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1.  INTRODUCTION 
 

 

1.1  Milestones in lysozyme research 

Bacteriology textbooks of the late 19th century describe the cultivation of bacteria in 

the interior of hen eggs. Laschtschenko, a professor of hygiene at the university of Tomsk, 

questioned the feasibility of eggs for culturing microorganisms and discovered the 

bactericidal power of hen egg white as early as 1909 (Laschtschenko, 1909). He noticed that 

the content of a hen egg emptied on an uncovered glass plate at room temperature dries up 

without putrefaction and development of malodorous gases and concluded that germs 

contained in air dust find no conditions to propagate in hen egg white. In further experiments, 

he demonstrated the inhibitory action of hen egg white on Bacillus subtilis. Even high 

concentrations of Bacillus subtilis were killed by small amounts of hen egg white. The 

bactericidal power of hen egg white was also demonstrated for Bacillus anthrax, Proteus 

zopfii, Proteus zencker and Bacillus megaterium. Laschtschenko experimentally excluded the 

death of bacteria as result of a plasmolytic process or insufficient nutritional conditions and 

concluded that hen egg white contains enzymes of proteolytic character (Laschtschenko, 

1909). Following him, Rettger and Sperry noticed the antibacterial action of hen egg white, 

but also failed to identify the source of its bactericidal power (Rettger and Sperry, 1912). 

Since 1900, several scientists have described the antibacterial action of saliva and 

body secretions, among them Bloomfield, who investigated the fate of bacteria introduced 

into the upper air passages of man (Bloomfield, 1919). The aim of his work was to obtain 

more information about contact infections and details of the spread of bacteria in the upper air 

passages. Bloomfield stated: “It seemed advisable to make a preliminary study of the fate of 

non-pathogenic organisms before employing possible disease producers.” (Bloomfield, 1919).  

For this reason Sarcina lutea was chosen, since besides its non-pathogenicity, it is normally 

not present in the upper air passages of men and could be readily grown on simple media. 

Individuals with no disease or abnormalities in the upper air passages were selected and solid 

masses of a 24-hour growth of Sarcina lutea were swabbed on their tongue and nasal mucosa. 

Cultures were made at certain time intervals. Sarcina lutea wiped on the tongue disappeared 

rapidly and was extinct after an hour while Sarcina lutea swabbed on the nasal mucosa was 

nearly extinct after 24 hours. As a mechanism for the disappearance of Sarcina lutea, 
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mechanical cleansing and mouth bacteria were considered but the main effect was attributed 

to the bactericidal effect of saliva and mouth secretions.            1

Alexander Fleming made a similar discovery in 1921. Scientific lore tells that while he 

was suffering from a cold, a drop from his nose fell onto an agar plate where cultures of 

bacteria had grown. Around the drop, the bacterial cultures began to dissolve and Fleming 

was the first one to conclude that nasal secretions contain a lytic substance. Fleming called 

this substance “Lysozyme”. He confirmed his 

observations with several simple but very 

resourceful experiments: A drop of nasal mucus 

diluted with salt solution was placed on an agar plate 

thickly planted with Micrococcus lysodeikticus. 

After incubation for 24 hours, the cocci had 

copiously grown except in the regions covered with 

nasal mucus, where complete inhibition of growth 

was observed. In a further experiment, a drop of 

diluted nasal secretion was added to 1 cm3 of a thick 

suspension of M. lysodeikticus and within a few 

minutes, the cocci completely disappeared (Fleming, 

1922). In his first paper on lysozyme, Fleming 

describes that the enzyme is present in human body 

secretions such as tears, nasal mucus, saliva and sputum, and in body tissues, especially in 

cartilage. Lysozyme was furthermore found in animal and vegetable tissues and in a very 

large concentration in egg white (Fleming, 1922). Lysozyme of different tissues and 

secretions showed varied bactericidal action towards different microorganisms, therefore the 

existence of different lysozymes was concluded (Fleming, 1932). Fleming demonstrated that 

lysozyme is active towards a great variety of bacteria non-pathogenic to man and towards 

some pathogenic bacteria. However, he had to realise that lysozyme is inactive against 

numerous very pathogenic bacteria such as Micrococcus melitensis and Bacillus pestis 

(nowadays named Brucella melitensis and Yersinia pestis, respectively) (Fleming, 1929).  

Figure 1.1-1 Sir Alexander Fleming 1    

Besides his outstanding work in lysozyme research, Sir Alexander Fleming's major 

achievement was the discovery of penicillin in 1928, for which he was awarded the Nobel 

Prize for Physiology or Medicine together with Ernst Boris Chain and Howard Walter Florey 

in 1945. 
                                                 
1 Source of picture: http://www.estadao.com.br/divirtaseonline/fotos/retrospectiva/1928.htm

 2

http://www.estadao.com.br/divirtaseonline/fotos/retrospectiva/1928.htm


Since its discovery, lysozyme served as model system for many studies, with hen egg-

white lysozyme (HEWL) attracting a great deal of attention. In 1963, the primary structure of 

HEWL was published by two different research groups (Canfield, 1963; Jollès et al., 1963) 

and it was the first enzyme reported that contained all usual 20 amino acids. 

Only 2 years later, HEWL was the first enzyme to have its three-dimensional structure 

determined (Blake et al., 1965). The structure was solved by the method of multiple 

isomorphous replacement exploiting the anomalous scattering effect of mercury and uranium 

derivatives using copper Kα-radiation. The authors reported that approximately 16 crystals 

had been used to obtain a complete data set for each derivative. Phases were determined 

according to the phase probability method (Blow and Crick, 1959) and a model of the 

electron-density distribution at 6 Å resolution is depicted in Fig. 1.1-2 (Blake et al., 1965). 

 

 

 

 

 

 

 

 

  

 

Figure 1.1-2 Solid model of the lysozyme electron density greater than about 0.5 
electrons/Å3 at 6 Å resolution - from the original publication by Blake et al. (1965). 

 

The model allowed the authors to follow the course of the folded polypeptide chain 

roughly, but for a detailed structure determination, a Fourier map of electron-density 

distribution at 2 Å was calculated and plotted in 60 sections. All 129 amino acid residues 

could be located and several side chains, including the 4 disulphide bridges of HEWL, could 

be unambiguously determined (Blake et al., 1965).  
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The molecule is comprised of two domains, with one domain dominantly α-helical 

and the second showing a particularly complex folding pattern, in which the protein chain was 

described to be arranged in three sections orientated roughly antiparallel. This was the first 

description of a β-sheet in a globular protein. 

Fig. 1.1-3 shows a ribbon representation of the crystal structure of HEWL (PDB code: 

3LZT, Walsh et al., 1998), clearly showing the two domains already described by Blake et al. 

(1965). 

 

 
 

 

 

 

 

 
  C 

N 
 

Figure 1.1-3 Ribbon representation of the crystal structure of HEWL  (PDB code: 3LZT, 
Walsh et al., 1998), generated with the programs MOLSCRIPT (Kraulis, 1991) and 
RASTER3D (Merritt and Bacon, 1997). 

 

Furthermore, HEWL was the first enzyme for which a detailed mechanism of action 

was proposed based on model building studies (Phillips, 1966). The Phillips mechanism was 

widely held as the paradigm for the cleavage of lysozyme substrates under retention of 

configuration. It was only corrected in 2001 after extensive studies of a covalent substrate-

enzyme intermediate applying electrospray ionisation mass spectrometry and high-resolution 

X-ray crystallography (Vocadlo et al., 2001). 

Nearly 100 years of research have made lysozymes one of the best-studied classes of 

enzymes. As evident from the vast body of literature, they remain the subject of extensive 

ongoing studies, which is in accordance with Fleming’s prophecy: “We shall hear more about 

lysozyme” (Jollès, 1996). 
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1.2 Definition and classification of lysozymes 

Bacteria are enclosed by rigid cell walls, which offer mechanical protection and 

prevent them from bursting due to their high inner osmotic pressure. The bactericidal action 

of lysozyme is attributed to its ability to cleave a particular polysaccharide bond (Fig. 1.2-1 

and Fig. 1.4-1) in the cell wall of Gram-positive bacteria (Salton, 1952). Gram-negative 

bacteria are not susceptible to enzymatic breakdown by lysozyme since their peptidoglycan 

layer is protected by an outer membrane (Ghuysen, 1968). A schematic representation of a 

peptidoglycan subunit constituting the cell wall of Gram-positive bacteria is depicted in Fig. 

1.2-1a. The peptidoglycan forms a bag-shaped sacculus, which is composed of three 

components: polysaccharide chains, oligopeptide subunits and peptide cross-linking bridges. 
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Figure 1.2-1 (a) Schematic representation of the bacterial pe
positive bacteria, (b) Chemical formulas of NAM (red) and NA
1,4-glycosidic bond.  
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The linear polysaccharide chains consist of two alternating sugar moieties, N-

acetylmuramic acid (NAM) and N-acetylglucosamine (NAG), which are connected via a β-

1,4-glycosidic bond between the C-1 atom of NAM and the C-4 atom of NAG (Fig 1.2-1b). 

All O-glycosidic bonds in the bacterial cell wall adopt the β-configuration, implying that the 

glycosidic oxygen is located above the plane of the sugar rings. The lactic acid component of 

NAM forms an amide bond to the oligopeptide subunit, usually a tetrapeptide that contains 

both L- and D-amino acids. These oligopeptide subunits are covalently cross-linked by 

peptide bridges to form the network of the peptidoglycan sacculus. 

Lysozymes are glycosidases, which hydrolyse the glycosidic bond between C-1 of 

NAM and C-4 of NAG of the bacterial peptidoglycan. The bond between C-1 of NAG and   

C-4 of NAM is not attacked. Lysozymes are broadly expressed throughout all organisms, 

ranging from bacteria and bacteriophages over fungi and plants to vertebrates.  

As determined from their amino acid composition, catalytic activities and 

immunological cross-reactivities (Jollès and Jollès, 1984), lysozyme structures fall into four 

different classes of endo-N-acetylmuramidases. The prototypes of these classes are HEWL, 

goose egg-white lysozyme (GEWL), bacteriophage T4 lysozyme (T4L), and Chalaropsis 

(Ch) lysozyme. 

A classification of glycosyl hydrolases (GH) into families based on amino acid 

similarities was established by Henrissat (Henrissat, 1991; Henrissat and Bairoch, 1993, 

1996) and is available on the CAZy web server (Henrissat, 1998). The latest update (Nov., 

2003) contained 91 families. This classification was designed to allow reflections on 

structural features, enzymatic mechanism and the evolutionary relationship of these enzymes. 

In agreement with the classification of Jollès and Jollès (1984), HEWL-, GEWL-, T4- and 

Ch-type lysozymes belong to 4 separate glycosyl hydrolase families, family 22, 23, 24 and 25, 

respectively. 

Occasionally a fifth class of plant lysozymes is mentioned, with hevamine, a chitinase 

from the latex rubber tree Hevea brasiliensis, as the archetype. However, the alleged 

muramidase activity of these enzymes is restricted to a very narrow pH range (pH 4.5 – 5.0), 

while they display chitinase activity over a much broader pH-range (Beintema and 

Terwisscha van Scheltinga, 1996). Recent studies on the cleavage specifity of hevamine for 

peptidoglycan revealed that hevamine cleaves the bond between the C-1 of NAG and C-4 of 
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NAM. Therefore, the enzyme exhibits (beside its chitinase activity) β-N-acetylglycosamidase 

activity and cannot be classified as lysozyme (Bokma et al., 1997). 

 

1.3 Catalytic mechanisms of lysozymes 

Hydrolysis of the β-1,4-glycosidic bond between NAM and NAG can proceed via two 

major mechanisms resulting in either an overall retention, or an inversion of the anomeric 

configuration (Rye and Withers, 2000; Zechel and Withers, 2001; Vasella et al., 2002). 

 As already mentioned, HEWL served as model enzyme for studies of the catalytic 

mechanism of glycosyl hydrolases operating under retention of configuration. Based on 

structural data, Phillips (1966) proposed the following mechanism for HEWL. The enzyme 

possesses six binding sites, labelled A to F for binding the distinct glycose units of the 

substrate. The scissile bond is located between sites D and E and binding of the substrate in 

subsite D is only possible if the glycoside is distorted into a half chair or skew boat 

conformation. Due to this conformational change the anomeric carbon (C1) is in plane with 

C2, C4, C5 and the pyranosidic oxygen (Stryer, 1996). A proton from Glu35 attacks the 

glycosidic oxygen, leading to the cleavage of the C1-O bond and formation of an 

oxocarbenium-ion intermediate. This inherently unstable intermediate is stabilised by 

electrostatic interactions with the deprotonated Asp52 as well as by partial charge 

delocalisation to the oxygen in the pyranose ring. Due to steric hindrance, the nucleophilic 

attack by a water molecule can only proceed from the β side of the anomeric centre, which 

results in a net retention of the anomeric conformation completing this SN1-like reaction 

sequence. The instability of the proposed oxocarbenium-ion intermediate (Amyes and Jencks, 

1989) together with subsequently investigated mechanisms of other retaining glycosyl 

hydrolases (Davies et al., 1998) fuelled a debate whether the reaction really follows this route. 

Only recently it could be demonstrated that the catalysis by HEWL, in contrast to the 

mechanism proposed by Phillips, proceeds via a covalent intermediate (Vocadlo et al., 2001). 

Electrospray Ionisation Mass spectroscopy in conjunction with X-ray crystallographic 

structure determination of a trapped glycosyl-enzyme intermediate of an E35Q mutant 

lysozyme demonstrated unequivocally that HEWL follows the common mechanism of 

retaining β-glycosidases.  

Figure 1.3-1 depicts the reaction sequence established for glycosyl hydrolases 

operating under retention of configuration. In general, the catalytic machinery of these 
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enzymes involves two carboxylate side chains. The glycosidic oxygen of the substrate is 

protonated by a carboxylic acid, i.e. Glu35 in HEWL, resulting in the cleavage of the scissile 

bond. The so formed oxocarbenium-ion intermediate immediately forms a covalent ester bond 

with the second carboxylate side chain, i.e. Asp52 in HEWL (see first transition state in Fig. 

1.3-1). The ester is then hydrolysed by a water molecule attacking from the β-side of the 

anomeric carbon completing the second SN2 reaction (see second transition state in Fig. 1.3-

1). This double Walden-inversion at C1 gives rise to an overall net retention of the anomeric 

configuration.  

 

  

 

Figure 1.3-1  Reaction sequence of retaining glycosyl hydrolases, e.g. HEWL. 

 

Lysozymes from different organisms not only differ in their overall structure but also 

in their reaction mechanisms. While HEWL is a retaining enzyme, GEWL and T4L hydrolyse 

the substrate under inversion of configuration (Kuroki et al., 1993, 1999). Substrate binding 

and activation by inverting enzymes is very similar to that of retaining enzymes (see Fig. 1.3-
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2). However, the reaction mechanism is very different and, most importantly, does not involve 

a covalent intermediate. The glycosidic bond is cleaved due to protonation by a carboxylic 

acid (Glu73 in GEWL, Glu11 in T4L). A water molecule, held in the spatial vicinity of the 

anomeric carbon atom, is activated by hydrogen bonding to a carboxylate group, e.g. Asp20 

in T4L, which serves as the catalytic base. The water attacks the anomeric carbon from the α-

side in a single displacement mechanism resulting in inversion of configuration (Kuroki et al., 

1993). 
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Figure 1.3-2  Reaction sequence of inverting glycosyl hydrolases. 

 

 It is important to mention that GEWL lacks the apparent analogue to Asp52 in HEWL 

or Asp20 in T4L (Weaver et al., 1995). Therefore, it has been proposed that functional groups 

of the substrate, i.e. carboxylic groups of the peptide component, stabilise the transition state 

(Matsumura and Kirsch, 1996; Rye and Withers, 2000). 

The catalytic mechanism of Ch-type lysozymes is unknown up to now. Based on 

chemical modification experiments, the catalytic activity of the Chalaropsis lysozyme is at 

least partially attributed to residues Asp6 and Glu33 (Fouche et al., 1978). 

 

1.4 Chalaropsis-type lysozymes  

The family of Ch-type lysozymes was named after the first member to be described, 

the muramidase from the fungus Chalaropsis (Hash and Rothlauf, 1967; Felch et al., 1975). 

This fungal enzyme was the first microbial lysozyme to have its amino acid sequence 

determined. It is comprised of 211 residues with a calculated molecular weight of 22,4 Da 
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(Felch et al., 1975). Like all lysozymes, the muramidase from Chalaropsis hydrolyses the β-

1,4-glycosidic bond in cell-wall murein. Differences in substrate specifity between the 

Chalaropsis enzyme and HEWL have been already described in 1967. While HEWL is a 

weak chitinase, chitin is neither a substrate nor an inhibitor of the Chalaropsis lysozyme 

(Hash and Rothlauf, 1967; Fouche and Hash, 1978). However, the Chalaropsis enzyme 

possesses a feature which makes it superior to HEWL, i.e., it has the ability to cleave O-

acetylated peptidoglycans. O-acetylation of the bacterial peptidoglycan takes place at the C6 

hydroxyl group of the N-acetylmuramic acid moiety resulting in a 2,6-diacetylmuramic acid 

derivative (Clarke and Dupont, 1992). Spontaneous O-acetylation of the cell wall of a 

Micrococcus was reported when cultured in the presence of HEWL, which rendered it 

insensitive to HEWL (Brumfitt et al., 1958; Brumfitt, 1959). 

In general it can be said that in contrast to the more ´classical´ lysozymes of the 

HEWL, GEWL and T4-types, Ch-type lysozymes display both β-1,4 N-acetyl as well as β-1,4 

N,6-O-diacetylmuramidase activity and therefore possess the ability to cleave 6-O-acetylated 

peptidoglycans such as present in the cell wall of Staphylococcus aureus, which are not 

hydrolysed by the other lysozymes (Fig. 1.4-1).  
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Figure 1.4-1 The substrate of the Ch-type lysozymes is N,6-O-diacetylated peptidoglycan. 
The 6-O-acetylation, marked in red, renders cell walls insensitive to HEWL, GEWL and T4-
type lysozymes. 

 

Although first discovered in a fungus, the majority of the Ch-type lysozymes known 

today has been found in bacteriophages and in Gram-positive bacteria. Lysozymes expressed 

by bacteriophages play an important role for the release of virions at the end of an infection 
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cycle by lysing the host cell walls. Ch-type phage lysozymes have been reported in 

Streptococci and Lactobacili (Ronda et al., 1981; Mata et al., 1986). Also the phages MV1 

and Φadh, which infect the Gram-positive Lactobacillus gasseri, encode muramidases with 

significant sequence similarity of their N-terminal domain to the Chalaropsis lysozyme 

(Fastrez, 1996). 

One of the best-studied phage lysozymes is Cpl-1, a 39 kDa muramidase found in 

phage Cp-1-infected Streptococcus pneumoniae. A special feature of this Gram-positive 

bacterium is the presence of choline in the teichoic acids of the pneumococcall cell wall, a 

prerequisite for the enzymatic activity of Cpl-1 (Fastrez, 1996). The nucleotide sequence of 

the cpl gene implies that this muramidase is composed of two modules serving different 

functions. The first module is responsible for the catalytic activity and shows a high similarity 

to the muramidase from Chalaropsis, while the second one is binding to the choline residues 

in the cell wall. Asp10 and Glu37, which are equivalent to Asp6 and Glu33 of the 

Chalaropsis enzyme, have been identified as potential catalytic residues. A similar modular 

organisation of genes has been observed for other Cp phages. In addition to a muramidase 

domain with clear sequence similarity to the lysozyme from Chalaropsis, some of these phage 

lysozymes carry additional domains for binding to the bacterial cell wall in order to enable 

efficient substrate recognition and lysis (Fastrez, 1996). 

The role of bacterial lysozymes is not fully understood. These enzymes are likely 

involved in the regulation of peptidoglycan synthesis. Due to their ability to cleave specific 

bonds in the peptidoglycan sacculus, they allow new peptidoglycan subunits to be 

incorporated into the cell wall, thereby remodelling its shape and surface area. The way in 

which bacteria control these potentially suicidal enzymes is still a matter of debate. It has 

been suggested that the regulation of bacterial lysozymes is interlinked with other metabolic 

pathways of the cell such as stringent response and heat shock control (Tuomanen and 

Tomasz, 1986; Young et al., 1989). 

Ch-type muramidases have been reported in Streptomyces (e.g. S. coelicolor and S. 

globisporus), Clostridium actebutylicum and Lactobaccillus acidophilus. Several of these 

bacteria express more than one lysozyme which target the same bond in the peptidoglycan. 

For example, a bacteriolytic enzyme extract consisting of two different muramidases (named 

M1 and M2) has been obtained from Streptomyces globisporus (Höltje, 1996). Named 

“Mutanolysin”, this enzyme mixture is widely used for the lysis and study of bacterial cell 

walls. Lichenstein et al. succeeded in cloning and sequencing of the M1 enzyme (Lichenstein 
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et al., 1990). Beside an unusually long leader peptide of 77 amino acids, the enzyme 

comprises 217 amino acid residues and exhibits 61 % sequence identity with the lysozyme 

from fungus Chalaropsis. 

Until recently, very little structural information for Ch-type lysozymes was available. 

Circular dichroism studies of Chalaropsis lysozyme in the far UV-region showed that the 

secondary structure is high in β-sheet content. With a structural composition of 21 % α-helix, 

63% β-sheet and 16 % loop regions it is very different from that of HEWL with 28 % α-helix, 

10% β-sheet and 62 % loop regions as determined from X-ray crystallography (Chang et al., 

1979). The lysozyme functionality of Ch-type enzymes seems to be realised by a completely 

different protein architecture.  

Crystallisation has been reported for a number of Ch-type lysozymes, including the 

enzymes from Chalaropsis (Hash and Rothlauf, 1967; Lyne et al., 1990), Streptomyces 

erythraeus (Morita et al., 1978; Harada et al., 1981), Streptomyces globisporus (Harada et al., 

1989; Shiba et al., 2000), Streptomyces coelicolor (Hilgenfeld et al., 1992) and from phage 

Cp-1-infecting Streptococcus pneumoniae (Monteroso et al., 2002). 

The only X-ray crystallographic report available for a Ch-type lysozyme so far 

describes a low-resolution model for the muramidase from Streptomyces erythraeus, which 

was determined in the absence of a complete amino acid sequence for the enzyme (Harada et 

al., 1981). This structural model comprises a polypeptide chain of approximately 180 amino 

acid residues folded into three domains. In the present work it will be shown that it is very 

likely not correct. (Two years after the results of this work were published (Rau et al., 2001) 

the structure of the Ch-type phage lysozyme Cpl-1 was reported (Hermoso et al., 2003), 

showing the same overall fold as Cellosyl.) 

 

1.5 Cellosyl – a Ch-type lysozyme from Streptomyces coelicolor 

Cellosyl is a very basic (pI > 10), 23 kD-muramidase excreted by Streptomyces 

coelicolor “Müller”, a Gram-positive bacterium found in soil.  It shares 61 % sequence 

identity with the lysozyme from fungus Chalaropsis. As is typical for Ch-type lysozymes, 

Cellosyl possesses both β-1,4-N-acetylmuramidase and β-1,4-N,6-O-diacetylmuramidase, i.e. 

staphylolytic, activity (Bräu et al., 1991). Since Staphylococcus aureus is an important food 

pathogen, this enzymatic activity makes Cellosyl very interesting for prevention of food 

spoilage and food-borne disease. The enzyme was therefore tested in food preservation, with 
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very promising results in cheese manufacturing (prevention of late blowing caused by 

anaerobic spore formers such as Clostridium tyrobutyricum). Based on these results, Cellosyl 

appears to be an attractive replacement for nitrate (a potential source of the formation of 

carcinogenic nitrosamines) in food preservation (Bräu et al., 1991; Hughey and Johnson, 

1987).  

A surprising feature is the total identity of Cellosyl to the M1 muramidase of 

Streptomyces globisporus with respect to their amino-acid composition. Bräu et al. reported 

that the cel gene of S. coelicolor and the acm gene of S. globisporus show exactly the same 

sequence in the coding region and differ only slightly in the adjacent 5´ and 3´-sequences. The 

authors concluded that either both strains are closely related or that the cel and acm genes 

descended from a bactriophage which exists as a lyogenised phage or defective prophage in 

both strains (Bräu et al., 1991). 

 

1.6 Aim of the project 

The different classes of lysozyme share no significant similarities in their amino-acid 

composition. However, the three-dimensional structures of HEWL, GEWL and T4-type 

lysozymes show some intriguing, albeit distant, similarities and it is believed that they are a 

result of divergent evolution from a common ancestor (Grütter et al., 1983; Weaver et al., 

1985). In contrast, no detailed structural information has been available so far for the Ch-type 

lysozymes.  

The aim of this project was to elucidate the three-dimensional structure of Cellosyl by 

X-ray crystallography since it is an attractive candidate for comparative structural studies of 

the lysozyme family. The hypothesis that the Ch-type muramidases are structurally unrelated 

to the HEWL, GEWL and T4-type lysozymes and therefore form an independent class 

without evolutionary relationship to the other lysozyme structures will be investigated. 

Furthermore, it is hoped to obtain new insights into the architecture of the enzyme´s catalytic 

site and that the knowledge of the three-dimensional structure can reveal information on the 

enzymatic mechanism. 
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2. MATERIALS AND METHODS 
 
 
2.1 Materials 

 
2.1.1 Proteins 

Table 2.1.1-1 Proteins and their manufactures 
 
Protein Supplier 

Cellosyl (Streptomyces coelicolor) Hoechst AG (Frankfurt) 
Lysozyme (chicken egg-white) Merck (Darmstadt) 
Bovine albumin Sigma (Steinheim) 
γ-Globulin Bio-Rad (München) 
Low molecular weight protein standards: 
Phosphorylase b (rabbit muscle) 
Albumin (bovine serum) 
Ovalbumin (chicken egg) 
Carbonic anhydrase (bovine erythrocyte) 
Trypsin inhibitor (soybean) 
α-Lactalbumin (bovine milk) 

Pharmacia Biotech (Freiburg)  

 

 

2.1.2 Carbohydrates 

Table 2.1.2-1 Carbohydrates and their manufactures 
 
Carbohydrate Manufacturer 

Sucrose Merck (Darmstadt) 
N,N´,N´´-Triacetyl-Chitotriose CALBIOCHEM® (Schwalbach) 
N,N´,N´´,N´´´,N´´´´,N´´´´´-Hexaacetyl-
Chitohexose 

CALBIOCHEM® (Schwalbach) 

Chitosan Polysaccharide Mixture (Crab 
Shell) 

CALBIOCHEM® (Schwalbach) 
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2.1.3 Chemicals 

Table 2.1.3-1 Chemicals and their manufactures 
 
Chemical substance Manufacturer 

PEG 4000, 6000, 8000 Fluka (Steinheim) 
HEPES Merck (Darmstadt) 
TRIS Merck (Darmstadt) 
Ammonium sulphate Merck (Darmstadt) 
Osmium(III)-chloride Aldrich (Steinheim) 
Mercury(II)-chloride Aldrich (Steinheim) 
Yttrium (III)-chloride Aldrich (Steinheim) 
Ytterbium(III)-chloride Aldrich (Steinheim) 
Potassium tetrachloroplatinat Aldrich (Steinheim) 
cis-Platinum Aldrich (Steinheim) 
β-mercaptoethanol Merck (Darmstadt) 
Sodium azide Merck (Darmstadt) 
Highly liquid paraffin oil and all other 
chemicals not separately stated 

Merck (Darmstadt) 

 

 

2.1.4 Crystallisation screens  

Table 2.1.4-1 Crystallisation screens 
 
Screen Manufacturer 

Ammonium sulphate screen Hampton Research (Laguna Niguel, USA) 
Crystal screen 1  Hampton Research (Laguna Niguel, USA) 
Crystal screen 2 Hampton Research (Laguna Niguel, USA) 

 

 

2.1.5 Dialysing tools, assays, crystallisation materials and cryo-tools 

Table 2.1.5-1 Equipment and manufactures 
 
Equipment Manufacturer 

Phastgel homogenous 12.5 gel beds and SDS 
buffer strips 

Pharmacia (Freiburg). 
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Bio-Rad Protein Assay Bio-Rad (München) 
Ultrafree®-MC filter units Millipore (Bedford, USA) 
Slide-A-Lyzer dialysis cassettes Pierce (Rockford, USA). 
Dialysis membranes and sample tubes Roth (Karlsruhe). 
High vacuum grease Dow Corning (Midland, USA) 
Magnetic base crystal caps, 
Mounted cryoloops, 
24-well Linbro plates and VDX plates 
22 mm circular siliconised coverslips 
Crystal storage vials 
Cryo canes 
Magnetic crystal wands 

Hampton Research 
(Laguna Niguel, USA) 

 

 

 

2.1.6 Laboratory equipment and synchrotron facilities 

Table 2.1.6-1 Equipment and Manufacturers 
 
Equipment Manufacturer 
Centrifuge- Heraeus Labofuge 400R 
Centrifuge- Heraeus Biofuge plus 

Heraeus Instruments (Hanau) 

Spectrophotometer- UV Vis Spekol Zeiss (Jena) 
Analytical balance- Sartorius BP 210 D 
Table balance- Sartorius portable PT2100 

Sartorius (Goettingen) 

pH meter- CG 840 Schott  Schott (Mainz) 
Water purification- Milli-Qplus 185 Millipore (Eschborn) 
Pharmacia LKB PhastSystem Pharmacia (Freiburg) 
Microscope- Olympus SZH10 binocular Olympus (Hamburg) 
Microscope- Zeiss Stemi 1000 binocular Zeiss (Jena) 
X-ray generator- rotating anode Nonius FR591 Nonius  (Delft, The Netherlands) 
Image plate detector- Mar 300 
Image plate detector- Mar 345 

Mar Research (Hamburg) 

Cryostat- Oxford controller 600 series Oxford Cryo (Oxford, UK) 
Air stream cooler- FTS TC-84 FTS systems (Stone Ridge, USA) 
Goniometer head- Charles Supper Standard Charles Supper (Troy, USA) 
Microscope- Leica MZ 8 binocular Leica (Bensheim) 
Indy workstation  
Onyx graphics workstation 

SGI (Mountain View, USA) 
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O2 graphics workstation 
Indigo2 graphics workstation 

SGI (Mountain View, USA) 

Synchrotron- EMBL Hamburg beamlines X11, 
BW7B 

DESY (Hamburg) 

Synchrotron- Elettra Light Source beamline 5.2 R ELETTRA (Trieste, Italy) 
Synchrotron- ESRF Grenoble beamline BM30 ESRF (Grenoble, France) 

 

 

 

2.2. Methods 

 
2.2.1 Determination of protein purity 

The purity of the protein samples was determined by denaturing polyacrylamide gel 

electrophoresis in presence of the detergent sodium dodecyl sulphate (SDS-PAGE)  (Shapiro 

et al., 1967) using the Pharmacia LKB PhastSystem. Cellosyl (10 mg/ml) was mixed with the 

sample buffer in a ratio of 1:10, the latter containing 8 M urea, 2 % (w/v) SDS, 5 % β-

mercaptoethanol as reducing agent, 10 % (w/v) sucrose and 0.004 % (w/v) bromphenol blue. 

The mixture was heated for ca. 5 min at 100 °C to ensure complete denaturation of the protein 

sample. The protein standards of known molecular weight were treated the same way. The 

Cellosyl samples and the protein standards were applied to the gel and stained after 

electrophoresis with Coomassie™ Brilliant Blue. 

 Under given conditions, the electrophoretic mobility of a protein depends solely on its 

size (Reynolds and Tanford, 1970). The integrity of the Cellosyl sample was determined by 

comparing its migration distance in the gel with the following protein standards: 

phosphorylase b (97000 Da), albumin (66000 Da), ovalbumin (45000 Da), carbonic 

anhydrase (30000 Da), trypsin inhibitor (20100 Da) and α-lactalbumin (14400 Da). Cellosyl 

was only used for crystallisation trials if a single characteristic band at a molecular weight of 

23000 Da was observed by SDS-PAGE.  
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2.2.2 Determination of protein concentration 

The protein quantity in solution was determined by the Bradford method (Bradford, 

1976) using the Bio-Rad Protein-Assay. The method is based on a shift in the absorption 

maximum of Coomassie™ brilliant blue from 465 nm to 595 nm upon binding to arginine and 

aromatic residues of the protein sample. The increase in absorption at 595 nm is a measure for 

the protein concentration in the protein solution under investigation. For this very sensitive 

test, 1µl of a Cellosyl solution was brought up to a volume of 800 µl with water and 200 µl 

concentrated Bio-Rad agent was added. The mixture was allowed to incubate for 5 min at 

room temperature before measuring the absorption at 595 nm. A blank buffer solution (800 µl 

water / 200 µl Bio-Rad agent) served as reference. The protein quantity was determined from 

a calibration curve prepared with bovine serum albumin and γ-globulin in a concentration 

range of 10 – 350 µg/ml. 

 

2.2.3 Dialysis  

Dialysis was used for exchange of the storage buffer (10 mM KH2PO4 at pH 6.0) of 

the Cellosyl samples prior to crystallisation trials. The protein solution was injected into the 

Slide-A-Lyzer® dialysis cassette with a syringe and the cassette was clasped in a buoy and 

suspended in the dialysis buffer containing an aqueous solution of 20 mM Tris at pH 7.0. 

After dialysing for 20 h, the protein sample was again removed with a syringe from the 

cassette. 

 

2.2.4 Sample concentration 

Cellosyl samples were concentrated using an Ultrafree®-MC 1000 NMWL filter unit. 

The samples were centrifuged at 12000 rpm until the required concentration was achieved 

(Bradford test). 

 

2.2.5 Crystallisation 

The basic principles and variables influencing the crystallisation of biological 

macromolecules are comprehensively described by McPherson (1982). Crystallisation is a 

self-ordering process where molecules go from a supersaturated solution into the solid state 
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and, despite intensive research, it remains mostly a trial-and-error procedure. Supersaturation 

of the Cellosyl solution was obtained by addition of a precipitant, i.e. PEG and ammonium 

sulphate. There are several methods to slowly increase the protein and precipitant 

concentration, e.g. liquid-liquid or vapour diffusion. In this work, all crystallisation trials, 

unless otherwise stated, were carried out using the hanging-drop vapour diffusion method.    

2-4 µl of protein were mixed with 2 µl reservoir solution and pipetted onto a siliconised cover 

slip. This cover slip was inverted over a well of the crystallisation tray which was pre-filled 

with 1 ml of a well-defined precipitant solution, and sealed with grease to create a closed 

system. Because the precipitant concentration in the drop is lower than in the reservoir, the 

volume of the drop decreases due to vapour diffusion. This leads to an increase of the protein 

and precipitant concentration, and if the conditions are sensibly chosen, crystal growth can be 

observed. The exact crystallisation conditions for the two crystal forms of Cellosyl are 

described in chapter 3.2. 

 

2.2.6 Heavy-atom and polysaccharide soaks  

The incorporation of heavy atoms into the crystal lattice is crucial for phase 

determination by single (SIR) and multiple isomorphous replacement (MIR) techniques, and 

the method of multiple wavelength anomalous dispersion (MAD). Heavy-atom derivatives 

were prepared by adding aqueous solutions of heavy-atom compounds directly to the drops 

containing preformed crystals. The crystals were allowed to soak for a minimum period of 72 

h at room temperature. A variety of heavy-atoms were screened, including mercury chloride 

(HgCl2), osmium chloride (OsCl3), cis-Platinum (Pt(NH3)Cl2), potassium tetrachloroplatinate 

(K2PtCl4), yttrium chloride (YCl3) and ytterbium chloride (YbCl3). Double-derivatives were 

prepared by addition of two heavy-atom compounds to a drop, e.g. HgCl2 and OsCl3. The 

concentration of the heavy-atom compound in the crystallisation drops varied from 2.5 mM to 

10 mM. The crystals were stable over the whole concentration range. 

Chitin with a defined number of polysaccharide moieties, i.e N,N´,N´´-Triacetyl-

Chitotriose, N,N´,N´´,N´´´,N´´´´,N´´´´´-Hexaacetyl-Chitohexose, and a chitosan poly-

saccharide mixture was used to prepare substrate / inhibitor complexes. The respective 

polysaccharide was dissolved in water to give a 10 mM stock solution and added to the 

crystals so that a final concentration range from 0.5 mM to 2 mM in the crystallisation drops 

was covered. 
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2.2.7 Cryocooling  

Cryocooling techniques are routinely used in macromolecular crystallography to 

preserve crystals and reduce radiation damage during X-ray data collection. To protect 

Cellosyl crystals from the damaging effect of ice formation they where treated with highly 

liquid paraffin oil as a cryoprotectant (Riboldi-Tunnicliffe and Hilgenfeld, 1999). Prior to 

application, the paraffin oil was dried in a rotary vacuum centrifuge at 333 K for 1 h and 

allowed to adjust to the same temperature as the crystals. The crystals were taken up in a 

cryoloop and slid through the oil before they were flash-cooled in the nitrogen stream.  

 

2.2.8 Data acquisition and processing 

Native as well as heavy-atom derivative data were collected using CuKα radiation and 

a MAR 300 mm imaging plate detector with 1° rotation per image. The benefits of 

synchrotron radiation were exploited for the collection of MAD data and high-resolution 

native data.  

All diffraction data were analysed using the HKL package (Otwinowski and Minor, 

1997). First, the original unprocessed diffraction patterns were visualised with the program 

XdisplayF. Lattice type, unit cell parameters and the crystal orientation were determined with 

the autoindexing routine of DENZO, usually using the first oscillation image. Only if 

problems occurred, e.g. due to a small crystalline impurity, a different image (i.e. at 60°) was 

used. The refinement of crystal and camera parameters and the integration of the diffraction 

maxima were also performed with the program DENZO. Correction of the polarisation of the 

X-ray beam and the air absorption of the scattered X-rays were only included in the 

integration of data collected at a synchrotron radiation source.  

Scaling, post-refinement of the crystal parameters, merging and statistical analysis of 

all data sets collected were performed with the program SCALEPACK (Otwinowski and 

Minor, 1997). The maximum resolution to which a crystal diffracted was determined by 

analysing the ratio of the measured intensity to its standard deviation, I/σ(I). All data at a 

high-resolution limit were omitted if their mean value of I/σ(I) in the resolution bin was less 

than 2. Other criteria to assess the quality of the data measured were the completeness of the 

dataset, the redundancy of the data, and the merging R-factor (Rmerge) (see equation {1}) 

which is a measure of how well multiple observations of the same reflection and its symmetry 

related reflections merge. 

 20



 

 Rmerge (%) = ∑ ∑∑ ∑ −
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Since Rmerge is dependent on the redundancy of the measured data (Rmerge is increasing 

the more often a given reflection is measured), the redundancy-independent R-factor (Rr.i.m. 

{2}) and the precision indicating R-factor (Rp.i.m. {3}) were calculated with the program 

Rmerge (Weiss and Hilgenfeld, 1997; Weiss, 2001). 
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Further data reduction was carried out using the CCP4 suite of programs (CCP4, 1994).  The 

merged data from SCALEPACK were converted into an mtz format by the program 

SCALEPACK2MTZ (CCP4, 1994). TRUNCATE (French and Wilson, 1978) was used to 

calculate mean amplitudes from the averaged intensities and to put them on an absolute scale 

using estimated scale factors from the Wilson plot (Wilson, 1942). 

  

2.2.8.1 Native data collection on the monoclinic crystal form 

Data were collected at 100 K with a MAR 300 mm imaging plate detector and CuKα 

radiation, using highly liquid paraffin oil as cryoprotectant (Riboldi-Tunnicliffe and 

Hilgenfeld, 1999). At a crystal-to-detector distance of 100 mm, the crystal still diffracted 

beyond the edge of the plate. Due to the set-up of the cryosystem, the detector could not be 

moved closer and a data set to a maximum resolution of 1.65 Å was collected. 

Integration, scaling and analysis of the diffraction data were performed with the 

above-described routine. The crystal could be unambiguously assigned to the monoclinic 

space group C2 with cell dimensions a = 111.15 Å, b = 38.22 Å, c = 51.04 Å, β = 108.21°.   
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2.2.8.2 Native data collection on the hexagonal crystal form 

A single data set was collected at beamline BM30 of the ESRF (Grenoble) with an 

incident wavelength of 0.9797 Å and a crystal-to-detector distance of 330 mm. The crystal 

was cooled in a stream of nitrogen gas at 100 K using highly liquid paraffin oil as 

cryoprotectant (Riboldi-Tunnicliffe and Hilgenfeld, 1999). The crystal diffracted to a 

maximum resolution of 2.3 Å, but unfortunately the diffraction pattern was very anisotropic.  

A total of 180 images were collected with a 1° rotation of Φ and an exposure time of 

15 seconds per image. The unprocessed diffraction patterns were visualised with the program 

XdisplayF and autoindexed using the program DENZO (Otwinowski and Minor, 1997). 

Autoindexing was quite difficult since a small crystalline impurity caused a weak second 

lattice on some images. Performing the peak picking manually circumvented this problem. 

Additionally, determination of the distance from the edge of the data to the beam spot (x 

beam, y beam) caused problems since the beam was not in the centre of the diffraction image. 

The default beam-centre value is the half of the film width, which would be 150 mm in the x- 

and y-directions for a 300 mm image plate. The actual position of 148 mm and 144 mm in the 

x- and y-directions, respectively, could not be determined by the automatic refinement 

procedure and was therefore worked out manually. A hexagonal lattice and unit cell 

parameters of a = b = 124.59 Å and c = 143.18 Å could be determined.  

Since the mosaicity of the crystals was relatively high (0.72), the reflections were 

scaled again with the program SCALA (CCP4, 1994). In contrast to the program 

SCALEPACK, SCALA employs a different scaling algorithm, which includes a correction of 

the tails for partial reflections to improve poor partial bias. However, the deviation in the 

scaling statistics between both programs was negligible. 

 

2.2.8.3 MAD data collection 

An osmium-derivatised Cellosyl crystal was selected for MAD data collection, since 

osmium absorbs X-ray's in an energy range which is easily accessible at a synchrotron 

radiation source. The absorption of X-ray energy causes a difference in the intensity of the 

Bijvoet pairs |F(+)|2 and |F(-)|2, which can be used for phase determination. This difference is 

very small, making out only approximately 3% of the total scattering. The anomalous 

scattering contributions f ' (real part) and f " (imaginary part) of an heavy atom are 

wavelength-dependent and can be determined from theoretical plots. Figure 2.2.8.3-1 depicts 
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the anomalous scattering contributions f ' and f " for osmium in dependence of the 

wavelength. 
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Figure 2.2.8.3-2 Theoretical plots of  f ´ and  f " over the three L-absorption edges of 
osmium. The theoretical absorption edges are at the energy of 10.871 keV (LIII), 
12.385 keV (LII) and 12.968 keV (LIII). Data for this plot was obtained from Merritt 
(1996). 

 

 

However, these plots do not take the effect of neighbouring atoms on the heavy-atom 

scattering values into account. Since the effect can be quite pronounced close to an absorption 

edge, the scattering behaviour of the crystal was determined by recording a fluorescence scan 

around the LIII absorption edge of osmium. Based on this scan, diffraction data were 

collected at three different wavelengths: 

• λ1 = 21.140868 Å (10.8676 keV), with maximal f " and the largest difference between the 

Bijvoet pairs |F(+)|2 and |F(-)|2  

• λ2 = 1.141099 Å (10.8654 keV), at the inflection point of the absorption edge, with 

minimal f ' 

• λ3 = 1.142182 Å (10.8551 keV), at the low energy side of the absorption edge, where the 

absorption of the heavy atom and therefore f " is small and the dispersive difference 

between f ' of λ2 and λ3 is maximal 
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All data sets were collected on the same crystal in order to reduce systematic errors 

and obtain more accurate estimates of the intensity difference between the Bijvoet pairs. The 

crystal diffracted to a resolution of 1.8 at a crystal-to-detector distance of 200 mm. In order to 

obtain highly redundant data, 249 images were collected at each wavelength with a ∆Φ 

rotation angle of 1° per image. After each pass, Φ was reset to zero and exactly the same 

range was measured again.  

All three data sets were integrated with the program DENZO. Data reduction and 

scaling was performed with the program SCALEPACK (Otwinowski and Minor, 1997). A 

monoclinic unit cell of a = 111.14 Å, b = 37.75 Å, c = 50.99 Å, β = 108.21° was determined. 

The keyword 'ANOMALOUS ON' was activated in the SCALEPACK input file to merge the 

Bijvoet pairs separately and output them as I(+) and I(-) for each reflection. 

The SCALEPACK output files for all three data sets were transmuted into CNS 

reflection file format and CNS (Brünger et al., 1998) was used for further data reduction. All 

three data sets were merged into a single reflection file and placed on a common scale, using 

the data set collected at λ3 as the reference set. 

 

2.2.8.4 Data collection on heavy-atom derivatised crystals 

Diffraction data were collected on an individual osmium derivative, as well as on an 

osmium-mercury double derivative of the monoclinic Cellosyl crystals, using CuKα radiation. 

The data were recorded at cryogenic temperatures, using highly liquid paraffin oil as 

cryoprotectant (Riboldi-Tunnicliffe and Hilgenfeld, 1999). Both crystals diffracted to a 

maximum resolution of 1.8 Å. As can be seen from Figure 2.2.8.4-1, the anomalous scattering 

contributions of osmium and mercury are significant using CuKα radiation. Therefore, Bijvoet 

pairs were merged separately in SCALEPACK. The cell dimensions of both crystals were 

isomorphous, with a = 111.26 Å, b = 37.75 Å, c = 51.22 Å, β = 108.31° for the osmium 

derivative and a = 111.28 Å, b = 38.33 Å, c = 50.98 Å, β = 108.23° for the osmium-mercury 

double derivative. 
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Figure 2.2.8.4-1 Theoretical plots of  f ' and  f " over the three L-absorption edges of osmium 
and mercury. Vertical red bars indicate the X-ray energy of the incident beam, chosen for data 
collection. Data for this plot was obtained from Merritt (1996).  

 

A further data set was collected on a mercury derivatised crystal at the beamline X11 

of the EMBL Outstation at DESY, Hamburg, at an incident wavelength of 0.913 Å. The 

crystal diffracted to a maximum resolution of 1.55 Å using cryogenic temperatures of 100 K. 

As described for the other heavy-atom derivatives, 'ANOMALOUS ON' was activated in the 

SCALEPACK input file, and I(+) and I(-) were recorded for each reflection. Cell dimensions 

of a = 111.24 Å, b = 38.51 Å, c = 50.80 Å, β = 108.18° were determined. 

 

2.2.8.5 Collection and processing of atomic-resolution data 

At first, a single data set was collected at the multipole wiggler beamline BW7B at the 

EMBL Hamburg Outstation equipped with a MAR 345 mm image plate detector. Using an 

incident wavelength of 0.8445 Å and a crystal-to-detector distance of 120 mm, the crystal 

diffracted to a maximum resolution of 0.92 Å. The reduction of the crystal-to-detector 

distance from 120 mm to 90 mm, after 56 images, increased the maximum resolution limit 

from 0.92 Å to 0.82 Å resolution. The overall scanning range of the Φ angle comprised 135°. 

Images were recorded in 0.5° oscillation steps.  
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In order to avoid oversaturation, a second and a third data set were recorded at a lower 

X-ray dose to a maximum resolution of 1.84 Å and 1.24 Å, respectively (see Table 2.2.8.5-1).  

 

Table 2.2.8.5-1 Data collection parameters for the three passes on a single Cellosyl crystal. 
 

pass frames Φstart [°] Φend [°] oscil. 
steps [°] 

dose  detector 
dist. [mm] 

max. 
res. [Å] 

1 
1 - 56 

57 - 270 
 0 
27 

28 
134 

0.5 
0.5 

10000 
10000 

120 
 90 

0.92 
0.82 

2   1 - 180  0 180 1  2000 180 1.24 
3   1 - 88  0 176 2    400 180 1.84 

 

 

All diffraction data were analysed using the HKL package (Otwinowski and Minor, 

1997). The original unprocessed diffraction patterns were examined with the program 

XdisplayF. A monoclinic lattice type, unit cell parameters of a = 111.1 Å, b = 38.5 Å, c = 51.0 

Å, α = γ = 90°, β = 108.2° and the crystal orientation were determined with the autoindexing 

routine of DENZO using a single oscillation image. 

DENZO was further used for the refinement of crystal and detector parameters and for 

the integration of the diffraction maxima of all three data sets. To correct for the polarisation 

of the X-ray beam and the air absorption of the scattered X-rays, a polarisation value of 0.9 

and an air absorption length of 5234 mm were included in the refinement. 

Further, shadows of the beamstop, and also the shadow of the cryo nozzle in the high-

resolution data set, had to be omitted from the images. The MAR IP 345 mm detector 

coordinate system has its origin in the upper left corner with the x-axis pointing downward 

and the y-axis to the right. In this coordinate system a circle was defined giving the centre and 

the radius in mm (e.g.: ignore circle 172.5 172.6 5.85) to mask out the shadow of the 

beamstop. Masking out the shadow of the cryo nozzle was more complicated. Even though 

the shadow resembled a half circle on the edge of the image plate the ´ignore circle´ keyword 

could not be used since it was not possible to define a centre of the circle outside the 

diffraction image. Therefore two irregular quadrangles, defined by four x, y coordinates, were 

designed to mask out this shadow (e.g.: ignore quadrilateral 114.0  36.6  87.9  44.1  59.1  42.6  

87.7  4.1). 
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Scaling, postrefinement of the crystal parameters, merging and statistical analysis 

were conducted with the program SCALEPACK (Otwinowski and Minor, 1997). The 

maximum usable resolution was defined by a value for I/σ > 2.0. During the high-resolution 

pass, the maximum usable resolution decreased although the data were collected at 100 K. 

This is indicative of radiation damage. Therefore the maximum resolution was gradually 

reduced for processing. 

Based on these scaling statistics, the high-resolution data set was divided into 4 

batches, Φ ranging from 1 - 28°, 28.5 - 63.5°, 64 - 83.5° and 84 - 135°, which were integrated 

to a maximum resolution of 0.92 Å, 0.83 Å, 0.86 Å and 0.90 Å, respectively. The integration 

procedure of DENZO was repeated for all batches to the respective resolution limits using the 

postrefined crystal orientation, unit cell and mosaicity from the first run of SCALEPACK.  

Subsequently the data of all three data sets were merged in the resolution range of 99.0 - 0.83 

Å. The data were divided into 40 resolution shells for the calculation of statistics, the 

outermost shell including data from 0.84 – 0.83 Å. The monoclinic space group C2 with unit 

cell parameters of a = 111.19 Å, b = 38.45 Å, c = 50.93 Å, α = γ = 90.0° and β = 108.33° was 

determined for the crystal.  

Subsequent data reduction was carried out using the CCP4 suite of programs (CCP4, 

1994), i.e. conversion of the merged data from SCALEPACK into an mtz format was 

performed with the program SCALEPACK2MTZ (CCP4, 1994) and the program 

TRUNCATE was used to calculate mean amplitudes from the averaged intensities and to put 

them on an absolute scale using estimated scale factors from the Wilson plot (French and 

Wilson, 1978). The approximate overall temperature factor estimated from the Wilson plot 

(Wilson, 1942) was 6.5 Å2. 

 

2.2.9 Phase determination 

X-rays scattered by the electron shell of the protein atoms in a crystal contain the 

complete information of the three-dimensional structure of the protein. This information is 

encoded in the amplitude and the phase of the scattered X-rays. The wavelength of the 

scattered X-ray is the same as the one of the incident beam and the amplitude can be 

determined from the relative intensity of the reflections. However, the phase cannot be 

directly measured, thus an important part of the information about the three-dimensional 

electron density distribution is lost. To obtain phases is one of the most difficult tasks in 

macromolecular crystallography and known as the “phase problem”. 
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In the present work, three methods to obtain phase information were employed. The 

basic principles of these methods are described in the following paragraphs. A detailed 

description of the specific aspects for the respective experiments can be found in chapter 3 of 

this thesis. 

 

2.2.9.1 Molecular replacement 

Molecular replacement was performed using two different programs, CNS (Brünger et 

al., 1998) and EPMR (Kissinger et al., 1999). A requirement for the molecular replacement 

procedure is a search model with a known three-dimensional structure. This could be, for 

example, the crystal structure of a protein with high sequence similarity or the structure of the 

same protein in a different space group. Because of the differences in space group and 

orientation between the search model and the unknown crystal structure, the search model has 

to be correctly placed into the new unit cell. Then, structure factors can be calculated from the 

correctly orientated search model and the phases of these calculated structure factors serve as 

initial phase estimates for the new protein structure (Drenth, 1999). 

The program CNS employs a separate search for the orientation (rotation search) and 

for the location (translation search) of the search model in the new unit cell. The rotation 

search is performed by a correlation of the Patterson maps computed from the observed 

structure factor amplitudes (Fo) of the investigated protein and of the calculated structure 

factor amplitudes (Fc) computed from the coordinates of the search model. If the rotation 

function is determined, the search model is rotated accordingly and then translated through 

the unit cell by monitoring the correlation of the structure factor amplitudes.  

The program EPMR employs an evolutionary optimisation algorithm, which allows a 

direct search for the three rotational and translational parameters. This six-dimensional search 

starts with arbitrary molecular replacement solutions by random generation of values for the 

orientation and position of the search model in the unit cell. A stochastic ranking is used to 

choose the solutions, which survive into the next round. The orientation and location of the 

surviving members of the population is maintained and used to generate offspring by applying 

normally distributed random mutations to the orientation of the parent solution in order to 

create the next population. This process is reiterated for a fixed number of generations, after 

which the solution with the highest correlation coefficient between the observed and 

calculated structure factors is chosen for a conjugate gradient optimisation procedure (Powell, 

1977). This very sensible and reliable procedure allows the rapid and highly automated 
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solution of molecular replacement problems with single or multiple molecules in the 

asymmetric unit (Kissinger et al., 1999).                                                                                 

Once the search model is placed in the new unit cell, an electron density map can be 

calculated using model phases and the observed structure factor amplitudes. Ideally, 

difference Fourier synthesis should show the regions of disagreement between the search 

model and the new structure, which can now be determined through rebuilding and 

refinement.  

 

2.2.9.2 Multiple wavelength anomalous dispersion  

A further attempt to obtain phases was carried out using the method of multiple 

wavelength anomalous dispersion. In crystal structure determination, it is usually assumed 

that the intensities of the reflections (h, k, l) and (-h,-k,-l) are equal (Friedel´s law). The 

reflections (h, k, l) and (-h,-k,-l) are called a Friedel or a Bijvoet pair. However, the presence 

of heavy atoms in the crystal can lead to the abolishment of Friedel´s law. Heavy atoms can 

absorb X-rays of specific wavelength. This leads to a participation of the inner electrons in the 

scattering process and gives rise to a phase shift and to a difference in the intensities of (h, k, 

l) and (-h,-k,-l). This disproportion between the Friedel mates is called anomalous scattering 

or anomalous dispersion (Rhodes, 2000). The anomalous scattering power of a heavy atom is 

dependent on the wavelength of the incident X-ray beam. Taking advantage of tuneable 

synchrotron radiation sources, this wavelength dependency can be exploited to locate the 

anomalous scattering atoms within the unit cell and calculate the corresponding phase angle. 

Location of the heavy-atom sites and MAD phasing were performed using the programs CNS 

(Brünger et al., 1998) and SHARP (De LaFortelle and Bricogne, 1997). 

 

2.2.9.3 Multiple isomorphous replacement with anomalous scattering  

 The major breakthrough in the elucidation of the three-dimensional structure of 

Cellosyl was achieved employing the method of multiple isomorphous replacement with 

anomalous scattering (MIRAS). Heavy atom containing protein crystals, which are 

isomorphous to the native crystals, are essential for this method. That implies that binding of 

the heavy atom to the protein does neither alter its structure nor its crystal packing. Non-

isomorphism is reflected in altered cell constants or a change in crystal symmetry and renders 

these crystals futile for this method. If native and heavy atom crystals are isomorphous, the 
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reflections occur under the same geometry. Because of their high number of electrons, heavy 

atoms scatter X-rays much stronger than the light atoms of amino acids, which leads to a 

significant change in the relative intensities of the reflections between the native and 

derivative crystals. This difference in relative intensities can be used to determine the position 

of the heavy atoms in the unit cell, facilitated by calculation of Patterson functions from the 

differences between structure factor amplitudes of the native and derivatised crystal (Rhodes, 

2000). 

From the Patterson vectors, it is possible to derive the position of the heavy atom in 

the unit cell. With this knowledge, initial phases can be estimated for the protein structure. 

Using only one heavy atom derivative, the phase estimates are vague and it is highly unlikely 

to obtain an interpretable electron density map. However, phase estimates can be improved by 

combination of the phase information of different heavy-atom derivatives.  

RCullis is one of the most useful indicators of the validity of the heavy-atom model. 

Values of RCullis < 0.6 for centric reflections (eq.{4a}) are considered to be very good, and 

values  < 0.9 are usable for phasing. If the RCullis for anomalous data (eq.{4b}) is less than 1, 

the heavy-atom data usually provide significant phase information (CCP4 tutorial). 
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Another measure of the quality of a heavy-atom derivative is its phasing power and the 

mean figure of merit (FOM) (Blow and Crick, 1959). The phasing power is defined as the 

mean heavy-atom amplitude divided by the residual lack of closure error: 
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, where the lack of closure error, E, is the difference between the observed and calculated 
values of the structure factor amplitude of the heavy-atom derivative 

                                                        

The mean figure of merit is a measure of the precision of the "best" phase:  

 
( )

( )lkhF
lkhF

FOM best

,,
,,

=         {6} 

   

 

 

 
with ( )

( ) ( )

( )∑
∑

=

α

α

α

αα

P

FP
lkhF

lkh

best

,,

,,  , 
P(α) = total probability of phase angle α as 

derived from more than one 
derivative 

 

 
In this work, the structure of Cellosyl was determined using an osmium, a mercury 

and an osmium-mercury double derivative. In addition to the isomorphous difference to the 

native crystal, the anomalous scattering of the heavy atoms was used to obtain phases (see 

chapter 3.3.5). 

 

2.2.10  Model building and electron-density maps 

The electron density ρ can be calculated at each point (x, y, z) of the crystal from the 

structure factor amplitude F (h, k, l), which is proportional to the square root of the measured 

intensity I for the reflection (h, k, l), the phase α (h, k, l), and the volume V of the unit cell:

  

( ) ( ) ( ) (∑ ++−⋅⋅= lzkyhxilkhia eelkhF
V

zyx πρ 2,,,,1,, )     {8} 
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In order to obtain a molecular model of Cellosyl, an initial electron density map was 

calculated using the measured intensities of the native data set and the phase information 

derived from the MIRAS experiment to 2 Å resolution. The initial phases were of very good 

quality. The electron density of the protein was clearly distinguishable from the bulk water 

and features like α-helices could be recognized. Model building was automatically performed 

with the program ARP/wARP (Perrakis et al., 1999). The program was able to build all amino 

acids, except the C-terminal Ala217, and a majority of the side chains (see chapter 3.3.6) 

combining the initial model and the native data to 1.65 Å. The program O (Jones et al., 1991) 

was used for visualisation, manual model building and verification. 

In the process of improving the quality and resolution of the electron density map, the 

observed phases are replaced or combined with calculated phases from the initial model. This 

increases the danger of introducing bias from the model into the electron density. In order to 

minimize model bias, several difference Fourier syntheses containing the structure factor 

amplitude in form of ( )calcobs FFn −  were calculated. The calculated structure-factor 

amplitudes are subtracted from multiples of the observed structure-factor amplitudes in each 

Fourier term. The resulting electron density map for n=1 is called a Fo-Fc map (eq. {9}). 
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The Fo-Fc map reveals errors in the current model. The electron density is either 

positive or negative, depending on which of Fo or Fc is larger. Positive electron density 

implies that atoms of the model have to be moved towards that region, whereas in regions of 

negative density atoms have to be moved away, i.e. wrongly built amino-acid side chains, 

indicated by patches of negative density, can be moved into nearby regions of positive density 

and so adjusted to the right conformation (Drenth, 1999). 

For n=2, the Fourier difference map is called 2Fo-Fc map (eq. {10}). The 2Fo-Fc map 

shows the electron density of the model and is solely positive if the model does not contain 

severe errors (Drenth, 1999).  
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SigmaA weighted maps reduce model bias even further, applying weighting to the 

observed structure factor amplitudes (Read, 1986). The equations for the (mFo-DFc)-map and 

(2mFo-DFc)-map are shown in {11} and {12}, respectively. 
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, where m is the figure of merit and D is the estimated error in the (partial) structure from the 
Luzzati plot (Luzzati, 1952). 

 

SigmaA weighted maps were calculated using SHELXPRO (option ´M´) from the pdb 

and fcf output files of the atomic resolution model of Cellosyl.  

 

2.2.11  Structure refinement  

After a model has been obtained from a MAD, MIRAS or molecular replacement 

experiment, the positional parameters and the temperature factor of each atom have to be 

refined in order to adjust the protein model to fit the observed data. A measure for the 

agreement between the structure factors calculated for the existing model and the observed 

structure factors is the crystallographic R-factor (eq. {13}, where k is a scale factor).  
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Because the observation-to-parameter ratio in protein crystallography is rather low, 

there is the possibility to overfit data, especially at moderate resolution. Therefore, structure 

validation using the free R-value (eq. {14}) has been introduced by Brünger (1992). To 

compute Rfree, data are divided into a working set and a test set (hkl⊂T). The test set 

comprises a random selection of about 5-10 % of the observed reflections. Only the working 

set is used to refine the model. The free R-value is computed from the test set, which is 
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omitted in the refinement process. If a structure is improved during refinement, both the R-

value and Rfree should decrease. 
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Throughout this work, different refinement programs were employed, i.e. CNS 

(Brünger et al., 1998), REFMAC (CCP4, 1994; Murshudov et al., 1997) and SHELX-97 

(Sheldrick and Schneider, 1997).  

The CNS program suite was used to refine the low-resolution model of Cellosyl in the 

monoclinic crystal form. First, rigid body refinement was performed, where the Cellosyl 

molecule was regarded as a rigid entity and its position and orientation in the unit cell was 

optimised. The model was further improved by simulated annealing using torsion angle 

dynamics. In order to correct large errors in the initial model, the dynamic behaviour was 

simulated using a starting temperature of 5000 K. Then, the atomic positions were optimised 

by conjugate-gradient refinement. As last step of a refinement cycle, refinement of the 

thermal parameter B was carried out. The isotropic B-value reflects the thermal motion of the 

atoms in the unit cell and is defined as: 28 uB ×= π  (where 2u is the mean square 

displacement of the atom vibration). 

The program REFMAC, which was used for the refinement of the Cellosyl model in 

the hexagonal crystal form, implements the maximum likelihood formalism. A special 

feature, which is included into REFMAC5, is the possibility to refine TLS parameters 

(Schomaker and Trueblood, 1968; 1998) to describe the anisotropic motion of rigid bodies. 

Even at moderate resolution, the mean square displacements of rigid bodies can be described 

since, in contrast to the large number of parameters needed for a full anisotropic refinement, 

only 20 parameters are required for each TLS group (Winn et al., 2001).  

The program SHELX-97 was used to refine the structure of Cellosyl at 0.83 Å 

resolution. The program was originally designed for the refinement of small molecules but 

has been adapted for the refinement of biological macromolecules at atomic resolution. The 

program is based on a least-square refinement algorithm and is especially suitable for the 

refinement of disorder and anisotropic displacement parameters. To operate SHELXL, two 

input files were necessary, namely the hkl file which contains h, k, l, F and σ(F) or better F2 
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and σ(F2) and the ins file containing crystal characteristics and instructions. Both files were 

generated with the auxiliary program SHELXPRO, an interactive user-interface between 

SHELX and other programs. The hkl file was generated from the CNS format reflection file 

using the option ´H´ in SHELXPRO and contained h, k, l, F and σ(F). 1 % of the unique 

reflections (1767) covering the full resolution range (40.0 - 0.83 Å) were randomly selected 

and flagged for use as a reference set for calculation of free R-values (Brünger, 1992). The 

initial ins file was prepared using a low-resolution model of Cellosyl. All solvent atoms and 

ions were omitted from the model, before the pdb file was read into SHELXPRO (option ´I´), 

which automatically generated standard Engh & Huber restraints (Engh and Huber, 1991), 

applied consistency checks and incorporated instructions needed for refinement. 

Alternate sessions of model building using the program O (Jones et al., 1991) and 

refinement were carried out in order to improve the quality of the structural model. 

 

2.2.12  Validation of model quality 

After the protein structures had been refined, the electron density maps were carefully 

inspected to assure the connectivity of the main-chain and the side-chain atoms and the 

correct interpretation of the side-chain electron density. The crystallographic R-factor gave a 

measure of how well the protein model fitted the observed data. 

In order to examine the stereochemistry of the polypeptide chain, a Ramachandran 

plot  (Ramachandran and Sasisekharan, 1968) was prepared for the atomic resolution model 

using the program SHELXPRO and for all other structures with the program PROCHECK 

(Laskowski et al., 1993). The dihedral angles Φ and Ψ for each residue were plotted in a 

square matrix. For all structures, the majority of the Φ/Ψ values lay within the allowed 

regions. For residues in the generously allowed or disallowed regions, the respective electron 

density maps were carefully investigated to either explain the phenomenon or apply 

corrections to the model. 

A Luzzati plot of the R-factor as a function of resolution gives estimates of the average 

error in the atomic coordinates for a refined structure assuming perfect data (Luzzati, 1952). 

R.m.s. deviations from ideality of bond length and angles as well as the Luzzati plot were 

determined with the program CNS (Brünger et al., 1998) and for the high-resolution structure 

with the program SHELXPRO (Sheldrick and Schneider, 1997). 
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3. RESULTS 
 

 

3.1 Preparation of Cellosyl 

Cellosyl from Streptomyces coelicolor was expressed and purified over a decade ago 

at Hoechst AG (Birr et al., 1989; Bräu et al., 1991). The purity of these aged samples was 

investigated by SDS-PAGE analysis (Fig.3.1-1). Two samples showed a single band 

exhibiting a molecular weight of 23 kDa and were pure enough for crystallisation trials. One 

sample contained Cellosyl in a lyophilised state, while the second consisted of a solution of 

Cellosyl in the FPLC elution buffer. 

 

 

 
 

     Figure 3.1-2  
     SDS-PAGE analysis of the original Cellosyl samples 
     a) Sample of lyophilised Cellosyl 
     b) Sample of Cellosyl in FPLC elution buffer 

 

 

 

3.2 Crystallisation 
 

3.2.1 Hexagonal crystals 

Rod-shaped crystals of Cellosyl have been described in the literature. The protein was 

dissolved in a 10 mM acetate buffer at pH 6.1 and precipitated with a 50% ammonium 

sulphate solution in the same buffer (Hilgenfeld et al., 1992). 

Unfortunately, resolubilising the original lyophilised sample proved to be quite 

difficult. After several attempts, a buffer solution of 10 mM KH2PO4 at pH 6.0 was used with 

success. In order to sediment insoluble particles, the sample was centrifuged for 5 min at 

12000 rpm and the protein dissolved in the supernatant was concentrated to 10 mg/ml at 
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12000 rpm using a centrifugal filter device. Crystal screening was performed with the Grid 

Screens from Hampton Research (Laguna Niguel, USA). None of these crystallisation 

conditions yielded suitable crystals for X-ray analysis.  

Since proteins have very complex properties and their aggregation behaviour depends 

very much on the used buffer conditions (Jancaric et al., 2004), Cellosyl was dialysed into a 

different buffer solution, containing 20 mM Tris at pH 7.0 and subsequently concentrated to 

10 mg/ml. In the new buffer conditions, rod-shaped crystals were obtained at room 

temperature in a pH range from pH 7.0 to pH 8.0 and an ammonium sulphate concentration 

between 1.2 - 2.0 M. The crystals actually used for X-ray data collection were prepared by the 

hanging-drop vapour diffusion method, where hanging drops were comprised of 4 µl protein 

solution and 2 µl reservoir. The latter contained 1.6 M (NH4)2SO4 in 0.1 M HEPES at pH 7.0.  

Crystals grew within two weeks and reached a maximum size of 0.25 x 0.25 x 1.2 mm 

(Fig.3.2-1). A primitive hexagonal Bravais lattice with cell dimensions of a = b = 124.5 Å and 

c = 143.1 Å was determined by initial X-ray analysis. 

 

3.2.2 Monoclinic crystals 

Nearly identical crystallisation conditions were applied to the second sample, which 

contained Cellosyl in the FPLC elution buffer. Interestingly, a completely different crystal 

form was obtained. The elution buffer contained a 10mM NaH2PO4 solution at pH 7.0 and an 

unknown concentration of NaCl. The protein concentration was only 2.3 mg/ml because part 

of the sample had already precipitated from the solution. Prior to crystallisation trials, the 

protein solution was concentrated to 10 mg/ml. Droplets were prepared by mixing 2 µl protein 

and 2 µl precipitant solution that contained 1.6 M (NH4)2SO4 in 10 mM HEPES, pH 7.0. Very 

thin platelets appeared at room temperature after two weeks. Within two months they reached 

a size of 0.3 × 0.3 × 0.04 mm, which was sufficient for diffraction data collection. The 

crystals belong to the space group C2 with cell dimensions of a = 111.5 Å, b = 38.2 Å, c = 

51.0 Å and β = 108.4° (Fig.3.2-1). 

Surprisingly, an amorphous-looking precipitate in the original container consisted of 

crystalline material. Investigation under the light microscope showed the same platelet-like 

crystals. These crystals diffracted to a maximum resolution of better than 1.0 Å. 
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 The two crystal forms of Cellosyl: hexagonal (left) and monoclinic (right)  
 

 

.3 Structure elucidation of the monoclinic crystal form 

.3.1 Native data collection 

A native data set was collected using in-house facilities with a MAR 300 mm imaging 

late detector and CuKα radiation. Prior to data collection, the crystal was flash-cooled in the 

iffe 

and Hilgenfeld, 1999). A diffraction image of the monoclinic crystal, diffracting to 1.65 Å 

resolution, is presented in Figure 3.3.1-1. 

After autoindexig and integration of the diffraction data, the crystal could be 

b a = 111.15 

, b = 38.22 Å, c = 51.04 Å, β = 108.21°.  The scaling statistics are shown in Table 3.3.1-1. 

monomer (23 kDa) per asymmetric unit, corresponding to 

a Matthews coefficient (Matthews, 1968) of 2.18 Å3/ Dalton and a solvent content of 43 %. 

 
Figure 3.2-2

3
 

3

p

liquid-nitrogen stream using highly liquid paraffin oil as cryoprotectant (Riboldi-Tunnicl

unam iguously assigned to the monoclinic space group C2 with cell dimensions 

Å

The crystals contained one protein 
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Figure 3.3.1-2
to 1.65 Å resolution. 

 

 

 

 

    Diffraction image of a monoclinic Cellosyl crystal diffracting 

Table 3.3.1-2   Scaling statistics of the monoclinic data set 

resolution range [Å] 40-1.65 
outermost shell [Å] {1.71-1.65}1

total number of reflections 94865 
number of unique reflections 24195 
number of rejected reflections 135 
completeness [%] 97.2 {92.3}1

redundancy 3.93 
Rmerge [%] 2 4.5 {15.7}1

Rr.i.m [%] 5.3 {18.0}2 1

R [%] p.i.m. 
2 2.7 {9.1}1

I / σ 27.7 {8.5}1

 
  

                                                 
1 Values given in {} correspond to those in the outermost shell 

hapter 2.2.8, 21 2 (Weiss and Hilgenfeld, 1997; Weiss, 2001), for formulas see c
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3.3.2 Initial at ture by mo r replacement 

A crystallographic study of a C e from 

Streptomyces eryt aximum resolution of 2.9 Å was published in 1981 (Harada et 

al., 1981). The ly  Streptomyces erythraeus is of 185 amino acids, 

exhibiting a molecular weight of 20600 Da, and is therefore r in size to Cellosyl. 

Both enzymes sh equence identity (Fig. 3.3.2-1), which should result in a very 

similar fold (Chothia and Lesk, 1986). Therefore, the structure of the lysozyme from 

 was used as a search model for molecular replacement. 

 

tempts to solve the struc lecula

α backbone model of a bacterial lysozym

hraeus to a m

sozyme from  comprised 

 very simila

are 49 % s

Streptomyces erythraeus

 

 
 

Figure 3.3.2-3  Sequence comparison between Cellosyl  (1) and Streptomyces erythraeus 
lysozyme (2) 

 

 

Molecular replacement was carried out using the CNS program package (Brünger et 

al., 1998). First, a polyalanine model of Streptomyces erythraeus lysozyme was prepared and 

the rotation search was performed in order to determine the correct rotational orientation in 

onoclinic cell of Cellosyl. The rotation search was carried out in a resolution range of 

5.0 - 4.0 Å using a minimum Patterson vector length of 4 Å. Two different search modes 

ame 

´top´ solution with a clear separation from the next peaks, which is a good indication of the 

right orientation (Table 3.3.2-1). 

 

the m

1

were applied; the direct rotation search and the real space rotation search. Both gave the s
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Table 3.3.2-4   Results of the rotation search 

 
 
 

 

 

direct rotation search 
theta 1 theta 2 theta 3 peak [σ]
332.71 48.46 123.41 8.4 
345.27 48.46 110.85 5.2 
344.07 55.38 119.07 4.7 

real space rotation search 
theta 1 theta 2 theta 3 peak [σ] 
334.60 48.46 125.29 6.0 
347.16 48.46 112.74 4.3 
173.19 45.00 209.19 3.9 

 

The first ten solutions of the rotation function were applied to the search model, 

followed by analysis of the translation function within a resolution range of 15.0 – 4.0 Å. An 

optimisation of the rotational orientation of the search model by Patterson-correlation 

refinement before and after the translation search was incorporated in the program. 

Unfortunately, an outstanding solution could not be obtained since all translation functions 

had very similar correlation coefficients (cc) and packing values (pv) and vary only in the y-

value. The first four solutions are depicted in Table 3.3.2-2.  

 

Table 3.3.2-5 Rotation and translation function, which gave the highest score using the CNS 
program package.  
 

 theta 1 theta 2 theta 3 x y z cc pv 
1 332.18 49.23 124.99 8.39 1.19 20.38 0.538 0.5687 
2 332.20 49.24 125.01 8.41 4.99 20.39 0.538 0.5684 
3 332.58 49.42 124.61 8.38 1.08 20.69 0.537 0.5684 
4 332.18 49.21 125.00 8.40 -8.44 20.35 0.538 0.5674 

 

For the best solution, rigid-body refinement was carried out to optimise the position of 

the search model in the cell and resulted in a R-factor of 53.3 % and a free R-factor of 50.5 %. 

Subsequent to this, three rounds of conjugate gradient minimisation refinement were carried 

out, slowly increasing the maximum resolution from 3.5 to 2.3 Å. This lowered the R-factor to 

48.0 % and the free R-factor to 51.1 %. Further simulated annealing and B-value refinement 

did not lead to an improvement. 2Fo-Fc and Fo-Fc electron density maps were calculated using 

phases from the model obtained by molecular replacement. The overall map looked 

promising, with the density clearly matching the model in some regions. However, in other 

regions, especially at the N- and C-terminus, obvious differences between the model and the 

electron density were observed. Unfortunately, rebuilding did not lead to an improvement in 
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refinement and the R-factor did not drop below 50 %. The same procedure was repeated for 

other solutions of the translation search, however a better solution could not be obtained. 

o m l uc m  r e a

p EP Ki et 199  p  an utionary se rch 

a , a irec tim f re onal and translational 

arameters. The polyalanine model of Streptomyces erythraeus lysozyme was again used as 

search model and the program was run with the observed structure factors for the monoclinic 

crystal 

Table 3.3.2-6 Solution obtained with the program EPMR. 
 

An ther atte pt to so ve the str ture by olecular eplacem nt was m de using the 

rogram MR ( ssinger al., 9). This rogram applies evol a

lgorithm which llows d t op isation o the th e rotati

p

in a resolution range from 15.0 - 3.5 Å. For the correct solution, a correlation 

coefficient of 0.5 or more can be expected. In this case, the correlation coefficient was as low 

as 0.15 and the R-factor higher than 60 %. Refinement of this solution did not lead to an 

improvement. Even if EPMR did not find the right solution it is interesting to note that the 

program generated the same solution of the rotation function as the program CNS (Table 

3.3.2-3). 

 

theta 1 theta 2 theta 3 x y z cc R [%] 
332.46 48.71 124.53 3.81 47.28 35.15 0.15 60.9 

 

One explan or re o ecul acem uld  po ty of 

the search model. The Ram n p amanchandran and Sasisekharan, 1968) of the 

se h m  de in .3.2 ly 5  all s l  m ured 

gions of the plot, indicating the low quality of the model.  

ation f the failu f mol ar repl ent co  be the or quali

achandra lot (R

arc odel is picted Figure 3 -2. On 0 % of  residue ie in the ost favo

re
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tomyces erythraeus lysozyme 

arada et al., 1981) generated with the program PROCHECK (Laskowski et al., 1993). 
 

 

3.3.3 

ctive heavy-atom salt 

was added directly to the crystallisation drop containing pre-grown monoclinic crystals. Good 

results were obtained with a final concentration of 7.5 mM of the heavy-atom compound in 

the crystallisation drop. An osmium-mercury double derivative was obtained by adding both 

HgCl2 and OsCl3 to the crystallisation drops so that each metal ion was present in a 

concentration of 7.5 mM.  

 

 

 

 

 

Figure 3.3.2-4  Ramachandran plot of the structure of Strep
(H

Preparation of heavy-atom derivatives 

Heavy-atom derivatives employed in phasing experiments were prepared using 

mercury(II)- and osmium(III)-chloride. An aqueous solution of the respe
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3.3.4 nitial attempts to solve the structure by MAD 

3.3.4.1 Data collection 

MAD-data collection was performed on an osmium-derivatised crystal at the 

synchrotron ELETTRA (Trieste). Prior to data collection, a fluorescence scan around the LIII 

absorption edge of osmium was recorded (Fig.3.3.4.1-1). Based on this scan, three 

wavelengths were chosen for data collection, according to the criteria described before (see 

chapter 2.2.8.3, 23). They are listed in Table 3.3.4.1-1. 

 

 

 

 

 

 

 

 

 energy  [keV] wavelength [Å] 

I

 
 

Figure 3.3.4.1-3   X-ray fluorescence scan of the Os-derivatised crystal. The X-ray energies 
utilized for MAD data collection are marked with arrows. 
 
 
 
 
Table 3.3.4.1-2 Selected wavelengths for the MAD experiment around  
the LIII edge of osmium. 
 

λ1 (peak maximum) 10.8676 1.140868 
λ2 (inflection point) 10.8654 1.141099 
λ3 (low energy remote) 10.8551 1.142182 
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All three data sets were measured using the same crystal. In order to minimise the 

ental errors, an identical set-up of the experiment was maintained for 

the data collection at all three wavelengths. Data were collected at 100 K using highly liquid 

paraffin

 

 

 λ1 λ2 λ3 

introduction of experim

 oil as a cryoprotectant (Riboldi-Tunnicliffe and Hilgenfeld, 1999). The crystal 

diffracted to a resolution of 1.8 Å and a monoclinic unit cell of a = 111.14 Å, b = 37.75 Å, c = 

50.99 Å, β = 108.21° was determined. The data collection and merging statistics are depicted 

in Table 3.3.4.1-2. 

Table 3.3.4.1-2 Scaling statistics of the three passes on an Os-derivatised crystal  
 

wavelength [Å] 1.1409 1.1411 1.1422 
crystal-to-detector distance [mm] 200 200 200 
resolution range [Å] 99.0-1.80 99.0-1.80 99.0-1.81 
total number of reflections 96073 96220 95454 
number of unique reflections 18897 18897 18579 
number of rejected reflections 160 140 138 
completeness [%] 96.9 96.9 97.0 
redundancy 5.25 5.26 5.3 
Rmerge [%] 1 5.8 5.0 4.5 
Rr.i.m [%] 1 6.7 5.8 5.2 
Rp.i.m. [%] 1 2.9 2.5 2.3 
I / σ 22.2 26.1 31.7 

 

 

3.3.4.2 Location of the heavy-atom sites and MAD phasing 

erence Patterson map was calculated using the data set collected at 

e peak wav length λ1. A plot of the Harker section at y 

1 fference Patterson map calculated between the data of λ2 and λ3 is 

shown in Figure 3.3.4.2-1b. Both Patterson maps indicated a single osmium-binding site, 

w  at (9.29 ) using an au arch method.  

                                                

An anomalous diff

th e = 0.5 is depicted in Figure 3.3.4.2-

a. The dispersive di

hich could be positioned , 0.0, 9.66 tomated se

 
1 (Weiss and Hilgenfeld, 1997; Weiss, 2001), for formulas see chapter 2.2.8, 21 
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F on at y = he (a) a us diff atterson map 
( e Patters ap (λ2 - λ  4 Å. 

e heavy-atom search is on d on am e inform eric 

ambiguity remains to be resolved. Therefore, refineme f the osm

phasing was performed with the origina um configuration and with its inverse image. A 

distinct difference in the resulting electron density maps should be observed in the ideal case, 

here only the correct enatiomorph should result in an interpretable map. After phasing, the 

ity maps were nearly identical. 

The electron density was reinspected after density modification, including solvent flipping 

and den

 
 
 
 

 

)

 

igure 3.3.4.2-2   Harker secti  0.5 of t nomalo erence P
λ1) and (b) dispersive differenc on m 3) at

 

 

Since th ly base plitud ation, the enantiom

nt o ium position and MAD 

l osmi

w

figure of merit was 0.43 for both hands and the electron dens

sity truncation (Abrahams and Leslie, 1996), with an estimated solvent content of    43 

%. Both electron density maps showed clear boundaries between protein and solvent regions 

but neither of the maps was of sufficient quality to start model building. 
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3.3.5 Structure elucidation by MIRAS  

ethod of MIRAS using a 

ercury, an osmium and 

omorphous difference between the 

lous scattering of osmium 

and mercury was exploited for phase determination. The diffraction data of the osmium and 

the osmium-mercury double derivative were collected at 100 K using CuKα-radiation, while 

the mercury derivative diffraction data were collected using a synchrotron radiation source. 

All crystals were assigned to the monoclinic space group C2 with isomorphous cell 

dimensions of approximately a = 111 Å, b = 38 Å, c = 51 Å, β = 108°. The largest variation 

of 1 % was observed along the c axis between the native crystal and the osmium derivative. 

The data scaling and merging statistics are presented in Table 3.3.5.1-1. 

 

 derivatives. 
 
Data set   OsCl3 HgCl2 OsCl3 +HgCl2

 
3.3.5.1 Data collection 

The crystal structure of Cellosyl was determined by the m

native crystal and three different heavy-atom derivatives including a m

an osmium-mercury double derivative. In addition to the is

native crystal and the heavy-atom derivatives, the effect of anoma

Table 3.3.5.1- 2   Scaling and merging statistics of the heavy atom

Resolution range (Å) 40-1.86 40-1.55 40-1.86 
Outermost shell (Å) {1.97-1.86}1 {1.61-1.55} 1 {1.93-1.86} 1

Total number of reflections 68985 116778 123237 
Number of unique reflections 17231 30038 17434 
Number of rejected reflections 101 57 580 
Completeness (%) 100.0 {100.0} 1 100.0 {100.0} 1 100.0 {100.0} 1

Redundancy 4.00 3.89 7.07 
Rmerge (%) 2 3.9 {15.6} 1 4.7 {13.2} 1 5.1{24.8} 1

Rr.i.m. (%) 2 4.6 {14.5} 1 5.5 {15.2} 1 5.5 {26.9} 1

Rp.i.m. (%) 2 2.3 {7.2} 1 2.8 {7.7} 1 2.1 {10.3} 1

I/σ 25.2 {5.3} 1 24.9 {10.5} 1 27.4 {5.3} 1

 
 

                                                 
ues given in {} correspond to those in the outermost shell 
eiss and Hilgenfeld, 1997; Weiss, 2001), for formulas see chapter 2.2.8, 21 

1  Val
2  (W
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3.3.5.2 Location of the heavy atoms 

(a)

(b)                        

in the unit cell 

ere calculated and plotted for each derivative using the CNS program 

package (Brünger et al., 1998). The data for the mercury derivative were collected on the 

high-en

g 

in-house facilities, was used for the location of heavy atom sites and phase determination.  

 

 

 
 
 
 
 
 
 
 
 
 
                                                     
 

 
 

igure 3.3.5.2-2   Isomorphous (a) and anomalous (b) difference Patterson map for the 
osmium mercury double derivative at 3.5 Å. 
 

 

Isomorphous and anomalous difference Patterson maps of the osmium-mercury double 

derivative are depicted in Fig. 3.3.5.2-1a) and b). As would be expected from theoretical plots 

mercury is somewhat higher, since the 

Patterson maps w

ergy side of the LI absorption edge, at a wavelength of 0.91 Å, thus leading to a high 

anomalous scattering contribution. This was exploited to calculate anomalous difference 

Patterson maps, in addition to the isomorphous Patterson maps between the mercury 

derivative and native data set.  

Theoretical plots of f ' and f " show that mercury and osmium absorb X-rays at CuKα-

radiation and therefore, the anomalous scattering contribution of the data sets, collected usin

 

 

 

 
 
 

           

 
 

F
-

of  f ' and f ", the anomalous difference peak for 
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anomalous scattering contribution of mercury is higher than for osmium using CuKα-

radiatio

f ' and f " for two different heavy atoms in one derivative but it 

was able to f

 
[Å2] height [σ] 

n. It can be also seen that osmium and mercury bind at different locations in the 

asymmetric unit and therefore both metals provide independent information to phasing. 

MIRAS phasing, including the location of the heavy-atom sites, was initially 

conducted using the automated structure solution program SOLVE (Terwilliger and 

Berendzen, 1999). Unfortunately, by the time the structure was solved, the version of SOLVE 

(version 1.15) could not refine 

ind two heavy atom sites > 5σ for each derivative (Table 3.3.5.2-1). 

 

Table 3.3.5.2-2 Initial heavy atom sites > 5σ determined with the program SOLVE. 

derivative site x y z occupancy B-factor 
15.0 17.8 1 0.615 -0.503 0.077 0.293 osmium + 

mercury 2 0.609 0.432 0.186 0.389 41.5 14.5 
50.6 14.2 1 0.376 0.369 0.424 0.417 

mercury 
2 0.811 0.241 0.297 0.260 30.6 12.2 

15.0 23.0 1 0.120 0.075 0.136 0.374 
osmium 

2 0.609 0.454 0.182 0.130 15.0 7.0 
 

 

3.3.5.3 Phase determination 

Data collected on the osmium-mercury double derivative were used for the initial 

finement of heavy-atom sites and phase determination using the program SHARP (De 

aFortelle and Bricogne, 1997). The first round of refinement was composed of three big 

ycl ogether with isomorphous 

nd anomalous lack-of-isomorphism (LOI) and occupancy parameters were refined, as they 

exert the strongest influence on the m mum-likelihood function. Scaling and LOI 

arameters of the native data set were excluded from the refinement because the native data 

-atom 

ed in the refinement. After convergence of the 

rst round of refinement, isomorphous and anomalous residual maps (log-likelihood gradient 

maps) were inspected using the program O (Jones et al., 1991) to probe for minor sites. 

Positiv

re

L

c es. In the first cycle, scale factors of the derivative data set, t

a

axi

p

set served as the reference data set. In cycles 2 and 3, the coordinates of the heavy

positions and isotropic B-values were includ

fi

e and negative density arranged around the heavy atom sites could be observed, 

indicating the anisotropic thermal motion of the heavy atoms. Otherwise, the heavy atom 

model seemed to be complete. Anisotropic B-value refinement together with refinement of the 
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anomalous scattering factors, f "Os and f "Hg, was performed in the second round of 

refinement, which converged with a figure of merit of 0.44 and 0.31 for the acentric and 

centric reflections, respectively. The resulting electron density map was solvent-flattened with 

the den

 the 

ium-mercury derivative and the native data set, with the latter serving as reference data 

 

 the maximum likelihood refinement to obtain better phases. Refinement of the heavy-atom 

p c d the gure of rit to 0.5 for a to ic . 

The solvent flattened electron density ma ed c lecular daries an ked 

in e bu ill l  fo ve

lly, hird tiv lu  phase determinatio containe ajor 

osmium-bindin ite w  o cy inor site with only 13 % occupancy (Table 

3.3.5.2-1) that was initially excluded from nem was late d since t  was 

lear electron density for it in the residual electron density maps. The last round, including 

finement of the anomalous scattering factors f " at the respective wavelengths and 

nt, converged with a figure of merit of 0.62/0.54 for 

acentri

sity-modification program SOLOMON (CCP4, 1994; Abrahams and Leslie, 1996) 

using an estimated solvent content of 43 %. Protein and solvent regions could be already 

distinguished in the solvent-flattened map but model building would have been very 

cumbersome at this stage. 

Therefore, data subsequently collected on a mercury derivative were scaled with

osm

set. The two heavy-atom sites determined for each derivative (see Table 3.3.5.2-1) were used

in

arameters in rease  fi me 0 centric and  0.37 for centr  reflections

p show lear mo  boun d loo

terpretabl t st eft room r impro ment. 

Fina a t  deriva e was inc ded in n. It d a m

g s ith 37% ccupan and a m

the refi ent. It r adde here

c

re

anisotropic B-value refineme

c/centric reflections. The experimental MIRAS phases extended to 2.0 Å and the 

electron density map, improved by density modification, was beyond expectations. The 

phasing statistics are depicted in Table 3.3.5.3-1. 

 

Table 3.3.5.3-2   Phasing statistics for the three heavy atom derivatives 
 

 

 
              
 
 

 

                                                 
1 For formulas see chapter 2.2.9.3, 30-31 

Data set   OsCl3 HgCl2 OsCl3 +HgCl2

Number of sites 2 2 2 
Rcullis (iso): centr /acentr 1 0.81/0.83 0.91 / 0.93 0.83 / 0.84 
Rcullis  (ano): acentr 1 0.82 0.87 0.84 
Phasing power (iso): centr/acentr 1 1.23 / 1.49 0.84 / 0.94 0.92 / 1.37 
Phasing power (ano) : acentr 1 1.36  1.30 1.46 
FOM centr / acentr 1 0.54/0.62 
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3.3.6 Model building and refinement 

Density-modified phases from SHARP were used as input to ARP/wARP (Perrakis et 

al., 1999). The first cycle was performed in mode warp where the program built and refined a 

free-atom model using experimental phases up to 2.0 Å. This model served as input for the 

next cycle that was run in mode warpNtrace. The improved model was again used as input for 

another round of autobuilding, leading to a model consisting of 11 chains and 131 residues 

with a connectivity index of 0.81. Using this model together with the native data to 1.65 Å 

resolut

 CNS (Brünger et al., 1998). Both overall B-

value c

ion, ARP/wARP was able to automatically trace the entire main-chain with the 

exception of the C-terminal residue, which exhibits poor electron density. Furthermore, 

ARP/wARP automatically placed all but five side chains into the density. Manual building of 

the remaining poorly fit side-chains was conducted in O (Jones et al., 1991), although the 

majority of necessary adjustments involved side-chain flipping of the terminal χ angle for 

several Asn, Gln and His residues in order to satisfy hydrogen-bonding requirements. 

Refinement of the rebuilt model was conducted in

orrections and bulk solvent corrections were applied. Subsequent simulated annealing, 

conjugate gradient and atomic B-value refinement resulted in an R-factor of 27.3 % (Rfree = 

30.8 %).  

 
 

 

(a) (b) 

 
F e section l electron density m ith an alous 
difference density (contoured 5 σ above the mean) colo genta and the 2Fo-F p in 
turquoise (contoured at 1.3 σ); (a) anomalous density for sulphur atoms, (b) anomalous 
density for a chloride ion clearly distinguishing it from a neighbouring water molecule. 

igure 3.3.6-2 Representativ of the fina ap w om
ured in ma c ma

 51



Since the crystals were grown in a buffer containing sodium chloride, anomalous 

Fourier maps were calculated to search for binding of chloride ions and distinguish them 

unambiguously from water molecules. Eight chloride ions could be located based on strong 

anomalous peaks (> 5 σ above the mean) present in the primary solvent shell. Further, the 

positions of the sulphur atoms of the cysteine and methionine residues could be confirmed 

(Fig. 3.3.6-1). 

The addition of 8 chloride ions and of 399 water molecules, along with further 

refinement, lowered the R-factor to a final value of 15.2 % and Rfree of 18.4 % for all 

reflections between 50-1.6 Å. The refinement statistics are shown in Table 3.3.6-1. 

 
Table 3.3.6-2 Refinement statistics of the Cellosyl structure at 1.65 Å resolution 
 
total number of reflections used 24126 (97.4 %) 
number of reflections in the working set 22912 (92.5 %) 
number of reflections in the test set 1214 (4.9 %) 
number of protein atoms 1671 
number of water molecules 399 
R-factor [%] 15.2 
R  [%] free 18.4 

 

 

3 Assessment of the model quality 
 

There is clear electron density in the final map for all 217 amino-acid residues with the 

exception of the apparently highly mobile side chain of Arg208 and the carboxy-terminal 

residue Ala217. Further, the model contains 8 chloride ions and 399 water molecules. More 

than 20 % of all solvent molecules have B-values less than 15 Å2.  

At the end of the refinement, the R-factor and Rfree had converged to 15.2 % and 18.4 

%, respectively. The r.m.s. deviations from ideality of bond length and angles of the structure 

are 0.008 Å and 1.46° respectively, indicating ideal geometry for almost all residues. The 

overall error in the atomic coordinates based on the Luzzati plot (Luzzati, 1952) was 

estimated to be less than 0.14 Å. 

.3.7 
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The geometry of the model was good as assessed by the program PROCHECK 

(Laskowski et al., 1993). Most of the residues (87%) in the polypeptide chain were found 

within the highly favourable regions and no residues lie in disallowed Ramachandran regions 

(Fig. 3.3.7-1). 

 

 

 

 

 
 

 
igure 3.3.7-2 Ramachandran plot of the final structural model of Cellosyl generated with the 

 

absch and Sander, 1983), 

Asp89,

n214 of helix α6. 

 

 
 

 

 

 

 

 

 

F
program PROCHECK (Laskowski et al., 1993). 
 

 

Only Asn90, with Φ and Ψ angles of 67.8° and -4.2°, respectively, is found in the 

generously allowed regions of the Ramachandran plot, but as can be seen from Fig. 3.3.7-2, it 

fits the electron density well. According to the program DSSP (K

 Asn90 and Arg91 are located in a bend in the loop between α3 and β4. The strained 

main-chain conformation of Asn90 is stabilised by a hydrogen-bonding network involving the 

side chain of Asp89, which is hydrogen bonded to the main chain of Arg91 (Asp89 OD1 – 

Arg91 N: 2.90 Å) and to the side chain of Thr92 (Asp89 OD1 – Thr92 OG1: 2.78 Å). Asn90 

itself forms hydrogen bonds to As
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Figure 3.3.7-3 op between α3 and β4. Asn90 in 
andran plot fits the density well. The 2Fo-Fc 

 
 

 
 

 

 
 
 
 

 Stereo representation of the bend within the lo
the generously allowed region of the Ramach
electron density map in turquoise is contoured at 1.3 σ. 
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3.4 Atomic-resolution structure 

3.4.1 Data acquisition and processing 

Three data sets were collected on a single Cellosyl crystal at the multipole wiggler

beamline BW7B at the EMBL Hamburg Outstation. The data were recorded at 100 K with an 

incident wavelength of 0.8445 Å using highly liquid paraffin oil as cryo-protectant (Riboldi

Tunnicliffe and Hilgenfeld, 1999). The first data set was collected to a maximum resolution of 

0.82 Å. A second and a third data set were collected at a lower dose in order to avoid 

oversaturation to a maximum resolution of 1.84 Å and 1.24 Å, respectively.  

 

 
 

 

-

0.82 Å

 
 
Figure 3.4.1-1 Diffraction image of a Cellosyl crystal. A wedge is contoured darker in order  

 show that the crystal diffracted to a maximum resolution of 0.82 Å.  
 

 Data collection and processing was very challenging (for a detailed description see 

hapter 2.2.8.5. The crystal belongs to the monoclinic space group C2 with unit cell 

arameters of a = 111.19 Å, b = 38.45 Å, c = 50.93 Å, α = γ = 90.0° and β = 108.33°. The 

erging statistics are listed in Table 3.4.1-3.  

able 3.4.1-3 Scaling and merging statistics of the three merged data sets from one  

. 
. 

to

c

p

m

 
T
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Cellosyl crystal. 
 
resolution range [Å] 99.0 – 0.83 
total number of reflections 674791 
number of unique reflections 176077 
number of rejected observations 3051 
completeness [%] 91.5 {49.3}1 

redundancy  3.83 {1.23} 1

Rmerge [%] 2 3.5 {29.2} 1

Rr.i.m. [%] 2 3.8 {41.2} 1

Rp.i.m. [%] 2 1.6 {29.1} 1

I/σ  25.7 {2.01} 1
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Figure 3.4.1-2 a) Completeness and b) I/σ as depending on the resolution 

                                                 
es given in {} correspond to those in the outermost shell (0.84 – 0.83 Å) 1 Valu

2 (Weiss and Hilgenfeld, 1997; Weiss, 2001), for formulas see chapter 2.2.8, 21 
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3.4.2 Refinement of the high-resolution structure 

t of the high-resolution structure was perf the program 

S ited for the refinement of proteins at high resolution (Sheldrick 

a plemented least-squares refinement a  was originally 

d mall molecules and has been adap macromolecular 

structures, providing the opportunity to model atomic anisotropy, com

twinning and to obtain a least-squares estimation of parameter error

structure of Cellosyl (Rau et al., 2001; PDB code: 1JFX) derived from an 

i s crystal, previously refined at 1.65 Å resolution to an 5.2 % (Rfree = 

) (see chapter 3.3.5 and 3.3.6), was used as a starting mod L refinement. 

ach round of refinement consisted of 20 conjugate-gradient cycles. The first round was 

carried out over a resolution range from 40.0 – 1.0 Å using isotropic displacement parameters 

and converged with an R of 24.5 %. The increase in the R-factor by more than 9 % compared 

to the low-resolution model can be explained by a slight difference in the unit cell parameters 

of the two different crystals used and further by the omission of all solvent molecules from 

the model.  

After each refinement cycle, SigmaA maps (2mFo-Dfc and mFo-DFc) were generated 

and inspected for model building and verification. The strongest Fourier peaks in the SigmaA 

difference map guided the building of well-defined water molecules and chloride ions. The 

latter had been unambiguously identified in the low-resolution model by their anomalous 

scattering contribution at CuKα radiation. The building of 39 water molecules and 3 chloride 

ions in the second round of refinement led to a drop of the R and Rfree of more than 3 % to 

20.6 % and 21.3 %, respectively.   

In the consecutive rounds of refinement, more water molecules and the remaining 5 

chloride ions, also present in the low resolution model, were added which made the electron 

density maps progressively clearer and allowed further identification of solvent molecules and 

the improvement of the protein model. Since the 1.65 Å structure was build with high 

accuracy, only minor changes had to be applied to the protein model, e.g. flipping of the χ2 

angle of His12 and fitting the Oγ atom of Ser185 into the electron density. As in the low-

resolution model, the side chain of Arg208 and the C-terminal residue Ala217 remained ill 

hain conformations 

of the protein slowly became distinguishable, particularly a second side-chain conformation 

ever, for other side-chains 

The refinemen ormed with 

HELX-97, which is best su

nd Schneider, 1997). The im lgorithm

esigned for the refinement of s ted to 

plicated disorder and 

s.  

The 

somorphou R-factor of 1

18.5 % el for SHELX

E

defined. A detailed inspection of the model showed that alternative side-c

of Met107 was clearly evident at this stage (Fig. 3.4.2-1a). How
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such as Ser142 the electron density was not of sufficient quality to model alternative side-

chain conform

nformation of Met107 

was modelled and r

n and all solvent molecules in the subsequent run. This lowered the R and Rfree by 

more than 4 % to a value of 12.51 % and 13.89 %, respectively. Alternating sessions of model 

buildin

ations. Therefore, the occupancy of these side chains was reduced to 60 %, 

which lead to a large improvement of the difference Fourier maps in the respective regions 

after the subsequent round of refinement and simplified the building of alternative side-chain 

conformations (Fig. 3.4.2-2). This strategy was subsequently used at other sites of the protein. 

In the fifth round of refinement, the resolution limit was extended to 0.83 Å and all 

high-resolution reflections included in the refinement. The second co

efined with complementary occupancies (Fig.3.4.2-1b,c).  The resulting R 

and Rfree were 17.31 and 17.79 %, respectively. In round six, alternative side-chain 

conformations of three more residues (Ser20, Arg88, Asn152) were introduced. At this stage 

of refinement, the difference Fourier maps revealed numerous patches of positive as well as 

negative density close to heavier atoms, i.e. Cl− ions and S atoms (Fig.3.4.2-3). This 

distribution of electron density indicated that isotropic treatment of the atomic displacement 

parameters was no longer adequate at this resolution. Therefore, anisotropic displacement 

parameters were introduced for the chloride ions in round 7 of the refinement and for the 

whole protei

g and refinement were carried out in order to facilitate electron density interpretation 

and improve the model. 
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Figure 3.4.2-1 The electron density of Met 107, at different stages of refinement, is illustrated 
as a 2mFo-DFc map (turquoise, contoured at 1.0 σ) and a mFo-DFc map (green, 4.0 σ and red  
-3.0 σ): (a) single conformation surrounded by difference density indicating a second side-
chain conformation, (b) after modelling and isotropic refinement of the alternative side-chain 
conformation and (c) after refinement of anisotropic displacement parameters.  
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 Ile99  
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 

on 

de-chain at 
00 % occupancy (b) difference density showing up much clearer after side-chain was set to 
0 % occupancy (c) double conformation built and refined to unity. 

(c) 

 
 

(a) 

 
(b)  

 
 

 
 

 
 
 
 
Figure 3.4.2-2 Improvement of the electron density map of Ile99 during refinement. Electr
density maps are 2mFo-DFc, coloured in turquoise (1.0 σ), and mFo-DFc, in green (4.0 σ) and 
red (-3.0 σ): (a) patches of positive and negative difference density around the si
1
6



 
 
 

 
 
 
 

 
 

 
 
 
 
 
 

Figure 3.4.2-3 xam isotropic refinement. The 
2 c map is coloured in turquoise and contoured at 1.3 σ and the mFo-DFc in red 
contoured at -3.0 σ. 
 

After 11 rounds of refinement, the auxiliary program SHELXWAT was employed for 

utomatic water building. The program, a simplified version of the ARP/wARP procedure 

erakkis et al., 1999), searches for potential water molecules by iterative least-squares 

finement, difference electron density calculation and rejection of waters with high 

isplacement parameters olecules were 

utomatically built in 10 iterative rounds and subsequently inspected manually. The 

ccupancy of several water molecules was manually lowered to 50 % and water molecules 

ere removed fr m the model if the respective 2mFo-DFc density was less than 0.7 σ.  

In the subsequent rounds of refinement, more alternative side-chain conformations 

were built following the above-described routine. For residue Ser24, the electron density 

 be interpreted by modelling a triple conformation of the side chain. The occupancy 

f the respective side-chain conformations was estimated from the peak height of the 2mFo-

Fc electron density map. Further, double main-chain conformations for 5 residues, i.e. 

er104, Ala141, Ser142, Ala156 and Lys157, were modelled and refined with complementary 

d 

rlined the significance of 

(a) (b) 

Arg 133 Arg 133

Asp134 Asp134 

Cl 3 Cl 3 

 
 

 E ple of a chloride ion (a) before and (b) after an
mFo-DF

 

a

(P

re

d  (SHELXL Workshop Manual, 2000). 152 water m

a

o

w o

could only

o

D

S

occupancies.  

In round 30, hydrogen atoms were added, which lowered the R and Rfree by 1.03 an

1.6 % to 9.72 and 10.53 %, respectively. The huge drop in Rfree unde

 61



hydrogen contribution in the refinement of proteins at atomic resolution, which was also 

anifested in a noticeable improvement of the quality of the electron density maps. Thus, 

odel  

refinement was term ith an R-factor of 9.10 % and an Rfree

σ and an R-factor of 9.63 % and an Rfree of 10.38 % for all data. Although, there was still 

difference density over 5σ which could be assigned to the solvent shell, it did not seem 

meaningful to build more half-occupied water molecules. A schematic representation of the 

course of refinement is depicted in Fig. 3.4.2-4 and the refinement statistics are summarised in 

Table 3.4.2-1. 

 

 
 

 
 
 
 
 

 
 

 
 

m

minor adjustments were made to the m and more solvent atoms were added. The

 of 9.67 % for data with inated w

Fo>4

 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3.4.2-4 Schematic representation of the course of refinement of the high-resolution 
structure of Cellosyl. 
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Table 3.4.2-1 Refinement statistics of the high-resolution structure 

resolution range [Å] 40 - 0.83 
total number of reflections used 174310 
number of reflections in the test set 1767 
number of non-H protein atoms  1799 
number of chloride ions 8 
number of water molecules 567 
R-factor [%];  Fo>4σ / all data 9.10 / 9.63 
Rfree [%];  Fo>4σ / all data 9.67 / 10.38 

 

 

o), the R 

mino 

odel is further 

ecules of 

.s. 

n of the 

C-terminal residue Ala217, which was omitted from the model. Continuous electron density 

ng 

ons. Even at the 4σ level, 2mFo-DFc density can be observed for the 

ajority of the main-chain atoms (for example see Fig. 3.4.3-1c). 

  

 

3.4.3 Validation of the model quality 

The three-dimensional structure of Cellosyl has been refined with high accuracy at 

0.83 Å resolution to an R-factor < 10 % (see Table 3.4.2-1). For data with Fo > 4σ(F

and Rfree are as low as 9.10 % and 9.67 %, respectively. 

The final refined protein model consists of 1799 non-H protein atoms from 216 a

acid residues. 28 amino acid residues were modelled in double or triple side-chain 

conformations and 5 residues possess a double main-chain conformation. The m

comprised of 8 chloride ions (also present in the 1.65 Å structure) and 567 water mol

which 364 are fully occupied.  

The refinement resulted in electron density maps of excellent quality with an r.m

deviation value of 0.07 eÅ-3 for the electron density synthesis with Fo-Fc coefficients. The 

2mFo-DFc electron density is well defined for the whole protein model with exceptio

can be observed for nearly all protein atoms above 1.5σ level, including the residues adapti

alternative conformati

m
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igure 3.4.3-1 Representation of the final electron density map for residue Thr132, which is 
ne of the Ramachandran plot outliers. The 2mFo-DFc electron density map is contoured at (a) 
.3 σ, (b) 2.5 σ and (c) 4.0 σ. 

Thr132 
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Besides the good fit of the model to the electron density maps, the quality of the model 

tics:  
u, Asp;  

 

e 

o tions 

in loops, with exception of Ala34, which is located in strand β2. For all six of these residues 

the electron density is very well defined. An example is depicted in Fig. 3.4.3-1, showing 

Thr132 located in a bend within the loop between α4 and β5. It can be clearly seen that even 

was assessed from the Ramachandran plot (Ramachandran and Sasisekharan, 1968), which is 

depicted in see Fig. 3.4.3-2.  

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3.4.3-2 Ramachandran plot of the Cellosyl structure at 0.83 Å resolution prepared 
with the program SHELXPRO. The colours are coded according to residue characteris
yellow = Cys, Met; green = Phe, Tyr, Trp, His; cyan = Ala, Leu, Ile, Val, Pro; red = Gl
blue = Arg, Lys;  purple = Gln, Asn;  gray = Ser, Thr. 
 

 

Of the 191 standard residues (Gly were excluded), 153 (80.1 %) are located within the 

inner core region and 185 (96.9 %) are within the core region. Six Ramachandran outliers

were detected, namely Ala34, Asn39, Asp89, Asn90, Ser104 and Thr132. According to th

program DSSP (Kabsch and Sander, 1983), all these residues are located at special p

 Phi [°] 

Ps
i [

°]
 

si

at the 4 σ level, all atoms perfectly match the electron density. 

The r.m.s. deviation of the model from ideality is 0.015 Å for bond distances and 

0.031 Å for bond-angle distances. 
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A Luzzati plot for the final model is presented in Fig. 3.4.3-3, with the R-factor [Fo > 

4σ(Fo)] represented as a function of the resolution. The plot gives estimates of the average 

error in the atomic coordinates for the refined Cellosyl structure assuming perfect data 

(Luzzati, 1952). 
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Figure 3.4.3-3 Luzzati plot (Luzzati, 1952) of the final model of Cellosyl at 0.83 Å 
resolution. 
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3.5 

X-ray data were collected on a flash-frozen crystal at the beamline BM30 of the ESRF 

(Grenoble). Using an incident wavelength of 0.9797 Å and a crystal-to-detector distance of 

330 mm, the crystal diffracted to a maximum resolution of 2.3 Å.  

In order to distinguish between a trigonal and a hexagonal crystal system, both of them 

have the same cell geometry of a = b, α = β = 90° and γ =120°, data were scaled in space 

group P1. Pictures of the hkl planes along the l axis (see Fig. 3.5.1-1) were carefully 

inspected: Hexagonal symmetry is clearly visible along the l axis, therefore a trigonal crystal 

system could be excluded. This was confirmed by analysing the syst ces. Only 

every sixth reflection along the screw axis could be measured. This reflection condition is 

valid for the space groups P61, P65, P6122 and P6522. It is impossible to distinguish between 

the space groups P61 and P65
 or between P6122 and P6522 by just merging and scaling the 

intensities, therefore data were scaled in the space groups P61 and P6122 and the χ2 (goodness 

of fit) values were compared (Table 3.5.1-1). The χ2 was about the same for P61 and P6122, 

indicating that the crystals belong to space group P6122 or P6522. 

 
Table 3.5.1-2 Scaling statistics of space groups P61 / P65 and P6122 / P652

1 5 1 5

Structure elucidation of the hexagonal crystal form 
 

3.5.1 Data collection and space group determination 

 

ematic absen

2 
 

P6  / P6 P6 22 / P6 22  
resolution range [Å] 99.0 - 2.32 99.0 - 2.32 
total number of reflections 412060 412271 
number of unique reflections 54011 28813 
number of rejected reflections 788 824 
completeness 99.1 99.2 
redundancy 7.6 14.3 
χ2 1.033 1.028 
Rmerge [%] 1  5.4 5.5 
Rr.i.m [%] 1 7.4 7.4 
Rp.i.m. [%] 1 2.5 1.8 
I / σ 19.2 26.1 

 

 

                                                 
1 (Weiss and Hilgenfeld, 1997; Weiss, 2001), for formulas see chapter 2.2.8, 21 
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l = 1 l = 0 

 

 

         

 
 
Figure 3.5.1-2 The hkl planes of the hexagonal crystal at l = 0, 1, 2 and 3 created with the 
p LVIEW (CCP4, 1994). 
 

l = 2 l = 3 

rogram HK
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This was supported by analysis of Rp.i.m. (Weiss and Hilgenfeld, 1997; Weiss 2001) for 

both space groups. The observable redundancy in space group P6122 is by a factor of 2 higher 

than in P61. Therefore, the Rp.i.m. for P6122 should be smaller than fo

same, which can be clearly seen in Table 3.5.1-1.

symmetry is very likely the correct one but unambiguous evid

refined structure. 

 

3.5.2 Structure solution by molecular replacement

Structure solution of Cellosyl in the hexa

method of molecular replacement. Searches

P6522. As a prerequisite, the number of mo

etermined. Therefore, Matthews coefficients (Matthews, 1968) and the estimated solvent 

ontent for one to four molecules in the asymmetric unit were calculated and are listed in 

Table 3.5.2-1. 

the space groups P6122 and P6522. 
 

molecules / au Matthews coefficient [Å3/Da] 

r P61 by the square root 

of 2, if only statistical deviations are taken into account. The value of Rr.i.m. should be the 

 In this case, the space group with the higher 

ence can only be given by the 

 

gonal crystal form was approached by the 

 were performed in the space groups P6122 and 

lecules in the asymmetric unit had to be 

d

c

 

Table 3.5.2-3 Matthews coefficient and solvent content of the hexagonal crystal in 

estimated solvent content [%] 
1 6.78 81.88 
2 3.39 63.75 
3 2.26 45.63 
4 1.70 27.50 

 

 

Since the distribution range of the solvent c

f and Rupp, 2003), the molecular replacement search was carried out for one, two 

nd three molecules in the asymmetric unit for both space groups employing the 1.65 Å 

rom 

e model and the molecular replacement was performed in a resolution range from 40.0 – 3.5 

Å using the program EPMR (Kissinger et al., 1999). The results are summarised in Table 

3.5.2-2. Assessing correlation coefficient (cc) and R-factor, it is evident that the best result 

was obtained in spacegroup P6122 with two molecules in the asymmetric unit.  

ontent of protein crystals is rather large 

(Kantardjief

a

structure of Cellosyl as a search model. Beforehand all solvent molecules were omitted f

th

 69



Table 3.5.2-4 Correlation coefficients (cc) and R-factors of the molecular replacement 
solutions in space groups P6122 and P6522. The best result is highlighted in grey. 
 

P6122 P6522 molecules / 
asymmetric unit cc R-factor [%] cc R-factor [%] 

1 0.263 57.0 0.153 63.2 
2 0.446 48.9 0.175 62.8 
3 0.376 53.4 0.193 62.7 

 

 

3.5.3 Refinement 

Rigid-body refinement followed by simulated annealing, conjugate-gradient and 

atomic 

    

xpectedly, the addition of waters led to a slight increase of the R-factor as well 

as the  free of about 1.5 % and 0.5 %, respectively. This phenomenon was very puzzling since 

ddition of 

ven more. 

em g the crude 

hexagonal model omiting experim  energy terms in order to phase bias introduced 

by the search model. Subsequent ement resulted in an R-factor and Rfree of 35.33 % and 

46.10 % spectively, both noti  higher than for the model described above. For a 

econd t , side-chains were m ly modelled into the electron density. As before, the 

rimary solvent shell was clearly evident in the 2Fo-Fc as well as the Fo-Fc electron density 

maps. 

the difference 

B-value refinement was performed on the crude hexagonal model with the CNS 

program package (Brünger et al., 1998) and resulted in a surprisingly low R-factor of  

25.39  % and an Rfree of 28.02 %. The calculated 2Fo-Fc electron density map fitted the model 

well with the exception of several side chains, which had to be manually placed in the 

electron density. The map was also of sufficient quality to initialise the building of solvent 

molecules. Une

R

all built side chains and water molecules fitted the electron density perfectly. The a

more waters increased the R-factor e

This probl  was circumvented by conju ate-gradient minimisation of 

ental reduce 

 refin

 re ceably

s ime anual

p

142 water molecules could be modelled on the basis of distance criteria, electron 

density and shape using the automatic solvent building procedure of ARP/wARP (Perrakis et 

al., 1999) which lowered the R-factor and Rfree considerably to 22.0 % and 27.9 %. Inspection 

of the   Fo-Fc electron density maps revealed that large peaks of positive difference density 

covered several water molecules. These water molecules were subsequently omitted from the 

structure and the electron density at the respective positions was thoroughly inspected after 

the next round of refinement. Instead of water molecules, 20 sulphate ions were added to the 

model, based on the peak height of the Fo-Fc difference peaks, the shape of 
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density and the particular environment (Fig. 3.5.3-1). The occupancy of the sulphate io

djusted in the following rounds of refinement based on the peak height of the 2F

ns was 

o-Fc electron 

d

 

 

 

 TLS parameters were refined for each of the 

two mo

a

ensity.  

 

 

 

 
 
 
 
 
 
 
Figure 3.5.3-1 Stereographic depiction of a representative section of the final electron density 
map covering two sulphate ions. The 2Fo-Fc electron density map is contoured at 1.2 σ above 
mean. 

 

After the model was roughly complete,

 S1 S1
S2 

S2

Arg199 Arg199 
 Thr187 

Thr187 

Glu6 Glu6 

lecules in the asymmetric unit to describe their anisotropic motion, which lowered the 

R-factor by 4.1 % to 18.1 % and the Rfree by 3.4 % to 22.9 %. The introduction of 

noncrystallographic symmetry (NCS) restraints (tight restraints for the main-chain atoms and 

medium restraints for the side-chain atoms between residues A1 – A216 and B1 – B216) 

resulted in a slight increase of the R-factor of 0.25 % but lowered the free R-factor by 0.4 %.  

The quality of the resulting electron density maps allowed modelling of alternate 

conformations for three residues, i.e. Glu14, Arg91 and Arg208 of monomer A. In contrast, 

the electron density of the respective side-chains Glu14 and Arg91 of monomer B displayed a 

well-defined single conformation. For residue Arg208 of Monomer B, there was no electron 

density detectable from atom Cγ onwards.  

The model was further improved by alternate sessions of water building and 

refinement, which converged with an R-factor of 17.57 % and an Rfree of 22.50 %. The final 

model contained 434 amino acid residues (2 monomers of 217 residues each), 20 sulphate 

ions and 252 water molecules. The refinement statistics are summarised in Table 3.5.3-1. 
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Table 3.5.3-1 Refinement statistics of the Cellosyl structure derived from  
the hexagonal crystal form. 
 
resolution range 90.0 – 2.32 Å 
total number of reflections used 27276 (99.12 %) 
number of reflections in the working set 25814 (94.02 %) 
numb 1462 (5.1 %) er of reflections in the test set 
number of protein atoms  3363 
number of sulphate ions 20 
num  water molecules 252 ber of
R-factor [%] 17.57 
Rfree [%] 22.50 

 

.5.4 Validation of  model quality 

The hexagonal crystal form contains two copies of the monomer in the asymmetric 

Ala217 of monomer A. However, there is no electron density for the side-chain of 

residue Arg88 B from atom Cδ onwards, while the respective residue in monomer A is well 

defined

 

 

3  the

unit (monomer A and B) with an estimated solvent content of 63.75 %. The electron density 

in the final electron density map is well defined for all residues with exception of the C-

terminal 

. The electron density around the flexible side-chain of Arg208 could be interpreted by 

modelling two conformations for monomer A, whilst for monomer B there is no electron 

density observable from atom Cγ onwards. Besides the double conformation of Arg208 A, the 

structural model contains two other residues with alternative side-chain conformations, i.e. 

Glu14 A and Arg91 A. Additionally, the model includes 20 sulphate ions and 252 water 

molecules. 

The final R-factor for the structure is 17.57 % and the Rfree 22.50 % for all data to 2.32 

Å resolution. The r.m.s. deviations from ideality for the bond lengths and angles for the 

refined atoms are 0.025 Å and 2.05 ° respectively, indicating a good geometry for almost all 

residues. The Luzzati plot based on the R-value (Luzzati, 1952) gives an estimate of error in 

the atomic positions of 0.228 Å.   

The geometry of the model was further assessed with the program PROCHECK 

(Laskowski et al., 1993). 88 % of all residues are located within the highly favourable regions 

of the Ramachandran plot and none are located in the disallowed regions (see Fig. 3.5.4-1).  

 72



 

 

 

 

 

 

Figure 3.5.4-1 Ramachandran plot (Ramachandran and Sasisekharan, 1968) of the final 
structu

 
 

 

 

 

 

 

 

 

ral model of Cellosyl derived from the hexagonal crystals generated with the program 
PROCHECK (Laskowski et al., 1993) Glycins are marked as black triangles. 

 

 

Three residues, i.e. Asn90 A, Asn90 B and Thr132 A, were found in the generously 

allowed regions. However, all three residues fit the electron density very tightly. It is 

interesting to mention, that in the structure of the monoclinic crystal form both residues, 

Asn90 and Thr132, were also found in the generously allowed regions of the Ramachandran 

plot due to their special position in loop regions (see chapters 3.3.7 and 3.4.3). 
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4.  DISCUSSION 

e monoclinic crystal form at 1.65 Å  

main, shaped into a flattened ellipsoid 

β -barrel fold resembles a TIM 

barrel, a structural motif first found in triosephosphate isom ase (Banner et al., 1975) and 

later in many other enzymes (for review see Reardon and Farber, 1995; Nagano et al., 2002). 

In a regular TIM barrel, the β-strands and α-helices alternate in a way that a regular 8-fold 

repeat of a βα-supersecondary structure element can be observed. The twisted, all parallel β-

strands are stabilised by hydrogen bonds, with β8 hydrogen bonded to β1. The α-helices 

which connect the parallel β-strands, are located on the outside of the barrel. They are parallel 

 themselves but antiparallel to the strands. Often the barrels are preceded, interrupted or 

distinct features 

distinguishing it from the typical (β/α)8 fold. The enzyme is composed of eight β-strands and 

six α-helices (Fig. 4.1-1 and 4.1-2). As in regular TIM barrels, the first five β-strands and α-

helices

The β-strands are three to ten residues long. Strand β2 forms a short β-hairpin 

ydrogen bonding with residues 40 and 41) at its carboxy-terminal end. Strands β7 and β8 

how a tight hydrogen bonding pattern and, with 10 residues each, are the longest strands in 

e barrel. The α-helices vary in length from 1.5 turns (α1) to 5 full turns (α4). The loop 

onnecting β1 and α1 contains a short 310 helix. The loop linking the antiparallel strands β7 

nd β8 consists of only two amino acid residues. This is considerably shorter than the 

onnections between the parallel β-strands, which are between 17 and 37 residues long 

ncluding the α-helices).  

 

 

4.1 Overall structure of th

The structure of Cellosyl comprises a single do

with dimensions of 45 Å × 35 Å × 25 Å. At first sight its /α

er

to

followed by additional domains. 

The structure of Cellosyl is similar to a TIM barrel but shows very 

 alternate, however the fifth α-helix in Cellosyl is followed by strands β6 to β8 which 

are connected by loops lacking any helices. Helix α6 is located at the carboxy-terminus of the 

polypeptide chain, sitting at the bottom (N-terminal end) of the barrel. All β-strands are 

arranged parallel to one another, except strand β8 which, very unusually, is in an antiparallel 

orientation with respect to the other strands.  

(h

s

th

c

a

c

(i
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 1997); a) side view of the barrel, b) view inside the barrel, rotated 
ew. Helices are depicted in red, loops in green, the parallel 

strands in blue and the antiparallel β-strand is highlighted in yellow. 
 

 

 

 
 
 
 
 
 
Figure 4.1-3 Stereo Cα-trace of Cellosyl. The amino- and carboxy-termini are labelled and 
every tenth residue is highlighted with a black circle. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4.1-4   Stereographic ribbon representation of the overall fold of Cellosyl prepared 
with BOBSCRIPT (Esnouf,
by 90° with respect to the top vi

(a) 

(b) 
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The only disulfide bond of Cellosyl involves Cys108 in the loop between β4 and α4, 

nd C

tructure. 

The primary solvent shell of the model contains 8 chloride ions, which were located 

n the basis of strong anomalous peaks (see chapter 3.3.6). All chloride anions are involved in 

 hydrogen-bonding network with at least two different hydrogen bond donors. N-H donor 

nctions originating from the main-chain amide as well as from N-H functions of side-chains 

re always complemented by water-based O-H donor atoms. The coordination of the chloride 

ns is listed in Table 4.1.1 in the appendix. 

.2 Overall structure of the hexagonal crystal form at 2.32 Å 

The crystal structure derived from the hexagonal crystal form contains 2 molecules in 

rrel fold, 

cluding the antiparallel arrangement of strand β8, as the structure of Cellosyl in the 

onoclinic crystal form. A least-squares superposition of the monoclinic structure with each 

f the two monomers of the hexagonal structure resulted in an overall r.m.s. displacement 

etween the 217 equivalent Cα-atoms of 0.36 Å and 0.48 Å for monomer A and B, 

spectively. 

The two monomers in the hexagonal crystal are related by a non-crystallographic 

ymmetry relationship whereby the C-terminal ends of the β strands of both barrels face each 

ther. loops following β1- β4 and as well as the loop between β6 and β7 are involved in 

e intermolecular contacts. A hydrogen-bonding network, including several water molecules 

nd 2 sulphate ions, stabilises this arrangement. A superposition of the two independent 

onomers in the asymmetric unit gives an r.m.s. deviation of 0.278 Å for the 217 equivalent 

α-atoms. By omitting the C-terminal residue Ala217, which is poorly defined in the electron 

ensity of both monomers, the r.m.s deviation is as small as 0.152 Å.  

There are 20 sulphate ions located in the primary solvent shell of the protein (Fig.4.2-

). Nine sulphate ions of monomer A can be superimposed with sulphate ions of monomer B. 

ble 

 

unctions of the arginine 

a ys147 at the carboxy-terminal end of α5. No cis-peptide bond was found in the entire 

s

o

a

fu

a

io

 

4

the asymmetric unit. As expected, both monomers exhibit the same unusual β/α-ba

in

m

o

b

re

s

o The 

th

a

m

C

d

1

Only two sulphates, one in each monomer, have no equivalent in the other monomer. Ta

4.2.1, showing the coordination of the sulphate ions, is presented in the appendix. All sulphate

anions form hydrogen bonds to the protein, preferably to the N-H f

side chains. 
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 a challenging task due 

to the n

the number of atomic resolution data sets has steadily 

increased. A generally accepted definition of atomic resolution has been proposed by 

 

 

 

 

 

 

Figure 4.2-1 Backbone of Cellosyl structure derived from hexagonal crystals. Monomer A is 
depicted in red and monomer B in dark grey. The sulphate ions are shown as yellow spheres. 

 

 

4.3 Atomic-resolution structure of Cellosyl at 0.83 Å resolution 

 

4.3.1 Advantages and biological relevance of macromolecular crystal structures at 

atomic resolution 

 
Over the last decade, the study of protein structures at atomic resolution has gained 

tremendous interest. The collection of atomic resolution data presents

ature of protein crystals. The large size and the flexibility of protein molecules and the 

high solvent content within the crystals contribute to data weakness at high resolution. Until 

recently, only a small number of atomic-resolution protein structures were published (Dauter 

et al., 1995; 1997). With developments in crystallographic methods, i.e. cryogenic cooling 

techniques, improvements in detector technology, and increasing availability of high-intensity 

synchrotron radiation sources, 

 77



Sheldrick (1990): The solution higher than 1.2 Å with at least 50 % 

of the measured reflec tensities > 2σ(I). 

One of the benefits of atom ber of measured reflections 

ompared to the number of refined parameters which is crucial for a comprehensive least-

squares refinement with anisotropic atomic temperature factors. The introduction of 

nisotropic displacement parameters allows a more accurate definition of the atomic 

ositions. Therefore, atomic-resolution structures provide a much more detailed model of the 

protein under investigation and reveal features that are not normally identifiable at moderate 

solution. Hydrogen atoms become visible in the difference Fourier maps allowing the 

entification of protonation states and yielding reliable views on biologically relevant 

ydrogen bonds. Multiple conformations can be identified for a greater portion of residues 

nd modelled with partial occupancies. Further, a broader and more detailed picture of the 

solvent structure is obtained. Ordered water molecules emerge from the solvent continuum 

nd the organisation of solvent beyond the first hydration shell can be studied. Atomic-

 

 

importance for detailed clarification of the mechanism of action of macromolecules. 

The increasing number of macromolecular crystal structures solved at atomic 

resolution yields a more precise picture of the geometric and conformational properties of 

proteins in general. This store of knowledge enables the validation of the parameters 

e 

improved and applied for the refinement and validation of structures at low resolution.  

 

 data should extend to a re

tions in the outermost resolution shell having in

ic resolution is the high num

c

a

p

re

id

h

a

a

resolution structures open the possibility to describe active sites and catalytic residues in

greater detail, including the interactions with bound substrates or inhibitors, and might be of

employed in refinement. Target libraries for chemical and stereochemical parameters can b

Furthermore, new structural features can be detected in atomic resolution structures, e.g. the 

presence of a very short hydrogen bond (less than 2.45 Å) has been reported (Wang et al., 

1997). 

4.3.2 The overall structure 

The three-dimensional structure of Cellosyl has been determined to atomic resolution 

using synchrotron radiation and new cryogenic cooling techniques (Riboldi-Tunnicliffe and 

Hilgenfeld, 1999). Model refinement with data extending to 0.83 Å resolution has been 

performed with anisotropic-displacement parameters, and the refinement has converged with 

excellent statistics, i.e. an R-factor of 9.63 %. This makes the structure of Cellosyl on of the 

highest resolution TIM-barrel fold structures determined to date, which is important 
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considering the fact that roughly 10 % of all enzymes of known structure assume the TIM-

barrel fold (Copley and Bork, 2000; Gerlt, 2000). 

As expected, the crystallographic studies of Cellosyl at atomic resolution revealed the 

same overall fold as the 1.65 Å resolution structure, which was used as initial model for the 

refinement. The r.m.s. deviation between the 216 equivalent Cα-atoms of both structures is as 

low as 0.08 Å. However, compared to the lower-resolution model several new details have 

been revealed, e.g. an anisotropic description of the position of each atom in the structure, 

multiple side-chain conformations and alternate solvent networks. 

 

4.3.3 Alternate conformations and disordered residues 

The current structure has revealed several regions exhibiting multiple conformations, 

including 27 double side-chain, 1 triple side-chain and 5 dual main-chain conformations. 

Thus, about 13 % of the total residues adopt alternate conformations. A similar percentage of 

dynamic residues has been reported in other atomic-resolution structures (Walsh et al., 1998; 

Esposito et al., 2000). As depicted in Figure 4.3.3-1, the alternate conformations are widely 

distributed over the surface of the molecule.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3-1 Overall fold of the high-resolution model of Cellosyl with the alternative side-
chain conformations depicted in red as ball-and-stick. 
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Serine residues seem to be particularly prone to adopt multiple conformations. 6 of the 

15 serine residues of Cellosyl were observed in dual conformations. Ser24 could be 

unamb

 

Figure 4.3.3-2 Depiction of residue Ser24: (a) The mFo-DFc electron density map, coloured 
in magenta, indica ations 
were successfully m ective side-
chain conforma  electron density 
map, which is colou

mong the hydrophobic residues, Ile99 represents an interesting case. Two alternative 

side-chain conformations could be unambiguously modelled with a very clear 2mFo-DFc 

electron density map for all atoms. The occupancy of the bifurcated side chain is 70 % for the 

major and 30 % for the minor conformation. Ile99 is completely buried in the interior of the 

protein and surrounded by the side chains of Pro67, Leu97, Met116, Ile120, Trp143 and 

Trp144. There are no steric restrictions on the position of the side chain; all distances to 

neighbouring atoms exceed 3.3 Å. 

 

ll be discussed in more detail in the 

descrip n of the active site. 

iguously modelled in three different conformations (Fig. 4.3.3-2). Side-chain 

occupancies of 50, 30 and 20 % were estimated from the peak heights of the 2mFo-DFc 

electron density map. All side-chain conformations interact with at least two water molecules 

of the first solvent shell. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

20 %  

50 % 

30 %  

tes a triple side-chain conformation. (b) Three alternative conform
odelled into the electron density. The occupancies of the resp

tions were estimated from the peak heights of the 2mFo-DFc
red in cyan. 

 

A

Tyr138, a residue lining the active site, exhibits a major and a minor side-chain

conformation. Because of its special location it wi

tio
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Both, the N- and C-terminal residues of the structural model of Cellosyl are either 

dynamic or disordered. The C-terminal disorder is confined to residue Ala217 for which no 

interpretable electron density could be observed. The electron density map for the preceding 

residue Thr216 is well defined and a single conformation of the residue was modelled. 

However, the carbonyl oxygen of Thr216 is, with a ratio of 0.15 (a value of 1.0 describes a 

perfectly isotropic atom), one of the most anisotropic atoms within the structure, and the mean 

anisotropy for the whole residue is only 0.29. The N-terminal residue Asp1 could be 

confidently modelled in two alternative conformations with 50 % occupancy each.  Both side-

 

 residues show dual conformations of the main chain. One of them, Ser104, is lo d 

in the loop between β4 and α4, forming a bend together with residues Pro103 and Gly105. 

Ser104 is positioned at the tip of this bend and the disorder is restricted to this residue. The 

ackbone of Ser104 points out towards the solvent and both conformations interact with water 

rther residues, Ala156 and Lys157, are also 

 A 

 

 alternate conformations. 

4.3.4 

wer than 10 Å . Several of them are completely buried 

within the protein. For example, a very intriguing hydrogen-bonding pattern evolves around 

water m

r the main-chain nitrogen of Glu100 (2.90 Å) and the phenolic 

oxygen of Tyr109 (3.02 Å). Therefore, the surrounding protein framework saturates all 

chain orientations are directed towards the solvent. However, the OD1 atom of the first 

conformation is stabilised by a hydrogen bond to the NZ atom of Lys201 (2.60 Å), while the 

OD1 atom of the second conformation is interacting with the hydroxyl group of the

neighbouring Ser2 (2.62 Å). 

5 cate

b

molecules of the first solvent shell. Two fu

positioned in a surface loop. According to the program DSSP (Kabsch and Sander, 1983), 

they are part of a 5 residue long turn (residue 153-157) within this loop between α5 and β6.

dual main-chain fragment was also observed at the C-terminal end of helix α5, where Ala141

and Ser142 were modelled in two

 

Solvent region 

The final model comprises 567 water molecules, of which 364 are fully and 199 half 

occupied. Four water molecules were refined with the same occupancy as an alternative side-

chain conformation within hydrogen-bonding distance. Most of the solvent structure is very 

well ordered, with a B-value as low as 5.57 Å2 for the partially occupied water 8. Thirty-nine 

water molecules have B-values lo 2

olecule 4. Wat4 possesses no hydrogen bonds to other water molecules. It serves as 

hydrogen bond donor for the main-chain oxygens of Ala65 (2.90 Å) and Asp98 (2.95 Å) and 

as hydrogen bond acceptor fo
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Asp98 
Glu100 Glu100 

Asp98 

lecular contacts of wat4. In addition to the very interesting interactions of wat4 itself, 

it might also serve as a structurally stabilising component for the alignment of the 

catalytically active carboxylates Asp98 and Glu100 through fixation of the main chain oxygen 

of Asp98 and the nitrogen of Glu100. 

 

 

 

 

 

 

Ala65 Ala65 

Tyr109 Tyr109 

wat4 wat4 

 

 

 

 

 

 

 

 

intermo

 

 

 

 

ic depiction of the completely buried water 4. The 2mFo-DFc 
electron density map is contoured at 1.5 σ above mean. 
Figure 4.3.4-1 Stereograph

 

Like the 1.65 Å model, the high-resolution structure of Cellosyl contains 8 chloride 

ions. Their positions as well as their interactions with the protein framework are conserved 

between the two structures. 
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it approaches 0 for an extremely non-spherical 

tom. Introduction of ADPs into the refinement of the atomic-resolution structure of Cellosyl 

resulted in a drop in the R-factor by more than 4 %. This confirms that this structure, like 

e ADPs of the atomic reso t of Cellosyl have been an  the 

eb-based program PARVATI (Merritt, 1999). The anisotropy for the protein atoms ranges 

om 0.1 to 0.95, showing the typical Gaussian distribution of anisotropy in protein structures. 

 could be observed that the atoms became increasingly non-spherical as their distance from 

e centre of mass increased. The mean anisotropy for all protein atoms is 0.56 with a 

tandard deviation of 0.162. A thermal ellipsoid representation of four residues containing 

i isotropic atoms is shown in Fig. 4.3.5-1. 

nt parameters for a selection of 
residues containing atoms with an anisotropy < 0.2: (a) Ser70, (b) Thr216, (c) Trp165 and (d) 
Arg88, the latter was modelled with two alternative side-chain conformations. 

d out to be rather anisotropic: the mean anisotropy factor of water 

was 0.33 (σ =0.14) and of the eight chloride ions 0.39 (σ =0.19).  

The mean B-value and the mean anisotropy of the displacement parameters averaged 

ain-chain and side-chain atoms are depicted in Figure 4.3.5-2. The mean B-value for 

e protein chain and the solvent atoms are 8.44 Å2 and 25.45 Å2, respectively.  

4.3.5 Anisotropic displacement parameters 

Anisotropy is defined as the ratio of the minimum and maximum Eigenvalues of the 

anisotropic displacement parameter (ADP) matrix (Trueblood et al., 1996). The ratio is 1.0 for 

a perfectly isotropic (spherical) atom, while 

a

other protein structures refined at high resolution, is better described in terms of anisotropic 

displacement.  

Th lution s ructure alysed using

w

fr

It

th

s

h ghly an

 

 
Figure 4.3.5-1 Illustration of the anisotropic displaceme

(a) (b) (c) (d)

 

Although the solvent molecules were refined with the ISOR restraint (to keep them 

roughly isotropic) they turne

for all m

th

 



 
 
 

 
 

 

 
 
 
 
 
 
 
 

 
 
 

 of side-chain atoms. (d) 
Mean anisotropy of side-chain atoms. For (c) and (d), the colours are coded according to 
residue

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Figure 4.3.5-2  (a) Mean equivalent B of main-chain atoms. (b) Mean anisotropy of main-
chain atoms. For (a) and (b), the colours are coded according to secondary structure:  blue = 
alpha helix, green = beta-strand, red = other. (c) Mean equivalent B

 characteristics:  yellow = Cys, Met; green = Phe, Tyr, Trp, His; cyan = Gly, Ala, Leu, 
Ile, Val, Pro; red = Glu, Asp; blue = Arg, Lys; purple = Gln, Asn; grey = Ser, Thr. 
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4.4 Active site and mechanism 

 at the 

arboxy-terminal end of the β-barrel. In spite of the presence of one antiparallel strand (β8) in 

e barrel, the same can be expected for Cellosyl. Indeed, a prominent, long groove, very 

kely the substrate-binding site, is located on the carboxy-terminal face of the Cellosyl β-

arrel. This groove culminates in a deep hole of highly negative electrostatic potential (Fig. 

.4-1), which was identified as the catalytic site of the enzyme.  

 

 

In all known ‘conventional’ β/α-barrel enzymes, the active site is located

c

th

li

b

4

 
 
 
 
Figure 4.4-1 Charge distribution on the surface of Cellosyl. Positively and negatively cha
electrostatic potentials are indicated in blue and red, respectively. The surface was calculated 
using a probe radius of 1.4 Å, and the potential displayed on a scale ranging from  –

rged 

17.2 kBT 
to +19.8 kBT (kB= Boltzmann constant). Important residues are labelled. The figure was 
generated with the program GRASP (Nicholls et al., 1991).  
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In order to cleave the β-1,4-glycosidic bond via general acid catalysis, glycosyl 

hydrolases generally employ a pair of carboxylic acids at the active site: one functioning as 

proton 

However, its carboxylate side-chain is oriented towards the substrate-binding groove. Also, it 

lacks an acidic or neutral hydrogen-bonding residu ediate spatial neighbourhood; it 

forms a strong salt-bridge (2.67 Å) with the conserved Lys33. Glu36 is very likely involved in 

substrate binding, but not in substrate cleavage. This is supported by the finding that mutation 

of Glu36 in the pneumococcal Ch-type lysozymes does not lead to dramatic reduction of the 

activity (Sanz et al., 1992). On the other hand, mutation studies of Asp9 on the Ch-lysozyme 

yielded 2.2%, 1.7% and 0.2% of the wild-type activity for mutants D9N, D9E and D9A, 

respectively (Sanz et al., 1992), underlining the critical role of Asp9. 

The crystal structure of Cellosyl revealed new insights on the active-site architecture. 

Two pairs of carboxylic residues, Asp9 – Asp198 and Asp98 – Glu100, line opposite faces of 

the central hole (Fig.4.4-1). Asp9, Asp98 and Glu100 are strictly conserved within the Ch-

type lysozyme family (Fig.4.4-2). Asp198, however, is only partially conserved. Judging from 

the active-site geometry, Asp9, Asp98 and Glu100 are candidates for the catalytically active 

residues. The critical role of Asp9 for the enzymatic mechanism has already been established 

by mutation studies, as discussed above. Superposition of Cellosyl with related TIM-barrel 

structures of chitinases, e.g. hevamine of family GH-18, showed that their proton donor 

residue is placed in an equivalent position at the carboxy-terminal end of β4 and matches the 

Glu100 residue of Cellosyl. These observations were confirmed by a very recent study of the 

crystal structure of the lysozyme from phage Cp-1 (Hermoso et al., 2003). Side-directed 

mutagenesis of Glu100 (using the Cellosyl numbering) led to an extinction of the activity and 

emonstrated the importance of this residue in the catalytic mechanism. Therefore, it seems 

kely that Glu100 acts as the proton donor and Asp9 acts as the nucleophile/base. 

donor and one acting as a nucleophile/base (McCarter and Withers, 1994; Rye and 

Withers, 2000). The residues Glu36 and Asp9 (using the Cellosyl numbering) have been 

proposed as catalytic residues for the enzymatic mechanism of fungus Chalaropsis lysozyme 

(Fouche and Hash, 1978). 

In Cellosyl, Glu36 is located at the tip of strand β2 but it is not part of the active site. 

e in its imm

d

li
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Cellosyl -DTSGVQGIDVSHWQGSINWSSVKSAGMSFAYIKATEGTNYKDDRFSANYTNAYNAG--- 56 
F. chalaropsis ----TVQGFDISSYQPSVNFAGAYSAGARFVIIKATEGTSYTNPSFSSQYNGATTATGNY  56 
S. erythraeus ---ATVAGIDVSGHQRNVDWQYWWNQGKRFAYVKATEGTGYKNPYFAQQYNGSYNIG---  54 
X. fastidiosa ---MFNKGIDISQRNGEIDFTKVREAEIGYVFMKATEGATFQDPNYARYRCDVLSAG---  54 
Phage Cp-1 MVKKNDLFVDVSSHNGYDITGILEQMGTTNTIIKISESTTYLNPCLSAQVEQSNP-----  55 
Phag HQGYDISGILEEAGTTNTIIKVSESTSYLNPCLSAQVSQSNP-----  55 
 
 

 
 

e Cp-7 MVKKNDLFVDVAS

Cellosyl IIRGAYHFARPN--ASSGTAQADYFASNGGG-WSRDNRTLPGVLDIEHNPSGAMCYGLST 113 
F. chalaropsis FIRGGYHFAHPG--ETTGAAQADYFIAHGGG-WSGDGITLPGMLDLESEGSNPACWGLSA 113 
S. erythraeus MIRGAYHFALPD--RSSGAAQANYFVDNGGGSWK-DGKTLPGALDMEYNPYGGTCYGKTP 111 
X. fastidiosa MTLGAYHYFRAL--SSTPEAQKDNIVNVLTQNG-FNSSCEYFALDVELIGNESATP-EVM 110 
Phage Cp-1 --IGFYHFARFGGDVAEAEREAQFFLDNVP------MQVKYLVLDYEDDPSGDAQANTNA 109 
Pha
 
 
 
 

ge Cp-7 --IGFYHFACFGGNEEEAEAEARYFLDNVP------TQVKYLVLDYEDHASASVQRNTTA 109 

Cellosyl TQMRTWINDFHARYKARTTRDVVIYTTASWWNTCTGSWNGMAAKSPFWVAHWGVSAP-TV 172 
F. chalaropsis ASMVAWIKAFSDRYHAVTGRYPMLYTNPSWWSSCTGNSNAFVNTNPLVLANRYASAPGTI 173 
S. e WWVARYASTVGKL 167 rythraeus AQMTAWIKDFSDTYHARTGRWPVIYT--SWWSSCVNG--DFSSTNPL
X. fastidiosa ADNLNKLLLLLGEECIFGDRKPLIYCSPNFWDNRVDGDRYNFSEYPLWIAHWDVDEP-RI 169 
Phage Cp-1 CLRFMQMIADAGYKPIYYSYKPFTHDNVDYQQILAQFPNSLWIAG--YGLNDGTANFEYF 165 
Phage Cp-7
 
 
 
 

 CLRFMQMIAEAGYTPIYYSYKPFTLDNVDYQQILAQFPNSLWIAG--YGLNDGTANFEYF 165 

β1 β2 

β3 β4 

β5 β6 

β7 β8 

Cellosyl PSGFP----TWTFWQYSATGRVGGVSGDVDRNKFNGSAARLLALANNTA----------- 217 
F. chalaropsis PGGWP----YQTIWQNSDAYAYGGSNNFINGSIDN-----LKKLATG------------- 211 
S. erythraeus PYNWG----FHTIWQYTSS--------PIDQNSFNGGYDRLQALANG------------- 202 
X. fastidiosa PQTWSKACKSWSVWQYSSKGSIPGINGDVDLN--N---VRL------------------- 205 
Phage Cp-1 PSMDG----IR-WWQYSSNPFDKNIVLLDDEEDDKPKTAGTWKQDSKGWWFRRNNGSFPY 220 
Pha

Figure 4.4-2
sho
Stre
Bacteriophage Cp-1 (Garcia 
et.a

 
 
 
 
 
 
 

ge Cp-7 PSMDG----IR-WWQYSSNPFDKNIVLLDDEKEDNINNENTLKSLTTVANEVIQGLWGNG 220 
 

 Comparison of the amino acid sequence of the Ch-type lysozymes. Sequences 
wn here are from Cellosyl (Bräu et al., 1991), Fungus chalaropsis (Felch et al., 1975), 
ptomyces erythraeus (Harada et al., 1989), Xylella fastidiosa (Simpson et al., 2000), 

et al., 1988; Martin et al., 1996) and Bacteriophage Cp-7 (Garcia 
l, 1990). 
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As already m oned, both of the propose talytically active residues are involved 

 a hydrog

, 

 

 
 

faces of the active site cleft. The 

n  
a  
.  
a  

ces 

1 - Asp198 OD2 of only 2.55 Å and Asp98 OD1 - Glu100 OE1 of only 2.50 Å) 

dicates the presence of low- barrier hydrogen bonds (LBHB). The energetic profile of a 

BHB is ideally suited for fast and therefore efficient proton trafficking within these pairs of 

atalytically active carboxylates. The enormous importance of LBHBs lies in the accelerating 

ffect on protonation/deprotonation reactions. LBHBs involved in acid/base catalysis were 

ported for several enzymes. It is believed that they accelerate the catalytic reaction by at 

ast five orders of magnitude (Cleland et al., 1998). Unfortunately, the protons of these 

arboxylic side chains could not be modelled, since they could not be unambiguously 

 the background noise of the mFo-DFc electron-density map. 

enti d ca

in en-bonding interaction with an aspartate residue in close spatial vicinity (Fig. 4.4-

3). Asp98 and Asp198 seem to play an important role in positioning Glu100 and Asp9

respectively, into the correct orientation for effective substrate hydrolysis.   

 

 

 

 

 

 

 

 

 

 
Figure 4.4-3 Depiction of the two pairs
of carboxylic residues lining opposite

proposed catalytic residues Asp9 and 
Glu100 are 9.5 Å apart (average of the 
four possible distances betwee  the
oxygen atoms), indicating a mech m

e
nis

under inversion of configuration  Th
2mFo-DFc electron density m p is
contoured at 1.5 σ above mean. 

 

But besides the stabilising effect, the strength of both hydrogen bonds (with distan

Asp9 OD

Asp9 
Asp198 

9.5 Å 

Asp98 
Glu100 

in

L

c

e

re

le

c

differentiated from
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Th

The aromatic side chains of Tyr31, Tyr62, Phe64, Tyr138, and Trp161 mainly form the walls, 

while Val96 is at the very bottom of the hole. Hydrophobic residues are located at those 

positions throughout the Ch-lysozyme family. Two of the tyrosines, Tyr62 and Tyr138, are 

cture (0.83 Å) of Cellosyl revealed that the 

tions. The major side-chain conformation is 

orien arallel to Tyr62 at a distance of 7.03 Å. Interestingly, a water molecule (wat44) is 

sandwiched between their phenyl rings, almost halfway down the deep hole. The distance 

between the water oxygen and the centre of the aromatic ring of Tyr138 is 3.32 Å, suggesting 

a possible O-H...π interaction. The corresponding distance to the parallel phenyl ring, Tyr62, 

is too large (3.72 Å) for a hydrogen bond-like interaction. Instead, wat44 forms H-bonds with 

the carboxylic group of the residue Asp98 (2.98 Å) and with water wat85 (2.79 Å). However, 

in the minor side-chain conformation of Tyr138, its χ

the major conformation. Therefore, this side chain is 

moiety of Trp161 with a distance of 3.85 Å, indica

dual conformation of the side chain of Tyr138 also r

solvent net thin the active-site cleft. 

As already described in the intro chapte

substrate can occur via two major mechanisms, givin

inversion of the anomeric configuration. At first glanc es have 

similar active-site architectures, with two essential carboxylic acids facing each other at the 

substrate-binding site. However, the distance between the carboxylate residues of inverting 

enzyme

e active site of glycosidases is commonly rich in aromatic residues, i.e. tryptophan and 

tyrosine. The hydrophobic character and hydrogen-bonding capability of these residues seems 

to be favourable for the binding of polysaccharide substrates (McCarter and Withers, 1994). 

The same is true for the active site of Cellosyl. The central hole is approximately 8 - 9 Å deep. 

absolutely conserved. The atomic-resolution stru

side chain of Tyr138 exhibits dual conforma

tated p

2 angle is rotated by 54º with respect to 

orientated nearly coplanar to the phenyl 

ting a weak π-stacking interaction. The 

esulted in a formation of an alternative 

r 1.3), hydrolysis of the polysaccharide 

g rise to either an overall retention or an 

e, retaining and inverting enzym

work wi

duction (

s is approximately 10 Å, and thus significantly larger than that for retaining enzymes 

in which the two carboxylic acid residues are approximately 5.5 Å apart. The greater distance 

for the inverting enzymes is probably required for the mechanism, where in addition to the 

substrate the nucleophilic water molecule has to be placed between the two carboxylates. The 

distance between Asp9 and Glu100 in the Cellosyl structure is 9.5 Å (Fig.4.4-3), indicating 

that the enzymatic mechanism proceeds under inversion of configuration via a single 

displacement mechanism.  
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4.5

lete amino-acid sequence. However, given the 

sign

all members of this family share the same unusual β/α fold 

ed in this work. 

 

 Relationship to other lysozyme structures 

As outlined in the introduction, four different classes of lysozymes can be 

distinguished at present (Jollès and Jollès, 1984). It is believed that the three classes 

represented by HEWL, GEWL, and T4 lysozyme are the result of divergent evolution from a 

common ancestor (Weaver et al., 1985). Despite the fact that they do not share any 

statistically significant sequence identity, their three-dimensional structures show some 

intriguing, albeit distant, similarities: The active site is located in a crevice between two 

domains which are connected by a long α-helix. A glutamic acid residue, proposed to be 

essential for general acid catalysis, is located at the carboxy-terminal end of an α-helix in the 

amino-terminal half of each of the proteins (see Fig.4.5-1).  

The β/α barrel fold of Cellosyl is completely unrelated to the tertiary structures of 

HEWL, GEWL and T4 lysozyme and defines a fourth family, that of the Ch-type lysozymes. 

A previous structural report for a Ch-type lysozyme describes a low-resolution model for the 

muramidase from Streptomyces erythraeus (Harada et al., 1981). This structural model 

comprises a polypeptide chain of approximately 180 amino acid residues folded into three 

domains and is very different from the structure presented in this work. It is conceivable that 

the apparent structural differences are due to the relatively low resolution (2.9 Å) of that 

crystallographic study which was carried out in 1981, i.e. before the advent of molecular 

graphics, and in the absence of a comp

ificant sequence similarity (49% identity) between the two Streptomyces lysozymes this 

structural model is most probably incorrect. A recent publication of the three-dimensional 

structure of a further Ch-type lysozyme confirmed this assumption (Hermoso et al., 2003). 

The authors describe the pneumococcal lysozyme from phage Cp-1 consisting of two 

domains. In addition to the catalytic module, the Cpl-1 possesses a choline-binding module, 

with both domains joined together by an acidic linker. Superposition of the catalytic domain 

of Cpl-1 onto Cellosyl resulted in an r.m.s. deviation of 2.4 Å for 174 equivalent Cα-atoms. 

The catalytic domain of Cpl-1 folds, exactly like Cellosyl, into a irregular  (β/α)5β3 barrel and 

also contains the  antiparallel strand β8.  

Thus, the three-dimensional structure of Cellosyl represents the first detailed model of a 

Ch-type lysozyme, and given the high sequence similarity (47 %) to the lysozyme of fungus 

Chalaropsis, it is conceivable that 

describ
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ensional structures of (a) HEWL, (b) GEWL, (c) 
T4L
and Sander, 1993; 1996). The com

 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5-1 Comparison of the three-dim

(a) HEWL 
       PDB: 3LZT 

(b) GEWL 
       PDB: 153L 

(c) T4L 
       PDB: 2LZM 

(d) Cellosyl 
       PDB: 1JFX 

, and (d) Cellosyl. The structures (a)-(c) were superposed with the program DALI (Holm 
pletely different structure of Cellosyl is depicted from the 

side view of the barrel. 
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4.6 Relationship to 

A search for structural sim I (Holm and Sander, 1993; 

996) shows that the highest similarity to Cellosyl is displayed by the Ch-type lysozyme from 

hage Cp-1 which is discussed in the previous chapter.  Apart from Cpl-1, which also belongs 

 GH family 25, the search yielded chitinases from family 18 and glucanases from family 5 

s closest (albeit rather distant) relatives. Am es, the closest relative of 

mitis (CiX1) (PDB code: 1D2K) (Hollis et 

al., 2000), with an r.m.

superposition of Cellosyl and Ci

family and possesses an irregular (β/α)8

strand β2 is followed by two helices. β  as in a 

conventional TIM barrel. Furthermore, the β

followed by a two-stranded antiparallel β-sheet and the connection between β7 and α7 

contains an additional subdomain with a modified Greek key motive. In contrast to Cellosyl, 

CiX1 contains 4 cis-peptide bonds. 

 

1 is clearly visible. 

 

other β/α barrel enzymes 

ilarities using the program DAL

1

p

to

a ong these enzym

Cellosyl is a chitinase from fungus Coccidioides im

s. deviation of 3.5 Å for 181 equivalent Cα atoms. A least-squares 

X1 is depicted in Figure 4.6-1. CiX1 belongs to the GH-18 

–barrel topology in which helix α1 is absent and 

-strands 3 through 8 are followed by α-helices

barrel contains two insertions: strand 2 is 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6-1 A stereo representation of the superposition of Cellosyl and CiX1. Cellosyl is 
coloured in green, while CiX1 is coloured in black. The insertion of two additional domains 
into the β/α barrel of CiX
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The next relative listed by DALI is the β-mannase from Thermomonospora fusca with 

an r.m.s. deviation of 3.7 Å for 168 residues (PDB code: 1BQC) (Hilge et al., 1998). The 

fam

 

igure 4.6-2 Topology diagrams of  (a) a conventional TIM barrel, (b) Cellosyl and (c) 
nolase. α-helices are depicted as red circles and β-strands as blue triangles. The antiparallel 
-strand of Cellosyl and enolase is highlighted in yellow. 

 

 

Enolase is a glycolytic enzyme which catalyses the dehydration of 2-phospho-D-glycerate 

a smaller N-terminal domain and a larger C-

rminal domain which is an 8-fold β/α-barrel with a ββαα(βα)6 topology. In the enolase 

is 

-

ade by main-chain 

amides and carbonyls in the strand: The antiparallel strand β2 in enolase forms 10 main-chain 

ydrogen bonds with its neighbours. In Cellosyl, seven H-bonds are formed between strands 

ily 5 glycosyl hydrolase exhibits the classical (β/α)8–barrel fold with two short, additional 

strands at the N-terminus forming the bottom of the barrel. It is interesting to mention that 

despite the functional differences between the members of family GH-5, GH-18 and Cellosyl, 

the catalytically active proton-donor residue is located at the carboxy-terminal end of strand 

β4, and spatially matches the residue Glu100 of Cellosyl.  

As mentioned above, a very unique structural feature of Cellosyl is the antiparallel 

orientation of strand β8 in the barrel. The only other enzyme known to have an 8-standed β/α-

barrel fold with an antiparallel β-strand is enolase (Lebioda et al., 1989). Topology diagrams 

of a conventional TIM barrel and the two irregular barrels of Cellosyl and enolase are 

depicted in Figure 4.6-2. 

 

F
e
β

to phosphoenolpyruvate. The protein consists of 

te

barrel, the second β-strand is antiparallel to the other strands and the first α-helix 

antiparallel to the other α-helices. The unusual antiparallel orientation of a β-strand in a β/α

barrel does not seem to lead to a reduced number of hydrogen bonds m

h

(b) (c) 
N  N

(a) 
N

C 
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β8 and

4.7 Evolution of (β/α) -barrel structures 

ays enzymes and play an important role in molecular and energy 

metabolism. They catalyse a vast variety of different reactions, functioning as 

oxidoreductases, transferases, hydrolases, lyases or isomerases (Nagano et al., 2002). 

years and is still the 

subject of vigorous debate (Lesk et al., 1989; Farber and Petsko, 1990; Brändén, 1991; 

Reardon and Farber, 1995; Copley and Bork, 2000; Nagano et al., 2002; Gerlt and Raushel, 

2003). The question if they arose by convergent evolution to a stable fold, by divergent 

evolution from a common ancestor, or even by divergent evolution from several ancestors that 

had similar β/α folds, remains unresolved. 

ilarity, as well as the large range of reactions 

. 

g arrangements of the hydrophobic 

residues in the centre of the β-barrel were performed to elucidate the origin of this fold (Lesk 

et a tified three layers of side chains forming the interior of the 

barr

 β7, and three such interactions between strands β8 and β1. The number of hydrogen 

bonds made by strand β8 of Cellosyl therefore agrees well with the average number (6 - 14) 

for strands β2 to β6 which constitute the all-parallel part of the barrel.  

 

 

8

The β/α-barrel scaffold is one of the most versatile and most frequently encountered 

protein folds in nature. Roughly 10 % of all enzymes with known three-dimensional structure 

possess a (β/α)8-barrel domain (Copley and Bork, 2000; Gerlt, 2000). Proteins of this 

architecture are nearly alw

ny The evolution of (β/α)8-barrels has been discussed for ma

The absence of significant sequence sim

catalysed, suggests the possibility that (β/α)8 barrels have developed by convergent evolution

Analyses of the geometry of these proteins and the packin

l., 1989). The authors iden

el and suggested two different packing types, which led to the conclusion that not all 

proteins with a (β/α)8 barrel domain evolved from a common ancestor. However, this analysis 

was restricted to three enzymes only. More recent studies on residue packing within the 

interior of the barrel revealed that even within homologous families, the number of layers may 

differ and no evidence for two different packing types was found (Nagano et al., 1999). 

Farber and Petsko (1990), and more recently, Reardon and Farber (1995), suggested 

divergent evolution of (β/α)8 barrels from a common ancestor. Although these enzymes 

catalyse a great variety of different reactions, the active site is always located at the carboxy-
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terminal end of the β-sheets. Furthermore, barrel shape and domain composition allowed 

grouping these enzymes into distinct families and more of the data available could be 

explained by divergent than by convergent evolution.  

No less than 25 superfamilies of (β/α)8-barrels were defined in the recent release of the 

SCOP (structure comparison of proteins) database1 which clusters proteins into families and 

perfamilies based on a hierarchical level, describing near and distant evolutionary 

 

erived from a common ancestor. 

Thornt

talysing 

success

 the observation that the N- and C-terminal (β/α)4-

units in His

 been 

grouped into one superfa

su

relationships (Lo Conte et al., 2000; 2002). Copley and Bork (2000) analysed 23 of these

TIM-barrel superfamilies and concluded that at least 12 d

on and co-workers reported similar results (Nagano et al., 2002), analysing TIM-barrel 

folds deposited in the CATH database2 (Pearl et al., 2000). Structural and functional 

comparisons of the 21 homologous TIM-barrel superfamilies indicated a common ancestry for 

17 of them. The question if the remaining superfamilies are the result of convergent evolution 

or if all (β/α)8-barrels diverged from a common ancestor remains unanswered.  

Very intriguing results were reported for two enzymes, HisA and HisF, ca

ive reactions in the histidine biosynthesis pathway. An internal duplication in both 

HisA and HisF genes was revealed and lead to the conclusion that HisA and HisF originated 

from the duplication of a smaller ancestral gene (Fani et al., 1994). With the knowledge of 

amino acid sequence and tertiary structure, it was suggested that both enzymes have evolved 

from a common half-barrel ancestor by twofold gene duplication, followed by gene fusion 

(Lang et al., 2000). This was supported by

F build stable folded substructures and could be assembled into the fully active 

complex upon co-expression in vivo or joint refolding in vitro (Höcker et al., 2001). 

Moreover, observations have been made leading to the suggestion that β/α barrels assembled 

from (β/α)2-subdomain structures to create an 8-fold barrel (Nagano et al., 2002; Gerlt and 

Raushel, 2003). 

Little attention has been paid to β/α barrel enzymes which differ from the typical 

TIM-barrel fold. The structure of Ch-type lysozymes, i.e. Cellosyl, should be of relevance for 

the ongoing debate on the evolution of β/α barrels because of the presence of the antiparallel 

strand β8 in the otherwise parallel barrel. The presence of an antiparallel β-strand in a β/α-

barrel has been also reported for yeast enolase (Lebioda et al., 1989). Enolase has

mily with muconate-lactonizing enzyme (MLE) and mandelate 

racemase (MR) because they share the same two-domain structure and have a common 
                                                 
1 http://scop.mrc-lmb.cam.ac.uk/scop
2 http://www.biochem.ucl.ac.uk/bsm/cath 
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mechanism of catalysis (Babbitt and Gerlt, 1997; Lo Conte et al., 2000). While MLE and MR 

possess the normal TIM-barrel fold, the structure of enolase has the ββαα(βα)6 topology as 

discussed above (see chapter 4.6). That the second β-strand of the barrel of enolase is 

arrange

nd C-termini. 

Circula

theme. 

 

 

d in an antiparallel fashion is, unfortunately, hardly mentioned at all in the literature. 

With the two novel structures of Ch-type lysozymes (Rau et al., 2001; Hermoso et al., 2003), 

further enzymes have been shown to have an antiparallel β-strand in the barrel. Has this 

‘irregularity’ evolved by chance? Are these enzymes derived from a common ancestor? 

Would that ancestor be different from that of the other TIM barrels? 

Overlapping enolase and Cellosyl by an automated 3D structure-comparing program 

(Holm and Sander, 1993; 1996) yielded a perfect overlap of the two antiparallel β-strands. If 

the two enzymes share a common ancestor, the question arises why the location of the 

antiparallel β-strand is in position 2 for enolase and in position 8 for Cellosyl. It seems 

possible that the enzymes have evolved by circular permutation of the N- a

r permutations within β/α-barrel enzymes have been reported in literature (Sergeev and 

Lee, 1994; Jia et al., 1996) and were also suggested for the enolase superfamily (Copley and 

Bork, 2000; Nagano et al., 2002). Taking these studies into account, Cellosyl and enolase may 

have derived from a common ancestor through cyclic permutation of N- and C-termini in the 

barrel. Further, it is quite possible that similar to the proposal by Lang et al. (2000), this 

common ancestor itself evolved by gene fusion from two independent half-barrels, an 

unconventional one comprising the secondary structure elements around the antiparallel 

strand (like β6-β7-β8-α6-β1 in Cellosyl), and a canonical one comprising alternating β/α 

units. In any case, the structures of Cellosyl and enolase suggest that β/α barrels divergently 

evolved from more than one common ancestor. Moreover, it is becoming clear now that the 

structural and functional plasticity of the β/α barrel fold goes beyond variations on the all-

parallel β-barrel 
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5. SUMMARY 
 
 

Lysozymes can be classified on the basis of their sequence homology into 4 distinct 

groups: (i) chicken, (ii) goose, (iii) phage and (iv) Chalaropsis-type lysozymes. The three-

dimensional structures of chicken-, goose- and phage-type lysozymes are already known and 

extensively studied but no detailed structure was known for any Chalaropsis-type lysozyme. 

Cellosyl is a bacterial lysozyme from Streptomyces coelicolor. Being a member of the 

Chalaropsis-type lysozymes, it differs from other lysozymes in molecular weight, amino-acid 

compo

ned to a resolution of 2.32 Å and an R-factor of 17.6 

%. As expected, both structures exhibit the same overall fold. However, in contrast to the 

onoclinic crystals, the hexagonal crystals contain two copies of the monomer in the 

asymmetric unit.  

 very important part of this work was the elucidation of the three-dimensional 

tructure of Cellosyl at atomic resolution. Only in rare cases it is feasible to collect data 

eyond 1.0 Å resolution from protein crystals. However, it was possible to collect a complete 

ata set on the monoclinic crystal form to 0.83 Å resolution using a synchrotron radiation X-

y source. The large number of experimental observations allowed refinement of the 

tructure with anisotropic displacement parameters, which lowered the crystallographic R-

sition and substrate specificity. The protein possesses both β-1,4-N-acetylmuramidase 

and β-1,4-N,6-O-diacetylmuramidase activity, which is of considerable interest since Cellosyl 

is able to degrade cell walls of Staphylococcus aureus and other bacteria which are not 

hydrolysed by chicken-, goose- and phage-type lysozymes.  

Cellosyl could be crystallised in two different crystal forms: Rod-shaped crystals 

which were assigned to the hexagonal space group P6122, and platelet-like crystals belonging 

to the monoclinic space group C2. The three-dimensional structure of the monoclinic crystal 

form of Cellosyl was solved with the MIRAS technique using individual osmium and 

mercury derivatives as well as an osmium-mercury double derivative. The structure was 

initially determined to 1.65 Å and refined to an R-factor of 15.2 %. The enzyme is comprised 

of a single domain that folds into an irregular TIM-barrel. All β-strands of the (β/α)5β3 barrel 

are arranged parallel to one another, except strand β8 which is in antiparallel orientation to the 

neighbouring strands β1 and β7.  

The crystal structure of Cellosyl in the hexagonal crystal form was determined by the 

method of molecular replacement using the structure of the monoclinic crystal form as search 

model. The hexagonal structure was refi

m

A

s

b

d

ra

s
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factor by more than 4 %. The refinement converged with excellent statistics, e.g. an R-factor 

f 9.63 %. Thus, the crystal structure of Cellosyl is among the highest resolution TIM-barrel 

old str

of the anomeric configuration. 

 

o

f uctures determined to date, which is important considering the fact that roughly 10 % 

of all known enzyme structures assume the TIM-barrel fold. The structure revealed a number 

of interesting features. 13 % of the residues adapt multiple conformations, including Ser24 

whose side chain could be unambiguously modelled in three alternative conformations.  

Moreover, the high-resolution structure yields very detailed insight into the active site 

architecture of the enzyme. The substrate-binding groove of Cellosyl leads into a deep hole of 

highly negative electrostatic potential, which is lined by two pairs of carboxylic acids. Within 

these pairs, the proposed catalytically active residues Glu100 and Asp9 are stabilised by low 

barrier hydrogen bonds to Asp98 and Asp198, respectively. The distance of 9.5 Å between 

Glu100 and Asp9 suggests a mechanism involving inversion 

The structure of Cellosyl exhibits a new lysozyme fold and represents the first 

structurally characterised member of the Chalaropsis-type lysozyme family. Very likely, all 

lysozymes of this family, ranging from bacteria, over bacteriophages and fungi, have the same 

overall fold. Whilst β/α barrels are widely believed to have arisen through divergent evolution 

from one common ancestor, the highly unusual structure of Cellosyl suggests that there may 

have been more than one such ancestor. Besides the Ch-type lysozymes, the only other β/α 

barrel known to have an antiparallel strand in the eight-stranded sheet is enolase. Perhaps 

Cellosyl and enolase share a common ancestor, from which they evolved through a series of 

mutation and cyclic permutation events.  
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6. ZUSAMMENFASSUNG 

 
In der vorliegenden Arbeit wurde die röntgenkristallographische Untersuchung  von 

Cellosyl, einem Lysozym aus dem Bakterium Streptomyces coelicolor, beschrieben. 

Lysozyme können auf Grund ihrer Aminosäuresequenz in 4 unterschiedliche Familien 

eingeordnet werden: (i) Hühner-, (ii) Gänse-, (iii) Phagen- and (iv) Chalaropsis-Typ 

Lysozy

t, 

Aminosäurekomposition und Substratspezifität. Das Enzyme weißt sowohl β-1,4-N-

ur Bestimmung der Phasen wurden die monoklinen Cellosylkristalle in drei 

unterschiedliche Schwermetallkomplexe überführt: jeweils individuelle Osmium- und 

uecksilber-Derivate und ein gemischtes Osmium-Quecksilber-Doppelderivat. Die Phasen 

onnten mit der Methode des multiplen isomorphen Ersatzes, unter Ausnutzung der anomalen 

treuung der Schweratome, bestimmt werden. Die Struktur wurde zu einer Auflösung von 

.65 Å und einem R-Faktor von 15.2 % verfeinert.  

Das Enzym besteht aus einer einzelnen Domäne, welche sich zu einem irregulären 

IM-Barrel faltet. Alle β-Stränge des (β/α)5β3-Fasses sind parallel zueinander angeordnet, mit 

usnahme von β-Strang 8, welcher antiparallel zu den Strängen β1 and β7 ausgerichtet ist.  

Die Struktur von Cellosyl in der hexagonalen Kristallform wurde mit der Methode des 

olekularen Ersatzes bestimmt, wobei die Struktur der monoklinen Kristallform als 

uchmodell genutzt wurde. Das Strukturmodell der hexagonalen Kristalle wurde zu einer 

me. Die dreidimensionalen Strukturen von Hühner-, Gänse,- und Phagentyp 

Lysozymen sind bekannt und gut erforscht, aber es gibt noch keine detaillierte Beschreibung 

der Struktur eines Chalaropsis-Typ Lysozymes. 

Cellosyl ist ein bakterielles Lysozym aus der Chalaropsis-Typ-Familie und 

unterscheidet es sich von anderen Lysozymfamilien in Molekulargewich

acetylmuramidase- als auch β-1,4-N,6-O-diacetylmuramidase-Aktivität auf. Damit ist 

Cellosyl in der Lage, Zellwände von Bakterien, wie z.B. Staphylococcus aureus, zu 

hydrolisieren, die gegenüber Hühner-, Gänse-, und Phagentyp Lysozymen resistent sind. 

Es gelang Cellosyl mittels der „Hanging-Drop“ Methode, in Abhängigkeit der 

gewählten Kristallisationsbedingungen, in zwei unterschiedlichen Habitus zu kristallisieren. 

Von beiden Kristallformen wurden native Datensätze gesammelt. Die stiftförmigen Kristalle 

gehören zur hexagonalen Raumgruppe P6122, während die plättchenförmigen Kristalle  zur 

monoklinen Raumgruppe C2 gehören. 

Z
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Auflösung von 2.32 Å und einem R-Faktor von 17.6 % verfeinert. Wie vermutet zeigen, beide 

trukturen dieselbe räumliche Faltung. Allerdings enthalten die hexagonalen Kristalle, im 

onoklinen Kristallen, zwei Kopien des Monomers in der asymmetrischen 

Einheit

odells mit den gemessenen Daten war es 

möglich, die Struktur bis zu einem R-Faktor von 9.63 % zu verfeinern. Die Struktur von 

Cellosy

e Glu100 und Asp9 durch „Low-barrier“-

Wasser

Bakterien, Bakteriophagen und Pilzen 

vorkom

n 

Cellosy

S

Gegensatz zu den m

. 

Weiterhin wurde ein vollständiger nativer Datensatz der monoklinen Kristallform, mit 

einer atomaren Auflösung von 0.83 Å, an einer Synchrotronstrahlungsquelle gesammelt. Die 

große Anzahl der experimentell beobachteten Reflexe im Verhältnis zu den benötigten 

Parametern, erlaubte die Verfeinerung der Struktur mit anisotropen Auslenkungsparametern. 

Durch die exzellente Übereinstimmung des M

l ist somit eine der höchstaufgelöstesten TIM-Barrel-Strukturen die bekannt ist. Dies 

ist von Bedeutung, da ungefähr 10 % aller bekannten Enzymstrukturen die TIM-Barrel-

Faltung aufweisen. Die hochaufgelöste Struktur zeigt eine Reihe von sehr interessanten 

Eigenschaften. So liegen z.B. 13 % aller Reste in multiplen Konformationen vor, 

einschließlich Ser24, dessen Seitenkette eindeutig in drei verschiedenen Konformationen 

modelliert werden konnte. 

Außerdem gibt die Struktur bei atomarer Auflösung detaillierten Einblick in die 

Architektur des aktiven Zentrums des Enzyms. Die Substratbindespalte von Cellosyl führt zu 

einem tiefen Loch von sehr negativen elektrostatischem Potenzial, an dessen oberen Rand 

zwei gegenüberliegende Paare von Carbonsäuren angeordnet sind. In diesen Paaren werden 

die mutmaßlichen aktiven Rest

stoffbrückenbindungen zu Asp98 und Asp198 respektive, stabilisiert. Der räumliche 

Abstand von 9.5 Å zwischen Glu100 and Asp9 deutet auf einen invertierenden Mechanismus 

der Spaltung der glycosidischen Bindung hin. 

Die Struktur von Cellosyl weist eine neue Faltung auf und repräsentiert das erste 

strukturell charakterisierte Mitglied der Chalaropsis-Typ-Lysozyme. Höchstwahrscheinlich 

haben alle Lysozyme dieser Familie, die in 

men, die gleiche generelle Faltung.  

Während davon ausgegangen wird, dass sich β/α-Fässer durch divergente Evolution 

von einem gemeinsamen Vorfahren  entwickelt haben, zeigt die ungewöhnliche Struktur vo

l, dass es mehr als einen Vorfahren gegeben haben muss. Neben den Chalaropsis-Typ 

Lysozymen ist nur ein weiteres Enzym, Enolase, mit einem antiparallelen Strang im 8-

blättrigen Faltblatt bekannt. Es ist deshalb möglich, dass Cellosyl und Enolase einen 
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gemeinsamen Vorfahren haben, aus dem sie sich durch eine Reihe von Mutationen und 

cyclischer Permutation entwickelt haben. 
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8. APPENDIX 
 
Table 8.-1 Hydrogen-bonding interactions of the chloride ions within the structure of Cellosyl 

in the monoclinic crystal form. The table was generated with the program CONTACT (CCP4, 

1994). 

Å] 

 
chloride ion target atoms H-bonding 

distance [
Cl1 Arg189 N 3.18 
 Arg199 NH1 3.30 
 Wat148 3.14 
Cl2 Trp179 NE1 3.22 
 Wat 16 3.10 
 Wat 47 3.18 
 Wat 149 3.42 
 Wat341 3.25 
Cl3 Arg133 NE 3.03 
 Arg133 NH2 3.48 
 Asp134 N 3.12 
 Asn215 ND2 3.50 
 Wat 43 3.18 
 Wat196 3.36 
Cl4 Arg199 NH1 3.30 
 Ala207 N  3.20 
 Wat148 3.34 
 Wat164 2.66 
 Wat297 2.95 
Cl6 Asn152 N 3.07 
 Wat96 3.39 
 Wat131 3.01 
 Wat173 3.48 
 Wat317 3.43 
Cl7 Asn102 ND2 3.27 
 Wat78 3.07 
 Wat347 3.19 
Cl8 Ala74 O  3.41 
 Ser70 OG 3.27 
 Wat70 2.99 
 Wat313 2.95 
Cl9 Wat14 3.25 
 Wat107 3.14 
 Wat250 2.98 
 Wat382 3.00 
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Table 8.-2 Hydrogen-bonding interactions of the sulphate ions within the structure of Cellosyl 

 the hexagonal crystal form. The table was generated with the program CONTACT (CCP4, 

te ions         target atoms        H-bonding 
distance [Å] 

in

1994). 

 
sulpha

SO4 1 O3 Arg199A NH2 2.82 
 O4  Arg199A NH1 2.66 
SO4 2 O2 Arg189A N 3.49 
 O3 Arg199A 1 NH 3.51 
 O4 Arg199A  NH1 2.71 
 O4 Arg189A N 2.75 
 O4 Arg189A O 3.20 
SO4 3 O3  N Gly192A 2.98 
 O4  N Gly192A 3.16 
SO4 4 O1  OG Ser142A 3.20 
 O3 Wat141 2.80 
 O4 Wat141 3.24 
 O1 Ser142A OG 3.20 
 O3 Wat141 2.80 
 O3 Thr140A  OG1 3.19 
 O4 Wat141 3.24 
SO4 5 O1 Wat36 2.98 
 O2 Ser11A OG 3.16 
 O2 Wat36 2.62 
 O3 Tyr62A OH 2.79 
 O4 Lys33A NZ 2.42 
SO4 6 O4 Gly192B N 3.51 
SO4 7 O2 H1 Arg 126A N 3.19 
 O4 Arg126A NH1 2.81 
SO4 8 O4 Arg117A NH1 3.30 
SO4 9 O2 Arg199B NH2 2.81 
 O3 Arg199B NH1 3.23 
SO4 10 O1 Arg126A  NH2 2.71 
 O2 Arg126A NH2 2.73 
 O3 Arg126A NH2 3.30 
SO4 11 O2 Arg199B NH1 2.69 
 O2 Arg189B  N 2.98 
 O3  N  Arg189B 3.29 
SO4 12 O1 OG  Ser142B 3.42 
 O2 Thr140B OG1 2.77 
 O2 Wat82 2.71 
 O3 Wat82 3.31 
SO4 13 O2 Arg126B NE 2.89 
 O2 Arg126B NH2 3.11 
 O3 Arg126B NH2 2.80 
 O4 Arg126B N 3.24 
 O4 Arg126B NE 3.17 
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 O4 Arg126B NH2 3.49 
 O4 Wat124 2.62 
SO4 14 O2 Wat54 2.95 
 O3 Arg117B NH1 3.36 
 O3 Arg117B NH2 3.04 
 O4 Arg117B NH2 3.17 
 O4 Wat54 3.02 
SO4 15 O1 Tyr62B OH 2.62 
 O2 Lys33B NZ 2.54 
 O4 Wat128 2.95 
 O4 Wat118 2.70 
SO4 16 O1 Arg44A NH1 2.91 
 O1 Arg44A NH2 2.38 
 O2 Wat191 2.98 
 O4 Arg 44A NH1 2.70 
 O4 Wat191 3.00 
SO4 17  O1 Arg126B NH1 3.23 
 O4 Arg126B NH2 2.68 
SO4 18  OG O1 Ser205A 2.56 
 O1 Arg208A NH1 2.47 
 O2 Gly   204A N 3.41 
 O2 Arg208A NE 2.87 
 O2 Arg208A NH2 3.20 
 O2 Arg208A NH1 2.67 
 O2 Wat195 3.28 
 O3 Wat195 3.46 
 O4 Arg208A NE 3.45 
 O4 Ser205A N 3.11 
 O4 Ser205A OG 3.13 
SO4 19 O1  Thr216A O  3.27 
 O2 Arg88A NH1  2.82 
 O2 Trp179B NE1 3.09 
 O2 Wat74 2.76 
 O3 Trp179B NE1 2.78 
 O4 Wat127 3.28 
SO4 20 O1  Arg91A NE 2.54 
 O1 Arg91A NH1 3.18 
 O1 Arg91A NH2 3.45 
 O1 Ser205B OG 2.33 
 O2 Ser205B OG 2.77 
 O2 Arg208B NH1 3.00 
 O3 Asn90A ND2 2.86 
 O3 Arg208B NH1 2.20 
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