Optimization of Mixed Micelles Based on Oppositely Charged Block Copolymers by Machine Learning for Application in Gene Delivery

GND
1311708820
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Leer, Katharina;
GND
1329885759
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Reichel, Liên S.;
GND
1220243884
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Kimmig, Julian;
GND
1279607289
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Richter, Friederike;
GND
123120489
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Hoeppener, Stephanie;
GND
1244829358
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Brendel, Johannes C.;
GND
1103575945
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Zechel, Stefan;
GND
113792077
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Schubert, Ulrich S.;
GND
1222995409
ORCID
0000-0001-7734-2293
Zugehörigkeit
Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
Traeger, Anja

The COVID‐19 mRNA vaccines represent a milestone in developing non‐viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer‐based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity‐efficiency dilemma. Introducing anionic, hydrophilic, or “stealth” functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly( n ‐butyl acrylate) (P n BA), a copolymer segment made of hydrophilic 4‐acryloylmorpholine (NAM), and either the cationic 3‐guanidinopropyl acrylamide (GPAm) or the 2‐carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co‐assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity‐efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2024 Wiley‐VCH GmbH

Nutzung und Vervielfältigung: