High mechanical Q-factor measurements on silicon bulk samples

GND
134276663
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Nawrodt, Ronny;
GND
134123662
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Zimmer, Anja;
GND
134156161
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Koettig, Torsten;
GND
102778531X
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Schwarz, Christian;
GND
1023589036
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Heinert, Daniel;
GND
1328250636
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Hudl, Matthias;
GND
1328251446
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Neubert, Ralf;
GND
1328231437
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Thürk, Matthias;
GND
12341461X
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Nietzsche, Sandor;
GND
132825206X
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Vodel, Wolfgang;
GND
1068849649
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Seidel, Paul;
GND
113119321
Zugehörigkeit
Friedrich-Schiller-Universität, Institut für Angewandte Physik, Max-Wien-Platz 1, D-07743 Jena, Germany
Tünnermann, Andreas

Future gravitational wave detectors will be limited by different kinds of noise. Thermal noise from the coatings and the substrate material will be a serious noise contribution within the detection band of these detectors. Cooling and the use of a high mechanical Q-factor material as a substrate material will reduce the thermal noise contribution from the substrates. Silicon is one of the most interesting materials for a third generation cryogenic detector. Due to the fact that the coefficient of thermal expansion vanishes at 18 and 125 K the thermoelastic contribution to the thermal noise will disappear. We present a systematic analysis of the mechanical Q-factor at low temperatures between 5 and 300 K on bulk silicon (100) samples which are boron doped. The thickness of the cylindrical samples is varied between 6, 12, 24, and 75mm with a constant diameter of 3 inches. For the 75mm substrate a comparison between the (100) and the (111) orientation is presented. In order to obtain the mechanical Q-factor a ring-down measurement is performed. Thus, the substrate is excited to resonant vibrations by means of an electrostatic driving plate and the subsequent ring-down is recorded using a Michelson-like interferometer. The substrate itself is suspended as a pendulum by means of a tungsten wire loop. All measurements are carried out in a special cryostat which provides a temperature stability of better than 0.1K between 5 and 300K during the experiment. The influence of the suspension on the measurements is experimentally investigated and discussed. At 5.8K a highest Q-factor of 4.5 × 10 8 was achieved for the 14.9 kHz mode of a silicon (100) substrate with a diameter of 3 inches and a thickness of 12 mm.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: Published under licence by IOP Publishing Ltd

Nutzung und Vervielfältigung: