Eigenvalue Distribution for the Stokes Operator

The aim of this talk is to show that the methods used by Métivier and Lapidus to study the eigenvalue distribution of elliptic operators (e.g., of the Dirichlet Laplacian) can be adapted to the study of the similar problem for the Stokes operator. In this way we get asymptotic formulae for the eigenvalues of the latter operator even in the case when the underlying domain has an extremely irregular (fractal) boundary. In the case the boundary is not that irregular (e.g., when it is Lipschitz) the estimates we obtain are much better than the ones we can find in the current literature.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten