The Structure of Gd 3+ -Doped Li 2 O and K 2 O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations

ORCID
0000-0001-8688-9207
Zugehörigkeit
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia, mohamed.zekri.etud@fss.usf.tn
Zekri, Mohamed;
Zugehörigkeit
Institute of Materials Science and Engineering, Ilmenau University of Technology, 98693 Ilmenau, Germany, andreas.herrmann@tu-ilmenau.de
Herrmann, Andreas;
GND
1199397733
ORCID
0000-0003-3261-6443
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany, andreas.erlebach@natur.cuni.cz
Erlebach, Andreas;
ORCID
0000-0002-2520-1664
Zugehörigkeit
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia, kamel.damak@fss.rnu.tn
Damak, Kamel;
GND
115810863X
ORCID
0000-0001-8898-9324
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany, ccr@uni-jena.de
Rüssel, Christian;
GND
122725751
ORCID
0000-0001-8153-3682
Zugehörigkeit
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany, marek.sierka@uni-jena.de
Sierka, Marek;
ORCID
0000-0002-6722-1882
Zugehörigkeit
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia, ramzi.maalej@fss.usf.tn
Maâlej, Ramzi

Understanding the atomic structure of glasses is critical for developing new generations of materials with important technical applications. In particular, the local environment of rare-earth ions and their distribution and clustering is of great relevance for applications of rare earth-containing glasses in photonic devices. In this work, the structure of Gd2O3 doped lithium and potassium aluminosilicate glasses is investigated as a function of their network modifier oxide (NMO–Li2O, K2O) to aluminum oxide ratio using molecular dynamics simulations. The applied simulation procedure yields a set of configurations, the so-called inherent structures, of the liquid state slightly above the glass transition temperature. The generation of a large set of inherent structures allows a statistical sampling of the medium-range order of the Gd3+ ions with less computational effort compared to other simulation methods. The resulting medium-range atomic structures of network former and modifier ions are in good agreement with experimental results and simulations of similar glasses. It was found that increasing NMO/Al ratio increases the network modifier coordination number with non-bridging oxygen sites and reduces the overall stability of the network structure. The fraction of non-bridging oxygen sites in the vicinity of Gd3+ ions increases considerably with decreasing field strength and increasing concentration of the network modifier ions. These correlations could be confirmed even if the simulation results of alkaline earth aluminosilicate glasses are added to the analysis. In addition, the structure predictions generally indicate a low driving force for the clustering of Gd3+. Here, network modifier ions of large ionic radii reduce the probability of Gd–O–Gd contacts.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: © 1996-2021 MDPI (Basel, Switzerland)

Nutzung und Vervielfältigung: