Crystalline Microstructure, Microsegregations, and Mechanical Properties of Inconel 718 Alloy Samples Processed in Electromagnetic Levitation Facility

GND
1311339175
ORCID
0000-0003-2868-7927
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Fang, Yindong;
GND
1324038705
ORCID
0009-0002-5392-0209
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Yu, Chu;
GND
1324038551
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Kropotin, Nikolai;
GND
1060644495
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Seyring, Martin;
GND
1311072837
ORCID
0000-0001-8821-4529
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Freiberg, Katharina;
Zugehörigkeit
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51147 Köln, Germany;
Kolbe, Matthias;
GND
112072807X
ORCID
0000-0002-8250-4696
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Lippmann, Stephanie;
GND
172946824
ORCID
0000-0003-2941-7742
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena
Galenko, Peter K.

The solidification of Inconel 718 alloy (IN718) from undercooled liquid is studied. The solidification kinetics is evaluated in melted and undercooled droplets processed using the electromagnetic levitation (EML) technique by the temperature–time profiles and solid/liquid (S/L) interface movement during recalescence. The kinetics is monitored in real time by special pyrometrical measurements and high-speed digital camera. It is shown that the growth velocity of γ -phase (the primary phase in IN718), the final crystalline microstructure (dendritic and grained), and the mechanical properties (microhardness) are strongly dependent on the initial undercooling Δ T at which the samples started to solidify with the originating γ -phase. Particularly, with the increase in undercooling, the secondary dendrite arm spacing decreases from 28 μm to 5 μm. At small and intermediate ranges of undercooling, the solidified droplets have a dendritic crystalline microstructure. At higher undercooling values reached in the experiment, Δ T > 160 K (namely, for samples solidified with Δ T = 170 K and Δ T = 263 K), fine crystalline grains are observed instead of the dendritic structure of solidified drops. Such change in the crystalline morphology is qualitatively consistent with the behavior of crystal growth kinetics which exhibits the change from the power law to linear law at Δ T ≈ 160 K in the velocity–undercooling relationship (measured by the advancement of the recalescence front in solidifying droplets). Study of the local mechanical properties shows that the microhardness increases with the increase in the γ ″ -phase within interdendritic spacing. The obtained data are the basis for testing the theoretical and computational of multicomponent alloy samples.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2024 by the authors.

Nutzung und Vervielfältigung: