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Introduction

Protein–protein interactions  are central to virtually every  cellular process, like DNA

replication, transcription, translation, splicing, secretion, cell cycle control, signal

transduction, intermediary metabolism, in the structure of sub-cellular organelles, transport

machinery across the various biological membranes, packaging of chromatin, network of sub-

membrane filaments, muscle contraction and regulation of gene expression comprise list of

processes in which protein complexes have been implicated as essential components. Due to

importance of these interactions in the growth and development intense research has been

done in recent years. It has emerged that nature has employed in many instances a strategy of

mixing and matching of specific domains that specify particular classes of protein–protein

interactions, modifying the amino acid sequence in order to confer specificity for particular

target proteins.

Protein-protein interactions have a number of different measurable effects some of

them are mentioned as; First, they can alter the kinetic properties of proteins that can be

reflected in altered binding of substrates, altered catalysis and altered allosteric properties of

the complexes. Second, protein-protein interaction is one common mechanism to allow for

substrate channeling. The paradigm for this type of complex is tryptophan synthetase from

Neurospora crasa. Many similar metabolic channeling have been demonstrated, both between

different subunits of a complex and between different domains of a single multifunctional

polypeptide (Srere et al.,1987). Third, protein-protein interactions can result in the formation

of a new binding site. Fourth, protein-protein interactions can inactivate a protein as in case of

interaction of phage p22 repressor with its antirepressor (Susskind et al.,1983), interaction of

trypsin with trypsin inhibitor (Vincent et al.,1972). Fifth, protein-protein interactions can

change the specificity of a protein for its substrate, e.g.  interaction of transcription factors

with RNA polymerase directs the polymerase to different promoters.

Protein interactions may be mediated at one extreme by a small region of one protein

fitting into a cleft of another protein and at another extreme by two surfaces interacting over a

large area. Example for the first case, include protein-protein interactions that involve a

domain of a protein interacting tightly with a small peptide, like interaction of SH2 domain

with a specific small peptides containing a phosphotyrosyl residue. The paradigm for the

second case i.e., surfaces that interact with each other over large areas is that of the leucine

zipper in which a stretch of ∝ helix forms a surface that fits almost perfectly with another ∝

helix from another subunit protein (Ellenberge et al.,1992; O´Shea et al.,1991).
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Regulation of cell functions is delicately balanced by the relative affinities of various

protein partners, modulation of their affinities by the binding of ligands, other proteins,

nucleic acids, ions such as Ca2+ and by covalent modifications like specific phosphorylation

or acetylation reactions. However, within a cell many intracellular and physico-chemical

factors like temperature, ionic strength and pH also play a critical role in protein-protein

interactions. For instance, at high temperature heat shock protein 90 oligomerizes and shows a

new chaperone activity (Yonehara et al.,1996). Ionic strength of a solution affects oligomeric

state of the protein (Brazil et al.,1998; Shima et al.,1998) and also influences the kinetics of

protein interactions. pH plays an important role in stability of protein complexes (Gibas et al.,

1997; Xie et al.,1998).The covalent modification like phosphorylation is well known

phenomenon of regulating protein-protein interaction in signal transduction cascade (Eyster,

1998). 

Specificity of protein-protein interactions

Proteins generally reside in a crowded environment with many potential binding

partners with different surface properties. Most proteins are very specific in interacting with

their partners, although  some are multispecific, having multiple (competing) binding partners

on coinciding or overlapping interfaces. Protein complexes such as hormone-receptor and

antigen-antibody complexes formed between protomers are initially not co-localized, where

as functionally relevant interactions, such as enzyme-inhibitor assemblies are highly specific.

Although, localization has a role to play, specificity clearly derives from the complementarity

of shape and chemistry that determines the free energy of binding. For protein interactions

multi specificity between two homologous families of proteins or between a homologous

family can be distinguished. Multi-specific binding between two protein families is very

common in regulatory pathways or networks such as in extracellular and intracellular

signaling. However, the members of the protein family often recognize a specific pattern or

surface patch on the target protein. For example, the SH2 and SH3 domains bind to proteins

with phosphotyrosine and proline-rich sequences respectively.

Protein interactions are much more widespread as expected. To understand their significance

in the cell it is necessary to identify the different interactions, understand the extent to which

they take place and determine the consequence of the interaction.

1.1 Classes of protein-protein interactions

Proteins interact with other proteins in a number of ways involving number of forces

predominantly non ionic like hydrophobic interactions, Van der Waals interactions. Although
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weak, these forces contribute most to the stability of  a protein complex. Protein interactions

can be also classified as; 

1.1.1 Homo-oligomerization

An enormous number of enzymes, carrier proteins, scaffolding proteins,

transcriptional regulatory factors etc function as homo-oligomers. Incorporation of non-

covalent interactions at the level of protein quaternary structure provides us with a number of

regulatory possibilities that would not be possible if functional unit is comprised of a single

polypeptide chain. Energy can be stored at the subunit interface that can serve to bind ligand,

or modify the protein conformation in response to regulatory ligands. Modulation of subunit

affinity in such a manner need not compromise the folded structure of the protein, yet

provides a considerable energetic margin for modulation of activity. 

1.1.2 Heterologous protein interactions

Communication at the level of the organism or the cell requires the translation of

physical or chemical information signals from one compartment to another. In large part this

communication relies on the specific interaction between particular heterologous proteins in

response to particular chemical or physical signals. Clearly all of the mechanisms have not

been elucidated that control cell functions. 

1.1.3 Non-obligate and obligate complexes 

As well as composition, two different types of complexes can be distinguished on the

basis of whether a complex is obligate or non obligate. In an obligate protein–protein

interaction, the protomers are not found as stable structures on their own in vivo. Such

complexes are generally functionally obligate; for example, the Arc repressor dimer is

essential for DNA binding. Many of the hetero-oligomeric structures in the protein data bank

involve non-obligate interactions of protomers that exist independently, such as intracellular

signaling complexes (e.g. RhoA-RhoGAP) antigen-antibody, receptor-ligand and enzyme

inhibitor (e.g. thrombin-rodnin) complexes. The components of such protein-protein

complexes are often initially not co-localized and thus need to be independently stable.

However, some homo-oligomers, which by definition are co-localized can also form non-

obligate assemblies.

1.1.4 Transient and permanent complexes

Interaction of proteins can also be  distinguished on the lifetime of their complexes. In

contrast to a permanent interaction that is usually very stable and only exists in its complexed

form, a transient  interaction associates and dissociates in vivo. A weak transient interaction

features a dynamic oligomeric equilibrium in solution where the interaction is broken and
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formed continuously and strong transient associations require a molecular trigger to shift the

oligomeric equilibrium. For example, the heterotrimeric G protein dissociation into the G∝

and GβΥ subunits upon guanosine triphosphate (GTP) binding. Structurally or functionally

obligate interactions are usually permanent, whereas non-obligate interactions may be

transient or permanent. 

1.2 Protein interactions in signal pathways

Ability of cells to respond various signals and culminating in multiple cascades of

signal pathways involve interaction between various proteins. These responses are

coordinated through signaling pathways that transduce and exchange information between

different cells or inside the cell between different compartments. Apart from direct cell to cell

contact, signaling to neighboring cells or to distant cells occurs by secreted messenger

molecules such as growth factors and hormones. These molecules bind to their cognate

receptor and there by transmit the signal inside the target cell to finally stimulate a distant

biological response including cell proliferation, migration, differentiation or apoptosis.

Consequently deregulated signal transduction events have been recognized as the underlying

cause of many severe human diseases such as cancer, diabetes, immune deficiencies and

cardiovascular diseases, among many others. Reversible protein phosphorylation has been

identified as a key element in signal transduction processes. Tyrosine kinases and

phosphatases are key proteins in regulating the signal pathway.

1.2.1 Receptor tyrosine kinases (RTKs)

RTKs are transmembrane enzymes responsible for transducing extracellular signals

from peptide growth factors across the cell membrane. They are characterized by extracellular

ligand binding domains, a single transmembrane helix and an intracellular portion containing

tyrosine kinase activity (Robinson et al.,2000). The kinase domain is composed of ∼300

conserved amino acid residues among kinases (Hubbard et al.,2000). It exhibits a two domain

architecture consisting of an amino terminal lobe and a larger carboxy terminal lobe. The cleft

formed by the two lobes harbors the reaction where the γ–phosphate from ATP is transferred

to a hydroxyl group of the tyrosine in the protein substrate. Protein tyrosine kinases can be

subdivided into two families; RTKs and non receptor tyrosine kinases (nRTKs), 58 RTKs and

32 nRTKs are reported (Manning et al.,2002). 

Most RTKs are monomeric in their inactive state and dimerizes upon ligand binding

(Hubbard et al.,1999). One exception is the insulin receptor family, members of which are

dimerized also in the absence of ligands. Ligand binding induces autophosphorylation of
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tyrosine residues in the so called activation loop and subsequently in the residues outside the

catalytic domain. The phosphorylated non-catalytic tyrosine act as specific binding sites for 

downstream signaling proteins containing phosphotyrosine binding (PTB) and Src homology

(SH2) domains. The specificity of individual SH2 domains is determined by the three to five

amino acid residues carboxy-terminal of the phosphotyrosine (Pawson et al.,1997), where as

PTB domain binding specificity motif is conferred by five to eight amino acid residues

amino–terminal of the phosphotyrosine (Songyang et al.,1993).

Activation and interaction of downstream signaling molecules is conferred by different

mechanisms. The activation may involve conformational changes induced directly by the

binding to the RTK and it can also be a consequence of tyrosine phosphorylation. The protein

tyrosine phosphatase SHP-2 and the tyrosine kinase Src are examples of signaling proteins

that undergo conformational changes and subsequent activation upon RTK recruitment.

Activation may also involve translocation of the molecule in proximity to its substrate e.g.

Phosphatidylinositol 3-kinase (PI3 kinase) is recruited to RTKs and thereby translocated to

Mitogen activated protein kinase modules indicating signaling cascade; Each module consists of a
Mitogen activated protein kinase kinase kinase (MKKK), Mitogen activated protein kinase kinase  (MKK) and a
MAPK  (Mitogen activated protein kinase). While the MKKs are relatively specific for  their target, MAPKs,
MKKKs, can activate one or more MKK. Activation of MAPKs induces activation of different targets,
comprising transcription factors but also for instance kinases such as EGFR (Johnson and Lapadat 200)
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the membrane where its substrate phophatidylinositol 4,5 bisphosphate is located. RTKs can

also recruit and phosphorylate transcription factors for instance phosphorylation of STATs

results in dimerization and nuclear translocation of the transcription factors (Xu et al.,1999).

Another group of molecules recruited to activate RTKs is adapter molecules e.g. Shc and

Grb2. 

1.2.2 Protein tyrosine phosphatase (PTP)

Protein tyrosine phosphatase (PTP) is a family of enzymes regulating cellular

phosphorylation state important for many cellular processes (Tonks et al.,1998). PTPs are

biochemically and physiologically distinct from RTKs and are central to regulation of

physiological processes (Hunter,1995) which depends on their subcellular localization (Mauro

et al.,1994; Hunter,1995). PTP family is composed of about 100 enzymes that despite limited

sequence similarity share a highly conserved catalytic signature motif (V/I HCSxGxGR(S/T)

G, at the bottom of an active site cleft (Barford et al.,1998). The cleft confers specificity

towards phosphotyrosine since hydrolysis of the shorter phospho-serine and phospho-

threonine residues is prevented (Guan and Dixon, 1991). PTPs are divided into two major

categories, transmembrane (receptor type) and cytoplasmic (non receptor type). Non receptor

type PTPs contain one PTP domain carrying the PTP activity flanked by domains that are

important for protein-protein interaction and enzyme activity. On the other hand receptor type

PTPs contain one or two PTP domains in the intracellular region which are linked to a variety

of extracellular domains through a transmembrane segment. Non receptor type PTPs undergo

proteolytic cleavage that alter their subcellular localization and can result in their activation

(Gu et al.,1996; Gurd et al.,1999; Nguyen et al.,1995; Rock et al.,1997). Src homology 2

domains of SHP1 and SHP2 mediate recruitment of PTPs to activated growth receptors

(Frangioni et al.,1993; Stein-Gerlach et al.,1998). PTPs functions can be modulated by

interaction between the non–catalytic segment of these enzymes and various binding proteins

(Neel, 1993). Protein-protein interactions have the potential to modulate PTP activity either

by altering enzyme directly or by controlling intracellular localization. 

1.3 Protein interactions at domain level

Many of the signaling pathways and regulatory systems in eukaryotic cells are

controlled by proteins with multiple interaction domains that mediate specific protein-protein

and protein-phospholipid interactions. In this way they determine the biological output of

receptors for external and intrinsic signals. Cytoplasmic proteins conveying information from

cell surface receptors to their intracellular targets are commonly constructed of modular

domains that either have a catalytic function or mediate the interaction of proteins with one
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another, or with second messengers (Pawson,1995). Protein interactions carried out by

domains were originally identified in the context of phosphotyrosine signaling through the

ability of Src homology 2 (SH2) domains of cytoplasmic proteins to recognize specific

phosphotyrosine containing motifs on activated receptor tyrosine kinases (Anderson et

al.,1990; Matsuda et al.,1990; Songyang et al.,1993). During protein–protein interaction

domains not only recognize exposed features of binding partners but also post-translationally

modified sequences (Blaikie et al.,1994; Kavanaugh et al.,1994; Van der Geer et al.,1996),

phosphothreonine/serine–containing elements (14-3-3 proteins FHA,WD40 domains (Yaffe et

al.,2001), phoshphoinositides (PI) (i,e PH, EYVE, PX, ENTH, Ferm) and Tubby domains

(Cullen et al.,2001; Santagata et al.,2001).

1.3.1 SH2 domain in protein interaction

The ability of interaction domains to mediate the formation of protein complexes in a

fashion that depends on protein phosphorylation is typified by the binding of SH2 domains to

phosphotyrosine sites. SH2 domains are protein modules of 100 amino acids that recognize

phosphotyrosine residues-containing peptides in the context of 3-6 carboxy terminal amino

acids (Dilworth et al.,2001) such as those found in the non catalytic region of activated

growth factor receptor, located either between the membrane and the kinase domain or in the

C-terminal loop (Heldin et al.,1998). Such interactions link receptor autophosphorylation to

the activation of specific cytoplasmic signaling pathways. SH2 domains serve as intracellular

targets of RTK and more complex multi-subunit receptors, cytokines and extracellular matrix

components (Schlessinger, 2000; Hunter, 2000). Binding energy for SH2 domain-phospho

peptide interaction comes from its association with phosphotyrosine and also stabilizes the

SH2 mediated complexes (Piccione et al.,1993). In addition, to recognition of

phosphotyrosine SH2 domains recognize three to five residues immediately C–terminal to the

phosphotyrosine in a fashion that varies from one SH2 domain to another (Reedijk et al.,

1992; Waksman et al.,1993; Pascal et al.,1994; Kay et al.,1998). Proteins with more than one

SH2 domain bind with more specificity and affinity with their cognate partners. Thus,

proteins with two tandem SH2 domains bind cooperatively to bisphosphorylated sites

(Ottinger et al.,1998) and Src family kinases can potentially interact with their targets through

both their SH2 domains and the covalently linked SH3 domain, which recognizes proline rich

sequences (Kanner et al.,1991; Nakamoto et al.,1996; Pellicena et al.,2001). SH2 domain of

SH2D1A protein shows apparent flexibility as it can interact not only a phosphotyrosine

residue and more C-terminal amino acids, but also engages atleast two residues N-terminal to

the phosphotyrosine (Poy et al.,1999; Li et al.,1999). There are 111 SH2 domains in the non-
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reductant set of human gene products found in proteins with diverse functions, including

regulation of protein/lipid phosphorylation, phospholipid metabolism, transcriptional

regulation, cytoskeletal organization and control of Ras like GTPase.

1.3.2 PTB domains

PTB domains are characterized through their ability to recognize phosphorylated Asn-

Pro-X-Tyr ß–turn motifs such as found in the RTKs for Nerve growth factor, Insulin or

Epidermal growth factor (Zhou et al.,1995; Trub et al.,1995) and show inherent flexibility for

interaction. Scaffolding proteins with PTB domains like Shc, FRS2 or IRS-1 bind

autophosphorylated receptors positioning these proteins for multisite phosphorylation and

subsequent binding of SH2 domain targets such as Grb2 (for Shc and FRS2) or PI3-kinase

(for IRS-1) (Rozakis-Adcock et al.,1992; Kouhara et al.,1997; Backer et al.,1992). PTB

domains of FRS2 binds to a non phosphorylated peptide ligand found in the FGF receptors

and this interaction is quite different from that exhibited by PTB domain for Asn-Pro-X-pTyr

motifs (Ong et al.,2000; Dhalluin et al.,2000). This  indicates that a PTB domain can bind

Modulator interaction domains as building blocks in signal transduction. Interaction domains
bind proteins, phospholipids of nucleic acids. A subset of such domains is illustrated and their general
binding functions are indicated ( Pawson and Nash   2003)
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both phosphorylated and non phosphorylated motifs. Due to flexible scaffold structure

proteins with PTB domains mediates a wide range of protein-protein and protein-phospholipid

interactions (Blomberg et al.,1999; Forman-Kay et al.,1999; Prehoda et al.,1999; Pearson et

al., 2000).

1.3.3 Domains recognizing phosphoserine/ threonine 

Large number of domains bind to phosphoserine/threonine containing motifs

suggesting that protein phosphorylation is a rather general way of regulating protein-protein

interactions (Yaffe et al.,2001), first recognized in the context of 14-3-3 proteins, which binds

motifs such as Arg-Ser-X-pSer-X-Pro (Muslin et al.,1996; Tzivion et al.,2001) and has more

recently been described for FHA domains,which are found in proteins that regulate the DNA

damage response (i.e. Rad 53, Chk2), gene expression (Forkhead proteins) and protein

trafficking (kinesins) (Durocher et al.,1999; Durocher et al.,2000). FHA domains bind

preferentially to phosphothreonine motifs, and recognize the +3 residue relative to the

phosphothreonine in a fashion that differs from one FHA domain to another any may impart

biological specificity. FHA domain is similar to MH2 domains found at the C-terminus of

Smad proteins, the targets of TGF ß-receptor serine /threonine kinases (Wu et al.,2000).

1.4 Nuclear receptors as transcription factors

Nuclear receptors (NR) as transcription factors play an important role in growth,

development, homeostasis, reproduction and disease processes (Mangelsdorf et al.,1995;

Whitfield et al.,1999). As, ligand activated transcription factors, NR provide a direct link

between signaling molecules that control these processes and transcriptional responses. NR

form a superfamily of phylogentically related proteins with 21 genes in the complete genome

of Drosophila melanogaster (Adams et al.,2000), 48 in humans (Robinson-Rechavi et

al.,2001)  [but one more, FXRß, in the mouse (Robinson-Rechavi and Laudet, 2003)] and

unexpectedly, more than 270 genes in Caenorhabditis elegans (Sluder et al.,1999). The

superfamily includes the classic steroid receptors (androgen, estrogen, glucocorticoids,

mineralocorticoids and progestrone receptors), thyroid receptors, vitmain D and retinoid

receptors. NR share common functional domains that includes a ligand-binding domain, a

DNA-binding domain (consisting of two zinc fingers) and two domains that are involved in

transactivation of genes (Beato et al.,1995). NR regulate transcription by binding their

cognate lipophilic ligands and subsequently undergo a conformational change that alters their

ability to interact with regulatory proteins. which may lead to repression, depression or

activation of transcription. In case of  activation, NR recruit coactivators (discussed in detail

separately), which lead to acetylation and hence condensation of the chromatin and
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subsequently other coactivator protein complex bind the receptor and interact with the basal

transcription machinery to initiate transcription (Lemon et al., 2000; Rachez et al., 2001;

Glass et al.,2000; Freedman et al.,1999). Ligand bound NR interact with cognate binding site

called hormone response element (HRE) to affect the transcription of target genes. HREs are

composed of two hexameric half–site core sequences (Aranda et al.,2001) and diversity

among HREs is achieved by modifying the location of the half–sites relative to one another. 

1.4.1 Coactivator recruitment by nuclear receptors

Coactivators are different from the general transcription factors in that most of them

do not directly bind to the DNA but are associated with the promoter region via a gene

specific activator molecule like NR. Over 30 potential coactivators have been identified by

their ability to bind and alter the transcriptional activity of ligand activated NR (Wallberg et

al., 2000). Steroid receptor coactivator (SRC-1) is the founding member of SRC family of

coactivators (Onate et al.,1995), which also includes transcriptional intermediary factor–2

(TIF2, 42,43 M9 and receptor associated coactivators-3  (Li et al.,1997; Anzivk et al.,1997;

Chen et al.,1997; Torchia et al.,1997).

Two distinct steps in target gene activation turn up to be regulated by coactivators. Firstly,

coactivators remodel the chromatin structure of the promoter region in order to facilitate

binding of other activators and the component of the RNA polymerase II transcriptional

machinery. Secondly, coactivators recruit protein complexes (mediator complex) that interact

with one or more subunits of the RNA polymerase II and enhance the initiation of

transcription by stabilizing the preinitiation complex (PIC) (Naar et al.,2001).

There are two general classes of enzymes complexes that appears to a play critical role

in nucleosome remodeling mediated transcriptional activation. These are;

1. Histone acetyl transferase (HAT) which regulate nucleosome structure by altering the

histone acetylation pattern of core histone tails (Sterner et al.,2000)

2. ATP-dependent chromatin remodeling factors (Sudarsanam and Winston, 2000;

Varga–Weisz, 2001). 

Histone acetyltransferases are the best characterized group of enzymes that covalently

modify the structure of chromatin. They acetylate basic lysine residues located at the N-

terminal tail of histones (Sterner and Berger, 2000). The acetylation of histones is thought to

reduce electrostatic interactions between histones and DNA (Hong et al.,1993) and between

separate nucleosome particles leading to the destabilization of the higher-order folding of

chromatin (Tse et al.,1998). Acetylation might also disrupt the secondary structure of histone

N-termini, which might further destabilize interaction with DNA and the nucleosome itself
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(Hansen et al.,1998). Additionally, it has been shown that acetylation of specific lysine

residues in the core histones provides novel recognition surface for proteins having

bromodomain structures. This lead to the conclusion that, histone acetylation may enhance the

initiation of transcription by two distinct mechanisms: by remodeling the structure of

nucleosomes which leads to increased access of transcription factors to the promoter and by

creating the specific binding sites for bromodomain containing transcriptional co regulators

such as TFIID and SWI/SNF (DiRenzo et al., 2000; Hassan et al.,2000; Jacobson et al.,2000;

Syntichaki et al.,2000). A number of coactivators that are recruited by activated NRs contain

intrinsic HAT activity including the p160 family of coactivator’s also known as steroid

receptor coactivators (SRC) (Leo and Chen, 2000) and general coactivators CBP/p300 and

PCAF (Yao et al.,1996). The p160 family coactivators communicate with virtually all NR in a

hormone dependent manner, suggesting a common pathway of hormone-induced gene

activation among the NR family (McKenna et al.,1999; Leo et al.,2000). The p160 proteins

bind to the LBD of nuclear receptors via receptor interacting domain, which contains three

short LXXLL binding motifs (where L is leucine and X is any amino acid). These motifs are

conserved in both sequence and spacing and their number varies from one coactivator to

another (Heery et al.,1999; Le Douarin et al.,1996; Rachez et al.,1998;Torchia et al.,1997).

Analysis of these motifs has revealed that they form amphipathic α-helices with the leucine

residues forming a hydrophobic surface on the face of the helix. Although the different

receptors bind the common LXXLL motif in coactivators, there is receptor specific

differential utilization of these motifs. Whereas a single motif of SRC-1 coactivator is

sufficient for activation by ER, different combinations of two appropriately spaced motifs are

Coactivator recruitment; Ligand binding induces conformational changes in the ligand binding
domain (LBD) of receptor and exposes coactivator docking site on LBD. Coactivators interact with the
receptor on these exposed sites via specific LXXLL motifs present in coactivators  (Pike et al.,2002)
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required for activation by TR, RAR and androgen receptor (AR). LXXLL binding motifs are

needed for cooperative interaction with NR dimer (Darimont et al.,1998; Shiau et al.,1998;

Wisely et al.,1998). The mechanism of interaction seems to be receptor specific and several

combinations of LXXLL binding motifs are differently required for interaction with the

different composition of NR dimers (Darimont et al.,1998; Mak et al.,1999; Heery et

al.,2001). Recently, Zor et al.,2004 and Razeto et al.,2004  reported that there are differences

in the binding mode of the LXXLL motif with the NR and non nuclear receptor based

complexes.

In addition to having enzymatic HAT activity p160 family of coactivators have an

important role as platform molecule which recruits other proteins such as CBP/p300 and

PCAF complexes. CBP/p300 is one of the most potent acetyl transferases. Unlike p160 family

members, CBP/p300 is able to acetylate all four histones within nucleosomes and it is able to

communicate with numerous promoter–binding transcription factors such as CREB, NRs,

STATs, Ets, c-Fos, c-Jun and c-Myb. Therefore, CBP/p300 could be seen as a global

coactivator in higher eukaryotes (Ogryzko et al.,1996; Yang et al.,1996). 

Mechanism of action of p160 nuclear receptor coactivators. A two-step mechanism has been proposed
for p160 proteins mediate nuclear hormone receptor transcriptional activation. As an initial step, HAT activity of
the recruited coactivator complex modulates local chromatin structure resulting in general transcription factors
gaining access to DNA at the promoter. This step is followed by recruitment or stabilization of the RNA
polymerase II holoenzyme (pol II) through direct or indirect binding of coactivators with general transcription
factors associated with pol II. The high mobility group protein HMG-1/-2 enhances transcription by facilitating
steroid receptor binding to specific hormone response elements and stabilizing the receptor–DNA complex
(Edwards,  1999). [Abbreviations; DBD, DNA binding domain, AF-1/2, activation factor 1/2, HAT histone
acetyltransferase, (HMG), high mobility group, HRE, hormone response elements ]
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In addition to histone acetylation CBP /p300 can also acetylate non-histone proteins such as

p160 family of coactivators, transcription factors such as p53 and components of general

transcription machinery such as TFIIE and TFIIF (Sterner and Berger, 2000). This acetylation

mechanism is thought to mediate the autoregulation of coactivation process e.g. it is

documented that the acetylation of lysine residues of p160 proteins in the vicinity of the

LXXLL motif abolishes p160 coactivator interaction with NR, which in turn causes the

dissociation of coactivator complex including p300/CBP from the receptor and target gene

promoter leading to the attenuation of transcription (Chen et al.,1999). Thus CBP/p300 could

have a dual role firstly to catalyze histone acetylation required for gene activation and

secondly to attenuate the process by acetylating p160 proteins (Bevan and Parker,,1999).

1.4.2 Coactivators in chromatin remodeling 

SWI/SNF, ISWI, CHD and MI-2 complexes form another important class of

coactivators involved in NR mediated chromatin remodeling (Dilworth et al.,2000; DiRenzo

et al., 2000;Varga-Weisz et al.,2001). SWI/SNF and ISWI are the best characterized ATP-

dependent remodeling complexes. Unlike HATs, these complexes do not carry out covalent

modification of histones. Instead they catalyze the uncoupling of ionic interactions between

histones and DNA using the energy supplied by ATP hydrolysis. They are able to alter

nucleosome conformation by sliding histone octamers to another site on the DNA or by

changing the helical torsion of the DNA twist (Havas et al.,2000; Sudarsanam and Winston ,

2000; Fry et al.,2001). A novel multifunctional ATP-driven chromatin remodeling complex

called WINAC that interacts with  vitamin D receptor (VDR) was described by Kitagawa et

al.,2003.

1.5 Modulation in protein–protein interaction

Precise protein–protein interaction is utmost important to carry out their normal

functions. Any  aberration in normal protein interaction leads to number of diseases and other

abnormalities e.g. regulation of proteolysis is critical for the healthy function of the cell

excessive proteolysis leads to diseases like emphysema, thrombosis, rheumatoid arthritis and

hyper fibrinolytic hemorrhage (Stein et al.,1995; Whisstock et al.,1998), while incomplete

proteolysis can be seen as a cause in Alzheimer’s disease (Moir et al., Caswell et al.,1999),

psorisis (Abts et al.,1999) tumor development (Suminami et al.,2000) and infection by

parasites and nematodes (Zhang et al.,2001). Many approaches have been developed to study

and interrupt the abnormal interaction between proteins. Some of the approaches are as;
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1.5.1 By use of synthetic molecules

Modulation of protein-protein interaction by synthetic molecules that can bind a

protein surface is still a major challenge (Hartwell et al.,1997) due to difficulty in matching

the unsymmetrical distribution of polar and non polar domains on the protein as well as

covering a sufficiently large surface area to achieve high affinity. However, for some proteins

with a cleft or cavity molecules have been designed e.g guanidine esters, bind to IL2 and

block its interaction with its heterotrimeric receptor complex (Tilley et al.,1997). Small

heterocylces bind to CD 4 and disrupt its binding to MHC class II proteins on the surface of

antigen presenting T cells (Huang et al.,1997). Park et al.,2002 have developed a strategy to

recognize protein surface by designing molecules that contains a large funtionalized and

variable interaction surface (Hamuro et al.,1997) to disrupt the interaction between serine

proteases and their proteinaceous inhibitors (PIs). Anionic polymers or oligomers such as

aurintricarboxylic acids, heparin derivatives and oligophenoxyacetic are used to target

charged regions on a protein surface.

1.5.2 By use of naturally organic molecules 

Number of naturally occurring organic molecules have been used to target protein–

protein interactions. Taxane agents like paclitaxel (Taxol) (Rowinsky et al.,1997), [a

diterpenoid isolated from the bark of pacific yaw tree] and its semi-synthetic derivative

docetaxol, bind to ß–subunit of the tubulin hetrodimer and there by stabilizes interaction

between the tubulin heterodimers. They are used in a number of human cancers. Laulimalide

(Moobery et al.,1999), epothilones A and B (Bollag et al.,1995), eleutherobin and

discodermolide (ter Haar et al., 1996) are among natural organic molecules used to stabilize

microtubules. Brefeldin A, a fungal metabolite stabilizes protein interaction between

guanidine diphosphatase bound proteins of Ark family and Sec7 domains (Peyroche et al.,

1999). FK1012 (Spencer et al.,1993), (a dimer form of naturally occurring small molecule

FK506) and cyclosporin A (Belshaw et al.,1996) induce dimerization of genetically

engineered receptors and consequently induce signal transduction and specific target–gene

activation (Spencer et al.,1996). FK506 and rapamycin reconstitutes activity of transcriptional

factors, whose functional domains had been separated and linked to the ligand–binding

proteins of these organic molecules (Rivera et al.,1996).

1.5.5 By use of peptides

Peptides derived from the protein interaction surfaces have been reported by several

workers to inhibit the protein interactions. Zhang et al.,1991 reported that the tetrapeptide Ac-

Thr-Leu-Asn-Phe-COOH derived from the C-terminal of HIV-1 protease inhibits the protease
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by dissociative mechanism. Zutshi et al.,1998 used a peptide derived from the N-termini of

HIV-1 protease cross linked by a sequence from C-terminal to inhibit the protease.

Ribonucleotide reductase is important for Herpes simplex virus for its virulence and

reactivation from latency  (Jacobson  et al.,1989). This enzyme is active when its two subunits

interact each other. Discovery of a hexapeptide Ala-Val-Val-Asn-Asp-Leu (Krogsrud et al.,

1993) inhibits enzymatic activity of ribonucleotide reductase by preventing association

between the two enzymatic subunits. Tumor suppressor protein p53 is suppressed in majority

of human tumors. In about 30% of sarcomas, Hdm2 protein interaction with p53 inhibits its

activity by two different mechanisms; first Hdm2 binds to the transcriptional activation

domain of p53 and thereby inhibits expression of p53 target genes, second a protein complex

involving Hmd2 mediates nuclear export of p53 and subsequent degradation of p53 by

cytoplasmic proteasomes (Freedman et al.,1999). Phage display has revealed that peptides of

varying lengths (10-14 amino acid) could disrupt the interaction between p53 and Hdm2. In

addition a cyclic nonapeptide composed of natural and unnatural amino acids also inhibits this

interaction. Function of transcription factor E2F, a crucial cell cycle regulator controlling

G1/S transition (Muller et al., 2000) was effectively shown to be antagonized by the peptides

by blocking its binding to DNA target sequence and there by inhibiting E2F–dependent

transcription (Fabrizzio et al.,1999).

1.5.4 Low molecular weight modulators (Identified by screening of chemical libraries)

Screening chemical libraries could identify a number of modulators of protein

interaction. Anti-apoptotic bcl-2 family genes bcl-2 and bcl-xl  whose over expression provide

resistance to the tumors  to chemotherapy (Gutierrez-Puente et al.,2002) and prevent

apoptosis by inhibiting the function of other pro-apoptotic members of the Bcl-2 family, such

as Bax and Bak, by binding to their BH3 (Bcl-2 homology 3) domain.  Degterev et al., 2001

set up an in vitro assay based on fluorescence polarization to prevent this interaction by

identifying small molecules by screening a chemical library comprising of 16320 chemicals.

Three compounds termed as BH3I-1, BH3I-1´and BH3I-2 were identified to interrupt this

interaction. Interaction of transcription factor c-Myc with Max (Amati et al.,1993) is known

to be cause of one out of 7 human cancer deaths. On screening a chemicals library

encompassing approximately 7000 compounds four active compounds were identified to

modulate this interaction (Boger et al.,2000; Menssen et al.,2002; Brooks et al.,1996). Carter

et al., 2000 identified N-alkyl 5 arylalkylidine–2 thioxo-1,3 thiazolidine 4-ones as an

antagonist for the TNFx/TNFRcI (tumor necrosis factor/Tumor necrosis factor receptor I) 
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interaction on screening chemical to interrupt this interaction which is known to be a cause of

various autoimmune diseases like rheumatoid arthritis or Crohn´s disease (Risau, 1997). 

1.5.5 By mutation

Protein-protein interactions are highly specific although some proteins are

multispecific. A mutation in anyone of the interacting partners may disrupt their interaction.

Shiu et al., 1996 created a mutation in CREB that prevented its association with coactivator

CBP. However, not all mutations lead to a disruption in the interaction, but also might

enhance interaction between them. Human T-cell leukemia virus protein Tax does not interact

directly with serum response factor (SRF) (Fujii et al.,1992; Suzuki et al.,1993). Mutations

created in Tax activate c-fos promoter through SRE (Fujii et al.,1988) a process possible only

from a direct interaction between Tax and SRF. 
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Aim of the study 

 

Protein-protein interactions play a key role in cellular processes. Their specificity is 

instrumental for signal transduction and gene regulation, which govern cell growth, 

proliferation, differentiation and programmed cell death, as well as for basic metabolism and 

other biochemical processes. In all cases protein-protein interactions can be activating or 

inhibiting. They may be exclusive or with varying partners and may be the basis for the 

formation of large complexes comprised of many interaction partners. The latter is of 

particular interest because many proteins contain a range of domains suitable for different 

specific interactions enabling these proteins to interact with many partners and participate in 

various processes. Given this general importance, protein interactions are studied at various 

levels using a wide range of analytical methods, which mostly do not allow to assign specific 

activities to individual interactions or interaction domains in vivo.  

The main aim of the project was to develop a tool to interfere with one specific protein 

interaction at a time in vivo. For this, a peptide expression vector system had to be be 

developed that allows the expression of small peptides in mammalian cells, which to ensure 

expression can be monitored with an unlinked fluorescent protein. This system should be so 

versatile that very small peptides can be presented with the same efficiency as somewhat 

larger peptides with and without flanking sequences for stabilization. In addition, the system 

should allow expression of random peptide libraries containing a large number of different 

unrelated peptides, which can be used for in vivo selection protocols.  

This aim can be broken into the following developmental steps each representing an 

interesting scientific question of its own. These are: which vector system can be used for 

efficient expression of short peptides; disruption of known protein-protein interactions to 

establish the basic protocol and verify if the design of the expression vector system is 

appropriate; disruption of a protein-protein interaction in the nucleus to demonstrate that 

peptides also function in the nucleus; and finally selection of a novel bioactive peptide by in 

vivo selection from a random peptide library expression system. 
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Material and methods

2.1.1 Chemicals

Agarose Roth, Karlsruhe

Agar      Roth, Karlsruhe

Ampicillin Gibco/BRL, Karlsruhe

ATP (adenosine 3´-triphosphate) MBI Fermentas

Anhydrotetracycline  Acros Organics, 

Leicestershire

Bromophenol blue Roth, Karlsruhe

Chloroquine Sigma, Deisenhofen

Deoxynucleotides (dG/A/T/CTP) MBI Fermentas,

St.Leon-Rot 

Dimethyl sulfoxide (DMSO) Sigma, Deisenhofen

Ethidium bromide Sigma, Deisenhofen

Effectene Qiagen, Heldin

Polybrene  Sigma, Deisenhofen 

9-cisretinoic acid Sigma, Deisenhofen

Penicillin/streptomycin Gibco/BRL, Karlsruhe

Nerve growth factor Biomol, Hamburg 

Vitamin D Biomol, Hamburg

2.1.2 Enzymes

Alkaline phosphate MBI Fermentas, 

St.Leon-Rot

Restriction endonucleases MBI Fermentas,

St.Leon-Rot

NEB, Frankfurt

T4 DNA ligase MBI Fermentas

St.Leon-Rot 

Taq-DNA polymerase Sigma, Deisenhofen

Trypsin Gibco/ BRL, Karlsruhe

2.1.3 Kits and other materials

Qiagen mini prep kit Qiagen, Hilden
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Qiagen maxi prep kit Qiagen, Hilden

Endofree plasmid kit Qiagen, Hilden

Effectene transfection kit  Qiagen, Hilden

Gel extraction kit Qiagen, Hilden

PCR purification kit Qiagen, Hilden

Great EscAPe TM SEAP

chemiluminescence detection kit Clontech, Heidelberg

Sterile filter 0.45µm, cellulose acetate free Nalgene, Rochester

Luminometer BMG, Offenburg

2.2 Media and buffers

2.2.1. Medium for E. coli

LB-Medium 1.0% Tryptone

0.5% Yeast extract

1.0% Nacl

pH 7.2

Ampicillin 100µg/mL was added to the media after autoclavation.

LB-plates additionally contained 1.5% Agar.

2.2.2 Cell culture media

All cell culture media and addictives were from Gibco/BRL, Fetal calf serum (FCS),

Dulbecco´s modified eagle medium (DMEM) with 4.5mg/mL glucose, 2mM L-glutamine,

1mM sodium pyruvate.

Freeze medium: 90% heat inactivated FCS, 10% DMSO

2.2.3 Stock buffers

DNA loading buffer (6x) 0.25% Bromophenol blue

0.25% Xylencyanol

30.0% Glycerol

100.0mM EDTA pH 8.0

PBS 13.7mM Nacl

2.7mM KCL

80.9mM Na2HPO4

1.5mM KH2PO4, pH 7.4

TAE (10x) 400mM Tris/acetate
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10mM EDTA

pH 8.0 (Acetic acid)

PCR (10x) 100mM Tris-HCl, pH 8.8 at 250C

500mM KCl

0.8% Nonidet P40

15mM MgCl2 

KCM (5x)  500mM KCl

150mM CaCl2 

250mM MgCl2

Lysis Buffer 20mM Hepes pH7.5

10mM EGTA

40mM ß-glycerophosphate

2.5mM MgCl2

1% NP-40

* Protease inhibitor cocktail was added to the lysis buffer at the time of lysis of cells

Digestion Buffer 100mM Nacl

10mM Tris-Hcl pH 8

25mM EDTA pH 8

0.5% (w/v) SDS

0.1mg/mL Proteinase K

* Proteinase K was added fresh every time to buffer. 

2.3 Bacterial strains and cell lines

2.3.1 Bacterial strains 

E.coli     Description

Top 10 F´  F´lacITn10 (TetR)mcrA∆(mrr-hsdRMmcrBC)

                                       φ80lacZ∆M15 ∆lacX74recA1araD139 ∆(araleu)

                                              7697galUgalK rpsLendA1nupG

DH5aF´ F´/endAI hsd 17 (rk-mk-) supE44, recAI, gyrA

             (NaI), thi-I,
2.3.2 Cell lines

Cell lines Description

HeLa                        Human cervix carcinoma, epithelial-like 
     cells growing in monolayer  
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NIH3T3            Swiss mouse embryo, fibroblast, adherent 
                                               monolayer

NIH3T3TrkA-Ros   Modified NIH3T3 cell line, expressing TrkA                                         

                                                            domain and SHP-1 (phosphatase)

Ecopack 293                    Human embryonic kidney (HEK-293) fibroblast                                  

derived packaging cell line.

2.4 Methods in molecular biology

2.4.1 Plasmid preparation for analytical purpose

Small amounts of plasmid DNA were prepared as described by (Lee and Rashid,

1990). Plasmid preparation for mammalian cells, DNA of high quality was prepared using

Qiagen maxi-kit and Qiagen Endofree maxi kit (Qiagen) according to manufacturer’s

protocol. 

2.4.2 Digestion of DNA samples with restriction endonucleases

Restriction endonuclease cleavage was accomplished by incubating the enzyme(s)

with the DNA in appropriate reaction condition. The amounts of enzyme, DNA, buffer, ionic

concentrations and the temperature, duration of the reaction were adjusted to the specific

application according to the manufacturer’s recommendations.

2.4.3 Dephosphorylation of DNA 5´-termini with calf alkaline phosphatase (CIAP) 

Dephosphorylation of 5´-termini of vector DNA in order to prevent self-ligation of

vector termini was carried out by CIAP. For dephosphorylation required amount of DNA

termini were dissolved in 44µL of deionized water, 5µL 10x reaction buffer (500mM

Tris/HCL pH 8.0, 1mM EDTA pH 8.5) and 1µL CIAP (1U/µL). The reaction mixture was

incubated at 37OC for one hour and stopped by heating at 65OC for 15 minutes.

2.4.4 DNA insert ligation into vector DNA

T4 DNA ligase catalyzes the formation of a phosphodiester bond between juxtaposed

5´-phosphate and 3´-hydroxyl termini in duplex DNA. In a total volume of 10µL the digested,

dephosphorylated and purified vector DNA (200ng), the foreign DNA to be inserted, 1µL T4

DNA ligase (2U for sticky ends and 4U for blunt ends) were mixed. The reaction mixture was

incubated at 16OC overnight. T4 DNA ligase was inactivated by heating the reaction mixture
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at 65OC for 10 minutes. The resulting ligation reaction mixture was directly used for bacterial

transformation.

*Note: Concentration of DNA and insert in addition to mention above was varied in

some cloning experiments.

2.4.5 Phosphorylation of DNA by T4 polynucleotide kinase 

T4 polynucleotide kinase (T4PNK) is a polynucleotide 5’-hydroxyl kinase that

catalyzes the transfer of the phosphate from ATP to the 5`-OH group of single and double

stranded DNAs, RNAs, oligonucleotides or nucleoside 3’-monophosphates (forward

reaction). In the presence of ADP, T4PNK exhibits 5’-phosphatase activity and catalyzes the

exchange of terminal 5'-phosphate groups (exchange reaction). 

In a total reaction mixture of 20µL DNA fragment to be phosphorylated, 2µL of

T4PNK (10U/µL), 2µL (10x) T4PNK buffer (500mM Tris-HCl pH 7.6 at 25°C, 100mM

MgCl2, 50mM DTT, 1mM spermidine and 1mM EDTA), adenosine triphosphate

(ATP) 1µL were mixed. Reaction mixture was incubated at 37OC for half an hour. T4PNK

was inactivated, by incubating at 68OC for 10 minutes.

2.5 Agarose gel electrophoresis

Agarose gel electrophoresis was used for separating and identifying DNA fragments.

0.5x TAE or TBE electrophoresis buffers were used for separation. The voltage was set

typically to 1-10 V/cm of gel. Gels were stained by covering the gel in a dilute solution of

ethidium bromide (0.5µg/mL in water) and gently agitating for 30 minutes or by adding

ethidium bromide directly to the gel solution.

2.5.1 Isolation of DNA fragments using low melting temperature agarose gels

Following preparative gel electrophoresis using low melting temperature agarose, the

gel slice containing the band of interest was removed from the gel. This agarose slice was

then melted and subjected to isolation using the QIAquick gel extraction kit (Qiagen).

2.5.2 Polymerase chain reaction (PCR)

The following standard protocol was adjusted to the specific application;

In a total 50µL of reaction mixture DNA to be amplified, set of primers (sense and antisense

20pmoles each), dNTPs 1µL (10mM each), 10X PCR buffer (100mM Tris/HCl pH 8.8 at

250C, 500mM KCl, 0.8% Nonidet P40, 15mM Mgcl2) and 1µL of Taq polymerase (5U/µL)

were mixed. The reaction was carried out as follows
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950C  5 minutes  (first denaturation)

950C 30 seconds  (denaturation

560 C 40 seconds (hybridization)

72OC 45 seconds (extension)

Amplification 30 cycles

72OC 10 minutes (last extension)

*Note: Temperature, time of hybridization and extension steps were adjusted as per the need

of experiment.

10µL from each reaction were electrophoresed on an agarose gel appropriate for the PCR

product size expected.

2.5.3 PCR product purification 

DNA fragments obtained by PCR were purified by PCR purification kit (Qiagen)

before cloning or sequencing to remove nucleotides and enzyme following the manufacturer's

recommended protocol.

2.5.4 Phenol chloroform precipitation

Restriction enzyme digested DNA, PCR products were purified and concentrated by

phenol/chloroform precipitation as follows;

To a reaction mixture, add equal amount of phenol/chloroform, vortex, and centrifuge at

12,0000rpm for 5 minutes at 40C. Supernatant carefully taken into another tube and first step

repeated. Aqueous layer taken into new tube, one-tenth volume of 3M NaoAc pH 5.2 and two

volume of 100% ethanol were added. Reaction mixture was kept at –200C for 30 minutes and

centrifuged at 40C for 20 minutes at 13,000rpm, followed by washing with 70% ethanol.

Dissolve the pellet in appropriate volume of water or TE buffer.

2.6 Introduction of plasmid DNA into E.coli cells

2.6.1 Preparation of competent cells

Competent cells were made according to the procedure described by (Chung et al.,

1988). For long term storage competent cells were frozen at –80OC. Transformation

frequency ranged between 106 and 107 colonies /µg DNA.

2.6.2 Transformation of competent cells

Reaction mixture comprising of 10µL ligation mixture, 20µL 5x KCM buffer (500mM

KCL, 150mM CaCl2, 250mM MgCl2) 70µL of H2O were added to 100µL of competent cells
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and incubated on ice for 30 minutes, followed by incubation for 10 minutes at room

temperature. 1mL LB medium with out antibiotic was added to cells and incubated for 1hour

at 370C with mild shaking to allow expression of the antibiotic resistance gene. Transformants

were selected on appropriate plates. 

2.7 Vectors 

pLNHX (Clontech) is a part of pantropic retroviral vector designed for efficient gene

delivery and expression.

pIRES-EYFP (Clontech) is an IRES bi-cistronic vector with enhanced yellow

fluorescent protein as a  reporter

pCRE-SEAP (pCRE) vector has three copies of the cAMP response binding element

(CRE) sequence fused to a TATA-like promoter (PTAL) region from the herpes simplex virus

thymidine kinase (HSV-TK) promoter and Secreted enhanced alkaline phosphatase (SEAP)

gene as a reporter.

pGRE-SEAP (pGRE) vector has three tandem copies of Glucocorticoid response

element (GRE) sequence fused to a TATA-like promoter (PTAL) region from the Herpes

simplex virus thymidine kinase (HSV-TK) promoter and Secreted enhanced alkaline

phosphatase (SEAP) gene as a reporter.

pTAL-SEAP vector was modified by introducing vitamin D response element

(VDRE ) in the multiple cloning site.

pOS IRESGFP, bi-cistronic retroviral vector with green fluorescent protein as a

marker.

2.7.1 Vector constructs

pLNHX is a part of pantropic retroviral vector designed for efficient gene delivery and

expression. Retroviral vector constructs are based on the pLNHX vector. Drosophila heat

shock promoter Phsp70 was replaced by human cytomegalovirus (CMV) major immediate

early promoter, excised from pIRES-EYFP vector. 

5´LTR Ψ
Neo CMV IRES EYFP 3´LTRSfi1 Sfi1

peptide

Schematic structure of pLNHX retroviral vector indicating site of cloning short peptides,
restriction enzymes employed and various vector constituents.
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Nsi1 and BsrG1 restriction sites were introduced into the multiple cloning site of pLNHX,

employed to insert Internal Ribosome Entry Site (IRES) and Enhanced yellow fluorescent

protein (EYFP) gene as a single fragment, vector was renamed as pLNHX IR-EY. Two Sfi1

sites with different overhangs were introduced in the multiple cloning sites (MCS) of pLNHX

IR-EY vector before the IRES sequence to allow efficient directional one step cloning of

peptide coding oligonucleotides.

2.7.2 Oligonucleotides coding for short peptides

  Various oligonucleotides coding for short peptides were cloned in the pLNHX IR-EY

vector .Two sequences were chosen. One is called as Pos peptide sequence (Pos) it is 13

amino acid sequence derived from Ros tyrosine phosphorylation domain with specific

tyrosine residue needed for interaction with SHP-1 protein tyrosine phosphatase (SHP-1PTP).

The other peptide is called as Neg peptide sequence (Neg) having a single point mutation

which replaces tyrosine by phenylalanine and thus making it no more a binding partner for

SHP-1PTP. In addition to this, another peptide of random sequence was taken as a control

peptide having no specific sequence similarity with Ros tyrosine domain. This peptide was

referred as nonspecific peptide (NSP).

Oligonucleotides used for Pos peptide sequence (Pos)

5´aggccatggagggtcttaattatatggttcttgctactaaatcttcctaaggcctgct 3´

5´ aggccttaggaagatttagtagcaagaaccatataattaagaccctccatggcctgag 3´

Oligonucleotides used for Neg peptide sequence (Neg)

5´aggccatggagggtcttaattttatggttcttgctactaaatcttcctaaggcctgct 3´

5´ aggccttaggaagatttagtagcaagaaccataaaattaagaccctccatggcctgag 3´

2.7.3 Annealing of oligonucleotides

For annealing 50pmoles from each oligonucleotide were mixed in 50µL of annealing

buffer or water, incubated at 900C for 10 minutes, cooled and subsequently phosphorylated

before cloning in pLNHX IR-EY vector at Sfi1 restriction site. Vector with Pos was renamed

as pLNHX IR-EY Pos, vector with Neg was renamed as pLNHX IR-EY Neg and vector with

NSP was renamed as pLNHX IR-EY NSP.

2.7.4 Addition of self-annealing flanking clamp sequence 

A self-annealing clamp sequence was added to Pos and Neg peptide sequences on both

N and C termini. Self-annealing flanking sequence (EFLIVIKS) as reported by (Gururaja et

al., 2000) forms a stable dimer and protects the peptide from proteases.
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Pos peptide with self-annealing clamp is designated as (PC) and Neg peptide with self-

annealing clamp sequence as (NC).

Oligonucleotides used for PC

5´gatccggccactcaggccatgggcgagttcttgatcgtgataaagtcaggg 3´

5´gataaggaattctccggaagatttagtagcaagaaccatataattaagaccctccatccctgactttatcacgat 3` 

5´gatccggcctagcaggccaatcaggttttaaggaggccctgatttgatgacgataaggaattctcc 3 ´

Oligonucleotides used for NC

5´gatccggccactcaggccatgggcgagttcttgatcgtgataaagtcaggg 3´

5´gataaggaattctccggaagatttagtagcaagaaccataaaattaagaccctccatccctgactttatcacgat3 

5´gatccggcctagcaggccaatcaggttttaaggaggccctgatttgatgacgataaggaattctcc 3´

PC and NC encoding oligonucleotides were cloned in pLNHX IR-EY vector and

vectors were renamed as pLNHX IR-EY PC and pLNHX IR-EY NC respectively. Three

oligos were used for PC and NC, each having atleast 15 to 18 bases complementary to one

other. For PC, 10pmoles from all three oligonucleotides were mixed in 40µL of water used as

a template for PCR. 10-15 cycles of PCR were carried out. Three bands were seen on the

agarose gel, band of required size was excised, amplified using appropriate primers, digested

with Sfi1 and cloned in pLNHX IR-EY vector, renamed as pLNHX IR-EY PC, similarly NC

was cloned in pLNHX IR-EY vector and renamed as pLNHX IR-EY NC.

2.8  LXXLL motif peptides

2.8.1 Short LXXLL peptide with random amino acid residues

Transcriptional activation by nuclear receptors is achieved by the recruitment of

coactivator proteins upon ligand binding. This recruitment involves an activation domain on

the receptor surface and an LXXLL motif located with in the comodulator (McInerney et al.,

1998;  Hall et al., 2000).

 LXXLL peptides with random residues are in the format M X7LX2LLX7 Ter, L is leucine and

X is any amino acid 

Oligonucleotides used

5´gatcggccactcaggccatgnnknnknnknnknnknnknnkctgnnknnkctgctgnnknnknnkn

nknnknnknnktaagtacaggcctgctaggccggatc 3´

5´gatccggcctagcaggcc 3´

(In nnk, n is any base, k is either g or t. Use of k at third position reduces the

frequency of stop codons, while preserving the diversity of amino acids. It ensures occurrence

of only one stop codon (uag).
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Elongation reaction was carried out in a reaction mixture of 50µL containing 50

pmoles from each oligonucleotides, 1µL Taq polymerase (5U/µL), 1µL dNTP mix (10mM

each), 5µL PCR buffer in an automated thermocycler using the following programme 

950C 5 minutes

450C 55minutes 

Hold 40C

Reaction product was purified by PCR purification kit, digested with Sfi1 and cloned

in pIRES-EYFP vector at Sfi1 restriction enzyme site.

Four pIRES-EYFP vector constructs with this random sequence are pIRES-EYFP LX1

(pLX1), pIRES-EYFP LX2 (pLX2), pIRES-EYFP LX3 (pLX3) and pIRES-EYFP LX4

(pLX4). Vector were sequenced by Jena Biosciences GmbH (Germany)

Amino acid sequence of peptide LX1  MLGFFYDLLWFLLCVCVLHP

Amino acid sequence of peptide LX2 MTIAVVFRLMCLLVLGGRVS

Amino acid sequence of peptide LX3 MLQTYVVFLEPLLFDFSRDR

Amino acid sequence of peptide LX4 MRVSLLSLLLRLLQSIAVYR

2.8.2 LXXLL peptides with varying number of motifs

Three short LXXLL peptides varying in number of LXXLL motif and amino acid

residues around the motif were chosen, named as LX 5, LX 6 and LX 7.

Peptide (LX 5) has one LXXLL motif with no additional amino residues on N and C

termini of it.

Peptide (LX 6) has two LXXLL motifs separated with three amino acid residues. 

Peptide (LX 7) has one LXXLL motif with two additional amino acid residues on C

termini of motif.

Amino acid sequence of peptide LX5      MLHRLL Ter

Amino acid sequence of peptide LX6  MLHRLLAAALSRLL Ter

Amino acid sequence of peptide LX7  MHLRLLQL Ter

Oligonucleotides used for LX 5

5´ aggccatgttacatcgtctactgtaaggcctgct 3 ´

5´aggccttacagtagacgatgtaacatggcctgag 3´

Oligonucleotides used for LX 6

5´aggccatgttacaccgtctccttgctgccgcactaagtcgcctcctataaggcctgct 3´

5´aggccttataggaggcgacttagtgcggcagcaaggagacggtgtaacatggcctgag 3´

Oligonucleotides used for LX 7
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5´aggccatgttacaccgtctccttcagttataaggcctgct 3´

5´aggccttataactgaaggagacggtgtaacatggcctgag 3´

Oligonucleotides for LX 5, LX 6 and LX7 were cloned in pIRES-EYFP vector at Sfi1

restriction site, vector was renamed as pIRES-EYFP LX 5 (pLX 5), pIRES-EYFP LX 6 (pLX

6) and pIRES-EYFP LX 7 (pLX7) respectively.

Vitamin D response element (VDRE) sequence

Oligonucleotides coding for one copy of VDRE sequence was cloned in the multiple

cloning site of pTAL-SEAP vector employing Xba1 restriction sites. Vector was renamed as

pTVE.

2.9 General cell culture technique

All cell lines were grown in a humidified 95% air, 5% CO2 (Heraeus) at 370C

routinely assayed for contamination. Before plating cells were counted by Coulter Counter.

Cells were cultured in Dulbecco´s modified Eagle’s medium (DMEM) supplemented with

2mM L-glutamine, 1.0mM sodium pyruvate and 10 % fetal calf serum /FCS).

2.9.1 Transfection with effectene reagent

Ecopack TM -293, NIH3T3 and HeLa cells were transfected transiently at about 75 %

confluence using Effectene transfection reagent (Qiagen). Cells were seeded 24h before

transfection. The following protocol as per the recommendation of manufacturer was

followed

Culture format   DNA (µg)     Enhancer      Buffer          Effectene        

     (µL)             EC (µL)          reagent (µL) 

24 well plate  0.3       2       75  5

12 well plate  0.4       3    100  6

6 well plate  0.6       5     150  9

60mm dish  1.5     12      200 15

*Note: In addition to this protocol some times concentration of reagents and DNA

were changed.

Co-transfection of HeLa cells with two vectors was carried out, by using Effectene

transfection reagent.

2.9.3 Transfection by lipofectamine

HeLa cells were transiently transfected using lipofectamine (Gibco/BRL) essentially

as described (Daub et al., 1997). For transfection in 6-well plates 1.0mL of serum free
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medium containing 7µL of lipofectamine and 1.0µg of plasmid DNA per well was used. After

4h, transfection mixture was removed and fresh medium was added.

2.10     Retrovirus

2.10.1 Retrovirus production

Ecopack TM-293 packaging cell lines (2x105 cells) were seeded in 6 well plates

coated with collagen1 one day prior to transfection. Retroviral vector constructs were

transfected by Effectene Transfection reagent according to the manufacturer’s protocol.

25µM/mL chloroquine was added to cells 3h before transfection. Post 24h of transfection,

medium was replaced with fresh medium lacking chloroquine. Forty eight hours later,

conditioned medium from these cells was harvested, filtered through 0.45µm sterile cellulose

acetate free filters The estimated titer of the retrovirus were 1-2 x 106 colony forming unit

/mL based on the G418 resistant colony formation of the NIH3T3 cells.

2.10.2  Retroviral infection 

NIH3T3TrkA-Ros cells (4x105 cells) were seeded in 60mm dishes one day prior to

infection. Conditioned medium from Ecopack TM 293 packaging cell line was harvested after

forty eight hours, filtered through 0.45µm sterile cellulose acetate free filters and added to

NIH3T3TrkA Ros cells. Cells were grown in presence of 8µg/mL polybrene for 24h. After

24h of infection medium was changed with fresh medium with out polybrene. Infected cells

were analyzed as indicated.

2.11 Cell proliferation

Cell numbers were counted by using a Coulter Counter. Medium was removed

followed by washing of cells with PBS. After washing with PBS, trypsin was added to cells to

detach them from the surface. Cell numbers are displayed per mL.

2.12 Fluorescence activated cell sorting (FACS) analysis

Flow cytometry allows counting and analysis of physical and molecular attributes of

particles in a liquid media. One of the most used applications is the analysis of cells and cell

(sub) populations on single cell level with probes like (antibodies, receptors, fluorescent

markers, streptavidin, etc). 

Infected cells were harvested by trypsinization after 48h and were resuspended at a

concentration of 106cells/mL in DMEM containing 10% fetal bovine serum. Samples were

analyzed by FACS by using an argon laser to excite cells at 488nm and a 530 ± 15nm band

pass filter to detect fluorescent emission. For FACS scans, 10,000 cells were typically
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analyzed by using a FACScan flow cytometer (Becton Dickinson). FACS data were analyzed

using CellQuest software.

2.13 Secreted alkaline phosphatase (SEAP) chemiluminescence detection 

SEAP detection was done by using Great EscAPe TM chemiluminescence detection kit

(Becton Dickinson) following manufacturer’s protocol. SEAP is a modified and heat resistant

alkaline phosphatase secreted directly in the medium. SEAP detection was generally done

after 24h of transfection of SEAP vectors using the following procedure. 110µL of cell

culture medium was taken from the transfected cells, centrifuged at 12,000rpm for 30

seconds, and supernatant was taken in fresh micro centrifuge tube.

SEAP assay protocol (For 96 well plate format)

Pipette 15µl of supernatant to each well, add 45µL of 1x dilution buffer. Incubate at

650C for 30minutes in a water bath, cool samples on ice for 2-3 minutes. Add 60µL of Assay

buffer to each sample; incubate for 5 minutes at room temperature (RT). Add 60µL of

1.25mM CSPD substrate diluted with chemiluminescent enhancer. Incubate for 30 minutes at

RT. Detection was carried out by luminometer (BMG, Germany).

2.14 Protein antibody array

2.14.1 Lysis of cells

Medium was removed from the treated cells and washed with PBS. Cells were

incubated in lysis buffer, scrapped off the plate and transferred into an eppendorf tube. Lysate

was vortexed, centrifuged at 13000rpm at 40C for 20-25 minutes.

2.14.2 Determination of protein concentration

Protein concentration was determined according to Bradford, 1976 method.

2.14.3 Protein detection by array tube 

Array tubes were purchased from Clondiag chip technologies (Germany). Array tube

contains 19 antibodies; each antibody is spotted three times. The same antibodies diluted in

1:5 ratios are also spotted three times. In addition to this, array tube contains markers and

controls. Proteins were spotted on the array tube following this protocol.

1.  Biotinylation of proteins

50µg of protein was mixed with 0.5µL (100µg/µL) of Biotin in a reaction mixture of

50µL (volume was make up with PBS) Incubated at 300C in a thermo-mixer with mild

shaking 500rpm for one hour.

2. Array Tube Blocking 
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250µL of 5% PBS-Milk powder was added to each array tube and incubated for 1h at

300C with shaking.

3. Array tube incubation with biotinylated protein.

Wash array tube with PBS, mix 50µg biotinylated protein from first step with 50µL

2% PBS-BSA and add to array tube. Incubate at 300C for 2h with constant shaking.

4. Washing 

Wash array tube with PBS-T (Tween 0.05%) two times for 5 minutes each at 800 rpm.

5. Array tube incubation with streptavidin gold

0.5µL of streptavidin gold in 99µL PBS-T was added to array tube and incubated at

300C for half an hour and washed thrice with PBS-T.

6. Detection

50µL from Silver enhancing kit A and B were mixed and added to Array tube and the

tube was put in the array tube reader (Clondiag) for detection.

Array data was analyzed by IconoClust software (Clondiag).

 
2.15 Random peptide library construction

Random library of 1x 106 peptides were synthesized employing pOS IRESGFP (gifted

by Klingmuller) bi-cistronic retroviral vector. In order to make random peptide library nnk

codons, where n denotes all four nucleotides and k denotes g and t were chosen for generation

of randomized codons. This ensures a more equal distribution of the amino acids in the library

and two out of three stop codons are omitted. Each peptide has 13 random amino acids. Two

partly complementary oligonucleotide sequences coding for 13 random amino acid residues

with restriction sites for Not1 and BamH1 at 5´and 3´ends respectively are;

5´ataagaatgcggccgctaaactatatgnnknnknnknnknnknnknnknnknnknnknnknnknnktaaggaattcgccg

gatccgcg 3`

(In nnk, n is any base, k is either g or t. Use of k at third position reduces the

frequency of stop codons, while preserving the diversity of amino acids. It ensures occurrence

of only one stop codon (uag).

Second oligonucleotide sequence 5´cgcggatccgcggaattcctta 3´ 

Annealing and elongation was carried out in a reaction mixture of 50µL containing 50

pmoles from each oligonucleotides, 1µL Taq polymerase (5U/µL), 1µL dNTP mix (10mM

each), 5µL PCR buffer in an automated thermocycler using the following programme 

950C 5 minutes
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450C 55 minutes 

Hold 40C

Reaction product was purified by phenol chloroform precipitation, digested with

BamH1 and Not1 and cloned in pOS IRESGFP retroviral vector.

Hundreds of transformations were carried out as described above. Colonies from agar

plates were scrapped by adding 2-3mL of LB medium to each plate. Colonies were scrapped

from plates (approximately 106 colonies) mixed, centrifuged, DNA was extracted and

subsequently purified by Qiagen kit.

DNA was transfected in packaging cell line, viruses were collected after 48h of

transfection. Target cells, were infected by viruses as described above.

2.15.1 Peptide rescue by PCR

Infected cells after treatment and sorting were allowed to grow in 96 well plate.

Peptides, which provided resistance to the cells against dexamethasone, were obtained by

using specific PCR primers to amplify them from isolated DNA. Cells after trypsinization and

washing were incubated in digestion buffer overnight at 50oC with mild shaking and DNA

was precipitated with repeated phenol chloroform extraction.

PCR was carried out by using the primers with restriction enzyme sites for Not1 and

BamH1. PCR product was purified, digested with Not1 and BamH1 for further recloning in

pOS IRESGFP retroviral vector.

Primer used 

Forward primer 5´ataagaatgcggccgctaaac 3´

Reverse primer 5´ ctggcggccgttactagt 3´

Vectors with recloned peptide were further used to infect cells in order to check if the

observed resistivity was due to the peptide or not.
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Results 
3.1 Targeting protein-protein interaction by expressing short domain specific peptide

Proteins interact with their cognate partners to carry out different functions necessary

for the growth and development of cell. Interactions are usually mediated by defined domains

that recognize specific interaction partners. There can be complementary interaction domains

of other proteins, nucleic acids or other molecular ligands. Domains can be highly specific for

one potential interaction or may have the specificity to interact with various ligands

permitting different interactions. In many cases proteins comprise more than one interaction

domains, providing the potential to form multi-protein complexes. Domains through their

interactions mediate the targeting of proteins to a specific sub-cellular location, nucleate the

formation of multiprotein signaling complexes, control the conformation, activity and

substrate specificity of enzymes. Studying protein interactions at the domain level gives a

global view of the complexity of the protein interaction network and possibly of protein

functions. Dissecting a particular signaling pathway by interrupting interaction between

different proteins can reveal specific informations and their effect on the cell. Interaction

between proteins can be disrupted by many ways like blocking interface of the partners,

mutating a specific region, or by organic molecules. Interfering protein interactions by

peptides as inhibitors is also a method of choice. However, instead of adding peptides directly

to cells,  peptides expressed within the cells to alter protein interactions could be a approach

to regulate cellular processes. In the present study a strategy based on disruption of specific

protein-protein interaction by expression of peptides that mimic protein binding domains was

implemented. One way to accomplish this approach is, to select peptide sequences from one

interacting partner where its cognate partner binds and express them in vivo.

For a cell to grow, proliferate and differentiate a number of processes involving

different protein-protein interactions are involved to carry out these functions. However, in

addition to protein interactions that enhance cell growth and differentiation, there are some

inhibitory protein interactions that limit proliferation and growth of cell. One such known

protein interaction inhibiting cell growth and differentiation occurs between tyrosine kinase

Ros and protein tyrosine phosphatase SHP-1 (PTP SHP-1). PTP SHP-1 interacts with tyrosine

kinase Ros at specific phosphorylated tyrosine residue and its dephosphorylation results in

inhibition of cell growth. This particular interaction was chosen as a target to interrupt it by

specific peptides derived from Ros tyrosine phosphorylation domain.

To target a known protein-protein interaction by peptides, an efficient tool is required

to express peptides and monitor them in vivo. To start with, a retroviral expression vector
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system was developed to express efficiently small specific peptides. pLNHX retroviral vector

(Clontech) was employed for this purpose. It was extensively modified by cloning Internal

Ribosomal Entry Site (IRES), Enhanced Yellow Fluorescent Protein (EYFP). hsp promoter

was replaced by human cytomegalovirus (CMV) major immediate early promoter. Multiple

cloning site was further modified to introduce restriction sites for two Sfi1 enzyme with

different overhangs to make sure unidirectional cloning of oligonucleotides encoding for

peptides, as a single cassette. Oligonucleotides were cloned in pLNHX vector at Sfi1

restriction sites. EYFP was used as a reporter and the presence of IRES makes sure that

peptides and EYFP are translated from the same mRNA transcript.

To study a possible interference of a known protein interaction by peptides specially

genetically modified cell line was used.  For interrupting tyrosine kinase Ros and PTP SHP-1

interaction, domain specific peptides were expressed in modified NIH3T3 cell line referred as

NIH3T3TrkA Ros cell line (gifted by F. Böhmer). These cells were expressing tyrosine kinase

Ros and PTP SHP-1. However, expression of PTP SHP-1 was anhydrotetracycline (atc)

regulated. 

3.1.1 Ros tyrosine phosphorylation domain specific peptides

To influence interaction between Ros tyrosine kinase and PTP SHP-1 short specific

peptides were selected from Ros tyrosine phosphorylation domain. Two peptide sequences

were derived from Ros tyrosine phosphorylation domain named as Positive peptide (Pos) and

Negative peptide (Neg). Pos has 13 amino acids identical to sequence of Ros tyrosine

phosphorylation domain with specific tyrosine residue necessary for PTP SHP-1 interaction.

Amino acid sequence of Pos is as;  MEGLNYMVLATKSSTer. Neg is identical to Pos except

tyrosine residue is replaced by phenylalanine. It thus, lacks the phosphorylation site to interact

with PTP SHP-1. Amino acid sequence for Neg is as; MEGLNFMVLATKSSTer.

Additionally, Pos and Neg were modified by adding self annealing flanking amino acid

sequence (GEFLIVIKSG) on both N and C termini. (Pos and Neg with self annealing flanking

amino acid sequence were designated as PC and NC respectively). Flanking sequence is

reported to protect peptides from protease degradation and provides a loop like structure to

the expressed peptide (Gururaja et al., 2000). In addition to these peptides one more peptide,

referred as Non specific peptide (NSP) having no resemblance with the Ros tyrosine

phosphorylation domain derived peptides and lacking tyrosine residue was used as a negative

control. Peptides were expressed from pLNHX retroviral vector as a part of a bi-cistronic

mRNA coding for the peptides and EYFP, both are translated  from same mRNA transcript

due to the presence of IRES. 



                                                                            Results                                                                                   35

.

 

Effect on NIH3T3TrkA Ros cell growth by short domain specific peptides

Fig 1; NIH3T3 TrkA Ros cells were infected with viruses from different pLNHX retroviral
vector constructs separately. Viruses were collected, filtered after 48h of transfection of Ecopack TM 293
packaging cell line. NIH3T3 TrkARos cells were analyzed to determine percentage of cells with the
respective peptide after 48h and 96h of viral infection. A significant increase in the number of cells
expressing Pos was found compared to cells expressing other peptides, which significantly increased after
96 h of infection. NIH3T3 TrkA cells were grown in absence of anhydrotetracycline (atc) throughout the
whole study indicating expression of SHP-1PTP.
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Fig 2; NIH3T3TrkARos cells after being infected with viruses from various retroviral vector
constructs separately and grown in absence of atc, were divided after 96h of infection. One group of
infected cells were treated with NGF (100ng/mL) for 6 days, while one was  grown in absence of
NGF as control. Medium with NGF was changed after every two days. Cells were analyzed to
determine the number of cells with respective peptide after 6 days of NGF treatment, a relatively
small increase in the number of cells expressing Pos was observed.
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3.1.2 Effect on NIH3T3TrkA Ros cell growth in absence and presence of PTP SHP-1
NIH3T3TrkARos cells were infected with retroviral vectors expressing different

peptides. Cells grown in absence of atc (expressing PTP SHP-1), were analyzed by FACS

after 48h and 96h of infection (transduction). As shown in Fig.1 a steep increase in percentage

of  cells expressing Pos in comparison to cells expressing other peptides was observed.

Surprisingly, cells expressing  PC (which is similar to Pos except the self annealing flank)

showed less proliferation enhancement than Pos expressing cells. Increase in Pos expressing

cells, suggest that the expressed peptide might be able to interfere between tyrosine kinase

Ros domain and PTP SHP-1 interaction. As Pos sequence has been derived from Ros tyrosine

phosphorylation domain it may act as an alternate binding partner for PTP SHP-1 to alter its

interaction with Ros tyrosine kinase. Since the peptide and EYFP are translated from the same

mRNA transcript increase in number of fluorescent Pos expressing cells directly indicates

enhancement in proliferation of cells (Fig 1a). Less proliferative effect observed in PC

expressing cells suggests that the peptide is not able to alter the said interaction. Although, PC

is similar to Pos except the self annealing flank. PC was expected to enhance more cell

proliferation than Pos due to the presence of self annealing clamp sequence that is reported to

enhance stability and providing a scaffold like structure to the expressed peptide. The reduced

effect of PC may be due to the decrease in flexibility of the peptide as the clamp gives a loop

like structure to the expressed peptide making it more structurally constrained and thus

possibly less effective for interaction. The loop might also have influence on the frame of the

peptide. Neg and NC proved less effective in enhancing cell proliferation as expected due to

lack of tyrosine residue in both peptides. Substitution of tyrosine amino acid with

phenylalanine devoids the peptide to be an interacting partner for PTP SHP-1. Besides that,

NC had clamp sequence which reduces its flexibility. This is consistent with the results as

cells expressing Neg and NC did not show increase in proliferation of cells. This may be

explained on the basis that these peptides were no longer able to disrupt interaction PTP SHP-

1 with tyrosine kinase Ros due to the lack of specific tyrosine residue. Furthermore,

expression of a non specific peptide (NSP) with no resemblance to Ros tyrosine

phosphorylation domain derived peptides showed no effect on cell proliferation enhancement

indicating NSP was unable to interfere the interaction. These results strengthens that Pos

expression did play a role in observed cell proliferation enhancement. When cells were grown

in presence of atc (no expression of PTP SHP-1) (Fig 3) a slight increase in cell proliferation

was observed in Pos expressing cells compared to other cells. This enhancement in cell

proliferation seen in Pos expressing cells was comparatively lower than cells grown in the 
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Effect on NIH3T3TrkA Ros cell growth by short domain specific peptides

Fig 3; NIH3T3TrkA Ros cells grown in presence of atc were infected with viruses from different
pLNHX retroviral vector constructs. Infected cells were analyzed after 48h and 96h of infection to determine
the peptide expressing cells. Percentage of Pos expressing cells were found higher than other peptide
expressing cells after 48h of infection and a steep increase in Pos expressing cells was observed after 96 of
infection compared to other peptide expressing cells. Data is mean of three separate experiments.
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absence of atc, suggesting that in addition to tyrosine kinase Ros and PTP SHP-1 interaction

some other  factors may also be  contributing  to the enhanced observed effect.

3.1.2 Stimulation of TrkA Ros by NGF  is not  influenced by peptides 

Modified cells were challenged with NGF (100ng/mL) post 96h of infection to

stimulate TrkA Ros receptor. This stimulation had relatively small effect on enhancement in

cell proliferation of peptide expressing cells. Increase in number of Pos expressing cells was

relatively higher when cells were grown in presence (Fig 4) or in absence of atc (Fig 2) than

other peptides. No strong effect on cell proliferation in peptide expressing peptides was

observed, indicating NGF did not play any major role in enhancing the effect of peptides.

Proliferation assay by counting cells by coulter counter was further done to study the effect on

cell proliferation. As seen in Fig 5 and Fig 6 when cells were grown in presence (Fig 5) and

absence (Fig 6) of NGF an overall relative increase in cell proliferation was seen. However,

slightly enhanced proliferation of Pos expressing cells reconfirmed a possible role of Pos in

depicting this enhanced proliferative effect. 

Ros tyrosine phosphorylation domain derived peptides were also expressed in normal

NIH3T3 cells (Fig 7). In these cells peptides did not induce proliferation and there is no

difference in activity between the peptides. Surprisingly, a decrease in PC and NC expressing

cells was observed after 48h of infection. These effects clearly indicate that the proliferation

seen in NIH3T3TrkA Ros cells is due to the domain specific expressed peptides and is

dependent on the expression of the intracellular part of the Ros receptor tyrosine kinase

domain from which they were derived. The observed effects clearly showed that the peptides

might be able to target specific interactions and could be used to influence a known protein

interaction. However, in the present study the enhanced proliferation is not dependent solely

on the disruption of Ros tyrosine kinase and PTP SHP-1 interaction. 

These results gave us a clue that peptides could be used to interfere a known protein

interaction. Based on this method of expressing peptides using efficient expression vector

system, peptides derived from specific motifs were used to target interaction between  nuclear

receptors and coactivators.
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Fig (1a); FACS analysis of NIH3T3TrkA Ros cells infected with viruses from different pLNHX
retroviral vectors (a) sorted cells after 48h (b) after 96h of infection. An increase in number of cells can be
observed in Pos expressing cells compared to other cells. This enhancement in number of cells reflects
increased proliferation in Pos expressing cells due to the peptide. Each experiment was repeated three
times.

Note: only sorted cells are shown
                in each picture
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Fig 5; NIH3T3TrkA Ros cells grown in presence of atc, were infected with viruses from
different pLNHX retroviral vectors separately. Cells were treated with NGF (100ng/mL) for 6 days
before being counted by Coulter counter. One group of virally infected cells was grown in parallel with
out NGF. Cell numbers indicate a relatively slight increase in number of  NGF treated  cells compared
to untreated cells. Cell numbers are mean of three separate assays.
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Fig 6; NIH3T3TrkA Ros cells grown in absence of atc were infected with viruses from different
pLNHX retroviral vectors separately. Cells were treated with NGF (100ng/mL) for 6 days before being
counted by Coulter counter. One group of virally infected cells was grown in parallel with out NGF.
Coulter counter counting of cells indicated an increase in number of  NGF treated cells as compared to
untreated cells . Cell numbers are mean of three separate assays.
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Picture 1;
A Schematic outline of the modified NIH3T3TrkA-Ros cell line highlighting a

possible way of the peptides interfering with the tyrosine kinase Ros and SHP-1PTP
interaction after their expression in the cells.

Effect on  NIH3T3 cell growth by short domain specific peptides
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Fig 7; Normal NIH3T3 cells were infected with viruses from different pLNHX retroviral constructs
after 24h of plating. Post 48h and 96h of infection cells were analyzed to determine the peptide expressing
cells. Cells expressing different peptides did not show any increase in number of cells as seen in
NIH3T3TrkA Ros cells, which were modified to study the interaction of peptides with the intended
interaction of  tyrosine kinase Ros and SHP-1PTP. Since, no effect on NIH3T3 cells was observed it signifies
the role of domain specific peptides in enhancing proliferation in NIH3T3TrkA Ros cells. Data is mean of
three different experiments
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3.2 Nuclear receptor coactivator interaction specificity; Effect of short peptides with
LXXLL motif on transcription activation

Receptors as transcription factors play an important role in growth, development and

disease progression. Receptors are usually present on membranes, cytoplasm and in the

nucleus. Binding of ligand to receptor initiates a cascade of signal reactions leading to

expression of different genes. Ligands for membrane bound receptors bind directly to them

while ligands for nuclear and cytoplasmic receptors had to enter inside the cell to bind their

respective receptors. Once a ligand bound to a nuclear receptor it may form a heterodimer or

homodimer before binding to hormone response elements (HREs) present on DNA to initiate 

transcription. Various coactivators are recruited by receptors to enhance transcription.

Coactivators are reported to interact with the AF-2 region of the receptor via specific LXXLL

motifs whose consensus sequence and number varies from coactivator to coactivator. In the

present study, attempts were carried out to express different LXXLL peptides varying in
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Vitamin D induced transcription antagonized by short LXXLL peptides
expressed in vivo

Fig 8; HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and a
SEAP reporter vector, which in addition to SEAP reporter gene has Vitamin D response element (VDRE)
sequence. Cells were treated with 10-6M vitamin D (Vit. D) post 24 hr of transfection. To determine
SEAP activity samples were taken 24h post Vit.D treatment. Vit. D induced expression of reporter gene
was significantly suppressed by flanked LXXLL peptides than non flanked peptides indicating their role
to antagonize the induced transcription as clear from the SEAP activities. Peptide LX4 showed relatively
higher effect in comparison to other flanked LXXLL peptides, while among non flanked ones peptide
LX7 has significant effect. Activities are the mean of triplicate assays
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number of LXXLL motifs and amino acid residues on N and C termini of the motif, with this

aim if they will be able to block receptor and coactivator interaction. Various LXXLL

peptides were chosen. In LX1, LX2, LX3 and LX4 pattern of motif and amino acids is as

X7LX2LLX7 where X is any amino acid and L is Leucine. Peptides with random LXXLL

motif and flanking residues around it avoid biasness to any specific amino acid in the

expressed peptide. Peptide LX5 contains only one motif (LHRLL) with out any additional

amino acid residue around the motif, peptide LX6 has two LXXLL motifs (LHRLL)

separated by three amino acid residues and finally peptide LX7 has one motif (LHRLL) with

two amino acid on C terminus of motif. In peptides LX5, LX6 and LX7 sequence of the motif

is LHRLL. It was chosen after comparing motif sequences from various coactivators and this

motif sequence was present in most coactivators that led to its selection. Cells were co-

transfected with Peptide-EYFP expressing and SEAP reporter expressing vectors. Each SEAP

vectors have varying number of different hormone response element copies. Enhanced yellow

fluorescent protein was used to monitor transfection efficiencies. 
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          Effect of LXXLL peptides on 9 cis-retinoic acid induced transcription

Fig 9; HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and SEAP
vector, which in addition to SEAP reporter gene has Vitamin D response element (VDRE) sequence. Cells were
treated with 10-6 M  9-cis retinoic acid post 24 hr of transfection. To determine SEAP activity samples were taken
after 24 h of 9-cis retinoic acid treatment. Cells expressing LXXLL peptides with flanking sequences (LX1-LX4)
indicated less SEAP activity signifying the role of peptides in inhibiting the reporter gene expression by acting as
antagonists. Non flanked LXXLL peptides were less effective in suppressing the induced effect. Activities are
mean of three separate experiments.
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All peptides were expressed in two cell lines; HeLa and NIH3T3 by employing bi-cistronic

vector expressing EYFP and peptide from the same mRNA transcript. Various drugs like

Vitamin D, 9 cis-retinoic acid, Dexamethasone and Forskolin were used separately as

inducing agents to study the antagonizing effect of peptides on induced transcription. 

3.2.1 Suppression of vitamin D and 9-cis retinoic acid induced transcription.

HeLa cells were co-transfected with Peptide-EYFP expressing vector along with

SEAP reporter vector having Vitamin D response element (VDRE) sequence. Post 24h of

transfection cells were treated with 10-6M vitamin D (Vit.D)  for 24 h. As seen in (Fig 8) Vit.

D strongly induced OC promoter driven SEAP reporter gene. With the expression of peptides

induced activation got decreased as indicated by the SEAP reporter activity. This decrease

may suggest that the peptides have ability to block vitamin D receptor (VDR) and coactivator

interaction. 

Hall et al., 2000 reported LXXLL peptides interact directly with the AF-2 domain of the

nuclear receptor family indicating blockade of this region may prevent transcriptional

activation by receptor and supports the prevalent idea that the receptor must recruit an
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Efficiency of peptide mediated suppression is concentration dependent

Fig 10; HeLa cells were co-transfected separately with increasing concentration (100ng, 200ng,
400ng and 800ng) of LXXLL peptide expressing vectors as indicated and SEAP vector  having Vitamin
D response element (VDRE) sequence. Cells were treated with 10-6 M  Vit D post 24 hr of transfection.
SEAP activity was determined  after 24 h of Vit D treatment. Vit D induced  SEAP gene expression  as
indicated by SEAP activity.  With increase in concentration of peptides SEAP activity showed gradual
decrease indicating that with increase in peptide expressing vectors more  copies of peptide may be
available to antagonize the  induced effect . Activities are mean of three separate experiments.
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additional factor(s) through this site to manifest function. Coactivator recruitment is necessary

for receptor to carry out transcriptional activation and they interact with ligand bound receptor

via LXXLL motif.

 Expressed LXXLL peptides in HeLa cells treated with Vit. D showed different extent

of antagonizing effect as seen in (Fig 8). With flanked peptides being more potent than non

flanked peptides as indicated by SEAP activities, each SEAP activity reported is mean of

three separate experiments. Peptides lacking additional sequences were quite

ineffective except LX7 which exhibited better suppressive effect than LX5 and LX6. One

possible reason for this may be that these peptides are not able to interact effectively with AF-

2 domain of receptor to block its interaction with the coactivator due to lack of additional

amino acid residues. Observed variation in activities of flanked LXXLL peptides among

themselves led  to the supposition that these peptides might differ in their affinities to interact 

Comparison of LXXLL peptides and non-LXXLL peptides on antagonizing
induced dexamethasone transcription

Fig 11;  HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and SEAP
vector having three tandem copies of glucocorticoid response element (GRE) sequence in one group, while in
other group cells where cotransfected with non-LXXLL peptide expressing vectors and SEAP vector. Cells were
treated with 10-6 M  dexamethasone post 24 hr of transfection. SEAP activity was determined after 24h of
dexamethasone treatment. Dexamethasone treatment induces SEAP activation which was significantly lowered by
expression of peptides to different extent with peptides having long flanking sequences have preferentially better
antagonizing effect as indicated by decrese in activities than non flanking LXXLL peptides. Peptides lacking
LXXLL motif did not show any considerable effect on suppressing the induced effect which suggest that for a
peptide to be an active antagonist LXXLL motif sequence should be present in it.
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with ligand bound receptor. Among flanked peptides LX4 and LX1 showed better suppressive

effect in Vitamin D induced treatment than LX2 and LX3. 9-cis retinoic acid induced

activation (Fig 9) was also suppressed by peptides. The observed pattern of suppression was

similar as seen in Vit. D induced activation. However, 9-cis retinoic acid induced SEAP

reporter activities were significantly lower than Vit. D. This decrease in activity in case of

retinoid treatment may suggest that in VDR-RXR heterodimer, VDR interaction with the

coactivator and hormone response element play a significant role. 

3.2.2 Efficiency of peptide mediated suppression is concentration dependent

Antagonistic property of peptides was found to be dose dependent (Fig 10). With

increase in the concentration of peptide expressing vector a stronger suppressive effect on

induction was observed as indicated by decrease in SEAP activity in case of peptides with

flanking sequence (LX1-LX4). This indicates that with increase in concentration more copies

of peptide may be available to interact with the receptor complex to prevent coactivator

recruitment to influence the induced transactivation. 
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Forskolin induced effect antagonized by expressed peptides

Fig 12; HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and
SEAP vector which contains three tandem copies of cAMP response element (CRE) sequences in addition
to SEAP reporter gene. Cells were treated with 10µM forskolin post 24 hr of transfection. SEAP activity
was determined after 24 h of forskolin. treatment. Forskolin  treatment  induces SEAP activation which was
significantly lowered by expression of peptides to different extent. LXXLL peptides with long flanking
sequences have preferentially better antagonizing effect than non flanking LXXLL peptides. Activities are
mean of three separate experiments.
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Table 1;

SRC1        YSQTSHK LVKLL TTTAEQQ NR1
NcoA1       YSQTSHK LVQLL TTTAEQG NR1
GRIP1       DSKGQTK LLQLL TTKSDQM NR1

SRC1    LTARHKI LHRLL QEGSPSD NR2
NcoA1       LTERHKI LHRLL QEGSPSD NR2
GRIP1       LKEKHKI LHQLL QDSSSPV NR2

SRC1    ESKDHQL LRYLL DKDEKDL NR3
NcoA1        ESKDHQL LRYLL DKDEKDL NR3
GRIP1       KKKENAL LRYLL DKDDTKD NR3

NcoA1       DQCISSQ LDELL CPPTTVE NR4
NcoA1       GVIEKES LGPLL LEALDGF NR5

SRC1    QAQQKSL LQQLL TE  stop NR4
NcoA1        QAQQKSL LQQLL TE  stop NR6

CBP    AASKHKQ LSELL RGGSGSS NR1
p300    AASKHKQ LSELL RGGSGSS NR1

CBP       RKLIQQQ LVLLL HAHKCQR NR2
p300       RKLIQQQ LVLLL HAHKCQR NR2

CBP       RSISPSA LQDLL RTLKSPS NR3
p300       GTVSQQA LQNLL          RTLRSPS NR3

RIP               DSIVLTY  LEGLL MHQAAGG NR1
140      GKQDSTL LASLL QSFSSRL NR2

          YGVASSH  LKTLL KKSKVKD NR3
           PSVACSQ  LALLL SSEAHLQ NR4
          DSIVLTY  LEGLL MHQAAGG NR5
           SHQKVTL  LQLLL GHKNEEN NR6

LX1          MTIAVVFR LMCLL VLGGRVR
LX2           MLGFFYDL LWFLL CVCVLHP
LX3          MLQTYVVF LEPLL FDFSRDR
LX4          MRVSLLSL LLRLL QSIAVYR
LX5     M LHRLL
LX6        M LHRLL AAA LSRLL
LX7  M LHRLL QL

Comparison of LXXLL motifs with amino acid residues around the motif from various coactivators
with expressed LXXLL peptides. Expressed peptides share varying number of amino acid residues with
coactivators, with peptide LX4 is sharing more number of flanking amino acid residue around LXXLL
motif than other peptide. Peptide LX7 shares amino acid Q with other coactivators sequences.
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3.2.3 Suppression of dexamethasone and  forskolin induced transcription

In order to further confirm role of peptides and their ability to interact and antagonize

the induced activation, SEAP vectors with GRE and CRE response elements were used to

study the effect of dexamethasone and forskolin on induced transactivation respectively.

Dexamethasone binds to glucocorticoid receptor and the receptor ligand complex binds to

glucocorticoid response element (GRE) and initiates transcription after coactivator

recruitment.

Treatment of pGRE-SEAP vector transfected cells with dexamethasone showed a

significant increase in SEAP activity as compared reporter activity of untreated transfected

cells. Increase in reporter activities indicated the induced effect of dexamethasone on GRE

mediated transcription of the reporter gene. On expressing LXXLL peptides a decrease in

SEAP activity (Fig 11) was observed in the same pattern as in Vit. D treatment with peptides

having flanking sequences being more antagonistic than non flanking ones. Forskolin induced

transcription was suppressed by peptides (Fig 12) as in dexamethasone, however peptides

vary in their pattern of efficiency.
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Fig 13; HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and SEAP
vector which contains three tandem copies of cAMP response element (CRE) sequence in addition to SEAP
reporter gene. Cells were cross treated with dexamethasone post 24 hr of transfection. SEAP activity was
determined after 24 h of treatment. Forskolin induced SEAP reporter activity was stronger than cross treatment
with dexamethasone. SEAP activity was lowered by LXXLL expressed peptides indicating their role as
antagonists for activation. LX3, LX4 and LX7 seem to have better effect than other peptides. In cross treatment
reporter activities were comparatively less than normal treatment of drug. Activities are mean of three separate
experiments.

Cross treatment of pCRE-SEAP vector transfected cells with dexamethasone
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Dexamethasone mediated transcription of pCRE-SEAP reporter gene indicating a cross talk

between glucocorticoids and cAMP. Groul et al., 1993 have reported synergism between

glucocorticoids and cAMP. Dexamethasone induced CRE transcription was significantly

lower than induced by forskolin (Fig 13). Forskolin was also found to induce transcription of

GRE-SEAP reporter gene (Fig 14) indicating a possible cross talks of cAMP and

glucocorticoid receptor. Transcription of CRE/GRE SEAP reporter gene by dexamethasone

and forskolin respectively was subjected to study the effect of expressed LXXLL peptide to

suppress the induced transcription. Peptides were able to suppress the SEAP reporter activity

in both cases (Fig 13, 14) with flanking LXXLL peptides being more potent in antagonizing

the induced effect compared to non flanked ones. All these results elucidate a potential role

for short LXXLL peptides when expressed in vivo to act as antagonists to suppress the

induced transcription by different agents. 

3.2.4 Adjacent amino acids are major determinants of efficiency

 Flanking peptides exhibited variation in reducing the reporter activity that

corresponds to their ability to act as antagonistic agents. Among flanking peptides LX4 and in

non-flanking peptide LX7 seemed more effective than others. The significant antagonizing

effect of peptides with flanking sequences on both N and C termini indicated that presence of

amino acid residues around LXXLL play a significant role. On comparing the flanking

residues of these peptides with the residues around LXXLL residues in various coactivators

(Table 1), LX4 was found to share maximum number of amino acids around LXXLL motifs

with high affinity peptides present in various coactivators, followed by LX3, LX1 and LX2.

This suggests that residues around the motif may help the peptide in properly interacting with

AF-2 domain of activated receptor and block its interaction with the coactivators. However,

this blocking seems was also found to dependent on presence of particular amino acid residue

present around the motif, as can be argued on the basis of LX4 which shares not only the

position but sequence of amino acid residues with coactivators (Table 1). Among other

peptides with no or few amino acid residues around the motif peptide LX7 was found to be

exerting better effect than LX5 and LX6. On comparing LX7 with coactivators this effect was

attributed to the presence of amino acid glutamine (Q) present in the peptide which it shares

with high affinity peptides. Thus, even a single residue seems to be having a role in binding to

receptor ligand complex and effecting transactivation. Peptides with only one LXXLL motif

(LX5) interacted with receptor ligand complex to block recruitment of coactivator and thus

acted as antagonists of the induced activation as indicated by reporter gene activities observed
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for the first time. A comprehensive comparison of antagonistic effect of flanked peptide and

non flanked peptide is elaborated in Table 2.

