Second Floor of Flatland: Epitaxial Growth of Graphene on Hexagonal Boron Nitride

ORCID
0000-0001-5329-1698
Zugehörigkeit
Institut für Physik Technische Universität Ilmenau D‐98693 Ilmenau Germany
Mehler, Alexander;
ORCID
0000-0003-0498-9138
Zugehörigkeit
Institut für Physik Technische Universität Ilmenau D‐98693 Ilmenau Germany
Néel, Nicolas;
ORCID
0000-0002-1799-1125
Zugehörigkeit
Physics Department Shanghai University Shanghai 200444 P. R. China
Voloshina, Elena;
ORCID
0000-0001-7904-2892
Zugehörigkeit
Physics Department Shanghai University Shanghai 200444 P. R. China
Dedkov, Yuriy;
ORCID
0000-0002-6452-5864
Zugehörigkeit
Institut für Physik Technische Universität Ilmenau D‐98693 Ilmenau Germany
Kröger, Jörg

Abstract In the studies presented here, the subsequent growth of graphene on hexagonal boron nitride (h‐BN) is achieved by the thermal decomposition of molecular precursors and the catalytic assistance of metal substrates. The epitaxial growth of h‐BN on Pt(111) is followed by the deposition of a temporary Pt film that acts as a catalyst for the fabrication of the graphene sheet. After intercalation of the intermediate Pt film underneath the boron‐nitride mesh, graphene resides on top of h‐BN. Scanning tunneling microscopy and density functional calculations reveal that the moiré pattern of the van‐der‐Waals‐coupled double layer is due to the interface of h‐BN and Pt(111). While on Pt(111) the graphene honeycomb unit cells uniformly appear as depressions using a clean metal tip for imaging, on h‐BN they are arranged in a honeycomb lattice where six protruding unit cells enframe a topographically dark cell. This superstructure is most clearly observed at small probe–surface distances. Spatially resolved inelastic electron tunneling spectroscopy enables the detection of a previously predicted acoustic hybrid phonon of the stacked materials. Its’ spectroscopic signature is visible in surface regions where the single graphene sheet on Pt(111) transitions into the top layer of the stacking.

Sequential chemical‐vapor growth of stacked 2D materials: the thermal decomposition of molecular precursors—ammonia borane and ethylene—on catalytically active Pt(111) and a temporarily intermediate Pt film, which is removed via intercalation, enables the fabrication of a bilayer stacking comprising hexagonal boron nitride and graphene in a surface science approach. image

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2021 Wiley‐VCH GmbH

Nutzung und Vervielfältigung:
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.