Toward perfect optical diffusers: dielectric huygens’ metasurfaces with critical positional disorder

GND
1275787010
Zugehörigkeit
Institute of Solid State Physics Friedrich Schiller University Jena 07743 Jena Germany
Arslan, Dennis;
Zugehörigkeit
Institute of Theoretical Solid State Physics Karlsruhe Institute of Technology 76131 Karlsruhe Germany
Rahimzadegan, Aso;
GND
1243676264
Zugehörigkeit
Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena 07745 Jena Germany
Fasold, Stefan;
GND
1243681594
Zugehörigkeit
Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena 07745 Jena Germany
Falkner, Matthias;
GND
1275772900
Zugehörigkeit
Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena 07745 Jena Germany
Zhou, Wenjia;
Zugehörigkeit
Faculty of Physics Lomonosov Moscow State University Moscow 119991 Russia
Kroychuk, Maria;
Zugehörigkeit
Institute of Theoretical Solid State Physics Karlsruhe Institute of Technology 76131 Karlsruhe Germany
Rockstuhl, Carsten;
GND
128852666
ORCID
0000-0003-4889-0869
Zugehörigkeit
Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena 07745 Jena Germany
Pertsch, Thomas;
GND
143669117
ORCID
0000-0001-8021-572X
Zugehörigkeit
Institute of Solid State Physics Friedrich Schiller University Jena 07743 Jena Germany
Staude, Isabelle

Conventional optical diffusers, such as thick volume scatterers (Rayleigh scattering) or microstructured surface scatterers (geometric scattering), lack the potential for on‐chip integration and are thus incompatible with next‐generation photonic devices. Dielectric Huygens’ metasurfaces, on the other hand, consist of 2D arrangements of resonant dielectric nanoparticles and therefore constitute a promising material platform for ultrathin and highly efficient photonic devices. When the nanoparticles are arranged in a random but statistically specific fashion, diffusers with exceptional properties are expected to come within reach. This work explores how dielectric Huygens’ metasurfaces can implement wavelength‐selective diffusers with negligible absorption losses and nearly Lambertian scattering profiles that are largely independent of the angle and polarization of incident waves. The combination of tailored positional disorder with a carefully balanced electric and magnetic response of the nanoparticles is shown to be an integral requirement for the operation as a diffuser. The proposed metasurfaces’ directional scattering performance is characterized both experimentally and numerically, and their usability in wavefront‐shaping applications is highlighted. Since the metasurfaces operate on the principles of Mie scattering and are embedded in a glassy environment, they may easily be incorporated in integrated photonic devices, fiber optics, or mechanically robust augmented reality displays.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2022 Wiley‐VCH GmbH

Nutzung und Vervielfältigung:
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.