Poly(dehydroalanine)‐Based Hydrogels as Efficient Soft Matter Matrices for Light‐Driven Catalysis

Zugehörigkeit
Institute of Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstraße 10 D‐07743 Jena Germany
Çeper, Tolga;
Zugehörigkeit
Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
Langer, Marcel;
GND
1323328807
Zugehörigkeit
Institute of Physical Chemistry Friedrich‐Schiller‐University Jena Helmholtzweg 4 D‐07743 Jena Germany
Vashistha, Nikita;
GND
131343971
Zugehörigkeit
Institute of Physical Chemistry Friedrich‐Schiller‐University Jena Helmholtzweg 4 D‐07743 Jena Germany
Dietzek‐Ivanšić, Benjamin;
Zugehörigkeit
Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
Streb, Carsten;
Zugehörigkeit
Institute of Inorganic Chemistry I Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
Rau, Sven;
GND
138573719
ORCID
0000-0003-4685-6608
Zugehörigkeit
Institute of Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstraße 10 D‐07743 Jena Germany
Schacher, Felix H.

Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D‐accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis‐epoxy poly(ethylene glycol) leads to a transparent, self‐supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy) 3 ] 2+ (bpy = 2,2′‐bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo 3 S 13 ] 2− ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co 4 POM = [Co 4 (H 2 O) 2 (PW 9 O 34 ) 2 ] 10− ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2024 Wiley‐VCH GmbH

Nutzung und Vervielfältigung: