Development of a high-energy electrical double-layer capacitor demonstrator with 5000 F in an industrial cell format

GND
1299620620
ORCID
0000-0003-2243-8508
Zugehörigkeit
Friedrich-Schiller-University Jena, Institute for Technical Chemistry and Environmental Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena)
Köps, Lukas;
Zugehörigkeit
Helmholtz Institute Ulm (HIU)
Ruschhaupt, Peter;
Zugehörigkeit
Skeleton Technologies GmbH, Schücostraße 8, 01900, Großröhrsdorf
Guhrenz, Chris;
Zugehörigkeit
Skeleton Technologies GmbH, Schücostraße 8, 01900, Großröhrsdorf
Schlee, Philipp;
ORCID
0000-0002-4298-5982
Zugehörigkeit
Skeleton Technologies GmbH, Schücostraße 8, 01900, Großröhrsdorf
Pohlmann, Sebastian;
ORCID
0000-0001-5069-0589
Zugehörigkeit
Helmholtz Institute Ulm (HIU)
Varzi, Alberto;
ORCID
0000-0002-6606-5304
Zugehörigkeit
Helmholtz Institute Ulm (HIU)
Passerini, Stefano;
GND
106404932X
ORCID
0000-0002-2887-8312
Zugehörigkeit
Friedrich-Schiller-University Jena, Institute for Technical Chemistry and Environmental Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena)
Balducci, Andrea

The introduction of novel materials into industrial demonstrators is an essential step in developing unique commercial energy storage devices. However, this step is rarely considered in literature. In this study, we report on the introduction of innovative materials for high energy density electrical double-layer capacitors (EDLCs), namely the carbide-derived carbon (CDC) “Curved Graphene” with a specific and an aerial capacitance of 114 F g−1 and 82 F cm−3, polysaccharide binders, and electrolyte based on acetonitrile (ACN) and pyrrolidinium-based salt, into a demonstrator. We show that by utilizing this innovative cell chemistry it is possible to realize an
industrial demonstrator exhibiting a nominal capacitance of 5000 F, with a specific energy and energy density of up to 8.4 Wh kg−1 and 12.2 Wh L−1 as well as a remarkable lifetime with a capacitance retention of 77% after floating for almost 1400 h at 2.85 V and 65 ◦C. These results prove that the novel materials considered in this
work can indeed be utilized for the realization of commercially available devices with improved cell performance with respect to the state-of-the-art.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: