A Novel Approach to Monitor the Concentration of Phosphate Buffers in the Range of 1 M to 0.1 M Using a Silicon-Based Impedance Sensor

GND
1217627146
Zugehörigkeit
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany;(V.J.B.);(D.B.);(R.E.)
Bhat, Vinayak J.;
ORCID
0000-0002-7407-0453
Zugehörigkeit
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany;(V.J.B.);(D.B.);(R.E.)
Blaschke, Daniel;
GND
1330843169
Zugehörigkeit
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
Müller, Elke;
GND
120759454
ORCID
0000-0002-6612-0043
Zugehörigkeit
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany;(V.J.B.);(D.B.);(R.E.)
Ehricht, Ralf;
GND
121791939
Zugehörigkeit
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany;(V.J.B.);(D.B.);(R.E.)
Schmidt, Heidemarie

We present a novel and easy approach using a silicon-based impedance chip to determine the concentration of the given aqueous buffer solution. An accurate determination of the post-dilution concentration of the buffers is necessary for ensuring optimal buffer capacity, pH stability, and to assess solution reproducibility. In this study, we focused on phosphate buffer as the test liquid to achieve precise post-dilution concentration determinations. The impedance chip consisting of a top gold ring electrode, where a test volume of 20 μL to 30 μL of phosphate buffer was introduced for impedance measurements within the frequency range of 40 Hz to 1 MHz. For impedance investigation, we used phosphate buffers with three different pH values, and the impedance was measured after diluting the phosphate buffers to a concentration of 1.00 M, 0.75 M, 0.50 M, 0.25 M, 0.10 M, 0.05 M, and 0.01 M. In order to analyze the distinctive changes in the measured impedance, an equivalent circuit was proposed and modeled. From the impedance modeling, we report that the circuit parameter R Au/Si showed exponential dependence on the concentration of phosphate buffer and no dependence on the pH values of the phosphate buffer and on the added volume inside the ring electrode. The proposed silicon-based impedance chip is quick and uses reduced liquid volume for post-dilution concentration measurements of buffers and has perspective applications in the pharmaceutical and biological domains for regulating, monitoring, and quality control of the buffers.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2023 by the authors.

Nutzung und Vervielfältigung: