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Evolutionäre Suchmechanismen als Zugang zur 

Computergestützten Strukturaufklärung Organischer und 

Bioorganischer Verbindungen 
 

Deutschsprachige Zusammenfassung der Doktorarbeit 

von Yongquan Han aus Shanxi, China 

 

Einleitung 

Computergestützte Strukturaufklärung in der organischen Chemie hat zum Ziel, 

innerhalb eines gegebenen Suchraumes einen möglichst kleinen Satz von Strukturen 

zu finden, die mit den gegebenen chemischen und spektroskopischen 

Randbedingungen in Einklang stehen 1,2. In der Literatur hat sich das Akronym CASE 

(Computer-Assisted Structure Elucidation) als Kurzform für dieses Gebiet der 

Chemoinformatik eingebürgert. 

 

Seit den ersten Ansätzen zur automatischen Strukturaufklärung wurden sämtliche zu 

diesem Zwecke nützlichen spektroskopischen Verfahren, wie Massenspektrometrie 

(MS), Infrarotspektroskopie (IR) und vor allem NMR-Spektroskopie, als Basis 

verwendet. Mit dem Aufkommen der 2D-NMR Spektrometrie in der Mitte der 

1970’er Jahre wurden die restlichen Verfahren in ihrer Bedeutung zurückgedrängt, 

was sich bis heute in einer NMR-Lastigkeit der existierenden CASE-

Computersysteme niederschlägt 3. In der Regel dienen als Eingaben die 

Summenformel der unbekannten Verbindung, abgeleitet aus Elementaranalyse oder 

hochaufgelöster Massenspektrometrie (HR-MS), sowie die 1D NMR Experimente 1H- 

und 13C-NMR (BB, DEPT) und die 2D Korrelations-Experimente HH COSY , 

HMQC, HMBC, und andere. 
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Als Standard-Verfahren zur automatischen Strukturaufklärung hat sich der folgende 

3-Schritt-Prozess eingebürgert: 

Exzerpieren von Strukturfragmenten aus der spektroskopischen Information, die 

entweder in der Zielstruktur vorhanden sein müssen (Goodlist) oder nicht vorhanden 

sein dürfen (Badlist). 

Erschöpfende und irredundante Generierung aller Strukturen, die sowohl alle 

Strukturfragmente aus Schritt 1 enthalten, als auch Konstitutionsisomere der 

gegebenen Summenformel sind. Dieser Schritt wird mit Hilfe eines s. g. 

Strukturgenerators durchgeführt. 

Abschließende Untersuchung der Ergebnisstrukturen auf Validität. Eventuell 

Vorhersage von Spektren für alle Kandidaten und Erstellen einer Rangliste nach 

Vergleich der Übereinstimmung zwischen berechneten Spektren der Kandidaten und 

tatsächlichem Spektrum der unbekannten Verbindung. 

 

Während sich aus den älteren spektroskopischen Verfahren MS, IR und 1D-NMR 

Strukturfragmente des in Punkt 1 erwähnten Typs ableiten lassen, liefert die 2D-

NMR-Spektrometrie einen weiteren Typ von Randbedingung, der Aussagen über 

Pfade zwischen korrelierenden Atomen in molekularen Graphen macht. Ein 

Kreuzsignal im 2-dimensionalen HMBC NMR-Experiment z. B. macht die Aussage, 

dass die zwei an der Entstehung des Signals beteiligten Kerne im molekularen 

Bindungsgerüst entweder zwei oder drei Bindungen voneinander entfernt liegen. Es 

lässt sich jedoch in diesem Fall nicht feststellen, um welche Pfadlänge es sich handelt; 

auch gibt es – wenn auch seltene – Ausnahmen von dieser Regel, derer das CASE 

System Rechnung tragen muss. Diese Art von Information lässt sich besonders gut 

prospektiv innerhalb der im o. g. Schritt 2 verwendeten Strukturgeneratoren bereits 

beim Aufbau der Konstitutionsisomere verwenden. 
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Rechenverfahren 

Die im Laufe der fast 20-jährigen Geschichte von CASE-Programmen verwendeten 

Ansätze lassen sich am besten anhand der von ihnen verwendeten Strukturgeneratoren 

klassifizieren. Im klassischen, bis vor wenigen Jahren ausschließlich verwendeten 

deterministischen Verfahren, werden erschöpfend alle mit den Randbedingungen in 

Einklang stehende Konstitutionsisomere erzeugt. Eine Handvoll prominenter 

Implementierungen dieses Zuganges wurden von Gruppen um die Pioniere der 

automatischen Strukturaufklärung, wie Munk, Sasaki oder Chen, veröffentlicht 1,4. 

Hierbei lassen sich die deterministischen Strukturgeneratoren in solche, die mit 

Strukturreduktion und solche, die sich mit Struktursynthese arbeiten, unterscheiden 1.  

 

In neuerer Zeit wurden verschiedenen Möglichkeiten gesucht, um mit neuen 

Rechenverfahren evidente Probleme des deterministischen Ansatzes zu überwinden. 

Dessen Probleme liegen z. B. in der exponentiellen Abhängigkeit der Anzahl der 

Konstitutionsisomere einer Summenformel von der Anzahl der Schweratome 1  in 

derselben. Diese exponentielle Abhängigkeit macht es ab einer bestimmten, von der 

Effizienz des verwendeten Systems abhängigen Schweratomzahl unmöglich, den 

Konstitutionsraum noch vollständig zu untersuchen.  

 

Hierbei darf man sich nicht von der Größe solcher Molekülen beeindrucken lassen, 

die immer wieder als mit deterministischen Verfahren behandelt beschrieben werden. 

Zum einen werden dort z. B. spektroskopische Verfahren verwendet, die einem 

durchschnittlichen Labor in der Regel nicht zu Verfügung stehen (z. B 1,1-

ADEQUATE oder INADEQUATE) und die durch die Vorhersage von zahlreichen 

direkten C-C-Bindungen den zu durchsuchenden Konstitutionsraum auf das 

                                                 
1 Unter Schweratome verstehen wir alle Nicht-Wasserstoff-Atome – ein Terminus, der sich 

eingebürgert hat, weil die Wasserstoffatom in der Regel als den Schweratomen inhärent zugeordnet 

behandelt werden und nicht in die Kombinatorik des Strukturgenerators eingehen.   
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behandelbare Maß zusammenschrumpfen lassen. Zum anderen werden z. B. in einem 

prominenten kommerziellen System mit Hilfe einer großen, proprietären Struktur-

Spektrendatenbank und dem Spektrensatz  des CASE-Problems sehr große 

Strukturfragemente vorhergesagt, die dann ebenfalls die Kombinatorik des 

Strukturgenerierungsprozesses stark vereinfachen. In diesem letzteren Fall muss 

eingewandt werden, dass die Generierung von Goodlist-Fragmenten mit einem 

solchen wissensbasierter Ansatz stets die Gefahr birgt, dass a) die Datenbank das 

tatsächliche zu einem bestimmten spektralen Muster gehörige Strukturfragment nicht 

enthält und man dann wieder vor dem gleichen kombinatorischen Problem steht wie 

ohne Datenbank, und dass b) durch einen Datenbankfehler falsch-positive Treffer für 

die Good-List gefunden werden, die dann den ganzen Strukturaufklärungsprozess 

zum Scheitern verurteilen. 

 

Aus diesem Grunde wendet sich diese Arbeit einer Alternative zu deterministischen 

Suchverfahren, den stochastischen Optimierungsmethoden, zu. Diese haben in 

anderen Bereichen des naturwissenschaftlichen Rechnens (Astronomische 

Vielteilchensimulationen, etc.) gezeigt, dass sie zur Suche nach dem Optimum in sehr 

großen Lösungsräumen befähigt sind. Sie sind außerdem, wie gezeigt wird, bei gutem 

Design der Zielfunktion sehr fehlertolerant und kommen ohne oder mit sehr wenig 

empirischem Wissen aus. Nachdem Steinbeck 5 erfolgreich die Verwendung des 

stochastischen Suchverfahrens Simulated Annealing 6 in der automatischen 

Strukturaufklärung demonstriert hat, wurden in der vorliegenden Arbeit evolutionären 

Methoden zur Anwendung gebracht, die sich als noch deutlich effizienter als der von 

Steinbeck zunächst publizierte Ansatz erwiesen haben. 
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Evolutionäre Verfahren zur Automatischen Strukturaufklärung 

Evolutionäre Optimierungsverfahren nutzen eine Analogie zwischen der Entwicklung 

der natürlichen Spezies in einem Zyklus von Mutation, Fortpflanzung und Selektion 

gemäß der Darwin’schen Theorie und der Suche nach einem globalen Optimum in 

einem allgemeiner gehaltenen System aus. Man unterscheidet hier genetische und 

evolutionäre Algorithmen sowie genetische und evolutionäre Programmierung. 

 

 

 

Abbildung 1: Evolutionäre Suche in einem Einzelpopulationsansatz 

 



 

 

 

 

12

 

Zur erfolgreichen Anwendung eines solchen evolutionären Ansatzes bedarf es 

mehrerer Komponenten, von denen einige problemspezifisch sind, andere aber 

theoretisch problemunabhängig implementiert werden können. Neben einer 

Datenstruktur zur Kodierung des Genotyps (potentiell problemunabhängig, s.u.) und 

einer Methode zur Konversion des Geno- in den Phenotypus (problemabhängig) 

benötigt man eine Ziel-, Bewertungs- oder Fitnessfunktion, um während des 

Evolutionsprozesses die Eignung von Kandidaten zu überprüfen. 

 

So sieht z. B. die Standardtheorie der o. g. Verfahren oftmals die Kodierung der 

Datenstruktur als lineare Datenstruktur in Form etwa eines Bitstrings vor. Auch 

chemische Strukturen lassen sich leicht in eine solche Form bringen, z. B. indem man 

für eine der signifikanten Hälften der Konnektivitätsmatrix alle Spalten oder Reihen 

aneinander hängt. 
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Abbildung 2: Durch die Verwendung eines phänotypischen Datentyps, auf dem 

Mutations- und Crossover-Operatoren arbeiten, wird eine Projektion des 

Phänotypes aus dem GA-Raum in den Problemraum notwendig. 

 

 

Der so entstehende Genotyp lässt sich offensichtlich einfach mit Hilfe geeigneter 

Programmmodule wieder in den für den Chemiker besser verständlichen Phänotyp 

des 2D Strukturdiagramms überführen. Auf dem besagten Genotyp lassen sich 

ebenfalls besonders einfach die bekannten genetischen Operationen Mutation und 

Crossover anwenden. Bei näherer Betrachtung erschließt sich jedoch umgehend, dass 

diese Operationen in der Regel in chemisch invaliden Resultaten führen. So wird 

beispielsweise bei einer Punktmutation einer „1“ zu einer „0“ in der linaren 

Bindungsmatrix eine Bindung zwischen den beiden beteiligten Atomen gebrochen, 

ohne dass für eine Sättigung der entstehenden offenen Valenz gesorgt wird. Ein 2-

Punkt-Crossover führt in der Regel zu ähnlich fatalen Ergebnissen. Bisherige Ansätze 

zur Anwendung von EA/GA in der Konstiutionsaufklärung haben diese Methode der 

Genotyp-Manipulation verwendet und die entstehenden chemisch-invaliden 

Strukturen mit Hilfe der Fitnessfunktion ausselektiert. Offensichtlich wird dabei für 

ein Problem mit ohnehin großem Rechenaufwand eine gehörige Menge von 

Rechenzeit zur Eliminierung von ungültigen Datenstrukturen verwendet, bevor man 

überhaupt zur Optimierung in Richtung des eigentlichen Evolutionsziels kommt. 

 

Aus diesem Grunde wurde in der vorliegenden Arbeit eine graphen-basierte, 

objektorientierte  Kodierung für chemische Strukturen und ein Set von robusten 

Mutations- und Crossover-Operatoren entworfen, die während der Operation 

sicherstellen, dass aus einer chemisch validen Ausgangsstruktur auch eine ebensolche 

Zielstruktur entsteht. Der Mutationsoperator wurde als eine Erweiterung der von 

Faulon vorgeschlagenen 7 und von Steinbeck zur Strukturaufklärung erfolgreich 

eingesetzten 5 Modifikationsoperation implementiert (Abbildung 3).  
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Abbildung 3: Arbeitsweise des Mutationsoperators. Nach zufälliger Selektion 

von vier Atomen werden durch Anwendungen eines einfachen 

Gleichungssystems unter Erhalt der Summe der Bindungsordnungen jedes 

Atoms Bindungen gebrochen und neu geknüpft, so dass eine Konstitutionsisomer 

der Ausgangsverbindung entsteht. 

 

 

Der ursprünglich unbeschränkte Wirkungsradius des Operators ist jedoch jetzt je nach 

Anforderung während des Evolutionsprozesses auf bestimmte Molekülteile 

beschränkbar. (Abbildung 4).  
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Abbildung 4: Beschränkung des Wirkungsradius’ des Mutations-Operators 

 

 

Der Crossover-Operator, der wie üblich aus zwei Elternteilen durch Zerschneiden und 

Neuzusammenfügen zwei Nachkommen erzeugt, sucht sich zunächst für jede zu 

zerlegende Kandidatenstruktur durch Tiefen- oder Breitensuche 2  einen 

zusammenhängenden Molekülteil konfiguierbarer Größe und trennt diesen dann durch 

Bindungsbrüche vom Rest des Moleküls.  

 

 

 

Abbildung 5: Arbeitsweise des Crossover-Operators.  

 

 

Wenn dies für jedes der Elternmoleküle geschehen ist, werden die Einzelteile 

kreuzweise ausgetauscht und durch systematisches Einsetzen der fehlenden 

Bindungen zu neuen Nachkommen wieder zusammengefügt (Abbildung 5). 
                                                 
2 Je nach Verwendung des einen oder des anderen Suchverfahrens ergeben sich unterschiedliche 

Verhaltensweisen beim Evolutionsprozess 



 

 

 

 

16

 

Als Zielfunktion wurde in der vorliegenden Arbeit wurde die bereits von Steinbeck 

vorgestellte Zielfunktion verwendet. In dieser Zielfunktion wird die Kompatibilität 

einer jeweiligen Kandidatenstruktur mit einem Satz von Erwartungswerten getestet.  

 

...tot HBMC HHCOSY Shift Symmetry FeaturesE E E E E E= + + + + +                                              (1) 

 

Dies sind entweder tatsächlich gemessene Spektren (1D 13C NMR, HHCOSY, HMBC, 

HSQC) oder aus Spektren oder anderen Informationen abgeleitete Randbedingungen 

(Substrukturen, erlaubte oder verbotene Ringgrößen). Für jede der Randbedingungen 

trägt ein additiver, skalierbarer Term zum Gesamtwert der Fitnessfunktion bei 

(Gleichung (1)). 

 

Resultate 

Die Leistungsfähigkeit der entwickelten Methoden wurde an Beispielen getestet, die 

sich in der CASE-Literatur als Benchmarks etabliert haben, d. h. für die sowohl der 

Satz an korrekten Lösungen  als auch Bearbeitungszeiten anderer Programme bekannt 

sind. Um eine qualitative Evaluierung der Skalierung der Rechenzeit mit wachsender 

Größe und ein Vergleich mit der bereits existierenden Simulated-Anneling-

Implementierung vornehmen zu können, wurde die in 5 verwandte Reihe von 

Terpenen wachsender Größe herangezogen (Abbildung 6).  
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Struktur 

Summen-

formel 

Besuchte 

Punkte vs. 

Suchraumgrö

ße 

Benötigte 

Genera- 

tionen 

Zahl der 

Lösungen 
Rechenzeit 

 
C10H16 

48 / 

4,305 
6 1 < 1 s 

 
C15H28O2 

2,088 / 

? 
60 1 40 s 

O
O

O

O

O

 
C18H20O5 

2,600 / 

? 
70 1 120 s 

 

C30H48O2 
6,400 / 

? 
48 6 120 s 

 

Abbildung 6: Laufzeit von EA Optimierungen an trukturaufklärungsproblemen 

wachsender Größe. Die Messungen wurden auf einem Standard-PC mit Pentium 

III Prozessor (500 MHz, 256 MB RAM) durchgeführt. Die sechs Lösungen, die 

im Falle des Triterpens Polycarpol gefunden wurden, sind der vollständige mit 

dem Spektrensatz in Einklang stehende Satz von Lösungen, wie durch 

Rechnungen mit dem deterministischen CASE-Programm LUCY 8 verifiziert 

wurde. 

 

 

Für alle Beispiele lagen wenigstens die Information aus 1D 13C Spektren (BB, 

DEPT135, DEPT90) zum Erstellen einer vollständigen Bestandsaufnahme der CHx-

Fragmente durch das Programm, sowie die mehrdeutigen, weitreichigen HMBC-

Korrelationen vor. Letztere wurden vom betreffenden Bewertungsmodul entweder als 
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2JCH, 3JCH, oder mit geringerer Bewertung auch als 4JCH-Kopplung interpretiert. 

HMBC-Information kann im System nur bei gleichzeitigem Vorliegen der 1JCH-

Informationen aus beispielsweise HSQC-Spektren verwendet werden. 

 

Zusätzlich wurde ein Bewertungsmodul zur Rückrechnung von 13C-Spektren 

eingesetzt, dass auf der Basis von HOSE-Codes 9 eine Einschätzung erlaubt, ob alle 

Atome in der Kandidatenstruktur die korrekte Hybridisierung besitzen. 

 

Wenn HH COSY Informationen vorlagen, wurde diese, beispielsweise beim 

Polycarpol, auch zur Strukturaufklärung herangezogen. Während sich bei kleinen 

Strukturaufklärungsproblemen, wie z. B. beim α-Pinen, oftmals schon alleine aus 

dem mehrdeutigen HMBC-Spektrum eine einzige Lösungsstruktur ergibt, benötigt 

man bei wachsender Problemgröße alle verfügbaren Informationen, um den 

Lösungsraum auf ein erträgliches Maß einzuschränken.  

 

Abbildung 7 zeigt Fits der für die Lösung des α-Pinen-, Eurabidiol- und des 

Polycarpol-Datensatzes benötigten Zeit gegen deren Molekülgröße für drei 

verschiedene CASE-Algorithmen. Als Vertreter eines deterministischen Verfahrens 

wurde LUCY 8 verwendet. Die Leistung des hier beschriebenen EA-Algorithmus 

wurde weiterhin mit dem in 5 veröffentlichten Simulated Annealing (SA) Verfahren 

verglichen. Deutlich ist zu sehen, dass bei exakt gleicher Datenlage die beiden 

stochastischen Algorithmen deutlich besser skalieren und der hier beschriebene 

Evolutionäre Algorithmus favorisiert werden muss. 
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Deterministische vs Stochastische Optimierung
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Abbildung 7: Skalierung der Rechenzeit unserer deterministischen und 

stochastischen Implementierungen mit wachsender Atomzahl im zu findenden 

Molekül.  Während bei der Optimierung mit LUCY (deterministisch) die 

Tendenz zur kombinatorischen Explosion zu erkennen ist, skalieren Simulated 

Annealing (SA) und Evolutionärer Algorithmus (EA) deutlich günstiger.  
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Chapter 1: Introduction 

The goal of computer assisted structure elucidation (CASE) is to find, within a given 

solution space, the single structure which best fits a set of chemical and spectral 

boundary conditions. In its most general form, the structure elucidation problem is 

defined as follows: given structural information of an unknown compound derived 

from chemical and/or spectral evidence, find out the fittest structure formula that 

satisfies all of these constraints. The input information consists of molecular formula 

derived from mass spectrometry or element analysis, and routine 1D and 2D NMR 

spectral data (1H, 13C, DEPT, INADEQUATE, COSY, HMQC, HMBC, NOESY, 

HSQC, COLOC and other HETCOR experiments).  

 

Computer-assisted structure elucidation of organic molecules has been studied from 

1977 1. The past 20 years witness the great development of CASE methods both in the 

NMR spectroscopic techniques and software applications 2,4,8,10-46. Yet the problem 

still attracts interests of chemists and spectroscopists. This section is not to outline a 

review of available products that could be found in literature, but rather to re-clarify 

the problem and focus on the underlying methodology of the diverse approaches.  

 

The mainstream strategy of structure elucidation classifies the procedure in three steps 
2,4,13,47: 1) pre-processing of substructure information and preparation of constraint 

conditions; 2) exhaustive and irredundant generation of all candidate structures in 

agreement with the constraints above; and 3) Spectrum prediction and comparison 

evaluating their relative probability of being correct. 

 

Most CASE programs available include software modules for the three major 

components of structure elucidation. The starting point for the structure elucidation is 



 

 

 

 

22

molecular formula derived from MS, 1D and 2D NMR spectra. The collective spectral 

information is interpreted as a set of substructures predicted to be present or absent in 

the unknown. The deduced information, together with its molecular formula, is the 

usual input in structure generation. A high-quality reference library containing both 

structures and complete spectra or substructures and subspectra being representative 

of the types of compounds encountered in the laboratory, is an invaluable component 

for a CASE system 12,16,21,27,48-50. 

 

The premise implicit in the spectrum interpretation is that if the spectrum of the 

unknown and a reference library spectrum have a subspectrum in common, then the 

corresponding reference substructure is also present in the unknown 21. Note that the 

fragment types are limited to those present in the database used, therefore the output 

isomers are limited to those structures that can be assembled from the substructure 

library of each program. While 1D NMR information has been widely used in 

deterministic search based CASE products, the interpretation and utilization of 2D 

NMR is not well utilized 13. There are some highly ambiguous information such as the 

HMBC-derived long-range C-H correlations that do not distinguish between two and 

three (sometimes four) intervening bonds 11,12.  

 

The components generated by spectra interpretation are fed into the structure 

generator, which will exhaustively generate all possible structures from these 

components. Although many structure generators have been reported, the underlying 

paradigms fall into one of two classes: structure assembly or structure reduction 47. 

The structure assembly can be described as a procedure to systematically search for 

all valid interconnections between the residual bonding sites on the inferred 

substructures and on the unaccounted for atoms. The process can be viewed as the 

expansion of a partial structure to all complete molecular structures compatible with it.  

 

One of well-known structure assemblers is MOLGEN 26,51. In MOLGEN, there are 

three types of constraints that can be entered optionally, namely:  
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Macro atoms The most important substructures are macro atoms, which mean 

substructures that are not allowed to overlap. The use of macro atoms is 

very important, since they may reduce the work of the generator tremendously.  

 

Good list The second type substructures form the so-called good list; they 

may overlap. This list is applied as a filter after the generation process.  

 

Bad list The forbidden substructures form the so-called bad list. This list is 

used in the analogous way as a filter following the generation. 

 

The application of MOLGEN in molecular structure elucidation stands or falls with 

the input. The main emphasis lies on the macro atoms, since a big set of prescribed 

and non-overlapping substructures reduces the problem of generation considerably, 

while the good list and the bad list can be applied only after structures were suggested. 

 

The generated structures are checked for consistency with the spectra data 
13,21,25,29,48,52-65. Generated substructures can be checked in the course of structure 

generation (prospective checking) or after all complete structures have been generated 

(retrospective checking). Clearly, prospective checking is faster as those substructures 

that are not consistent with the spectra data are removed from the structure generation 

process. Whereas in the case of retrospective checking, a combinatorial explosion 

occurs for exhaustive structure generation, even for molecules of a moderate size. 

Another very important aspect of a structure generator is so-called isomorphism check, 

assuring that it is not producing the same structure more than once 24,66,67. At the end 

of all the procedures, the complete set of structures that are consistent with all the 

spectra data should have been generated.  
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What Makes CASE Problems Hard? In structure elucidation problems, the spectral 

evidence available is often insufficient to permit a structure to be proposed. While 

spectrum interpretation provide valuable structure information, it is practically 

impossible to extract all of the useful information 68. This requires the systematic 

search to be run in a huge space, and the information content of the substructure 

inferences is often insufficient to lead directly to the generation of a single structural 

assignment. 

 

A structure elucidation problem is equivalent to a combinatorial optimization problem 

if the spectra-based structural information of the unknown is treated as constraints to 

be satisfied. The central task is thus to prune the size of the search space to a 

computationally acceptable extent. The methods mentioned above attempt to reduce 

the size of the search by taking advantage of problem-specific information 

Nevertheless, pruning heuristics are not always enough because the incompleteness of 

chemical and/or spectroscopic evidence. And the existence of vague information 

makes the actual search space expand drastically. 

 

The search space itself is a discrete one. How the solutions are distributed in the space 

is not unveiled. The introduction of structural constraints into the search space makes 

its structure even less organized 69-75. When many constraints are added, traversal of 

the search space is confounded.  

 

This work reports a new evolutionary optimization strategy tailored for chemical 

structure elucidation of organic compounds 76. This algorithm contributes a graph-

based data structure and a suite of robust graph operators. The labeled molecular 

graph data structure facilitates efficient genetic manipulation and exempts from the 

transformation between genotype and phenotype of the candidate solution. Flexible 

parameter control strategy enables the genetic operators to adjust their behavior and 

achieve higher search efficiency. 
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An evolutionary algorithm framework is implemented serving as a search engine in 

the SENECA system, a distributed, platform-independent CASE program 77. This EA 

implementation integrates the three steps in a CASE expert system – structure 

inference, structure generation and structure verification – into one procedure. Based 

on this framework, different EA formulations and schemes can be easily configured 

for problems of specific characteristics. The framework also serves as a test bed and a 

class library for other forms of chemical constitution optimization; new optimization 

task can be carried out by this framework with little further coding work by the end 

user. 

 

 

 
 

 

Figure 1: Evolutionary search flowchart for a single-population based EA 

scheme (after 78). 
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Any evolutionary algorithm should at least include an appropriate representation of 

the plausible solution to the problem under investigation, a fitness function scoring 

the candidates, a set of reproduction operators prompting evolution, and strategies of 

initialization, selection, and termination. Among them, the two major components - 

the specification of the representation and the definition of fitness function, form the 

bridge between the original problem context and the problem-solving algorithm. 

Figure 1 illustrates the workflow of an evolution scheme based on a single-population 

formulation. Chapters 2-9 detail the methods and implementations of the purposed EA 

framework. Chapter 2 justifies the evolutionary algorithm based strategy for chemical 

structure elucidation problem. Chapter 3 discusses appropriate data structure 

representing the solution to the constitutional optimization problems. Chapter 4 

purposes a suite of robust genetic operators devised according to the central data 

structure adopted in this framework. Chapter 5 issues the construction of fitness 

functions and the influence of fitness landscapes to evolution routes. Chapter 6 

compares different selection policies. Chapter 7 analyses three population 

management strategies. Chapter 8 exemplifies several evolution schemas bearing self-

adaptive mechanism.  Chapter 9 summarizes the results of structure elucidation 

problems solved by this EA approach. Chapter 10 draws conclusions on the 

evolutionary search strategy for to chemical constitution optimization, and outlines 

some directions of further work. 
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Chapter 2: The Evolutionary Search Approach  

2.1 Characteristics of the Constitution Space 

Structure elucidation of an unknown compound, based on knowledge on its molecular 

formula, spectral data and other prior information is a process of searching the best-

matched constitutional formula among usually isomeric structures. The constitutional 

isomers for a given molecular formula constitute the so-called constitution space - an 

assembly of finite-numbered isomers. How these isomers are distributed in such a 

discrete space is not unveiled. An arbitrary structure at one point in the constitution 

space holds little information about its neighbors. Due to the implicit existence of 

constitutional constraints, an indiscriminate tiny substitution in one structure is liable 

to result in an ill-formed structure. The amount of the isomers is usually large, and the 

size of the constitution space expands exponentially proportional to the number of 

skeletal atoms in the molecule of the unknown. The complexity of the constitution 

space makes its exploration difficult and appeals elaborate strategies 2.  

2.2 Deterministic and Stochastic Approaches 

Two strategies for searching constitution spaces – deterministic as well as stochastic 

approaches – have been described in the literature 1,10,27,77,79.  

 

A deterministic approach makes an exhaustive search in constitution space, thus 

guarantees the optimum to be found if the algorithm has enough time to finish its job 

and if the constraints are error-free. This paradigm has been the first (and maybe the 
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only) choice in previous CASE approaches and utilized in the CASE software 

products in different ways 1.  

 

Deterministic search is very efficient for structure elucidation of small molecules, 

while its major drawback is its deadly demand for computing power in the case of 

large molecules due to combinatorial explosion. Much effort has thus been devoted to 

decrease the search space before structure generation and evaluation. A key measure 

is trying to deduce as much structural constraints from the spectral evidence with the 

help of previous knowledge accumulations 1,80. Libraries of structural fragments 

connected to certain spectral features are a typical way to drastically decrease the size 

of the search space by combining nodes from the atom set into larger fragments, with 

those atoms thus no longer taking part in the combinatorial process. In case of proton 

rich compounds, large numbers of constraints derived from 2D NMR long range 

correlations also cut down the search space significantly 2,3. It was reported that the 

search space reduced 99.9% after spectra interpretation 12, however, due to the fact of 

incompleteness of spectra evidence, the narrowed search space of a large molecule 

(Mass > 600) is still too large to be systematically explored in a reasonable time scale. 

 

Another problem faced by a deterministic approach is that the correctness of the 

inferred structural constraints must be guaranteed. The existence of a false constraint 

leads to the search falling in a wrong part of the constitution space and no solution 

will be found.  

 

The quality of the knowledge base invoked by a CASE system also plays important 

role. The spectra interpretation based on database search could fail to identify a 

substructure if it is not included the knowledge base. This case is not unusual in a 

chemistry or spectroscopy lab.  

 

The second approach for constitutional optimization is the stochastic method. In 

contrast to the deterministic method, a stochastic approach runs a randomized but 
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guided search in constitution space. Starting with one or more initial structures, it 

evolves candidates into ones with more desired properties. A stochastic search may 

locate its target quickly, as it bypasses the combinatorial explosion by focusing on 

most profitable (and remarkably small) regions in constitution space while not 

entirely neglecting the others. And a stochastic method relies little on extra 

knowledge bases compared to an efficient deterministic approach, because the 

evaluation of the candidate solution could be purely based on the experimental 

evidence and no information is misused.  

 

Due to its random nature, however, a single stochastic optimization may not guarantee 

to find the global optimum at all, which is likely to be one of the reasons why, despite 

its conceptual advantages over the deterministic approach, the stochastic method is 

not generally realized as the method of first resort in CASE applications. The danger 

of not finding the optimum in a CASE problem is usually regarded a serious problem, 

since the user is interested in the one, single correct structure and not just a good one 

that reasonably fits some given constraints. We can show, however, that at least for 

molecular sizes usually treated by deterministic systems, our stochastic approaches 

find all correct solutions within about the same order of magnitude in calculation time. 

 

In the following chapters, we present a unique evolutionary algorithm (EA) for 

tackling the CASE problem. The new EA paradigm integrates the three steps in a 

CASE expert system – structure inference, structure generation and structure 

verification 1 – into one procedure. This implementation contributes a graph-based 

data structure and a suite of robust graph operators. The labeled molecular graph data 

structure facilitates efficient genetic manipulation and exempts from the 

transformation between genotype and phenotype of the candidate solution. Flexible 

parameter control strategy enables the genetic operators to adjust their behavior and 

achieve higher search efficiency.  
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2.3 Evolutionary Algorithms 

An evolutionary algorithm acts as a crude version of species evolution 81. It inherits 

from nature the principles like natural selection and survival of the fittest. A typical 

EA starts with an initial population of candidate solutions. Each solution is evaluated 

by a fitness function and assigned a value indicating its relative correctness. The 

population evolves over generations by applying reconstruction operators on selected 

solutions. The selection of solutions, allowed to survive from one generation to the 

next one, is biased to those with higher fitness value. The algorithm terminates when 

satisfying solutions are found.  

 

Recently, evolutionary algorithms have been applied for some important chemistry 

problems like discovery and optimization of lead compounds, and computer assisted 

molecule design 82-85. Most of these applications involve the chemical structure search 

in a conformational space. Yet there are few examples that evolutionary algorithms 

are utilized to explore the constitution space 10,86-88. These attempts, albeit designed 

for different purposes, were all unable to release the evolutionary algorithms’ power 

due to some restrictions in their design. These approaches were restrained in 

traditional data structures for molecule representation using coding schemes based on 

strings or trees. Such representations do either not cover the entire constitution space 

(e.g. only no-cross-linked structure can be generated in JavaGenes 86, or are 

inappropriate for direct and efficient genetic operations. The corresponding genetic 

operators could, for example, not prevent the generation of ill-formed candidates 

violating basic chemical valence rules 10, thus imposing a large computational 

overhead on their implementations, preventing them from being applied to molecules 

larger than, say, 20 heavy atoms. And above all, because these approaches inherit 

directly (and simply) from the traditional EA paradigm, they were unable to guarantee 

that one of the correct structures will be discovered, let alone all of them. 
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In order to apply evolutionary algorithms to CASE problems, however, there is no 

doubt that a system needs to be able to find the full set of correct solutions with a 

good probability in order to be accepted by the user community. 

 

As will be shown in the section on fitness function construction (Chapter 5), the 

fitness function of a stochastic algorithm based on spectral data can be constructed 

such that the maximum possible fitness value of the final target is known. The 

awareness of its target value allows an evolutionary algorithm to detect whether or not 

it is being trapped in local optimum. In this case it can take measures by automatically 

modifying its parameters to escape the local optimum. Taking the target value as a 

stopping criterion, a carefully designed evolutionary algorithm should thus be able to 

find at least one structure complying with all input constraints.  

 

Like other stochastic methods, evolutionary algorithm may not assure that no 

structure equally compatible with the input has been overlooked in just one run. But 

as have been observed, the hit structures fully complying with the input constraints 

are of great chemical similarity, and the optimal structures are located in a small 

region, a niche, in the constitution space. New correct structures, if they exist, are to 

be screened out by applying a niche search around each of the known correct 

structures. The niche search makes the hit list complete with small extra computing 

effort which is affordable even for large organic compounds.  

 

In a deterministic search based CASE system, it is often necessary to have a 

verification step for hit structures, through spectra prediction and comparison, so as to 

identify the fittest structure among the solution set. Our evolutionary algorithm 

strategy suggests that this step is in no need when the algorithm is able to perform the 

spectra prediction implicitly during evolution run, by including spectra prediction as 

part of the fitness function. A HOSE-code-based 9,89 NMR shift prediction module has 

been employed in this strategy. This HOSE code evaluation function is under 

continuous development to achieve higher resolving power for chemical 
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environments of carbon atoms in the questioned molecule, coupled with the open-

source and open-access web database NMRShiftsDB 49,90,91.  

2.4 Customizing Evolution Schemes 

One of the targets of this work is to realize the evolutionary strategy and establish a 

framework for CASE problem-solving. The framework should provide a collection of 

evolutionary methods and plenty of strategies of hybridization which are general 

enough for problems of other realms related to exploration of the constitutional space. 

It should be more practical than an algorithm library. With a standard representation 

and uniformed interface, users can design their own evolution schemes and are free to 

any meaningful arbitrary control strategy.  

  

What makes this problem a challenge?  

 

1. We need to find a highly efficient encoding scheme for chemical structure 

representation. In traditional EA paradigms genetic operators act on the genotype, i.e., 

they blindly manipulate the string or trees representing the problem. This is not 

necessary; one alternative is discarding genotype representation and operating on 

phenotype directly. The complicity of the genotype space search might be dodged this 

way.  

 

2. We need a close understanding and an appropriate representation of the fitness 

landscape in this discrete space. How to evaluate the structural similarity of two 

structures in constitutional space? Can we draw a link between the fitness landscape 

and the problem space? 

 

3. We need to tailor genetic operators which are in accordance with graph-based 

structure representation. If the genetic operators are constructed in a traditional way, 
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we can not guarantee the offspring are always valid structures as the problem space is 

discontinuous, and the EA performance will be retarded dramatically.  
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Chapter 3: Representation of Candidate Solutions 

3.1 Basic Consideration 

The choice of representation for candidate solutions has a crucial impact on the EA 

performance. 

 

Traditionally, evolutionary methods do not handle the problem space search directly. 

This is because the candidate solution was usually encoded into a simple data 

structure such as tree or (bit-) string. The genetic operations are conducted in 

genotype space while the corresponding evaluations of candidate solutions are 

conducted in real problem space (phenotype space). A procedure of mapping 

transformation is needed to bridge these two data types, as shown in Figure 2. 

 

Although much of its literature has focused on bit representations, evolutionary 

algorithms can operate on any date type. It is always welcomed to have a natural 

representation of the candidate solution so the evolutionary search can be done 

directly in problem space which will exempt from the computational cost for 

genotype-phenotype mapping transformation. Whatever form of the data structure is 

employed, a representation must have appropriate genetic operators defined for it. The 

representation specifies the realm of the search space, and the operators determine 

how the space is explored.  

 

For an efficient evolutionary algorithm, the internal data structure should be a precise 

and complete expression of a solution to the problem.  A well-designed representation 

contains all and only the information needed to represent a solution to the problem.  If 

a data structure can represent an infeasible solution, the search space will be larger 
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than necessary because care must be taken in the fitness function sufficiently 

penalizing it for being infeasible. In general, it is much more desirable that the fitness 

function measures only optimality, not feasibility.  

 

 

 
 

Figure 2: The mapping transformation between genotype space and phenotype 

space and the mechanism of crossover and mutation operation 

 

 

3.2 The Data Structure 

3.2.1 Labeled Molecular Graph 

There are a number of ways to represent a molecular structure in a computer, such as 

the connectivity matrix and its variants, trees, molecular graphs, structure descriptors, 

line notations etc. These schemes have been devised for different purposes: data 
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management, structure manipulation, etc. The connectivity matrix and its variants are 

the most common coding method for molecular structures, yet its sparse structure 

leads to great time and space cost (computational complexity in many cases O(n2)) for 

storage and manipulation. Line notations, like SMILES 92,93, on the other hand, are 

very compressed exact representations for storing, retrieving and communicating 

constitutional information, but the manipulation of linear data structures by 

recombination and mutation operators is of poor efficiency. Upon careful study of the 

pioneering works of Globus 86, Nachbar 87 and Meiler 10, we concluded that a direct 

manipulation of an object oriented graph representation under constant control of the 

basic chemical valence rules should be the most efficient way to perform genetic 

operations on molecular constitutional structures.  

 

For the implementation described in the following, we took advantage of the 

Chemistry Development Kit (CDK) 67, an open-source Java class library for structural 

chemo- and bioinformatics, developed by our group and a team of international 

collaborators. Within the CDK, a molecular structure is coded as a set of atom objects 

with connectivity information stored in bond objects, all contained in a data structure 

called an AtomContainer. Manipulations of the AtomContainer throughout the 

evolution procedure keep the atom array ordered and fixed, while the bond array is 

varied, with the overall sum of bond orders being constant. The hydrogen atoms and 

hydrogen-involving bonds in the molecule are treated as implicitly belonging to 

certain heavy atoms – a usual procedure in constitutional chemoinformatics – and are 

thus not taking part in the combinatorial process. A variety of methods are provided 

for structure manipulation in the CDK. One can add or delete an atom or bond, 

modify bond order, split a structure in two, merge two fragments in one, and so on.  

 

AtomContainer is a faithful holder of information on the molecular structure, having 

no limit to represent any plausible candidate structures, artificial or natural, common 

or unusual. Figure 3 gives some of the possible structure for the molecule formula 

C10H16. 
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Figure 3: Different candidate solutions for the molecule formula C10H16. 

 

 

In the case of CASE, there exists even more rigid demand to the data structure of the 

candidate solution: not only the topological distribution of the molecule structure, but 

also the chemical shift information of all carbon atoms should be strictly preserved. 

The efficiency of this data structure is augmented by adding in the AtomContainer an 

attribute chemicalShift to save chemical shift values of carbon atoms in the 
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unknown compound. The atoms in the atom array are sorted in a descending sequence 

of the chemical shifts of carbon atoms, followed by other heteroatoms. This makes the 

molecular structure to be a labeled molecular graph.  

 

Carbon atoms of the same proton connections but different chemical shifts are seen as 

non-equivalent atoms. The traditional concept of structure isomorphism is not 

applicable here; a pair of differently labeled, “traditionally isomorphic” molecular 

graphs may have different fitness values and are thought as being positioned in 

distinct points in search space.  
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Figure 4: Two candidate structures for the molecule α-Preconene with the 

correct one as A. The two similar structures differ only in the labeling and 

consequently the carbon shifts of atom 7 and 8, as the labeling follows the 

descending sequence of the chemical shifts of carbon atoms in the molecule 

(Table 1). Structure A has a fitness score of 3000 and structure B has a score of 

2900. The structure relabeler is designed to reshuffle the chemical shifts for a 

group of equivalent carbon atoms in the molecule preventing from the search 

being trapped in a local optimum. 
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One point should be clarified: this EA implementation is not trying to use the labeled 

molecular graph as the canonical one. The isomorphism problem is not solved, but got 

less serious for this specific application. While the introduction of the attribute 

chemicalShift does not make the labeled graph a canonical one due to at least two 

reasons: the possible existence of structural symmetry and the randomness of 

heteroatom labeling, the probability that two structures of random choice are 

isomorphic is decreased. Figure 4 gives an example. The two structures will be seen 

as isomorphic in a “normal” viewpoint. However, when the carbon atom labeling is 

considered, we propose they are different and as a result less effort of isomorphic 

check is needed to weed off duplicates in the population pool. 

 

Table 1: Carbon chemical shifts for a sample compound with molecular formula 

as C13H16O3 

Carbon 

Number 
HCount 

Carbon 

Shift [ppm] 

1 0 150.0 

2 0 147.6 

3 0 143.6 

4 1 128.6 

5 1 122.6 

6 0 113.4 

7 1 110.0 

8 1 101.4 

9 0 76.4 

10 3 56.9 

11 3 56.3 

12 3 28.1 

13 3 28.1 
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3.2.2 Parameters and Attributes  

In order to achieve the highest efficiency of the evolutionary process, atoms in an 

AtomContainer can be tagged with particular properties. 

 

The attribute hCount depicts how the hydrogen atoms are assigned to other non-

hydrogen atoms. The hydrogen information is determined at the time the 

AtomContainer class is instanced according to the structural knowledge from DEPT 

spectra. For heteroatoms other than carbon atoms, there are multiple ways for 

AtomContainer class instancing, and each of the ways should be tested.  

 

The attribute atomStateTag is a Boolean variable which tells whether an atom in 

the AtomContainer instance is active or dormant. When an atom is in dormant state, 

there is no way to change its bond type. A set of frozen atoms and the bonds between 

them forms a substructure free of breakage in the evolutionary process. A dormant 

atom may wake up triggered by a certain control parameter. This measure is desired 

in restricting the search to certain niches in constitutional space. 

 

It is no doubt that information incorporated into representation is used far more 

efficiently than information classified as constraints and contained in fitness function. 

This graph-based representation is capable to assimilate the structural information in a 

dynamic way: the newly recognized structural implications are embedded into the 

representation in the course of evolution run. It is a strategy used in this evolutionary 

algorithm: embody constraints into representation, as many as possible, as early as 

possible. The size of constitutional space diminishes dramatically every time a new 

constraint is imported. An example, there are near 25,000 constitutional variants for 

the compound with molecular formula C10H16, while when DEPT NMR spectrum 

information considered, i.e. three CH, two CH2 and three CH3 are accepted as 

obligatory fragments, the isomer entries drops to 4306.  
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Chapter 4: Knowledge-based Structure Reconstruction 

4.1 Design Principles 

The exploration of the constitution space is ruled and propelled by so called genetic 

operation.  

 

The operator must be able to construct any plausible structures in search space. 

Otherwise, "blind spots" arise in constitution space. If an optimal structure happens to 

be in one of these spots, then it will never be detected. 

 

The second consideration is to deal with violation of constraints. In a careless design 

it is easy to find that new structures are not following the specified constraints or the 

chemical or physical correctness rule after genetic operations. Often it is possible to 

have a fitness function that severely penalizes any ill-formed structures. This is simple 

but expensive, as lots of resources are spent creating and then rejecting structures that 

do not really located in the real constitution space. Especially when the problem is of 

high dimensionality, almost all of the offspring structures are invalid, and so almost 

all the processing time would be wasted.  

 

We prefer to make the reproduction operators aware of these restrictions and assure 

that each structure created can only be a valid one. This tends to be complex in design 

but economical in run time.   

4.2 Mutation 

Mutation involves one candidate structure. The new structure is generated after small 

change to its parent. The mutation operator acts as a refining operator in our 
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evolutionary algorithm strategy. This makes an important difference to the general 

habit in the evolutionary computation community, where take mutation as an 

exploration operator and the only operation to find new frontier 94.  

4.2.1 Concept 

Steinbeck implemented a replacement operator (suggested by Faulon 79) to guide the 

annealing process in a stochastic approach for chemical structure elucidation based on 

a simulated annealing technique 11. This operator perfectly meets the demand for 

single graph modification. For a molecular structure, the mutation operator adjusts the 

bond orders (with bond order 0 meaning no bond) between four arbitrary atoms while 

keeping the rest of the structure chemically valid. The structural validity is guaranteed 

by a set of valence equations (as shown in Algorithm 1). Figure 5 illustrates a 

mutation run on a structure with molecular formula C10H16. In the parent structure, 

atoms labeled as 0, 4, 5 and 9 are selected for operation. After mutation, the bond 

linking atom 5 and 9 is deleted; atom 5 connects to 0 with double bond in stead of 

single bond; the increased bond degree of atom 0 is balanced by lowering the order of 

bond coupling atom 0 and 4. A single bond is formed between atom 4 and 9 to make 

sure both are saturated.  

 

 

1. Choose randomly four distinct atoms x1, y1, x2, y2 (two bonds) 

2. Let a11 = Bond(x1, y1), a12 = Bond (x1, y2), a21 = Bond (x2, y1), a22 = Bond (x2, y2) 

3. Choose b11 ≠ a11 at random in the range [Max(0, a11-a22, a11+a12-3, a11+a21-3), 

Min(3, a11+a12, a11+a21, a11-a22+3)] and displace a11 with b11 

4. Displace other bonds accordingly:  

b12 = a11+a12-b11, b21 = a22-a11+b11, b22 = a11+a21-b11 

 

Algorithm 1: the graph mutation algorithm 
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Figure 5: A mutation operation on a structure with molecular formula C10H16, 

with a) the parent structure and b) the offspring structure. 

 

 

The mutation operator tends to do a local refinement. This process involves only four 

distinct atoms (the four atoms forms the working unit), and at most four bonds 

between these atoms are reshuffled. Thus the offspring has minimum difference from 

its ancestor.  

4.2.2 Parameter Description 

The originally proposed mutation operator is able to restrict the extent of the 

modification on the structure but unfortunately not the locus of the modification. To 

fix this shortcoming, we have added the possibility to impose further restrictions to 

the selection of the working atoms. A parameter mutation radius is defined as 

the maximum distance (the number of bonds) from the randomly selected seed atom 

to other members in the working unit. The mutation radius delimits a neighborhood in 

which the bond type is allowed to change. The rest part of the structure will survive to 

the offspring. A mutation operator leads to deeper disruption with the increase of its 

mutation radius. In Figure 6, the atom marked with black dot is selected as seed atom, 

and let the mutation radius assigned a value of 3. With this constraint, the structural 

reshuffle by mutation is limited inside the shaded circle, and the rest structural 

segment stays in tact.  
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Figure 6: The effect of the mutation radius. A value of 3 is chosen in this 

example. The atom marked with black dot in parent structure was selected as the 

seed atom. The atoms within interval of three intervening bonds are qualified, 

and four of them (within the ellipse) are selected to take part in mutation. The 

structural segment outside the color-filled circle survives to offspring. 

 

 

As a rule for operator design, we want to maintain the validity of offspring during 

reconstruction process. Therefore the mutation operator must respect the constraints 

employed so far. For imperative fragment constraints, we can count on changing the 

attribute of the parameter atomStateTag by freezing the atoms and bonds which 

form those fragments. For forbidden fragment constraints, a structural evaluation 

module can be embedded in the fitness function. 
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4.3 Crossover 

4.3.1 Concept 

In the context of graph recombination, crossover is the process of cleaving, merging 

and saturating two parent structures to form one or two children, as shown in 

Algorithm 2. Figure 7 gives two structures selected as parents from the population 

pool. The skeleton atoms of each of the parent structures are randomly segmented into 

two sets, red and blue. For parent 1, the red set consists of atoms labeled as 1, 2, 3, 6 

and 9. The blue set contains atoms 0, 4, 5, 7 and 8. A similar portioning scheme is 

used for parent 2. For the crossover operation, bonds connecting two atoms in each 

atom set are preserved, while those connecting two atoms from different sets are 

deleted (see bond 3-4 and 6-0 in parent 1). 

 

 

1. Select parent structures from population pool 

2. Decide cutting scale and mode 

3. Split parent structures in two fragment clusters each 

4. Partition skeletal atoms into two sets 

5. Preserve bond that connects two atoms in the same set, remove bond that connects 

two atoms from different set 

6. Merge the opposite cluster from each parent and obtain a pair unsaturated 

offspring structures 

7. Saturate offspring structures. 

 

Algorithm 2: the graph crossover algorithm 
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The two resulting fragments of each parent structure are now crosswise combined to 

form two offspring. The red cluster in parent structure 1 combines with the blue 

cluster in parent structure 2, and the blue cluster in parent structure 1 joins the red 

cluster in parent structure 2. By doing so, two incomplete structures are obtained with 

some atoms being unsaturated. After appending the missing bonds in the offspring 

structures (6-7, 0-3, and 3-8 in child structure 1, 2-6 and 3-4 in child structure 1), a 

pair of new valid structures is yielded.  

 

 

 
 

Figure 7: A crossover operation on a pair of structures with molecular formula 

C10H16. The minimum chemical distance between an offspring and its ancestor 

is given by the parameter d.  

 

Each of the two offspring structures inherits certain fragments from both of its parents. 

The correctness in molecular formula and the connectivity of new structures is 

guaranteed by strictly complying with the valence rule. Because the partitioning of 

skeletal atoms, the assembly and saturation of the partially-filled offspring structures 

are in a stochastic way, all the plausible recombination are taken into consideration, 
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e.g. bond type, ring size etc, thus there is no possibility that a “blind spot” could 

appear in the constitution space.  

4.3.2 Parameter Description 

The crossover operator can be refined by a number of parameters: the Match mode 

defines how to select parent structures from the population pool; the Partition 

scale specifies at what extent the parents are allowed to spoil; and the Partition 

mode decides in which way to cleave the parent when doing the crossover operation. 

It has been noticed that different partition modes lead to different search inclinations. 

 

It became necessary to introduce these parameters due to our observation that if this 

three step process of cleaving, exchanging and merging is performed in a totally 

random way, it is very likely that a large number of unconnected segments arise in the 

intermediate steps and some obligatory substructures are broken. It is obviously more 

difficult to rationally assemble these segments than dealing with a slightly damaged 

structure.  

 

The initial purpose of a partition strategy is to make sure that at least one fragment 

cluster is inter-connected (and as a result the bonds in this cluster preserved) so that 

only a few fragments are generated at all. The procedure is to firstly select an arbitrary 

atom in the farther structure as seed atom, then starting from the seed atom, make a 

breadth-first or depth-first walk in the structure until the number of visited atoms 

reaches pre-decided limit. Atoms covered by the traverse path form one cluster. The 

rest atoms compose another cluster.  

 

Breadth-first-search based partitioning tends to restrict the structure modification in a 

small range, and make the crossover function more locally. On the contrary, depth-

first-search based partitioning enables the crossover to have global influence. 
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The experimental results show that the graph operators outplay standard two-point 

crossover. The increase of performance is visible for nearly all considered 

experimental settings, indicating that manipulating the structure in a way that is 

consistent with its representation improves the results. It is believed that these 

operators can be applied to other constitutional optimization problems for which the 

natural representation is a molecular graph. Due to the nature of our application 

domain being the space of constitutional isomers, we only allowed the exchange of 

fragments of the same sizes. However, this constraint can be removed, enabling the 

application to a wider variety of problems. 

4.4 Niche Search  

Regular evolutionary algorithm is known to be strong in global search while weak in 

local search 94. As a remedy, an evolutionary algorithm could bind with a kind of 

efficient local search algorithms. Our EA implementation described here is integrated 

with a genetic operator for vicinity search. For a specified root structure, the entire 

structures that could be generated from the root by a single mutation run constructs 

the proximate neighborhood of the root structure. Vicinity search checks 

every structure in such a niche and returns the best one. Vicinity search can be 

thought of as a self-learning process of the selected structure during its lifetime. 

 

Within an EA run, a niche searcher is applied to a few outstanding candidates. These 

elite structures are intensively refined by learning from their neighbors. As a result, a 

gather of avant-garde is formed which is far ahead of the rest population. Via 

recombination and selection, the population tends to share the achievement of the 

model structures very rapidly. Iterating this procedure - sending elite structures ahead 

by niche search and then catching them up by genetic reproduction - speeds up the 

progress of global optimization.  
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4.5 Auxiliary Operators 

Some supplementary features of our EA implementation include the population 

filter and the structure relabeler. These supplementary operators are 

designed to monitor the evolution status and guide the search direction. 

 

A structure relabeler is a tuning operator changing the labels of the carbon atoms of 

an equivalent class. Reconsider the example given in Figure 4 in Chapter 3: Structure 

A, the correct one, has a fitness score of 3000, while the second structure has a score 

of 2900 (please refer to the score system section below). A structure relabeler operates 

on a candidate (e.g. structure B here) in an attempt to find a fitter structure. The 

structure relabeler is supposed to be activated at late evolutionary stage and work on 

the best structures found so far.  

 

The population filter makes sure that copies of any structure in a population are within 

a threshold, called the inhibitive value. This simple operator alleviates the 

trend of premature convergence without employing difficult isomorphism check 

routine. It is advisable to enhance algorithms’ online performance.     

4.6 Customization 

The obligatory constraints can be enforced by specializing in the genetic operators. 

For example, crossover may force a substructure intact for a given period. The genetic 

operators reinforce constraint satisfaction whenever possible so that ill-formed 

solutions are impossible to generate.  As a result, the algorithm searches only in the 

feasible realm rather than also in the whole space of constitutional isomers. Of 

particular note is the ease with which various constraints can be included and/or 

modified. 
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Chapter 5: Fitness Function 

5.1 Components of the Fitness Function 

The fitness function in an evolutionary algorithm framework is a quantitative measure 

of how far a candidate structure is away from the target structure.  

 

The fitness function is the primary place in which an evolutionary algorithm is 

tailored to a specific problem. Fitness function used for the evaluation of candidate 

chemical structure of the unknown compound is built of a suite of judges, each 

representing a contribution of a certain structure criterion. For NMR-based structure 

elucidation, the spectra judges handling data from 1D 13C NMR, HHCOSY, HMBC, 

HSQC experiments are routinely used.  

 

Abstracted from 1D 13C NMR data, the chemical shift and signal multiplicity yield 

one-bond carbon-hydrogen coupling information. Among the 2D NMR experiments, 

the HMQC spectra contain one-bond C-H correlation information; the COSY spectra 

describe H-H correlations via 2, 3 or more bonds and the HMBC spectra 2 or 3-bond 

C-H correlations. 

 

An important judge contributed to fitness function in this implementation is the 

HOSECodeJudge. The HOSE (Hierarchical Organization of Spherical 

Environments) code 9,95 is a well-established method for correlation of structural 

properties with corresponding chemical shift values. HOSE code describes the 

chemical environment of a carbon atom in the molecule and contains rich information 

on the bonding property in its neighborhood. The HOSECodeJudge calculates 

matches between the HOSE codes for individual carbon atom environments in the 
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candidate structure and HOSE code environments inside the database to model the 

predicted shifts 

 

Some other general-purpose constraints based on knowledge on chemical structure 

validity are also provided to enhance the resolving power of the fitness function. One 

example is the Bredt’s rule judge, ensuring that no bridgehead atom in a multi-bridges 

ring system is involved in a double bond. Since judges all share the same API, it is 

easy to write and add a judge to the system to include a new kind of constraints, e.g. 

the constraints inferred from other spectroscopic techniques such as mass 

spectroscopy, IR and UV spectroscopy.  

 

The fitness function is implemented as ChiefJustice which consists of a suite of 

Judge instances. Because all sorts of the available constraint information are 

integrated in ChiefJustice simultaneously, it has full advantage of the synergistic 

effects of their combination. 

5.2 Construction of the Fitness Function 

5.2.1 Standard Fitness Function 

The construction of the standard fitness function is quite straightforward. Taking α-

Preconene (C13H16O3) as an example for an unknown compound, Table 2 illustrates 

the configuration of its fitness function. In this sample case three types of constraints  

- HH COSY, HMBC and HOSE code are provided, and three kinds of judges are 

employed - HHCOSYJudge, HMBCJudge and HOSECodeJudge. The 13C NMR 

spectrum is also available, but no explicit 1D spectrum judge is needed because the 

information inferred from DEPT 90 and DEPT 135 experiments is digested directly 

by the structure representation and preserved during the evolutionary process. 

HHCOSYJudge holds 2, HMBCJudge 15 and HOSECodeJudge 13 constraint 
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entries. Satisfaction for a particular constraint entry leads to granting a predefined 

number of points for the candidate. This number can be individually configured, but is 

generally set to a value of 100. A fine tuning taking into account probabilities, by 

which a certain spectral feature is observed, can be applied to the scoring of a judge. 

The HMBC judge, for example, grants 100 points, if a constraint entry can be 

explained by 2 or 3-bond CH correlations, whereas the rarer 4 or 5-bond CH 

correlations yield only 5 points. Due to this scheme, the maximum achievable fitness 

score for a candidate structure can easily be calculated by summing up the points 

earned by this structure from each constraint entry in all the judges used.  

 

 

Table 2: The construction of the fitness function for molecule α-Preconene 

 

Judges Constraint Entries Entry Number Maximum Score 

HMBC 

1-7, 1-8, 1-11, 2-5, 

2-7, 2-8, 3-7, 3-8, 

3-10, 4-12, 5-8, 

6-4, 6-5, 6-7, 9-5 

15 1500 

HH COSY 4-5, 5-4 2 200 

HOSE code 
One entry for every

carbon atom 
13 1300 

Target Score: 3000 

 

 

In any evolutionary optimization algorithm, it is necessary for the fitness function to 

be able to distinguish structures even they are extremely similar, with a continuous 

fitness function being superior to a discrete one. For instance when the fitness 

function is be configured as the product instead of the sum of the scores from 

different judges. The fitness function gets more “continuous” than a sum-formed one 
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as the former has more scoring combinations. This EA implementation still has rooms 

to improve the means for fitness function construction. For example, more sensitive 

scoring criteria should be adopted – like a HOSECodeJudge based on improved multi-

sphere HOSE codes – and new continuous judge types should be taken into account.  

5.2.2 Advanced Assemble Strategy 

It is possible to distinguish relative contributions of various judges to the best-so-far 

structures, and assign to each judge a weighting coefficient which determines the 

quota of this judge in the fitness function. A vector of weighting coefficients for all 

judges can be stipulated. At first the algorithm has no idea of the relative importance 

of each judge, so all judges have identical coefficients. After certain generations, the 

contributions of different judges to the fitness value are calculated. If constraints from 

one judge are satisfied by a higher percentage, it will be assigned with a decreased 

coefficient, and another poorly satisfied judge will increase its coefficient to maintain 

the sum of all coefficients as 1. This method is an extension of fitness scaling used in 

standard evolutionary algorithms. Through judge compromise a moderate fitness 

function is maintained which balances the search trend and avoids local convergence.  

 

Another way making use of the weighting coefficients is to stipulate different 

weighting schemes for different parallel EA runs, so that each evolutionary algorithm 

thread follows a different route to achieve the final target. The rate of success to find 

all hit structures is thus improved. 
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Chapter 6: Selection Policy 

6.1 Selection Mechanisms 

Several ways of selecting which parents will be used to generate offspring to go into 

the next generation are commonly reported in the literature 94,96.  

 

One commonly used method is fitness proportional selection (also called roulette 

wheel selection or Monte Carlo selection). In this method, fitness values are 

normalized so that each candidate is responsible for a certain amount of the total 

fitness in the population. The chance a candidate is selected is proportional to its 

fitness value. The fitness proportional selection may bring some danger of premature 

convergence when outstanding structures predominate in the entire population very 

quickly. On the other hand, when fitness values get close to each other in the 

population, fitness proportional selection hardly provides impetus for evolution.  

 

When creating new population by conducting crossover or mutation to parent 

structure, there is a possibility that the succeeding population looses the best solution. 

Elitism selection provides remedy for this risk. Elitism selection first clones the best-

so-far structure (or a set of best structures) to new population. The remaining part of 

the new population is built by classical means. 

 

Tournament selection selects a small set of candidates and picks the best one among 

this set. Tournament selection has higher selection pressure compared to fitness 

proportional selection. 
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Ranking order selection ranks the population and then every candidate receives a new 

fitness from this ranking. The worst structure will have fitness value of 1, second 

worst 2 etc., and the best will have fitness N (population size). After this all 

candidates in the population have a chance to be selected. Ranking order selection 

may lead to slower convergence, because the best ones do not differ so much from 

others.  

6.2 Fitness Scaling 

Fitness Scaling is used to maintain competitive level during evolution. In early 

evolution stage it helps decreasing the competitive power of some supernormal 

candidates by reducing their fitness to prevent premature convergence. While in late 

evolution stage the competitive power of candidates is increased by magnifying their 

fitness to prevent random wandering. The fitness scaling methods can be classified 

into linear scaling, power function scaling, exponential scaling, etc. 
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Chapter 7: Population Strategies 

7.1 Similarity Measures and Population Diversity  

In an EA scheme, it is desirable to have a measure of the similarity between two 

structures. Such measure favors the detection of genetic convergence in a population, 

and the selection of genetically distant entities. The similarity function compares two 

solutions and returns a value that indicates how much the solutions differ. Often 

called a 'distance' function, this operator is typically used by speciating evolutionary 

algorithms.  Many different similarity measures can be defined for any given 

representation. 

 

For chemical structures, structural keys and molecular fingerprints are used as aiding 

selector to measure the similarity between different candidate structures in the 

population pool. Three types of chemical similarity measures are provided in our 

framework: Chemical Fingerprint, Tanimoto coefficient and Minimum Chemical 

Distance.  

 

A fast way for pair wise comparison of candidate structures is using fingerprint 

overlap as a measure of similarity and usually calculated using the Tanimoto 

Coefficient. Following the notation of  Daylight Systems, Tanimoto Coefficient (Tc) 

is defined as 97 

 

TC = BC / (B1 + B2 - BC)  
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where, BC is the number of 1's common to both keys/fingerprints, B1 is the number of 

1's in the first key/fingerprint and B2 the number of 1's in the second key/fingerprint. 

If two structures are identical, their Tanimoto Coefficient will be 1.0, and it will 

decrease to 0.0 as they become more dissimilar.  

 

The selection of parent structures for crossover operation may follow different criteria. 

In an attempt to prevent the loss of population diversity, the parent structures could be 

forced to have a Tanimoto Coefficient larger than a threshold, e.g., no less than 0.5. 

The threshold takes a decreasing value when search is closing to the optimum. 

7.2 Diversity-guided Step Size Control 

Like in other evolutionary optimization techniques, there are mainly two chains in our 

evolutionary algorithm which determine the overall efficiency of constitutional search. 

One is candidate structure evaluation and ranking as discussed in Chapter 5. The other 

one is the mechanism to keep population diversity. Evolution tends to converge to a 

single solution because of stochastic noise; it is therefore necessary to avoid this with 

an additional mechanism. While the process of structure evaluation and ranking has 

less space to be accelerated, the efficient control of population diversity might be 

achieved by some tricks. 

 

The major challenge for an EA approach is premature convergence. Figure 8 is a 

typical evolution curve of an unknown (C15H28O2) without parameter tuning. It is 

shown that after around 80 generations, the average fitness of the population had 

become very close to that of the best candidate and the evolution almost entirely 

stagnated. The impact of the number of generations on the likelihood of losing 

population diversity was analyzed. It is expected that the decreasing size of the search 

step should be corresponding to the increasing resemblance of the top candidates to 

the optimum. If the reproduction operators decrease their step sizes faster than the rate 
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by which the candidates approach to the optimum, the search process may stagnate, 

since the step sizes become too small to make the candidates sufficiently different. 

 

  

 
 

Figure 8: Search stagnates early at an average of 80 generations in the case of 

Eurabidiol. 

 

 

Taking into account that different stages in an evolutionary search require different 

step size, and different fitness function components require different step size, a 

dynamic step size control strategy is adopted in this EA implementation, which 

applies the information accumulated so far in evolutionary search. A large step size 

encourages long-range search and makes escaping from a poor local optimum easier, 

while a smaller step size is apt to exploit a small region. For an unknown structure to 

be optimized, basically it is hard to predict when to sample a large space and when to 

explore a small region. We propose that the measure of population diversity and the 

distance of best-so-far structure to the target structure could be used to guide the 

trade-off between coarse-grained sampling and fine-grained exploration. 
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The mechanism for diversity-guided step size control is to define a metric over the 

constitution space and assure that the distance between any parent-offspring pair 

involved in a genetic operation is greater than a specified minimum threshold. This 

minimum threshold is subjected to change based on its judgment on current search 

status (e.g., how close the search is to its target) and population distribution. Several 

computationally affordable similarity index and fingerprint methods are used in this 

implementation as the metric measures. At the beginning of search, the constitutional 

space is sampled over a relatively coarse grid, with the mesh size equal to the metric. 

As the search progresses, the grid size is gradually reduced such that adjacent 

structures are also considered. This mechanism is a compromise between speed and 

efficiency, because we can only make sure that an offspring is sufficiently different 

from its parent. It is very expensive, if not impossible, to maintain distance threshold 

between all candidate structures in a population because of the intractability to obtain 

an analytical representation of the constitutional space.  
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Chapter 8: Evolution Schemes 

8.1 Simple Evolutionary Algorithm  

The simple evolutionary algorithm uses non-overlapping populations. In each 

generation, the entire population is replaced with new individuals.  Typically the best 

individual is carried over from one generation to the next (this is referred to as elitism) 

so that the algorithm does not inadvertently forget the best that it found.  Maintaining 

the best individual also causes the algorithm to converge more quickly; in many 

selection algorithms, the best individual is more likely to be selected for mating.  

 

 

1. Generate random population of n chromosomes 

2. Evaluate the fitness f(x) of each chromosome x in the population 

3. Create a new population by repeating following steps until the new population is 

complete.  

    Select two parent chromosomes from a population according to their fitness 

    Crossover recombines the parents to form new offspring 

    Mutate new offspring at selected position 

    Place new offspring in new population 

4. If the end condition is satisfied, stop, and return the best solution in current 

population.  

5. Go to step 2 

 

Algorithm 3: The outline of basic genetic algorithm 
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Since the entire population is replaced in each generation, the only memory the 

algorithm has is from the performance of the genetic operators. If the genetic 

operators convey good fragments or segments from parents to offspring, the 

population will improve.  Otherwise, the population will not improve and the 

evolutionary algorithm will perform no better than a random search.   

8.2 Steady-State Evolutionary Algorithm 

In each generation the algorithm replaces only a fraction of the current population. A 

temporary population is created each generation, with a fraction of the size of the 

current population. Then this temporary population is added to the current population. 

After structure evaluation and ranking, worst chromosomes are removed to bring the 

current population to its original size. 

 

The steady-state evolutionary algorithm uses overlapping populations. In each 

generation, a portion of the population is replaced by the newly generated candidates.  

This process is illustrated in Algorithm 3. At one extreme, only one or two structures 

may be replaced each generation (close to 100% overlap).  At the other extreme, the 

steady-state algorithm becomes a simple evolutionary algorithm when the entire 

population is replaced (0% overlap). The best-so-far structure is always preserved. 

 

 

In every generation 

1. Establish a temporary population (size Ntemp) by doing genetic operation to selected 

individuals in current population 

2. Add the temporary population into current population 

3. Crowd out worst Ntemp individuals in this enlarged population 

4. The rest of population survives to new generation.  
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Algorithm 4: the steady-state evolutionary algorithm I. This algorithm 

constructs the offspring population from a redundant population; Selection is 

biased to good structures. This algorithm may have difficulty to find full solution 

set when multiple solutions exist. A light selection pressure is suggested to 

prevent from premature convergence. 

 

Since the algorithm only replaces a portion of the population of each generation, the 

best candidates are more likely to be selected and the population quickly converges to 

a local optimum.  Once again, the crossover and mutation operators are key to the 

algorithm performance; a crossover operator that generates children unlike their 

parents and/or a high mutation rate can delay the convergence. Algorithm 4 makes a 

modification to the steady-state evolutionary algorithm. A pre-elimination mechanism 

is introduced to empty rooms for fresh structures with a hope to reshuffle population 

distribution. 

 

 

 

In every generation 

1. Establish a temporary population (size Ntemp) by doing genetic operation to selected 

chromosomes in current population 

2. Discard worst Nkill chromosomes from current population 

3. Merge the temporary population into current population 

4. Crowd out worst (Ntemp - Nkill) chromosomes in this enlarged population 

5. The rest of population survives to next generation. 

 

Algorithm 4: the enhanced steady-state evolutionary algorithm II. This 

algorithm involves redundant population and structure pre-elimination; only a 

portion of the population is replaced each generation.  The size of temporary 

population and the amount of pre-elimination (percentage of the parent 
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population that is replaced) are subjected to change triggered by the algorithm 

itself. 

 

8.3 Diversity-Driven Evolutionary Algorithm 

The diversity-driven evolutionary algorithm is similar to the steady-state evolutionary 

algorithm. However, rather than replacing the worst candidate, a new structure 

replaces the candidate most similar to it; and the replacement is executed only if the 

new structure has a fitness score better than that of the one to which it is most similar. 

The diversity-driven evolutionary algorithm classifies the whole population into small 

regions, called niches. Search is thus allowed focusing simultaneously in more than 

one region of search space. This requires the use of one kind of similarity measure 

defined above. The similarity measure indicates how different two structures are, 

either in terms of their fitness scores or of their structural features. If the similarity 

function is properly defined, the diversity-driven algorithm maintains diversity 

extremely well.  

 

Self-adaptation has been frequently employed in evolutionary methods. Three distinct 

adaptive levels are defined: population, individual and component levels. The 

implemented evolutionary algorithms framework provides self-adaptation at all these 

levels.  Instead of using component level adaptation, we emphasize the scheme based 

on the success rate of the whole population. The population level adaptation has richer 

and more accurate information about the search status because it is the whole 

population that is evolving, not just separate individuals. 
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Figure 9: An evolution scheme using self-adaptive population control in a multi-

population environment. The population size takes an unfixed value which is 

subjected to increase when the average fitness score in this population decrease.  
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Temporary population 

New population 
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Chapter 9: Results and Discussion 

Table 3 characterizes of the test suites. All of the tests were run using a single 

implementation of the evolutionary algorithm; although minor changes were made to 

accommodate different sets of fitness functions, no changes to the representation or 

evolutionary algorithm is required.  

 

First we take the Monochaetin problem 98 (C18H20O5) as the proof-of-concept testcase, 

which has served as an example in various CASE papers 8,11,41 and/or which the 

correct number and identity of all solutions is known from deterministic CASE runs. 

The spectra information comes from 13C NMR (BB, DEPT 90 and DEPT 135), HH 

COSY and HMBC (data summarized in Table XXX and Table XXX). HH COSY 

judge has 8 constraint entries and HMBC 24. Together with the contribution of HOSE 

judge (18 entries), the maximum achievable fitness score is 5000. The three judges 

have identical and constant weighting coefficients in all EA runs. No other judges are 

employed to make the problem simple.  

 

To reflect the process of structure evolution, a small population size (16 individuals) 

is selected, and only two genetic operators used, crossover and mutation. The 

probabilities of crossover and mutation are controlled by equation 1 and 2 

 

goalbestcrossover SSP /15.0 −×=                                                                                   (1) 

1mutation crossoverP P= −                                                                                                   (2) 

 

where Sbest stands for the fitness score of the best-so-far structure and Sgoal is the 

fitness score of the target structure(s) for the unknown. For crossover operation, the 
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value of Partition scale ranges from 4 to 8 (one-third of the skeleton atom number 23), 

and is determined according to equation 3. 

 

)/1()( minmax empiricalpartition DevDevVVV +×−=                                                            (3) 

 

Here, Vmax and Vmin are maximum and minimum allowed values of the partition scale; 

Dev is the standard deviation of the fitness scores of the last population; and 

Devempirical is the empirical maximum standard deviation of the fitness scores of a 

population (in this case 200). Devempirical is obtained by calculating the average of the 

standard deviations of a set of initial populations. 

 

In each generation, a temporary population of 16 new structures is created through 

reproduction operations. Among current and the temporary populations (32 structures 

in all), 16 are selected to form the offspring population with the top two structures 

always been preserved. Selection is through either the Tournament Selector or 

the Ranking Order Selector.  

 

The result is illustrated in Figure 10. One hit is found after about 350 generations 

within 3 minutes run. There are about 5600 points sampled in the constitution space, 

which is a tiny amount compared to the huge number of constitutional isomers for 

C18H20O5. Notably, this result is obtained with a less appropriate population scale, and 

no other constraints introduced or other parameters optimized. 
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Figure 10: Evolution of Monochaetin (C18H20O5). A population of 16 structures 

evolves over about 350 generations. In the end to the evolutionary process, about 

10 percent of the candidate structures have reached the maximum achievable 

score of 5000 points. 

 

 

Table 3: Empirical parameter settings for sample problems 

Samples C10H16 C15H28O2 C18H20O5 C30H48O2 

population size 8 36/48 36/48 120/160 

replacement 

rate 
100 100 100 100 

killing rate 0 0 0.1 0.2 

mutation rate 0.5 0.25 adaptive 0.30 
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niche search 

rate 
- 0.25 1* 0.30 

crossover rate 0.5 0.50 adaptive 0.40 

mutation 

strength 
1 1 1 1 

match mode random random difference random 

partition mode random depth-first (df) 
breadth-first 

(bf) 
bf / df = 7 / 3 

partition scale - 4-6 4-8 4-11 
*Niche search works on the top two structures and happens when the population scale 

is to change (from 36 to 48) after every 5 generations of no improvement. 

 

Table 4: Performance overview of the EA implementation with parameter 

settings given in Table 3. Calculations were performed on a computer running 

Windows XP equipped with a Pentium 3 500 MHz CPU and 256MB RAM. 

Results are taken as average of 20 runs. The fitness function involved HHCOSY, 

HMBC and HOSE code judge. Calculation times are given as TRS50, defined as 

the mean time in which the 50% most successful processes reach the optimum. 

Structure MF 
Points visited 

vs. general 
Generations Solutions 

Calculation 

time 

 
C10H16 

48 / 

4,305 
6 1 < 1 sec. 

 
C15H28O2 

2,088 / 

? 
60 1 40 sec. 
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O
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C18H20O5 

2,600 / 

? 
70 1 120 sec. 

 

C30H48O2 
6,400 / 

? 
48 6* 120 sec. 

*In all, 6 structures are found after 20 runs, which are consistent with those 

found by a deterministic approach 8. 

 

Figure 8: The evolution curves corresponding to samples 1, 2, 3 and 4.  
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Several structure elucidation examples of increasing constitution scale are shown in 

Table 3, Table 4 and Figure 8 to evaluate the algorithm’s performance.  

Table 3 gives typical parameter settings for 4 compounds of different size. The task of 

Monochaetin structure elucidation is approached again using a mechanism of 

population scale control. An EA run adjusts its population following procedures 

below. 

 

1. Start the EA with population size as 36 and iterate step 2-6. 

2. If after 5 generations no better solutions appear, delete one-third of the worst 

candidates and expand the population size to 48. New individuals are created by 

doing a niche search around the top 5 structures in the population. 

3. EA now runs with population size as 48. 

4. If after 5 generations no new solutions found, shrink the population size back to 36. 

The removed individuals, half from good ones, half from bad ones (the best solutions 

are always preserved). 

5. EA now runs with population size as 36. 

6. For every 20 generations, an isomorphism check is done to reshuffle the population. 

 

Averagely, with this scheme, 50 percent of EA runs can converge to the optimum 

after sampling 3000 points in constitution space, other runs take longer time but 

almost all are able to find the solution. 

 

In many cases, instead of one optimum structure, a number of structures exist 

satisfying all given inputs. In this case, finding all solutions cannot be achieved with a 

relatively small population scale. Therefore, a set of EA runs need to be carried out 

before any conclusions are drawn. For example, a single EA run configured as in 

Table 3 cannot find all 6 structures for compound 3 (Polycarpol), but running the 

algorithm 20 times will succeed. This is a well known property of stochastic 

optimization schemes, which is why frequently a statistic backing of the result is 
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created by collecting the outcome of multiple optimization runs performed either in 

parallel or sequential manner.  

 

Compared to an earlier deterministic structure elucidation module created in our 

group (Steinbeck 1996), both stochastic algorithms, Simulated Annealing (Steinbeck 

2001) as well as the Evolutionary Algorithm described in this paper, scale much 

smoother in their computation times versus number of heavy atoms in the problem set, 

as illustrated in Figure 11. 
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Figure 11: Qualitative comparison of runtimes for our deterministic and 

stochastic implementations 5,8. Calculation times were measured for problem sets 

listed in Table 4. Both Simulated Annealing (SA) and Evolutionary Algorithm 

(EA) show a significantly smoother increase of computation time versus number 

of heavy atom in the problem set. 
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Besides, we are currently testing a newly designed multi-population based evolution 

scheme to maintain EA’s coverage of the problem space, especially for unknowns 

with huge search space. The new scheme inherits a concept of a two level evolution: a 

set of peripheral EA threads run independently with different configurations. For an 

interval of 60 seconds, each EA thread contributes a number of (cloned) good 

structures to generate the population of the core EA thread. The peripheral EA runs 

find local optima in different regions, and the core EA thread aims to refine the good 

structures by niche searches. This scheme is currently being tested with several larger 

compounds. 

 



 

 

 

 

77

Chapter 10: Conclusions 

An evolutionary algorithm framework using a graph-based data structure to explore 

the molecular constitution space is developed. The algorithm framework provides a 

suite of robust graph operators to propel the evolution of molecular structures towards 

a set of desired properties. The graph data structure facilitates efficient genetic 

manipulation and exempts from the transformation between genotype and phenotype 

of the candidate solution. A strong control of their parameters enables the genetic 

operators to adjust their behavior and achieve higher search efficiency. 

 

The EA implementation proves to be a promising alternative to deterministic 

approaches to the problem of computer assisted structure elucidation (CASE). While 

not relying on any external database, The EA-guided CASE program SENECA is able 

to find correct solution within calculation time comparable to that of other CASE 

expert systems. The implementation presented here significantly expands the size 

limit of constitutional optimization problems treatable with evolutionary algorithms 

by introducing efficient graph-based data structure and genetic operators.  

 

The implemented search engine now is part of the CASE program SENECA, and its 

performance demonstrated by solving real-world structure elucidation problems. 
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Appendix A 

Figure 1: Evolution of α-Pinene (C10H16): the top six structures in six successive 

generations are shown (constraints: molecular formula, DEPT 135/90, HMBC 

and carbon chemical shifts) 

 

 1   2 

 3   4  

 5   6 



 

 

 

 

79

Appendix B 

 

Table 1: Information provided by the most commonly used 2D-NMR 

experiments. The types of correlations listed are those giving rise to the majority 

of cross signals in the respective experiments. All experiments may also contain 

cross-signals from unsuppressed other correlation types. 

 

Experiment Correlation Type Sketch 

HH-COSY 3JHH, 2JHH 
C C

HH

C C

HH

C

H H

 
HetCor (CH-

COSY, HSQC, 

HMQC) 

1JCH 
C

H

 

Long-range HetCor 

(COLOC, HMBC) 

2JCH, 3JCH 
C C

H

C C

H

X

 
HN-HMBC 2JNH, 3JNH 

C N

H

C N

H

X

 
NOESY, ROESY 

 

Dipolar 1H1H 

couplings through 

space: 1.5 Ǻ < 

D(Ha, Hb) < 5 Ǻ 

CH3

H3C

 

 

 

 

 



 

 

 

 

80

Table 2: A list of 2D NMR signals from HMQC and HMBC 2D NMR 

Experiments (A) and a list of heavy atom distance constraints derived by the 

CASE program by signal matching between HMBC and HMQC data (B). An 

"O" in table B indicates that the two heavy atoms are to be separated by one or 

two bonds in the resulting graph. Only the lower half of the symmetric 

relationship table B has been populated for the sake of clarity. 

 

 

No. 13C CPD 1JCH 

(HMQC) 

HMBC 

1 148.24 - 4.0; 2.42; 2.28; 1.20 

2 118.25 5.49 4.0; 2.28; 2.17 

3 66.32 4.0 5.49 

4 43.87 2.17 5.49; 4.0; 2.42; 1.32; 1.20; 0.86   

5 41.40 2.14 5.49; 1.32; 0.86 

6 38.32 - 2.42; 1.32; 1.20; 0.86

A 

B 

 1 2 3 4 5 6 7 8 9 1 0

1 X          
2  X         

3 O O X        

4  O O X       

5  O   X      

6      X     

7 O   O  O X    

8 O O      X   

9    O O    X  

1    O O O   O X
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Table 3: A list of NMR signals from 1D 13C NMR as well as 2D HMQC, HH 

COSY and HMBC experiments used for the structure elucidation of the fungal 

Monochaetin. 

 

 

 

1JCH Correlations 

C143.30 H6.79 

C107.04 H6.02 

C105.73 H5.29 

C43.66 H3.76 

C52.13 H4.05 

C46.70 H3.19 

C26.27 Hl.81 

C26.27 H1.48 

C11.45 H0.97 

C19.49 H2.13 

C18.92 H1.32 

C14.39 H1.11 

 

 
3JHH Correlations 

H4.05 H3.76 

H3.19 H1.11 

H3.19 H1.81 

1-D 13C NMR Data 

Shift 

(ppm) 

Mult. 

205.94 S 

191.77 S 

169.10 S 

158.52 S 

145.52 S 

143.30 D 

116.22 S 

107.04 D 

105.73 D 

82.55 S 

52.13 D 

46.70 D 

43.66 D 

26.27 T 

19.49 Q 

18.92 Q 

14.39 Q 

11.45 Q 

2/3JCH Correlations 

C18.92 H3.76 

C19.49 H6.02 

C26.27 H1.11 

C43.66 H1.32 

C43.66 H4.05 

C46.70 H1.11 

C52.13 H3.76 

C82.55 H1.32 

C82.55 H3.76 

C82.55 H5.29 

C105.73 H6.02 

C107.04 H2.13 

C107.04 H5.29 

C116.22 H3.76 

C116.22 H5.29 

C116.22 H6.02 

C116.22 H6.79 

C143.30 H3.76 

C145.52 H6.02 

C145.52 H6.79 
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Atom: DEP

T 

δc [ppm] CH COSY CH COLOC HH COSY 

C-1 C 146.0   6.0, 2.0/2.26, 1.01  

C-2 C 142.0   5.3, 1.04  

C-3 C 131.0   1.66, 1.6  

C-4 CH 125.5 5.2 1.66, 1.6  

C-5 CH 122.0 6.0 2.05/ 2.14 2.05/ 2.14 

C-6 CH 116.3 5.3 2.0/ 2.26 2.0/ 2.26 

C-7 CH 79.0 3.15  1.68 

C-8 CH 74.8 4.3 1.04 1.83/ 1.93 

C-9 C 52.5   1.04, 0.64  

C-10 CH 49.7 1.14 1.0, 1.01, 0.91  

C-11 CH 49.3 1.65 0.87, 0.64 1.83/ 1.93 

C-12 C 44.4   5.3, 1.65, 1.04, 0.64  

C-13 CH2 39.8 1.83/ 1.93  4.3, 1.65 

C-14 C 39.0   1.14, 1, 1.68, .91  

C-15 CH2 38.8 2.0/ 2.26 0.64 5.3 

C-16 C 37.7   1.14, 1.68, 1.01  

C-17 CH2 36.8 1.07/1.45 0.87  

C-18 CH 36.4 1.32 0.87 0.87 

C-19 CH2  36.3 1.38/1.92 1.01 1.68 

C-20 CH3  28.3 1.0 0.91  

C-21 CH2 27.9 1.68  3.15, 1.38/ 1.92 

C-22 CH3 25.9 1.66 1.6  

C-23 CH2 25.3 2.0   

C-24 CH2  23.3 2.05/2.14  6 

C-25 CH3 23.0 1.01 1.14  

C-26 CH3  18.7 0.87  1.32 

C-27 CH3  17.8 1.6 1.66  
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Atom: DEP

T 

δc [ppm] CH COSY CH COLOC HH COSY 

C-28 CH3  17.5 1.04   

C-29 CH3  16.1 0.64 1.65, 2.0/ 2.26  

C-30 CH3  16.0 0.91 1.14, 1.0  

 

Table 4: NMR data used for the structure elucidation of Polycarpol (C30H48O2 ). 
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