Cement-bound mineral casted parts in precision engineering

The design of a machine frame, supporting a plurality of components/modules, is a major challenge during the development of precision systems. The geometric stability of the supporting parts under thermal and mechanical loads has a decisive influence on the achievable accuracy. Common materials like cast iron or natural stone have preferable properties but often come with high costs and long lead times due to sourcing or manufacturing process and required geometric precision.
Concrete is an interesting alternative. Polymer concrete and cement-based concrete such as self-compacting concrete have been considered as cost-effective alternatives for quite a while now. This paper summarizes recent research and findings on these alternative materials and reviews their applicability in machine frame design. Aspects of the cold primary shaping process will be covered with an emphasis on ready-to-use features with geometric tolerances in the order of magnitude of micrometers. The potential for integrating functional elements is discussed. The advantages of concrete as an alternative material are summarized with regard to the application of the design principle "functional material at the location where functionality is required".

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: