On variable reverse power flow-part II: an electricity market model considering wind station size and location

This is the second part of a companion paper on variable reverse power flow (VRPF) in active distribution networks (ADNs) with wind stations (WSs). Here, we propose an electricity market model considering agreements between the operator of a medium-voltage active distribution network (MV-ADN) and the operator of a high-voltage transmission network (HV-TN) under different scenarios. The proposed model takes, simultaneously, active and reactive energy prices into consideration. The results from applying this model on a real MV-ADN reveal many interesting facts. For instance, we demonstrate that the reactive power capability of WSs will be never utilized during days with zero wind power and varying limits on power factors (PFs). In contrast, more than 10% of the costs of active energy losses, 15% of the costs of reactive energy losses, and 100% of the costs of reactive energy imported from the HV-TN, respectively, can be reduced if WSs are operated as capacitor banks with no limits on PFs. It is also found that allocating WSs near possible exporting points at the HV-TN can significantly reduce wind power curtailments if the operator of the HV-TN accepts unlimited amount of reverse energy from the MV-ADN. Furthermore, the relationships between the size of WSs, VRPF and demand level are also uncovered based on active-reactive optimal power flow (A-R-OPF).

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung: