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Zusammenfassung

Wir studieren Funktionenräume mit dominierenden gemischten Glattheitseigenschaften. Die
ersten Räume von diesem Typ wurden von S. M. Nikol’skij in [21] und [22] definiert. Er hat
die Räume vom Sobolev Typ eingeführt:

SrpW (R2) =
{
f |f ∈ Lp(R2), ||f |SrpW (R2)|| = ||f |Lp||+
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wobei 1 < p < ∞, ri = 0, 1, 2, . . . ; (i = 1, 2). Die gemischte Ableitung ∂r1+r2f
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spielt die

dominante Rolle und hat dieser Klasse von Funktionenräumen den Namen gegeben. Diese
Räume, sowie Räume vom Besov-Typ, wurden von vielen Autoren studiert, zum Beispiel
T. I. Amanov, O. V. Besov, K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skij, M. K. Potapov
und H.–J. Schmeisser. Wir verweisen auf [1] für einen systematischen Zugang zu diesem
Thema. Wie auch in der Theorie der klassischen isotropen Sobolev-Räume kann man eine
alternative Definition mit Hilfe der Fourier-Transformation angeben (siehe (1.8) und (1.9)).

Diese Definition basiert auf der Zerlegung

f =
∑

k∈Nd
0

(ϕk1 ⊗ · · · ⊗ ϕkd
f̂)∨, Konvergenz in S ′(Rd),

wobei {ϕk}k∈N0 eine aus der Theorie der klassischen Besov-Räume bekannte Zerlegung der
Einheit auf R ist und ϕk = ϕk1 ⊗ · · · ⊗ ϕkd

, k = (k1, . . . , kd), das Tensorprodukt ist.

Eine ausführliche Darstellung findet man in [26]. In Kapitel 2 dieses Buches wird die klassi-
sche Theorie der Räume mit dominierenden Glattheitseigenschaften Srp,qB und Srp,qF (siehe

Definition 1.2) entwickelt. Man beweist die Äquivalenz mehrerer Typen von Quasinor-
men, Einbettungen, Spursätze und Charakterisierungen dieser Räume durch Differenzen.
Grundlegende Eigenschaften wichtiger Operatoren auf diesen Räumen - Lifting- und Ma-
ximaloperatoren und Fourierische Multiplikatoren werden studiert. In Kapitel 1 geben wir
eine Darstellung dieser Ergebnisse, sofern sie später benötigt werden. Im Gegensatz zu
[26] beschränken wir die Dimension des zugrundeliegenden Euklidischen Raumes nicht auf
d = 2, sondern betrachten Räume auf dem Rd, d ≥ 2. Wie in [26] bemerkt, ist diese Verall-
gemeinerung offensichtlich.

Das zweite Kapitel widmet sich lokalen Mitteln, atomaren, subatomaren und Wavelet-
Zerlegungen. Wir geben die Ergebnisse sowohl für Besov als auch für Triebel-Lizorkin Räume
an, konzentrieren uns in einigen Fällen allerdings nur auf die Beweise für die Triebel-Lizorkin
Skala. Die Beweise für die Räume vom Besov Typ sind analog. Zunächst charakterisieren
wir diese Klassen von Funktionenräumen durch sogenannte lokale Mittel (siehe Theorem
1.25 für Details). Diese Charakterisierung dient uns als Ausgangspunkt für alle drei in der
Arbeit beschriebenen Zerlegungstechniken.

Unter einer atomaren Zerlegung einer Funktion f versteht man üblicherweise Zerlegungen
des Typs

f(x) =
∑

ν

∑

m

λν maν m(x), Konvergenz in S ′(Rd),

wobei aν m gewisse einfache Bausteine, sogenannte Atome, und λν m komplexe Zahlen sind.
Man zeigt, dass eine Funktion f zu einem Funktionenraum genau dann gehört, wenn die
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Koeffizientenfolge {λν m}ν,m zu einem Folgenraum gehört. Für die genaue Formulierung ver-
weisen wir auf Theorem 2.4. An dieser Stelle sei bemerkt, dass die Atome nur implizit
definiert sind - eine Funktion a ist ein Atom genau dann, wenn sie gewisse qualitative Be-
dingungen erfüllt (siehe Definition 2.3).

Eine subatomare Zerlegung ist eine Zerlegung des Typs

f(x) =
∑

β

∑

ν

∑

m

λβν m(βqu)ν m(x), Konvergenz in S ′(Rd),

wobei (βqu)νm(x) die sogenannten Quarks und λβν m komplexe Zahlen sind. Ein Quark ist ein
durch (2.36) explizit gegebenes spezielles Atom. Die grundlegenden Bausteine, die Quarks,
sind also viel spezifischer in dieser Art der Zerlegung. Der Preis, den man dafür bezahlen
muss, ist eine wessentlich kompliziertere Beziehung zwischen f und {λβν m}. Dies ist im Detail
in Theorem 2.6 beschrieben. Die letzte Zerlegungstechnik, die hier entwickelt wird, ist die
Wavelet-Zerlegung. In diesem Fall benutzt man als Bausteine eine Klasse von Wavelets
mit kompaktem Träger (vergl. Theoreme 2.10 und 2.11 für genaue Formulierung). Der
Hauptvorteil der Wavelet-Zerlegung ist die Eindeutigkeit der Darstellung. Der Preis dafür
ist die beschränkte Glattheit der Wavelets mit kompaktem Träger.

In diesem Sinne hat jede dieser Zerlegungen ihre Vor- und Nachteile. Sie haben aber
auch etwas gemeinsam: sie stellen eine Verbindung zwischen Funktionenräumen und Fol-
genräumen her. Weil man mit Folgenräumen viel einfacher arbeiten kann, zeigt es sich,
dass diese Verbindung in vielen Situationen nutzbringend ist (Einbettungen, Spuren, En-
tropiezahlen,. . . ). An dieser Stelle sei eine andere Beziehung zwischen Funktionen- und Fol-
genräumen erwähnt - nämlich die sogenannte ϕ-Transformation von M. Frazier and B. Jaw-
erth. Wir verweisen auf [15] und die dort angegebenen Referenzen für Details.

Die Theorie der atomaren Zerlegung von Funktionen in isotropen Besov- und Triebel-Lizorkin-
Räumen wurde vor allem in Arbeiten von M. Frazier und B. Jawerth ([12], [13]) und
H. Triebel ([33], [34]) entwickelt. Die subatomare Zerlegung stammt von H. Triebel ([35],
[37]). Wir folgen diesen Ideen und beweisen Zerlegungstheoreme für Räume mit dominieren-
den Glatheitseigenschaften. Diese Resultate findet man in Kapitel 2, und sie bilden einen
der wichtigsten Abschnitte dieser Arbeit.

Im dritten Kapitel studieren wir die Entropiezahlen der Einbettungen von Folgenräumen
und zugehörigen Funktionenräumen mit dominierenden Glattheitseigenschaften. Der Begriff
der Entropiezahlen hat seine Wurzeln im Studium der metrischen Entropie, das vor allem
von Kolmogorov in den 30er Jahren des letzten Jahrhunderts betrieben wurde. Für einen
vorgegebenen beschränkten linearen Operator T zwischen zwei Quasi-Banachräumen A und
B (T ∈ L(A,B)) bezeichnet die Quantität ek(T ), k ∈ N, den kleinsten Radius ǫ > 0, so
dass das Bild der Einheitskugel in A durch 2k−1 Kugeln in B mit dem Radius ǫ überdeckt
werden kann. Die Folge {ek(T )}∞k=1 strebt gegen Null genau dann, wenn der Operator T
kompakt ist. Den Abfall dieser Folge kann man dann als ein Mass für die Kompaktheit von
T betrachten. Die wichtigste Eigenschaft der Entropiezahlen wurde von B. Carl erkannt
([6]). Er beweist, dass die Entropiezahlen eines kompakten Operators T ∈ L(A,A) in einem
gewissen Sinne seine Eigenwerte dominieren.

Wir benutzen die Zerlegungstechniken um die Frage nach dem asymptotischen Verhalten der
Entropiezahlen auf das Folgenraumniveau zu reduzieren. Es zeigt sich nämlich, dass

ek(id : Sr1p1,q1A(Ω) →֒ Sr2p2,q2A(Ω)) ≈ ek(id : sr1p1,q1a(Ω) →֒ sr2p2,q2a(Ω)), (1)

ii



wobei die Äquivalenzkonstanten nicht von k ∈ N abhängen. Das dritte Kapitel ist somit
hauptsächlich dem Studium von Entropiezahlen von Einbettungen von Folgenräumen gewid-
met. Wir beschränken uns auf den Fall r1 = (r1, . . . , r1) ∈ Rd und r2 = (r2, . . . , r2) ∈ Rd.
Im Gegensatz zum Fall der klassischen isotropen Besov- und Triebel-Lizorkin-Räume zeigt
es sich, dass die Abschätzungen der Entropiezahlen von dem zweiten Parameter q abhängen.
Die benutzte Methode liefert uns das Ergebnis leider nur unter gewissen Einschränkungen
an die Parameter. Wir beweisen, dass die Einbettung in (1) genau dann kompakt ist, wenn

α = r1 − r2 −max
( 1

p1

− 1

p2

, 0
)
> 0. (2)

Die direkte Methode liefert uns die Abschätzung für (1) nur für

α >
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
.

Wir überwinden dieses Hinderniss in Kapitel 4 mit Hilfe der komplexen Interpolationsmeth-
ode von O. Mendez and M. Mitrea (vergl. [20]). Das abschliessende Resultat ist:

Unter der Bedingung (2) gilt

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≥ c kr2−r1(log k)
(d−1)(r1−r2+

1
q2
− 1

q1
)+ .

Falls r1 − r2 − 1
q1

+ 1
q2
> 0, dann gilt

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ c kr2−r1(log k)
(d−1)(r1−r2+

1
q2
− 1

q1
)
.

Falls r1 − r2 − 1
q1

+ 1
q2
≤ 0, so existiert für jedes ε > 0 eine Konstante cε > 0, so dass

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ cε k
r2−r1(log k)ε.

(Siehe Theorem 4.11 für die exakte Formulierung.) Im Abschnitt 4.6 vergleichen wir die
erzielte Resultate mit Abschätzungen von Entropiezahlen der Einbettungen von Funktio-
nenräumen mit dominierenden Glattheitseigenschaften von Belinsky [4], Dinh Dung [8] und
Temlyakov [30].
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Preface

We study the function spaces with dominating mixed smoothness. First spaces of this type
were defined by S. M. Nikol’skij in [21] and [22]. He introduced the spaces of Sobolev type

SrpW (R2) =
{
f |f ∈ Lp(R2), ||f |SrpW (R2)|| = ||f |Lp||+
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where 1 < p < ∞, ri = 0, 1, 2, . . . ; (i = 1, 2). The mixed derivative ∂r1+r2f

∂x
r1
1 ∂x

r2
2

plays the

dominant part here and gave the name to this class of spaces. The detailed study of spaces
of such type was performed by many authors, for example T. I. Amanov, O. V. Besov,
K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skij, M. K. Potapov and H.–J. Schmeisser. We
refer to [1] for a systematic treatment of this topic. As in the theory of classical Sobolev
spaces an alternative definition in terms of Fourier transform may be given (see (1.8) and
(1.9)). This definition is based on a decomposition

f =
∑

k∈Nd
0

(ϕk1 ⊗ · · · ⊗ ϕkd
f̂)∨, convergence in S ′(Rd),

where {ϕk}k∈N0 is a decomposition of unity on R known from the theory of classical Besov
spaces and ϕk = ϕk1 ⊗ · · · ⊗ ϕkd

, k = (k1, . . . , kd), is a tensor product.

We refer mainly to [26], as far as the Fourier-analytic approach to these spaces is considered.
In Chapter 2 of this book the classical theory of spaces with dominating mixed smoothness
properties is developed. Several types of equivalent quasinorms, embedding and trace theo-
rems and characterisation of these spaces by differences are proved there. One studies also
basic properties of crucial operators on these spaces, namely of lifting and maximal opera-
tors and Fourier multipliers. We recall some facts from this book, which shall be useful later
on, in Chapter 1. In contrary to [26], we do not restrict the dimension of the underlying
Euclidean space to d = 2, hence we state these results formulated for general dimension
d ≥ 2. As mentioned in [26], this generalisation is obvious.

The second Chapter is devoted to local means, atomic, subatomic and wavelet decomposi-
tions of spaces with dominating mixed smoothness. We state the result for both Besov and
Triebel-Lizorkin spaces but in some cases we give the proofs only for the Triebel-Lizorkin
scale. The proofs for Besov-type spaces are omitted as they are very similar to the proofs
presented here. First of all, we characterise this class of spaces by so-called local means. See
Theorem 1.25 for details. This fundamental characterisation serves us as a basis for all three
decomposition techniques.

By atomic decomposition of a function f one usually means a decomposition of a type

f(x) =
∑

ν

∑

m

λν maν m(x), convergence in S ′(Rd),

where aν m are some simple building blocks, called atoms, and λν m are complex numbers.
A function f then belongs to some function space if and only if the sequence of coefficients
{λν m}ν,m belongs to some sequence space. For the exact formulation see Theorem 2.4. Let
us mention that the atoms are specified only implicitly - a function a is an atom if and only
if it satisfies some qualitative properties (see Definition 2.3).
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By a subatomic decomposition we mean a decomposition of a type

f(x) =
∑

β

∑

ν

∑

m

λβν m(βqu)ν m(x), convergence in S ′(Rd),

where (βqu)ν m(x) are so-called quarks and λβν m are complex numbers. A quark is a special
type of atom defined explicitly by (2.36). Hence the basic building blocks, quarks, are much
more specific in this kind of decomposition. The price one has to pay for that is a more
complicated connection between f and {λβν m}. It is described in detail in Theorem 2.6.
The last decomposition technique developed here is the wavelet decomposition. In that case
a class of compactly supported wavelets is used as the building blocks, see Theorems 2.10
and 2.11 for precise formulation. The main advantage of the wavelet decomposition is the
uniqueness of the series obtained. The price paid for that is the limited smoothness of the
compactly supported wavelets.

In this sense each of these decompositions has its advantages and disadvantages. But all
of them have something in common : they establish a connection between function spaces
and sequence spaces. As the sequence spaces are simpler to deal with, it turns out that this
connection is very useful in many situations (embeddings, traces, entropy numbers, . . . ). On
this place we have to mention another important way how to switch from function spaces
to sequence spaces — namely the so-called ϕ-transform of M. Frazier and B. Jawerth. We
refer to [15] and references given there for details.

The classical theory of atomic decompositions of Besov and Triebel-Lizorkin spaces was
developed mainly in the works M. Frazier and B. Jawerth ([12], [13]) and H. Triebel ([33],
[34]). The subatomic decomposition of these spaces is due to H. Triebel ([35], [37]). We
follow their ideas and prove similar decomposition theorems for spaces with dominating
mixed derivatives. This is done in Chapter 2 and is one of the main results of this work.

In the third chapter we study the entropy numbers of embeddings of sequence spaces asso-
ciated with the function spaces with dominating mixed smoothness. The notion of entropy
numbers has its roots in the study of metric entropy done in 1930’s by Kolmogorov. Given
a bounded linear operator T between two quasi-Banach spaces A and B (T ∈ L(A,B)), the
quantity ek(T ), k ∈ N, denotes, roughly speaking, the smallest radius ǫ > 0 such that the
image of the unit ball of A under the operator T may be covered by 2k−1 balls in B of radius
ǫ. The sequence {ek(T )}∞k=1 tends to zero if, and only if, the operator T is compact. The
decay of this sequence is then understood as a measure of compactness of T . The crucial
property of entropy numbers was observed by Carl [6], who proved that the entropy numbers
of a compact operator T ∈ L(A,A) dominate in some sense its eigenvalues. In general, we
use the method of [10] in this part.

We use the decomposition techniques to reduce this question to the sequence space level.
Namely, it turns out that

ek(id : Sr1p1,q1A(Ω) →֒ Sr2p2,q2A(Ω)) ≈ ek(id : sr1p1,q1a(Ω) →֒ sr2p2,q2a(Ω)), (1)

where the constants of equivalence do not depend on k ∈ N. So, in the third chapter we study
mainly the entropy numbers of embeddings of sequence spaces. We restrict ourselves to the
case r1 = (r1, . . . , r1) ∈ Rd and r2 = (r2, . . . , r2) ∈ Rd. Unlike in the case of the classical
Besov and Triebel-Lizorkin spaces, it turns out that the estimates of entropy numbers depend
on the second, fine, summability parameter q. Unfortunately, the method used here gives
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the optimal answer only under some restriction on the parameters involved. We prove that
the embeddings appearing in (1) is compact if, and only if,

α = r1 − r2 −max
( 1

p1

− 1

p2

, 0
)
> 0. (2)

But the direct method gives the estimates for (1) only for

α >
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
.

We overcome this obstacle in Chapter 4 by the use of a complex interpolation method as
developed by O. Mendez and M. Mitrea in [20]. Our final result may be summarised in the
following way.

Under condition (2),

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≥ c kr2−r1(log k)
(d−1)(r1−r2+

1
q2
− 1

q1
)+ .

If r1 − r2 − 1
q1

+ 1
q2
> 0 then

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ c kr2−r1(log k)
(d−1)(r1−r2+

1
q2
− 1

q1
)
.

If r1 − r2 − 1
q1

+ 1
q2
≤ 0 then for every ε > 0 there is a constant cε > 0 such that

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A(Ω)) ≤ cε k
r2−r1(log k)ε.

(See Theorem 4.11 for exact formulation). Finally, we compare results obtained by this
method with estimates on entropy numbers of embeddings of function spaces with dominat-
ing mixed smoothness obtained by Belinsky [4], Dinh Dung [8] and Temlyakov [30].
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1 Function spaces on R
d

Our aim in this Chapter is to recall the known aspects of the theory of function spaces with
dominating mixed smoothness Srp,qB(Rd) and Srp,qF (Rd). First of all, we introduce some
basic notation which we shall need later on. Then we quote some definitions and theorems
stated in [26] which are crucial in the sequel. In the last part we develop the so-called local
mean characterisation of the spaces Srp,qB(Rd) and Srp,qF (Rd).

1.1 Notation

As usual, Rd denotes the d−dimensional real Euclidean space, N the collection of all natural
numbers and N0 = N ∪ {0}. The letter Z stands for the set of all integer numbers and C

denotes the plain of complex numbers.

We denote the points of the underlying Euclidean space by x, y, z, . . . . Their components
are numbered from 1 to d, hence x = (x1, . . . , xd). If x, y ∈ R

d, we write x > y if, and only if,
xi > yi for every i = 1, . . . , d. Similarly, we define the relations x ≥ y, x < y, x ≤ y. Finally,
in slight abuse of notation, we write x > λ for x ∈ Rd, λ ∈ R if xi > λ, i = 1, . . . , d.

The d−dimensional vector indices will be denoted by k, l,m, . . . and their components are
also numbered, hence k = (k1, . . . , kd). When α = (α1, . . . , αd) ∈ Nd

0 is a multi-index, we
denote its length by |α| = ∑d

j=1 αj . The derivatives Dα = ∂|α|/∂xα1
1 · · ·∂xαd

d have the usual
distributive meaning as well as the symbol xα = xα1

1 · · ·xαd

d .

Let S(Rd) be the Schwartz space of all complex–valued rapidly decreasing infinitely differ-
entiable functions on Rd. We denote the d−dimensional Fourier transform of a function
ϕ ∈ S(Rd) by Fϕ, F(ϕ) or by ϕ̂. Its inverse is denoted by F−1ϕ, F−1(ϕ) or ϕ∨. Both F
and F−1 are extended to the dual Schwartz space S ′(Rd) in the usual way. Sometimes, we
need to distinguish between the d−dimensional and one-dimensional Fourier transform. In
that case we denote the later by F1 or ∧1 and its inverse by F−1

1 or ∨1. We point out that
for functions ϕ(x) = ϕ1(x1) · · ·ϕd(xd) = (ϕ1 ⊗ · · · ⊗ ϕd)(x) the following formula connects
F with F1

(Fϕ)(ξ) = (F1ϕ1)(ξ1) · · · (F1ϕd)(ξd) = ((F1ϕ1)⊗ · · · ⊗ (F1ϕd))(ξ), ξ ∈ R
d. (1.1)

Let 0 < p, q ≤ ∞. Having a sequence of complex-valued functions {fk}k∈Nd
0

on Rd, we put

||fk|ℓq(Lp)|| =
(∑

k∈Nd
0

||fk|Lp(Rd)||q
)1/q

=
(∑

k∈Nd
0

(∫

Rd

|fk(x)dx|p
)q/p)1/q

(1.2)

and

||fk|Lp(ℓq)|| =
∣∣∣∣
∣∣∣∣
(∑

k∈Nd
0

|fk(x)|q
)1/q

|Lp(Rd)

∣∣∣∣
∣∣∣∣ =

(∫

Rd

(∑

k∈Nd
0

|fk(x)|q
)p/q

dx

)1/p

, (1.3)

appropriately modified when p and/or q =∞.

We denote a+ = max(a, 0) for a real number a ∈ R. Furthermore, let

σpq =
( 1

min(p, q)
− 1
)

+
and σp =

(1

p
− 1
)

+
(1.4)
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for every 0 < p ≤ ∞ and 0 < q ≤ ∞.

All unimportant constants are denoted by c. So, the meaning of the letter c may change
from one occurrence to another. By ak ≈ bk we mean that there are two constants c1, c2 > 0
such that c1ak ≤ bk ≤ c2 for every admissible k.

1.2 Definitions and basic properties

In this section we define the function spaces with dominating mixed smoothness on Rd and
recall their basic properties as they are described in [26]. We quote the results for general
dimension d of the underlying space Rd, although they were stated and proved only for d = 2
in [26]. But, as mentioned there, this generalisation is rather obvious.

1.2.1 Definitions

Definition 1.1. Let Φ(R) be the collection of all systems {ϕj(t)}∞j=0 ⊂ S(R) such that
{

suppϕ0 ⊂ {t ∈ R : |t| ≤ 2}
suppϕj ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1} if j = 1, 2, . . . ;

(1.5)

for every α ∈ N0 there exists a positive constant cα such that

2jα|Dαϕj(t)| ≤ cα for all j = 0, 1, 2, . . . and all t ∈ R, (1.6)

and
∞∑

j=0

ϕj(t) = 1 for every t ∈ R. (1.7)

For k = (k1, . . . , kd) ∈ Nd
0 and x = (x1, . . . , xd) ∈ Rd we define ϕk(x) = ϕk1(x1) · · ·ϕkd

(xd).

Using this kind of notation, we can give a definition of spaces Srp,qB(Rd) and Srp,qF (Rd).

Definition 1.2. Let r = (r1, . . . , rd) ∈ Rd, 0 < q ≤ ∞ and ϕ = {ϕj}∞j=0 ∈ Φ(R).

(i) Let 0 < p ≤ ∞. Then Srp,qB(Rd) is the collection of all f ∈ S ′(Rd) such that

||f |Srp,qB(Rd)||ϕ =
(∑

k∈Nd
0

2qk·r||(ϕkf̂)∨|Lp(Rd)||q
)1/q

= ||2k·r(ϕkf̂)∨|ℓq(Lp)|| (1.8)

is finite.

(ii) Let 0 < p <∞. Then Srp,qF (Rd) is the collection of all f ∈ S ′(Rd) such that

||f |Srp,qF (Rd)||ϕ =
∣∣∣
∣∣∣
(∑

k∈Nd
0

|2k·r(ϕkf̂)∨(·)|q
)1/q

|Lp(Rd)
∣∣∣
∣∣∣ = ||2k·r(ϕkf̂)∨|Lp(ℓq)|| (1.9)

is finite.

Remark 1.3. According to (1.7), we have

∑

k∈Nd
0

ϕk(x) =
( ∞∑

k1=0

ϕk1(x1)
)
· · ·
( ∞∑

kd=0

ϕkd
(xd)

)
= 1 for all x = (x1, . . . , xd) ∈ R

d.

In this sense, {ϕk}k∈Nd
0

is also a decomposition of unity, in this case on Rd.

Remark 1.4. The symbol Srp,qA(Rd) stays, as usual, for Srp,qB(Rd) and Srp,qF (Rd) respectively.
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1.2.2 Basic inequalities

One of the most important questions in the theory of spaces Srp,qA(Rd) is the independence
of Definition 1.2 on the system ϕ = {ϕk}k∈Nd

0
. The answer is given by

Theorem 1.5. Let {ϕj}∞j=0, {ψj}∞j=0 ∈ Φ(R). Let r = (r1, . . . , rd) ∈ Rd and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then ||f |Srp,qB(Rd)||ϕ and ||f |Srp,qB(Rd)||ψ are equivalent quasinorms.
Furthermore, Srp,qB(Rd) is a quasi-Banach space (Banach space if min(p, q) ≥ 1) and

S(Rd) ⊂ Srp,qB(Rd) ⊂ S ′(Rd).

(ii) Let 0 < p < ∞. Then ||f |Srp,qF (Rd)||ϕ and ||f |Srp,qF (Rd)||ψ are equivalent quasinorms.
Furthermore, Srp,qF (Rd) is a quasi-Banach space (Banach space if min(p, q) ≥ 1) and

S(Rd) ⊂ Srp,qF (Rd) ⊂ S ′(Rd).

For the proof in the case d = 2, see [26, pages 87, 93]. So, we may write ||f |Srp,qB(Rd)|| and
||f |Srp,qF (Rd)|| without any index ϕ or ψ meaning one of these equivalent quasinorms.

Remark 1.6. The reader noticed that we did not define the spaces Srp,qF (Rd) for p = ∞.
The reason is very similar to the case of classical Triebel–Lizorkin spaces. If one extends
Definition 1.2 to the case p =∞, which is actually possible, than there is no counterpart of
Theorem 1.5. In particular, these spaces do depend on the choice of the system {ϕj} ∈ Φ(R).

We recall also the following version of the famous Nikol’skij inequality which is due to
B. Stöckert [29] and A. P. Uninskij [39].

Theorem 1.7. (Nikol’skij inequality) Let 0 < p ≤ u ≤ ∞ and α = (α1, . . . , αd) ∈ N
d
0. Let

b = (b1, . . . , bd) > 0 and Qb = [−b1, b1] × · · · × [−bd, bd] ⊂ Rd. Then there exists a positive
constant c, which is independent of b, such that

||Dαf |Lu(Rd)|| ≤ c b
α1+ 1

p
− 1

u

1 · · · bαd+ 1
p
− 1

u

d ||f |Lp(Rd)||

holds for every f ∈ S ′(Rd) ∩ Lp(Rd) with supp f̂ ⊂ Qb.

1.2.3 Lifting property

As in the case of classical Besov and Triebel-Lizorkin spaces, we can define a lifting operator.

Definition 1.8. Let ρ = (ρ1, . . . , ρd) ∈ Rd. Then we define the so-called lifting operator Iρ
by

Iρf = F−1(1 + ξ2
1)
ρ1/2 · · · (1 + ξ2

d)
ρd/2Ff, f ∈ S ′(Rd). (1.10)

Theorem 1.9. Let 0 < q ≤ ∞, ρ, r ∈ Rd.

(i) Let 0 < p ≤ ∞. Then Iρ maps Srp,qB(Rd) isomorphically onto Sr−ρp,q B(Rd) and
||Iρf |Sr−ρp,q B(Rd)|| is an equivalent quasinorm in Srp,qB(Rd).

(ii) Let 0 < p <∞. Then Iρ maps Srp,qF (Rd) isomorphically onto Sr−ρp,q F (Rd) and
||Iρf |Sr−ρp,q F (Rd)|| is an equivalent quasinorm in Srp,qF (Rd).

The proof may be again found in [26, page 98].
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1.2.4 Maximal operators

It has been observed throughout many decades that maximal operators (and their bound-
edness on appropriate function spaces) play a crucial role in harmonic analysis and function
spaces theory. Our constructions given later are based on the Hardy–Littlewood maximal
operator and the maximal operator of Peetre. Now we give the definition of the first one.
For the definition of the latter one, see Section 1.3.1.

For every locally integrable function f(x) ∈ Lloc1 (Rd) we define the classical Hardy-Littlewood
maximal operator

(Mf)(x) = sup
Q

1

|Q|

∫

Q

|f(y)|dy, x ∈ R
d, (1.11)

where the supremum is taken over all cubes Q centred at x with sides parallel with coordinate
axes. The symbol |Q| denotes the Lebesgue mass of the cube Q. The famous Hardy-
Littlewood inequality tells that for every p with 1 < p ≤ ∞ there is a c such that

||Mf |Lp(Rd)|| ≤ c ||f |Lp(Rd)||, f ∈ Lp(Rd). (1.12)

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Fefferman
and E. M. Stein [11].

Theorem 1.10. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

||Mfk|Lp(ℓq)|| ≤ c ||fk|Lp(ℓq)|| (1.13)

holds for all sequences {fk}k∈Nd
0

of locally Lebesgue-integrable functions on Rd.

To reflect the tensor structure of the decomposition of unity ϕ = {ϕk} used in Definition
1.2, we consider following ”directional” maximal operators. We define

(M1f)(x) = sup
s>0

1

2s

∫ x1+s

x1−s

|f(t, x2, . . . , xd)|dt (1.14)

and in a similar way for other variables. We denote the composition of these operators by
M = Md ◦ · · · ◦M1. The following maximal theorem is due to R. J. Bagby [2] (actually, it
is a special case of more general theorem given there).

Theorem 1.11. Let 1 < p <∞ and 1 < q ≤ ∞. There exists a constant c such that

||Mifk|Lp(ℓq)|| ≤ c ||fk|Lp(ℓq)||, i = 1, . . . , d (1.15)

holds for all sequences {fk}k∈Nd
0
⊂ Lp(ℓq) of functions on Rd.

Iteration of this theorem shows that the estimate (1.15) holds also for the operator M .

1.2.5 Fourier multipliers

Let Ω = {Ωk}k∈Nd
0

be the sequence of compact subsets of R
d with following properties

Ωk = {x ∈ R
d : |x1| ≤ a1,k1, . . . , |xd| ≤ ad,kd

} with a1,k1, . . . , ad,kd
> 0.
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Theorem 1.12. Let 0 < p < ∞, 0 < q ≤ ∞ and r = (r1, . . . , rd) >
1

min(p,q)
+ 1

2
. Let

Ω = {Ωk}k∈Nd
0
, a1,k1 , . . . , ad,kd

> 0 be the same sequences as above. Then there is a positive
constant c such that

||(̺kf̂k)∨|Lp(ℓq)|| ≤ c
(

sup
k∈Nd

0

||̺k(a1,k1 ·, . . . , ad,kd
·)|Sr2,2F (Rd)||

)
· ||fk|Lp(ℓq)||

holds for all systems {fk} ∈ Lp(ℓq) with supp f̂k ⊂ Ωk and all systems {̺k} ⊂ Sr2,2F (Rd).

Remark 1.13. The proof may be found in [26, page 77].

1.2.6 Littlewood-Paley theory

We state also a theorem of Littlewood-Paley type for spaces with dominating mixed smooth-
ness. But first we define the Sobolev spaces with dominating mixed smoothness. This is the
very direct generalisation of the definition of Nikol’skij given in the Preface.

Definition 1.14. Let 1 < p <∞ and r = (r1, . . . , rd) ∈ Nd
0. We put

SrpW (Rd) = {f |f ∈ Lp(Rd), ||f |SrpW (Rd)|| =
∑

0≤α≤r

||Dαf |Lp(Rd)|| <∞}.

Clearly, we have S0
pW (Rd) = Lp(R

d). The connection between SrpW (Rd) and Srp,qF (Rd) is
then given by

Theorem 1.15. Let 1 < p <∞ and r = (r1, . . . , rd) ∈ Nd
0. Then

SrpW (Rd) = Srp,2F (Rd)

where the corresponding norms are equivalent to each other.

Remark 1.16. See [26, page 104] for details.

1.3 Local means

In this part we present the main technical tool, namely, we characterise the spaces Srp,qA(Rd)
by the so–called local means. In general, we follow the method presented by Rychkov [25].
Recall, that the spaces Srp,qA(Rd) were introduced by Definition 1.2 and, according to The-
orem 1.5, we know that this definition does not depend on the choice of the decomposition
of unity {ϕj}∞j=0 ⊂ Φ(R). Hence we may fix some specific system {ϕj}∞j=0 for the rest of our
work.

We fix ϕ(x) ∈ S(R) with

ϕ(x) = 1 if |x| ≤ 4

3
and ϕ(x) = 0 if |x| ≥ 3

2
.

We put ϕ0 = ϕ, ϕ1(x) = ϕ(x
2
)− ϕ(x) and

ϕj(x) = ϕ1(2
−j+1x), x ∈ R, j ∈ N.

One verifies easily that (1.5)–(1.7) holds.
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1.3.1 The Peetre maximal operator

Next we discuss the analogy of the Peetre maximal operator introduced in [23]. The con-
struction of Peetre adapted to the case of function spaces with dominating mixed smoothness
assigns to every system {ψk}k∈Nd

0
⊂ S(Rd), to every distribution f ∈ S ′(Rd) and to every

vector a > 0 the following quantities

sup
y∈Rd

|(ψkf̂)∨(y)|
∏d

i=1(1 + |2ki(yi − xi)|ai)
, x ∈ R

d, k ∈ N
d
0. (1.16)

As ψk ∈ S(Rd) for every k ∈ Nd
0 then ψk f̂ is well defined for every f ∈ S ′(Rd) and, according

to the Theorem of Paley–Wiener–Schwartz (see [32] and references given there for details),
(ψkf̂)∨ is an analytic function. In particular, (ψkf̂)∨(y) makes sense pointwise.

Unfortunately, as we are interested also in non–smooth kernels (for details, see Section 2.4),
we need to consider also kernels ψk 6∈ S(Rd). We weaken in a natural way the definition of

the Schwartz space S(Rd) and obtain the class of spaces XS(Rd) defined for every S ∈ N
d
0

by

XS(Rd) = {ϕ ∈ SS2 W (Rd) : ||ϕ|XS(Rd)|| <∞},

||ϕ|XS(Rd)|| =
( ∑

0≤α,β≤S

||xβDαϕ(x)|L2(R
d)||2

)1/2

.

We denote ω(x) =
∏d

i=1(1 + x2
i )

Si
2 and observe that ϕ ∈ XS(Rd) if, and only if, ω · Dαϕ ∈

L2(R
d) for every 0 ≤ α ≤ S. This is obviously equivalent to Dα(ω · ϕ) ∈ L2(R

d) for every

0 ≤ α ≤ S, which may be written as ω · ϕ ∈ SS2 W (Rd). Hence

ϕ ∈ XS(Rd) if, and only if, ω · ϕ ∈ SS2W (Rd).

This allows us to characterise the dual of XS(Rd). We get

ψ ∈ (XS(Rd))′ if, and only if, ω−1 · ψ ∈ (SS2 W (Rd))′ = S−S2,2 F (Rd).

As a trivial consequence of the embedding (S ∈ Nd
0)

XS(Rd) →֒ SS2W (Rd) →֒ S
S− 1

2
∞,∞B(Rd)

we get for every K ∈ Nd
0 and every S ≥ K + 1

XS(Rd) →֒ CK(Rd).

Having now a function Ψk ∈ XS(Rd) and some distribution f ∈ (XS(Rd))′, we write

(f ∗Ψk)(y) =

∫

Rd

f(x)Ψk(y − x)dx = f(Ψk(y − ·)), y ∈ R
d.

So, given a system {ψk}k∈Nd
0
⊂ XS(Rd) for some S ∈ Nd

0, we denote Ψk = ψ̂k ∈ XS(Rd) and

define in analogy with (1.16) for every f ∈ (XS(Rd))′

(Ψ∗
k
f)a(x) = sup

y∈Rd

|(Ψk ∗ f)(y)|
∏d

i=1(1 + |2ki(yi − xi)|ai)
, x ∈ R

d, k ∈ N
d
0. (1.17)

Furthermore, for S =∞, we put XS(Rd) = S(Rd).
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1.3.2 Helpful lemmas

We split the proof of the local–mean characteristics of Besov and Triebel–Lizorkin spaces and
give in this subsection the technical lemmas. This will allow us a straightforward proof later
on. The lemmas originate in [25] and we quote them only with some minor modifications,
mainly forced by the tensor structure of function spaces with dominated mixed smoothness.

We start with lemma describing the use of the so–called moment conditions.

Lemma 1.17. Let K ∈ N0 and g, h ∈ XK+2(R). Furthermore, let M ≥ −1,M ≤ K be an
integer and

(Dαĝ)(0) = 0, 0 ≤ α ≤M.

Then for every N ∈ N0 with 0 ≤ N ≤ K there is a constant CN such that

sup
z∈R

|(gb ∗ h)(z)|(1 + |z|N) ≤ CNb
M+1, 0 < b < 1, (1.18)

where gb(t) = b−1g(t/b).

Proof. Using the elementary properties of the Fourier transform we get

LHS(1.18) ≤ c max
0≤α≤N

||Dα[(gb ∗ h)∧]|L1(R)||.

By Leibnitz formula,

|Dα[ĝ(b·)ĥ(·)](ξ)| ≤ c
∑

0≤β≤α

bβ|(Dβ ĝ)(bξ)(Dα−βĥ)(ξ)|, ξ ∈ R. (1.19)

As ĝ ∈ CM+1(R), we may use the Taylor formula and get

|(Dβ ĝ)(bξ)| ≤ c|bξ|M−β+1, 0 ≤ β ≤ M (1.20)

for |bξ| ≤ 1. But, as Dβ ĝ ∈ C(R), (1.20) holds for all b, ξ ∈ R. Hence, for 0 ≤ β ≤ M , we
get

bβ |(Dβĝ)(bξ)(Dα−βĥ)(ξ)| ≤ c bM+1|(Dα−βĥ)(ξ)| · |ξ|(M−β+1)+ , ξ ∈ R. (1.21)

If M < β ≤ K and 0 < b < 1, we have bβ ≤ bM+1 which, together with Dβ ĝ ∈ C(R), gives
(1.21) for all 0 ≤ β ≤ K.

We put (1.21) into (1.19) and obtain (1.18).

Furthermore, we shall need the following convolution inequality.

Lemma 1.18. Let 0 < p, q ≤ ∞, δ > 0. Let {gk}k∈Nd
0

be a sequence of nonnegative

measurable functions on Rd and let

Gν(x) =
∑

k∈Nd
0

2−|ν−k|δgk(x), x ∈ R
d, ν ∈ N

d
0. (1.22)

Then there is some constant C = C(p, q, δ) such that

||Gk|ℓq(Lp)|| ≤ C||gk|ℓq(Lp)|| (1.23)

||Gk|Lp(ℓq)|| ≤ C||gk|Lp(ℓq)||. (1.24)
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Proof. Step 1.

We start with the proof of (1.23). If p ≥ 1, we get by triangle inequality

||Gν |Lp(Rd)|| ≤
∑

k∈Nd
0

2−|ν−k|δ||gk|Lp(Rd)||, ν ∈ N
d
0.

When q ≤ 1, we use the embedding ℓq →֒ ℓ1 and get

||Gν |ℓq(Lp)|| ≤
(∑

ν∈Nd
0

∑

k∈Nd
0

2−|ν−k|δq||gk|Lp(Rd)||q
)1/q

.

Interchanging the order of summation, we get (1.23) with C = C1 = (
∑

k∈Zd 2−|k|δq)1/q.

If q > 1, we apply Young’s inequality. We denote

λk = 2−|k|δ, k ∈ Z
d, (1.25)

γk = ||gk|Lp(Rd)||, k ∈ N
d
0 and γk = 0 for k ∈ Z

d \ N
d
0.

Then we get
||Gν|Lp(Rd)|| ≤ (λ ∗ γ)(ν), ν ∈ N

d
0

and Young’s convolution inequality gives

||λ ∗ γ|ℓq|| ≤ ||λ|ℓ1|| · ||γ|ℓq||.

This proves (1.23) with C = C2 = ||λ|ℓ1||.
If p < 1, we use the ℓp →֒ ℓ1 embedding and get

∫

Rd

Gp
ν(x)dx ≤

∑

k∈Nd
0

2−|ν−k|δp
∫

Rd

gp
k
(x)dx

For q/p ≤ 1 this implies
∑

ν∈Nd
0

||Gν |Lp(Rd)||q ≤
∑

ν∈Nd
0

∑

k∈Nd
0

2−|ν−k|δq||gk|Lp(Rd)||q.

Now we interchange again the order of summation and take the 1/q power. This proves
(1.23) with C = C1.

Finally, if q/p > 1, we use again Young’s inequality, with λp and γp instead of λ and γ. This
gives

||Gν |ℓq(Lp)||p ≤ ||λp|ℓ1|| · ||γp|ℓq/p||,
which proves (1.23) with C = ||λ|ℓp||.
Step 2.

Next we turn to (1.24). This is a trivial consequence of the pointwise inequality

||Gν(x)|ℓq|| ≤ C||gν(x)|ℓq||, x ∈ R
d, (1.26)

with C independent of x ∈ Rd.

To prove (1.26), just use the ℓq →֒ ℓ1 embedding for q ≤ 1 and Young’s inequality for q > 1.
We do not give details, which are very similar to the calculation in Step 1.
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As we do not want to exclude the case of arbitrary smooth functions, we use the following
notation. We say that the vector N = ∞ if and only if Ni = ∞ for all i = 1, . . . , d. The
symbol N ∈ Nd

0 ∪ {∞} then admits N =∞ or N to be a vector of nonnegative integers.

Lemma 1.19. Let 0 < r ≤ 1, and let {γν}ν∈Nd
0
, {βν}ν∈Nd

0
be two sequences taking values in

(0,∞). Assume that, for some N
0 ∈ Nd

0,

γν = O(2ν·N
0

), |ν| → ∞. (1.27)

Furthermore, we assume that there is N
1 ∈ Nd

0 ∪ {∞} with N
1 ≥ N

0
such that

γν ≤ CN
∑

k∈Nd
0

2−k·Nβk+νγ
1−r
k+ν

, ν ∈ N
d
0, CN <∞, (1.28)

holds for every 0 ≤ N ≤ N
1

if N
1

is finite or for every N ∈ N
d
0 if N

1
=∞.

Then, for the same set of N ,

γrν ≤ CN
∑

k∈Nd
0

2−k·Nrβk+ν , ν ∈ N
d
0, (1.29)

with the same constants CN .

Proof. Put

Γν,N = sup
k∈Nd

0

2−k·Nγk+ν , ν, N ∈ N
d
0.

By (1.28),

Γν,N ≤ CN sup
k∈Nd

0

∑

l∈Nd
0

2−(k+l)·Nβl+k+νγ
1−r
l+k+ν

= CN sup
k∈Nd

0

∑

l∈Nd
0+k

2−l·Nβl+νγ
1−r
l+ν

= CN
∑

l∈Nd
0

2−l·Nβl+νγ
1−r
l+ν

(1.30)

≤ CNΓ1−r
ν,N

∑

l∈Nd
0

2−l·Nrβl+ν

When Γν,N <∞, we finish the proof by

γrν ≤ Γr
ν,N
≤ CN

∑

l∈Nd
0

2−l·Nrβl+ν . (1.31)

From (1.27), Γν,N is finite for all N
0 ≤ N ≤ N

1
(or for all N

0 ≤ N if N
1

= ∞). As the

right–hand side of (1.29) decreases when N increases in any coordinate, this proves (1.29)

9



also for all N 6≥ N
0

with the constant CN∗ , where N
∗

i = max(N
0

i , N i). Take now any

N 6≥ N
0

and apply (1.29) with CN∗ instead of CN to get

Γν,N = sup
k∈Nd

0

2−k·Nγk+ν

≤ sup
k∈Nd

0

(
CN∗

∑

l∈Nd
0

2−(k+l)·Nrβl+k+ν
)1/r

= C
1/r

N
∗

(∑

l∈Nd
0

2−l·Nrβl+ν
)1/r

,

which is finite whenever the right–hand side of (1.29) is finite (otherwise there is nothing
to prove). So, even in this case, we may apply (1.30) and (1.31) and finish the proof of the
lemma.

1.3.3 Comparison of different Peetre maximal operators

In this subsection we present one inequality between different Peetre maximal operators.
This inequality (together with the boundedness of Peetre maximal operator) forms the basis
for our characterisation of Srp,qA(Rd) through local means.

Because of the limited smoothness of our kernel functions (discussed in detail in section 2.4),
we cannot expect to get such an inequality for all f ∈ S ′(Rd).

We start with (given) functions ψi0, ψ
i
1, i = 1, . . . , d defined on R and denote

ψij(t) = ψi1(2
−j+1t), t ∈ R, j = 2, 3, . . . ,

ψk(x) =
d∏

i=1

ψiki
(xi), x ∈ R

d, k ∈ N
d
0, (1.32)

Ψk = ψ̂k, k ∈ N
d
0.

To (also given) functions φi0, φ
i
1, i = 1, . . . , d we associate φk and Φk in the same way. Fur-

thermore, we suppose that ψk, φk ∈ XS(Rd) for some S ∈ Nd
0.

Using this notation we may state the main result of this section.

Theorem 1.20. Let a, r ∈ R
d, R ∈ N

d
0, 0 < p, q ≤ ∞ with a > 0 and r < R+ 1. If S > R is

large enough,
Dlψi(0) = 0, i = 1, . . . , d, l = 0, 1, . . . , Ri, (1.33)

and, for every i = 1, . . . , d and some ε > 0,

|φi0(t)| > 0 on {t ∈ R : |t| < ε} (1.34)

|φi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε} (1.35)

then

||2k·r(Ψ∗
k
f)a|ℓq(Lp)|| ≤ c||2k·r(Φ∗

k
f)a|ℓq(Lp)|| (1.36)

||2k·r(Ψ∗
k
f)a|Lp(ℓq)|| ≤ c||2k·r(Φ∗

k
f)a|Lp(ℓq)|| (1.37)

for all f ∈ (XS(Rd))′.

10



Proof. Step 1. — formal calculations.

It follows from (1.34) and (1.35) that there exist functions {λij}∞j=0, i = 1, . . . , d with

∞∑

j=0

λij(t)φ
i
j(t) = 1, t ∈ R, (1.38)

λij(t) = λi1(2
−j+1t), t ∈ R, j ∈ N, (1.39)

supp λi0 ⊂ {t ∈ R : |t| ≤ ε} and supp λij ⊂ {t ∈ R : 2j−2ε ≤ |t| ≤ 2jε}, j ∈ N. (1.40)

Now we define, as usually, λk(x) = λ1
k1

(x1) · · ·λdkd
(xd) for every k ∈ Nd

0. From (1.38) we
obtain ∑

k∈Nd
0

λk(x)φk(x) = 1, x ∈ R
d.

Finally, we denote Λk = λ̂k, k ∈ Nd
0. This gives us the following identities

f =
∑

k∈Nd
0

Λk ∗ Φk ∗ f, Ψν ∗ f =
∑

k∈Nd
0

Ψν ∗ Λk ∗ Φk ∗ f, ν ∈ N
d
0. (1.41)

We have

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)| ≤
∫

Rd

|(Ψν ∗ Λk)(z)| · |(Φk ∗ f)(y − z)|dz

≤ (Φ∗
k
f)a(y)

∫

Rd

|(Ψν ∗ Λk)(z)|
d∏

i=1

(1 + |2kizi|ai)dz (1.42)

≡ (Φ∗
k
f)a(y)Iνk = (Φ∗

k
f)a(y)

d∏

i=1

Iνiki
,

where

Iνiki
=

∫

R

|(Ψi
νi
∗ Λi

ki
)(zi)|(1 + |2kizi|ai)dzi.

We claim that by Lemma 1.17,

Iνiki
≤ C

{
2(ki−νi)(Ri+1), if ki ≤ νi

2(νi−ki)(ai+|ri|+1), if ki ≥ νi.
(1.43)

We namely have (for 1 ≤ ki < νi) with the change of variables 2kizi → zi

Iνiki
=

1

2

∫

R

|(Ψi
νi−ki

∗ Λi
1(·/2))(zi)|(1 + |zi|ai)dzi

≤ c sup
z∈R

|(Ψi
νi−ki

∗ Λi
1(·/2))(zi)|(1 + |zi|ai+2) ≤ c 2(ki−νi)(Ri+1),

when Si are chosen sufficiently large.

Analogously, for 1 ≤ νi < ki with the change of variables 2νizi → zi

Iνiki
≤ 2(ki−νi)ai

∫

R

|(Ψi
1 ∗ Λi

ki−νi
)(zi)|(1 + |zi|ai)dzi

≤ c 2(νi−ki)(−ai+M+1),
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where M may be taken as large as Si allows. Taking M > 2ai + |ri| (which is possible for
Si large enough), we get (1.43). This covers the cases where νi, ki ≥ 1, νi 6= ki. The cases
ki = νi ≥ 1, ki > νi = 0 and νi > ki = 0 can be treated separately in the similar way. The
needed moment conditions are always satisfied by (1.33) or (1.40), respectively. The case
ki = νi = 0 is covered by the constant C in (1.43).

Next, we point out that

(Φ∗
k
f)a(y) ≤ (Φ∗

k
f)a(x)

d∏

i=1

(1 + |2ki(xi − yi)|ai)

≤ c (Φ∗
k
f)a(x)

d∏

i=1

(1 + |2νi(xi − yi)|ai) max(1, 2(ki−νi)ai).

We put this into (1.42) and use (1.43)

sup
y∈Rd

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)|
∏d

i=1(1 + |2νi(xi − yi)|ai)
≤ (Φ∗

k
f)a(x)

d∏

i=1

Iνiki
max(1, 2(ki−νi)ai)

≤ c (Φ∗
k
f)a(x)

d∏

i=1

{
2(ki−νi)(Ri+1), if ki ≤ νi

2(νi−ki)(|ri|+1), if ki ≥ νi.

This inequality, together with (1.41) and (1.42), gives for

δ = min{1, Ri + 1− ri; i = 1, . . . , d} > 0

the estimate

2ν·r(Ψ∗νf)a(x) ≤ c
∑

k∈Nd
0

2−|k−ν|δ2k·r(Φ∗
k
f)a(x), ν ∈ N

d
0, x ∈ R

d.

Lemma 1.18 now gives immediately the desired result.

Step 2. — theoretical background.

In the Step 1 we did not took care about problems caused by limited smoothness of functions
ψij , φ

i
j not to disturb the elegant calculation done there. Nevertheless, to complete the proof,

we have to fill some gaps. We go through the proof of the Step 1 once more and discuss the
theoretical aspects of the calculation.

• Functions λij

By the choice λij(t) = ϕj(
3t
2ε

)/φij(t) we ensure (1.38)–(1.40). The functions ϕj, j ∈ N0,
were fixed in the beginning of Section 1.3. And by conditions (1.34) and (1.35) we get

λk ∈ XS(Rd).

• Identities (1.41)

First, we point out that the expression Λk ∗ Φk ∗ f is well defined for every k ∈ Nd
0.

As the function λk = Λ∨
k

has compact support, we have Λk ∗ Φk = (λkφk)
∧ ∈ XS(Rd).

The same holds for Ψν ∗ Λk ∗ Φk.

12



Next we prove the convergence of both sums in (1.41) for every f ∈ (XS(Rd))′ and

every ν ∈ Nd
0 in (XS(Rd))′. By the duality arguments, it is enough to prove that

∑

k∈Nd
0

ψνλkφkµ→ ψνµ, ν ∈ N
d
0,

converges in XS(Rd) for every µ ∈ XS(Rd). This follows from (1.38) and (1.40).

Finally, to come over from (1.41) to (1.42), we have to ensure that (1.41) converges
also pointwise. Better said, we need to prove

|(Ψν ∗ f)(y)| ≤
∑

k∈Nd
0

|(Ψν ∗ Λk ∗ Φk ∗ f)(y)| (1.44)

for all ν ∈ Nd
0 and almost all y ∈ Rd.

Fix ν ∈ N
d
0 and let fk(y) = (Ψν ∗ Λk ∗ Φk ∗ f)(y). Then we know from (1.42) that

|fk(y)| ≤ (Φ∗
k
f)a(y)Iνk, y ∈ R

d.

By (1.43) (and by Hölder’s inequality for q > 1)

∑

k∈Nd
0

||fk|Lp(Rd)|| ≤ c||2k·r(Φ∗
k
f)a|ℓq(Lp)||.

So, whenever the right–hand side of (1.36) is finite, we obtain the Lp−convergence of
the series

∑
k∈Nd

0
|fk|. Hence, this series converges in the Lebesgue measure as well and

therefore also pointwise almost everywhere. We recommend [19] as far as several types
of convergence of sequences of functions are concerned. So, whenever the right hand
side of (1.36) is finite, we get (1.44).

When the right–hand side in (1.37) is finite, we use

||2k·r(Φ∗
k
f)a|ℓmax(p,q)(Lp)|| ≤ c||2k·r(Φ∗

k
f)a|Lp(ℓq)||

and apply the same arguments as above.

Remark 1.21. The conditions (1.33) are usually called moment conditions while (1.34) and
(1.35) are the so-called Tauberian conditions.

1.3.4 Boundedness of the Peetre maximal operator

In this subsection we present a theorem describing the boundedness of Peetre maximal oper-
ator in the framework of weighted Lp(ℓq) and ℓq(Lp) spaces. We use the notation explained
in the beginning of section 1.3.3. Especially, we still suppose that the functions ψk, k ∈ Nd

0,

belong to the space XS(Rd), where the vector S will be specified later on. Our main result
now reads as

13



Theorem 1.22. Let a, r ∈ R
d, 0 < p, q ≤ ∞. Let for every i = 1, . . . , d

|ψi0(t)| > 0 on {t ∈ R : |t| < ε} (1.45)

|ψi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε}. (1.46)

(i) If a > 1
p

and S > 0 is large enough then

||2k·r(Ψ∗
k
f)a|ℓq(Lp)|| ≤ c||2k·r(Ψk ∗ f)|ℓq(Lp)|| (1.47)

holds for all f ∈ (XS−a−1(Rd))′.

(ii) If a > 1
min(p,q)

and S > 0 is large enough then

||2k·r(Ψ∗
k
f)a|Lp(ℓq)|| ≤ c||2k·r(Ψk ∗ f)|Lp(ℓq)|| (1.48)

holds for all f ∈ (XS−a−1(Rd))′.

Proof. In analogy to (1.38)–(1.40) we find functions {λij}∞j=0, i = 1, . . . , d with (1.39), (1.40)
and

∞∑

j=0

λij(t)ψ
i
j(t) = 1, t ∈ R. (1.49)

Instead of (1.41) we now get the identity

f =
∑

k∈Nd
0

Λk ∗Ψk ∗ f.

A dilation t→ 2−νit in (1.49) leads to

Ψν ∗ f =
∑

k∈Nd
0

Λk,ν ∗Ψk,ν ∗Ψν ∗ f, ν ∈ N
d
0, (1.50)

where
Λk,ν(ξ) = [λk(2

−ν ·)]∧(ξ) = 2|ν|Λk(2
νξ), k, ν ∈ N

d
0.

Ψk,ν is defined similarly. We recall that 2νξ = (2ν1ξ1, . . . , 2
νdξd). Hence, for k ≥ 1, ν ∈ Nd

0,
we obtain Ψk,ν = Ψk+ν . To simplify the notation, we point out that

ψk(2
−νx)ψν(x) = σk,ν(x)ψk+ν(x), k, ν ∈ N

d
0,

where

σk,ν(x) =

d∏

i=1

σiki,νi
(xi),

σiki,νi
(xi) =

{
ψiνi

(xi) if ki > 0

ψi0(2
−νixi) if ki = 0.

Hence we may rewrite (1.50) as

Ψν ∗ f =
∑

k∈Nd
0

Λk,ν ∗ σ̂k,ν ∗Ψk+ν ∗ f, ν ∈ N
d
0. (1.51)
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By Lemma 1.17, the estimate

|(Λk,ν ∗ σ̂k,ν)(z)| ≤ CN2|ν|
2−k·N

∏d
i=1(1 + |2νizi|ai)

holds for k, ν ∈ N
d
0 with any N ≤ S − 2. The last estimate, together with (1.51), gives

|(Ψν ∗ f)(y)| ≤ CN2|ν|
∑

k∈Nd
0

∫

Rd

2−k·N
∏d

i=1(1 + |2νi(yi − zi)|ai)
|(Ψk+ν ∗ f)(z)|dz (1.52)

Fix now any s ∈ (0, 1]. Divide both sides of (1.52) by
∏d

i=1(1 + |2νi(xi − yi)|ai), take the
supremum over y ∈ Rd and apply following inequalities

(1 + |2νi(yi − zi)|ai)(1 + |2νi(xi − yi)|ai) ≥ c(1 + |2νi(xi − zi)|ai),

|(Ψk+ν ∗ f)(z)| ≤ |(Ψk+ν ∗ f)(z)|s(Ψ∗
k+ν

f)a(x)
1−s

d∏

i=1

(1 + |2ki+νi(xi − zi)|ai)1−s,

(1 + |2ki+νi(xi − zi)|ai)1−s

(1 + |2νi(xi − zi)|ai)
≤ 2kiai

(1 + |2ki+νi(xi − zi)|ai)s
.

Finally, we get

(Ψ∗νf)a(x) ≤ cN
∑

k∈Nd
0

2k·(a−N−1)(Ψ∗
k+ν

f)a(x)
1−s

∫

Rd

2|k+ν||(Ψk+ν ∗ f)(z)|s
∏d

i=1(1 + |2ki+νi(xi − zi)|ai)s
dz,

and apply Lemma 1.19 with

γν = (Ψ∗νf)a(x), βν =

∫

Rd

2|ν||(Ψν ∗ f)(z)|s
∏d

i=1(1 + |2νi(xi − zi)|ai)s
dz, ν ∈ N

d
0,

N
1

= S− a− 1 and N
0

giving the order of the distribution f , which is finite for S =∞ and
smaller than S if S is finite.

By Lemma 1.19, we obtain for every N ≤ S − a− 1, x ∈ R
d and ν ∈ N

d
0

(Ψ∗νf)a(x)
s ≤ CN

∑

k∈Nd
0

2−k·Ns
∫

Rd

2|k+ν||(Ψk+ν ∗ f)(z)|s
∏d

i=1(1 + |2ki+νi(xi − zi)|ai)s
dz. (1.53)

We point out that (1.53) holds for s > 1 as well with much simpler proof. In that case, we
take (1.52) with a + 1 instead of a, divide by

∏d
i=1(1 + |2νi(xi − yi)|ai) and apply Hölder’s

inequality for series and integrals.

We now choose s > 0 with 1
ai
< s < p (or 1

ai
< s < min(p, q), respectively) for every

i = 1, . . . , d. Then the function

1
∏d

i=1(1 + |zi|)ais
∈ L1(R

d),

and by the majorant property of the Hardy–Littlewood maximal operator M (see [28, Chap-
ter 2]) it follows

(Ψ∗νf)a(x)
s ≤ C ′

N

∑

k∈Nd
0

2−k·NsM(|Ψk+ν ∗ f |s)(x). (1.54)
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We choose N > 0 such that N > −r and denote

gk(x) = 2k·rsM(|Ψk ∗ f |s)(x).

Then we get from (1.54)

Gν(x) = 2ν·rs(Ψ∗νf)a(x)
s ≤ C ′

N

∑

k≥ν

2s(k−ν)(−N−r)gk(x)

Hence, for 0 < δ < min{Ni + ri, i = 1, . . . , d}, we may apply Lemma (1.18) with Lp/s(ℓq/s)
and ℓq/s(Lp/s) norm respectively. This results into

||2k·rs(Ψ∗
k
f)a(x)|ℓq/s(Lp/s)|| ≤ c||2k·rsM(|Ψk ∗ f |s)(x)|ℓq/s(Lp/s)|| (1.55)

and

||2k·rs(Ψ∗
k
f)a(x)|Lp/s(ℓq/s)|| ≤ c||2k·rsM(|Ψk ∗ f |s)(x)|Lp/s(ℓq/s)||. (1.56)

In the first case, we rewrite the left–hand side of (1.55) and use the classical Hardy–
Littlewood Theorem (see (1.12) for details, we recall that s < p),

||2k·r(Ψ∗
k
f)a(x)|ℓq(Lp)|| ≤ c||2k·r(Ψk ∗ f)(x)|ℓq(Lp)||.

In the second case, we rewrite the left–hand side of (1.56) and use Theorem 1.11 (now we
recall that s < min(p, q)),

||2k·r(Ψ∗
k
f)a(x)|Lp(ℓq)|| ≤ c||2k·r(Ψk ∗ f)(x)|Lp(ℓq)||,

which concludes the proof.

1.3.5 Local means characterisation

We summarise sections 1.3.3 and 1.3.4 and give the usual formulation of the local means
characterisation. We still use the tensor construction of functions ψk described in the be-

ginning of section 1.3.3. The spaces XS(Rd) and the Peetre maximal function (Ψ∗
k
f)a were

defined in section 1.3.1. We still suppose that ψi0, ψ
i
1 ∈ XS(Rd), where the vector S will be

specified later on.

Theorem 1.23. (i) Let 0 < p, q ≤ ∞, r, a ∈ Rd, R, S ∈ Zd with r ≤ R + 1 and a > 1
p
. If

S > R is large enough,

Dαψi1(0) = 0, i = 1, . . . , d, α = 0, 1, . . . , Ri, (1.57)

and

|ψi0(t)| > 0 on {t ∈ R : |t| < ε} (1.58)

|ψi1(t)| > 0 on {t ∈ R : ε/2 < |t| < 2ε} (1.59)

for some ε > 0, then

||f |Srp,qB(Rd)|| ≈ ||2k·r(Ψk ∗ f)|ℓq(Lp)|| ≈ ||2k·r(Ψ∗kf)a|ℓq(Lp)||
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for all f ∈ (XS−a−1(Rd))′.

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, r, a ∈ Rd, R, S ∈ Zd with r ≤ R + 1 and a > 1
min(p,q)

. If

S > R is large enough, and (1.57) – (1.59) are satisfied then

||f |Srp,qF (Rd)|| ≈ ||2k·r(Ψk ∗ f)|Lp(ℓq)|| ≈ ||2k·r(Ψ∗kf)a|Lp(ℓq)||

for all f ∈ (XS−a−1(Rd))′.

Remark 1.24. 1. Theorem 1.23 is just reformulation of Theorem 1.20 and Theorem 1.22.

2. In the proof of Theorems 1.20 and 1.22 we followed essentially the approach described in
[25]. We point out that recently very similar results were obtained in [3].

3. We may set S = ∞ in Theorem 1.23. Then one obtains equivalent quasinorms on
S ′(Rd). By choosing S large, but finite, we may always ensure, that the new quasinorms are

equivalent at least on Srp,qA(Rd) ⊂ (XS−a−1(Rd))′.

Next we reformulate Theorem 1.23 using the local means in the sense of [33].

Theorem 1.25. Let 0 < p, q ≤ ∞ (with p < ∞ in the F–case), r ∈ Rd, S
1
, S

2 ∈ Nd
0 with

S
1 − S2

> 1
p

+ 1 in the B–case and S
1 − S2

> 1
min(p,q)

+ 1 in the F–case. Let R ∈ N
d
0 be a

vector of d nonnegative integers with R > r. Further let k0, k
1, . . . , kd be d+1 complex-valued

functions from XS
1

(R) whose supports lie in the set {t ∈ R : |t| < 1} and

F1(k0)(0) 6= 0, F1(k
i)(0) 6= 0, i = 1, . . . , d. (1.60)

Let us denote

ki0(t) = k0(t) and kin(t) = 2n
(

dRi

dtRi
ki
)

(2nt), i = 1, . . . , d, n ∈ N, t ∈ R.

As usually, we denote by kν(x) = k1
ν1(x1) · · · kdνd

(xd), ν = (ν1, . . . , νd) ∈ Nd
0, the tensor product

of these functions.

The corresponding local means are defined by

kν(f)(x) =

∫

Rd

kν(y)f(x+ y)dy, ν ∈ N
d
0, x ∈ R

d, (1.61)

appropriately interpreted for any f ∈ (XS
1

(Rd))′. Then, if S
2

is large enough,

||2ν·rkν(f)|Lp(ℓq)|| ≈ ||f |Srp,qF (Rd)||, f ∈ (XS
2

(Rd))′, (1.62)

and
||2ν·rkν(f)|ℓq(Lp)|| ≈ ||f |Srp,qB(Rd)||, f ∈ (XS

2

(Rd))′. (1.63)

Proof. Put ψi0 = F−1
1 k0 and ψi1 = F−1

1 ( dRi

dtRi
ki). Then the Tauberian conditions (1.58) and

(1.59) are satisfied and (1.57) is also true. If we define ψν , ν ∈ N
d
0, as in (1.32), we get

(ψν f̂)∨(x) = c

∫

Rd

(ψν)
∨(y)f(x− y)dy = c

∫

Rd

(Fψν)(y)f(x+ y)dy (1.64)

= c

∫

Rd

( d∏

i=1

(F1ψ
i
νi

)(yi)

)
f(x+ y)dy.
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Finally, if νi = 0, we get (F1ψ
i
0)(yi) = ki0(yi) and if νi ≥ 1 we obtain in a similar way

(F1ψ
i
νi

)(yi) = (F1(ψ
i(2−νi·)))(yi) = 2νi(F1ψ

i)(2νiyi) = 2νi
( dRi

dtRi
ki
)
(2νiyi) = kiνi

(yi).

Using this calculation and (1.64) we get

(ψν f̂)∨(x) =

∫

Rd

kν(y)f(x+ y)dy, ν ∈ N
d
0, x ∈ R

d

and the theorem follows.

Remark 1.26. We point out that S
1

= S
2

=∞ is allowed in Theorem 1.25.

We shall need some other modifications of Theorem 1.23. But first we give some neces-
sary notation. For ν ∈ Nd

0, m ∈ Zd we denote by Qν m the cube with the centre at the
point 2−νm = (2−ν1m1, . . . , 2

−νdmd) with sides parallel to coordinate axes and of lengths
2−ν1 , . . . , 2−νd. Hence

Qν m = {x ∈ R
d : |xi − 2−νimi| ≤ 2−νi−1, i = 1, . . . , d}, ν ∈ N

d
0, m ∈ Z

d. (1.65)

If γ > 0 then γQν m denotes a cube concentric with Qν m with sides also parallel to coordinate
axes and of lengths γ2−ν1, . . . , γ2−νd.

Defining the Peetre maximal function by (1.17), we get

(Ψ∗νf)a(x) ≥ c sup
x−y∈γQν,0

|(Ψν ∗ f)(y)|, ν ∈ N
d
0, x ∈ R

d,

where the constant c depends on a > 0, γ > 0 but does not depend neither on x nor on ν.
This very simple observation gives together with Theorem 1.23 following

Theorem 1.27. Let r ∈ Rd, 0 < p, q ≤ ∞ (p <∞ in the F–case). Let R ∈ Nd
0 with R > r,

S
1
, S

2 ∈ Nd
0 and kν be as in Theorem 1.25. Then, for any γ > 0,

∣∣∣∣

∣∣∣∣
(∑

ν∈Nd
0

2qν·r sup
x−y∈γQν ,0

|kν(f)(y)|q
)1/q

|Lp(Rd)

∣∣∣∣

∣∣∣∣ ≈ ||f |Srp,qF (Rd)||, f ∈ (XS
2

(Rd))′ (1.66)

and
(∑

ν∈Nd
0

2qν·r|| sup
x−y∈γQν ,0

|kν(f)(y)||Lp(Rd)||q
)1/q

≈ ||f |Srp,qB(Rd)||, f ∈ (XS
2

(Rd))′. (1.67)

Another modification of Theorem 1.23 is rather technical and deals with ’directional’ local
means, namely with local means of the form (d = 2):

∫

R

k1
ν1

(y1)f(x1 + y1, x2)dy1.

To introduce these local means in the general dimension, we define for every A ⊂ {1, . . . , d}

kν,A(f)(x) =

∫

R|A|

(∏

i∈A

kiνi
(yi)
)
f(x1 + y1χA(1), . . . , xd + ydχA(d))

(∏

i∈A

dyi
)
. (1.68)

It means, we restrict the integration in (1.61) to those variables yi for which i ∈ A. The
others are left untouched.

Using this notation, we may state our next Lemma.
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Lemma 1.28. Let 0 < p < ∞, 0 < q ≤ ∞, A ⊂ {1, . . . , d} and γ > 0. Let r ∈ R
d be such

that ri >
1

min(p,q)
for i 6∈ A. Let Ri ∈ N0 and kiν be as in Theorem 1.25 for every i ∈ A.

Further let kν,A(f) be defined by (1.68). Then

∣∣∣∣

∣∣∣∣
( ∑

ν∈Nd
0

νi=0,i6∈A

2qν·r sup
x−y∈γQν,0

|kν,A(f)(y)|q
)1/q

|Lp(Rd)

∣∣∣∣

∣∣∣∣ ≤ c||f |Srp,qF (Rd)|| (1.69)

holds for every f ∈ Srp,qF (Rd). The sum is taken over all ν = (ν1, . . . , νd) ∈ Nd
0 with νi = 0

whenever i 6∈ A. The Lp-quasinorm is then taken with respect to x.

Remark 1.29. There is again a direct analogy of this Lemma for the B-scale and for non-
smooth kernels. The proof of this Lemma follows the proof of Theorem 1.23.
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2 Decomposition theorems

In this chapter we present three decomposition theorems. We give atomic, subatomic and
wavelet decomposition characteristics of spaces with dominating mixed smoothness. But
first of all we explain some notation used in connection with sequence spaces.

2.1 Sequence spaces

We recall that for ν ∈ Nd
0, m ∈ Zd we denote by Qν m the cube with the centre at the

point 2−νm = (2−ν1m1, . . . , 2
−νdmd) with sides parallel to coordinate axes and of lengths

2−ν1 , . . . , 2−νd. By χ
(p)
ν m we denote a p-normalised characteristic function of Qν m, it means

that χ
(p)
ν m(x) = 2

|ν|
p χQν m

(x). Furthermore, we write χν m(x) = χQν m
(x).

Definition 2.1. If 0 < p, q ≤ ∞, r ∈ Rd and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ Z

d} (2.1)

then we define

srp,qb =

{
λ : ||λ|srp,qb|| =

(∑

ν∈Nd
0

2ν·(r−
1
p
)q
(∑

m∈Zd

|λν m|p
)q/p)1/q

<∞
}

(2.2)

and

srp,qf =

{
λ : ||λ|srp,qf || =

∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈Zd

|2ν·rλν mχν m(·)|q
)1/q

|Lp(Rd)

∣∣∣∣
∣∣∣∣ <∞

}
(2.3)

with the usual modification for p and/or q equal to ∞.

Remark 2.2. We point out that with λ given by (2.1) and gν(x) =
∑

m∈Zd

λν mχν m(x), we

obtain that

||λ|srp,qb|| = ||2ν·rgν |ℓq(Lp)||, ||λ|srp,qf || = ||2ν·rgν|Lp(ℓq)||.

Sequence spaces of this kind were denoted by Edis in [14] and may be understood as a discrete
version of Srp,qF (Rd) and Srp,qB(Rd).

2.2 Atomic decomposition

Definition 2.3. Let K ∈ Nd
0, L + 1 ∈ Nd

0, and γ > 1. A K-times differentiable complex-
valued function a(x) is called [K,L]-atom centred at Qν m if

supp a ⊂ γQν m, (2.4)

|Dαa(x)| ≤ 2α·ν for 0 ≤ α ≤ K (2.5)

and ∫

R

xjia(x)dxi = 0 if i = 1, . . . , d; j = 0, . . . , Li and νi ≥ 1. (2.6)
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Using this notation we may state the atomic decomposition theorem.

Theorem 2.4. Let 0 < p, q ≤ ∞, (p < ∞ in the F−case) and r ∈ Rd. Fix K ∈ Nd
0 and

L+ 1 ∈ N
d
0 with

Ki ≥ (1 + [ri])+ and Li ≥ max(−1, [σpq − ri]), i = 1, . . . , d. (2.7)

(Li ≥ max(−1, [σp − ri]) in the B-case).

(i) If λ ∈ srp,qa and {aν m(x)}ν∈Nd
0,m∈Zd are [K,L]-atoms centred at Qν m, then the sum

∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x) (2.8)

converges in S ′(Rd), its limit f belongs to the space Srp,qA(Rd) and

||f |Srp,qA(Rd)|| ≤ c ||λ|srp,qa||, (2.9)

where the constant c is universal for all admissible λ and aν m.

(ii) For every f ∈ Srp,qA(Rd) there is a λ ∈ srp,qa and [K,L]-atoms centred at Qν m (denoted
again by {aν m(x)}ν∈Nd

0,m∈Zd) such that the sum (2.8) converges in S ′(Rd) to f and

||λ|srp,qa|| ≤ c ||f |Srp,qA(Rd)||. (2.10)

The constant c is again universal for every f ∈ Srp,qA(Rd).

Proof. We give the proof only for the F-case. The proof for the B-scale is very similar.

Step 1.

First of all we prove the convergence of (2.8) in S ′(Rd). Let ϕ ∈ S(Rd). We use the Taylor
expansion of ϕ with respect to the first variable

ϕ(y) =
∑

α1≤L1

D(α1,0,...,0)ϕ(2−ν1m1, y2, . . . , yd)

α1!
(y1 − 2ν1m1)

α1 (2.11)

+
1

L1!

∫ y1

2−ν1m1

(t1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd)dt1

and (2.6) to obtain
∫

Rd

aν m(y)ϕ(y)dy =

∫

Rd

aν m(y)

L1!

∫ y1

2−ν1m1

(t1 − 2−ν1m1)
L1D(L1+1,0,...,0)ϕ(t1, y2, . . . , yd)dt1dy.

(2.12)
Using an analogy of (2.11) iteratively for the remaining d − 1 variables we see that the left
hand side of (2.12) is equal to

∫

Rd

aν m(y)

L!

∫ y1

2−ν1m1

. . .

∫ yd

2−νdmd

d∏

i=1

(ti − 2−νimi)
LiDL+1ϕ(t1, . . . , td)dtdy.

Using the support property (2.4) of aν m we may estimate the absolute value of the inner
d−dimensional integration from above by (y ∈ γQν m)

c 2−ν·(L+1) sup
x∈γQν m

|(DL+1ϕ)(x)| ≤ cM2−ν·(L+1)〈y〉−M sup
x∈γQν m

〈x〉M |(DL+1ϕ)(x)|,
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where M is at our disposal. Here we denote 〈x〉 = (1 + |x|2) 1
2 for x ∈ R

d.

Let us now suppose that p ≥ 1 and use (2.5) and Hölder’s inequality to get for M large
enough

∣∣∣∣
∫

Rd

∑

m∈Zd

λν maν m(y)ϕ(y)dy

∣∣∣∣

≤ c 2−ν·(L+1)2−ν·
1
p sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|
∫

Rd

(∑

m∈Zd

2ν·
1
p |λν m|χγQν m

(y)

)
〈y〉−Mdy

≤ c 2−ν·(r+L+1) · 2ν·(r− 1
p
)

(∑

m∈Zd

|λν m|p
)1/p

· sup
x∈Rd

〈x〉M |(DL+1ϕ)(x)|.

As λ ∈ srpqf ⊂ srp,∞b and r + L+ 1 > 0, the convergence of (2.8) in S ′(Rd) now follows.

If p < 1, we get a similar estimate
∣∣∣∣
∫

Rd

∑

m∈Zd

λν maν m(y)ϕ(y)dy

∣∣∣∣
p

≤ c 2−ν·(L+1)p sup
x∈Rd

|(DL+1ϕ)(x)|p
∑

m∈Zd

|λν m|p
∣∣∣∣
∫

Rd

χγQν m
(y)dy

∣∣∣∣
p

≤ c 2−ν·(r+L+1−1/p+1)p sup
x∈Rd

|(DL+1ϕ)(x)|p
∑

m∈Zd

2ν·(r−
1
p
)p|λν m|p.

In this case we use the fact that r + L+ 1− 1/p+ 1 > 0 and the embedding srp,qf ⊂ srp,∞b.

Step 2.

Next we prove (2.9). We use the equivalent quasinorms in Srp,qF (Rd) given by (1.62). Let us

choose R > K and define the functions kl for l ∈ Nd
0 as in Theorem 1.25. Then we have for

all l, ν ∈ Nd
0 and all m ∈ Zd

2l·rkl(aν m)(x) = 2l·r
∫

Rd

k1
l1(y1) · · ·kdld(yd)aν m(x+ y)dy. (2.13)

Further calculation depends on the size of the supports of kl and aν m. Hence we have to
distinguish between li ≥ νi and li < νi. This leads to 2d cases. We describe the first one
(l ≥ ν) and the last one (l < ν) in the full detail and then we discuss the ’mixed’ cases.

I. l ≥ ν.

We suppose that l > 0. This only simplifies the notation, the terms with li = νi = 0 may be
incorporated afterwards. We use the definition of kili and make partial integration (Ki-times
in the ith variable) to obtain

2l·rkl(aν m)(x) = 2l·(r+1)

∫

Rd

d∏

i=1

(
dRi

dtRi
ki
)

(2liyi)aν m(x+ y)dy

= 2l·r
∫

Rd

d∏

i=1

(
dRi

dtRi
ki
)

(yi)aν m(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy

= 2l·(r−K)

∫

Rd

d∏

i=1

(
dRi−Ki

dtRi−Ki
ki
)

(yi)(D
Kaν m)(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy.
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Next we use the smoothness of ki, the boundedness of their supports and the properties (2.4)
and (2.5) to estimate the absolute value of this expression.

2l·r|kl(aν m)(x)| ≤ c 2l·(r−K)2ν·K ·

·
∫

Rd

( d∏

i=1

χsupp ki(yi)

)
χγQν m

(x1 + 2−l1y1, . . . , xd + 2−ldyd)dy.

As supp ki ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d, it follows that

2l·r|kl(aν m)(x)| ≤ c 2−(K−r)(l−ν)2ν·(r−
1
p
)χ

(p)
γQν m

(x). (2.14)

II. l < ν.

The integration in (2.13) may be restricted to {y : |yi| ≤ 2−li}. We use the Taylor expansion
of functions kili(yi) with respect to the off-points 2−νimi − xi up to order Li

2−likili(yi) =
∑

0≤βi≤Li

ciβi
(xi)(yi − 2−νimi + xi)

βi + 2li(Li+1)O(|xi + yi − 2−νimi|Li+1) (2.15)

and (2.6) to get

2l·rkl(aν m)(x) = 2l·(r+1)

∫

{y:|yi|≤2−li}

aν m(x+ y)
d∏

i=1

2li(Li+1)O(|xi + yi − 2−νimi|Li+1)dy.

Since
|aν m(x+ y)| ≤ χγQν m

(x+ y)

we obtain

2l·r|kl(aν m)(x)| ≤ c 2l·(r+1)2(l−ν)·(L+1)

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy. (2.16)

The last integral is always smaller then c 2−|ν| and is zero if {y : x+ y ∈ γQν m} ∩ {y : |yi| ≤
2−li} = ∅. Hence

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy ≤ c 2−|ν|χc2ν−lQν m

(x). (2.17)

But the last expression may be estimated from above with the use of maximal operators Mi

defined by (1.14).

2|l−ν|χc2ν−lQν m
(x) ≤ c (Mχν m)(x). (2.18)

Let 0 < ω < min(1, p, q). Taking the 1/ω-power of (2.18) and inserting it in (2.17) we obtain

∫

{y:|yi|≤2−li}

χγQν m
(x+ y)dy ≤ c 2−|ν|2|ν−l|

1
ω (Mχν m)

1
ω (x). (2.19)

Next we replace χν m by χ
(p)
ν m in (2.19) and insert it in (2.16).

2l·r|kl(aν m)(x)| ≤ c 2(l−ν)·(r+1+L+1− 1
ω

)2ν·(r−
1
p
)(Mχ

(p)ω
ν m )

1
ω (x).
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By (2.7) and (1.4) we may choose the number ω such that κ = (r + 1 + L+ 1− 1
ω
) > 0.

III. Mixed terms.

We estimate for example the term with l1 ≥ ν1, li < νi, i = 2, . . . , d.

First we apply (2.15) for i = 2, . . . , d and use (2.6) to leave out the terms with β ≤ L. Then
we use K1 partial integration in the first variable. In the expression we get we use again the
support properties of the functions involved and (2.5) to obtain

2l·r|kl(aν m)(x)| ≤ 2ν·r2(l1−ν1)(r1−K1)2
∑d

i=2 li(ri+1)+(li−νi)(Li+1)−νiri

∫

A
l

χγQν m
(x1 + 2−l1y1, x2 + y2, . . . , xd + yd)dy,

where Al = {y ∈ Rd : |y1| ≤ 1, |yi| ≤ 2−li , i = 2, . . . , d}. Due to the product structure of
the integrated function we may split the last integral into a one-dimensional integral with
respect to dy1 and d − 1 dimensional integral with respect to the remaining variables. The
first integral then may be estimated from above by cχ{t:|t−2−ν1m1|≤2−νi}(x1). Finally we use
the maximal operators Mi, i = 2, . . . , d to estimate the second integral. And, exactly as in
the second step, it turns out, that there is some vector ̺ > 0 such that

2l·r|kl(aν m)(x)| ≤ c 2−
∑d

i=1 |li−νi|̺i2ν·(r−
1
p
)(Mχ

(p)ω
ν m )

1
ω (x). (2.20)

Let us observe that also (2.14) may be estimated from above by the right-hand side of(2.20).
Hence the estimate (2.20) is valid for all l, ν ∈ Nd

0.

Using this estimate, we get for q ≤ 1,
∣∣∣∣2
l·rkl

(∑

ν,m

λν maν m

)
(x)

∣∣∣∣
q

≤ c
∑

ν,m

|λν m|q2ν·(r−
1
p
)q2−q

∑d
i=1 |li−νi|̺i(Mχ

(p)ω
ν m )

q
ω (x).

For q > 1, the same estimate is justified by Hölder’s inequality.

We sum over l, take the 1
q
−power and then we apply the Lp−quasinorm with respect to x.

Denoting gν m = 2ν·(r−
1
p
)λν mχ

(p)
ν m we arrive at

∣∣∣∣∣

∣∣∣∣∣

(∑

l∈Nd
0

∣∣∣∣2
l·rkl

(∑

ν,m

λν maν m

)
(x)

∣∣∣∣
q) 1

q

|Lp(Rd)

∣∣∣∣∣

∣∣∣∣∣

≤ c

∣∣∣∣∣

∣∣∣∣∣

(∑

ν,m

2ν·(r−
1
p
)q|λν m|q(Mχ

(p)ω
ν m )

q
ω (x)

) 1
q

|Lp(Rd)

∣∣∣∣∣

∣∣∣∣∣

= c

∣∣∣∣∣

∣∣∣∣∣

(∑

ν,m

(Mgων m)
q
ω (x)

)ω
q

|L p
ω
(Rd)

∣∣∣∣∣

∣∣∣∣∣

1
ω

.

Using Theorem 1.11 and the definition of ω, we see that this expression may be estimated
from above by c ||λ|srp,qf ||. On the other hand, from Theorem 1.23, we see that this already
ensures that f belongs to Srp,qF (Rd) and proves (2.9).

Step 3.

It remains to prove (ii). Let us assume first that

L = −1, K > r, r > σpq, 0 < p <∞, 0 < q ≤ ∞. (2.21)
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Furthermore, let N ∈ N
d
0 be vector of integers with N > r. According to the construction

given at [34, page 68], we may find functions k0, k
1, . . . , kd such that

k0, k
1, . . . , kd ∈ S(R); (2.22)

supp k0, supp ki ⊂ {t ∈ R : |t| ≤ 1}, i = 1, . . . , d; (2.23)

1 = F1(k0)(ξ) +

∞∑

νi=1

F1(d
Niki)(2−νiξ), ξ ∈ R, i = 1, . . . , d; (2.24)

F1k0(0) = 1; (2.25)

F1(d
Niki)(ξ) = (F1k0)(ξ)− (F1k0)(2ξ), ξ ∈ R, i = 1, . . . , d. (2.26)

We define kl(x) and kl(f)(x) as in Theorem 1.25.

We claim that then

f =
∑

l∈Nd
0

kl(f)(x) = lim
P→∞

∑

l≤P

kl(f), convergence in S ′(Rd). (2.27)

To prove this, fix ϕ ∈ S(Rd). Since the Fourier transform is isomorphic mapping from S ′(Rd)
onto itself and

(kl(f))∧(ξ) =
( d∏

i=1

F1(k
i
li
)(−ξi)

)
f̂(ξ),

it is enough to show that

ϕ(ξ)
∑

l≤P

( d∏

i=1

F1(k
i
li
)(−ξi)

)
→ ϕ(ξ) in S(Rd). (2.28)

The last sum may be rewritten using (2.26) as

∑

l≤P

( d∏

i=1

F1(k
i
li
)(−ξi)

)
=

d∏

i=1

(
(F1k0)(−ξi) +

P∑

li=1

(F1(d
Niki))(−2−liξi)

)
=

d∏

i=1

(F1k0)(−2−P ξi).

We denote the last expression by 1−Φ(2−P ξ) and fix M ∈ N. Using the fact that ϕ ∈ S(Rd)
we obtain

pM(ϕ(ξ)Φ(2−P ξ)) ≤ c sup
0≤α,β≤M
ξ∈R

d

2−P ·β(Dαϕ)(ξ)(DβΦ)(2−P ξ)

d∏

i=1

〈ξi〉M

≤ c sup
0≤β≤M
ξ∈R

d

2−P ·β(DβΦ)(2−P ξ)

d∏

i=1

〈ξi〉−1

where the constant c doesn’t depend on P (but depends on M). pM are the functionals
defining the topology on S(Rd), namely pM(ϕ) = sup

0≤α≤M,x∈Rd

|Dαϕ(x)|〈x〉M .

If at least one of βi > 0, then this expression tends to zero if P → ∞. If β = 0, then we
split the supremum into sup|ξ|≥2P and sup|ξ|<2P . The first supremum may be estimated from
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above by c2−P . To estimate the second one, we notice that |Φ(ξ)| ≤ c|ξ| in {ξ : |ξ| ≤ 1}.
Hence

c sup
|ξ|≤2P

Φ(2−P ξ)

d∏

i=1

〈ξi〉−1 ≤ c sup
ξ∈Rd

2−P |ξ|
〈ξ〉

and pM(ϕ(ξ)Φ(2−P ξ))→ 0 as P →∞. This proves (2.28) and, consequently, also (2.27).

Next we find nonnegative function ψ which satisfies

ψ ∈ S(R), suppψ is compact and
∑

m∈Zd

ψ(x−m) = 1 for x ∈ R
d, (2.29)

and we define for ν ∈ Nd
0 and m ∈ Zd the function ψν m(x) = ψ(2νx−m). Then there is a γ

such that
suppψν m ⊂ γQν m, ν ∈ N

d
0, m ∈ Z

d. (2.30)

We multiply (2.27) by these decompositions of unity and obtain

f =
∑

ν∈Nd
0

∑

m∈Zd

ψν m(x)kν(f)(x) =
∑

ν∈Nd
0

∑

m∈Zd

λν maν m(x), (2.31)

where
λν m =

∑

0≤α≤K

sup
y∈γQν m

|Dα[kν(f)](y)|

and
aν m(x) = λ−1

ν mψν m(x)kν(f)(x).

(If some λν m = 0, then we take aν m(x) = 0 as well). It follows that aν m are [K,L]−atoms
centred at Qν m. The properties (2.4) and (2.6) are satisfied trivially (recall that L = −1),
and the property (2.5) is fulfilled up to some constant c independent of ν,m and x. To prove
that this decomposition satisfies (2.10), write

||λ|srp,qf || ≤ c
∑

0≤α≤K

∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈Zd

2ν·rq2ν·
q
p sup
x−y∈γQν m

|Dα[kν(f)(y)]|q
)1/q

|Lp
∣∣∣∣
∣∣∣∣ (2.32)

and use Theorem 1.27 with Dαik0 and Dαiki in the place of k0 and ki. We lose the Tauberian
conditions (1.60) for these new kernels but according to Theorem 1.20, they are not necessary
in the proof of (2.32).

Step 4.

Now we prove the existence of the optimal decomposition for all r ∈ Rd and L restricted
by (2.7). To simplify the notation, we restrict ourselves in this step to d = 2. So, let us
take f ∈ Srp,qF (R2). In Definition 1.8 we may substitute (1 + x2)ρ by (1 + x2ρ1

1 )(1 + x2ρ2
2 )

for ρ ∈ N2
0 and (using twice Theorem 1.12) we obtain the respective counterpart of Theorem

1.9. Hence f can be decomposed as

f = g +
∂2M1g

∂x2M1
1

+
∂2M2g

∂x2M2
2

+
∂2M1+2M2g

∂x2M1
1 x2M2

2

, (2.33)

where M = (M1,M2) ∈ 2N2
0 is at our disposal and may be chosen arbitrary large, g ∈

Sr+2M
p,q F (R2) and ||g|Sr+2M

p,q F (R2)|| ≈ ||f |Srp,qF (R2)||.
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The optimal decomposition of f will be obtained as a sum of decompositions of these four
terms.

To decompose the first term, choose M such that

||g|SKC(R2)|| ≤ c ||g|Sr+2M
p,q F (R2)||.

This is possible according to [26, Theorem 2.4.1.]. Then we decompose

g(x) =
∑

m∈Zd

ψ(x−m)g(x) =
∑

m∈Zd

λ1
0ma

1
0m,

where
λ1

0m = c1
∑

0≤α≤K

sup
|y−m|≤c2

|(Dαg)(y)|

and

a1
0m =

1

λ1
0m

ψ(x−m)g(x)

for c1, c2 sufficiently large and for ψ with (2.29) and (2.30). Then a1
0m are [K,L]-atoms

centred at Q0m. Furthermore, according to Lemma 1.28, we have

||λ1|srp,qf || =
(∑

m∈Zd

|λ1
0m|p

)1/p

≤ c1
∑

α≤K

∣∣∣∣
∣∣∣∣ sup
·−y∈γQ0 0

|(Dαg)(y)| |Lp(Rd)

∣∣∣∣
∣∣∣∣

≤ c||g|Sr+2M
p,q F (R2)|| ≤ c||f |Srp,qF (R2)||.

We have used Lemma 1.28 with d = 2 and A = ∅.
As for the last term in the decomposition (2.33), we may assume that M is large enough to
apply Step 3. So we may assume that we have a decomposition (2.31) for g with, let’s say,

λ4
ν m and a4

ν m(x) instead of λν m and aν m(x) and ||λ4
ν m|sr+2M

p,q f || ≤ c ||g|Sr+2M
p,q F (R2)||. As

a4
ν m(x) are [K+2M,−1]-atoms, the functions 22ν·MD2(M1,M2)a4

ν m(x) are [K, 2M−1]-atoms.

In the case of the second term we use the decomposition

g(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

ψν m(x)kν,A(g)(x) =
∑

ν∈N2
0

ν2=0

∑

m∈Zd

λ2
ν ma

2
ν m(x),

where A = {1}, kν,A(g)(x) are defined by (1.68),

λ2
ν m = c12

2ν1M1
∑

β≤K+(2M1,0)

sup
y∈c2Qν m

|Dβ(kν,A(g))(y)|

and

a2
ν m(x) =

1

λ2
ν m

ψν m(x)kν,A(g)(x).

If c1 and c2 are large enough, thenD(2M1,0)a2
ν m(x) are [K,L]-atoms for L1 ≤ 2M1−1. Finally,

we use Lemma 1.28 to estimate ||λ2|srp,qf ||.

||λ2|srp,qf || ≤ c1
∑

β≤K+(2M1,0)

∣∣∣∣

∣∣∣∣
(∑

ν∈N
2
0

ν2=0

2qν1(2M1+r1) sup
·−y∈c2Qν 0

|Dβ(kν,A(g))(y)|q
)1/q

|Lp
∣∣∣∣

∣∣∣∣

≤ c ||g|Sr+2M
p,q F (Rd)|| ≤ c ||f |Srp,qF (Rd)||,
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if M is chosen sufficiently large. We have used Lemma 1.28 with Dβ1k1 and Dβ2g instead
of k1 and f . The third term can be estimated in a similar way. The sum of these four
decompositions then gives the decomposition for f .

In general dimension d one has to use the full generality of Lemma 1.28 but the idea of the
proof is still the same.

2.3 Subatomic decomposition

In this section we describe the subatomic decomposition for spaces Srp,qA(Rd). We follow
closely [35] and [37].

First of all, we shall introduce some special building blocks called quarks.

Definition 2.5. Let ψ ∈ S(R) be a non-negative function with

suppψ ⊂ {t ∈ R : |t| < 2φ} (2.34)

for some φ ≥ 0 and ∑

n∈Z

ψ(t− n) = 1, t ∈ R. (2.35)

We define Ψ(x) = ψ(x1) · · ·ψ(xd) and Ψβ(x) = xβΨ(x) for x = (x1, . . . , xd) and β ∈ N
d
0.

Further let r ∈ Rd and 0 < p ≤ ∞. Then

(βqu)νm(x) = Ψβ(2νx−m), ν ∈ N
d
0, m ∈ Z

d (2.36)

is called an β-quark related to Qν m.

Recall that the spaces srp,qa were defined by (2.2) and (2.3).

Theorem 2.6. Let 0 < p, q ≤ ∞ (with p <∞ in the F-case) and r ∈ Rd be such that

r > σp in the B-case and r > σpq in the F-case.

(i) Let
λ = {λβ : β ∈ N

d
0} with λβ = {λβν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}
and let ̺ > φ, where φ is the number from (2.34). If

sup
β∈Nd

0

2̺|β|||λβ|srp,qa|| <∞

then the series ∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)ν m(x) (2.37)

converges in S ′(Rd), its limit f belongs to Srp,qA(Rd) and

||f |Srp,qA(Rd)|| ≤ c sup
β∈Nd

0

2̺|β|||λβ|srp,qa||. (2.38)

(βqu)ν m has the same meaning as in (2.36).

(ii) Every f ∈ Srp,qA(Rd) can be represented by (2.37) with convergence in S ′(Rd) and

sup
β∈Nd

0

2̺|β|||λβ|srp,qa|| ≤ c||f |Srp,qA(Rd)||. (2.39)
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Proof. We give the proof again only for the F-scale. The proof for the B-scale is very similar.

Step 1.

First of all, we shall discuss convergence of (2.37). It turns out that this series converges not
only in S ′(Rd) but also in some Lu(R

d), u ≥ 1.

Let 1 ≤ p <∞. Then r > 0 and we get

|f(x)| ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β||λβν m|χ̃ν m(x), (2.40)

where χ̃ν m is a characteristic function of 2φ+1Qν m. Using two times the Hölder’s inequality
we get for every ǫ > 0

|f(x)| ≤ c sup
β∈Nd

0

2(φ+ǫ)|β| sup
ν∈Nd

0

2|ν|ǫ sup
m∈Zd

|λβν m|χ̃ν m(x).

Taking the p-power and replacing the suprema with sums we get

|f(x)|p ≤ c
∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2(φ+ǫ)|β|p2|ν|ǫp|λβν m|pχ̃ν m(x). (2.41)

Let us denote q̃ = max(p, q) and choose ǫ such that 0 < 2ǫ < ̺ − φ and ǫ < r. Integration
of (2.41) and the Hölder’s inequality result in

||f |Lp(Rd)|| ≤ c sup
β∈Nd

0

2(φ+2ǫ)|β|

(∑

ν∈Nd
0

∑

m∈Zd

2−ν·(
1
p
−ǫ)p|λβν m|p

)1/p

≤ c sup
β∈Nd

0

2(φ+2ǫ)|β|

(∑

ν∈Nd
0

2ν·(r−
1
p
)q̃

(∑

m∈Zd

|λβν m|p
)q̃/p)1/q̃

(2.42)

≤ c sup
β∈Nd

0

2̺|β|||λβ|srp,q̃b|| ≤ c sup
β∈Nd

0

2̺|β|||λβ|srp,qf ||.

Therefore, for 1 ≤ p <∞, (2.37) converges in Lp(R
d).

If p =∞, we get the uniform pointwise convergence of (2.37) by similar arguments.

Let 0 < p < 1. Then r > 1
p
− 1 and we get again (2.40). Integrating this estimate and using

Hölder’s inequality, we get for every ǫ > 0

||f |L1(R
d)|| ≤ c

∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

2φ|β|2−|ν||λβν m|

≤ c sup
β∈Nd

0

2(φ+ǫ)|β|
∑

ν∈Nd
0

∑

m∈Zd

2−|ν||λβν m|.

By similar arguments as in (2.42) we get

||f |L1(R
d)|| ≤ c sup

β∈Nd
0

2̺|β|||λβ|srp,qf ||

and (2.37) converges in L1(R
d).
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Step 2.

We now prove that the function f defined as a limit of (2.37) belongs to Srp,qF (Rd) and the
estimate (2.38).

We decompose (2.37) into

f =
∑

β∈Nd
0

fβ (2.43)

with
fβ =

∑

ν∈Nd
0

∑

m∈Zd

λβν m(βqu)ν m(x). (2.44)

We show that (βqu)ν m are (up to some normalising constants) [K,−1]-atoms centred at Qν m

for every K ∈ Nd
0. The conditions (2.4) and (2.6) are satisfied trivially. To prove (2.5) we

chose 0 ≤ α ≤ K and estimate

Dα(βqu)ν m(x) =

d∏

i=1

2νiαiDαi(ψβi)(2νixi −mi)

where ψβi(t) = tβiψ(t). But for 0 ≤ αi ≤ Ki and any t ∈ suppψ we get by Leibnitz rule

|Dαi(ψβi)(t)| ≤ cKi
sup
γ1≤Ki

sup
γ2≤Ki

|Dγ1tβi | · |(Dγ2ψ)(t)| ≤ cKi,ψ sup
γ1≤Ki

|Dγ1tβi|.

The last absolute value may be estimated from above by (1 + βi)
Ki2φβi. Hence we obtain

|Dαi(ψβi)(t)| ≤ cKi,ψ(1 + βi)
Ki2φβi

and
|Dα(βqu)νm(x)| ≤ c1 2α·ν(1 + β)K2φ|β| ≤ c2 2α·ν2(φ+ǫ)|β|

for every ǫ > 0. The constant c2 is independent of β but may depend on K, ψ and ǫ.

It follows that the functions c−1
2 2−(φ+ǫ)|β|(βqu)ν m(x) are [K,−1]-atoms and (2.44) may be

understood as an atomic decomposition of fβ. By Theorem 2.4 it follows that

||fβ|Srp,qF (Rd)|| ≤ c2(φ+ǫ)|β|||λβ|srp,qf ||

and for η = min(1, p, q) get by the triangle inequality for Srp,qF (Rd)-quasinorms

||f |Srp,qF (Rd)||η ≤
∑

β∈Nd
0

||fβ|Srp,qF (Rd)||η

≤ c
∑

β∈Nd
0

2(φ+ǫ)η|β|||λβ|srp,qf ||η

≤ c sup
β∈Nd

0

2(φ+2ǫ)η|β|||λβ|srp,qf ||η.

If we choose ǫ > 0 so small that φ+ 2ǫ < ̺ we obtain (2.38). This finishes the proof of part
(i).

Step 3.
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By Remark 1.3 we have

f̂(ξ) =
∑

ν∈Nd
0

ϕν(ξ)f̂(ξ)

with convergence in S ′(Rd). Let Qν be a cube in Rd centred at the origin with side lengths
2π2ν1, . . . , 2π2νd. Hence suppϕν ⊂ Qν and we may interpret ϕν f̂ as a periodic distribution.
Using its expansion into a Fourier series we get

(ϕν f̂)(ξ) =
∑

m∈Zd

bν me
−i(2−νm)·ξ, ξ ∈ Qν , (2.45)

with

bν m = c2−|ν|
∫

Qν

e−i(2
−νm)·ξ(ϕν f̂)(ξ)dξ = c′2−|ν|(ϕν f̂)∨(2−νm).

Here we used again the notation 2−νm = (2−ν1m1, . . . , 2
−νdmd) for ν ∈ Nd

0 and m ∈ Zd.

Let now ω ∈ S(Rd) with suppω ⊂ Q0 and ω(ξ) = 1 if |ξi| ≤ 2 for all i = 1, . . . , d. Then the
functions ων(ξ) = ω(2−νξ) satisfy

suppων ⊂ Qν , ων(ξ) = 1 if ξ ∈ suppϕν

for all ν ∈ Nd
0. We multiply (2.45) with ων , extend it by zero outside Qν , and take the inverse

Fourier transform

(ϕν f̂)∨(x) =
∑

m∈Zd

bν mω
∨
ν (x− 2−νm) =

∑

m∈Zd

2|ν|bν mω
∨(2νx−m), x ∈ R

d.

Using (2.35) and the definition of Ψ, we get

(ϕν f̂)∨(x) =
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)ω∨(2νx−m).

Expanding the entire analytic function ω∨(2ν · −m) with respect to the off-point 2−νl we
arrive at

(ϕν f̂)∨(x) =
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

Ψ(2νx− l)
∑

β∈Nd
0

2ν·β
(Dβω∨)(l −m)

β!
(x− 2−νl)β

=
∑

m∈Zd

2|ν|bν m
∑

l∈Zd

∑

β∈Nd
0

Ψβ(2νx− l)(D
βω∨)(l −m)

β!
.

Hence
f =

∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l

Ψβ(2νx− l) =
∑

ν∈Nd
0

∑

β∈Nd
0

∑

l∈Zd

λβ
ν l

(βqu)ν l(x),

where

λβ
ν l

= 2|ν|
∑

m∈Zd

bν m
(Dβω∨)(l −m)

β!
= c

∑

m∈Zd

(ϕν f̂)∨(2−νm)
(Dβω∨)(l −m)

β!
.

It remains to prove (2.39). For this reason we define

Λν m = (ϕν f̂)∨(2−νm)
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and prove that
sup
β∈Nd

0

2̺|β|||λβ|srp,qf || ≤ c||Λ|srp,qf || ≤ c′||f |Srp,qF (Rd)||. (2.46)

We start with the second inequality in (2.46).

Let x ∈ Qν m be fixed. Then

|(ϕν f̂)∨(2−νm)| ≤ sup
x−y∈Qν,0

|(ϕν f̂)∨(y)| ≤ c(ϕ∗νf)a(x) (2.47)

for every a ∈ Rd
+. We multiply (2.47) by 2ν·r, take the q-power and sum over m ∈ Zd to get

2ν·rq
∑

m∈Zd

|Λν m|q|χν m(x)|q ≤ c 2ν·rq(ϕ∗νf)qa(x), x ∈ R
d, ν ∈ N

d
0.

Taking a > n
min(p,q)

, we get finally with the help of Theorem 1.22

||Λ|srp,qf || =
∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈Zd

2ν·rq|Λν mχν m(x)|q
)1/q

|Lp(Rd)

∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

2ν·rq(ϕ∗νf)qa(x)

)1/q

|Lp(Rd)

∣∣∣∣
∣∣∣∣

≤ c||f |Srp,qF (Rd)||.

To prove the first inequality in (2.46), we mention that

λβ
ν l

=
1

β!

∑

m∈Zd

Λν m(Dβω∨)(l −m) (2.48)

and recall a result proven in [36], namely that for any given a > 0 there are constants ca > 0
and C > 0 such that

|Dβω∨(x)| ≤ ca2
C|β|(1 + |x|2)−a, x ∈ R

d, β ∈ N
d
0. (2.49)

Furthermore, we define

hβν (x) = 2ν·r
∑

l∈Zd

λβ
ν l
χν l(x), (2.50)

Hν(x) = 2ν·r
∑

l∈Zd

Λν lχν l(x) (2.51)

and let 0 < κ < min(1, p, q). We prove (2.46) by the following chain of inequalities

2̺|β|||λβ|srp,qf || = 2̺|β|||hβν |Lp(ℓq)|| = 2̺|β||| |hβν |κ |L p
κ
(ℓ q

κ
)|| 1κ

≤ c2̺|β|
(

2C|β|

β!

)κ
||M(|Hν|κ)|L p

κ
(ℓ q

κ
)|| 1κ (2.52)

≤ c′|| |Hν |κ |L p
κ
(ℓ q

κ
)|| 1κ = ||Λ|srp,qf ||.
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The equalities in (2.52) involve only definitions of corresponding spaces. The second inequal-
ity follows from Theorem 1.10, choice of κ and the growth of β! for |β| → ∞. Hence only
the first inequality in (2.52) needs to be proven.

To prove it, put (2.49) into (2.48) to obtain for every a > 0

|λβ
ν l
| ≤ ca2

C|β|

β!

∑

m∈Zd

|Λν m|
(1 + |l −m|2)a

. (2.53)

Let us take x ∈ Qν l. Using the definition of hβν from (2.50), (2.53) and the property κ < 1
we get

|hβν (x)|κ = 2ν·rκ|λβ
ν l
|κ ≤ cκa2

C|β|κ

(β!)κ
2ν·rκ

∑

m∈Zd

|Λν m|κ
(1 + |l −m|2)aκ

. (2.54)

We split the summation over m ∈ Zd into two sums according to the size of |l −m|
∑

m∈Zd

|Λν m|κ
(1 + |l −m|2)aκ

=
∞∑

k=0

1

(1 + k2)aκ

∑

m:|l−m|=k

|Λν m|κ. (2.55)

Finally, we estimate the last sum using the iterated maximal operator M

∑

m:|l−m|=k

|Λν m|κ ≤ 2−ν·rκ2|ν|
∫

y:y−x∈(k+2)Qν,0

|Hν(y)|κdy

≤ 2−ν·rκ(k + 2)dM(|Hν |κ)(x). (2.56)

We combine (2.54), (2.55) and (2.56) and arrive at

|hβν (x)|κ ≤ c′a
2C|β|κ

(β!)κ
M(|Hν |κ)(x)

for every a > d+1
2κ

. This finishes the proof of (2.52) and, consequently, also the proof of
(2.46) and hence also of the part (ii) of Theorem 2.6.

Next we shall deal with subatomic decompositions in the general case. Namely, we would
like to prove an analogy of Theorem 2.6 without the restriction r > σpq.

Remark 2.7. For the need of this section we introduce temporarily following notation. Let

A ⊂ {1, . . . , d} and N = (N1, . . . , Nd) ∈ Rd. Then we define the vector N
A

= (NA
1 , . . . , N

A
d )

by

NA
i =

{
Ni if i ∈ A,
0 if i 6∈ A.

Furthermore, we denote by Dγ
i the operator

Dγ
i =

∂γ

∂xi
, i = 1, . . . , n, γ ∈ N0

and by DL
A the operator

DL
A =

∏

i∈A

DLi

i = DLA, A ⊂ {1, . . . , n}, L ∈ N
d
0.
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Theorem 2.8. Let 0 < p, q ≤ ∞ (p <∞ in the F-case) and r ∈ R
d. Further let L+ 1 ∈ N

d
0

and σ ∈ Rd satisfy

Li ≥ max(−1, [σp − ri]), σi > max(σp, ri), i = 1, . . . , d,

in the B-case and

Li ≥ max(−1, [σpq − ri]), σi > max(σpq, ri), i = 1, . . . , d,

in the F-case.

(i) Let for every set A ⊂ {1, . . . , d}

λA = {λA,β : β ∈ N
d
0} with λA,β = {λA,βν m ∈ C : ν ∈ N

d
0, m ∈ Z

d}

and let ̺ > φ, where φ is the number from (2.34). If

sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|||λA,β|srp,qa|| <∞

then the series

∑

A⊂{1,...,d}

∑

β∈Nd
0

∑

ν∈Nd
0

∑

m∈Zd

(
∏

i6∈A

2νi(ri−σi)

)
λA,βν m

[
DL+1
A Ψβ

]
(2νx−m) (2.57)

converges in S ′(Rd), its limit f belongs to Srp,qA(Rd) and

||f |Srp,qA(Rd)|| ≤ c sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|||λA,β|srp,qa||. (2.58)

(ii) Every f ∈ Srp,qA(Rd) can be represented by (2.57) with convergence in S ′(Rd) and

sup
A⊂{1,...,d}

sup
β∈Nd

0

2̺|β|||λA,β|srp,qa|| ≤ c||f |Srp,qA(Rd)||. (2.59)

Remark 2.9. Because of the difficulties with notation we shall give the proof only for d = 2.
Furthermore, we deal only with the F-scale. The proof for the B-scale is again similar and
technically simpler.

Proof of Theorem 2.8 for d = 2. Step 1.

First we discuss the convergence of (2.57). As the first sum is only finite, we may discuss
the convergence of the triple sum over β, ν and m separately for each A ⊂ {1, 2}. Let us do
this for example for A = {1}. Then we may rewrite the terms in (2.57) as

2ν2(r2−σ2)[D(L1+1,0)Ψβ](2νx−m) = 2ν2(r2−σ2)2−ν1(L1+1)[D(L1+1,0)(βqu)ν m](x) (2.60)

where (βqu)ν m(x) are β-quarks according to Definition 2.5. As L1 + 1 > 0 and σ2 − r2 > 0,
we may use the same arguments as in the proof of Theorem 2.6 and obtain the same kind
of convergence. Especially, the convergence of (2.57) in S ′(Rd) is ensured.
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Step 2.

Let us assume that the function f is given by (2.57). Then we may understand this decom-
position as

f =
∑

A⊂{1,2}

fA. (2.61)

We shall prove that, for every admissible set A,

||fA|Srp,qF (Rd)|| ≤ c sup
β∈Nd

0

2̺|β|||λA,β|srp,qf ||. (2.62)

If A = ∅ then the decomposition of f ∅ in the triple sum according to (2.57) can be understood
as a subatomic decomposition of f ∅ in the space Sσp,qF (Rd) and from Theorem 2.6 it follows
that

f ∈ Sσp,qF (Rd) ⊂ Srp,qF (Rd)

and
||f ∅|Srp,qF (Rd)|| ≤ c sup

β∈Nd
0

2̺|β|||2ν·(r−σ)λ∅,β|sσp,qf || = c sup
β∈Nd

0

2̺|β|||λ∅,β|srp,qf ||.

If A = {1} then we use (2.60) and obtain that f {1} = D(L1+1,0)g, where

g ∈ S(r1+L1+1,σ2)
p,q F (Rd) and ||g|S(r1+L1+1,σ2)

p,q F (Rd)|| ≤ c sup
β∈Nd

0

2̺|β|||λ{1},β|srp,qf ||.

Hence

||f {1}|S(r1,r2)
p,q F (Rd)|| ≤ ||f {1}|S(r1,σ2)

p,q F (Rd)|| = ||D(L1+1,0)g|S(r1,σ2)
p,q F (Rd)||

≤ ||g|S(r1+L1+1,σ2)
p,q F (Rd)|| ≤ c sup

β∈Nd
0

2̺|β|||λ{1},β|srp,qf ||. (2.63)

Using similar technique we prove (2.62) also for A = {2} and A = {1, 2}. Now (2.61)
together with (2.62) shows that (2.58) holds.

Step 3.

We prove the part (ii) of the theorem. By similar arguments as in the Step 4. of the proof
of Theorem 2.4 we prove in analogy with (2.33) that for every M ∈ Nd

0 such that

r +M + 1 ≥ σ, M ≥ L, and M + 1 ∈ 4N
2

there is a function g ∈ Sr+M+1
p,q F (Rd) with

f = g +
∂M1+1g

∂xM1+1
1

+
∂M2+1g

∂xM2+1
2

+
∂M1+1+M2+1g

∂xM1+1
1 xM2+1

2

. (2.64)

Furthermore
||g|Sr+M+1

p,q F (Rd)|| ≈ ||f |Srp,qF (Rd)||. (2.65)

Let us define

g1 = g, g2 = D(M1−L1,0)g, g3 = D(0,M2−L2)g and g4 = D(M1−L1,M2−L2)g.
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Then we can rewrite (2.64) and (2.65) as

f = g1 +
∂L1+1g2

∂xL1+1
1

+
∂L2+1g3

∂xL2+1
2

+
∂L1+1+L2+1g4

∂xL1+1
1 xL2+1

2

(2.66)

with




g1 ∈ Sr+M+1
p,q F (Rd) ⊂ Sσp,qF (Rd),

g2 ∈ S(r1+L1+1,r2+M2+1)
p,q F (Rd) ⊂ S

(r1+L1+1,σ2)
p,q F (Rd),

g3 ∈ S(r1+M1+1,r2+L2+1)
p,q F (Rd) ⊂ S

(σ1,r2+L2+1)
p,q F (Rd),

g4 ∈ Sr+L+1
p,q F (Rd).

(2.67)

Furthermore, the norm of gi in the corresponding space may be estimated from above by
||f |Srp,qF (Rd)|| for all i = 1, . . . , 4. We may use Theorem 2.6 for each function gi to get four
optimal decompositions and corresponding analogy of (2.39). Putting these estimates into
(2.67) and using (2.60) we get (2.59).

2.4 Wavelet decomposition

In this subsection we describe the wavelet decomposition for spaces Srp,qA(Rd). In general,
we follow the ideas expressed in [38]. First of all, we recall following crucial theorem from
the wavelet theory.

Theorem 2.10. For any s ∈ N there are real–valued compactly supported functions

ψ0(t) ∈ Cs(R) and ψ1(t) ∈ Cs(R) (2.68)

with ∫

R

tαψ1(t)dt = 0, α = 0, 1, . . . , s (2.69)

such that {
2j/2ψjm(t) : j ∈ N0, m ∈ Z

}
(2.70)

with

ψjm(t) =

{
ψ0(t−m) if j = 0, m ∈ Z√

2−1ψ1(2
j−1t−m) if j ∈ N, m ∈ Z

(2.71)

is an orthonormal basis in L2(R).

We have already observed in previous sections the importance of tensor product constructions
in the theory of function spaces with dominating mixed derivative. Following this idea, we
consider a tensor product version of Theorem 2.10. Let ψ0 and ψ1 be the functions from
Theorem 2.10 satisfying (2.68) and (2.69). Let ψjm be defined by (2.71). Then we define
their tensor product counterparts by

Ψkm(x) = ψk1m1(x1) · . . . · ψkdmd
(xd), (2.72)

where

x = (x1, . . . , xd) ∈ R
d, k = (k1, . . . , kd) ∈ N

d
0 and m = (m1, . . . , md) ∈ Z

d. (2.73)

The tensor version of Theorem 2.10 then reads
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Theorem 2.11. For any s ∈ N there are real compactly supported functions

ψ0(t) ∈ Cs(R) and ψ1(t) ∈ Cs(R)

with (2.69) such that {
2|k|/2Ψkm(x) : k ∈ N

d
0, m ∈ Z

d
}
, (2.74)

with Ψkm defined by (2.72) and (2.71), is an orthonormal basis in L2(R
d).

Now we have all the necessary definitions at hand and we may state our wavelet decompo-
sition theorem. As usual Srp,qA(Rd) stands for Srp,qB(Rd) or Srp,qF (Rd), and srp,qa for srp,qb or
srp,qf respectively.

Theorem 2.12. Let

r = (r1, . . . , rd) ∈ R
d, 0 < p ≤ ∞, 0 < q ≤ ∞

with p < ∞ in the F-case. Then there is a natural number s(r, p, q) such that the following
statements hold.

(i) Let λ ∈ srp,qa. Then

1. The sum ∑

k∈Nd
0 ,m∈Zd

λkmΨkm (2.75)

converges in S ′(Rd) to some distribution f .

2. f ∈ Srp,qA(Rd) and

||f |Srp,qA(Rd)|| ≤ c||λ|srp,qa||, (2.76)

where the constant c does not depend on λ.

3. The sum (2.75) converges unconditionally in Sr−ǫp,q A(Rd) for any ǫ > 0.

4. If max(p, q) <∞ then the sum (2.75) converges unconditionally in Srp,qA(Rd).

(ii) Let f ∈ Srp,qA(Rd). Then we may define the sequence λ by

λkm = 2|k|(f,Ψkm), k ∈ N
d
0, m ∈ Z

d, (2.77)

and it holds

1. λ ∈ srp,qa and

||λ|srp,qa|| ≤ c||f |Srp,qA(Rd)||, (2.78)

where the constant c does not depend on f .

2. The sum (2.75) converges in S ′(Rd) to f .

3. If γ ∈ srp,qa and the sum
∑

k∈Nd
0,m∈Zd

γkmΨkm converges in S ′(Rd) to f then γ = λ.

Before we come to the proof of Theorem 2.12 we clarify the technical problems caused by
the limited smoothness of the functions Ψkm.
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2.4.1 Duality

As the functions Ψkm are of bounded smoothness, they do not belong to S(Rd). According
to (2.68), (2.71) and (2.72), we have only Ψkm ∈ C(s,...,s)(Rd). Hence it is impossible to
understand the expression (f,Ψkm) in the distributional sense for every f ∈ S ′(Rd).

To give a meaning to the symbol (f,Ψkm), one has to study the dual spaces of Srp,qA(Rd)
first. As far as the Fourier–analytic version of classical Besov and Triebel–Lizorkin spaces is
considered, the corresponding theory was presented in [32], Chapter 2.11. It is not difficult
to see that one may adopt these results to the spaces with dominating mixed smoothness.
We do not intend to give some exhaustive theory. The only fact we need is

[Srp,pB(Rd)]′ = S
−r+σp

p′p′ B(Rd), r ∈ R
d, 0 < p <∞,

where
1

p
+

1

p′
= 1 for 1 < p <∞

and
p′ =∞ for p ≤ 1.

The functions
DαΨkm, 0 ≤ α ≤ (s, . . . , s),

are bounded functions with compact support. Using Hölder’s inequality, we see that

||DαΨkm|Lp̃(Rd)|| <∞
for every

0 ≤ α ≤ (s, . . . , s), 0 < p̃ ≤ ∞.
Using the Littlewood–Paley theory, we get

Ψkm ∈ Ssp̃,2F (Rd), 1 < p̃ <∞
for s = (s, . . . , s). And, by the Sobolev embedding,

Ssp̃,2F (Rd) →֒ [Sr−ǫp,p B(Rd)]′ = S
−r+ǫ+σp

p′,p′ B(Rd)

for s large enough and every ǫ > 0.

So, for
f ∈ Srp,qA(Rd) →֒ Sr−ǫp,p B(Rd)

we may interpret Ψkm as a bounded linear functional on a space f belongs to. And (f,Ψkm)
is then the value of this functional at f .

We may also reverse these arguments. The functions Ψkm belong to

Ssp̃,2F (Rd), 1 < p̃ <∞
and

Ssp̃,2F (Rd) →֒ Ss−ǫp̃,p̃ B(Rd).

Hence, for s large, we get
f ∈ [Ss−ǫp̃,p̃ B(Rd)]′.

In this case we may interpret f as a linear bounded functional on a space Ψkm belongs to.
(f,Ψkm) is then the value of this functional at Ψkm.

38



Proof of Theorem 2.12, Part (i). Let λ ∈ srp,qf . If

s > max{(1 + [ri])+, [σpq − ri], i = 1, . . . , d}

and s = (s, . . . , s) ∈ Rd then Ψkm are [s, s]−atoms cantered at Qkm. So, for s large, all the
assumptions of Theorem 2.4 are satisfied and, according to this theorem, (2.75) converges in
S ′(Rd). We denote its limit by f . The same theorem tells us that f ∈ Srp,qF (Rd) and implies
even the estimate (2.76). Hence the points 1. and 2. are proven. Very similar arguments
apply also to the B-case.

For λ ∈ srp,qa and natural number µ we define

λµ = {λµ
km

: k ∈ N
d
0, m ∈ Z

d}

by

λµ
km

=

{
λkm if |k| > µ

0 otherwise.

If max(p, q) <∞ then
lim
µ→∞

||λµ|srp,qa|| = 0. (2.79)

This is clear in the b−case and one has to use Lebesgue’s dominated convergence theorem
in the f−case. Using (2.76), already proven, we finish the proof of 4.

In the proof of the third point, we replace (2.79) by

lim
µ→∞

||λµ|sr−ǫp,q a|| = 0. (2.80)

To see that (2.80) holds, one uses the same reasoning as in (2.79), and Hölder’s inequality.
This finishes the proof of part (i).

Proof of Theorem 2.12, part (ii).
The meaning of the expression (f,Ψkm) was already discussed in section 2.4.1. For the rest
of the proof we consider only the F−case. The proof for B−spaces is very similar.

Before we prove the first statement of the second part we do some calculation. We may
rewrite the norm in srp,qf as

||λ|srp,qf || = ||2k·rgk|Lp(ℓq)||, (2.81)

where
gk(x) =

∑

m∈Zd

λkmχkm(x). (2.82)

If x ∈ Qkm and λ is defined by (2.77) we use (2.82)

gk(x) = λkm = 2|k|
∫

Rd

Ψkm(y)f(y)dy = 2|k|
∫

Rd

ψk1m1(y1) · . . . · ψkdmd
(yd)f(y)dy.

We assume that k ≥ 1, insert the Definition (2.71) and substitute zi = yi − 2−kimi

gk(x) = 2|k|
∫

Rd

ψ1(2
k1z1) · . . . · ψ1(2

kdzd)f(2−k1m1 + z1, . . . , 2
−kdmd + zd)dz

= Kk(f)(2−km).
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Here Kk(f)(2−km) denotes the local means

Kk(f)(y) =

∫

Rd

Kk(z)f(y + z)dz, y ∈ R
d. (2.83)

for the kernel
Kk(z) = 2|k|ψ1(2

k1z1) · . . . · ψ1(2
kdzd)

We point out that all integrals have to be interpreted in the distributional sense. If one (or
more) ki = 0, only notational changes are necessary. Hence, for every x ∈ Qkm,

|gk(x)| ≤ sup
y−x∈Qk,0

|Kk(f)(y)|.

Applying Theorem 1.27 we see that

||λ|srp,qf || = ||2k·rgk|Lp(ℓq)|| ≤ c ||f |Srp,qF (Rd)||.

This finishes the proof of 1.

To prove the second statement, we define a new function g by

g =
∑

k∈Nd
0,m∈Zd

λkmΨkm, (2.84)

where λkm are given by (2.77). The convergence of this sum is guaranteed by λ ∈ srp,qf
(which we have just proved) and by part (i). It shows even that g ∈ Srp,qF (Rd). We need to
prove that g = f or, equivalently, that

(g, ϕ) = (f, ϕ) for every ϕ ∈ S(Rd).

First we consider the expressions (g,Ψ
k
′
m′). As λ ∈ srp,qf , (2.84) converges in any Sr−ǫp,2 F (Rd),

where ǫ > 0 may be chosen arbitrarily. If the number s is chosen sufficiently large then,
according to Section 2.4.1, Ψ

k
′
m′ ∈ [Sr−ǫp,2 F (Rd)]′. Hence

(g,Ψ
k
′
m′) = lim

µ→∞

( ∑

|k|≤µ,m∈Zd

λkmΨkm,Ψk
′
m′

)
= lim

µ→∞

∑

|k|≤µ,m∈Zd

2|k|(f,Ψkm)(Ψkm,Ψk
′
m′).

Using orthogonality of system (2.74) we arrive at

(g,Ψ
k
′
m′) = (f,Ψ

k
′
m′), k

′ ∈ N
d
0, m′ ∈ Z

d.

One may extend this argument to any finite linear combination of Ψ
k
′
m′. For a general

function ϕ ∈ S(Rd) we consider its Fourier series decomposition with respect to system
(2.74):

ϕ =
∑

k,m

2|k|(ϕ,Ψkm)Ψkm. (2.85)

As S(Rd) is a subset of all Fourier-analytic Besov and Triebel-Lizorkin spaces, we see that
(for s large enough) (2.85) converges also in the space [Sr−ǫp,2 F (Rd)]′. Hence we get

(g, ϕ) = lim
µ→∞

∑

|k|≤µ,m∈Zd

2|k|(ϕ,Ψkm)(g,Ψkm) = lim
µ→∞

∑

|k|≤µ,m∈Zd

2|k|(ϕ,Ψkm)(f,Ψkm) = (f, ϕ).
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Hence the sum (2.75) converges to f .

The final step, namely the proof of the third statement, follows now very easily. Suppose
that the assumptions are satisfied. We define the coefficients λkm by (2.77) and g by (2.84).
Then we get f = g according to point 2. And by the same duality arguments as there we
obtain

γkm = 2|k|/2(f,Ψkm) = 2|k|/2(g,Ψkm) = λkm, k ∈ N
d
0, m ∈ Z

d.
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3 Entropy numbers - direct results

3.1 Notation and definitions

We have seen in the previous section the sharp connection between function spaces Srp,qA(Rd)
and corresponding sequence spaces srp,qa given by several decomposition techniques. We
would like to use these results to study the entropy numbers of embeddings of function
spaces with dominating mixed smoothness on domains.

First, we define function spaces on domains by restrictions of function spaces defined on Rd.

Definition 3.1. Let Ω be an arbitrary bounded domain in Rd. Then Srp,qA(Ω) is the re-
striction of Srp,qA(Rd) to Ω:

Srp,qA(Ω) = {f ∈ D′(Ω) : ∃g ∈ Srp,qA(Rd) with g|Ω = f} (3.1)

||f |Srp,qA(Ω)|| = inf ||g|Srp,qA(Rd)||, (3.2)

where the infimum is taken over all g ∈ Srp,qA(Rd) such that its restriction to Ω, denoted by
g|Ω, coincides in D′(Ω) with f .

Next, we define the sequence spaces corresponding to Srp,qA(Ω). The change with respect to
srp,qa is rather simple. In Definition 2.2 the sum over m ∈ Zd represents a discrete analogy
of Lp(R

d)-norm and the sum over ν ∈ Nd
0 the sum over all coverings of plane with dyadic

cubes. So, to adapt Definition 2.2 to suit well to function spaces on domains, we have to
restrict the sum to those m which are in some relation with Ω.

For that reason we define for every bounded domain Ω ⊂ Rd

AΩ
ν = {m ∈ Z

d : Qν m ∩ Ω 6= ∅}, ν ∈ N
d
0.

The sequence spaces associated with a bounded domain Ω are then defined by

Definition 3.2. If 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ Rd and

λ = {λν m ∈ C : ν ∈ N
d
0, m ∈ AΩ

ν }

then we define

sr,Ωp,q b =

{
λ : ||λ|sr,Ωp,q b|| =

(∑

ν∈Nd
0

2ν·(r−
1
p
)q
( ∑

m∈AΩ
ν

|λν m|p
)q/p)1/q

<∞
}

(3.3)

and

sr,Ωp,q f =

{
λ : ||λ|sr,Ωp,q f || =

∣∣∣∣

∣∣∣∣
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q

|Lp(Rd)

∣∣∣∣

∣∣∣∣ <∞
}
. (3.4)

Furthermore, we define corresponding building blocks.
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Definition 3.3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, r ∈ R
d and let µ ∈ N0 be fixed. If

λ = {λν m ∈ C : ν ∈ N
d
0, |ν| = µ,m ∈ AΩ

ν }

then we define

(sr,Ωp,q b)µ =

{
λ : ||λ|(sr,Ωp,q b)µ|| =

(∑

|ν|=µ

2ν·(r−
1
p
)q
( ∑

m∈AΩ
ν

|λν m|p
)q/p)1/q

<∞
}

(3.5)

and

(sr,Ωp,q f)µ =

{
λ : ||λ|(sr,Ωp,q f)µ|| =

∣∣∣∣
∣∣∣∣
(∑

|ν|=µ

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q

|Lp(Rd)

∣∣∣∣
∣∣∣∣ <∞

}
. (3.6)

Remark 3.4. 1. We point out that, that for the number of elements of AΩ
ν we have trivially

#(AΩ
ν ) ≈ 2|ν|, ν ∈ N

d
0 (3.7)

where the constants in this equivalence depend only on Ω. The dimension of (sr,Ωp,q a)µ will be
denoted by

Dµ :=
∑

|ν|=µ

#(AΩ
ν ), µ ∈ N0. (3.8)

2. As usual, we write sr,Ωp,q a for sr,Ωp,q b or sr,Ωp,q f respectively. The same holds for (sr,Ωp,q a)µ.

Next we define the notion of entropy numbers and recall its basic properties. We refer to
[10] and references given there for details.

Definition 3.5. Let A,B be quasi-Banach spaces and let T be a bounded linear operator
T ∈ L(A,B). Let UA and UB denote the unit ball in the spaces A and B, respectively. Then
for every k ∈ N we define the k-th dyadic entropy number by

ek(T ) := inf{ǫ > 0 : T (UA) ⊂
2k−1⋃

j=1

(bj + ǫUB)}

for some b1, . . . , b2k−1 ∈ B.

Definition 3.6. Given any p ∈ (0, 1] and a quasi-Banach space B, we say that B is a
p−Banach space, if

||x+ y|B||p ≤ ||x|B||p + ||y|B||p for all x, y ∈ B. (3.9)

It can be shown that if || · |B||1 is a quasinorm on B, then there is p ∈ (0, 1] and a quasinorm
|| · |B||2 with (3.9) on B which is equivalent to || · |B||1. We refer again to [10] and references
given there for details.

Theorem 3.7. Let A,B,C be quasi-Banach spaces, S, T ∈ L(A,B), R ∈ L(B,C). Then

• ||T || ≥ e1(T ) ≥ e2(T ) ≥ · · · ≥ 0.

• ek+l−1(R ◦ S) ≤ ek(R)el(S), k, l ∈ N.
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• If B is p-Banach space, then epk+l−1(S + T ) ≤ epk(S) + epl (T )

Remark 3.8. We refer to the first property of entropy numbers from Theorem 3.7 as mono-
tonicity, the second is called submultiplicativity and the last one is quoted by subaditivity.

Although we shall not need it in sequel, we quote the fundamental result of Carl (see [6],
[7] and [10] for details). It illustrates the importance of estimates of entropy numbers in the
study of spectral properties of compact operators.

Theorem 3.9. Let A be a quasi-Banach space and let T ∈ L(A,A) = L(A) be a compact
operator on A. We denote its non-zero eigenvalues with respect to multiplicity by

|λ1(T )| ≥ |λ2(T )| ≥ |λ3(T )| ≥ · · · > 0.

Then
|λk(T )| ≤

√
2ek(T ).

In what follows we restrict ourselves to r = (r1, r2, . . . , rd) ∈ Rd with r1 = r2 = · · · = rd.

3.2 Basic lemmas

Now we collect some basic properties of the building blocks defined by (3.5) and (3.6).

We start with the following

Lemma 3.10. 1. Let 0 < p1, p2 ≤ ∞ and N ∈ N. Then

||id : ℓNp1 → ℓNp2|| =
{

1, p1 ≤ p2,

N
1

p2
− 1

p1 , p1 ≥ p2.
(3.10)

2. Let 0 < p ≤ ∞ and r = (r, . . . , r) ∈ Rd. Then

(sr,Ωp,p b)µ = (sr,Ωp,p f)µ = 2µ(r− 1
p
)ℓDµ

p , µ ∈ N0 (3.11)

and
sr,Ωp,p b = sr,Ωp,p f. (3.12)

The number Dµ is given by (3.8).

3. Let 0 < p2 ≤ p1 ≤ ∞, 0 < q ≤ ∞ and r = (r, . . . , r) ∈ Rd. Then

||id : (sr,Ωp1,qa)µ → (sr,Ωp2,qa)µ|| ≈ 1, µ ∈ N0. (3.13)

4. Let 0 < q2 ≤ q1 ≤ ∞, 0 < p ≤ ∞ and r = (r, . . . , r) ∈ Rd. Then

||id : (sr,Ωp,q1a)µ → (sr,Ωp,q2a)µ|| ≈ µ
(d−1)( 1

q2
− 1

q1
)
, µ ∈ N. (3.14)

All constants of equivalence involved in (3.13) and (3.14) do not depend µ ∈ N0.
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Proof. The proof of 1. and 2. involves only (3.5) and (3.6). For the proof of 3. in the case
a = b we write

||λ|sr,Ωp2,qb|| =
(∑

|ν|=µ

2
ν·(r− 1

p2
)q
( ∑

m∈AΩ
ν

|λν m|p2
)q/p2)1/q

= 2
µ(r− 1

p2
)

(∑

|ν|=µ

( ∑

m∈AΩ
ν

|λν m|p2
)q/p2)1/q

≤ c 2
µ(r− 1

p2
)
2
µ( 1

p2
− 1

p1
)

(∑

|ν|=µ

( ∑

m∈AΩ
ν

|λν m|p1
)q/p1)1/q

= c ||λ|sr,Ωp1,qb||,

where we have used (3.10).

In the case a = f , we get by Hölder’s inequality and boundedness of Ω

||λ|sr,Ωp2,qf || =
∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q

|Lp2(Rd)

∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
(∑

ν∈Nd
0

∑

m∈AΩ
ν

|2ν·rλν mχν m(·)|q
)1/q

|Lp1(Rd)

∣∣∣∣
∣∣∣∣

= c ||λ|sr,Ωp1,qf ||.

The proof of 4. involves only 1. and

#{ν ∈ N
d
0 : |ν| = µ} ≈ µd−1, µ ∈ N.

Next, we recall a fundamental result which is essentially due to Schütt [27] and Kühn [17].

Lemma 3.11. (i) If 0 < p1 ≤ p2 ≤ ∞ and k and N are natural numbers, then

ek(id : ℓNp1 → ℓNp2) ≈





1 if 1 ≤ k ≤ log 2N,
(
k−1 log(1 + N

k
)
) 1

p2
− 1

p1 if log 2N ≤ k ≤ 2N,

2−
k

2NN
1

p2
− 1

p1 if 2N ≤ k,

(3.15)

where the constants of equivalence do not depend on k and N .

(ii) If 0 < p2 < p1 ≤ ∞ and k and N are natural numbers, then

ek(id : ℓNp1 → ℓNp2) ≈ 2−
k

2NN
1

p2
− 1

p1 (3.16)

where the corresponding constants again do not depend on k and N .

Remark 3.12. We refer to [27], [17], [10] and references given there for the proofs of this
fundamental result.

45



Lemma 3.13. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞.

Let k ≥ 2Dµ. Then

ek(id : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a
†)µ) ≈ 2

− k
2Dµ µ

(d−1)
(

1
q2
− 1

q1

)
2µ(r2−r1) (3.17)

with constants of equivalence independent of k and µ.

Remark 3.14. The symbols a and a† stand for b or f , not necessary for the same letter.
Hence the formula (3.17) represents actually four different equivalences and, consequently,
eight inequalities are to be proven.

Proof. Let us denote

γ1 = min(p1, q1), γ2 = min(p2, q2) (3.18)

δ1 = max(p1, q1), δ2 = max(p2, q2). (3.19)

Step 1.

In the first Step we use the following diagram to estimate ek(id) from above.

(sr1,Ωp1,q1a)µ
id−−−→ (sr2,Ωp2,q2a

†)µ

id1

y
xid3

(sr1,Ωγ1,γ1
a)µ

id2−−−→ (sr2,Ωδ2,δ2
a†)µ.

(3.20)

Using the submultiplicativity of entropy numbers (see Theorem 3.7) we get

ek(id) ≤ ||id1|| · ||id3|| · ek(id2) (3.21)

To estimate ||id1|| and ||id3|| we use (3.13), resp. (3.14) and get

||id1|| ≤ c µ
(d−1)

(
1

γ1
− 1

q1

)
+ , ||id3|| ≤ c µ

(d−1)
(

1
q2
− 1

δ2

)
+ . (3.22)

To estimate ek(id2) we use Lemma 3.11 and (3.11)

(sr1,Ωγ1,γ1a)µ ≈ 2
µ(r1−

1
γ1

)
ℓDµ

γ1

and its counterpart for (sr2,Ωδ2,δ2
a†)µ. This gives

ek(id2) ≤ c 2
µ(−r1+ 1

γ1
+r2−

1
δ2

)
2
− k

2DµD
1
δ2
− 1

γ1
µ . (3.23)

Putting (3.22) and (3.23) into (3.21) and using Dµ ≈ µd−12µ we get the desired result and
finish the Step 1.

Step 2.

46



We prove now the estimates from below. Let γ1, γ2, δ1, δ2 be still defined by (3.18) and (3.19),
respectively. We use following diagram.

(sr1,Ωp1,q1a)µ
id−−−→ (sr2,Ωp2,q2a

†)µ

id1

x
yid3

(sr1,Ωδ1,δ1
a)µ

id2−−−→ (sr2,Ωγ2,γ2
a†)µ.

(3.24)

As id2 = id1 ◦ id ◦ id3 we may use again the submultiplicativity of entropy numbers. The
estimate for the entropy numbers of id2 is given by Lemma 3.11

ek(id2) ≥ c 2
µ(−r1+r2+ 1

δ1
− 1

γ2
)
2
− k

2DµD
1

γ2
− 1

δ1
µ

and for ||id1|| and ||id3|| we use similar estimates as in the Step 1.

||id1|| ≤ c µ
(d−1)

(
1
q1
− 1

δ1

)
+ , ||id3|| ≤ c µ

(d−1)
(

1
γ2
− 1

q2

)
+ . (3.25)

From this the result immediately follows.

Lemma 3.13 is a generalisation of Lemma 3.11 as far as the third line of (3.15) and (3.16) is
concerned. So, for k ≥ 2Dµ, the estimate (3.17) provides four equivalences with constants
independent of k and µ. In the case k ≤ 2Dµ the situation is not so simple any more; we
give two different estimates from above.

Lemma 3.15. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞
with p1 ≤ p2. Let k ≤ 2Dµ. Then

ek(id : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a
†)µ) ≤ c µ

(d−1)
(

1
γ1
− 1

q1
+ 1

q2
− 1

δ2

)
2
µ(−r1+ 1

γ1
+r2−

1
δ2

)· (3.26)

·
[
k−1 log

(µd−12µ

k
+ 1
)] 1

γ1
− 1

δ2 ,

where γ1, γ2, δ1, δ2 are given by (3.18) and (3.19). The constant c is independent of k and µ.

The proof of Lemma 3.15 copies exactly the first step of the proof of Lemma 3.13.

The second estimate from above follows closely the idea of Kühn, Leopold, Sickel and
Skrzypczak expressed in [18].

Lemma 3.16. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞
with

p1 ≤ p2,
1

p1
− 1

p2
>

1

q1
− 1

q2
.

Let (d− 1)µd−1 logµ ≤ k ≤ 2Dµ = 2
∑
|ν|=µ #AΩ

ν . Then

ek(id : (sr1,Ωp1,q1b)µ → (sr2,Ωp2,q2b)µ) ≤c 2
µ(−r1+r2+

1
p1
− 1

p2
)
µ

1
p1
− 1

p2
+ 1

q2
− 1

q1 · (3.27)

·k
1

p2
− 1

p1

[
log
(µd−12µ

k
+ 1
)] 1

p1
− 1

p2
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Proof. We denote Xi = (sri,Ω
pi,qi

b)µ, i = 1, 2. We shall construct an ǫ−net of X2−balls covering
a unit ball BX1 of X1. For that reason we fix some ordering of the set {ν ∈ Nd

0 : |ν| = µ} =
{ν1, . . . , νS(µ,d)}, where

Sµ,d = #{ν ∈ N
d
0 : |ν| = µ} =

(
µ+ d− 1

µ

)
, µ ∈ N0. (3.28)

First we consider the subset of BX1

B = {λ ∈ BX1 : ||λν1 |X1|| ≥ ||λν2 |X1|| ≥ · · · ≥ ||λνS(µ,d)|X1||}

and construct an ǫ−net N in X2 for B. Then, if Π is any permutation of the index set
{1, . . . , Sµ,d} and

BΠ = {λ ∈ BX1 : ||λνΠ(1) |X1|| ≥ ||λνΠ(2)|X1|| ≥ · · · ≥ ||λνΠ(S(µ,d))|X1||}

we get, by permutation of the coordinates, ǫ−nets NΠ for BΠ, all having the same cardinality
as N , say 2k.

Clearly, BX1 = ∪ΠBΠ, where the union is taken over all permutations Π of the set {1, . . . , S(µ, d)}.
Hence ∪ΠNΠ is an ǫ− net in X2 for BX1 of cardinality

S(µ, d)!2k ≤ µ(d−1)µd−1

2k = 2(d−1)µd−1 log µ+k.

It remains to construct an ǫ−net for BX in X2. For λ ∈ B we have ||λνj |X1|| ≤ j−1/q1. If
k1, . . . , kS(µ,d) are arbitrary natural numbers, we set

ǫj := cj−1/q12
µ
(
−r1+

1
p1

+r2−
1

p2

)[
k−1
j log

(2µ
kj

+ 1
)] 1

p1
− 1

p2

and, according to Lemma 3.11, we find ǫj− net Nj in 2
µ
(
r2−

1
p2

)
ℓ
Aj
p2 for j1/q1BY , where Y =

2
µ
(
r1−

1
p1

)
ℓ
Aj
p1 and Aj = #(AΩ

νj ).

Thus N1 × . . .×NS(µ,d) is an ǫ−net in X2 for B of cardinality 2k1+...+kS(µ,d), where

ǫ =
(S(µ,d)∑

j=1

ǫq2j

) 1
q2 .

Finally, we choose kj , j = 1, . . . , S(µ, d). Fix m ∈ N and set

kj = 2mj−α,

where 0 < α < 1 is chosen such that

α
( 1

p1

− 1

p2

)
>

1

q1
− 1

q2

Then

k =

S(µ,d)∑

j=1

kj ≈ 2mµ(d−1)(−α+1) (3.29)
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and

(S(µ,d)∑

j=1

ǫq2j

) 1
q2 ≈ 2

µ
(
−r1+

1
p1

+r2−
1

p2

)
2
m
(

1
p2
− 1

p1

)
S(µ, d)

α
(

1
p1
− 1

p2

)
− 1

q1
+ 1

q2

[
log(2µ−mµα + 1)

] 1
p1
− 1

p2 .

Substituting for 2m from (3.29) we get

(S(µ,d)∑

j=1

ǫq2j

) 1
q2 ≈ 2

µ
(
−r1+ 1

p1
+r2−

1
p2

)
k

1
p2
− 1

p1 µ
(d−1)

(
1

p1
− 1

p2
+ 1

q2
− 1

q1

)[
log
(µd−12µ

k
+ 1
)] 1

p1
− 1

p2 ,

which finishes the proof.

3.3 Main result

In this subsection we present our main results concerning sequence spaces. Our aim is to
estimate the entropy numbers of

id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†. (3.30)

First we split the identity (3.30) into a sum of identities between building blocks

id =

∞∑

µ=0

idµ, idµ : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†, (3.31)

where

(idµλ)ν m =

{
λν m, if |ν| = µ

0, otherwise
(3.32)

for all ν ∈ Nd
0, m ∈ AΩ

ν .

Next we observe that
ek(idµ) = ek(id

′
µ), k ∈ N, µ ∈ N0, (3.33)

where
id′µ : (sr1,Ωp1,q1a)µ → (sr2,Ωp2,q2a

†)µ, µ ∈ N0 (3.34)

are the natural identities between our building blocks.

First, we characterise when the embedding (3.30) is compact.

Theorem 3.17. Let

r1 = (r1, . . . , r1) ∈ R
d, r2 = (r2, . . . , r2) ∈ R

d, 0 < p1, p2, q1, q2 ≤ ∞. (3.35)

Then the embedding (3.30) is compact if and only if

α = r1 − r2 −
( 1

p1

− 1

p2

)
+
> 0. (3.36)
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Proof. Part 1.

In the first part we prove that (3.36) is sufficient for compactness of (3.30). First we restrict
to the case

• 0 < p1 ≤ p2 ≤ ∞ and a = a† = b.

It is an easy exercise to show that

||idµ|sr1,Ωp1,q1b→ sr2,Ωp2,q2b|| = ||id′µ|(sr1,Ωp1,q1b)µ → (sr2,Ωp2,q2b)µ|| ≤ 2
−µ(r1−r2+

1
p2
− 1

p1
)
S(µ, d)

(
1

q2
− 1

q1

)
+ ,

where the number S(µ, d) was defined by (3.28). So, if (3.36) is satisfied, then we may
approximate the operator id by finite ranks operators Pj =

∑j
µ=0 idµ.

• 0 < p1 ≤ p2 ≤ ∞
In this case we choose ǫ > 0 such that

r1 − r2 −
( 1

p1
− 1

p2

)
> 2ǫ

and use following trivial embeddings

sr1,Ωp1,q1
a→ sr1−ǫ,Ωp1,q1

b→ sr2+ǫ,Ω
p2,q2

b→ sr2,Ωp2,q2
a†.

All these embeddings are continuous, the middle one is even compact.

• 0 < p2 ≤ p1 ≤ ∞.

Now we use the following line of embeddings

sr1,Ωp1,q1
a→ sr1,Ωp2,q1

a→ sr2,Ωp2,q2
a†.

We have already proven, that the second embedding is compact. As the first embedding is
continuous, it finishes the proof of part 1.

Part 2. If (3.36) is not satisfied, we construct a sequence {eµ}∞µ=0 from the unit ball of sr1,Ωp1,q1
a

such that ||eµ − eµ′ |sr2,Ωp2,q2a
†|| ≥ c > 0 for µ 6= µ′.

Let us start with the case p1 ≤ p2. For µ ∈ N0 fixed, we choose one νµ ∈ Nd
0 with |νµ| = µ

and one mµ ∈ AΩ
νµ

. Then we set

(eµ)ν m =

{
2−µ(r1−1/p1) for ν = νµ, m = mµ,

0 otherwise.

When p1 > p2 we fix again one νµ ∈ Nd
0 with |νµ| = µ and define (eµ)ν m = 2−µr1 for ν = νµ

and m ∈ AΩ
νµ

and (eµ)ν m = 0 otherwise.

It is our main task to estimate the decay of ek(id) for id given by (3.30) when this sequence
tends to zero, it means when (3.36) is satisfied. First we get the estimates from below.

Theorem 3.18. Let r1, r2, p1, p2, q1, q2 be given by (3.35) with (3.36). Then

ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†) ≥ c kr2−r1(log k)

(d−1)
(
r1−r2+

1
q2
− 1

q1

)
+, k ≥ 2, (3.37)

where the constant c does not depend on k.
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Proof. Step 1.

For every µ ∈ N we consider the following diagram:

(sr1,Ωp1,q1
a)µ

id′µ−−−→ (sr2,Ωp2,q2
a†)µ

id1

y
xid2

sr1,Ωp1,q1a
id−−−→ sr2,Ωp2,q2a

†

(3.38)

The meaning of id and id′µ was explained by (3.30) – (3.34). id1 extends a given finite
sequence by zeros while id2 is the identity restricted to the µ−th building block. Hence

id1({λν m} :|ν| = µ,m ∈ AΩ
ν ) =

({γν m} : γν m = λν m for |ν| = µ and γν m = 0 otherwise)

and

id2({λν m} :ν ∈ N
d
0, m ∈ AΩ

ν ) = ({λν m} : |ν| = µ).

For
k = 2Dµ (3.39)

we get by Lemma 3.13

c µ

(
1

q2
− 1

q1

)
2µ(r2−r1) ≤ ek(id

′
µ) ≤ ||id1|| · ||id2|| · ek(id) = ek(id).

If k is given by (3.39) we get µ ≈ log k and 2µ ≈ k
logd−1 k

. Hence

ek(id) ≥ c kr2−r1(log k)
(d−1)

(
r1−r2+

1
q2
− 1

q1

)
.

By monotonicity, we extend this results to all k ≥ 2.

Step 2. We repeat the same arguments with different building blocks. The diagram (3.38)
is replaced by

2
µ
(
r1−

1
p1

)
ℓ
Aµ
p1

id′µ−−−→ 2
µ
(
r2−

1
p2

)
ℓ
Aµ
p2

id1

y
xid2

sr1,Ωp1,q1
a

id−−−→ sr2,Ωp2,q2
a†

, (3.40)

where Aµ = #(AΩ
ν ) for some ν with |ν| = µ. Instead of Lemma 3.13 we use Lemma 3.11 to

get for k = 2Aµ

c 2µ(r2−r1) ≤ ek(id
′
µ) ≤ ||id1|| · ||id2|| · ek(id) = ek(id).

Finally, we substitute 2µ ≈ k, get

ek(id) ≥ c kr2−r1

and use monotonicity arguments to extend the result to all k ≥ 2.
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Theorem 3.19. Let r1, r2, p1, p2, q1, q2 be given by (3.35) with (3.36). If

α > V1(p1, q1, p2, q2) :=
1

min(p1, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
(3.41)

for p1 ≤ p2 and

α > V1(p2, q1, p2, q2) :=
1

min(p2, q1)
− 1

max(p2, q2)
(3.42)

for p1 > p2 then

ek(id : sr1,Ωp1,q1
a→ sr2,Ωp2,q2

a†) ≤ c kr2−r1(log k)
(d−1)

(
r1−r2+

1
q2
− 1

q1

)
, k ≥ 2, (3.43)

where the constant c does not depend on k.

Proof. Step 1.

We restrict ourselves first to the case p1 ≤ p2.

We split id as indicated in (3.31)

id =
J∑

µ=0

idµ +
L∑

µ=J+1

idµ +
∞∑

µ=L+1

idµ,

where the numbers J ≤ L shall be specified later on. Furthermore, we shall later define
natural numbers kµ, µ = 0, . . . , L and k =

∑L
µ=0 kµ. This will supply the fundamental

estimate

e̺k(id) ≤
J∑

µ=0

e̺kµ
(idµ) +

L∑

µ=J+1

e̺kµ
(idµ) +

∞∑

µ=L+1

||idµ||̺, ̺ = min(1, p2, q2). (3.44)

We recall that by (3.33) one may substitute ekµ(idµ) by ekµ(id′µ).

Step 2. Fix now J ∈ N. We show how to choose the numbers L and kµ (in dependence of
J) and we estimate the three sums in (3.44).

We start with the last one. First we remark that

||idµ|| ≤ c 2−µαµ
(d−1)

(
1
q2
− 1

q1

)
+ , µ ∈ N

and
∞∑

µ=L+1

||idµ||̺ ≤ c
∞∑

µ=L+1

2−̺µαµ
̺(d−1)

(
1
q2
− 1

q1

)
+ ≤ c 2−̺αLL

̺(d−1)
(

1
q2
− 1

q1

)
+ ,

Finally, we choose L ≥ J large such that the last expression may be estimated from above
by

∞∑

µ=L+1

||idµ||̺ ≤ c 2J(r2−r1)J
(d−1)

(
1
q2
− 1

q1

)
.

Step 3. We estimate the first sum in (3.44). We define

kµ = 2Dµ2
(J−µ)ǫ ≥ 2Dµ, µ = 0, . . . , J,
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where ǫ is an arbitrary fixed number with 0 < ǫ < 1. Then we get

J∑

µ=0

kµ ≈ Jd−12J . (3.45)

By Lemma 3.13

ekµ(idµ) ≈ 2−2(J−µ)ǫ

µ
(d−1)

(
1
q2
− 1

q1

)
2µ(r2−r1),

J∑

µ=0

e̺kµ
(idµ) ≈ J

̺(d−1)
(

1
q2
− 1

q1

)
2̺J(r2−r1). (3.46)

Step 4. We estimate the second sum in (3.44). We set

kµ = 2Dµ2
(J−µ)κ ≤ 2Dµ, J + 1 ≤ µ ≤ L

where κ is chosen such that

κ > 1, r1 − r2 > κ

( 1

γ1
− 1

δ2

)
. (3.47)

γ1 and δ2 was defined by (3.18) and (3.19), respectively. Then we get

L∑

µ=J+1

kµ ≈ Jd−12J . (3.48)

By Lemma 3.15 we get for ekµ(idµ)

ekµ(idµ) ≤ c µ
(d−1)

(
1
q2
− 1

q1

)
2µ(r2−r1)2

(J−µ)κ
(

1
δ2
− 1

γ1

)[
log
(
c2−(J−µ)κ + 1

)] 1
γ1
− 1

δ2 .

By (3.47) we get
L∑

µ=J+1

e̺kµ
(idµ) ≈ J

̺(d−1)
(

1
q2
− 1

q1

)
2̺J(r2−r1). (3.49)

Finally, we put (3.45), (3.48) together with (3.46) and (3.49) into (3.44) and obtain

ec1Jd−12J (id) ≤ c2 J
(d−1)

(
1
q2
− 1

q1

)
2J(r2−r1).

Substituting k = c1J
d−12J and using monotonicity arguments, we finish the proof of the

theorem for p1 ≤ p2.

Step 5. In the case p1 > p2 we use the chain of embeddings

sr1,Ωp1,q1
a →֒ sr1,Ωp2,q1

a →֒ sr2,Ωp2,q2
a†.

The first embedding is then continuous (as p1 > p2 and Ω is bounded), the second is covered
by previous steps. Altogether, it finishes the proof.

Remark 3.20. 1. One notices immediately a gap between (3.36) and (3.41). To eliminate
this gap we use a complex interpolation method in the next chapter.

2. Lemma 3.16 allows us to reduce the gap a bit in a special case, where a = a† = b. If
we use Lemma 3.16 instead of Lemma 3.15 in the Step 4. in the previous proof, we get the
same result, namely (3.43), for

p1 ≤ p2, r1 − r2 +
1

p2
− 1

p1
> 0,

1

p1
− 1

p2
>

1

q1
− 1

q2
.
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4 Complex interpolation

In Theorem 3.18 we obtained an estimate from below for entropy numbers of the embedding

id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a
†. (4.1)

The corresponding estimate from above was obtained in Theorem 3.19 for

α = r1 − r2 −
( 1

p1
− 1

p2

)
+
>

1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
. (4.2)

So for any p1, p2, q1, q2 we have one natural boundary for r1− r2 which ensures compactness
of (4.1), see Theorem 3.17, and a second one, in general larger and given by (4.2), where
the estimates from above and from below for entropy numbers of (4.1) coincide. The main
purpose of this chapter is to eliminate this gap using a complex interpolation method. We
follow closely [20].

4.1 Abstract background

In this subsection we briefly describe the complex interpolation method of [20]. We quote
only the minimum needed for our purpose.

We say that two quasi-Banach spaces X0, X1 form an interpolation couple (X0, X1) if there
is a Hausdorff topological vector space X such that X0 and X1 are continuously embedded
in X. Given an interpolation couple (X0, X1), we define the space X0 ∩X1 by

X0 ∩X1 = {x ∈ X : ||x|X0 ∩X1|| <∞},

where
||x|X0 ∩X1|| = max{||x|X0||, ||x|X1||}.

Similarly, we define the space X0 +X1 by

X0 +X1 = {x ∈ X : ||x|X0 +X1|| <∞},

where

||x|X0 +X1|| = inf{||x0|X0||+ ||x1|X1|| : x = x0 + x1, xj ∈ Xj, j = 0, 1}.

It is easy to verify that X0 ∩X1 and X0 +X1 are quasi-Banach spaces, see for example [5]
for details.

If X is a quasi-Banach space and Ω ⊂ C is an open subset then f : Ω → X is called
analytic if for each z0 ∈ Ω there exists r > 0 such that there is a power expansion f(z) =∑∞

n=0 xnz
n, xn ∈ X, converging uniformly for |z − z0| < r.

Given an interpolation couple (X0, X1) of quasi-Banach spaces, we consider the class F of
all functions f with values in X0 +X1, which are bounded and continuous on the strip

S = {z ∈ C : 0 ≤ Re z ≤ 1},

and analytic in the open strip

S0 = {z ∈ C : 0 < Re z < 1},
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and moreover, the functions t → f(j + it)(j = 0, 1) are bounded continuous functions into
Xj .

We endow F with the quasinorm

||f |F|| = max
{
sup
t∈R

||f(it)|X0||, sup
t∈R

||f(1 + it)|X1||
}
. (4.3)

Finally, we set

[X0, X1]θ :=
{
x ∈ X0 +X1 : x = f(θ) for some f ∈ F

}
, 0 < θ < 1.

This space is equipped with the quasinorm

||x|[X0, X1]θ|| := inf{||f |F|| : f ∈ F , f(θ) = x}, x ∈ [X0, X1]θ.

As far as the classical complex interpolation theory of Peetre is considered, we refer again to
[5] and references given there. However, it is well known, that the extension of this complex
interpolation method to the quasi-Banach spaces is not possible due to the possible failure of
the Maximum Modulus Principle in the quasi-Banach context. However, there is a significant
class of quasi-Banach spaces, called A–convex, in which the Maximum Modulus Principle is
valid. As far as the study of this class is concerned, see [20] and references given there for
details. We quote only the minimum from this theory needed in the sequel.

Definition 4.1. A quasi-Banach space (X, || · |X||) is called A–convex if there is a constant
C such that for every polynomial P : C→ X we have

||P (0)|X|| ≤ Cmax
|z|=1
||P (z)|X||.

Next theorem shows that in the frame of A-convex quasi-Banach spaces the Maximum Mod-
ulus Principle holds.

Theorem 4.2. For a quasi-Banach space (X, ||·|X||) the following conditions are equivalent:

(i) X is A–convex

(ii) there exists C such that

max{||f(z)|X|| : z ∈ S0} ≤ Cmax{||f(z)|X|| : z ∈ S \ S0}
for any function f : S → X analytic on S0 and continuous and bounded on S.

In the special case when X0 and X1 are quasi-Banach lattices, it was observed by Calderón
that the interpolation space [X0, X1]θ coincides with the so-called Calderón product of spaces
X0 and X1, usually denoted by X1−θ

0 Xθ
1 . We quote again necessary definitions and corre-

sponding theorems from [20].

First, let (X,S, µ) be a σ−finite measure space and let M be the class of all complex–valued,
µ−measurable functions on X. Then a quasi-Banach space X ⊂M is called a quasi-Banach
lattice of functions if for every f ∈ X and g ∈M with |g(x)| ≤ |f(x)| for µ−a.e. x ∈ X one
has g ∈ X with ||g|X|| ≤ ||f |X||.
Furthermore, a quasi-Banach lattice of functions (X, || · |X||) is called lattice r-convex if

∣∣∣
∣∣∣
( m∑

j=1

|fj|r
)1/r|X

∣∣∣
∣∣∣ ≤

( m∑

j=1

||fj|X||r
)1/r

for any finite family {fj}1≤j≤m of functions from X.

The following theorem gives a very simple condition for lattice of functions to be A−convex.
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Theorem 4.3. Let X be a complex quasi-Banach lattice of functions. Then the following
assertions are equivalent

(i) X is A–convex

(ii) X is lattice r-convex for some r > 0.

Finally, if (Xj , || · |Xj||), j = 0, 1 are quasi-Banach lattices of functions and 0 < θ < 1 then
the Calderón product X1−θ

0 Xθ
1 is the function spaces defined by the quasinorm

||f |X1−θ
0 Xθ

1 || := inf
{
||f0|X0||1−θ||f1|X1||θ : |f | ≤ |f0|1−θ|f1|θ, fj ∈ Xj, j = 0, 1

}
.

The connection between complex interpolation and Calderón products is given by

Theorem 4.4. Let (X,S, µ) be a complete separable metric space, let µ be a σ−finite Borel
measure on X, and let X0, X1 be a pair of quasi-Banach lattices of functions on (X, µ).

Then if both X0 and X1 are A–convex and separable, it follows that X0 + X1 is A-convex
and [X0, X1]θ = X1−θ

0 Xθ
1 , 0 < θ < 1.

As pointed out in [20] in the case of quasi-Banach sequence lattices, only one of the spaces
in 4.4 must be separable.

4.2 Interpolation of sr,Ω
p,q
a

Now we apply Theorem 4.4 to interpolate the sequence spaces sr,Ωp,q a. First, we have to prove,
that these spaces are A–convex. According to Theorem 4.3 it is enough to prove that they
are lattice s–convex for some s > 0. Trivially, s = min(1, p, q) works fine in both b and f
case.

Hence, it is enough to compute the Calderón products

(sr1,Ωp1,q1
a)1−θ(sr2,Ωp2,q2

a)θ, 0 < θ < 1.

The answer is given by

Theorem 4.5. Let

r1, r2 ∈ R
d, 0 < p1, p2, q1, q2 ≤ ∞, 0 < θ < 1. (4.4)

If r, p and q are given by

1

p
=

1− θ
p1

+
θ

p2

,
1

q
=

1− θ
q1

+
θ

q2
, r = (1− θ)r1 + θr2, (4.5)

we get
(sr1,Ωp1,q1a)

1−θ(sr2,Ωp2,q2a)
θ = sr,Ωp,q a.

Proof. Step 1. First, let λ ∈ sr,Ωp,q a and λj ∈ srj ,Ω
pj ,qja, j = 1, 2 with

|λν m| ≤ |λ1
ν m|1−θ · |λ2

ν m|θ, ν ∈ N
d
0, m ∈ AΩ

ν . (4.6)
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We have to show that

||λ|sr,Ωp,q a|| ≤ ||λ1|sr1,Ωp1,q1
a||1−θ · ||λ2|sr2,Ωp2,q2

a||θ.

But this is a simple exercise on Hölder’s inequality in both b and f case.

Step 2. Now we prove the reverse inequality for a = b.

To λ ∈ sr,Ωp,q b given, we will find λj ∈ srj ,Ω
pj ,qjb, j = 1, 2 with (4.6) such that

||λ|sr,Ωp,q b|| = ||λ1|sr1,Ωp1,q1
b||1−θ · ||λ2|sr2,Ωp2,q2

b||θ. (4.7)

First we deal with the case pj , qj <∞, j = 1, 2.

We choose
λjν m = cjν |λν m|p/pj , j = 1, 2, ν ∈ N

d
0, m ∈ AΩ

ν , (4.8)

where

cjν = 2
(ν·r) q

qj 2−ν·rjΛ
q
qj
− p

pj

ν , j = 1, 2, ν ∈ N
d
0, (4.9)

and

Λν =
( ∑

m∈AΩ
ν

|λν m|p
)1/p

, ν ∈ N
d
0. (4.10)

(If Λν = 0 for some ν ∈ Nd
0 we set cν = 0.)

By this choice we see that

|λ1
ν m|1−θ · |λ2

ν m|θ = 2
ν·rq[ 1−θ

q1
+ θ

q2
]
2−ν·r1(1−θ)−ν·r2θΛ

q[ 1−θ
q1

+ θ
q2

]−p[ 1−θ
p1

+ θ
p2

]

ν |λν m|p[
1−θ
p1

+ θ
p2

]
= |λν m|.

This proves (4.6).

To prove (4.7) we use (4.8), (4.9) and (4.10) to get

||λj|srj ,Ω
pj,qj

b|| =
[∑

ν∈Nd
0

2ν·rjqj(cjν)
qj
( ∑

m∈AΩ
ν

|λν m|
p
pj
pj

)qj/pj
]1/qj

=
[∑

ν∈Nd
0

2ν·rqΛq
ν

]1/qj
.

From this (4.7) follows immediately.

If max(p1, q1, p2, q2) =∞ only notational changes are necessary.

Step 3. As far as the f–case is considered, one may modify slightly the proof for sequence
spaces f sp,q given in [13], Theorem 8.2.

We start again with given λ ∈ sr,Ωp,q f and we need to find λj ∈ srj ,Ω
pj ,qjf, j = 1, 2 with (4.6) such

that
||λ1|sr1,Ωp1,q1f ||1−θ||λ2|sr2,Ωp2,q2f ||θ ≤ c||λ|sr,Ωp,q f ||. (4.11)

First we deal with the case qj <∞, j = 1, 2.

For every k ∈ Z, let

Ak =

{
x ∈ R

d :

( ∑

ν∈Nd
0,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)

)1/q

> 2k
}

and

Ck = {(ν,m) : |Qν,m ∩ Ak| ≥
|Qν m|

2
and |Qν,m ∩Ak+1| <

|Qν m|
2
}.
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We note that if (ν,m) 6∈ ∪k∈ZCk, then λν m = 0.

We define the sequences λj, j = 1, 2 by

λ1
ν m = 2kγ2ν·u|λν m|q/q1 and λ1

ν m = 2kδ2ν·v|λν m|q/q2,

where

γ =
p

p1
− q

q1
, δ =

p

p2
− q

q2

u = qθ[
r2

q1
− r1

q2
], v = q(1− θ)[r1

q2
− r2

q1
]

if (ν,m) ∈ Ck, and λ1
ν m = λ2

ν m = 0 if (ν,m) 6∈ ∪k∈ZCk.

We point out that
(1− θ)γ + δθ = (1− θ)u+ θv = 0.

An easy calculation shows that

|λ1
ν m|1−θ · |λ2

ν m|θ = 2k[(1−θ)γ+θδ]+ν·[(1−θ)u+θv]|λν m|q
(

1−θ
q1

+ θ
q2

)
= |λν m|.

In the sequel we assume that γ ≥ 0, since the contrary case follows from interchanging sr1,Ωp1q1
f

with sr2,Ωp2q2
f and θ with 1− θ.

We prove that
||λj|srj ,Ω

pjqj
f || ≤ c||λ|sr,Ωpq f ||p/pj , j = 1, 2. (4.12)

From this, (4.11) clearly follows.

To prove (4.12) for j = 1 we write

||λ1|sr1,Ωp1q1
f || =

∣∣∣∣
∣∣∣∣
( ∞∑

k=−∞

∑

(ν,m)∈Ck

|2ν·r1λ1
ν m|q1χν m(x)

)1/q1

|Lp1
∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
( ∞∑

k=−∞

∑

(ν,m)∈Ck

|2ν·r1λ1
ν m|q1χQν m∩Ak

(x)

)1/q1

|Lp1
∣∣∣∣
∣∣∣∣,

where on the second line we use the definition of the set Ck and the boundedness of the
maximal operator M as described by Theorem 1.11.

We denote

Dk =

k⋃

l=−∞

Cl
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and continue

||λ1|sr1,Ωp1q1
f || ≤ c

∣∣∣∣
∣∣∣∣
∞∑

k=−∞

χAk\Ak+1
(x)

( ∑

(ν,m)∈Dk

|2ν·r1λ1
ν m|q1χν m(x)

)1/q1

|Lp1
∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
∞∑

k=−∞

χAk\Ak+1
(x)2kγ

( ∑

(ν,m)∈Dk

2ν·r1q12ν·uq1 |λν m|qχν m(x)

)1/q1

|Lp1
∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
∞∑

k=−∞

χAk\Ak+1
(x)2kγ

( ∑

ν∈Nd
0,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)

)1/q1

|Lp1
∣∣∣∣
∣∣∣∣

≤ c

∣∣∣∣
∣∣∣∣
( ∑

ν∈Nd
0,m∈A

Ω
ν

2ν·rq|λν m|qχν m(x)

) p
qp1 |Lp1

∣∣∣∣
∣∣∣∣

= c||λ|sr,Ωpq f ||p/p1.

The second estimate in (4.12) is similar.

After these preparations we are ready to present the main result of this section. Recall, that
the spaces Srp,qA(Ω) were defined by (3.1) and (3.2).

Theorem 4.6. Let rj, pj , qj for j = 1, 2 be given by (4.4). Let 0 < θ < 1 and define r, p and
q by (4.5). Also suppose that min(q1, q2) <∞.

(i) Then
[sr1,Ωp1,q1

b, sr2,Ωp2,q2
b]θ = sr,Ωp,q b. (4.13)

(ii) Furthermore, if pj <∞, j = 1, 2,

[sr1,Ωp1,q1
f, sr2,Ωp2,q2

f ]θ = sr,Ωp,q f. (4.14)

Proof. The proof of (4.13) and (4.14) follows immediately from Theorem 4.4 and 4.5.

4.3 Interpolation properties of entropy numbers.

Now we shall discuss the connection between the complex interpolation method developed
above with entropy numbers. We use Theorem 1.3.2 from [10]. We recall that for t > 0, an
interpolation couple (B0, B1) and b ∈ B0 +B1, the Peetre’s K−functional is given by

K(t, b, B0, B1) = inf{||b0|B0||+ t||b1|B1|| : b = b0 + b1, b0 ∈ B0, b1 ∈ B1}.

Theorem 4.7. (i) Let A be a quasi-Banach space and let (B0, B1) be an interpolation couple
of p−Banach spaces. Let 0 < θ < 1 and let Bθ be a quasi-Banach space such that B0 ∩B1 ⊂
Bθ ⊂ B0 +B1 and

||b|Bθ|| ≤ ||b|B0||1−θ · ||b|B1||θ for all b ∈ B0 ∩ B1.

Let T ∈ L(A,B0 ∩B1). Then for all k0, k1 ∈ N,

ek0+k1−1(T : A→ Bθ) ≤ 21/pe1−θk0
(T : A→ B0)e

θ
k1

(T : A→ B1).
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(ii) Let (A0, A1) be an interpolation couple of quasi-Banach spaces and let B be a p−Banach
space. Let 0 < θ < 1 and let A be a quasi-Banach space such that A ⊂ A0 + A1 and

t−θK(t, a, A0, A1) ≤ ||a|A|| for all a ∈ A and all t > 0.

Let T : A0 + A1 → B be linear and such that its restriction to A0 and A1 are continuous.
Then its restriction to A is also continuous and for all k0, k1 ∈ N,

ek0+k1−1(T : A→ B) ≤ 21/pe1−θk0
(T : A0 → B)eθk1(T : A1 → B).

So, we only have to verify that the complex interpolation satisfies the assumptions of this
theorem.

Theorem 4.8. Let B0, B1 be an interpolation couple of A-convex quasi-Banach spaces and
let 0 < θ < 1. Then

(i)
||b|[B0, B1]θ|| ≤ ||b|B0||1−θ · ||b|B1||θ for all b ∈ B0 ∩B1.

(ii) Let the functionals in B′i separate the points of Bi, i = 0, 1. Then

t−θK(t, b, B0, B1) ≤ ||b|[B0, B1]θ|| for all b ∈ [B0, B1]θ and all t > 0.

Proof. Step 1. Fix b ∈ B0 ∩ B1, set Mj = ||b|Bj||, j = 0, 1 and define g(z) = Mz−1
0 M−z1 b.

Then ||g|F|| = 1 and

||Mθ−1
0 M−θ1 b|[B0, B1]θ|| ≤ ||g(θ)|[B0, B1]θ|| ≤ 1.

This proves (i).

Step 2. One may follow [31], 1.10.3. There one may find a proof dealing with classical
complex–interpolation method and Banach spaces. Nevertheless, the proof works also for
the generalised method, as described above, and quasi-Banach sequence spaces. Especially,
the Hahn–Banach Theorem needed there still holds for all sequence spaces which come to
play.

4.4 Filling the gaps

Now we use the complex interpolation and its relation to entropy numbers to close the gap
mentioned in the beginning of Section 4. Namely, we are interested in those combination of
”input” parameters which satisfy

V1(p1, q1, p2, q2) :=
1

min(p1, p2, q1)
− 1

p1
+

1

p2
− 1

max(p2, q2)
≥ r1−r2−

( 1

p1
− 1

p2

)

+
> 0. (4.15)

Our main result on the sequence space level states

Theorem 4.9. Let rj = (rj, . . . , rj) ∈ Rd, 0 < pj , qj ≤ ∞, j = 1, 2 with

r1 − r2 −
( 1

p1
− 1

p2

)

+
> 0. (4.16)
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Furthermore, let pj <∞ in the f−case.

(i) If r1 − r2 − 1
q1

+ 1
q2
> 0 then

ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a) ≈ kr2−r1(log k)
(d−1)(r1−r2−

1
q1

+ 1
q2

)
, k ≥ 2.

(ii) If r1 − r2 − 1
q1

+ 1
q2
≤ 0 and ε > 0 then there are constants c and Cε such that

ckr2−r1 ≤ ek(id : sr1,Ωp1,q1a→ sr2,Ωp2,q2a) ≤ Cεk
r2−r1(log k)ε, k ≥ 2.

Remark 4.10. Unlike Theorems 3.18 and 3.19, this theorem deals only with embeddings
which stay either in the b–scale or in the f–scale. We see also that this theorem closes
the gap mentioned above up to the (log k)ε term. Furthermore, the estimate from below is
covered by Theorem 3.18. Hence we will concentrate on the estimates from above in the
proof.

Proof. In the proof we shall distinguish several cases. First of all, we suppose that p1 ≤ p2.

I. p1 ≤ q1, q2 ≤ p2. In this case the condition (4.15) is empty and the result is covered by
Theorem 3.19.

II. q1 ≤ p1 ≤ p2 ≤ q2. We start with the sub-case

IIa. r1 − r2 − 1
q1

+ 1
q2
> 0.

In this case we have

r1 − r2 −
1

p1

+
1

p2

>
1

q1
− 1

p1

+
1

p2

− 1

q2
= V1(p1, q1, p2, q2)

and the result is again provided by Theorem 3.19.

IIb. r1 − r2 − 1
q1

+ 1
q2
≤ 0

The second subcase IIb. introduces the logε–gap. So we fix ε > 0 and use the following
embedding

sr1,Ωp1,q1a →֒ sr1,Ωp1,q a →֒ sr2,Ωp2,q′
a →֒ sr2,Ωp2,q2a. (4.17)

The newly introduced indices q, q′ are supposed to satisfy following conditions

0 < q1 ≤ q ≤ p1 ≤ p2 ≤ q′ ≤ q2 ≤ ∞,
1

p1
− 1

p2
<

1

q
− 1

q′
< r1 − r2 <

1

q
− 1

q′
+ ε. (4.18)

The existence of these indices follows from (4.16) and the condition IIb. Hence we may apply
the step IIa. to the middle embedding in (4.17). All the other embeddings are bounded which
gives finally

ek(id) ≤ ckr2−r1(log k)ε

III. q1 < p1, q2 < p2.

We make the same splitting as in the case II. to the subcases IIIa. and IIIb.

IIIa. r1 − r2 − 1
q1

+ 1
q2
> 0.

We choose 0 < θ < 1 such that

r1 − r2 −
1

q1
+

1

q2
> (1− θ)

( 1

q2
− 1

p2

)
> 0. (4.19)
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and use the interpolation scheme

sr,Ωp,q a ց
sr1,Ωp1,q1

a→ sr2,Ωp2,q2
a (4.20)

sr2,Ωp2,q2
aր

with corresponding equations for r, p and q.

r1 = (1− θ)r + θr2, (4.21)

1

p1
=

1− θ
p

+
θ

p2
, (4.22)

1

q1
=

1− θ
q

+
θ

q2
. (4.23)

We have to verify that

r − r2 −
1

p
+

1

p2

> V1(p, q, p2, q2). (4.24)

If q ≥ p, then V1(p, q, p2, q2) = 0 and (4.24) is equivalent to (4.16). (One makes use of trivial
calculation

(1− θ)
(1

p
− 1

p2

)
=

1

p1
− 1

p2
(4.25)

which follows directly from (4.22).)

If q ≤ p, then V1(p, q, p2, q2) = 1
q
− 1

p
and (4.24) is equivalent to (4.19).

In both cases q ≤ p, q ≥ p we may apply Theorem 3.19 to the upper embedding in (4.20).
This leads to

ek(id) ≤ c
(
kr2−r(log k)

r−r2−
1
q
+ 1

q2

)1−θ

= ckr2−r1(log k)
r1−r2−

1
q1

+ 1
q2 .

We have used the analogy of (4.25) for q’s and r′s.

Let us also mention that the condition min(q, q2) < ∞ needed to apply Theorem 4.6 is in
the case III. always satisfied.

In the case IIIb, r1− 1
q1

+ 1
q2
≤ 0 ( =⇒ q1 ≤ q2), we use the chain of embeddings (4.17) with

(4.18) and
q1 ≤ q ≤ p1, q′ = q2.

Applying now the step IIIa. to the middle embedding we get the same result as in the case
IIb.

IV. p1 < q1, p2 < q2, p1 ≤ p2.

As this case is dual to the the third case, we proceed in the same way.

IVa. r1 − 1
q1

+ 1
q2
> 0.

We choose 0 < θ < 1 such that

r1 − r2 −
1

p1

+
1

p2

> (1− θ)
( 1

p2

− 1

q2

)
> 0. (4.26)

Now we apply the interpolation scheme (4.20) with corresponding equations (4.21)–(4.23).
We have to verify that

r − 1

p
+

1

p2
> V1(p, q, p2, q2). (4.27)
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If q ≥ p, then V1(p, q, p2, q2) = 1
p2
− 1

q2
and (4.27) is equivalent to (4.26).

If q ≤ p, then V1(p, q, p2, q2) = 1
q
− 1

p
+ 1

p2
− 1

q2
and (4.27) is equivalent to the condition IVa..

In both cases q ≤ p, q ≥ p we may apply Theorem 3.19 to the upper embedding in (4.20).
This leads again to

ek ≤ c
(
k−r(log k)

r− 1
q
+ 1

q2

)1−θ

= ck−r1(log k)
r1−

1
q1

+ 1
q2 .

This finishes the discussion of the case IVa. as far as min(q, q2) <∞ which is equivalent to
min(q1, q2) <∞. If q1 = q2 =∞ then we have to modify the arguments given above. In this
case there is in general no hope to identify the interpolation space [sr1,Ωp1,∞

a, sr2,Ωp2,∞
a]θ with the

corresponding Calderón product sr,Ωp,∞a. But, according to [16], IV.1.11, one embedding still
holds, namely

[sr1,Ωp1,∞
a, sr2,Ωp2,∞

a]θ → sr,Ωp,∞a.

So we may use following interpolation schema

ր sr,Ωp,∞a

sr1,Ωp1,∞
a→ [sr,Ωp,∞a, s

r1,Ω
p1,∞

a]θ → sr2,Ωp2,∞
a

ց sr1,Ωp1,∞
a,

where p and r is given by (4.22) and (4.21). Then the choice of 0 < θ < 1 with

r1 − r2 > (1− θ) 1

p1

ensures that we may proceed as in the Step IIIa and get the same result.

In the case IVb, r1− 1
q1

+ 1
q2
≤ 0 ( =⇒ q1 ≤ q2), we use the chain of embeddings (4.17) with

(4.18) and
q1 = q, p2 ≤ q′ ≤ q2.

Applying now the step IVa. to the middle embedding we get the same result as in the case
IIb.

4.5 Entropy numbers - conclusion

In the second section we have developed a strong tool connecting the function spaces
Srp,qA(Rd) with sequence spaces srp,qa. In the third and fourth section we have studied the
entropy numbers of embeddings of these sequence spaces. Finally, we combine these two
concepts and obtain estimates for entropy numbers of embeddings of function spaces.

We recall that the function spaces on domains were defined by (3.1) and (3.2).

Our main result reads

Theorem 4.11. Let Ω be a bounded domain in Rd with d ≥ 2. Let 0 < p1, q1, p2, q2 ≤ ∞
with p1, p2 <∞ in the F−case. Let ri = (ri, . . . , ri) ∈ Rd, i = 1, 2.

(i) The embedding
id : Sr1p1,q1A(Ω)→ Sr2p2,q2A

†(Ω) (4.28)
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is compact if and only if

r1 − r2 −
( 1

p1
− 1

p2

)

+
> 0. (4.29)

(ii) In that case

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≥ c kr2−r1(log k)

(d−1)(r1−r2+ 1
q2
− 1

q1
)+ , k ≥ 2. (4.30)

with c independent of k.

(iii) If A = A† = B or A = A† = F and r1 − r2 − 1
q1

+ 1
q2
> 0 then

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ c kr2−r1(log k)

(d−1)(r1−r2+
1
q2
− 1

q1
)
, k ≥ 2. (4.31)

with c independent of k.

(iv) If A = A† = B or A = A† = F and r1 − r2 − 1
q1

+ 1
q2
≤ 0 then for every ε > 0 there is a

constant cε > 0 such that

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ cε k

r2−r1(log k)ε, k ≥ 2. (4.32)

(v) For general A,A† and

r1 − r2 −
( 1

p1
− 1

p2

)

+
> V1(min(p1, p2), q1, p2, q2)

we get finally

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≤ c kr2−r1(log k)

(d−1)(r1−r2+ 1
q2
− 1

q1
)
, k ≥ 2.

Proof. Step 1. First we give some notation. If f ∈ Sr1p1,q1A(Ω) then according to Definition
3.1 there is a function g ∈ Sr1p1,q1A(Rd) such that

||g|Sr1p1,q1A(Rd)|| ≤ 2||f |Sr1p1,q1A(Ω)||

with g|Ω = f . We denote this function g = extf . Hence ext represents a (non-linear)
bounded operator

ext : Sr1p1,q1A(Ω)→ Sr1p1,q1A(Rd).

On the other hand, the natural restriction of g ∈ Sr1p1,q1A(Rd) to D′(Ω) represents a linear
bounded operator denoted by trΩ

trΩ : Sr1p1,q1A(Rd)→ Sr1p1,q1A(Ω).

Step 2. To prove the first statement we introduce two diagrams which shall be of use even
later on. In the first one, we start with f ∈ Sr1p1,q1A(Ω) and extend it to g = extf ∈
Sr1p1,q1A(Rd). Then we apply the wavelet decomposition to g as described in 2.12. This
allows us to represent g in the form

g =
∑

ν∈Nd
0,m∈Zd

λν mΨν m. (4.33)

64



In this way, we obtain a sequence λ = {λν m : ν ∈ N
d
0, m ∈ Z

d} ∈ sr1p1,q1a. According to
Theorem 2.12, the mapping which orders to a given function g its wavelet coefficients λ (and
which shall be denoted by W) is bounded

W : Sr1p1,q1A(Rd)→ sr1p1,q1a.

As the distribution g doesn’t need to have a bounded support, we restrict the sum in (4.33)
to those m ∈ Zd such that supp Ψν m ∩ Ω 6= ∅. Furthermore, we may always find a domain
Ω′ such that

{m ∈ Z
d : supp Ψν m ∩ Ω 6= ∅} ⊂ AΩ′

ν , ν ∈ N
d
0.

This natural restriction will be formally realised by the the operator

id′ : sr1p1,q1a→ sr1,Ω
′

p1,q1
a.

Finally, given a sequence λ ∈ sr2,Ω′

p2,q2
a†, we denote by S(λ) the distribution which arise as a

wavelet sum with coefficients λν m.

S(λ) =
∑

ν∈Nd
0,m∈A

Ω′
ν

λν mΨν m.

Using all this information we obtain the commutative diagram

Sr1p1,q1A(Ω)
ext
−−−→ Sr1p1,q1A(Rd)

W
−−−→ sr1p1,q1a

id′
−−−→ sr1,Ω

′

p1,q1
a

id1

y id2

y (4.34)

Sr2p2,q2A
†(Ω)

trΩ
←−−−−−−− Sr2p2,q2A

†(Rd)
S

←−−−−−−− sr2,Ω
′

p2,q2a
†

All the operators involved are bounded, under hypothesis (4.29) the embedding id2 is even
compact. This proves that the condition (4.29) is sufficient for compactness of (4.28).

To prove that this condition is also necessary, we follow the reasoning given in the proof
of Theorem 3.17. Suppose, that (4.29) is not satisfied. We shall construct a sequence
{fµ} bounded in Sr1p1,q1A(Ω) such that each its two different members have mutual distance
measured in Sr2p2,q2A

†(Ω) greater than some constant c > 0.

If p1 ≤ p2, we proceed in this way: for every µ ≥ µ′ there is νµ and mµ with |νµ| = µ and
CQνµ,mµ ⊂ Ω. We set

fµ = Ψνµmµ , µ ≥ µ′.

If p1 > p2, we choose for every µ ≥ µ′′ some νµ with |νµ| = µ and such that #{m ∈ Z
d :

CQνµm ⊂ Ω} ≈ 2µ. Then we set

fµ =
∑

m:CQνµ m⊂Ω

Ψνµm, µ ≥ µ′′.

Step 3. Till now we have used (4.34) only to prove the compactness of (4.28). But one may
use it also for the estimates of entropy numbers of (4.28). This gives

ek(id1) ≤ cek(id2), k ∈ N,
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where the constant c covers all the bounded operators ext,W, id′, S and trΩ. This allows
us to overtake the estimate from above obtained on the sequence space level to the function
space level.

Step 4. Now we prove the estimate from below, namely (4.30). To this effect we consider
sets

BΩ
ν = {m ∈ Z

d : CQν m ⊂ Ω}, ν ∈ N
d
0.

These sets form a certain counterpart to AΩ
ν . There are, nevertheless, some important

differences. One notices that we cannot hope for a straightforward equivalence of (3.7).
Instead of that, we see that there are constants µ0, c1 and c2 such that for every µ > µ0 the
cardinality of the set

{ν : |ν| = µ, c1 2µ ≤ #(BΩ
ν ) ≤ c2 2µ}

is equivalent to µd−1. It means that (3.7) doesn’t hold in general for all ν ∈ Nd
0 but only for

almost all ν with |ν| large enough.

Following the proof of Theorem 3.18 we have to choose two kinds of building blocks. In the
first case, we use the sequence spaces given by the quasinorm

||λ|(sr,Ωp,q b)′µ|| =
(∑

|ν|=µ

2ν·(r−
1
p
)q
( ∑

m∈BΩ
ν

|λν m|p
)q/p)1/q

and

||λ|(sr,Ωp,q f)′µ|| =
∣∣∣∣

∣∣∣∣
(∑

|ν|=µ

∑

m∈BΩ
ν

|2ν·rλν mχν m(·)|q
)1/q

|Lp(Rd)

∣∣∣∣

∣∣∣∣.

To estimate the entropy numbers of

ek(id : (sr1,Ωp1,q1
a)′µ → (sr2,Ωp2,q2

a†)′µ)

for µ ≥ µ0 large enough one may use the same arguments (and get the same results) as
presented in Lemma 3.13.

Hence for µ ≥ µ0 we use the diagram (with k = µd−12µ)

(sr1,Ωp1,q1
a)′µ

S−−−→ Sr1p1,q1A(Ω)

id1

y id2

y

(sr2,Ωp2,q2a
†)′µ

W←−−− Sr2p2,q2A
†(Ω)

(4.35)

to get

ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)) ≥ c kr2−r1(log k)

(d−1)(r1−r2+ 1
q2
− 1

q1
)
, k ≥ 2.

On the other hand, the diagram (and the choice k = 2µ)

2
µ
(
r1−

1
p1

)
ℓ
Bµ
p1

S−−−→ Sr1p1,q1A(Ω)

id1

y id2

y

2
µ
(
r2−

1
p2

)
ℓ
Bµ
p2

W←−−− Sr2p2,q2A
†(Ω)

(4.36)
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gives
ek(id : Sr1p1,q1A(Ω)→ Sr2p2,q2A

†(Ω)) ≥ c kr2−r1 , k ≥ 2.

Here Bµ = #(BΩ
ν ) for some ν with |ν| = µ is chosen such that Bµ ≈ µd−12µ, µ ≥ µ0.

Step 5. The proof of (v) involves the same arguments as given in previous Steps and Theorem
3.19.

Remark 4.12. Theorem 4.11 describes in detail the entropy numbers of

id : Sr1p1,q1A(Ω)→ Sr2p2,q2A
†(Ω)

if A = A†. In this case it gives (up to the (log k)ǫ-gap) the final answer. Let us look a bit
closer on the situation where A = B and A† = F . The estimate from below is covered by
(4.30). If q1 ≤ p1 we may use the embeddings

Sr1p1,q1B(Ω) →֒ Sr1p1,q1F (Ω) →֒ Sr2p2,q2F (Ω) (4.37)

to overtake the results obtained for F →֒ F embedding also to B →֒ F . If q2 ≤ p2, we
replace (4.37) by

Sr1p1,q1B(Ω) →֒ Sr2p2,q2B(Ω) →֒ Sr2p2,q2F (Ω). (4.38)

But if p1 < q1 and p2 < q2 (and, for simplicity, p1 ≤ p2), no trivial embedding would help.
In that case we get (4.31) only for

r1 − r2 −
( 1

p1
− 1

p2

)
>

1

p2
− 1

q2
.

In the case of A = F and A† = B the situation is similar. We may get (4.31) whenever
(4.37) is compact and p1 ≤ q1 or p2 ≤ q2. If q1 < p1, q2 < p2 and p1 ≤ p2, we get the same
result only for

r1 − r2 −
( 1

p1
− 1

p2

)
>

1

q1
− 1

p1
.

4.6 Comparison with known results

As the function spaces with dominating mixed smoothness have been studied systematically
by many authors, there are also many important results on the estimates of the decay
of entropy numbers available in the literature. Here, we compare our results supplied by
decomposition techniques with those ones obtained by Belinsky [4], Temlyakov [30] and
Dinh Dung [8].

Unfortunately, the classes of functions studied by them differ slightly from the scales Srp,qB(Ω)
and Srp,qF (Ω). Let us sketch briefly their setting. They consider 1-periodic functions of d
real variables. Hence, their domain Ω is fixed Ω = [0, 1)d. Belinsky considered four main
scales of spaces with dominating mixed smoothness, W r

p , H
r
p on the one hand and Lp, B

0
∞,1

on the other hand.

As far as 1 < p <∞, the space Lp of periodic functions is a direct counterpart of S0
p,2F (Ω).

Similarly, B0
∞,1 is called S0

∞,1B(Ω) in our terminology. The spaces W r
p defined by Belinsky

by the means of Weyl derivatives represent for 1 < p <∞ the Sobolev spaces of dominating
mixed smoothness Srp,2F (Ω) and, finally, the spaces Hr

p are sometimes called Nikol’skij spaces
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and have their counterpart in Srp,∞B(Ω). To simplify the comparison of our results with those

one of Belinsky, we denote the spaces W r
p , H

r
p , Lp and B0

∞,1 by S̃rp,2F, S̃
r
p,∞B, S̃

0
p,2F and S̃0

∞,1B.

We now quote four results of Belinsky and compare them with corresponding analogy ob-
tained by our method earlier. We set the smoothness involved to be (as in our case)
r = (r, . . . , r) ∈ Rd although the results are presented in a bit greater generality in [4].

Theorem 4.13. (i) Let r > 1/p− 1/q, and 1 < p ≤ q <∞. Then

ek(id : S̃rp,2F → S̃0
q,2F ) ≈

( logd−1 k

k

)r
. (4.39)

(ii) Let r > 1/p− 1/q, and 1 < p ≤ q <∞. Then

ek(id : S̃rp,∞B → S̃0
q,2F ) ≈

( logd−1 k

k

)r
log

d−1
2 k. (4.40)

(iii) Let r > 1/2. Then

ek(id : S̃r2,2F → S̃0
∞,1B) ≈

( logd−1 k

k

)r
log

d−1
2 k. (4.41)

(iv) Let r > 1/2. Then

ek(id : S̃r2,∞B → S̃0
∞,1B) ≈

( logd−1 k

k

)r
logd−1 k. (4.42)

Remark 4.14. We point out that according to Theorem 3.17, all the bounds for r in Theorem
4.13 are optimal. Due to Theorem 4.11, we achieved the same results as in (i), (iii) and (iv).
The embedding appearing in (4.40) corresponds to

id : Srp,∞B(Ω)→ S0
q,2F (Ω)

in our setting. In this case, we get for

r −
(1

p
− 1

q

)
> V1(p,∞, q, 2) =

1

q
− 1

max(q, 2)

by Theorem 4.11
ek(id) ≤ c k−r(log k)(d−1)(r+ 1

2
), k ≥ 2.

So, for q ≥ 2, our result is optimal for all possible r, but for q < 2 we get the optimal result
only for r > 1

p
− 1

2
> 1

p
− 1

q
.

In [30], Temlyakov obtained other important results on entropy numbers of embeddings of
spaces with dominating mixed smoothness. Using our notation, they maybe summarised as
follows.

Theorem 4.15. (i) Let r > 1. Then

ek(id : Sr1,∞B → S0
∞,2B) ≤ c k−r(log k)(d−1)(r+ 1

2
). (4.43)
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(ii) Let r > 0. Then

ek(id : Sr∞,∞B → L1) ≥ c k−r(log k)(d−1)(r+ 1
2
). (4.44)

(iii) Let r > 1 and 1 < p, q <∞. Then

ek(id : Srq,2F → S0
p,2F ) ≤ c k−r(log k)(d−1)r . (4.45)

(iv) Let r > 0 and 1 < q <∞. Then

ek(id : Srq,2F → L1) ≥ c k−r(log k)(d−1)r. (4.46)

Remark 4.16. We discuss briefly these results. We point out, that the bound for r is always
optimal up to the case (iii). Namely, the embedding in (4.45) is compact if and only if
r > (1

q
− 1

p
)+. The inequalities (4.43) and (4.45) are completely covered by Theorem 4.11.

But as for (4.44) and (4.46), these results are of a different nature. Namely, they deal with the
space L1(Ω). This space does not fit into our scales Srp,qA(Ω). All the known decomposition
techniques fail to give some decomposition of this space and, therefore, no reduction to the
sequence space level is possible. The same holds for embeddings to other spaces of this kind,
especially L∞(Ω).

Finally, we discuss the results obtained by Dinh Dung in [8].

Theorem 4.17. Let 1 < p1, p2 <∞, 0 < q ≤ ∞ and r > 0. Then we have

(i) for either r > 1
p1

and q ≥ p1 or r > ( 1
p1
− 1

p2
)+ and q ≥ min(p2, 2)

ek(id : Srp1,qB → S0
p2,2F ) ≈ k−r(log k)(d−1)(r+ 1

2
− 1

q
), (4.47)

(ii) and for r > ( 1
p1
− 1

p2
)+

ek(id : Srp1,2F → S0
p2,2

F ) ≈ k−r(log k)(d−1)r. (4.48)

The embedding (4.48) is (for p1 ≤ p2) covered by (4.39) and for general p1 and p2 by (4.30)
and (4.31). We therefore concentrate on (4.47). In [9], Dinh Dung comments that the
conditions on r and q in Theorem 4.17 ensure the positivity of the power of logarithm in
(4.47). In view of our general estimate (4.30), this should really be so. But unfortunately,
the conditions given in Theorem 4.17 do not ensure that r + 1

2
− 1

q
> 0. To see that, set

p1 = p2 < q < 2 and 0 < r < 1
q
− 1

2
. A closer inspection of the proof of Theorem 2 in [8]

shows that in the case r > ( 1
p1
− 1

p2
)+ and q ≥ min(p2, 2) Dinh Dung proves actually a bit

weaker result, namely

ek(id : Srp1,qB → S0
p2,2F ) ≤ c k−r(log k)

(d−1)(r+ 1
min(p2,2)

− 1
q
)
, k ≥ 2. (4.49)

In this result, the power of logarithm is always positive and, therefore, no contradiction with
(4.30) occurs. We point out, that our results covers and improves (4.49) as far as the set of
parameters is concerned.

We start with p1 ≤ p2. By Remark 4.12, we get (4.47) for all r > 1
p1
− 1

p2
with r > 1

q
− 1

2

if q ≤ p1 or 2 ≤ p2. Moreover, for r ≤ 1
q
− 1

2
we get (4.30) and analogy of (4.32). Finally,

if r > 1
p1
− 1

2
we get (4.47) even if q > p1 and 2 > p2. Similar discussion may be done for

p1 > p2.

Next we present some special cases of Theorem 4.11 which were not discussed separately
yet, but which may be of some interest on its own.
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Theorem 4.18. Let r = (r, . . . , r) ∈ R
d.

(i) The embedding
id : Sr1,1B(Ω)→ S0

∞,∞B(Ω)

is compact if and only if r > 1 and in that case

ek(id) ≈ k−r(log k)(d−1)(r−1), k ≥ 2.

(ii) The embedding
id : Sr∞,1B(Ω)→ S0

∞,∞B(Ω)

is compact if and only if r > 0. If r > 1

ek(id) ≈ k−r(log k)(d−1)(r−1), k ≥ 2,

and for 0 < r ≤ 1 and every ǫ > 0 there are constants c and cǫ such that

c k−r ≤ ek(id) ≤ cǫk
−r(log k)ǫ, k ≥ 2.

(iii) Let 0 < p ≤ q <∞. The embedding

id : Srp,2F (Ω)→ S0
q,∞B(Ω)

is compact if and only if r > 1
p
− 1

q
. If in this case r > 1

2
then

ek(id) ≈ k−r(log k)(d−1)(r− 1
2
), k ≥ 2,

and for 1
p
− 1

q
< r ≤ 1

2
and every ǫ > 0 there are constants c and cǫ such that

c k−r ≤ ek(id) ≤ cǫk
−r(log k)ǫ, k ≥ 2.

Proof. The proof follows from Theorem 4.11 and Remark 4.12.
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Steklov Institute of Mathematics 227 (1999), 280-292.

[26] Schmeisser, H.-J. and Triebel, H., Topics in Fourier analysis and function spaces,
Chister, Wiley, 1987.
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Ehrenwörtliche Erklärung
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oder andere Abhandlung bei einer anderen Hochschule als Dissertation eingereicht.

Ich versichere, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts ver-
schwiegen habe.

Jena, den 20. Mai 2005 Jan Vyb́ıral


