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Preface

In 1994 the author was confronted by Irmtraud Stephani with a particular geometric problem
concerning so-called controllable coverings of the m-dimensional cube [0,2]™. This was
the starting point of a fruitful collaboration on the uniform approximation of real-valued
functions, which has led into two directions to be surveyed in the two parts of this report.

In the first part we shall consider different ways of approximating continuous or, more
generally, bounded real-valued functions on a compact metric space (X, d). Linear as well
as non-linear approximation schemes will appear, the approximating functions being either
continuous or piecewise constant. All these procedures have in common that the approxi-
mating functions reflect the geometry of (X, d) by fulfilling a uniformity condition called
controllability. This geometric condition yields estimates of Jackson type and, under certain
additional suppositions, of Bernstein type.

The second part is motivated by questions from the above mentioned approximation
theories, however, the geometric condition is dropped. The space X can be a more gene-
ral topological space. A main result is the characterization of all continuous real-valued
functions on a normal space X, which can be expressed as linear combinations of partitions
of unity whose supports are subject to a given geometric restriction. Besides that, we shall
deal with the approximation of so-called quasi-continuous and cliquish functions on arbitrary
topological spaces X.

The present habilitation thesis consists of the reprints [Ri5-H] and [Ri6-H] as well as
of the preprints [Ri2-H]|, [Ri4-H], [Ri7-H], [Ri8-H], [R/S2-H], and [R/S3-H], the emphasis
being on [Ri5-H|, [Ri6-H], [Ri7-H], [Ri8-H], and [R/S3-H]. The report to follow is to
introduce the reader to the main ideas of the habilitation. We take the opportunity to look
at the results from a more general point of view by describing developements and relations
between the single papers. Moreover, we present some additional results and applications.
For details we refer the reader to the original articles. Proofs will be given only if they are
not presented there. In this case, however, we have carried them out in detail in this report.
The “meat” of the habilitation is to be found in the above mentioned papers.

Our special gratitude goes to Professor Irmtraud Stephani. She supported the author’s

research concerning the approximation of functions from the early beginning in 1994 and



was open for many helpful and stimulating discussions during the last years. Moreover,
she spent a lot of time and energy for proofreading this manuscript in a very attentive and
constructive way. Besides that, the author thanks his superiors, Professor Bernd Carl and

Professor Eike Hertel, for unselfishly respecting his scientific freedom.

Jena, August 2000 Christian Richter



Part 1

Approximation on compact metric

spaces



The first three chapters of the present report are devoted to the uniform approximation
of continuous and, more generally, of bounded real-valued functions on a compact metric
space (X, d).

Chapter 1 deals with geometric questions. We shall introduce the most important geo-
metric concepts of this report - controllable coverings, controllable partitions, and chains
of controllable partitions of X. Controllable coverings underly a strong restriction of local
finiteness, which later will give rise to Bernstein type theorems. Last but not least we shall
discuss the connection between the metric d on X and the class of all controllable coverings
of X: What properties of d are stored in the controllable coverings? How can one manipulate
d without changing the controllability?

The second chapter treats the approximation of continuous functions on (X,d) and
theorems of Jackson and Bernstein type. Controllable partitions of unity are used in two
different ways for approximating continuous functions. The first method, which refers to
a chain of controllable partitions of unity on the cube [0,2]™, is restricted to continuous
functions on the space ([0, 2]™, dy) only. It leads to a linear approximation scheme with a
particular Bernstein type estimate for Holder continuous functions. In contrast with that,
the second approximation procedure is a non-linear one. This n-term approximation by
controllable partitions of unity works on arbitrary compact metric spaces (X,d). A third
method of approximation makes use of so-called controllable step functions. Then the
approximating functions are no longer continuous, but they reflect the geometry of (X, d) in
a particularly strong way. For a large class of compact spaces (X, d) this comes to light by
the fact that the corresponding error quantities have the same asymptotics as the modulus
of continuity for all functions in C'(X).

Chapter 3 concerns the class of bounded real-valued functions on X which can be at-
tained as uniform limits of controllable step functions. We shall see that this class can be
represented as a union of linear approximation spaces, so far as certain approximating step
functions are excluded. The class itself, however, is non-linear. In this chapter the emphasis
will not be on quantitative results, but rather on qualitative features of the approximable

functions such as continuity or integrability properties.



Chapter 1

Entropy properties of compact metric

spaces

1.1 Controllable coverings

Let M be a subset of a compact metric space (X, d). Kolmogoroff’s entropy function N (M, -)
of M is defined by

k
N(M,$5) = min {k > 1: there exist points z1,2s,..., 24 € X with M C [ J B(mi,é)}
i=1
for 6 > 0 (cf. [Ko/Ti]), B(z;,¢) denoting the closed ball of radius ¢ centered at z;. Similarly,
the k-th entropy number of M is given by

ep(M) = inf{a > 0 : there exist points x,zo,..., 2 € X with M C LkJ B(mi,a)}
i=1
for £ > 1 (cf. [Ca/Ste]). Obviously, N'(M,0) < k if and only if £, (M) < §, which shows
that the two concepts are closely related to each other.

For quantifying the degree of compactness of M one usually asks for the asymptotics
of the function N (M, ) as § approaches 0 and, correspondingly, of the numbers (M) for
k — oo. This idea is used for instance in fractal geometry when introducing the covering
dimension or in Banach space geometry, where various estimates of entropy numbers of
compact operators and of convex hulls of compact or precompact sets appear.

In contrast with that, we shall deal with the particular coverings which are used for
defining the numbers A(X,4), § > 0. For a finite covering C = {C},Cy,...,Cx} of X by
arbitrary subsets C; C X, the fineness F(C) of C is meant to be the largest radius of the
covering sets C;, that is

F(C) = max & (C;) .

1<i<k



Obviously, the definition of N (X, ¢) yields
N(X,0) = min{card(C) : C is a covering of X with F'(C) <4} .

Coverings realizing the minimum on the right-hand side for some § > 0 are called controllable
coverings of X. In other words, the covering C of X is controllable if there exists some § > 0

such that C is of minimal cardinality among all coverings of X whose fineness is bounded
by 0.

Proposition 1.1 ([Ri4-H], Proposition 1 and Corollary 2) Let C = {Cy,Cs,...,Cy}
be a covering of a compact metric space (X, d). Then the following are equivalent.

(i) C is controllable.

(i) If C' is a covering of less cardinality than C then F(C') > F(C).

(iii) Fither k =1, i.e. C ={X} is the trivial covering, or k > 2 and

£1(C) < ep1(X) for 1<i<k. O

The notion of controllability originates from [Ste|, where a partition of unity & =
{¢1, 02, ..., pr} in C(X) has been called controllable if the supports of the partition func-

tions fulfil the uniformity condition (iii) from Proposition 1.1, that is

e1(supp(wi)) < er—1(X) for 1<i<k.

Example 1.1 We consider the m-dimensional cube X = [—1,1]" equipped with the

maximum metric d, which is induced by the norm of /7. The entropy numbers of X are

1
6lm(X) == 6lm+1(X) = ... = S(H_l)m_l(X) - 7 for l:1,2,3,...
(cf. [Ba/Pi],[B6/Ri]), which means that
. 1 1
N(X,(S):lm if 7§5<m

for [ > 2 and N (X,0) = 1if § > 1. Hence there exist controllable coverings of X for the
cardinalities I™, [ = 1,2,3,..., only. A covering C = {C1,Cy,...,Cm} of X with [ > 2
fulfils the controllability condition (iii) if £, (C;) < em_1(X) = 2. That is, C is controllable
if and only if there exists a radius §y < 747 and a covering {B(z;,8y) : 1 <i <™} of X by
balls of that radius such that C; C B(x;,dg) for 1 < i <™.

The simplest controllable covering of cardinality {™ is the covering of X by [ balls of
radius % However, there exist much more difficult examples even in the one-dimensional
case m = 1. If the interval [—%,%
the covering C = {Cy, Cy} with C; = [—1, —%) UA; and Cy = Ay U (%, 1} of the “cube”

] is arbitrarily covered by two subsets A; and A, then
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X = [-1,1] is controllable, since £,(C;) < 3 < 1 = £(X). This shows that the sets from
controllable coverings need not have pleasant topological properties. C; and C3 become

non-measurable if A; and Ay are. O

Example 1.2 Let the Hilbert cube X = {(gi)ggl 0<E <2 2—1‘} be equipped with

the distance dy, from [,,. We shall see that, for n =1,2,3,..., the coverings
C, = {B (((2l1—1)2‘”,...,(2l]-—1)2‘",...,(21n—1)2‘”,0,0,0,...), 2—”) L1<; < 2"—3‘}

of X by balls (subcubes) of radius 27" are controllable.
Cn is a covering with F'(C,) = 27". It suffices to show that C, is of minimal cardinality

among all coverings C = {C},Cy, ..., Cy} with F(C) < 27". The cardinality of C, is
card(C,) = 2" 1.2 2020 = ——
According to F(C) < 27", there exist k£ balls B; C X of radius 27" such that C; C B;
for 1 < ¢ < k. Hence {B; : 1 < i < k} covers X. Let m, be the projection of X
into R™ with m, ((&)%2,) = (&1,&,-.-,&,). Then {m,(B;) : 1 < i < k} is a covering of
(X)) =10,2-27" x [0,2-272] x ... x [0,2-27"]. By estimating the volume of the union
k
T (X) = U m(B;) in R", we obtain
i=1

o k
oM = (2.271)(2-27%)...(2-27) = vol,(ma(X)) = vol, (an(Bz-)> <
i=1
<k@2-27™m" = k-2 (b,
Consequently,
card(C) = k > 2" = card(C,) .

This extremality property of C, among all coverings C with fineness F'(C) < 2™ proves that
C,, is controllable. O

1.2 Chains of controllable partitions

An important subclass of controllable coverings of a compact metric space (X, d) is formed
by the controllable partitions of X, where a partition of X is meant to be a covering by
pairwise disjoint sets. Given a controllable covering C = {C,Cy,...,Ct}, one can easily
obtain a controllable partition P = { Py, P, ..., P;} by a “cutting process”: For every x € X
we choose an index i(x) such that z € Cj,). Then the sets P, = {x € X :i(z) = i} C C;,
1 <i <k, form a controllable partition. For instance, if we put i(z) = min{i : x € C;} then

i—1
WegetPlzClandPi:Ci\ UC’JforQSZSk
=1

11



Given two partitions P and Q of X, Q is called a refinement of P if every set () € Q
is contained in a suitable set P € P. Moreover, the refinement is called strict if Q # P.
A sequence (P;)$°, of partitions is called a chain if P;y; is a strict refinement of P; for
1=1,2,3,...

The geometric question for the existence of chains of controllable partitions of a compact
metric space X is motivated by the approximation of bounded real-valued functions on X
by step functions. Namely, every controllable partition P induces the finite-dimensional
Banach space of all step functions ¢ which are constant on the sets P € P. Hence any chain
of controllable partitions gives rise to an approximation scheme formed by an increasing

sequence of finite-dimensional spaces of bounded real-valued functions on X.

Theorem 1.1 ([Ri8—H], Corollary 2) Ewvery infinite compact metric space (X, d) admits

a chain of controllable partitions. O

It is clear that the cube [—1, 1] considered in Example 1.1 possesses chains. An example
is the sequence (P,)$°; consisting of partitions P, of [—1, 1]™ into 2" disjoint half-open or
closed balls of radius 27". Of course, common boundary points of two or more balls have to
be attached to one of them in a way such that P, is a refinement of P,,. The coverings C,
of the Hilbert cube introduced in Example 1.2 give rise to a chain of controllable partitions
in a similar way.

However, these chains are closely related to the geometric structure of the cube, which
admits a kind of “regular” coverings. The situation becomes dramatically worse if we
consider arbitrary compact metric spaces (X, d). Then it is even a very hard and usually
an unsolved problem to compute the exact entropy numbers of X.* In the general situation
Theorem 1.1 is not a trivial statement, since the controllability condition is surprisingly
delicate.

Before considering some examples on the particular space X = [—1, 1] we give a necessary
topological condition concerning partitions belonging to a chain of controllable partitions.
We use the symbols cl(-) and int(-) for denoting the closure and the interior, respectively,

of subsets in topological spaces.

Proposition 1.2 ([Ri8—H], Proposition 5) Let P be a partition from a chain of control-

lable partitions of a compact metric space (X, d). Then

P C cl(int(P)) for all PeP. O

*What are the entropy numbers of the unit ball in the Euclidean plane? Similar problems are recently
discussed in high-standard geometric journals. An examle is the question for the largest radius r, such that

n circles of radius r,, can be packed into a unit square. The solution for n < 27 is given in [Nu/@st].
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Accordingly, the controllable partition {M;, My} of [—1, 1] with

1
—1,-=

M1: 2

11
U {x € (—5, 5) D x s rational} and M, = [-1,1)\ M,

can not belong to a chain of controllable partitions. In [Ril] it is shown that every (not
necessarily controllable) finite partition of [—1, 1] into subintervals of positive length admits
a controllable strict refinement. Hence every controllable partition P; of [—1, 1] into intervals
of positive length belongs to a suitable chain (P;)22, of controllable partitions. However,
not all partitions from a chain of controllable partitions of [—1, 1] are of that pleasant shape.
The twisted partition P = { Py, P,} with

Po= U (2-277 2277 and P, = [-1,1]\ P,
=0

can be extended to a chain of controllable partitions of [—1, 1] as well (cf. [Ril]). The more

surprising it is that the controllable partition @ = {@1, Q> } with

Q = U (27727 and @ = [F1L1\Q
i=0
does not belong to a chain of controllable partitions, although it is of the same topological
structure as P. In fact, Q even does not possess any controllable strict refinement. This
property of Q can be shown by a relatively long discussion of different cases leading to a

contradiction. We omit this unpleasant proof. The fact will not be used in the following.

1.3 Compact metric subspaces of finite-dimensional

Banach spaces

Given a finite covering C of a compact metric space (X, d), one can ask for a measure of

local finiteness of C. The appropriate local quantity at a point z € X is
k(C,z) = min {card({C €eC:CNU # (Z]}) : U is a neighbourhood of } :

The following simple fact illustrates that controllable coverings are relatively “thin”. It is

closely related to Proposition 2.1 from [Ste| and Proposition 3 from [Ri8-H].

Proposition 1.3 Let C = {C1,Cy, ...,Cy} be a controllable covering of a compact metric
space (X, d). Then there exist points x; € C;, 1 < i < k, such that k(C,z;) = 1.

Proof. We assume that the set C) does not contain a point z;, with (C,x;) = 1. Then
Cr Ccl(Ch)ucl(Cy)U...Ucl(Ck_q1). Hence cl(Cy),cl(Cy), ..., cl(Cy_1) form a covering of

13



X. By claim (iii) of Proposition 1.1, there exists a radius 7y < €;_1(X) such that every
set cl(C}) is covered by a ball B; of radius ry. But then X is covered by k — 1 balls B;,
1 <i<k—1,of radius 7y < €x_1(X) in contradiction to the definition of £5_;(X). O

Proposition 1.3 shows in particular that every set C; from a controllable covering C =
{C1,Cy, ..., Cy} contains a point x; with z; € C; \ U C;. Coverings of that type will be
called peaked with peaks x;, 1 < i < k (see Chapter 43%2

However, we are mainly interested in the coefficient

k(C) = max k(C,x)

zeX

globally describing the local finiteness of the covering C. The coverings C,, of the Hilbert
cube introduced in Example 1.2 yield x(C,) = 2" . Hence the coefficient of local finiteness
k(C) of controllable coverings C of the Hilbert cube can become arbitrarily large.

We shall see that the behaviour of controllable coverings C of compact metric subspaces
of finite-dimensional Banach spaces is different in so far as x(C) is uniformly bounded for
all controllable coverings by a constant depending on the dimension m of the underlying
space only. This result rests on estimates of the m-dimensional volume. Similar estimates
are valid for the surface measure of the m-dimensional Euclidean sphere S™. We consider
S™ as the boundary of the unit ball of ;"™ equipped with the so-called angular distance
d,. That is, d/(z,y) is the size of the angle /(z,0,y), where 0 is the center of S™.

Theorem 1.2 ([Ri5—H], Theorem 2.1) Let (X,d) be a compact metric subspace of an
m-dimensional Banach space or of the m-dimensional Fuclidean sphere, C a controllable
covering of cardinality k > 2, and let B(xg, 1) be a closed ball in (X,d) of radius r > 0.
Then the number of sets C' € C which intersect B(xg,r) is bounded by

card({C’ €C: CNB(xg,r) %@}) < (%?X)jtg))m . 0

If one chooses r = r(X,m) > 0 such that (ﬁ + 5)m < 5™ 41 then, for all z € X,

the neighbourhood B(z,r) intersects at most 5™ sets from C. This yields the following

strong form of local finiteness.

Corollary 1.1 Let C be a controllable covering of a compact metric subspace (X,d) of an

m-dimensional Banach space or of the m-dimensional Fuclidean sphere. Then
k(C) < 5™, O

In Example 1.1 we have already seen that controllable coverings of the cube ([—1,1]™, dy)

can have the cardinalities ", [ = 1,2,3, ..., only. The following lemma shows that there is

14



a close relation between the controllable coverings of cardinality [ and the lattice Gym C
[—1,1]™ with

Gin = {glin iz, im] < (in, 2, im) € {1,2,..., 1}

where

2(iy — 1)
I—1

2(iy — 1)

-1
Y + l—]_ Y

g[il,iQ,---,im] = <_]- +
Lemma 1.1 ([B6]; [Ri3], Satz 2.6) LetC be a controllable covering of the m-dimensional
cube ([—1,1]",dy) of cardinality I"™, | > 2. Then every point of the lattice Gim is covered
by exactly one of the covering sets C' € C. Conversely, every set C' € C contains exactly one

point from Gpm. O

We can employ this lemma on the “lattice-like” shape of controllable coverings for shar-

pening the above corollary for the particular space ([—1,1]™, dw).
Corollary 1.2 Let C be a controllable covering of the space ([—1,1]™,d). Then
k(C) < 2™.

Proof. We know that C has a cardinality card(C) = ["". The case [ = 1 is trivial. Hence we
can assume that [ > 2. Let = € [—1,1]™. The cube [—1,1]™ is covered by the (I —1)™ balls
B (gliyiz, . vim] + (25 250 i25) s i)+ (i ovim) € {1,2,...,1 = 1}™, of radius
7 whose vertices belong to Gym. Let B be one of that balls with 2 € B and let vert(B)
consist of the vertices of B. By Lemma 1.1, C splits into the subsystem C;, which contains
the 2™ sets from C each covering one of the vertices of B, and the remainder C, = C \ Cy,
each of whose sets includes one point from Gn \ vert(B). For each set C' € Cy, there exists a
neighbourhood Ug of x which does not intersect C, since © € B, whereas C' contains a point
from Gy \ vert(B), whose distance from B is at least %, and C'is contained in a subcube
2 1

whose edges are shorter than = according to £,(C) < gm_y([~1,1]") = ;=5. Hence the

neighbourhood U, = (| Ug of x is disjoint from all sets from C, and thus
cels

k(C,x) < card{C eC:CNU, #0}) < card(Cy) = 2™.

This proves our claim x(C) < 2™. O

Let us remark that the last estimate is sharp. If C is the covering of ([—1,1]™,dw) by
[™ closed balls of radius 1, { > 2, then x(C) = 2™.
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1.4 Metric and entropy

Controllable coverings of a compact metric space (X, d) are optimal in a particular metric
sense. But what characteristics of the metric d are stored in the controllable coverings
of (X,d)? What happens if d is replaced by another distance d'? How do the controllable
coverings change? What relations between the two metrics d and d’ are necessary or sufficient
for the coincidence of the controllable coverings of (X, d) and (X, d")?

We assume that (X, d) and (X,d') are two compact metric spaces with the same sup-
porting set X. B(z,¢) is to denote the open ball with respect to d of radius £ centered at
z € X. Moreover, we write N'(X,4), £.(M), and l%’(x,e) for the corresponding values or

balls, respectively, with respect to d’. The statement to discuss is:
(C) d and d' admit the same controllable coverings of X.
Although we did not find a practicable equivalent statement, we can relate (C) to the fol-

lowing geometric conditions:

(D) N(X,d(z,y)) =N"(X,d'(x,y)) foral z,y € X with x#y .

(D*) B(z,e4(X)) =B'(z,¢,(X)) forall z€ X and ke {1,2,3,...}.

(E) N(X,e1(M))=N'"(X,e\(M)) forall M C X with card(M) > 1.

(E*) e1(M) < ep(X) <= (M) <&l (X)  forall M C X and k €{1,2,3,...}.
(J) The sequences (e,(X))52, and (e},(X))32, have the same jumps, i.e.

ero1(X) > (X)) <= 2 _1(X) > e (X) forall k=2,3,4,....

(R) Kolmogoroff’s entropy functions N (X,-),N'(X,-) : (0,00) — {1,2,3,...} have the
same ranges.

(T) d and d' generate the same topology on X.

Theorem 1.3 ([Ri4—H], Theorem 3) Let (X,d) and (X,d') be compact metric spaces.

Then the above claims are related in the following way:

= () = ®
D) = (D) Z ® <= ®) = (C) 7
@:é (T). O

Next we want to deal with the following question: How can one construct a new metric d’
on a compact metric space (X, d) generating the same controllable coverings as d? Clearly,
the controllable coverings agree if d’ can be written as d’ = ¢ o d with a strictly increasing
function ¢ : [0,00) — [0,00), since then B'(x,¢(r)) = B(xz,r), €. (M) = ¢(ex(M)), and
the controllability property £1(C;) < £x—1(X) from Proposition 1.1 (iii) is equivalent to

16



5, A
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Figure 1.1: §' = ¢(0)

£1(C;) < €)_1(X). However, ¢ can be chosen more generally. The following result rests on
the implication (D)=(C) from Theorem 1.3. We call a monotonically increasing function

f: R — R strictly increasing from the left in the point xo € R if f(x) < f(xg) for all z < xq.

Proposition 1.4 ([Ri4-H], Theorem 4) Let (X,d) and (X,d') be compact metric spaces
such that d' = ¢ o d with a continuous and monotonically increasing function ¢ : [0,00) —
[0, 00) which is strictly increasing from the left in the points £, (X), k > 1. Then d and d’

admit the same controllable coverings of X. O

Corollary 1.3 ([Ri4—-H], Corollary 6) Let (X,d) be an infinite compact metric space
and let {n; i = 1,2,3,...} = {ep(X) : k = 1,2,3,...} be the corresponding set of en-
tropy numbers such that ny > ny > n3 > ... > 0. We choose an arbitrary sequence (&;)52,
of real numbers & € [0,m;,_1 — n;) fulfilling the condition IO_C[ Lt — (. Finally, we define a

i=2 i1

Junction ¢ : [0,00) — [0, 00) inductively by

1 fOT [771: OO)
0
cp(&) _ m 90(771 1) fOT [771 + gl:nl 1] )
Tz;;l:flz Sp(nz—l) fOT [7717 i + gz] )
0 for 6=0

as displayed in Figure 1.1.
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Then (X, od) is a compact metric space as well and the metric p o d gives rise to the

same controllable coverings as d. O

The metrics d and d' = ¢ o d from Corollary 1.3 are essentially different in so far as d
can not be expressed as a function d = 1) od' of d’. That is, d can not be reproduced from
d'. This shows that the classes of metrics on a compact metrizable space X, which give rise
to the same controllable coverings, are large. There even exist examples of metrics d and d’
on suitable sets X generating the same controllability such that neither d’ is a function of
d nor vice versa. A very simple example of that type is given in [Ri4-H]. The question for
a practicable and general characterization of “equivalent” metrics in this sense seems to be

highly non-trivial and remains open.
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Chapter 2

Continuous functions on compact

metric spaces

2.1 Controllable partitions of unity

Given a compact metric space (X, d), we use the symbol C'(X) for denoting the Banach space

of all continuous real-valued functions on X equipped with the norm || f|| = sup | f(z)|. We
reX

define the support of a function f € C(X) by

supp(f) = {z € X : f(z) # 0} . (2.1)

Note that this differs from the classical notation, where the closure of the open set
{z € X : f(z) # 0} is defined to be the support of f. This modification of the usual
definition will become essential in Chapter 4. Finally, a system of non-negative functions
{¢1,09,..., 01} C C(X) is called a partition of unity on X if ij pi(r) =1for all z € X.
Partitions of unity fulfilling geometric restrictions can be &geld for approximating func-
tions f € C(X). The following error estimate makes use of the modulus of continuity of f,

which is defined by

w(f,0) = {lf(x) = f(y): 2,y € X, d(z,y) < 6} (2:2)

for 6 > 0. We do not present the straightforward proof of Proposition 2.1. It follows an
idea from [Ca/Ste], pp. 178-179.

Proposition 2.1 Let {1, pa,..., 0} be a partition of unity on a compact metric space
(X,d), x1,x9,...,2, points from X, and r > 0 a radius such that supp(p;) C B(x;,r) for
1 <1 <k. Then

< w(f,r). O

k
‘f - Zf(%)%
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In [Ste] the concept of the partition of unity has been associated with the geometric
controllability condition. A partition of unity ® = {1, ¢, ..., ¢} on (X,d) is called
controllable if {supp(p;) : 1 < i < k} is a controllable covering of X. It is shown in [Ste]
(but can also be seen by the aid of Proposition 1.3) that controllable partitions of unity are
peaked. That is, all partition functions ¢;, 1 < i < k, are of norm one (cf. [Mi/Pel]) or, in
other words, there exist peak points t1,ts, ..., 1, € X with ¢;(t;) = d;;. Hence the partition
functions are linearly independent, i.e. dim(span(®)) = card(®). Moreover, the norm of a

function ¢ from the span of ® can be computed by

ol = max{[p(t1)l], lo(t)]; - [0(tr)]}

(cf. [Mi/Pel]), which shows that span(®) is isometrically isomorphic to [¢2d(®),
When uniformly approximating functions f € C'(X) by linear combinations of the par-

tition functions ¢;, 1 < i < k, we define the corresponding error quantity by

E(f,span(®)) = inf{||f — ¢l : ¢ € span(®)} . (2.3)

In the non-trivial case card(®) = k > 1 there exist points 1, xs, ..., 2x € X with supp(g;) C
B(z;,e5-1(X)) according to the controllability property (iii) from Proposition 1.1. Hence,
by Proposition 2.1,

E(f,span(®)) < w (f, caraie)1 (X))

for all f € C'(X) and all controllable partitions of unity ® on X with card(®) > 1.
It is shown in [Ste] that there exist controllable partitions of unity of cardinality k
if and only if £ = 1 or g4(X) < g,_1(X). If X is an infinite space then there are in-

finitely many jumps e, (X) < g4_1(X) in the sequence of the entropy numbers of X, since

oo
n=1

lergO £r(X) = 0. Hence one can find a sequence (®,)>, of controllable partitions of unity
with nlggl(j card(®,) = oc. By the above estimate, the corresponding error quantities tend to
zero, lim E(f,span(®,)) = 0. However, if the sequence (®,)72, is subject to the condition
Jim card(®,) = oo only, the linear spaces span(®,,) in general will not form a linear appro-
ximation scheme in C'(X). Namely, the spaces span(®,) need not be ordered by inclusion.

Now the following question arises: Given an infinite compact metric space (X,d),
does there exist a chain (9,)0°, of controllable partitions of unity on X7 That is,
the partitions have to be ordered increasingly in so far as span(®,) C span(®,;) and
span(®,,) # span(®,,¢) forn =1,2,3,....

We are not able to solve the problem in general, although we expect a positive answer for
all infinite spaces (X, d). A very simple chain of controllable partitions of unity is presented
in Example 1 from [Ri8 H]|, where the space X = {27¢ :i = 0,1,2,...} U {0} equipped

with the usual distance d(z,y) = |z — y/ is considered. Stephani has shown that there exist
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chains for the cantor set X = 2 (private communication). However, these two spaces are
totally disconnected and the partition functions are step functions with the values 0 and
1 only. If X is connected (or has at least one infinite connected component) the situation
becomes much more difficult, since then we do not have as simple continuous functions as
on disconnected spaces.

The following necessary condition for the existence of a chain of controllable partitions
of unity on the simple space [0, 2] equipped with the usual distance illustrates the problem.
The partition functions must be very close to step functions in the following sense. (In
the first chapter we have considered the interval [—1, 1] and the cube [—1,1]™. Sometimes
we shall switch over to [0,2] and [0, 2]™ in order to have the opportunity to use particular

notations from [Ri6-H| and other papers.)

Proposition 2.2 ([Ri6-H], Proposition 2) Let (®,)22, be a chain of controllable par-
titions of unity in C([0,2]). Then, for any ng > 0, there exists a subset D,, C [0,2] of
Lebesgue measure v(D,,) = 2 such that D,,, = U I, is a countable union of intervals I, and

LET
any function from ®,,, is constant on any interval I,, 1 € Z. O

In the following section we shall illustrate how a chain of controllable partitions of unity
on [0,2] and on [0,2]™ can be constructed. This particular construction will give rise to

certain applications.

2.2 A chain of controllable partitions of unity on the
cube and the approximation of Holder continuous

functions

Theorem 2.1 ([Ri6-H], Theorem 1) There exists a chain (V)% of controllable parti-
tions of unity on the cube (]0,2]™, dw). O

Let us have a look at the shape of the partition functions. The main part of the construc-
tion happens in the one-dimensional case, where partitions ®, = {goz(-n) 1< < 24n} are

defined for n > 0. The general structure of a function gpz(m is illustrated in Figure 2.1. The
(n) (n)

support C’i(n) of ¢;" consists of the middle part Mi(m, where the value of ;" is 1, and of two

“critical” parts CLZ(-n) and CRZ("), where goz(-n) increases from 0 to 1 and decreases from 1 to
0, respectively. In the left critical part C’Ll(-") the support of cpl(") overlaps with supp (go(f)l),

in the right critical part CRZW with supp (goz(z) ) Proposition 2.2 demands that goz(n) is

locally constant almost everywhere. This suggests that on C’Ll(m and C’Rz(n) the function

cpl(n) behaves similarly as the well-known Lebesgue singular function (cf. Figure 2.2). The
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Figure 2.2: Behaviour of ¢! on C L™

particular choice of the supports CZ-(n) and of the intervals displayed in Figure 2.2 guarantee
that every partition ®,, is controllable and that the chain condition ®,, C span(®, ;) is
fulfilled. Figure 2.3 shows how goz(n) can be attained as a linear combination of functions
from @, on the right critical part CR\"). For details we refer the reader to [Ri6-H]. The
final step leading from the interval [0, 2] to the m-dimensional cube [0, 2]™ is simply a tensor

product argument, namely

U, = {@z,((;’l{h ..... iy iz, i € {1,2, . ..,24”}}
with
(n) _ (n) (n)
w(il,i2,___,im)(€1a €2, cee 7§m) QOZI (gl) 9012 (€2) s QOZm (gm)

1 -—
. - o
5 _.

04—--— ‘ ‘ — -
(n+1)’ ) (nt1) (n+1)
s . Pjgsan 02347 41 | 234" 19

1 _ _ - - _ N
5 — — — — — —
0___ -
CR™
(3

Figure 2.3: ¢! on CR™ as a linear combination
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Figure 2.4: Graph of a function ’17/}((

(cf. Figure 2.4).
The increasing sequence of linear spaces span(¥,) can be considered as a linear ap-
proximation scheme in C([0,2]™). By Proposition 2.1, we obtain the following estimate of

Jackson type.

Proposition 2.3 ([Ri6—-H], Theorem 2) Let f € C([0,2]™) and n > 0. Then

1

E(f,span(¥,)) < w(f, ﬁ> O

Moreover, the complicated shape of the partition functions gives rise to a surprising

inverse estimate if f is Holder continuous of type a, 0 < o < 1, that is if

Flo = Supw(f,fS) P
5>0 0%

Proposition 2.4 ([Ri6-H], Theorem 4) Let f € C([0,2]™) be non-constant and Hélder
continuous of type o, 0 < o < 1. Then

..o B(f,span(¥,)) 1
gt w (f, 57=) 2(az+1)

Unfortunately, the approximation scheme

span(¥y) C span(¥;) C span(¥,) C ...

is relatively “thin”, since dim(span(¥,)) = card(¥,) = 2™*". However, one can pass to a

completed scheme
span (li/l) C span (\112) C span (@3) c ...
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with dim (span (‘iln)) = n by inserting suitable peaked partitions of unity between the mem-
bers of the original chain (¥,)% ;. Note that the completed chain (‘iln)oo

) does not consist
n=

of controllable partitions only! In Example 1.1 we have seen that controllable partitions of
unity on the cube [0, 2]™ must be of cardinality ", [ > 1.

In [Ri6-H] the additional partitions have been chosen in a way which preserves the plea-
sant approximation properties. Before presenting these results we introduce corresponding
approximation quantities for bounded linear operators T' € L(E,C([0,2]™)) mapping a
Banach space E into C(]0,2]™). We put

E (T.span (¥,)) = inf {||T = Al|: A€ L(E,C([0,2]™)) with A(E) C span (¥,)} .
The modulus of continuity of T is defined by

w(T,0) = sup w(Tz,0)

llzl<1
for 6 > 0. Let us recall that T is compact if and only if (lsir%w(T, d) = 0. The operator T is
_)

called Holder continuous of type o, 0 < o < 1, if

T.6
|T‘a = Supw( : )
5>0 0

(cf. [Ca/Ste]).

Theorem 2.2 ([Ri6—H], Theorem 6) There exist positive operators A, € L(C([0,2]™)),
n > 1, mapping C([0,2]™) into span (‘iln) such that:
(a) Forany f € C([0,2]™),

E (f,span (0,)) < |f - Anf

| < Tw(fEa(0,2™)
(b) For any Banach space E and any operator T € L(E,C([0,2]™)),
B (Tspan (8,)) < |7 AT < 7w(@e0.27). O

Theorem 2.3 ([Ri6—H], Theorem 7) (a) Let f € C([0,2]™) be non-constant and Hélder
continuous of type o, 0 < a < 1. Then

o E(f,span(\iln)) 1
R D) Z (a1

(b) Let E be a Banach space and let T € L(E,C([0,2]™)) be Hélder continuous of type a,
0 < o <1, such that the image T(E) does not consist of constant functions only. Then

lim inf b (T’ i (\i]n)) L

e w(Toen([0,2M) 7 16 (2077 +1) ’
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Note that the bounds w(f,e,([0,2]™)) and w(T,e,([0,2]™)) do not only reflect the
smoothness of f and T, respectively, but rather relate it to the degree of compactness of
the space [0, 2]™ by the aid of the geometric quantity ¢,([0,2]"). The theorems show that
the asymptotics of the modulus of continuity of a Holder continuous function f € C(]0,2]™)
and of a Holder continuous operator T' € L(F,C([0,2]™)) coincides with the asymptotics
of the approximation quantities F (f, span (‘iln)) and F (T, span (\ifn)), respectively. This
implies in particular that all non-constant functions from the spaces span (\iln) as well as
the operators A, are not Holder continuous.

Of course, the asymptotics of the entropy numbers of the cube [0,2]™ and of the mo-
dulus of continuity of functions f and operators T are not affected if the metric d is
replaced by an equivalent metric d', that is, if ¢; - d'(x,y) < doo(z,y) < ¢35 - d'(z,y) for all
z,y € [0,2]™ with universal constants ¢;,co > 0. Also the property of Holder continuity
of functions f € C([0,2]™) and operators T € L(E,C(]0,2]™)) remains untouched under a
change from d to d’. Hence the last two theorems remain true for the space ([0, 2]™,d") up
to a modification of the constants. For instance, one can consider the Euclidean distance on
[0,2]™. But even the m-dimensional Euclidean ball equipped with the Euclidean metric can
be considered as a space ([0,2]™,d') of that type, as can be shown by the aid of a suitable

homeomorphism mapping the ball onto the cube.

2.3 A basis in C([0,2]") consisting of Cantor-like func-

tions

The above mentioned chain (\ifn)oo ) of peaked partitions of unity gives rise to a Schauder
n=
basis in C([0,2]™) as can be seen by a general statement on so-called peaked partition
subspaces (cf. e.g. [Se|, Section 4.4). We shall construct a monotone and interpolating
o

basis ()2, of C(]0,2]™) which essentially preserves the error estimates from the last two

theorems. We recall that a basis (¢;)$; is called monotone if the partial sums S, f = 3 a;;
i=1

of a function f = io: a;p; fulfil || Sif]| < |IS2f || < [|Ssf]| < .... The basis is called
interpolating with nozciels ()52, € 10,2]™ it S, f(t;) = f(t;) foralln > 1 and 1 < i <mn.

Let us go into some details of the construction of the chain (\i’n)zc:l of peaked partitions
of unity on the cube [0,2]™. The partitions U, of cardinality 4™ had been defined by

Byt = {¢§4’”l> ..... Z.m);il,zg,...,z‘me{1,2,...,41}} with

~(qml (4l (4l (4l
P (6 E o En) = B(ENED (&) B (Em)
4 4

[0,2]. The partition (i(40) = {¢§40)} is the trivial one. If [ > 1 one makes use of the

(2.4)

where the functions ¢ < i < 4', form a peaked partition of unity é(4z) on the interval
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corresponding exponent e(l) € {0,1,2,...} determined by

4 e {00 4, 2 1) (2.5)
and of the function i,
=25 27v.
Jj=n+1

Then the supports of the functions from <i>(4z), [ >1, are

[024l+H(()) Li=1,
supp (@5‘”’) = (20— 1) -4 = H(e(), 2047 + H(e(1)) ,1<i<4,
(24" = 1) - 47" = H{(e(l)), 2] ci=4',

(cf. [Ri6-H], p. 184). Hence ¢{")(z) = 1if » € [2(i — 1) - 4~ + H(e(1)), 2i - 4~ — H(e(1))].

(Formulas (7), (9), and (40) from [Ri6-H] show that these intervals are non-empty.)
Forl>1and1<i< 4, weputt" =2i-4~'—H(e(l)). If | = 0 we define £\ = #{"). Then

@(41) (t;l)) = ¢;; fori,j € {1,2,...,4'} and [ > 0. Obviously, supp <<p( )) CB ( () 247 )

Moreover, we have

7

t)1<i<4'l C 1<i< .
{(l) <4} {(l+1) 4l+1}

Indeed, this claim is trivial if { = 0. If { > 1 and e(l) = e(l + 1) then £ = t.™). In the
remaining case | > 1 and e(l) # e(l + 1) we obtain e(l + 1) = e(l) + 1 and 2" = 41+!

according to (2.5) and hence

4e)+1

10 =214 H(e(l)) = 2i-4 722 H(e()+1) = 2(4i—1)-4" - H(e(1+1)) = ().

Let us come back to the m-dimensional case. We put #0) i) = (t(l) ¢ ,tEfZ) for

(11 19, 11 7 712 0

[>0and iy, ig,..., 0, € {1, 2,... ,41}. By definition (2.4), the last claims yield

~(4ml) (l B
w(il,iQ ..... im) (t(jl,jz ..... jm)) = 6(i1,i2,...,im)(jl,jg,...,jm) ) (2.6)
~ 4ml I B
SUpp (w(( - im)> c B (tEZ)llQ ..... imy 24 l) : (2.7)
{10 iy VS i i <4} UG e 1< i <47

Let {t;:1=1,2,3,...} = { (irizsim) - 020, 1<y in, oo iy < 41}. According to the last

inclusion we can choose the indices of the points ¢; € [0, 2]™ such that
{tito o tom} = {605 o0 1 <linig, i <4 (2.8)

Now we define the basis sequence (p;)2, C C([0,2]™) by the aid of the points t;, i > 1.

We start with p; = @ZNJ((%T: )1) By (2.6), the functions ¢;, 2 < i < 4™1 can be taken from
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T ym such that ¢;(t;) = 6;; for 1 < j < 4™1. Similarly, we choose ¢;, 4™ +1 < i < 4™2,
from Wym> with @i(t;) = 6;; for 1 < j < 4™2 etc. In the end we obtain a sequence
(i)izy € C([0,2]™) with

@i(t;) = 0y for 4™ 41 << 4D 1 <G <gmiED (2.9)

This shows in particular that the functions ¢; € span (\ifmz), 1 < i < 4™ are linearly
independent. Accordingly,

span ({¢1, P2, ..., @um }) = span (\i&mz) for [=0,1,2,.... (2.10)

Theorem 2.4 The above functions (p;)2, form a monotone and interpolating basis of
C([0,2]™) with nodes (t;):2,. The n-th partial sum S,f of the expansion of a function
f € C([0,2]™) is subject to the error estimate

If = Sufll < 12w(f,en([0,2]™)) .
Moreover, if f is non-constant and Holder continuous of type o, 0 < a < 1, then

I = Suf] 1
BTS00 T GRatel)

Proof. Before verifying the basis properties and the two error estimates, we begin with a
technical claim.

o
1. Let ()2, be a sequence of reals such that the function f = > a;¢p; exists in

C(]0,2]™) and let f, = Zn: a;p; be the n-th partial sum. We shall show that
i=1

[fnll = max{[f(#)], [f(E)], .- [f(Ea)]} - (2.11)

We fix [ > 0 such that 4™ < n < 4™+ By (2. 10) we have f, € span (\114m(z+1)).
1<y in, i §4l+1} —
{t1,ta, ..., tymasn } in accordance with (2.6) and (2.8). Thus the norm of f,, can be computed
by

(11,020 0sim

The partition of unity \1'4m(z+1) has the peak points {t

1fall = max{|fu(t)], [fu(t2)] - [fa(tamesn) ]} (2.12)

gqml
Similar arguments concerning the function fm = Z ;i € span (\Il4mz) yield

[ fami|| = max{{| fymi (t1)[, | fami(t2)], - . [fami (Eam) [} -
By (29), we obtain fn(t]) — f4mz (t]) = Zn: az@z(t]) = f: ai(sij for 1 < ] < 4m(l+1)‘

i=4mly] i=4mly]
Hence | f,(t;)] = | fami (t;)] for 1 < j < 4™ as well as for n +1 < j < 4™+, The equations

with 1 < j < 4™ show that

[ fam|l = max{|fn(t2)], [fua(t2)], -, [ fu(tamt)[} (2.13)
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in particular || fymi|| < ||fn||. The remaining equations imply that |f,(¢;)| < || fym|| for
n+1<j < 4™+ Thus (2.12) can be continued to

[fnll = max{[fa(t)], [Fa()ls s [falEn) | amt 1 ([ Famill oo ] Fame] [}

Combining this with (2.13) yields
[full = max{|fu(t2)], [fult)] - [fulta)]} -
Finally, we note that
(Pz(tz) =1 and (pl(t]) =0 for = 1,2,3, ey 1 S] <1 (214)

according to (2.9). Hence f,(t;) = f(t;) for 1 < j < n so that |/ f,|| can be written in the
desired form (2.11).

n n+1

2. Equation (2.11) shows in particular that a;oill < Y a4 for arbitrary
i=1 =1

a; € R and n > 1. The linear span of the sequence (¢;)2, is dense in C(]0,2]™),

since span({¢1, 2, ¢3,...}) = Ejspan (\lez) by (2.10) and OLjspam (\i&w) is dense as
1=0 1=0
Theorem 2.2 shows. Of course, ||¢;|| # 0 for i > 1. These three properties imply that

(pi)2, is a basis of C([0,2]™) (cf. [Li/Tza], Proposition 1.a.3). The basis is monotone, for
n n+1
21 a;pi|| < 21 ;i p;

Proposition 1.3.2).

, and interpolating with nodes (¢;)22, according to (2.14) (cf. [Se],

3. Next we shall prove the estimate

If = Sufll < 12w(f,en([0,2]™)) (2.15)

o
for arbitrary functions f = Y a;p; € C([0,2]™) and n > 1.
i=1
The supports of the partition functions from W m:, [ > 0, are subject to the inclusions

(2.7). Hence Proposition 2.1 yields

£ = < w(r2-a7)

~ ~(aml ~ l)

where ¢ = 2 f t(?i i 7/)(:'1 i) in):  We have ¢ t(i 2,0y =
(11,82, yim ) €{1,2,...,4L}m ( (12,0, m)) (i1 52,0150 ) ( (i1si2,..., m))

f (tEi)m ..... im)), since the points tgi)m ..... i) are peaks of the partition of unity \i’4mz. By

(2.8), this means that
U(t;) = f(t)) for 1<j<4m,

On the other hand, the 4™-th partial sum Sy f belongs to span (‘i&lmz) as well (cf. (2.10)).

Moreover, Symi f(t;) = f(t;) = 1(t;) for 1 < j < 4™ since the basis is interpolating. Thus
Symif =1). This shows that

If = Symi f| < w(f,2-4_l) for  1=0,1,2,... . (2.16)
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Now let n > 1 be fixed. We choose [ > 0 such that 4™ < n < 4™+ Of course,

1f = Sufll < |If = Symasn fll + [|Sgmarny f = Sufll - (2.17)
gm(l+1)

The function Symarny f — Sp,f = X «;p; can be considered as the 4m+1) gt partial sum
i=n+1

of itself. Hence, by (2.11) and (2.9),

gm(l+1) gm(l+1)
[Simeen f = Safll = 1§jr£3n}((l+1) i:%;rl aigpi(tj) - lgjrﬁrilz}”}((lﬂ) z‘:%;rl i35
= max{|ani1], |anial, - -, |umarn |} -
The same arguments prove that ||Symas1) f — Symi f|| < max{|aymi 1], |agmiyal, ..., |agmasn |}

Thus [|Symasn f — Spfll < ||Symarny f — Symi f|| and equation (2.17) can be continued, with
the additional help of (2.16) and the subadditivity of the modulus of continuity, namely

1f = Sufll < |If = Symasn fl| + [[Symasny f — Symi f]]
< | = Symasn f|| + [|Symasn f = fI| + [ f = Sami f]
< 2w(f.2-47Y) +w(f2-47)
- 2w (f, 9. 4*(l+1)) Tw (f’ 8. 4*(l+1))
< 12w (f, 4*”*1))
= 12w (f,e4man ([0,2]™))
< 12w(f,ea([0,2]™)) .

This proves the estimate (2.15).
4. The remaining inverse inequality rests on the proof of the corresponding inequality
from Theorem 2.3 (cf. [Ri6-H], pp. 188-189). There it is shown that

E (f, span (\TJM(;H))) 1

R RS AT 16 (et 1 1) 219
and
w (f,en([0,2M) < 8w (f,2(4 Y — He(1 +1)))) (2.19)

where [ > 0 is determined by 4™ < n < 4™(41 as above. By (2.10), we have S,f €
span (\TJM(HU) and hence ||f — S, f|| > E (f, span (\TJM(HU)). Combining this with (2.18)
and (2.19) yields the last inequality from Theorem 2.4 and completes the proof. O
Theorem 2.4 shows that the errors || f — S, f|| asymptotically behave as the modulus of
continuity of f if f is Holder continuous of type o, 0 < a < 1. A similar representation
can be given for compact operators 7' € L(E,C([0,2]™)). If S, : C([0,2]™) — C([0,2]™)

denotes the projection mapping a function f onto the n-th partial sum S, f, then T can
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be expressed by T = hm S, T = Z T;, where Ty = ST and T;1; = (S;11 — S;)T are
operators of rank one (or vanlsh) ThlS representation is possible for compact operators,
since, by the estimate from Theorem 2.4, lim IT — ST < Jim 12 w(T,e,([0,2]™)) = 0.

As in Theorem 2.4, one can infer an inverse estimate from the proof of Theorem 2.3.

Corollary 2.1 Let T € L(E,C([0,2]™)) be a compact operator mapping a Banach space E
into C([0,2]™). Then T can be expressed as an infinite sum T = %O: T; of rank-one operators

=1
T; such that
< 12w(T,e,([0,2]™)) .

-t

Moreover, if T is Hélder continuous of type a, 0 < o < 1, and T(E) does not consist of

constant functions only, then

- ¢ |
lim inf =1 )
noe w (T, eq(0,2]m)) ~ 16 (za—%+1)

Let us remark that a similar construction with the functions of the well-known Faber-
Schauder system would give rise to a monotone and interpolating basis in C'([0, 2]™) fulfilling
Jackson type estimates of the same kind as in Theorem 2.4 and Corollary 2.1. The essential
advantage of the rather complicated functions considered above lies in the inverse estimates
for Holder continuous functions and operators. These estimates can be valid only if the basis
functions are not Holder continuous themselves. Hence the above Bernstein type theorems

do not remain true for a basis resting on the Faber-Schauder system.

2.4 n-Term approximation by controllable partitions

of unity

Given an arbitrary compact metric space (X, d), we are not able to present a linear appro-

ximation scheme
span(®,) C span(®,) C span(®;) C ... C C(X)

formed by controllable partitions of unity ®,,, since we are not able to prove the existence of a
chain (®,,)>, of such partitions. Even in the fortunate case (X, d) = ([0, 2]™, dy) the chain
(U,,)5e, from [Ri6-H] is disappointing in some sense, since the dimension dim(span(¥,)) =
card(¥,,) = 2'" increases rapidly. Although there exist controllable partitions of unity ® for
all cardinalities expressable as card(®) = N ([0, 2]™,9), i.e. card(®) € {1™,2™ 3™ ...}, the

chain condition has led us to such strong increase.
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However, every compact metric space (X, d) admits the following non-linear approxima-
tion scheme in C'(X) based on controllable partitions of unity (cf. [Ste]). The n-th set of

approximating functions is defined by

k
o, (X) = {Z Xii  {¢1, P2, . ., pr } is a controllable partition of unity on X with k < n}

=1

The classes @, (X) form an increasing sequence
D (X) C ®p(X) C 3(X) C ... C C(X),
but are not closed under linear operations in general as the following example shows.

Proposition 2.5 ([Ri/Stel], Proposition 2) A function f € C([0,2]) belongs to the clo-
sure cl(Py([0,2])) if and only if

min{f(0), f(2)} < f(z) < max{f(0), f(2)}

for all z € 10,2]. O

In Section 4.3 we shall give a characterization for the corresponding approximation class
®om ([0, 2]™) of the m-dimensional cube, which requires a deeper analysis for m > 2.
o0 .

The approximation scheme (®,,(X)),”, induces a decreasing sequence (a,(f))2>,; of ap-

proximations quantities

an(f) = inf{|lf — ¢l : ¢ € ©n(X)} (2.20)

for every function f € C(X). The approximation numbers are subject to the following

Jackson type inequality.

Theorem 2.5 ([Ste]) Let (X,d) be a compact metric space, f € C(X), andn > 1. Then

an(f) < w(f,en(X)). O

The estimate is sharp in so far as the function fy(z) = |1 — x| on the space [0, 2] gives rise
to the inverse inequality a,(fo) > 1 w(fo,2,([0,2])) for n > 1 (cf. [Ri/Stel], Proposition 1).

One can consider the above described approximation procedure as a kind of so-called
n-term approzimation. In [DeV] this notion is used for summarizing different methods of
non-linear approximation. A typical simple example is the approximation by piecewise
constants with free knots on the interval [0, 2]. In that case the n-th class of approximating
functions consists of all piecewise constant functions on partitions of [0, 2] into at most n
subintervals of positive length. When approximating a function f € C([0,2]), one has to

find an appropriate partition of [0, 2] on which a “good” approximating function ¢ can be
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defined. This corresponds to choosing a suitable partition of unity for the approximation of
a function f € C'(X) in n-term approximation by controllable partitions of unity.
Proposition 2.5 shows that already the approximation class ®5([0,2]) is unexpectedly
large. This motivates the question for spaces (X, d) with the property that every function
f € C(X) is contained in one of the classes ®,(X) (cf. [Ba]). On these spaces n-term
approximation by controllable partitions of unity becomes a trivial procedure. Fortunately,

this happens for finite spaces only.

Proposition 2.6 ([Ri2—H], Theorem 1) If (X,d) is an infinite compact metric space
then there exists a function fy € C(X) such that fy ¢ Ej ®,(X). O
n=1

Finite spaces (X, d) are not the ones an analysist is usually interested in. However, n-
term approximation by controllable partitions of unity on finite spaces leads to combinatorial
questions. If X is finite then C(X) = ®eara(x)(X), since the characteristic functions Iy,
z € X, form a controllable partition of unity on X of cardinality card(X). But it may
happen that C(X) = ®,,,(X) with ny < card(X). Given ng > 1, how can one characterize
the spaces (X, d) with C'(X) = ®,,(X)? The preprint [Ri2-H] contains first results of that

type.

Proposition 2.7 ([Ri2—-H], Theorem 4) Let (X, d) be a compact metric space containig
at least two points. Then C(X) = ®o(X) if and only if e1(X \ {z0}) < e1(X) for all
Ty € X. O

Proposition 2.7 leads to the surprising consequence that there exist spaces (X, d) with
C(X) = ®,(X) for all cardinalities card(X) € {2,4,6,...}.

2.5 n-Term approximation by controllable step func-

tions

In the previous section we have seen that the classes ®,,(X) formed by the aid of controllable
partitions of unity can be relatively large. Controllable partitions of unity reflect the geo-
metry of the underlying space (X, d), but they lead to approximating functions ¢ € ®,(X)
of a difficult type. Let us introduce a new kind of n-term approximation which is related
to the geometry of the space X by the controllability property too, but uses a simpler kind
of functions. It will give rise to a similar Jackson type inequality as well as to an inverse

k

estimate. We shall use step functions ) \;Ip which are piecewise constant on controllable
i=1

partitions P = {Py, P,,..., Py} of X into subsets P, C X. Such functions are called

controllable step functions. In this section we deal primarily with the approximation of
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continuous functions f € C(X), but the approximating functions are no longer continuous.
The approximation takes place in the space M(X) of all bounded real-valued functions on

X equipped with the norm || f|| = sup f(z)].

The n-th approximation class of controllable step functions is defined by
= {Z XNlp o {P1, Py, ..., P} is a controllable partition of X with k < n}

for n > 1. The corresponding approximation quantities of a function f € M(X) are given
by

an(f) = inf {||f — @l : ¢ € &,(X)}
(cf. [Ri/Stel]). If one defines a,(f) and the modulus of continuity w(f,d) for functions
f € M(X) as it has been done for continuous functions in (2.20) and (2.2), then one can

prove the following relation between the approximation quantities a,(f) and a,(f):
a(f) < an(f)+ nfw(fe)  forall  feM(X), n>1
(cf. [Ri/Stel], Proposition 4). This yields in particular that
anlf) < an(f)  forall  feC(X),n>1.
Again we are able to give a Jackson type inequality in terms of the modulus of continuity.
Theorem 2.6 ([Ri/Stel], Proposition 5) Let (X,d) be a compact metric space, f €
M(X), andn > 1. Then
an(f) < w(f,en(X)). O

(Note that this estimate does not imply that lim an(f) =0if f is not continuous.)

The corresponding Bernstein type theorem refers to the concept of metric spaces which
have a finite coefficient of convex deformation. We use the terminology of [JiP], although
spaces of that type seem to have been considered for the first time by Menger (cf. [Me]). We

recall that a simple Jordan arc I' = T'[7(0), 7(1)] in a metric space (X, d) with parametriza-
tion 7 : [0, 1] — X is said to be rectifiable with length [(T") if

r) = Sup{Zd(T(ti_l),T(ti)) n>1,0=t <t <...<t,= 1} < 00
i=1

The infinite metric space (X, d) is said to have a finite coefficient px of convex deformation if
X is rectifiable pathwise connected, i.e. for all z,y € X, x # y, the set R(x,y) of rectifiable
Jordan arcs I'[z, y| connecting = and y is non-empty, and
px = Sup {inf{w : [z, y] € R(x,y)} cx,y € X, x # y} < 00
d(z,y)
Of course, py > 1. Convex metric subspaces (X, d) of normed spaces are typical examples

with px = 1.
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Theorem 2.7 ([Ri5—H], Corollary 3.2) Let (X,d) be a compact metric subspace of an
m-dimensional Banach space or of the m-dimensional Fuclidean sphere with a finite coeffi-
cient px of convexr deformation. Then

1 .
o g Ve < () < wlfen(X)

forall f € C(X) andn > 1.0

The lower estimate essentially rests on the definition of px as well as on the particular
property of local finiteness of controllable coverings, which is claimed in Theorem 1.2. In
Section 1.3 we have seen that controllable partitions of the cube ([0,2]™,dy) have a par-
ticular pleasant structure (c¢f. Lemma 1.1). This can be used for improving the constant
2(p[0,2]1n+5)m = 5o from the lower estimate to o (cf. [Ri3], Satz 2.17). Moreover, the

particular function fy € C([0,2]™), fo(&1, &2, ..., &) = &, fulfils a,(fo) = w(fo,n(]0,2]™))
for all n > 1 (cf. [Ri3], Satz 2.18). Hence the Jackson type inequality can not be sharpened.

By Theorem 2.7, the approximation numbers a,(f) give all informations on the smooth-
ness of the function f € C(X) which depend on the asymptotics of w(f,-). Hence the
sequence (a,(f))s°, can be used for describing classes of smooth functions in C'(X). Let us
demonstrate this for certain Besov spaces B, ([0,1]™) on the cube, namely for 0 < s < 1,

p=o00,0<g<ocaswellasfor0 <s<1 p=g=occ. Let f € C(]0,1]™). Then

1
S5 w(f, )7t dt < oo, 0<s5<1,0<q< o0,
fe B, ,(0,17") <« 0
sup t % w(f,t) < oo, 0<s<l,g=oc
0<t<1

(cf. [Os]). This is equivalent to
f(yi -w(f,y*i))q-y‘ldy <oo, 0<s<1,0<¢q<o0,
feBL01") = ¢

supy%-w(f,y’i)<oo, 0<s<1,qg=cxc.
y>1

Now we discretize the formulas by considering n~w instead of y_%. Moreover, we use that
w (f, n_%) behaves like w(f,e,(]0,1]™)) and thus like a,(f). Hence

%(n%-&n(f))q-n*1<oo, 0<s<1,0<qg< oo,
feB, (01" — n=be
’ sup nw - a,(f) < oo, 0<s<l1,qg=oc.
n>1

But this means that (G,(f));Z; belongs to the Lorentz sequence space = , (cf. [Ca/Ste]).

Corollary 2.2 Let f € C([0,1]™) andlet 0 < s <1, 0<g< o0 or0 < s <1, qg= oc.
Then f € B3, ,([0,1]™) if and only if (an(f))pZs € lm 4. O
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We obtain in particular that a function f € C([0,1]™) is Hélder continuous of type «,
0 <a <1, thatis f € By, ([0,1]™), if and only if (@, (f))7%; € l= .

Corollary 2.2 once more illustrates that the behaviour of the approximation quantities
an(f) does not depend on the smoothness of f € C(]0,1]™) only, but on the degree of
compactness of X = [0,1]™ as well. Functions from B} ([0,1]™) give rise to a faster
decrease of the errors than functions from B, ([0, 1]™) with m’ > m, since lm 4 is a proper

subset of 1, i

2.6 An application to C'(X)-valued operators

Let us recall that the approzimation numbers a,(T), n > 1, of an operator T' € L(E, F)
between Banach spaces E and F' are defined by

a,(T) = inf{||T — A||: A€ L(E,F) with rank(A) < n} .
The Gelfand numbers c,(T) are given by the infimum
cn(T) = inf{HT[ﬁH : M is a linear subspace of E with codim(M) < n} :

where I}, denotes the natural embedding of M into E (cf. [Ca/Ste]). We are interested in
the case F' = C'(X) with a compact metric space (X, d). By the aid of suitable partitions

of unity, one can show that
ant1(T) < w(T,e,(X)), n=12.3,...,

if T is a compact operator (cf [Ca/Ste], Theorem 5.6.1). The method of controllable step

functions will give rise to the more general inequality
Cnt1(T) < w(T,en(X)), n=123,...,

for arbitrary operators T' € L(E,C(X)). This includes the previous estimate, since a,(7) =
cn(T) if T is compact (cf. [Ca/Ste], Theorem 5.3.2).
Let T € L(E,C(X)) and let J : C(X) — M(X) be the natural embedding. We put

en(T) = inf {|JT = Al|: A€ L(E, M(X)) with A(E) C &,(X)}

for n > 1. (In the paper [Ri5-H] we have introduced related quantities a, (T) =
inf {|T— A : A € L(E,M(X)) with A(E) C ®,(X)} for operators T € L(E, M(X))
before defining ¢,(T") = a,(JT) for T € L(E,C(X)).) The claim A(E) C ®,(X) is sharper
than rank(A) < n. Hence a,41(JT) < é,(T).

We obtain the following inequalities of Jackson and Bernstein type.
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Theorem 2.8 ([Ri5—H], Theorem 4.3 and Corollary 4.6) Let (X,d) be a compact
metric space, E a Banach space, T € L(E,C(X)), andn > 1. Then

n(T) < w(T,en(X)) -

Moreover, if (X, d) is a space as in Theorem 2.7, then

1

WW(T,Sn(X)) < 6 (T) . O

Under the supposition of Theorem 2.8 we again are in the pleasant situation that an
approximation quantity ¢,(7") describes the behaviour of the modulus of continuity w(7, ).
Hence one can use the numbers ¢,(7), n > 1, for characterizing compactness or Holder
continuity of 7.

The numbers ¢,(T) are related to the Gelfand numbers of 7" by

i1 (T) < é,(T) .

Indeed, ¢, +1(T) = ¢ (JT) (cf. [Ca/Ste], injectivity of the Gelfand numbers), ¢, +1(JT) =
ant1(JT) (cf. [Ca/Ste], Proposition 2.3.3), and a,1(JT) < ¢é,(T) as mentioned above.
This yields the inequality between the Gelfand numbers and the modulus of continuity of

T, which has been announced above.

Corollary 2.3 ([Ri/Stel], Proposition 6) Let E be a Banach space, (X,d) a compact
metric space, T € L(E,C(X)), andn > 1. Then

ni1(T) < w(T,en(X)) . 0

The estimate is sharp as can be shown by the natural embedding I, € L(C*(X), C(X))
from the Banach space of Holder continuous functions C*(X), 0 < a < 1, equipped with
the norm | f|lo = max{||f||,|f|a} into C(X). Then all the sequences ((5n(X))a)ZO:1,
(a”“(]a))zo:l’ (cn+1(1a))zo:1, (é”(]a))z;’ and (w(]a,sn(X)))zozl have the same asymp-
totics. This is proved for the first three sequences in [Ca/Ste], Proposition 5.6.2. Besides
that, we have already seen that ¢,,1(1,) < ¢,(la) < w(la,£,(X)). The remaining estimate

Wy, en(X)) < (e,(X))* is trivial.
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Chapter 3

Approximable functions on compact

metric spaces

3.1 Characterization of approximable functions

In the previous chapter we have dealt with the approximation of continuous real-valued
functions on compact metric spaces (X, d). But when approximating by controllable step
functions we made use of the larger space M (X) of all bounded real-valued functions on
X. The Jackson type estimate has shown that every continuous function f € C'(X) can be
expessed as the uniform limit of a suitable sequence of controllable step functions, that is
lim an(f) = 0. However, uniform limits of controllable step functions need not be conti-
nuous. The simplest examples of that type are the controllable step functions themselves. In
this chapter we shall consider the class A(X) of all functions f € M (X) with Jim an(f) =0.
These functions are to be called approximable.

Unfortunately, not all functions from M (X) are approximable so far as X is an infinite
space (cf. [Ri8H], Theorem 2). In fact, if X is infinite then there even exist step functions
on X which are not approximable (cf. [Ri8H], Proposition 4). (In this chapter we use the
name step function for functions f € M (X) whose image f(X) is finite.) Moreover, the class
A(X) is not a linear subspace of M(X) if X contains an infinite connected component (cf.
[Ri8H], Theorem 1). The more desirable it would be to get an insight into the structure
of the whole class A(X) as well as to find typical properties of the functions belonging to
A(X).

A function f € A(X) is said to be chain-approzimable if it is the uniform limit of a

o0

ln
sequence of controllable step functions ¢, = > )\Z(n)IP(n) on an ascending chain K = (P,)22,
i=1 i

of controllable partitions P, = {Pl(n), m Pl(nm} of X. The class of all chain-approxi-
mable functions on X will be denoted by A (X).
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A chain-approximable function f allows a satisfactory procedure of approximation. The
(n+1)-st partition P, 41 preserves information of the n-th one P, since P, is a refinement
of P,. In other words, f can be gained within an approximation scheme consisting of an
increasing sequence (E,) , of finite-dimensional subspaces of M (X), where E,, contains all
step functions on the partition P,,.

Given a fixed chain K = (P,)>, of controllable partitions of X, we denote the set of
all uniform limits of step functions on partitions from K by Ak (X). Of course, Ax(X) is a
Banach space. Hence A (X) is the union of the Banach spaces Ax (X). In general, A (X)
is not a linear space itself: The characteristic function f = Ijp; belongs to A()([—1,1]), since
it is chain-approximable with respect to a chain K of controllable partitions P, consisting of
2" subintervals of length 2 "*!. Similarly, g = Loy € A([-1,1]). But f — g = Ijq is not
chain-approximable nor even approximable, because {0} can not be a set from a controllable

partition of [—1, 1] according to Proposition 1.3.

Theorem 3.1 ([Ri8—H], Theorem 3) Let (X,d) be a compact metric space and let f €
A(X) be an approzimable function.

If f is a step function then f is a controllable step function, that is, f belongs to one of
the classes ®,(X), n > 1.

If f has infinitely many values then f is chain-approzrimable. O

Theorem 3.1 says that all functions f € A(X) whose approximation is non-trivial, i.e.
f ¢ OL(j ®,(X), are chain-approximable. That is, A(X) coincides “essentially” with the
pleasg;é class A (X) = U Ax(X). In other words, the non-linear class A(X) is not much
larger than the union oflihe Banach spaces Ag(X). Moreover, the remaining functions
feAX)\AO(X) C EJO ®,(X) are not very interesting in the sense that they belong to
the class of approximatrilgg1 functions.

Let us remark that A(X) \ A(X) is non-empty in general. Indeed, in Section 1.2 we
have seen that there exist controllable partitions of the interval [—1, 1] which do not belong
to a chain K of controllable partitions. Of course, these partitions give rise to step functions
which are not chain-approximable.

Particular topological properties of partitions from chains K of controllable partitions
give rise to continuity properties of functions from Agx(X). A function f: X — R is said
to be quasi-continuous if, for every x € X, every neighbourhood U of z, and every £ > 0,
there exists a non-empty open set G C U such that |f(z) — f(y)| < € for all y € G (cf.
[Ke], [Ble]). By Proposition 1.2, every step function on a partition P from a chain K of
controllable partitions is quasi-continuous. In [Le| Levine proves that the uniform limit of

quasi-continuous functions is quasi-continuous as well. This gives the following claim.
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Proposition 3.1 ([Ri8—H], Corollary 4) All chain-approzimable functions on a compact

metric space are quasi-continuous. O

The points of discontinuity of a quasi-continuous function are of the first Baire category
(cf. [Ble]). Hence the points of continuity are dense, since (X, d) is a Baire space. Ac-
cordingly, the points of continuity of any chain-approximable function are dense in X. This
shows that chain-approximable functions are quite close to continuous functions.

Besides that there exists another satisfactory relation between chain-approximable func-
tions and continuous functions, which in particular implies that C'(X) is contained in all
the classes Ag(X).

Proposition 3.2 ([Ri8—H], Corollary 3) Let (X, d) be an infinite compact metric space.
Then

CX) = Q Ag(X)

where the intersection is taken over all chains K of controllable partitions of X. O

3.2 The spaces Ag(X)

Next we shall deal with the structure of a single class Ax(X), K denoting a fixed chain of
controllable partitions of (X, d).

When computing an approximation number a,(f) of a function f € M(X), one has
to consider step functions on all partitions from ®,(X). These are uncountably many
in general. (For instance, all partitions {[—1,a], (o, 1]} of [-1,1] with —1 < a < 1 are
controllable.) But the approximation procedure can be discretized if f belongs to Ax(X) .

Theorem 3.2 ([Ri8—H], Theorem 4) Let K = (P,,)%5_, be a chain of controllable parti-
tions of a compact metric space (X,d), f € Ag(X), andn > 1. Then

an(f) = inf{Hf - go(K)H o F) e &, (X) and %) is defined on a partition from K} O

(Note that a step function &) € ®,(X) can be defined on a partition from K of a cardi-
nality larger than n.)

In the previous section we have seen that the points of continuity of a function from
Ag(X) are dense in X. This can be sharpened in so far as there exists a universal dense

set of points of continuity for all functions from Ay (X).

Proposition 3.3 ([Ri8—H], Corollary 5) Let (X, d) be a compact metric space and K =
(Pn)22, a chain of controllable partitions of X. Then there exists a dense set Cx C X of the
second Baire category such that every function f € Ay (X) is continuous at all the points

from Cg. O
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However, the significant property of the space Ax(X) is the way it has been gained
from the chain K. In the following we shall use K for constructing a Schauder basis
in Ag(X). Let K = (P,);2, with P, = {P{" P{” .. P!}  Without loss of gen-
erality we may assume that P; = {Pl(l)} = {X} is the trivial partition. We fix a
point t; € Pl(l). We can assume that t; € P1(2). Now we choose points t; € PZ-(2),
2 < ¢ < ky. Next we assume that ¢; € PZ-(S) for 1 < i < ky and determine points
t; € Pi(?’), ko +1 < i < k3. We continue this procedure. Hence we obtain a sequence
(P = (PO PP, o B2 PO e P B0 PO PV, ) of par
tition sets with ¢t; € P; for ¢ > 1.

Proposition 3.4 The sequence (Ip,)2, is a monotone and interpolating basis in Ak (X)
with nodes (t;)52,. Moreover, the lI-th partial sum S;f, | > 1, of f € Ax(X) gives rise to

the estimate

If =Sifll < max  sup [f(s) = f(t)] < w(f,2ek, 1(X)) (3.1)

PMEPy 5 e pn)

where n is determined by k, <1 < kn,.1 — 1. (The second estimate can be given for | > ks

only, since eg,—1(X) = &¢(X) does not make sense.)

Proof. 1. We follow similar arguments as in the proof of Theorem 2.4. Let («;)32, be a

o0 [
sequence of reals such that f = Y a;Ip, exists in M(X) and let f; = > a;Ip. Then
= i=1

=1
1Al = max{[f(t)], [f ()], [F(E)]} - (3.2)
We shall prove this by showing inductively that
fl(X) = {f(tl)af(t2)a"'af(tl)}' (33)

But first we note that the points #; and the sets P; are chosen such that ¢; € P, and t; ¢ P,
for 1 < j <i. Hence

Ipl(tl) =1 and Ipz(t]) =0 for 1=1,2,3,...,1<j5<1. (34)

This yields f,(t;) = f(t;) for 1 < j <.

Now let us prove (3.3). The claim is trivial for | = 1, since fi(X) = {fi(t1)} = {f(t1)}.
Let us consider fi,1, 1 > 1. We obtain fi11(X\P1) = fi(X\Py1) C{f(t1), f(t2), ..., f(t)}
by the induction hypothesis, and fi1(X \ Py1) 2 {firi(t), fisa(ta), ..o ()} =
{f(t1), f(ta),..., f(t)}, since t1,t9,..., 4 € X \ Py1. Consequently, fii1(X \ Pyq) =
{f(t1), f(ta),..., f(t;)}. The chain property of the sequence K of controllable partitions
implies that, for ¢ <1, P,y NP, = () or Py € P,. Accordingly, f;,; is constant on P;.
Thus fir(Pra) = {frer(bisa)} = {f(tis1)}. This proves (3.3) for

fl+1(X) = fl+1(X\Pl+1)Ufl+1(Pl+1) = {f(tl)af(t2):"':f(tl)a f(tlJrl)} .
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I+1
Z a;lp, > a;Ip || for arbitray a; € R and
i=1

[ > 1. The linear span of (Ip)2, is dense in Ag(X), since span({Ip,,Ip,,...,Ip, }) =

2. Equation (3.2) implies the inequality

Span <{Ipl(n), IPQ(n), cee ,IPISn) }) and nL:J1 Span ({Ipl(n), IPQ(n), cee ,IPISn) }) is dense. Clearly,

|IIp,|| # 0 for all ¢ > 1. Hence (Ip,)2, is a basis of Ag(X) (cf. [Li/nTza], Proposition 1.a.3).

! I+1
The estimate || > o;Ip || < |3 o;Ip, || and property (3.4) imply that the basis is monotone

and interpolating with nodes (¢;)2°, (cf. [Se|, Proposition 1.3.2).
3. Now let us prove the error estimate (3.1). Let f = § alp € Ag(X). Then S f =
i=1
l
fi=fr, + > alp. fi, is astep function on the partition P, = {Pl(n), P Pk(:)},
i=kn+1
since span({Ip,,Ip,,...,Ip,_}) = span <{Ip(n),IP(n), . .,IP(n)}>. The sets P, = Pi(n+1)’
1 2 kn
k, +1 <1 </, belong to the refinement P, of P,. Hence f; can be considered as a step

l
function on the partition © = {Q1, Qa, ..., Q} with@Q; = P™\ U PO Dfor1<i<k,
m=kn+1

and Q, = n+1) for k, +1 < i <[. Every set Q; € Q is contained in a uniquely determined
set P E ’P Moreover, we have t; € Q;. Hence f,(Q;) = {fi(t;)} = {f(t;)} for 1 <i <.
If x is an arbitrary point from X, say = € ();, then

[f(x) = filz)] = [f(x) = f(t:)] < sup [f(s) = f(®)] < sup [f(s)— f(?)|.

$,LEQi steP()

This yields the first inequality from (3.1), because of

If =Sifll = sup [f(x) = flz)] < max sup |f(s) — f(1)] .

PMEPy 5 1cp(n)
The remaining inequality is a simple consequence of the controllability property. Every set
P™ € P, is contained in a suitable ball of radius ek, -1(X). Hence d(s,t) < 2, 1(X) and
1f(s) — f(t)] < w(f,2ep,-1(X)) for 5,t € P™. Accordingly,

max  sup [f(s) = f(1)] < w(f,2ep,-1(X)).
PMEP, ¢ tcp(n)

This completes the proof of Proposition 3.4. O

Note that the error estimate

If =Sufl = max sup [f(s) — f(t)

VEPn 5.1 P(™)

obtained first is the predestinate one with respect to the space Ax(X) induced by the chain

K. Indeed, the bound Jmax  sup |f(s) — f(t)| tends to zero for increasing n if and only
"MEPn 5 te P

if f belongs to Agx(X). In contrast with that, the modulus of continuity w(f,2ey, 1(X))
approaches zero for f € C'(X) only.

41



3.3 Chain-approximable functions on cubes and inter-

vals

The particular geometric structure of controllable partitions of the cube ([—1,1]™, d) gives
rise to further results. Example 1.1 shows that controllable step functions on the cube need
not be measurable. The more satisfactory it is that chain-approximable functions behave

much simpler.

Theorem 3.3 ([Ri8—H], Theorem 5) All chain-approxzimable functions on the m-dimen-

sional cube ([—1,1]™,d) are Riemann integrable. O

By the aid of Proposition 1.2 we have seen that chain-approximable functions are quasi-
continuous (cf. Proposition 3.1). Let us remark that quasi-continuity itself does not imply
Riemann integrability. One can construct step functions ¢ : [—1,1] — {0,1} which are
quasi-continuous but not Riemann integrable (cf. [Ri8-H|, Example 2). The construction
gives rise to functions ¢ which are Lebesgue measurable such that the measure of the set
of points of discontinuity of ¢ can be chosen arbitrarily close to 2. A slightly modified
construction yields non-measurable quasi-continuous functions ¢ : [—1,1] — {0, 1}.

Now let us discuss a relation between so-called regulated functions on the interval [—1, 1]
and chain-approximable functions. A function f € M([—1,1]) is called regulated if it pos-
sesses the limits from the left f(z—) for all z € (—1,1] and the limits from the right f(z+)
for all x € [=1,1). An important subclass of the class of regulated functions is formed by
the simple step functions. A step function ¢ belongs to this subclass if there exist points
—1 =12y < <...<x=1such that ¢ is constant on each open subinterval (z;_1,z;),
1 < i < k. The regulated functions can be characterized as the uniform limits of simple
step functions (cf. [Au], [Di]).

Since the values ¢(z;) of a simple step function ¢ of the above form can be chosen
arbitrarily, ¢ need not be quasi-continuous and thus not chain-approximable. Of course, ¢
becomes quasi-continuous if, for 0 < i < k, p(z;) coincides with the value of ¢ on one of the
intervals (z; 1, ;) or (z;,z;11). In other words, a simple step function ¢ is quasi-continuous
if and only if, for every = € [—1, 1], ¢ is continuous from the left or from the right at x. Then
¢ is a step function on a finite partition of [—1, 1] into intervals of positive length. In [Ril]
it is shown that every partition of that type admits a controllable strict refinement again
consisting of intervals of positive length. Repeated application of the procedure of refining
yields a chain K of controllable partitions of [—1, 1], such that ¢ is chain-approximable with
respect to K.

Obviously, a function f € M([—1,1]) is a quasi-continuous regulated function if and only

if it is continuous at the points —1 and 1 and if, for every x € (=1, 1), the limits f(z—) and
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f(z+) exist and the value f(z) coincides with one of these limits. The following theorem
characterizes this class of functions. It shows in particular that every quasi-continuous

regulated function is chain-approximable.

Theorem 3.4 ([Ri8—H], Theorem 6) Let f € M(|—1,1]). Then the following are equi-
valent.

(i) [ is a quasi-continuous requlated function.

(i1) [ is a uniform limit of quasi-continuous simple step functions.

(111) f is a uniform limit of quasi-continuous simple step functions which are defined on

a chain of controllable partitions of [—1, 1] into intervals of positive length. (In particular,
feA9(-1,1)).)0

Note that A(©)([—1,1]) is strictly larger than the class of quasi-continuous regulated
functions. Indeed, in Section 1.2 a partition P = {P;, P,} has been presented such that P
can be extended to a chain of controllable partitions, but the partition sets P, and P, are
twisted at the point 0. Hence the function Ip, is chain-approximable, but the property of
being regulated fails at 0.

The non-linear class A ([—1,1]) is the union A ([~1,1]) = U Ax([~1,1]) of the sepa-
rable Banach spaces Ag([—1,1]), where all chains K of Controllabll(e partitions of [—1, 1] are
considered. But do there exist larger Banach spaces in A ([—1,1])? Let E C M([—1,1])
be the set of all quasi-continuous regulated functions f € M(][—1,1]) which are con-
tinuous from the left at all points x € (—1,1). Clearly, F is a Banach space and
E C A©(]—1,1]) by Theorem 3.4. But E is not separable, since it contains the uncountable
subset {I[_La} ml<a< 1} with HI[—lyaﬂ —I_1,0y)

=1 for ay # ao.

Corollary 3.1 There erist inseparable Banach spaces in A ([—1,1]). In particular, the
spaces Ak ([—1,1]) are not the largest Banach spaces in A9 ([—1,1]). O

)
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Part 11

Approximation on topological spaces
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The previous chapters concerned the uniform approximation of real-valued functions on
a compact metric space (X,d) with reference to the geometric structure of (X,d). The
results to be pesented in the following are motivated by the preceding investigations, but
do not make use of metric conditions such as controllability. From now on X is supposed
to be a more general topological space.

The fourth chapter deals with the approximation of continuous functions. For normal
spaces X we shall give a characterization of all continuous functions which can be attained
as linear combinations of partitions of unity subordinated to a fixed open covering. This
result can be applied to an optimization problem on polyhedral complexes and, in the
end, for describing the approximation class ®gm([0,2]™) on the cube ([0,2]™, d). The
second problem in Chapter 4 concerns the approximation by step functions. We shall see
that the existence of approximation schemes defined by so-called approximating sequences
of partitions is a characteristic property of compact metrizable spaces within the class of
completey regular spaces.

The last chapter is devoted to quasi-continuous and cliquish functions on arbitrary topo-
logical spaces X. When considering n-term approximation by controllable step functions
on a compact metric space (X, d), we saw that every chain-approximable function is quasi-
continuous (cf. Proposition 3.1). But quasi-continuous functions on a compact metric space
need not be chain-approximable in the sense of controllability. However, it will turn out that
every quasi-continuous function f on an arbitrary topological space X can be expressed as
a uniform limit f = T}Ll%lo v, of a sequence of quasi-continuous step functions defined on a
chain of so-called semi-open partitions. A similar representation can be obtained for the re-
lated class of cliquish functions. Besides these approximation results we shall discuss further
properties of quasi-continuous and cliquish functions: Baire spaces can be characterized by
the aid of cliquish functions. Cliquish functions can be transformed into quasi-continuous
ones by a particular “small” modification. Finally, continuity properties of an associated

multifunction of quasi-continuous and cliquish functions will be investigated.
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Chapter 4

Covering and partition properties of
topological spaces related to

continuous functions

4.1 Partitions of unity restricted by open coverings

A partition of unity {1, ¢, ..., vr} on a compact metric space (X,d) had been called
controllable if and only if there exists a controllable covering {C7, Cs, ..., Cy} of X such that
supp(y;) € C;, 1 <i < k. Hence one can impose geometrical constraints upon partitions of
unity by coverings of the underlying space. Clearly, this can be done on arbitrary topological
spaces X.

Now let X be an arbitrary topological space. Let us recall that a (not necessarily finite)
covering C is called locally finite if, for every x € X, there exists a neighbourhood U of x
intersecting at most finitely many of the sets from C. In this chapter partitions of unity are no
longer required to be finite. Now a system {¢, : « € Z} C C'(X) of non-negative continuous
functions is called a partition of unity on X if the system of the supports {supp(yp,) : ¢ € I}
is a locally finite covering of X and > ¢, = 1. Note that we have defined the support of a
continuous function by formula (2.1)L.€IHence {supp(y,) : ¢+ € I} is an open covering of X.
The local finiteness yields that every function > A, with arbitrary A\, € R belongs to
C(X), since for every € X the sum is a ﬁnitLeef)ne in some neighbourhood of z. Given
a locally finite open covering C = {C, : + € T} of X, we say that the partition of unity
{¢, 11 €T} C C(X) is subordinated to C if supp(p,) C C, for all ¢ € T (cf. [Mi/Pel]).

In n-term approximation by controllable partitions of unity on a compact metric space
(X,d) the n-th class ®,(X) of approximating functions consists of all linear combinations

of partitions of unity {¢1,ps,...,¢r} with & < n which are subject to the condition of
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controllability. If a controllable open partition C = {C}, Cs, ..., Cy} is fixed, there still is a
variety of partitions of unity {¢1,¥2, ..., ¢} subordinated to this covering with a variety of
approximating functions Z Aiw;. This motivates a similar question for general topological
spaces X: Given a locally ﬁnlte open covering C = {C, : 1 € T} of X, we want to characterize
all linear combinations > A,¢, of partitions of unity {¢, : ¢ € Z} subordinated to C. We
can give a characterizatiLoelf provided that X is a Ty-space. This means that any two disjoint
closed subsets of X can be separated by two disjoint open subsets. In the theorem we use

the symbol conv(-) for denoting the convex hull of a set of reals.

Theorem 4.1 ([Ri7-H], Theorem 1) Let X be a Ty-space, C = {C, : v € I} a locally
finite open covering of X, f € C(X), and A\, € R for v € Z. Then the following are
equivalent.
(i) There exists a partition of unity {¢, : « € T} subordinated to C such that
= Z)\LQOL .
€T
(ii) For all x € X,
f(z) € conv{), :z€C}. O

If one wants to find out whether f can be expressed as a linear combination of a partition
of unity subordinated to C, the characterization given by Theorem 4.1 is difficult in so far
as one has to consider property (ii) for all collections (A,),ez of real coefficients. We can
simplify the characterization if C has a property closely related to peaked partitions of unity.
The covering C = {C, : « € I} is to be called peaked with peaks x, € X ifz, € C,\ U Cy

rET\{1}
for all € Z (cf. [Mi/Pel]).

Corollary 4.1 ([Ri7-H], Corollary 1) Let X be a Ty-space, C = {C, : v € T} a locally
finite peaked open covering of X with peaks x, € C,, and f € C(X). Then the following are
equivalent.

(i) There exists a partition of unity {p, : © € T} subordinated to C and coefficients A\, € R
such that

= Z)\LSOL .

LET

(ii) For all x € X,
f(z) € conv{f(z,):z€C}. 0

In Theorem 4.1 and Corollary 4.1 the implications (i)=-(ii) are simple and can be shown
for arbitrary topological spaces X. But the converse step from the local property (ii) to
the global one (i) deeply involves the T4 separation property of X in terms of the Tietze-
Urysohn extension theorem. In fact, we can use the implications (ii)=(i) for characterizing

T4-spaces.
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Theorem 4.2 ([Ri7-H], Theorem 2) Let X be a topological space. Then the following
are equivalent.

(o) X is a Ty-space.

(B) The implication (ii)= (i) from Theorem 4.1 holds true for all locally finite open coverings
C={C,:1€T} of X, all functions f € C(X), and all real coefficients \,, . € T.

(v) The implication (ii)= (i) from Corollary 4.1 holds true for all locally finite peaked open
coverings C = {C, : v € T} of X with peaks z, € C, and all functions f € C(X). O

4.2 An application to polyhedral complexes

We want to apply Theorem 4.1 in the context of an optimization problem on polyhedral
complexes. Let us recall that a polytope P in R™ is meant to be the convex hull of a finite
set of points. We assume that P is m-dimensional, that is, the affine hull of P is R™.
Then the face lattice F(P) of P is the set of all k-faces of P, —1 < k < m. A k-face of P
with 0 < k < m — 1 is a k-dimensional intersection of P with a supporting hyperplane of
P. Besides that the empty set () and the polytope P itself are considered as the (—1)-face
and the m-face of P, respectively. For example, the face lattice F(S) of a square S C R?
consists of () (the (—1)-face), the four singletons {v} formed by the vertices v € vert(S) (the
0-faces), the four edges (the 1-faces), and S (the 2-face). Note that all faces of a polytope
P are polytopes themselves.

Face lattices of polytopes are the simplest examples of so-called polyhedral complexes.
A polyhedral complex P in R™ is a non-empty collection of polytopes P C R™ fulfilling the
following three conditions (cf. e.g. [Rin]):

(C1) For all P € P, all faces of P belong to P:
PeP — F({P)CP.
(C2) For all P,Q € P, the intersection P N @ is a face of both P and Q:
PQeP — PnNnQ € F(P)NF(Q).
(C3) The system P is locally finite in the topological space formed by the underlying set

Pl=UP
PeP
of P. (Clearly, the topology of |P] is induced by the usual topology of R™.)
Figure 4.1 illustrates some examples. The first one is just the face lattice of a square.
The next one shows an infinite complex consisting of the unit squares corresponding to

the integer points in R? and of all faces of these squares. The third complex is given by

48



«

Figure 4.1: Three polyhedral complexes and a counterexample

infinitely many triangles, which cover an angle as displayed in the figure, and, of course, by
their faces. (Note that the vertex of the angle does not belong to the complex. Otherwise,
condition (C3) would be violated.) The fourth example consisting of two triangles and their
faces does not fulfil (C2) and therefore is not a polyhedral complex.

The following fact is widely used in optimization theory. Given a polyhedral complex
P C R™ and a linear function f: R™ — R, then

min f(P), max f(P) € f(vert(P)) for all PeP. (4.1)

We want to characterize all real-valued continuous functions f € C(|P|) possessing the
extremality property (4.1). These functions will turn out to be linear combinations of
partitions of unity subordinated to a particular covering of the space |P|. We define the set
of wertices of the complex P by
vert(P) = | J vert(P).
Pep
The relative interior relint(P) of a polytope P is meant to be the interior of P with respect
to the topology induced on the affine space spanned by P. (For instance, the relative interior
of a triangle T" consists of all points of 1" which do not belong to the edges of T" even if T is
a subset of R™ with m > 3, where the usual interior of 7" would be empty.) For all vertices
v € vert(P) of the complex P, we define a corresponding set C,, by
c, = U relint(P) .

PeP vevert(P)
Figure 4.2 illustrates the situation for the three complexes given in Figure 4.1. One can
show that {C, : v € vert(P)} is a peaked open covering of |P| with peaks v € C, (cf.
[Ri7-H]). Corollary 4.1 can be employed for proving the following conclusion.

Theorem 4.3 ([Ri7-H], Theorem 3) Let P be a polyhedral complex in R™ and let f €
C(|P|). Then the following are equivalent.
(i) For all polytopes P € P,

min f(P), max f(P) € f(vert(P)) .
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Z

Figure 4.2: The covering sets C),

(i) The function f can be represented as

[ = Z Av Py

vevert(P)

with coefficients A\, € R and a partition of unity {¢, : v € vert(P)} on |P| subordinated to
the covering {C, : v € vert(P)}. O

4.3 An approximation class on the cube

A particular application of Theorem 4.3 brings us back to the n-term approximation by
controllable partitions of unity. Proposition 2.5 describes all functions f € C([0,2]) belon-
ging to the closure cl(®4([0,2])) of the approximation class ®,([0, 2]), that is the class of the
functions f with as(f) = 0. We want to generalize it in so far as we want to consider the m-
dimensional cube ([0, 2]™, d.,) instead of the interval [0, 2]. As we have seen in Example 1.1,
there exist controllable coverings of [0, 2]™ for the cardinalities 1™, 2™ 3™ ... only. Hence
the approximation classes ®,([0,2]™), 1 < n < 2™ — 1, contain the constant functions only.
Accordingly, the first interesting class is ®qm ([0, 2]™).

The problem of characterizing cl(®om ([0, 2]™)) has led us to the results of the last two
sections, since the partitions of unity of cardinality 2™ are closely related to the polyhe-
dral structure of the cube [0,2]™. The functions f € C([0,2]™) with asm(f) = 0 can be

characterized as follows.

Theorem 4.4 ([Ri7T—H], Theorem 4) Let f be a continuous real-valued function on the

compact metric space ([0,2]™, ds). Then the following are equivalent.

(i) f € cl(Pam([0,2]™)).
(11) For all faces Q) € F([0,2]™),

min £(Q), max f(Q) € f(vert(Q)). O

Although a first lenghty proof of Theorem 4.4 has been given in the Ph.D. thesis [Ri3], the

approach via polyhedral complexes is more elegant and could give rise to generalizations
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concerning arbitrary polytopes. We expect that every polytope P with n vertices can
be equipped with a metric dp such that the corresponding approximation classes ®;(P),
1 <i < n—1, consist of the constants only, while cl(®, (P)) admits a characterization by

an extremality condition as that in Theorem 4.4.

4.4 Approximating sequences of partitions

Now we shall deal with a problem concerning the approximation of continuous functions
by step functions. When considering n-term approximation by controllable step functions,
we saw that every infinite compact metric space (X, d) admits a chain K of controllable
partitions, every continuous function f € C'(X) being approximable with respect to K (cf.
Theorem 1.1 and Proposition 3.2).

This motivates the following generalization to arbitrary topological spaces X. Does
there exist a sequence (P,)>, of finite partitions of X such that every real-valued bounded
continuous function f on X can be expressed as a uniform limit f = nlggo ©, of step functions
¢, defined on the partitions P,, n > 1?7 A sequence (P,)%°,; of that type is to be called
an approzimating sequence of X. (Clearly, we could ask also for a chain of partitions
with the above mentioned property. But this would be an equivalent question, since every

approximating sequence (P,)22, on X gives rise to an approximating chain (ﬁn)oo , Where

P, can be defined to be the smallest common refinement of Py, Py, ..., Py.)

We shall confine ourselves to completely regular spaces X, characterized by the sepa-
ration axioms T; and T3%, which are Hausdorff spaces such that, for every closed subset
A C X and every point z € X \ A, there exists a continuous function f : X — [0, 1] with
f(z) =1 and f(y) = 0 for all y € A. This property guarantees the existence of non-trivial
continuous functions in C'(X). On the other hand, there exist infinite regular spaces X
(defined by T; and Tj) such that C'(X) consists of constant functions only (cf. [St/See]).
In that trivial case every sequence of finite partitions is approximating, of course. In the
case of a completely regular space, however, it is non-trivial to ask for an approximating

sequence.

Theorem 4.5 ([R/S2-H]) Let X be a completely reqular space admitting an approzima-

ting sequence of partitions. Then X is a compact metrizable space. OF

Now we see that the concept of an approximating sequence does not give rise to a

generalization of n-term approximation by step functions from compact metric spaces to

"Let us remark that the proof of Theorem 4.5 given in [R/S2-H] can essentially be shortened by using
the separability of C(X). This was told us by Engelking (private communication).
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more general spaces. But we can interpret Theorem 4.5 as a characterization of compact
metrizable spaces by approximation theoretical properties.

Let us add an equivalent geometric condition. A sequence (P,)2; of finite partitions of
a topological space X is said to be globally contracting if, for every finite open covering C
of X, there exists a number ngy such that P, is a refinement of C if n > ny. That is, for all
n > ng and all P € P,. there is a covering set C' € C with P C C.

Theorem 4.6 ([R/S2-H]) Let X be a completely reqular space. Then the following are
equivalent.

(i) X is compact and metrizable.

(i1) X admits an approzimating sequence of partitions.

(111) X admits a globally contracting sequence of partitions. O

We want to remark that a sequence of partitions of a completely regular space is ap-
proximating if and only if it is globally contracting. This is not explicitely claimed in

Theorem 4.6, but is a simple consequence of the following metric characterization.

Proposition 4.1 Let (P,)S2, be a sequence of finite partitions of a compact metric space
(X,d). Then the following are equivalent.
(i) (Pn)3, is globally contracting.

(i1) (Pn)22, is approzimating.

n=1

(11i) The fineness of the partitions P, tends to zero, Jim F(P,) =0.

Proof. The implication (i)=-(ii) is shown in [R/S2-H] even for arbitrary topological spaces
X. The implication (iii)=(i) rests on Lebesgue’s covering lemma, which says essentially
that, for every open covering C of a compact space X, there exists an € > 0 such that every
partition P with F'(P) < ¢ is a refinement of C (cf. [Eng]).

For proving (ii)=-(iii) we assume that (iii) fails. Then there exist some § > 0 and a
subsequence (P,, )%, of partitions with F (P,,) > J, say &, (P(”k)) > § with P(™) € P, .
We fix points z,,, yn, € P™) with d(z,,,y,,) > 6. Now we choose a subsequence (ny, ),
such that the limits 2y = zlg?o Tn,, and yo = zlg?o Yn,, exist. Moreover, we can assume that
the sets A = {mnkl > 1} U{xo} and B = {ynkl > 1} U {yo} are disjoint, because of
d(zo,y0) > 0. The compact space X is normal. Hence the disjoint closed sets A, B C X
can be separated by a bounded continuous function f : X — [0,1] with f(A) = {0} and
f(B) = {1}. But f can not be expressed as a uniform limit f = lim ¢n, of step functions
¢, defined on the partitions P,. Indeed, every function Pny,» [ > 1, would be constant
on P™) in particular Png, («Tnk,) = ¥ny, (ynkl), whereas f (xnkl) =0 and f (ynkl) = 1.
This contradiction to the approximation property (ii) of the sequence (P,)2°; proves the

remaining implication (ii)=(iii). O
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Chapter 5

Local and global properties of
quasi-continuous and cliquish

functions

5.1 Quasi-continuous and cliquish functions

The notion of a quasi-continuous function goes back to Kempisty, who introduced this
concept for real-valued functions of several variables in 1932 (cf. [Ke]). The survey in the
first section of [R/S3-H] shows that the history of quasi-continuity is full of independent
approaches to the same concept. In the most general setting quasi-continuity can be defined
for mappings between arbitrary topological spaces X and Y. The slightly more general
concept of a cliquish function f : X — Y requires a uniform structure on Y. However, we
shall restrict our considerations to functions with values in R.

A real-valued function f on a topological space X is called quasi-continuous at the point
zg € X if, for every ¢ > 0 and for every neighbourhood U € U(xgy) of zg, there exists a
non-empty open set G C U such that

|f(z) = fzo)] < & for all req.
The function f is called cliquish at the point xq € X if under the same conditions as above
f(x) = f(2)] < e for all z,2 €G .

The function f is called quasi-continuous or cliquish on X if it is quasi-continuous or cliquish,
respectively, at each point of X.

The property of quasi-continuity on X is closely related to Levine’s geometric concept of
a semi-open set. A set S C X is called semi-openif S C cl(int(S)) (cf. [Le]). Then a function
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f: X — R turns out to be quasi-continuous on X if the inverse image f~' (V) is semi-open
for every open set V' C R. Originally, Levine called this property semi-continuity of f. But
in [Neul] Nebrunnova proved the equivalence of semi-continuity and quasi-continuity.

To illuminate the difference between continuity and quasi-continuity, let us consider
how the value f(xy) depends on the values of f in the surroundings of zy. Clearly, if f
is continuous at x, then f(xg) is uniquely determined by the behaviour of f close to x.
This need not be the case if f is quasi-continuous at xy. However, also in the case of quasi-
continuity f(zg) underlies certain local restrictions, which can be described by the concept
of the open hull HO(x0) of [ at x.

HOy¢(zg) = {ye€R: forall U € U(zy) and all £ > 0 there exists a non-empty
open subset G C U such that |f(xz) — | < ¢ for all z € G}

(cf. [R/S3-H]). The open hull HO(x¢) reflects in some sense the “stable” behaviour of f in
the neighbourhood of xy. Here stability means that HO(z,) is not affected by an arbitrary
modification of the values of f on a nowhere dense subset of X. The following is a simple

consequence of the definition of quasi-continuity.

Proposition 5.1 ([R/S3-H], Proposition 2.1) A real-valued function f on a topological
space X is quasi-continuous at a point xo € X if and only if f(xo) € HO¢(xp). O

Let us consider the functions fi, fo, f3: [=1,1] — R defined by

fl(m):{sin%ifm;éo, f2(m):{§.sin§ifx¢o, f3(m):{§ifm¢o,

¢, if z =0, Co if t =0, cg if x=0.

Then HOy, (0) = [-1,1], HO,(0) = R, and HOy,(0) = (. Hence f; is quasi-continuous so
far as ¢; € [—1,1] and f, for every ¢y, whereas f3 can not be quasi-continuous at 0. The
function f, illustrates that a quasi-continuous function on a compact topological space X
need not be bounded nor even locally bounded. f3 is an example of a cliquish function.
Note that the value f(x) of a cliquish function f is not restricted by the values of f in
the surroundings of xy. In fact, it can easily be seen that f remains cliquish at xq even if
its values are arbitrarily changed on a nowhere dense subset of X. However, the open hull
can be employed for formulating a sufficient condition for the cliquishness of f at x,, which

is even necessary so far as f is locally bounded at ;.

Proposition 5.2 ([R/S3-H], Proposition 2.3) Let f be a real-valued function on a
topological space X. Then f is cliquish at xo € X if HO¢(xo) # 0. Conversely, if [ is
cliquish and locally bounded at xq, then HOf(xo) # 0. O
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In the following we shall deal with quasi-continuity and cliquishness as global properties.
It is a simple consequence of the definition that the sum of two cliquish functions is cliquish
again. Besides that, the class of cligish functions on a topological space X is closed with
respect to uniform limits. Also the uniform limit of quasi-continuous functions is quasi-
continuous (cf. [Ble], [Le]). But note that the sum f + ¢ of two quasi-continuous functions
need not be quasi-continuous, which can be illustrated by the functions f = I and
g = Iy on the interval [-1,1].

Although a quasi-continuous or cliquish function f on a topological space X is far from
being continuous in general, its points of discontinuity form a set of the first category only
(cf. [Thie], [Neu2]). If X is a Baire space, which means that every subset of the first
category has a dense complement, then the continuity points of f form a dense subset of X
(cf. [Neu2]). We shall complete this well-known result by showing that Baire spaces are the

only topological spaces on which all cliquish functions have a dense set of continuity points.

Proposition 5.3 A topological space X is a Baire space if and only if every cliquish function

f: X — R has a dense set of continuity points.

Proof. As explained above, it suffices to infer the Baire property of X under the sup-
position that all cliquish functions f : X — R have a dense set of continuity points. So
let A C X be a set of the first category. That is, A = EJO A,, with nowhere dense subsets
A, € X. We have to show that X \ A is dense in X. "

The step functions I, n > 1, are cliquish, since the sets A, are nowhere dense. Indeed,
we get HOy, (z) = {0} for all z € X, so that I, is cliquish according to Proposition 5.2.
Then the function f = Z 37" -1y, is cliquish as well. We denote the set of discontinuity
points of f by Dy. Now We want to show that

AC Dy, (5.1)

So let xy € A, say xy € A,,. Then f(xy) > 37™. But every neighbourhood U € U(x)

no no
contains some point yop € U\ U A,, since U A, is nowhere dense. Thus I, (yo) = 0,
n_l n=1

1 < n < ng, and hence f(yy) = Z 3 " Tg, (yo) < % 37" = 1.37m0, Consequently,

n=ng-+ n=ng+1 2

[ is discontinuous at zg, for f(z) — f(yg) >3m0 — 2.3 = 1.3, This proves the
inclusion (5.1).

By the assumption, the set X \ D; of continuity points of f is dense in X. Now the
inclusion (5.1) yields that X \ A is dense as well. This completes the proof. O

In the context of the present report quasi-continuity appeared as a property of all chain-
approximable functions on a compact metric space (X, d) (see Proposition 3.1). The fol-
lowing claim, however, demonstrates that chain-approximable functions in general form a

small subclass of all bounded quasi-continuous functions only.
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Proposition 5.4 Let (X,d) be a compact metric subspace of an m-dimensional Banach
space or of the m-dimensional Fuclidean sphere and let f : X — R be a uniform limit of

controllable step functions ¢,, n > 1, on X. Then
card(HOy(z)) < 5™ for all reX.

In the case (X,d) = ([-1,1]",dx) the bound 5™ can be sharpened to 2™.

Proof. The step functions ¢, are defined on controllable partitions P, of X, which
must fulfil the strong form of local finiteness x(P,) < 5™ according to Corollary 1.1.
Hence, for every x € X and every n > 1, there exists a neighbourhood U, of z such
that card(y,(U,)) < 5™. This immediately implies the estimate card(HO;(z)) < 5™ con-
cerning the open hull of f = nh_)rglo ©n. Corollary 1.2 yields the stronger claim for the space
(X,d) = ([-1,1]",dy). O

In contrast with that, the above example f; : [—1,1] — R illustrates that the open hull
of a bounded quasi-continuous function on the simple space [—1, 1] may contain uncountably
many elements. The more satisfactory it is that every quasi-continuous or cliquish function
on an arbitrary topological space X admits a representation as a uniform limit of appropriate
“step functions” defined on a chain of partitions of X (see Section 5.4). Hence quasi-

continuous and cliquish functions are “chain-approximable” in a more general sense.

5.2 Semi-open and almost semi-open step functions

In the classical sense a step function is meant to be a function with finite range. We want
to introduce appropriate concepts of “step functions” which can be used as basic functions
for the approximation of quasi-continuous and cliquish functions, respectively. As we have
seen above, quasi-continuous and cliquish functions may be unbounded and thus can not be
expressed as a uniform limit of functions with finitely many values only. So we must allow
basic functions with infinite range. On the other hand, the approximating “step functions”
should be quasi-continuous or cliquish, respectively. This is related to particular topological
properties of the underlying partitions.

Proposition 5.5 Let ¢ = Zk: Ailp, be a piecewise constant real-valued function on a finite
partition P = {P;, Py, .. ,1237:} of a topological space X with \; # X; for i # j. Then the
following hold true.

(a) The function ¢ is quasi-continuous if and only if the sets P;, 1 < i < k, are semi-open.

k
(b) The function ¢ is cliquish if and only if the set \J int(P;) is dense in X.
i=1
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Proof. Part (a) is a direct consequence of the characterization of quasi-continuity by the
aid of semi-open sets.
k
If ¢ = > \lp, is cliquish then every non-empty open set U C X must contain a

i=1
non-empty open subset G C U such that ¢ is constant on G, say p(G) = {);;}. Then

k
G Cint(P,,). This shows that {J int(P;) is dense in X.
i=1

k
Conversely, if U int(P;) is dense then, for every x € X and every open neighbourhood
i=1

U € U(x), there exists a partition set P,

with int(P;,) NU # (. Hence ¢ is constant on the
non-empty open subset G = int(P;,) N U of U. Thus ¢ is cliquish at z. O

In the following a partition P = {P, : ¢« € I} of a topological space X is to be called
semi-open if all the sets P,, + € I, are semi-open. P is to be called almost semi-open if
U int(P,) is dense in X. A function ¢ : X — R is said to be a semi-open step function or
?frf almost semi-open step function if it is piecewise constant on a semi-open or an almost
semi-open partition of X, respectively. Note that in this definition the partition P and hence
the range of the corresponding piecewise constant function ¢ are allowed to be infinite.

The notion of a semi-open partition has already been used in the literature (cf. [S/Z/Z2]),
whereas the concept of an almost semi-open partition is new. As far as we know, semi-open
and almost semi-open step functions have not been studied before. The arguments from the
above proof show that semi-open and almost semi-open step functions are quasi-continuous
or cliquish, respectively, even if the underlying partition P = {P, : « € I} is infinite.

In the present context the notation “step function” has a topological background. The
“steps” P, of a semi-open step function are relatively “large”, since they are semi-open and
thus have a “large” interior. In the case of an almost semi-open step function there exists
an almost semi-open underlying partition P = {P, : « € I'}. Then the partition sets P, with
int(P,) # () constitute “large steps”. But there possibly exists a large number of partition
sets with int(P,) = (), the union of these sets being nowhere dense.

In the proof of Proposition 5.3 we have constructed semi-open step functions in a very
simple way. If A is a non-empty nowhere dense subset of a topological space X then the
partition P = {X \ A, A} is almost semi-open, for int(X \ A) is dense. Hence every function
ALx\a + pI4 is an almost semi-open step function. Moreover, the sum of two almost semi-
open step functions is an almost semi-open step function as well. This is due to the fact that
the “mixture” Q@ = {PM N P . p) ¢ P, PG ¢ Py, P N PR £ (} of any two almost
semi-open partitions P; and P, is almost semi-open as well. These simple tools combined
with the closedness of cliquish functions with respect to uniform limits give rise to a huge
number of examples of cliquish functions.

In the case of semi-open step functions the above construction does not work. One

problem is that a semi-open partition of X can not contain a nowhere dense set A as a
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partition element, since nowhere dense sets are not semi-open. Besides that, the sum of
two semi-open step functions need not be semi-open, which has been illustrated by the
functions Ig,1) and Ijo; in the last section. This shows in particular that the “mixture”
of two semi-open partitions need not be semi-open. Nevertheless, we can show that every

infinite Hausdorff space X possesses “many” semi-open step functions.

Proposition 5.6 FEuvery semi-open subset S C X of a Hausdorff space X with card(S) > 2

can be decomposed into two non-empty disjoint semi-open subsets S; and Ss.

Proof. The interior int(S) contains at least two distinct points 1, zo, for S C cl(int(S5))
and card(S) > 2. These points can be separated by two disjoint open sets O1, Oy C int(S)
with z; € Oy, x9 € Oy. We put S; = SNcl(O;) and Sy = S\ cl(O;). Then S; and Sy form
a partition of S consisting of non-empty subsets, since O; C int(S;) and Oy C int(Ss). The
set Sy is semi-open, for Sy C cl(Oy) C cl(int(S;)). Moreover, we have

SQ = S\Cl(Ol)

C c(int(S)) \ cl(Oy)
(cl(int(S) N S1) Ucl(int(S) N Sp)) \ el(Oy)
(cI(int(S) N el(O)) Ucl(int(S) \ el(O1))) \ el(O1)
C (cl(01) Ucl(int(S2))) \ cl(O)
C cl(int(Sy)) .

—_~ o~

Hence S5 is semi-open as well. This completes the proof. O

Corollary 5.1 Every infinite Hausdorff space X admits a chain K = (P,), of semi-open
partitions P, with card(P,) = n.

Proof. Starting with the semi-open partition P; = { X} we define the chain K inductively.
Given the semi-open partition P, with card(P,) = n, we find an infinite set P € P,. We
obtain the refinement P, of P, by decomposing P into two non-empty semi-open subsets

P, and P, according Proposition 5.6. O

Corollary 5.1 shows that every infinite Hausdorff space X admits a large variety of quasi-
continuous functions. All step functions on partitions from the chain K are semi-open.
Moreover, the Banach space Ag(X) of all uniform limits of step functions on partitions
from K even contains quasi-continuous functions with infinite range. This is remarkable in
so far as the class C(X) of all continuous real-valued functions on X may consist of constant
functions only. In fact, there exist infinite regular spaces X (Hausdorff spaces additionally
fulfilling T3) such that all functions in C'(X) are constant (cf. [St/See]).
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Let us remark that the situation changes if one considers T;-spaces instead of Hausdorff
spaces. Here a good example is given by the cofinite topology on an infinite set X. In this
topology a subset O C X is defined to be open if and only if O = () or X \ O is finite (cf.
[St/See]). This implies that P = {X} is the only semi-open partition of X. Otherwise there
would exist at least two disjoint non-empty semi-open subsets P; and P, of X. But then X
would contain two disjoint non-empty open subsets int(P;) and int(P,) in contradiction with
the definition of the cofinite topology. Hence all semi-open step functions are constant. In
the sequel it will turn out that the semi-open step functions are dense within the class of all
quasi-continuous functions. Accordingly, all quasi-continuous functions on an infinite space
X with the cofinite topology are constant. In contrast with that, every infinite T -space

admits cliquish functions with infinite range.

Proposition 5.7 Let (2;)5°, be a sequence of mutually distinct points of an infinite T-

space X and let (X\;)$2, be a sequence of reals with lim \; = 0. Then the function f =

i—00
Aolx + i Ailiz,y is cliquish.

Proof. Every partition P = {X \ {zo}, {zo}} of X with arbitrary z, € X is almost semi-
open. Indeed, if zq is an isolated point, i.e. {zo} is open, then int(X \ {z¢}) Uint({zo}) =
(X \ {z0}) U {xo} is dense in X. If xy is not isolated then int(X \ {x¢}) Uint({zo}) =
(X \ {z0}) UD is dense as well. Consequently, every function Iy, is an almost semi-open
step function. Then the functions ¢, = Ay + Z Ailiz;), n > 1, are almost semi-open step

functions, too. Hence the uniform limit f = hm ©y, is cliquish. O

5.3 Transforming cliquish functions into quasi-conti-

nuous functions

In this section we shall study real-valued functions f on an arbitrary topological space X
with HO(z) # 0 for all x € X. These functions form an important subclass of cliquish
functions as Proposition 5.2 tells. A function f of that type can be transformed into a
quasi-continuous function f by a so-called admissible modification. Denoting the set of
continuity points of f and f by Cy and CY, respectively, this concept says: The function f

is an admissible modification of a function f if
f(x)=f(z) forall zeC; and Cr CCj

(cf. [Au]). Accordingly, f and f differ in discontinuity points of f only. As we have
mentioned above, the discontinuity points of a cliquish function form a set of the first
category. Hence an admissible modification of a cliquish function is actually a “small”

modification.
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Theorem 5.1 ([R/S3-H], Theorem 4.1) Let f be a real-valued function on a topological
space X with HOy(z) # O for all x € X. Then every function f with

flz) € HOs(z) for all reX
1S a quasi-continuous admissible modification of f with
HOj(z) = HOy(z) for all reX. O

Now Proposition 5.2 implies that every locally bounded cliquish function can be trans-
formed into a quasi-continuous function. The condition HOf(z) = HO(x) for all z € X
even becomes necessary provided that f is an admissible modification of a cliquish function

f on a Baire space X.

Theorem 5.2 ([R/S3-H], Theorem 4.2) Let f be a real-valued cliquish function on a

Baire space X. Then every admissible modification f of [ satisfies the condition
HOf(z) = HOy(z) for all reX. O

Hence, by Proposition 5.1, every quasi-continuous admissible modification f of a cliquish

function f on a Baire space X fulfils
flz) € HOf(z) = HOy(z) for all reX.

Accordingly, f admits a quasi-continuous admissible modification f only if HO¢(z) # 0
for all x € X. Moreover, every quasi-continuous admissible modification f of f must be a
selection of HOy(+). The function f3 from Section 5.1 serves as an example of a cliquish
function not possessing a quasi-continuous admissible modification, because of HOy,(0) = 0.

Let us remark that the situation changes if X is not a Baire space. For example, consider
the function f(z) = ¥ 27° on the rational numbers Q = {z, 29, 3,...} equipped with
the usual topology inflll?ged by the real line. The function f is quasi-continuous, since it is
continuous from the right. But f does not have any continuity point, so that every function
f:Q — R is an admissible modification of f. Hence there exist admissible modifications f
of f such that

HOf(z) # HOy(z) for all reX.

5.4 Quasi-continuous and cliquish functions as uni-

form limits of corresponding step functions

Now we come to the main results of this chapter concerning the approximation of quasi-
continuous and cliquish functions on an arbitrary topological space X. The functions un-
der consideration will be expressed as uniform limits of semi-continuous or almost semi-

continuous step functions ¢,, n > 1, which are defined on suitable sequences K = (P,)22,
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of partitions of X. The partitions P,, n > 1, can be chosen such that P, is a refinement
of P,,, but not necessarily a strict one. A sequence K of that type is to be called a weak
chain. (In the paper [R/S3-H] the short term “chain” stands for what is called a “weak
chain” in the present report.) Note that a weak chain may be stationary. That is, there
may exist an index ng such that P, = P, for all n > ny. This phenomenon, however, can
not occur in the case of chains of controllable partitions of a compact metric space (X, d)

as they were introduced in Section 1.2.

Theorem 5.3 ([R/S3—-H], Theorem 3.1) Let [ be a real-valued quasi-continuous func-
tion on a topological space X. Then f can be represented as the uniform limit of a sequence
(pn)22, of semi-open step functions which are defined on a weak chain K = (P,)32, of
semi-open partitions P, = {PL(") Tl E In}. If f is locally bounded then there exists a weak

chain K of locally finite partitions with the above property. If f is bounded then K can be

chosen to be a weak chain of finite partitions. O

One can prove Theorem 5.3 by inductively constructing the partitions P, and the cor-
responding semi-open step functions. The construction rests on Lemma 3.1 from [R/S3-H],
which is rather involved. Note that it is not enough to find a sequence of semi-open step

functions ¢, defined on semi-open partitions Q, such that sup [f(z) — ¢,(z)] < +. In

n
fact, then the partition P,, from the weak chain K would havex%())( be a common refinement
of Q1,Q,,...,9,. But already two semi-open partitions @; and Qs need not possess a
semi-open common refinement. This corresponds to the non-linearity of the class of all
quasi-continuous functions on X.

Theorem 5.3 enables us to arrange the quasi-continuous functions on X such that they
appear as elements of linear spaces A (X), which are closed with respect to uniform limits.
Here Ak (X) denotes the space of all uniform limits of semi-open step functions defined on

a weak chain K of semi-open partitions.

Theorem 5.4 ([R/S3—-H], Theorem 3.2) Let f be a real-valued quasi-continuous func-
tion on a compact metrizable space X. Then there exists a weak chain K = (P,)%, of
semi-open partitions P, = {PL(”) 1L E In} of the space X such that f as well as any real-
valued continuous function on X can be attained as the uniform limit of a sequence of
semi-open step functions which are defined on K. If f is locally bounded then there exists
a weak chain K of locally finite partitions with the above property. If f is bounded then K

can be chosen to be a weak chain of finite partitions. O

Theorem 5.4 sharpens Theorem 5.3 in so far as now the space Ay (X), besides the

function f, additionally contains all real-valued continuous functions. If K consists of finite
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partitions only then it is an approximating sequence in the sense of Section 4.4. Hence every
compact metrizable space X admits an approximating sequence K being a weak chain of
semi-open partitions. Theorem 4.5 justifies the restriction to compact metrizable spaces in
Theorem 5.4.

The main tool for proving analogous approximation results about cliquish functions is
the mechanism of transforming cliquish functions into quasi-continuous functions as de-
scribed in the previous section. Given a locally bounded cliquish function f on X, one can
pass to a quasi-continuous admissible modification f Then one can find a semi-open step

s

function ¢ for realizing the estimate sup ‘f(x) - cﬁ(x)‘ < 5. This is the starting point for
zeX

the construction of an almost semi-open step function ¢ with sup |f(z) — ¢(z)] < § (cf.
zeX

[R/S3-H], Lemma 5.2). The proofs of the two theorems to follow rest on these ideas.

Theorem 5.5 ([R/S3—-H], Theorem 5.1) Let f be a real-valued cliquish function on a
topological space X . Then [ can be represented as the uniform limit of a sequence (p,)22, of
almost semi-open step functions which are defined on a weak chain K = (P,)>2, of almost
semi-open partitions. If f is locally bounded then there exists a weak chain K of locally finite
partitions with the above property. If f is bounded then K can be chosen to be a weak chain

of finite partitions. O

Theorem 5.6 ([R/S3—-H], Theorem 5.2) Let f be a real-valued cliquish function on a
compact metrizable space X. Then there exists a weak chain K = (P,)52, of almost semi-
open partitions of the space X such that f as well as any real-valued continuous function
on X can be attained as the uniform limit of a sequence of almost semi-open step functions
defined on K. If f is locally bounded then there exists a weak chain K of locally finite
partitions with the above property. If f is bounded then K can be chosen to be a weak chain

of finite partitions. O

5.5 The associated multifunction

When introducing the open hull HO;(z) of a real-valued function f on a topological space
X at a point z € X, we used the set HO¢(x) for describing local properties of f at z. Now
we go a step forward by considering the open hull as a multivalued function reflecting the
global behaviour of f. The set-valued map Fy on X defined by

Fy(x) = HOy(x)

is to be called the associated multifunction of f. Clearly, Fy maps into the closed subsets
of R.
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First we claim that Fy(x) # (0 for all z € X as is often done if one studies continuity
properties of multivalued functions (cf. [Ku|, [Mi], [Eng]). Then, by Proposition 5.2, f
needs to be cliquish. Moreover, Theorem 5.1 yields that F; necessarily is the associated
multifunction of a quasi-continuous function. Hence there is no loss of generality if we restrict
our investigations to associated multifunctions of quasi-continuous functions f : X — R.
Associated multifunctions of that type can be characterized among all set-valued functions

in the follwing simple way.

Proposition 5.8 ([R/S3—H], Proposition 6.1) Let F' map a topological space X into
the non-empty subsets of R and let f be any selection of F. Then F s the associated

multifunction of some quasi-continuous function g on X if and only if F = Fy. O

The “identity theorem” to follow is a most surprising property of associated multifunc-

tions.

Proposition 5.9 ([R/S3-H], Proposition 6.2) Let Fy and F, be the associated multi-
functions of two real-valued quasi-continuous functions f and g on a topological space X
such that Fy(x) N Fy(z) # 0 for allz € X. Then Fy = F, and, moreover, the two functions

f and g are admissible modifications of each other. O

Now we want to study continuity properties of associated multifunctions. Let us recall
that a multivalued function F' mapping a topological space X into the (non-empty) subsets
of R is called lower (upper) semi-continuous at a point xy € X if, for every open subset
V C R with F(zo) NV # 0 (or F(z9) C V, respectively), there exists an open set U C X
with zg € U such that F(z) NV # 0 (or F(z) C V, respectively) for all z € U (cf. [Kul,
Mi]).

In her paper [Ew| Ewert defined corresponding concepts of quasi-continuity for mul-
tivalued maps (see also [Po]). Accordingly, the multifunction F is called lower (upper)
quasi-continuous at a point xy € X if, for every open subset V C R with F(zo) NV # ()
(or F(zg) C V, respectively), there exists a semi-open set S C X with xy € S such that
F(x)NV # 0 (or F(z) C V, respectively) for all x € S. Of course, F is called lower (upper)

quasi-continuous if it is lower (upper) quasi-continuous for all z € X

Theorem 5.7 ([R/S3—-H], Theorem 6.1) Let [ be a real-valued quasi-continuous func-
tion on a topological space X. Then the associated multifunction Fy is both lower and upper

quasi-continuous. O

Theorem 5.7 makes clear that the notion of quasi-continuity for single-valued functions

on one hand and the notions of lower and upper quasi-continuity for set-valued mappings on
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the other hand fit well together in the global sense. As far as it concerns continuity of a quasi-
continuous single-valued function f at a point xy, the local notion of lower semi-continuity
for set-valued mappings turns out to be an adequate concept. Upper semi-continuity of the
associated multifunction F at a point zy € X is a consequence of local boundedness of the

underlying function f at xz.

Theorem 5.8 ([R/S3—-H], Theorem 6.2) Let f be a real-valued quasi-continuous func-
tion on a topological space X. Then the associated multifunction Fy is lower semi-continuous

at a point xg € X if and only if f is continuous at xy. O

Theorem 5.9 ([R/S3—-H], Theorem 6.3) Let [ be a real-valued quasi-continuous func-
tion on a topological space X. Then the associated multifunction Fy is upper semi-continuous

at a point xqg € X if [ is locally bounded at xy. O

By Proposition 5.3, we can conclude that the associated multifunction Fy of a quasi-
continuous function f on a Baire space X has at least a dense set of points of lower semi-
continuity.

One can show that the points where a quasi-continuous function f on X is not locally
bounded form a nowhere dense set (see the proof of Theorem 5.1 in [R/S3-H]). Hence F}
fails to be upper semi-continuous on a nowhere dense subset of X only. If f is not locally
bounded at z( then Fy may be upper semi-continuous, but need not be. This is illustrated
by two examples in [R/S3-H].

We want to close the investigations of the present section by establishing a relation
between the uniform convergence of quasi-continuous or cliquish functions and the uniform
convergence of the associated multifunctions with respect to the Hausdorff distance. Let us
recall that the parallel set A, of A C R with distance r > 0 is defined by

A, = Ula=r,a+7r] = {z € R: there exists a € A with |z —a| <7r}.
acA

The Hausdorff distance of two sets A, B C R is given by

dy(A,B) =

00 otherwise.

{inf{r>O:AgBrandB§Ar} if {r>0:ACB,and BCA}#0,

For example, dy({z},{y}) = |z — y| for z,y € R, dg(A,cl(A4)) = 0 for every A C R,
dp (0, B) = oc for all non-empty subsets B of R, and dz(0,) = 0. The system

{{BCR:dy(A,B)<r}: ACR,r >0}

is a base for a non-separated uniform space on the system of all subsets of R, whose restric-
tion to the class of closed subsets of R even is separated. (A Hausdorff space is uniformizable
if and only if it is completely regular; see [Eng].) The functional dy (-, ) describes a complete

metric space on the system of non-empty compact subsets of R (cf. [Eng)).
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Theorem 5.10 Let f and g be real-valued cliquish functions on a topological space X. Then

sup dy(Fy(x), F,(z)) < sup |f(z) - g(a)] .

reX zeX

Proof. Let r =sup|f(z)—g(z)]. We assume that r < oo. It suffices to show the inclusion
zeX

Fy(zo) S (Fy(wo))s (5-2)

for every x5 € X. Then the counterpart Fy(zo) C (Fy(z)), is true for the same reasons, so
that we obtain the claim dg (Fy(zo), Fy(x0)) < 7.

First we prove the inclusion
HO¢(U) C (HO,U)), for all U € U(x), (5.3)
where HO(U) are closed sets of reals defined by

HO¢(U) = {ye€R: for every ¢ > 0 there exists a non-empty open
subset G C U such that |f(z) —y| <eforallz € G}

(cf. [R/S3-H], Section 2). So let v € HO;(U) be fixed. Accordingly, for all n > 1 there
exists a non-empty open set G, C U such that |f(z) — | < & for all z € G,. Since g
is cliquish, there exist non-empty open subsets H,, C G, with |g(z) — g(z')] < % for all
x,x' € H,. Now we fix points x,, € H,, C (G,. Then

o) =31 < lg(ea) = Fla)] + 17 (@)~ < v+ (5.4

Hence the sequence (g(z,))$°, is bounded and thus contains a convergent subsequence

(g(l‘nk))zozla say
lim g(z,,) = ¢.

k—oo

Then, for all z € H,,,

9(@) =81 < lg(a) = glon)| +loon) =8 < -+ lolan,) - 3.

This yields
6 € HO,U) .
Indeed, for every ¢ > 0 there exists k > 0 with i + |g(xn,) — d] < &, so that all points =

from the non-empty open subset H,, C U are subject to the estimate |g(x) — 0| < e. This
shows that 06 € HO,(U). Finally, by (5.4),

1
|(S_f7‘ S ‘6_g(l‘nk)|+‘g(l‘nk)_’7| < |5_g($nk)‘+7“+n—k
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for all £ > 1. Letting k£ — oo, we obtain |§ — | <. Hence y € [§ — 7,6 + 1] C (HO,(U)),.
This completes the verification of inclusion (5.3).
Next we show that

Uel(zo) UeU(zo)

N (HO,W)), < ( N Hogw)) - (5.5)

Let y € N (HO,U)), be fixed. Then v € (HO,(U)), = U [a—r,a+r] for all

UcU(xo) acHO,(U)
U € U(zy). Hence
HONU) N by =1y +1] # 0
is a non-empty compact set for every neighbourhood U of zy. The intersection of finitely

many sets HO,(U;) N[y —r,v+r], 1 <i<m, is non-empty as well, since

N (HOQ(Ui)ﬁh—r, ’7+T]) = (ﬂ HOg(Ui)>ﬁ[7—r, y+r] D HOg<ﬂ Ui>ﬂ[7—r, y+r] # 0.
i=1 i=1 i=1

Consequently, the complete intersection (HOQ(U) N[y—r,v+ 1"]) is non-empty, too.

Ucl(zo)
Thus

( N HOg(U))ﬂh—r,wr] = N (HO,@)Nly=ry+7]) #0.

Uel(zo) Ueld(xo)

Accordingly, there exists a number 6 € ()  HO,(U) with |§ —~| < r. This shows that

UcU(zo)
v E ( N HOg(U)> and thus proves (5.5).
UGU(I()) r
The remainder of the proof of Theorem 5.10 rests on the representation
HOs(z0) = [ HO(U)
UEL{(&?U)

of the open hull, which is an immediate consequence of the definition of HOy(xg) (cf.
[R/S3-H], Section 2). Thus, by (5.3) and (5.5),

Filw) = HOjw) = () HOAU) S () (HO,(U)) €
C ( ﬂ HOQ(U)> = (HOg(ﬁo))r = (Fg(mﬂ))r-
Ueld (z0) .

This yields the claim (5.2) and completes the proof of Theorem 5.10. O

The Hausdorff distance gives rise to a concept of uniform convergence of multifunctions.
We say that a sequence (F,)5, of multivalued functions mapping a topological space X into

the subsets of R uniformly tends to the multifunction F if

lim sup dy(F,(z), F(z)) = 0.

n—o0 zEX
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Note that the limit F' of the convergent sequence (F},)%, is uniquely determined if one
considers maps with values in the closed subsets of R only. This applies in particular when
F, and F' are associated multifunctions of real-valued functions on X. Theorem 5.10 yields

the following conclusions.

Corollary 5.2 Let (f,)52, be a sequence of real-valued cliquish functions on a topological
space X . If the functions f,, uniformly tend to f : X — R then the associated multifunctions
Fy, uniformly tend to Fy. O

Clearly, the converse of Corollary 5.2 is false in general, since different quasi-continuous
or cliquish functions, such as Iy ;) and Ijg; on the space [—1,1], may have the same asso-
ciated multifunction. However, the following claim gives a counterpart to Corollary 5.2 if
the functions f and f,, n > 1, are quasi-continuous. It says that uniform convergence of the
associated multifunctions Fy, to F'y implies uniform convergence of suitable quasi-continuous

admissible modifications f, of f,, n > 1, to f.

Theorem 5.11 Let f and f,, n > 1, be real-valued quasi-continuous functions on a topo-
logical space X. Then the associated multifunctions Fy, uniformly tend to Fy if and only if
there exist selections f, of Fy,, n > 1, which uniformly tend to f.

Proof. First we assume that F% is the uniform limit of the multifunctions Fy,. By
Proposition 5.1, we have f(x) € Fy(z). Hence, by the definition of dy (Fy, (x), Fy(x)), there
exist reals \,, € Fy, (z), z € X, n > 1, such that [\, — f(z)| < du(Fy,(x), Fy(z)) + +.
Then the functions f,(z) = Ay, n > 1, are selections of the multifunctions Fj,. Moreover,

the functions f,, uniformly approach f, since

fol(z) — f(x)‘ = lim sup (A, ,—f(2)| < lim sup (dH(an(m),Ff(m)) + l) = 0.
rzeX z€X

lim sup

n— 00 rEX n

Now let us assume that there exist selections f, of Fy, which uniformly tend to f. By

Theorem 5.1, the functions f, are quasi-continuous with F; = Fy,. Theorem 5.10 yields

lim sup dy(Fy,(x), Fy(x)) = lim sup dH(an(x),Ff(x)) < lim sup

n—oo Loy n—00 .oy n—00 L%

falz) = [(z)] = 0.

Hence the multifunctions Fy, uniformly tend to Fy. O

Let us finish this chapter with the remark that many of the results concerning real-valued
quasi-continuous and cliquish functions can be generalized to functions f : X — Y with
values in more general topological spaces Y. A wide field of research could be devoted to
the question what topological properties of the space Y guarantee that the claims of the

previous theorems and propositions can be maintained.
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