The Other Dimension—Tuning Hole Extraction via Nanorod Width

Zugehörigkeit
Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
Rosner, Tal;
Zugehörigkeit
Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
Pavlopoulos, Nicholas G.;
Zugehörigkeit
Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
Shoyhet, Hagit;
ORCID
0000-0002-5017-3511
Zugehörigkeit
Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
Micheel, Mathias;
GND
103705069X
ORCID
0000-0001-6073-1970
Zugehörigkeit
Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
Wächtler, Maria;
ORCID
0000-0003-2766-8409
Zugehörigkeit
Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
Adir, Noam;
ORCID
0000-0002-0539-0488
Zugehörigkeit
Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
Amirav, Lilac

Solar-to-hydrogen generation is a promising approach to generate clean and renewable fuel. Nanohybrid structures such as CdSe@CdS-Pt nanorods were found favorable for this task (attaining 100% photon-to-hydrogen production efficiency); yet the rods cannot support overall water splitting. The key limitation seems to be the rate of hole extraction from the semiconductor, jeopardizing both activity and stability. It is suggested that hole extraction might be improved via tuning the rod’s dimensions, specifically the width of the CdS shell around the CdSe seed in which the holes reside. In this contribution, we successfully attain atomic-scale control over the width of CdSe@CdS nanorods, which enables us to verify this hypothesis and explore the intricate influence of shell diameter over hole quenching and photocatalytic activity towards H 2 production. A non-monotonic effect of the rod’s diameter is revealed, and the underlying mechanism for this observation is discussed, alongside implications towards the future design of nanoscale photocatalysts.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2022 by the authors.

Nutzung und Vervielfältigung: