Machine‐Learning‐Assisted Determination of the Global Zero‐Temperature Phase Diagram of Materials

ORCID
0000-0001-5685-6404
Zugehörigkeit
Institut für Physik Martin‐Luther‐Universität Halle‐Wittenberg D‐06099 Halle Germany
Schmidt, Jonathan;
Zugehörigkeit
Institut für Physik Martin‐Luther‐Universität Halle‐Wittenberg D‐06099 Halle Germany
Hoffmann, Noah;
Zugehörigkeit
Institut für Physik Martin‐Luther‐Universität Halle‐Wittenberg D‐06099 Halle Germany
Wang, Hai‐Chen;
Zugehörigkeit
CFisUC Department of Physics University of Coimbra Rua Larga 3004‐516 Coimbra Portugal
Borlido, Pedro;
Zugehörigkeit
CFisUC Department of Physics University of Coimbra Rua Larga 3004‐516 Coimbra Portugal
Carriço, Pedro J. M. A.;
Zugehörigkeit
CFisUC Department of Physics University of Coimbra Rua Larga 3004‐516 Coimbra Portugal
Cerqueira, Tiago F. T.;
GND
1209959178
Zugehörigkeit
Institut für Festkörpertheorie und ‐optik Friedrich‐Schiller‐Universität Jena Max‐Wien‐Platz 1 07743 Jena Germany
Botti, Silvana;
Zugehörigkeit
Institut für Physik Martin‐Luther‐Universität Halle‐Wittenberg D‐06099 Halle Germany
Marques, Miguel A. L.

Crystal‐graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high‐quality dataset is engineered to provide a better balance across chemical and crystal‐symmetry space. Crystal‐graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine‐learning‐assisted high‐throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T  = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom −1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap‐deformation potentials.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2023 Wiley‐VCH GmbH

Nutzung und Vervielfältigung: