The Beneficial Fungus Mortierella hyalina Modulates Amino Acid Homeostasis in Arabidopsis under Nitrogen Starvation

ORCID
0000-0003-3016-5909
Zugehörigkeit
Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;(N.S.);(L.Z.);(A.M.)
Svietlova, Nataliia;
ORCID
0000-0002-6691-6500
Zugehörigkeit
Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
Reichelt, Michael;
Zugehörigkeit
Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;(N.S.);(L.Z.);(A.M.)
Zhyr, Liza;
ORCID
0009-0009-7512-1249
Zugehörigkeit
Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;(N.S.);(L.Z.);(A.M.)
Majumder, Anindya;
GND
1096474700
ORCID
0000-0002-5389-5296
Zugehörigkeit
Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany;(S.S.S.);(R.O.)
Scholz, Sandra S.;
ORCID
0000-0002-0736-2771
Zugehörigkeit
Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
Grabe, Veit;
ORCID
0000-0003-2034-5615
Zugehörigkeit
Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, INRAE, Université Paris-Saclay, 78000 Versailles, France;
Krapp, Anne;
GND
1138200298
Zugehörigkeit
Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University, 07743 Jena, Germany;(S.S.S.);(R.O.)
Oelmüller, Ralf;
ORCID
0000-0001-5229-6913
Zugehörigkeit
Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;(N.S.);(L.Z.);(A.M.)
Mithöfer, Axel

Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana . Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen ( 15 N) to the N-starved plant. The presence of the fungus restores the plants’ amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2023 by the authors.

Nutzung und Vervielfältigung: