Regulation of the Leucine Metabolism in Mortierella alpina

The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l -leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina . In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli , one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l -leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 2022 by the authors.

Nutzung und Vervielfältigung:
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.