Optical heating-induced spectral tuning of supercontinuum generation in liquid core fibers using multiwall carbon nanotubes

GND
1322406545
Zugehörigkeit
Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Institute of Optics and Electronics, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
Wan, Ying;
GND
1231016469
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Qi, Xue;
GND
1321898371
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Hofmann, Johannes;
GND
1231015829
ORCID
0000-0002-5998-4644
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Scheibinger, Ramona;
GND
140763341
ORCID
0000-0001-9079-1624
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Jia, Guobin;
GND
1321897480
ORCID
0000-0001-5512-0390
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Gui, Fengji;
GND
1037442903
ORCID
0000-0003-1176-0710
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Plentz, Jonathan;
Zugehörigkeit
Key Lab of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Wen, Jianxiang;
GND
1195327765
ORCID
0000-0002-5324-6405
Zugehörigkeit
Leibniz Institute of Photonic Technology, Jena
Schmidt, Markus A.

In this work, we demonstrate the optical heating modulation of soliton-based supercontinuum generation through the employment of multi-walled carbon nanotubes (MWCNTs) acting as fast and efficient heat generators. By utilizing highly dispersion-sensitive liquid-core fibers in combination with MW-CNTs coated to the outer wall of the fiber, spectral tuning of dispersive waves with response times below one second via exploiting the strong thermo-optic response of the core liquid was achieved. Local illumination of the MW-CNTs coated fiber at selected points allowed modulation of the waveguide dispersion, thus controlling the soliton fission process. Experimentally, a spectral shift of the two dispersive waves towards the region of anomalous dispersion was observed at increasing temperatures. The presented tuning concept shows great potential in the context of nonlinear photonics, as complex and dynamically reconfigurable dispersion profiles can be generated by using structured light fields. This allows investigating nonlinear frequency conversion processes under unconventional conditions, and realizing nonlinear light sources that are reconfigurable quickly.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: