encoded structured soft-state information as n-genes along with the 
plain code-and-data contents of an Active Packet; they report/instruct about conditional 
changes in WN architectures. Genes enable network virtualization at the packet level in 
conformance to the Dualistic Congruence Principle. 

4. Wandering Networks are autopoietic, i.e. self-organizing and self-replicating/ 
architectures which means that they are capable of realizing their own boundaries. The 
growth and the capacity of such a network, as well as its traffic regulation are based on a 
set of network service usability rules, organizational patterns identified as WLI principles. 
There is no centralized network control plane in a Wandering Network, because its 
functionality is in permanent movement and development (Pulsating Metamorphosis 
Principle). The entire network topology and behavior depend on the intensity of usage of 
its components, guaranteed via a series of feedback mechanisms addressed in the 
Multidimensional Feedback Principle. The latter are organized as autonomous, but 
cooperating units, which fairly report (Self-Reference Principle), place requests to and 
distribute resources among their peers.  

 
There are three principle distinctions between known AN approaches and WLI: 
 

1. Whereas classical AN approaches evolve towards a) integration,  interoperation and 
higher layer virtualization and customization of diverse execution environments at the 
application level networking which is b) eventually supported by a moderate degree of 
hardware programmability (which is going to grow in future), the Wandering Logic 
Intelligence provides the missing,  complementary link in the chain of design solutions 
following the Dualistic Congruence Principle at its foundations – namely, the 
specialization and virtualization of communication structures and processes at the packet 
level networking through introducing diverse classes of genetic code (reflecting these 
communication structures and processes) to be automatically incorporated into the active 
packets (shuttles) by the active mobile nodes (netbots) when reaching certain system 
threshold values to enable efficient and instant transfer of dynamic state information 
through encoding, thus avoiding the netwide introduction of supplementary protocols, 
which increases the selective granularity of the programming architecture.  

 

                                                 
167 This characterizes a Wandering Network as autopoietic structure dependable on realizing its own boundaries. 

 271 



2. WLI extends the AN paradigm into mutually exchangeable and programmable functional 
blocks both in software and hardware (NOW) which are possibly interconnected via well 
defined interfaces at all system levels – (from hierarchies of network grids to molecular 
structures (and beyond) – which can develop into autonomous, mobile, self-creating and 
self-organizing (autopoietic) communication architectures capable to grow, migrate and 
replicate (in FUTURE). 

 
3. WLI is based on four principles for network evolution which extend the classical end-to-

end and layering principles of network design: Dualistic Congruence, Self-Reference, 
Multidimensional Feedback and Pulsating Metamorphosis. 

 
The benefits of Wandering Networks vs. Active Networks were outlined in the last paragraph of 
section 7.2.3.  A concise definition of the WLI innovations w. r. t. present network models was 
given at the end of Section 7.1. 
 
In the following, we present a few selected practical scenarios in the areas of node and network 
management, QoS provisioning and ad-hoc routing, which demonstrate the new capabilities of a 
Wandering Network compared to pure AN based solutions. Finally, we discuss the adequacy of 
the WLI framework w. r. t. some recent industrial designs in Active Networking. 
 
 

7.3.2.1 Intra-Node Management 
 
The main limiting factors in Active Networking are processing power and memory. Therefore, a 
practical system implementation has to guarantee that these valuable resources are used in the 
most effective way. 
 
 
Memory Management 
This can be done via tightly coupling between a processing engine and the network, as well as 
between the processing engine and the switch backplane which ensures that packets arrive at 
an Active Network Node with minimal overhead through zero-copy DMA as proposed in 
[Deca99].  
 
On the other hand, the WLI approach can provide a more flexible, policy-oriented solution based 
on the “in-band” exchange of state information contained in the shuttles. Of course, encoding 
this information per-se requires additional processing and storage capacity. However, this issue 
can be easily addressed in a practical way through option packet fields and FPGA filters, since 
the required router state information can be reduced to identifying some common patterns as in 
the case of intra-flow addressing discussed below.  
 
In fact, because of its “structural” character, WLI can benefit from programming heuristics such 
as selective measures, e.g. from the fact that most network traffic is flow-oriented. In this case, 
bursts of packets share important forwarding properties that are, once determined, common to 
all packets of a particular flow.  
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This internal addressing scheme of a packet flow can not only be easily implemented within the 
shuttle model by dynamically accommodating arbitrary relational links which can be very 
important for multimedia traffic, e.g. the association of a packet content with an I, P or B frame of 
an MPEG stream, thus allowing the instant identification and processing of different flows (e.g. 
filtering and cut-through routing for the non-active packets and drop-out or redirection to a 
dedicated executing environment for the rest of them), but also provide critical per-flow traffic 
feedback information  which can be used to predict undesired behaviour. 
 
 
Power Management 
 
In a real environment, the CPU power of a programmable switch should be rationalized to meet 
the demands of active processing of packets. Therefore, computation on active flows must be 
evenly distributed over the available processing engines. This can be achieved in two ways:  
 

1. “internally”, on a hard-wired base which allocates a set of resources a priori to 
programming (e.g. according one of the two FPGA design schemes shown on Figure 
102) which could be then used by the Control Processor to distribute the traffic flows 
between the port processors; and 

 
2. “externally” via system state traffic reports. 

 
In the following, we discuss these two solutions in some detail because they clearly identify the 
conceptual and architectural differences between the available research approaches and the 
Wandering Logic Intelligence.  
 
 
Power Solution 1 
 
Decasper et al. [Deca99] apply a load sharing algorithm which dynamically distributes active 
flows over the  ANPEs by configuring the corresponding APICs (setting/resetting cut-through 
switching of selected VCs) in order to move active flows from heavily loaded ANPEs to less 
loaded ones. Figure 102Figure shows an example of a data flow coming into the programmable 
router at Port Processor 1 (PP1) and going out at Port Processor 2 (PP2). The active processing 
in the case a) is done in the Processing Engine of the input port (1). Case b) illustrates the same 
operation with the alternative architecture which assumes a PE allocation from a dedicated pool 
of engines for active processing.   
 
Each one of the programmable hardware architectures on Figure 102 can be optimized for a 
particular flow processing, provided that the designer knows about the traffic environment the 
router is going to be placed in and used. (We do not mean overprovisioning as a “rule of thumb” 
in this case, but rather a precise design.) In addition, a smart load distribution algorithm can take 
care for using this local infrastructure to the balance the traffic sharing inside the node. This is 
how the link capacity can be internally monitored and managed by Central Processor.  
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However, even such a programmable architecture has a limited capacity and flexibility because 
of the pre-determined nature of hardware design, which cannot be configured for more than that, 
that has been once in mind. In the strong sense, this note holds also for software which can be 
transported, installed and even verified during run-time of a telecommunication system, but 
cannot automatically “emerge”, i.e. be created on the fly (yet). 
 
Of course, a smart design such as the one in [Deca99] can guarantee scalability through the 
ability to configure any number of Port Processors which can be added by someone to the 
Active Network Node along with extensions of the switch fabric. But this is all what can be done 
today. 

PE PE

Switch Fabric

PCQ PCQ
Dedicated Pool for Active Processing

Control Processor b)

Switch Fabric

Control Processor

PEPCQ PEPCQ

a)

Port Processor 1 Port Processor 2

PP 1 PP 2

 

input output

input output

Figure 102: Programmable router architectures: (a) system organization with a processing 
engine at each port;(b) with a shared pool of processing engines 

 
The WLI approach projects two other “hardware” options in future architectures along with active 
mobile nodes, which can be also designed as netbots: 
 

1. Autonomous On-Demand Mobile Hardware Self-Plugins  
2. Autopoietic (Self-Assembling) Nanoscale Processing and Storage Elements   

 
The main argument for such a solution are possible network-centric actions targeting to 
intelligently upgrade/degrade a netbot’s capacity or performance as result of evaluating multiple 
feedback mechanisms from the surrounding environment. In this way shuttle processing can not 
only be distributed and optimised between the Central Processor and the Port Processors using 
internal monitoring mechanisms, but also extended/enhanced by additional “external” hardware 
modules in the long run.       
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Power Solution 2 
 

 

With Power Solution 2 we do not only mean the usual messaging mechanisms used by higher-
level protocols in passive networks or NodeOS pipelining. WLI offers another, more powerful 
option for “instant messaging” and “adaptive programming” of traffic conditions which can be 
encoded and transported through genes, the second abstraction layer of the shuttle architecture 
which complements the virtualisation architecture of Active Networks at the network layer.  

 

 

Originally, this kind of traffic control has been realized through policy management architectures 
(IntServ, DiffServ) and solutions based on standard reservation and synchronization protocols 
such as RSVP [Brad97], RTSP [SRL98] and RTP [SCFJ99], which negotiate bandwidth and 
resources above the network and transport layers a priori to transmission. The details of the 
management are left to the operating system. 
    
The utilization of an Active Node’s processing capacity at the network layer, as discussed in the 
previous “hard-wired” scenario, is not optimal in the general case, because it requires the same 
knowledge about the same processing elements in the programmable routers/switches of a 
usually heterogeneous network.  

Of course, the selection and the distribution of active packets for the purpose of effective CPU 
performance can be successfully realized on a per-port base through a particular local load 
equalizing scheme. For instance, Decasper et al. report about developing an intra-ANN protocol 
to communicate the status of processing engine load between ANPEs on a reserved VC, 
[Deca99]. Other authors such as Galtier et al. model and measure CPU demand in Active 
Networks to predict, plan and implement detailed resource distribution policies at he network 
layer ([Galt01a], [Galt01b], [Galt02]). However, it is not said that this traffic optimisation should 
be necessarily based on such information as the knowledge about the origin, content and type of 
the flow/packet, and this – at the port level.  
 
Active Networks allow a novel mechanism for dynamic integration of new protocols for packet 
processing in the virtual machines (EEs) of the application level, which can be used in addition 
to the passive techniques. However, virtualization at the application level only may unnecessary 
increase the processing complexity and the CPU load, because decisions about traffic 
management are delegated to the EE.  
 

 

7.3.2.2 Inter-Node Management 
The following example is going to review in some detail the advantages of the WLI approach for 
distributed network management. The AN architecture is taken from an AT&T Bell Labs research 
paper, [RaSh00], which illustrates the sustaining industries’ view on Active Networking a typical 
effort (on a system known as ABLE) to enhance legacy routers with an adjunct active engine 
which enables the safe execution and rapid deployment of new distributed applications in the 
network layer, Figure 103.   

The authors claim that the system “can be gradually integrated in today's IP network” [correct] 
“to allow smooth migration from IP to programmable networks”.  
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The proposal is realistic and interesting with its SNMP foundations, but in our view runs the 
danger of presenting a distorted view at the original vision of Active Networks, [TeWe96]. 
Instead, it demonstrates how future generations of HyperActive and Wandering Networks should 
not be built and utilized. This is not because the solution is technically bad in any way, but 
because it could be misleading. Our reasons on this subject are given in Section 7.2.4. 
In the following, we review and discuss the above system. 
 

• an adjunct active engine (AE).  

This simple constitution in two “boxes” along the client-server paradigm, which emulates an 
assisting Intelligent Peripheral known from Intelligent Networks, [Fayn97], although very simple 
and practical, disintegrates already the Active Networking idea in its core and creates an 
unnecessary communication overhead between the separated entities. Although the authors 
claim the clear separation of active and non-active functional blocks throughout all network 
layers, this approach does not facilitate processing. 

The IP router performs the IP forwarding, basic routing, and filtering which is part of the 
functionality provided by today's COTS IP routers. The IP filtering enables the diversion of active 
packets (or other packets) based on their IP/UDP headers to the active engine. The latter option 
is implemented as standard hardware in the new generation of IP routers, [KLS98], and can be 
performed by edge routers in software. Therefore, the authors propose to use it for the 
implementation of an “outsourced” EE, which is the Active Engine in fact.  
 

An active node in the [RaSh00} system is comprised of two entities:  
• an IP router, and 
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Figure 103: Overall Architecture of the ABLE system, [RaSh00]; thick lines between components 

illustrate possible flows of data, thin lines – logical connections. 
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The Active Engine is defined as “an environment in which code encapsulated in active packets 
can be executed”. This code “can specify HOW code and data related to a specific task should 
be handled”. This function is similar to the specialized IP Execution Environment in [Deca99] 
discussed earlier in this chapter; therefore it does not represent an innovation, and hence cannot 
obtain a patent per se.  
 

 

 

 
To perform distributed tasks, an active node must have means to communicate with other active 
nodes. However, the authors’ note that most of the research on Active Networks “failed to notice 
the need to access local network information” (provided via SNMP in their case) is incorrect. 
Active Networking was not designed to support reuse of old protocols and standards, but to 
introduce new ones. They provide other means to transfer network layer related information. For 
instance, in Chapter 6 we demonstrated the easy encryption of reachability trees within shuttles 
to report topology updates to the neighbourhood.   

Therefore, the goal of the AT&T prototype to use AN technology for managing IP networks fails 
because they can be managed also without Active Networks. IP networks become only more 
complex this way. It is much easier to replace passive with active routers to enhance their flow 
processing capabilities.  

In terms of WLI, the Active Engine should be a dedicated processing element which interprets 
shuttle genes either at the application layer (as an EE), or as a programmable hardware 
component at the platform layer (Port Processors). In short, the AE is a “hardware overhead” 
that can be easily put inside an FPGA of a programmable router, where the entire SNMP 
signalling on Figure 103 can be resolved on the internal PP bus between the PCQ and the APC, 
Figure 94.  

Hence, the only reason to support this uneasy architecture might be reuse of old infrastructure 
and protocols which never developed beyond their own limits, a fact that rather created the 
demand for Active Networking. Furthermore, the AT&T prototype system considers a globally 
unique number (a session ID) to identify a logical distributed task. When code associated with a 
non-existing session arrives, it is executed and creates a process that handles all the packets of 
that session. Note that the code should be “strongly typed”, i.e. the system on Figure 103 can 
recognize only one active flow. This means that in order to implement the ANN/DAN system on 
Figure 95 we will need at least three external boxes for each single Execution Environment. 

In addition, the AT&T system uses SNMP as the interface between the router and the AE to 
provide sessions with access to the router's network layer data (neighbour IDs, routing tables, 
performance statistics, etc. That the SNMP protocol can easily transport useful information 
between network entities is a well known fact. However, standard SNMP agents on all routers 
which provide read/write interface to standard management information bases (MIB) does not 
know anything about the application running on top of them. Therefore, SNMP requires a large 
communication overhead to discover and transfer e.g. the QoS parameters of the lightest 
change of a transcoding rate adaptation on an MPEG-4 stream which though cannot be 
performed in due time in dynamic environments such as ad-hoc mobile networks. However, the 
same information can be easily delivered within a capsule or shuttle to be processed on-board of 
the Active Node with access to required network context information (Self-Reference Principle). 
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The same reasoning can be applied for the implementation of Wandering Networks. A WLI 
architecture can be realized following the design guidelines in Section 7.2. However, its success 
depends on the selected domain of application. Thus, a WN implementation e.g. as an overlay 
network within the X-bone may show a completely different results in the end-to-end quality and 
performance evaluation when compared to the ones achieved in a “stand-alone” solution. But 
this does not necessarily mean that the WLI approach should be wrong. It is only new, a fairly 
new one compared to present day telecommunications architectures.  

7.3.2.3 A Comment on Security  
 

                                                

 
In Section 7.1 we stated that the four WLI principles of autopoiesis presented in Chapter 5 are 
an extension of today’s end-to-end design and system layering principles. In fact, a Wandering 
Network extends the control plane to each single node without affecting the control planes of 
other nodes. It is important to realize that this approach is orthogonal to today’s control 
architectures by addressing activity, i.e. self-organisation in its core, [Sim02a].  
 
For this reason, a Wandering Network, while being a new class of a hyperactive architecture that 
is closely related to some recent approaches to extended network activation (e.g. RFC 
proposals such as [SJC00]); it still cannot easily interoperate with the “control type” architectures 
even if they are deployed as network overlays.  
 
This is because of the introspective organization of the Wandering Network which is 
undeterministic and event-based (Section 7.2.4) in its nature, based on the instant local 
evaluation of shuttle and netbot states, and cannot be “controlled” or predicted via traditional 
management protocols in the common fashion practiced today in passive (SNMP) and active 
networks (e.g. AVNMP, [Bush00],[Bush01]). Thus, although providing an extended system 
model, the closest interface at which WLI can “speak” with other, classical types of packet 
networks is active ad-hoc mobile networking. This issue was demonstrated in Chapter 6 with the 
WARAAN routing algorithm. 
 
 

The WLI framework complies with the state-of-the-art research in AN security. In fact, the idea of 
including context-sensitive networking information inside individual active packets of a flow by 
introducing a second virtualisation layer in terms of specialized genes, as WLI proposes, 
represents a general abstraction for isolating network flows by means of a programmable set of 
security sources/reasons which can be handled (if desired) on an event base. For instance, WLI 
can easily accommodate efficient encryption techniques such as distributed fingerprinting168, 
recently proposed in [Brown01]. 
 
However, in the case of a Wandering Network, the genetically "encrypted" information can be 
used not only for the sophisticated flow authorization, but also for maintaining a floating (or 
“wandering”) system state between the netbots as noted in section 7.2. 
 

 
168 A security technique used in particular for the encription of media flows which are marked with the identity of their 

recipients. 
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7.3.2.4 A Comment on Performance 
As discussed in Chapter 3, Active Networks allow applications to inject customized programs 
into network nodes, thus enabling faster introduction and deployment of new network protocols 
and services even over the wide areas. 
 
In [LWG98], Legedza, Wetherall, and Guttag argue that the ability to introduce active protocols 
offers important opportunities for end-to-end performance improvements of distributed 
applications. They describe a variety of active protocols that provide novel useful network 
services (active reliable multicast, online auctions, mixing sensor data) and discuss their 
potential impact on end-to-end application performance. The authors have shown that such 
active network services can increase their performance through processing at intermediate 
nodes of the network. In particular, the performance of an active networking protocol that uses 
caching within the network backbone was presented and analysed.  The study has 
demonstrated that an Active Network solution is able to support caching of (previously 
considered for uncacheable) rapidly changing data which leads to load reduction on both servers 
and backbone routers as well as shorter round-trip hop counts. 
 
The trade-off between performance and security in Active Networks has been addressed by 
several authors ([ANSPrice], [Weth99b]).  In fact, we can apply the above conclusions for the 
theoretical evaluation of the WLI model which was carried out in Sections 7.2.3 and 7.3.1. Of 
special importance are the “feasibility” arguments provided at the end of Section 7.3.2.2 
 

7.4 DIRECTIONS FOR FUTURE RESEARCH 

This section completes the demonstration of the theoretical aspects of the WLI approach. The 
major next step is the implementation of the WARAAN routing algorithm presented in the WLI 
case study (Chapter 6). Further work in terms of test and verification of features is expected and 
required to prove that the proposed model is powerful enough and well suited to address 
network evolution at this stage of research. That will be the subject of future research for which 
a funding proposal is planned. 
 
The WLI approach that has been presented is currently at a theoretical stage of work. It does not 
yet have any practical value. However, we have provided a well-defined informal model (Chapter 
4) with a small part of it demonstrating its hidden capabilities in the body of a formally specified 
and checked adaptive ad-hoc routing algorithm (Chapter 6).  
 
We have also provided a strong argumentation for and proof of the practical feasibility of the WLI 
paradigm, which was illustrated with guidelines for implementation discovering the true nature of 
the model and examples for its application, compared to alternative solutions (Chapter 7). 
Therefore based on the strength of the arguments put forward in Chapters 4, 6 and 7, we have a 
solid basis upon which to prepare a research proposal with a good chance of success. 
 
Network evolution means not only a (controlled) gradual improvement of the state-of-the-art 
solutions, but also discontinuing of the solutions which have significant shortcomings that does 
not properly match real life needs.  
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At the same time, this does not mean that well established design principles, technology 
infrastructures and investments should be disregarded merely for the purpose of innovation. 
“Service usability”169 provides the required benchmarks for establishing new technologies. The 
best way to ensure that this principle is adhered to is to integrate it within the design process as 
an immediate feedback routine which automatically determines the behaviour of the network. 
With WLI we present our view at this development. 
 
In our approach, we simply recognize the “rule of purposefulness” stating that by establishing a 
new paradigm, engineers should continue to focus on, but carefully navigate towards the 
original vision, – even when meeting at times substantial difficulties to practically realize the 
new idea –, instead of narrowing the horizon and sticking up to reconciliation with and 
improvement of the old concept “at any price”. This is the special characteristic that distinguishes 
disruptive technology from the sustaining one, [Chris97]. 
 
Finally, we are going to summarize the open research issues which have not been addressed in 
this thesis work so far and are challenging for future research from our perspective. 
 
The formal part of this thesis (Chapter 6) illustrates the application of the WLI approach in the 
area of active ad-hoc mobile networking. The WARAAN routing protocol is designed to 
demonstrate a superior performance (O (4)) over present day routing table updates with the r-
shuttle reachability tree encoding scheme. The algorithm was entirely specified and tested in the 
formal technique TLA (Temporal Logic of Actions), [Lamp94]. However, a detailed proof of the 
algorithm needs to be provided. This is going to be our next objective.  
 
Furthermore, it is desirable that also other interesting WLI characteristics are specified and 
verified in TLA or other formal methods. This work should be provided by future research to 
prove the concept consistency and interdependence of the Four WLI Principles w. r. t. their 
practical usability. The latter should find expression in a set of properties which are related to 
both functional and non-functional aspects of networking and distributed processing. In 
particular, network properties for routing, portability, migration, reconfiguration, security and 
performance in terms of software and hardware should be defined to enable the formal 
evaluation of system implementations, as well as to provide benchmarks for comparative 
measurement and analysis of the different solutions at the service level. Promising research in 
this area has already begun ([Turn01a], [Turn01b]).    
 
Also, it is of particular interest to investigate how well TLA and other formal techniques (LOTOS, 
Chisel, PVS, Maude) stand up to the above objectives. 
 
Special attention deserves the concept strengthening of the autopoietic mechanism for dynamic 
event-based shuttle-netbot state evaluation for resource addressing and management described 
in 7.2.4 w. r. t. formal verification, implementation, measurement and test. 
 
Another challenging research topic is the new role of reflection mechanisms in packet networks 
affected by the introduction of a second level of virtualization in the face of n-genes. 

                                                 
169 the tautology of this term is intentional and preferred instead of the even more unusual “serviceability”.  
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Also, some aspects of reconfigurability presented in Chapter 4 are reminiscent of reflection as 
discussed in programming languages. This is an interesting research topic that could be pursued 
in more detail in the light of a particular implementation of the WLI/WN approach such as the 
WARAAN routing algorithm (Chapter 6).  
 
Further Interesting research questions are:  
 

• Which role has middleware in AN and WLI ? 
 

• What implications do the concepts of Active Networks and WLI have on:  
 

• hardware and software used to support network design (e.g. node/netbot 
architecture, capsule/shuttle code structure, high-level languages and systems 
used, etc.) and vice versa; 

 
• portability and migration and vice versa; 

 
• performance, efficiency, security and vice versa. 

 
 

 
 
 
 
 
 

* * * 
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” There is latent in Cybernetics the means of achieving a new and perhaps more human 
outlook, a means of changing our philosophy of control … “ 

 
 

   GREGORY BATESON, “STEPS TO AN ECOLOGY OF MIND”, 1972  
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GLOSSARY 

AA  Active Application 
AAMN  Active Ad-hoc Mobile Network 
Abone  Active Network backbone 
ABR  Associatively Based Routing 
ACC  Active Congestion Control 
ACD  Adaptive Communication Device 
AE  Active Engine 
AES  Advanced Encryption Standard 
AI  Artificial Intelligence 
ALAN  Application Level Active Networking 
ALF  Application Layer Framing 
ALU  Arithmetic-Logic Unit 
AMN  Ad-hoc Mobile Network 
AN  Active Network 
ANEP  Active Network Encapsulation Protocol 
ANN  Active Network Node 
ANON  Active Network Overlay Network 
ANPE  Active Network Processing Element 
ANTS  Active Node Transfer System 
AODVR  On-demand Distance Vector Routing   
AP  Active Packet 
APC  Active Processor Chip 
API  Application Programming Interface 
APIC  ATM Port Interconnect Controller 
ARC  Active Router Control 
ARM  Active Reliable Multicast 
AS1  Active Services version 1 
ASIC  Application Specific Integrated Circuit 
ASCP  Active Services Control Protocol 
ATM  Asynchronous Transfer Mode 
ATP  Agent Transfer Protocol 
AVNMP  Active Virtual Network Management Prediction 
BGP  Border Gateway Protocol 
B-IP  Broadband Intelligent Peripheral 
CAM  Content Addressable Memories 
CAP  CAMEL Application Part (Protocol) 
CANE  Composable Active Network Element 
CCF        Call Control Function 
CCM  Custom/Configurable Computing Machines 
CCSS   Centralized Client/Server Subnetwork 
CDMA  Code Division Multiple Access 
CE  Communication Environment 
CF  Configuration Function 
CGSR  Clustered Gateway Switch Routing 
CISC  Complex Instruction Set Computing 
CLB  Configurable Logic Block 
CORBA  Common Object Request Broker Architecture 
COTS  Components-Of-The-Shelf 
CP  Control Processor 
CPE  Customer Premises Equipment 
CPU  Central Processing Unit 
CRC  Cyclic eRror Correction 
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CS-2  Capability Set 2 
CSI  Customer Services Interface 

CTI  Computer-Telephony Integration 

DAN  Distributed code caching for Active Networks 

CSLIP  Compressed Serial Line Internet Protocol 

CU   Conference Unit 

DARPA  Defence Advanced Research Projects Agency  
DAS   Dual Availability Subnetwork 
DCP   Dualistic Congruence Principle 
DES   Duplex Exchange Subnetwork 
DHP   Dynamic Hardware Plugin 
DIRS   Distributed Information Retrieval Subnetwork 
DLL  Data Link Layer  
DPS  Dynamic Proxy Server 
DRAM  Dynamic Random Access Memory 
DREN  Defense Research and Engineering Network 
DRNS  Drift Radio Network System 
DSDV(R)   Destination Sequenced Distance Vector (Routing) 
DSFS   Distributed Store & Forward Subnetwork 
DSP  Digital Signal Processing / Processor 
DSR  Dynamic Source Routing 
DSS1   Digital Subscriber Signaling System No. 1  
E2E   End-to-End 
E2EA   End-to-End Argument(s) 
EE  Execution Environment 
ETSI  European Telecommunication Standards Institute 
FDDI  Fiber Distributed Data Interface 
FDMA  Frequency Division Multiple Access 
FEC  Forward Error Correction 
FIFO  First-In-First-Out 
FINE  Flexible Intelligent Network Element 
FINEA  FINE Architecture 
FM  Filter Memory 
FORTH  FO(U)RTH generation computers programming language  
FPGA  Field Programmable Gate Array 
FSL  Flexible Service Logic 
GEDIR  GEographic Distance Routing 
GIS  Geographic Information System 
GPRS  General Packet Radio Service 
GPS  Global Positioning System 
GSM  Global System for Mobile Communications 
GUI  Graphical User Interface 
HAG  Higher-order Attributed Grammar 
HCI   Human Computer Interface 
HLR   Home Location Register 
HPE   Hardware Processing Element 
HTTP  HyperText Transfer Protocol 
IC  Integrated Circuit 
ID  IDentifier 
IDL  Interface Description Language 
IEEE  Institute of Electrical and Electronics Engineers 
IETF  Internet Engineering Task Force 
IMAP  Interactive Mail Access Protocol 
IMT-2000  International Mobile Telephone Standard 2000 
INAP  Intelligent Network Application Part (Protocol) 
I/O  Input / Output 
IOC  Input Output Controller 
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IP  Internet Protocol / Intelligent Peripheral 
IPv *  Internet Protocol version * (e.g. 4, 5  or 6) 
ISDN   Integrated Services Data Network 
ISO  International Standards Organization 
ISUP  ISDN User Part (Protocol) 
I(P)TO  Information (Processing) Technology Office at DARPA 
ITU  International Telecommunications Union 
JIT  Just In Time 
JTAPI  Java Telephony API 
KDE  K Desktop Environment, an Open Source GUI for UNIX 
LAN  Local Area Network 
LCE  Logical Computing Element 
LSI  Large Scale Integration 
LUT  Look-Up Table 
MAC  Medium Access Control 
MAP   Mobile Application Part (Protocol) 
Mbone  Multicast backbone 
MFP  Multidimensional Feedback Principle 
MH  Mobile Host 
MIB  Management Information Base 
MIMD  Multiple Instruction Multiple Device 
MIME  Multipurpose Internet Mail Extensions 
MIT  Massachusetts Institute of Technology 
MN   Mobile Network 
MPoA   Multiple Point of Access 
MPEG  Motion Picture Expert Group 
MPLS  Multi-Protocol Layer System 
M-SCP  Mobile Service Control Point 
MT  Mobile Terminal 
NASA  National Aeronautics and Space Administration 
NAT  Network Address Translation 
N-geneering  Node/Network Engineering 
NodeOS  Node Operating System 
NFS  Network File System 
NPE  Network Programming Environment 
NPU   Network Processing Unit 
NVN  NetScript Virtual Network 
ODP  Open Distributed Processing 
OFDM  Orthogonal Frequency Division Modulation 
ONS  One Number Service 
OPENSIG  OPEN SIGnaling  
OS  Operating System 
OSI  Open Systems Interconnection 
PDU  Protocol Data Unit 
PE  Physical Element 
PEP  Performance Enhanced Proxy 
PAN  Practical Active Network 
PANTS  Python Active Node Transfer System 
PAL  Programmable Array Logic 
PC  Packet Classifier / Personal Computer 
PCI  Programming Control Interface 
PCMCIA  Personal Computer Memory Card International Association 
PCQ  Packet Classification and Queuing (chip) 
PCS  Personal Communication Services 
PDCP  Packet Data Control Protocol 
PLAN  Packet Language for Active Networks 
PLMN  Public Land Mobile Network 
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PoP  Point of Presence 
POP3  Post Office Protocol-3 
POTS  Plain Old Telephone Service 
PMP  Pulsating Metamorphosis Principle 
PN  Passive Network 
PP  Port Processor 
PPP  Point-to-Point Protocol 
PSTN  Public Switched Telephone Network 
PVS  Program Verification System 
QCTL  Queuing ConTroLler  
QM  Queuing Memory 
QoS   Quality of Service 
RADIUS   Remote Access Data Interface User Service 
RAM   Random Access Memory 
RCI   Resource Platform Control Interface 
RCM  Reconfigurable Computing Machine 
RFC  Request For Comments 
RISC  Reduced Instruction Set Computing 
RLC  Radio Link Control 
RNC  Radio Node Controller 
RNS  Radio Network System 
ROSE  Remote Operations Service Element 
RP  Resource Platform 
RPC  Remote Procedure Call 
RPU  Reconfigurable Processor Unit 
RRC  Radio Resource Control 
R/S  Router / Switch 
RSCP  RADIUS Service Control Point 
RSVP  Resource ReSerVation Protocol 
RT  Reachability Tree 
RTCP  Real Time Control Protocol 
RTP  Real Time Protocol 
RTR  Run Time Reconfiguration 
RTSP  Real Time Streaming Protocol 
SANE  Secure Active Network Environment 
SAPF  Simple Active Packet Format 
SCF   Service Control Function 
SCI  Switch Control Interface 
SCP  Service Control Point 
SDF  Service Data Function 
SDU  Service Data Unit 
SI(B)B  Service Independent (Building) Block 
SIC  Stream Interface Controller 
SIMD  Single Instruction Multiple Device 
SIOD  Source-Initiated On-Demand Driven 
SIP  Session Initiation Protocol 
SL  Service Logic 
SLIP  Serial Line Internet Protocol 
SM  Switching Matrix 
SMF   Service Management Function 
SMP  Service Management Point 
SMTP  Simple Mail Transfer Protocol 
SN  Service Node 
SNAP  Safe and Nimble Active Packets 
SNC   Service Node Controller 
SNMP  Simple Network Management Protocol 
SoC  System on a Chip 
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SPE  Software Processing Environment 
SRF  Specialized Resource Function 
SRAM  Static Random Access Memory 

SSF   Service Switching Function 

SSR  Signal Stability Routing 

TCL  Tool Command Language 

TD  Table-Driven 

TI  Transmission Interface 

TL  Temporal Logic 

TMN  Telecommunications Management Network 

UML  Unified Modeling Language 

VHE  Virtual Home Environment 

VLR  Visitor Location Register 

VM   Virtual Machine 

VP  Virtual Path 

WebCSC  Web based Customer Services Control 

X-bone  A System for Automated Overlay Network Deployment 

2D  Two-Dimensional 

3G  Third Generation 

 

 

SRNS  Serving Radio Network System 
SRP  Self-Reference Principle 
SS7  Signaling System 7 

SSP  Service Switching Point 

STM  Synchronous Transfer Mode 

TCP  Transmission Control Protocol 

TDMA  Time Division Multiple Access 

TID  Type IDentifier 
TINA  Telecommunications Information Network Architecture 

TLA  Temporal Logic of Actions 

TORA  Temporary Ordered Routing Algorithm 
TTL  Time To Live 
UDP  User Datagram Protocol 

UMTS  Universal Mobile Telecommunications System 
VAN  Virtual Active Network 
VC  Virtual Circuit 

VL  Virtual Link 
VLIW  Very Large Instruction Word 

VLSI  Very Large Scale Integration 
VoD  Video on Demand 

VNE  Virtual Network Engine 

VPN  Virtual Private Network 
VR  Virtual Reality 
VRS  Virtual Resource Set 
WAN  Wide Area Network 
WAP  Wireless Access Protocol 
WARAAN  WLI Adaptive Routing Algorithm for Ad-hoc Networks 

W-CDMA  Wide band CDMA 
WLI  Wandering Logic Intelligence 
WN   Wandering Network 
WRP  Wireless Routing Protocol 

XTP  Xpress Transfer Protocol 

1G  First Generation 
2G  Second Generation 

4G  Fourth Generation 
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APPENDIX A: MAINTAINING ROUTING INFORMATION IN A WANDERING 
NETWORK 

Building Ad-Hoc Reachability Trees (RTs) in WLI
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Figure 1 : A symbol legend and the initial state (Step 0, t=0) of a Wandering Network04 170. 
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Figure 1 : Step 1 (a, b) – Establishing a contact between the first two nodes, A and B, of the wandering network and 
building/maintaining

05

                                                

170 their initial reachability trees. 

 
 

170 The „gears“ symbol illustrates a „stuttering“ (repeating) state in terms of TLA. In our case, such a state includes the 
periodical exchange of presence shuttles (p-shuttles) which confirm and refresh the connectivity and availability of a 
netbot in the r-trees of its neighbors for routing purposes. 
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Figure 1 : Step 2 (a, b) – Establishing a contact to a new, third netbot C, expanding/building the reachability trees of 
the corresponding netbots (A and C), and transmitting the new structural information to their neighbors via r-shuttles. 
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Figure 1 : Step 2 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (B and C) by the 
updating information contained in the r-shuttles. 
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Figure 1 : Step 3 (a, b) – Establishing a contact to a new, fourth netbot D, expanding/building the reachability trees 
of the corresponding netbots (B and D), and transmitting the new structural information to their neighbors via r-

shuttles. Furthermore, node A is serving as a router for the r-shuttles from B to C. 

 

08

A

B

C

D

B

A

C D

D

B

A

C

C

A

B

D

A

B C

D

A

B

C

D

B

A

C D

D

B

A

C

C

A

B

D

A

B C

D

Step 3.c Step 3.d

Figure 109: Step 3 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C and D) by 
the updating information contained in the r-shuttles. Note that two nodes in a single step expand the r-tree at node D 

only (!!).   
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Figure 1 : Step 4 (a, b) – Establishing a contact to a new, fifth netbot E, expanding/building the reachability trees of 
the corresponding netbots (B and E), and transmitting the new structural information to their neighbors via r-shuttles. 

Furthermore, node A is serving as a router for the r-shuttles from B to C. 
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Figure 1 : Step 4 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C, D and E) 
by the updating information contained in the r-shuttles. Note that three nodes in a single step expand the r-tree at 

node E only (!!). 
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Figure 112: Step 5 (a, b) - Establishing a new contact between two present netbots in the 
network, A and D followed by expanding/building and maintaining their reachability trees. The 
propagation of the new connectivity information throughout the network is not provided here. 
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Figure 1 : Step 6 (a, b) – Establishing a contact to a new, sixth netbot F, expanding/building the reachability trees of 
the corresponding netbots (B and F), and transmitting the new structural information to their neighbors via r-shuttles. 

Furthermore, nodes A and D are serving as routers for the r-shuttles from B to C. Redundant r-shuttle information 
obtained later at A, C and D is discarded.  
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Figure 114: Step 6 (c, d) – Expanding and maintaining the reachability trees in the neighbor netbots (A, C, D, E and F) 
by the updating information contained in the r-shuttles. Note that four nodes in a single step expand the r-tree at node 

F only (!!).   

 
 324 



A

B

C

D

E
F

B

A

C D E F
F

B

A

C D E

F

B

A

C D

E

A

B

CD

E F

C

A

B

D FE

B

CE

D

A

F

B

A D E F

B

A D E F

B

A D E F

B

A D E F

B

A D E F

Step 7.a

A

B

C

D

E
F

B

A

C D E F

Step 7.b

F

B

A
C D E

F

B

A

C D

E

A

B
CD

E F

C

A

B

D FE

B

CE

D

A

F

 

Figure 115: Step 7 (a, b) – Node B leaving the network by reporting the event to its neighbors via x-shuttles; x-shuttle 
propagation to all present netbots; evaluation and update of the new reachability trees in all netbots of the wandering 

network in a single step only (!). 
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Figure 1 : Step 7.c – R-Tree maintenance after having node B left the wondering network. 16
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Figure 1 : Step 8 (a, b)  from Step 6.d – Node A leaving the network by reporting the event to its neighbors via x-
shuttles; x-shuttle propagation to all present netbots; evaluation and update of the new reachability trees in all netbots 

of the network in a single step only (!). 
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Figure 118: Step 8.c – R-Tree maintenance after having node A left the wondering network. 
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APPENDIX B: THE TEMPORAL LOGIC OF ACTIONS 

TLA defines a collection of values, Val, for an infinite set of variable names, Var. Further, algorithms manipulate data 
such as numbers, strings and sets and assign values to variables.  

(Values, variables and state) 
 
A TLA system description consists of a sequence of states and expressions about their changes as a result of actions. 
A system state s assigns  

• s \in St = Var -> Val  

• [[x]] \in St -> Val 

STATE FUNCTIONS AND PREDICATES 

• s[[A]]t <=> A(\A 'v': s[[v]]/v, t[[v]]/v')  

                                                

THE LOGIC OF ACTIONS 

171 values to variables:

• s[[x]] := s(x) 

A state function f is an expression built from variables and constant symbols.  Its meaning is defined  as:  s[[f]] 
:= f(\forall173 'v': s[[v]]/v).  

172

 
State functions correspond to program expressions (and sub-expressions of assertions). 
   
A state predicate P is a Boolean expression:  

• s[[P]] \in {true, false} 
• s |- P iff s[[P]] = true  

 
State predicates correspond to assertions (and Boolean valued program expressions).     

ACTIONS 

An action A is a Boolean valued expression about variables, primed variables and constant symbols. It represents an 
atomic operation of a concurrent program:  x'+y = y, x-1 \in z', etc. Each action represents a relation 
between an old state and a new state so that: 

• unprimed variables (v) refer to old (present) states.  
• primed variables (v’) refer to new (future) states.  

 
The formalization of the action A is expressed as follows:  

• [[A]] \in St -> S -> Bool  
• s: old state, t: new state  
• s[[A]]t \in Bool  

• s[[y = x'+1]]t = (s[[y]] = t[[x]]+1)  
• s,t is an A step iff s[[A]]t = true 

 
171 The semantics (meaning) of a syntactic object x is written in TLA as [[x]]. 
172 The value obtained from f by substituting s[[v]] for v, for all variables v. For instance:  s[[2x+y-3]] = 
2(s[[x]])+s[[y]]-3.  

173 Henceforth, we will encode the expression “\forall” as “ \A”. 
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PREDICATES AS ACTIONS 

A predicate P can be viewed as an action without any primed variables: 
• s[[P]]: boolean \A s 
• s[[P]]t = s[[P]] \A s,t  
• s,t is a P step iff s |- P  

 
The replacement of unprimed variables of a state function or predicate F is defined as:  

• F' := F(\A 'v': v'/v)  
• s[[P']]t = t[[P]] 

THE ENABLED PREDICATE 

If A represents atomic operation, Enabled A is true for those states in which it is possible to perform this operation.  
 
Enabled A:  

• s[[Enabled A]] <=> \E t \in St: s[[A]]t  
• true for s iff it is possible to take an A step starting in s 

 
Syntactic definition: 

• 
• 
• Enabled(y = (x') 2+n  

 
• 

Representation of an algorithm:  

Property G of algorithm:  
• 

vi : all (flexible) variables in A.  
Enabled A <=> \E c , ..., c : A(c /v' , ..., cn/v' ).  1 n 1 1 n

2+n) = \E c: y = c
 

VALIDITY AND PROVABILITY 

An action A is valid (|= A) : 
• every step is an A step 
• |= A <=> \A s,t \in St: s[[A]]t  
• |= P <=> \A s \in St: s[[P]] 
• true regardless of what values are substituted for primed and unprimed variables 
• (x'+y in Nat) => (2(x'+y) >= x'+y)  

 
A formula F is valid (|= F) : 

|= F <=> \A Z \in Stinfinity: Z[[F]]  
• infinity : set of all possible behaviours.  

     

• If an algorithm is described by the temporal formula F, then 
• Z[[F]] = true iff Z represents a possible execution of the algorithm.  

 

Syntax: |= F => G  
• Semantics: the algorithm represented by F satisfies property G.  

      
A formula F is provable (|- F)  if it can be formally derived by rules of logic.  A logic is sound if every provable 
formula is valid:  

• |- F => |= F 
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RIGID VARIABLES AND QUANTIFIERS 

TLA uses two kinds of variables:  
• rigid variables (unknown constants), and  
• (flexible) variables (program, state-dependent variables).  

Constant expressions are built from rigid variables and constant symbols. State functions and actions are extended to 
contain constant expressions.  
 
Quantification over rigid variables:  

• s[[\exists  m \in Nat: mx' = n+x]] <=>  174

     \E  m \in Nat: m(t[[x]]) = n+s[[x]]  
• s[[A]]t = true \A s,t \in St, \A possible values of A’s free rigid variables -> |= A 

TEMPORAL FORMULAS 

The basic temporal operator in TLA is always ([]). If E , E   are two elementary formulas, then from 1 2
not E  and [](not E ) follows  [](E  => [](E  or E2)).  1 2 1 1

     
The semantics of temporal formulas is based on behaviours.  
 
If we consider infinite sequences of states, then a behaviour Z is defined as:  

• Z[[F]]  \in Bool  

  

• 
• 

Z = <s , s , ...>, where 0 1

• Z |- F iff Z[[F]] = true  
 

The meaning of temporal formulas is defined as follows: 

<s0, s , ...>[[F]]      <=> s [[F]], if F elementary.  1 0

Z[[F and G]]     <=> Z[[F]] and Z[[G]]  
Z[[not F]]    <=> not Z[[F]]  
<s , s1, ...> [[ []F ]] <=> \A n \in Nat: <s , s , ...>[[F]]  0 n n+1

 

DERIVED TEMPORAL FORMULAS 

Eventually (<>):  
F is eventually true  
Syntax: <> F <=> not [] not F 
Semantics: <s0, s1, ...> [[ <>F ]] <=> • 

\E n \in Nat: <s , s , ...>[[F]]  n n+1

      
Infinitely Often (always eventually, []<> ):  
          <s  0, s1, ...> [[ []<>F ]] <=>
             \A n in Nat: \E m \in Nat: <sn+m, s , ...>[[F]]  n+m+1

  
Eventually Always (<>[]):  
          <s0, s , ...>[[ <>[]F ]] <=> 1

       \E n \in Nat: \A m in Nat: <s , s , ...>[[F]]  n+m n+m+1

 
Leads to (|->):  
         Syntax: F |-> G <=> [](F => <>G)  
          any time F is true, G is true then or at some later time. Semantics:
                                                 
174 Henceforth, we will encode this as “\E” . 
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ADDITIONAL NOTATIONS 

Unchanged f  <=>  f' = f  

F |-> G   <=>  [] (F => <> G)  

THE RAW TEMPORAL LOGIC OF ACTIONS (RTLA) 

• 

p'   <=>  p(\A 'v': v'/v)  
[A]    <=>  A or (f' = f)  f

<A>    <=>  A and (f' =\= f)  f

<> F   <=>  not [] not F  

 

TLA formulas are a subset of RTLA formulas: elementary formulas of the form [][A] .  f

 
Elementary temporal formulas are actions.       
 
Action A is true on behaviour Z:  

Syntax: <s , s1, ...>[[A]] <=> s [[A]]s1  0 0

•  the first pair s ,s1 of behaviours is an A step.  Semantics: 0

      

 

 

          If operation is possible, then program must eventually execute it.  

• 

 

                                                

Temporal operator:  
          <s , s , ...> [[ []A ]]  0 1

             <=> \A n in Nat: <s , s , ...>[[A]]  n n+1

             <=> \A n \in Nat: s [[A]]s .  n n+1

   
Predicates:  
         <s , s , ...> [[P]] <=> s [[P]]  0 1 0

         <s , s , ...> [[ []P ]] <=> \A n \in Nat: s [[P]]  0 1 n

FAIRNESS 

Arbitrary liveness properties in a specification are dangerous. They are used to express fairness requirements, but 
they may unexpectedly  add safety properties. Therefore, the solution in TLA is to express liveness by fairness: 175

     Fairness:  

      
     Fairness at all times:  

• always ((eventually executed) or (eventually impossible))  
• always ((eventually executed) or (eventually always impossible))  

      
… equivalent to:  
• (always eventually executed) or (always eventually impossible)  
• (always eventually executed) or (eventually always impossible))  

      
Formalization:  

executed <=> <A>   f

• impossible <=> not Enabled <A>  f
 
 

Weak Fairness WFf(A):  

 
175 e.g., adding the expression “[]<>(x=0)” leads to the consequence that x never changes! 
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          Operation must be executed if it remains possible to do so for long enough time.  
          (eventually executed) or (eventually impossible)  

WFf(A) <=> ([] <><A> ) or ([] <> not Enabled <A>f) f

 

          Operation must be executed if it is often enough possible to do so.  

 

 

TLA is logic without quantification: 

<formula>   <=> <predicate>  

<action>   <=>  Boolean-valued expression  

      

        |   Enabled <action> 

• 

• |= A <=> \A s,t \in St: s[[A]]t  
• 
• 
• \A n \in Nat: <s n+1, ...>[[F]]  

• Z[[not F]] <=> not Z[[F]]  

Strong Fairness SF (A):  f

          (eventually executed) or (eventually always impossible) 

SF (A) <=> ([] <><A> ) or (<> [] not Enabled <A> ) f f f

 
A strong fairness implies weak fairness: 

SF (A) =>  WF (A) f f

 

SIMPLE TEMPORAL LOGIC 

The execution of an algorithm is: 
• a sequence of steps, where  
• each step produces new state changing the values of variables, and  
• the semantic meaning of the algorithm is collection of all possible executions. 

 
 
The Syntax of Simple TLA 
 

    

        | ‘[]’[<action>]state function | not <formula> 
        | <formula> and <formula> | ‘[]’ <formula> 
      

        of constant symbols, variables, and primed variables  

<predicate>  <=>  action with no primed variables  

      
<state function> <=>   non-Boolean expression  
           containing constant symbols and variables 
 
 
The Semantics of Simple TLA 
 

• s[[f]] <=> f(\A 'v': s[[v]]/v)  
s[[A]]t <=> A(\A 'v': s[[v]]/v, t[[v]]/v')  

• <s , s , ...>[[A]] <=> s0[[A]]s   0 1 1

s[[Enabled A]] <=> \E t \in St: s[[A]]t  
<s , s , ...>[[ []F]] <=> 0 1

n, s
• Z[[F and G]] <=> Z[[F]] and Z[[G]]  

• |= F <=> \A Z \in St : Z[[A]]t infinity
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THE RULES OF SIMPLE TEMPORAL LOGIC 

     
 
     STL1.  
          F provable by propositional logic  
                 [] F  
  
 
     STL2.  
         |- [] F => F  
 

 

 
     STL3.  
        |- [] [] F <=> [] F  
 

     STL4.  
               F => G_____  
         []F => []G  
 
 
     STL5.  
         |- [] (F and G) <=> ([] F) and ([] G)  

 
 

     STL6.  
        |- (<> [] F) and (<>[] G) <=> <>[] (F and G)  
 
 
     LATTICE  
         F and (c in S) => 
           (H  |-> (G or \E d \in S: (c > d) and H d)) c

 F => ((\E c \in S: H ) |-> G)  c

 
 

¾ a well-founded partial order on set S 
 
 
 
 
The Basic Rules of TLA 
 
 
 
     TLA1.  
               P and (f = f') => P'_______  
       []P <=> P and [][P => P']   f

 
 
     TLA2.  
                   P and <A> f => Q and [A] g_________ _ _  
       []P and []<A>  => []Q and [][A]   f g
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ADDITIONAL RULES  

 
     INV1.  
             I and [A] f => I'____  
       I and [][A]f => []I  
 
     INV2.  
        |- [] I => ([][A]f <=> [][A and I and I']f)  
 
     WF1.  
             P and [A]f => (P' or Q')  
              P and <A and A>  => Q'  f

              P => Enabled <A> _____________   f

 [][A]f and WFf(A) => (P |-> Q) 
 
 
     WF2.  
        <A and A>f => <A>g  
        P and P' and <A and A>f and Enabled <A> g => A  
        P and Enabled <A>  => Enabled <A> g f  
        [] [A and not A]f f

              and <>[] Enabled <A>  => <>[] P 
 and WF (A) and []F  

 g

______________________________________________  
[] [A]f and WF (A) and [] F => WF (A)  f g

 
    
    SF1.  
        P and [A]  => (P' or Q')  f

        P and <A and A>f => Q'  
        [] P and [] [A]  and [] F => <> Enabled <A>  f   f

[] [A]f and SFf(A) and [] F => (P |-> Q)  
 
     SF2.  

<A and A>f => <A>g  
        P and P' and <A and A>f => A  
        P and Enabled <A> g => Enabled <A>f  
        [] [A and not A]  and SF (A) and [] F  f f

                 and [] <> Enabled <A>  => <>[] P   g

 _______________________________________ 
             [] [A]f and SFf(A) and [] F => SF g(A) 
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APPENDIX C: TLA+ BASIC MODULES 

 

 
 
 
 

* * * 
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APPENDIX D: AUTOPOIETIC THEORY – DEFINITIONS 

For the time being, computer networks and telecommunications systems have been considered 
as pure state-automata environments where the human-machine interaction was playing a 
rather phenomenological role by being placed under control of rigorous designer constraints.  
 
Autopoietic theory provides a solemn theoretical basis for addressing people and the social 
systems in which they participate. This includes not only the interactions of professional, 
political, cultural and ethnic groups and organizations, but also the means they communicate, 
such as language, telephones, television and the Internet.  

The following arguments support the above conclusion: 

 

 

 
• because the autopoietic theory proceeds from formal specifications on systemic unities, 

its tenets can conceivably be applied to both, biological and artificial systems. Owing to 
the extent of Maturana and Varela’s expansion of the core concepts to describe a 
phenomenology of living systems, the theory's scope is relatively broad. This permits 
researchers to apply its principles across a broader range of subject phenomena than is 
the case for other current approaches. 

 
• because the autopoietic theory is rooted in a formal analysis of living systems and 

cognition, it can support research focusing e.g. on individual subjects and their activities 
within an enterprise or an operator’s network such as workflow, human factors and 
human-computer interface (HCI) analyses of specific information system users.  

 
• because the autopoietic theory includes an explanation for linguistic interaction, it can 

support research focusing on social interactions and communications (e.g., ethnographic 
studies; qualitative research) which finally have implications on network traffic 
characteristics.   

 
The autopoietic theory intrinsically supports attention to the three themes in today's social 
research innovations: systemic perspective, auto-determination, and contextualization. The first 
occurs by definition, the second by focus, and the third by the manner in which Maturana and 
Varela lay out the phenomenological aspects of the theory. 
 
The WLI approach presented in this work addresses the technological aspects of the autopoietic 
theory in the design of new generations of telecommunication architectures.  

The definitions below are compiled from “Overview of Autopoietic Theory”, 
http://www.enolagaia.com. 
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THE OBSERVER 

“Everything said is said by an observer.” ([MaVa80], p. xix) 
 
Maturana’s initial work on cognition emphasized individual living systems. As a result, 
autopoietic theory has as its foundation the manner in which living systems address and engage 
the domain(s) in which they operate. This orientation subsumes the manner in which autopoietic 
theory addresses itself (as a scientific theory) and all other phenomena. A cognizing system 
engages the 'world' only in terms of the perturbations in its nervous system, which is 
'operationally closed' (i.e., its transformations occur within its bounds). To the extent that the 
nervous system recursively interconnects its components (as in our brains), the organism is 
capable of generating, maintaining and re-engaging its own states as if they were literal re-
presentations of external phenomena. Such states are 'second-order' in the sense that they are 
derivative from, rather than literal recordings of, experience. These states are called descriptions 
in autopoietic theory, and an organism operating within the realm of its descriptions is an 
observer.  
 

FUNDAMENTAL SYSTEM ATTRIBUTES: ORGANIZATION AND STRUCTURE 

 

 

AUTOPOIESIS AND AUTONOMY 

 

Systems cannot be defined by simply enumerating or tracing the layout of their constituent 
elements. The definitive attribute of a systemic entity is the set of inter-component relationships 
which (a) outline its form at any given moment and (b) serve as the core 'identity' which is 
maintained in spite of dynamic changes over time. In autopoietic theory, this set of defining 
relationships is termed a system's organization.  

In effect, a system's organization specifies a category, within which there may be many 
specifically-realized instantiations. Specific systemic entities exhibit more than just the general 
pattern of their organization -- they consist of particular components and relations among them. 
The 'particulars' of a given system's individual realization make up its structure.  

Maturana and Varela’s complementary distinction between organization and structure is very 
useful in delineating and analyzing systems' form and function. This aspect of autopoietic theory 
makes it useful in describing enterprises as having generally invariant form in spite of specifically 
changing components.  
 

Autopoietic systems realized in the physical space are living systems. Varela later defined a 
broader concept of autonomy, of which autopoiesis is a special case. Autonomous systems 
maintain their organization, but do not necessarily regenerate their own components. 
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Autopoiesis  
Maturana and Varela coined the term autopoiesis from the Greek auto (self-) and poiesis 
(creation; production), [MaVa80], to characterize those systems which (a) maintain their defining 
organization throughout a history of environmental perturbation and structural change, and (b) 
regenerate their components in the course of their operation, [MaVa80]. 

2. constitute it (the machine) as a concrete unity in the space in which they [the 
components] exist by specifying the topological domain of its realization as such a 
network.'  

Any unity meeting these specifications is an autopoietic system, and any such autopoietic 
system realized in physical space is a living system. The particular configuration of a given unity 
-- its structure -- is not sufficient to define it as a unity. The key feature of a living system is 
maintenance of its organization, i.e., preservation of the relational network which defines it as a 
systemic unity. Phrased another way, '...autopoietic systems operate as homeostatic systems 
that have their own organization as the critical fundamental variable that they actively maintain 
constant.' ([Mat75], p. 318) 

Autopoietic theory is the primary (perhaps the only...) example of a definition for life which is 
framed purely with respect to a candidate system in and of itself. If you go back and check most 
definitions (e.g., in a biology text), you are likely to find nothing more coherent than a list of 
features and functional attributes (e.g., 'reproduction', 'metabolism') which describe what living 
systems do, but not what they are. For this reason, autopoiesis has become a topic of interest in 
the recent field of Artificial Life (ALife).  

 
The concept is defined formally as follows, [Var79]:  
 
'An autopoietic system is organized (defined as a unity) as a network of processes of production 
(transformation and destruction) of components, that produces the components which:  
 

1. through their interactions and transformations continuously regenerate and realize the 
network of processes (relations) that produced them; and 

  

 

 

 
Autonomy 
During the mid- to late 1970's, Varela expanded on autopoietic theory's original formalizations to 
delineate the systemic attribute of autonomy, of which autopoiesis is a subset. Autonomous 
systems are ([Var81a], p.15):  
 

'...defined as a composite unity by a network of interactions of components that (i) 
through their interactions recursively regenerate the network of interactions that 
produced them, and (ii) realize the network as a unity in the space in which the 
components exist by constituting and specifying the unity's boundaries as a 
cleavage from the background...'  
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The difference between autonomy and autopoiesis is that autopoietic systems must produce 
their own components in addition to conserving their organization. As we shall see later, this 
difference has played a large role in the debates over the extent to which social systems can be 
characterized as autopoietic. 

This more general class of autonomous systems are defined by their organizational closure, 
([Var79], p. 55):  

• they constitute the system as a unity recognizable in the space (domain) in which the 
processes exist.' 

A key concept in Maturana and Varela’s writings is domain. They use the term generally to 
connote a 'realm' or 'sphere' circumscribing: (1) the relations among observed systems and the 
unities (medium) with which they can be observed to engage (e.g., phenomenological domain) 
or (2) the foregoing plus all potential states of relation and/or activity among the given unities 
(e.g., domain of interactions). Maturana and Varela reserve the term space for the static context 
in which unities are delineated.  

STRUCTURAL DETERMINATION 

The basic thrust of the principle of structural determination is that the behaviour of a system is 
constrained by its constitution. The set of potential system changes is circumscribed by:  

 

  

 
'That is, their organization is characterized by processes such that  
• the processes are related as a network, so that they recursively depend on each other in 

the generation and realization of the processes themselves, and  

 
It is important to note that this property of 'closure' does not make autonomous systems 'closed' 
in the classic cybernetic sense of 'isolated from the environment; impervious to environmental 
influence'. 'Closure' doesn't mean autonomous systems are unresponsive; it only means that 
their changes of state in response to changes in their medium are realized and propagated 
solely within the network of processes constituting them (as they are defined). The difference 
has more to do with the way a system is defined than how that system (once defined) operates. 
A fuller explanation of this point can be obtained in [Var79].  
 

DOMAINS AND SPACES 

 

Structural determination is the principle that the actual course of change in a systemic entity is 
controlled by its structure (the totality of specific components' individual and synergistic 
properties within the arrangement by which they constitute the system) rather than direct 
influence of its environment.  
 

 
• the system's range of potential structural transformations  
• the set of potential perturbations impinging upon the system  
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Actual change is compensable behavior by the system's structure under perturbation by the 
environment and / or other systems in the course of its operation (‘structural coupling', defined 
below). While a given perturbation may 'trigger' a change of system state, the particular change 
triggered is a function of the system's own organization and structure. Since 'structure' refers to 
any constitutive element of a discerned unity, structural determination concerns the manner in 
which observed (-able) phenomena are explained, not some formalized manner in which those 
phenomena objectively occur. As such, structural determination is an epistemological 
qualification, not recourse to materialistic reductionism.  
 
Structural determination should not be equated with strict causal determinism, in which all 
specific interactions are predetermined. It only means the space of all possible classes of 
interactions is determined. For example, in re-engineering an enterprise, the subject's structure 
does not uniquely predict its best new form. However, its structure circumscribes the range of 
new forms into which it can evolve without violating its organization (i.e., ceasing to exist as its 
current identity). Structural determination does not constrain the set of interactions in which a 
system can be observed to engage -- only the set in which that system can observe itself to be 
engaged. 

STRUCTURAL COUPLING 

 
The notions of 'structural determination' and 'structural coupling' provide a basis for analyzing 
enterprises and their operations in terms of their general and actual form (i.e., their organization 
and structure). This approach maintains a focus on the subject enterprise and minimizes 
counterproductive bias toward a priori allusions to abstractions such as 'information flows', 
'market forces', and the like.  

Structural coupling is the term for structure-determined (and structure-determining) engagement 
of a given unity with either its environment or another unity. It is '...a historical process leading to 
the spatio-temporal coincidence between the changes of state....’ ([Mat75], p. 321) in the 
participants. As such, structural coupling has connotations of both coordination and co-evolution.  

Case 1: A System Coupling with its Environment 

 

 

 

Given the principle of structural determination, interaction among systems is explained as '...a 
history of recurrent interactions leading to the structural congruence between two (or more) 
systems' ([MaVa87], p. 75). Structural coupling is the label for ongoing engagement between 
systems, resulting in structural changes in each. Structural coupling describes ongoing mutual 
co-adaptation without allusion to a transfer of some ephemeral force or information across the 
boundaries of the engaged systems.  

 

 

'If one of the plastic systems is an organism and the other its medium, the result is 
ontogenic adaptation of the organism to its medium: the changes of state of the organism 
correspond to the change of state of the medium.'   

([Mat75], p. 326) 
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‘(T)he continued interactions of a structurally plastic system in an environment 
with recurrent perturbations will produce a continual selection of the system's 
structure. This structure will determine, on the one hand, the state of the system 
and its domain of allowable perturbations, and on the other hand will allow the 
system to operate in an environment without disintegration. '  

([Var79], p. 33)  

Case 2: A System Coupling with Another System 

([Mat75], p. 326) 

A consensual domain is defined as '... a domain of interlocked (intercalated and mutually 
triggering) sequences of states, established and determined through ontogenic interactions 
between structurally plastic state-determined systems.' ([Mat75], p. 316). Because consensual 
domains are defined both by the structures of their participants and the history by which they 
came to exist, they are not reducible to descriptions framed only in terms of either:  

The attribute 'cognition' is applied to a system when it is able to discriminate (in terms of 
response) among unit phenomena in its medium, synchronically (at a given moment) and 
diachronically (over time). The currently-prevalent cognitivistic viewpoint addresses the capacity 
for such discrimination in terms of algorithmic procedures for manipulating abstracted 'data' with 
respect to 'knowledge structures'. To Maturana and Varela, cognition is contingent on 
embodiment, because this ability to differentiate is a consequence of the organism's specific 
structure. From their perspective, cognition is what we attribute to systems exhibiting flexible and 
effective changes during structural coupling.  

'If the two plastic systems are organisms, the result of the ontogenic structural 
coupling is a consensual domain.'  

 

 
'In each interaction the conduct of each organism is constitutively independent in its 
generation of the conduct of the other, because it is internally determined by the structure 
of the behaving organism only; but it is for the other organism, while the chain [of 
interactions] lasts, a source of compensable deformations that can be described as 
meaningful in the context of the coupled behaviour.' ([Var79], pp. 48- 49)  

 
Phrased in a slightly different way, the participating systems reciprocally serve as sources of 
compensable perturbations for each other. Such interactions are 'perturbations' in the sense of 
indirect effect or effectuation of change without having penetrated the boundary of the affected 
system. They are 'compensable' in the senses that (a) there is a range of 'compensation' 
bounded by the limit beyond which each system ceases to be a functional whole and (b) each 
iteration of the reciprocal interaction is affected by the one(s) before. The structurally-coupled 
systems 'will have an interlocked history of structural transformations, selecting each other's 
trajectories.' ([Var79], pp. 48 - 49) 
 

COGNITION AS (INTER-)ACTIVITY 
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Cognition in the autopoietic view is no more and no less than a living system's effective 
behaviour within its domain of interactions. In other words, cognition is a matter of interacting in 
the manner(s) in which one is capable of interacting, not processing, what is objectively there to 
be seen.  

'A cognitive system is a system whose organization defines a domain of 
interactions in which it can act with relevance to the maintenance of itself, and the 
process of cognition is the actual (inductive) acting or behaving in this domain.'  

'Living systems are cognitive systems, and living as a process is a process of 
cognition.' 

([MaVa80], p. 13)  
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