Peptide with two close motifs (LX6) did not act as strong antagonist as thought due to the

presence of  two motifs. It was believed, if LXXLL motif alone is required for a peptide to act

as antagonist then on that basis LX6 should be more effective than other peptides. As per the

reporter activity LX6 (Table 2) is the least active peptide in down regulating the induced

effect indicating that not only the number of motif are necessary but their specific position is

also equally important as seen in most of the coactivators. Peptide LX5 that is devoid of any

additional residue resulted merely in suppressing the induced effect, emphasizing the need of

additional residues around the motif. To confirm whether the LXXLL peptides do really act as

antagonists three different non LXXLL peptides as described earlier Pos, Neg and PC were

expressed in combination with pGRE–SEAP vector and treated with dexamethasone. All

these peptides lack LXXLL motif, as clear from Fig 11 no significant suppression in induced

Table 2: Comparison of expressed LXXLL peptides on antagonizing  the induced
transcription by  different drugs.

Comparative analysis of different peptides on treating HeLa cells with vitamin D, retinoic acid,
dexamethasone, forskolin and cross treatment of dexamethasone and forskolin after co-transfecting cells with
LXXLL peptide expressing vectors and vectors with specific Hormone response elements (HREs) respectively.
Peptides with flanking amino acid residues around the LXXLL motif were found to be better in antagonizing the
induced transcription by various agents than peptides lacking flanking residues. Among flanked peptides LX4 was
having higher suppressive effect in different treatments followed by LX3 except in forskolin treatment where LX3
had better effect on forskolin than LX4. Effect  of peptides seems to be related with the number of flanking amino
acids a peptide shares with high affinity peptides which was higher in LX4 followed by LX3. Among the non
flanked ones LX7 showed better suppressive peptide than LX5 and LX6. LX7 shares amino acid `Q´ with many
high affinity peptide explains its role in being more potent than other non flanking peptide. On comparing drug
treatments, dexamethasone induced transcription was overall highly suppressed by peptides followed by vitamin D
and retinoic acid respectively.

No 
treatment Dex VitD RA Dex/cre Forskolin Fors/GRE

Control 
plasmid 100% 100% 100% 100% 100% 100% 100% 100%

pLX3 100% 34% 45% 45% 51% 45% 44% 44%
pLX4 100% 31% 38% 34% 40% 64% 55% 43%
pLX1 100% 35% 41% 44% 60% 58% 62% 50%
pLX2 100% 39% 46% 49% 69% 53% 70% 54%
pLX7 100% 63% 58% 69% 68% 80% 59% 66%
pLX6 100% 73% 75% 84% 91% 87% 81% 82%
pLX5 100% 77% 78% 73% 84% 94% 73% 80%

100% 50% 55% 57% 66% 68% 63%
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activity was observed by these peptides. Ineffectiveness of these peptides confirms role of

LXXLL peptides to act as signature motifs in coactivators to recognize and interact with

receptor.

3.2.5 Pattern of efficiency is different for nuclear receptor mediated transcription and
PKA (forskolin) mediated transcription

Forskolin induces the cAMP pathway by activating adenylate cyclase. cAMP leads to

the phosphorylation of CREB which binds to CRE and carries out transcription. Forskolin

mediated cAMP response element (CRE) dependent reporter gene expression was

significantly lowered by expression of the LXXLL peptides (Fig 12), indicating their role in

interacting with CREB complex and thus prevent the coactivator recruitment. Forskolin

strongly induced CRE mediated expression of reporter gene than by other agents. Influence of

flanked peptides was higher than non flanked ones as seen earlier in dexamethasone and

Vit. D treatment. However, change in pattern of peptide efficiency was observed in forskolin

treatment with peptide LX3 being more effective as compared to LX4 seen in case of

dexamethasone and Vit. D treatment. Although LX3 shares less number of residues with the

high affinity peptides present in various coactivators than LX4 peptide. Change in efficiency

Fig 14; HeLa cells were co-transfected separately with LXXLL peptide expressing vectors and
SEAP vector which contains three tandem copies of glucocorticoid response element (GRE) sequence in
addition to SEAP reporter gene. Cells were cross treated with 10µM forskolin post 24 hr of transfection.
SEAP activity was determined after 24 h of dexamethasone induced SEAP reporter activity was stronger than
cross treatment with forskolin. SEAP activity was lowered by LXXLL expressed peptides indicating their
role as antagonists for activation. LX1, LX4 and LX3 seem to have better effect than other peptides.
Activities are mean of three separate experiments.
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may be due to variation in function as PKA mediated phosphorylation of CREB and its

interaction with SRC-1 or other proteins occurs in cytoplasm rather than in nucleus. 

3.2.6 LXXLL peptides are active in different cell types 

Does the effect of expressed peptides on antagonizing the receptor mediated

transcription remains constant or varies in different cell type? It was found to remain same in

case of NIH3T3 and HeLa cell line. Treatment of NIH3T3 cells with Vit. D after being

transfected with VDRE-SEAP vector leads to significant increase in VDRE driven SEAP

activity (Fig15) compared to control. Peptides antagonized the Vit. D induced transcription in

same way as observed in HeLa cells with LX4 peptide being more effective followed by LX1,

LX3 and LX2 among peptides with flanked LXXLL motif, while LX7 was among non

flanking peptides. As observed in HeLa cells antagonistic property was dose dependent, same

dose dependency was observed in NIH3T3 cells (Fig 16). This emphasis that the role of the

peptides is not cell dependent. Similar results as in HeLa on treatment with dexamethasone

and Forskolin were observed in NIH3T3 cells (Fig 17). Further confirming role of peptides is

not depending on cell type and their ability to interact and suppressive the induced effect

remains same. 
            Vitamin D induced transcription antagonized by short LXXLL peptides expressed in vivo

( in NIH3T3 cells)
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Fig 15 : NIH3T3 cells were co-transfected separately with LXXLL peptide expressing vectors and
SEAP vector which contains in addition to SEAP reporter gene vitamin D response element (VDRE)
sequence. Cells were treated with 10-6 M Vit. D post 24 hr of transfection. For SEAP activity samples were
taken after 24 h of Vit D treatment. Lower SEAP activities were observed in case of cells expressing flanked
LXXLL peptides; less SEAP reporter induction indicated the role of peptides in antagonizing its expression.
Flanked peptides were better suppressing this effect than non flanked ones suggesting the possible role of
flanking amino acid residues
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3.2.7 Influence of LXXLL peptides on cell proliferation and signal transduction

Dexamethasone is a well known anti-proliferative agent which blocks cell cycle and

thus prevents cell growth. While studying the effect of LXXLL peptides on suppressing the

dexamethasone induced effect an increase in cell death was observed which was not observed

when cells were treated with Vit. D and forskolin. Cell proliferation assay (Fig 18) indicated

an increase in cell death in dexamethasone treated cells transfected with LX peptide

expressing vectors. Peptides with flanked sequences enhanced anti-proliferative effect more

than non flanked ones. To deeper understand this more, protein antibody array analysis was

done to determine the various proteins involved in different pathways. Data from array

indicated decrease in number of proteins involved in MAPK kinase pathway and increase in

some other proteins (Fig 19, 20). Most of the phospho proteins like Phoso Erk2, Erk 5, Erk 4,

were decreased. p38 which gets elevated in stress condition was found to be increased. An

increase in Phospho Stat3, NF-kß was also observed. Glucocorticoids decrease level of c-myc

which plays a role in cell progression, further decrease in its level was observed in cells

expressing flanked LXXLL peptides, in addition to it decrease in the akt level was also seen.

Increased cell death in presence of LXXLL peptides may be due to decrease in phospho

proteins especially that of MAP Kinase which play an important role in cell progression and

growth. Enhanced effect on cell death due to LXXLL  peptides was not observed in vit D and

retinoic acid  treatments  inferring no down regulation in phospho proteins  and other kinases.
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Antagonizing effect of expressed LXXLL peptides is concentration
dependent

Fig 16; NIH3T3 cells were co-transfected separately with increasing concentration (100ng, 200ng,
400ng and 800ng) of LXXLL peptide expressing vectors and SEAP vector, which in addition to SEAP
reporter gene has  Vitamin D response element (VDRE) sequence. Cells were treated with 10-6 M Vit D post
24h of transfection. SEAP activity was determined after 24h of Vit.D treatment. With increase in
concentration of LXXLL peptide expressing vector SEAP activity showed gradual decrease indicating higher
concentration of peptides results in more copies of peptide available to antagonize the Vit D effect. Both in
HeLa and NIH3T3 cells LX4 exhibited more antagonistic effect
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Glucocorticoid/ forskolin induced effect suppressed by expressed  LXXLL
peptides.

                                (A)                                                                                            (B)

Fig 17; (A) NIH3T3 cells were co-transfected separately with LXXLL peptide expressing
vectors and SEAP vector which contains three tandem copies of glucocorticoid response element (GRE)
sequence in addition to SEAP reporter gene. Cells were treated with 10-6M dexamethasone post 24h of
transfection

(B) LXXLL expressing vector were co-transfected with pCRE-SEAP vector in NIH3T3 cells
and treated with 10µM Forskolin post 24h of transfection. SEAP activity was determined after 24h of
treatment. Antagonizing effect of peptides with flanking sequences in NIH3T3 and HeLa cells showed
similar order of effectiveness as antagonizing effect of dexamethasone and forskolin.
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Cell proliferation of  LXXLL peptide expressing cells in presence of dexamethasone

Fig 18; Cell proliferation assay of HeLa cells transfected with various pLX peptide
expressing vectors. Post 24h of transfection cells were treated with dexamethasone (10-6M) for
24h, cells transfected with LX1 and LX4 expressing vectors showed more cell death on treatment
with dexamethasone than cell transfected with LX5, LX7 and vector alone.
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Antibody Array data of cells expressing LXXLL peptides grown in presence
of  dexamethasone

Fig 19; Protein antibody array data of HeLa cells transfected with different peptide
expressing vectors. Cells were treated with 10-6M dexamethasone for 24h post 24h of
transfection. 50µg of proteins were labelled on the Array Tube. A number of proteins were
found to be downregulated and few upregulated on dexamthasone treatment.
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(c)

(b)

(a)

Fig 20; Photomicrographs of Protein antibody array of HeLa cells treated with dexamethasone
after being transfected with LXXLL peptide expressing vectors. (a) Control (b) cells with vector pLX4
(c) cells with vector LX1. Protein extracts from transfected cells obtained after 48h of treatment were
analyzed by antibody array tubes. Each antibody is spotted three times in the tube. A number of  proteins
were found to down regulated in cells expressing LX peptides. While an up regulation in stress related
proteins was also found.
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3.3 Peptide expression library approach to search novel bio active peptide

Peptide library method offers a unique approach to the elucidation of protein

interaction networks and signaling pathways. Many enzymes that act on protein-kinases,

phosphatases, proteases, deacetylases and acetyltransferases to name a few recognize their

substrate on the basis of sequence context surrounding the site of modification. Likewise,

protein-protein interactions are often mediated by modular domains, including SH2, PTB,

SH3 and FHA domains that interact with short linear stretches of protein sequences, often in

the context of post-translational covalent modifications to the binding partner. Peptide

libraries offer a rapid means for the elucidation of recognition sequences for these proteins

and domains; in essence, a practical alternative to the laborious individual analysis of

impossibly large number of peptides or mutant proteins. Developments in bioinformatics

enable scanning of protein sequence database with complex databases derived from peptide

library studies, providing an avenue for the identification of candidate protein targets.

Peptide library approaches can be broadly grouped into methods employing either

synthetic or encoded libraries. Synthetic library methods include spatially addressable

positional scanning libraries (PSLs), mixture based oriented peptide libraries (OPLs) and one

bead one peptide solid-phase libraries. PSL and OPL approaches have the advantage of

allowing exhaustive analysis of the contribution to specificity of each amino acid at each

position within the library. Rather than analyzing individual peptides, however, these libraries

generate consensus motifs that have the drawback of masking interactions between positions

or the existence of multiple binding modes. Encoded libraries, phage display being by far

most popular (but also including mRNA display and interact cell expression based systems)

and immobilized split-pool synthetic libraries provide a collection of sequences that are

positively selected. Although these approaches allow identification of cooperativity between

binding subsites, the labor involved with sequencing a large number of clones or beads

generally means that weaker selections are overlooked and negative selections cannot be

inferred. 

Combinatorial peptide libraries have been playing a major role in the search for new

drugs, ligands, enzyme substrates, and other specifically interacting molecules, such libraries

are composed of millions of peptides. The principal features of these libraries require a

versatile repertoire, an easily identifiable tag for each of the library members, a simple

method of synthesis, and a compatibility with the biochemical milieu. Two types of

combinatorial libraries are in use: synthetic libraries and biological (mainly phage display)

ones. An advantage of the biological libraries is due to the ability of each of the library
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members to replicate it and to the fact that they carry their own coding sequences. In recent

years, there have been a growing number of examples of the successful isolation of peptide

ligands for enzymes from phage-displayed combinatorial peptide libraries. These peptides

typically bind at or near the active site of enzymes and can inhibit their activity, while the

peptide ligand isolated from phage-displayed libraries may not resemble the chemical

structure of the normal substrate of enzyme. Peptides can be used as an inhibitor to evaluate

the function of the enzyme or for drug discovery efforts (i.e., as a lead compound for

peptidomimetic design or as displaceable probe in high-throughput screens of libraries of

small molecules). Combinatorial peptide library approach has been applied in identification of

biologically active peptides.

3.3.1 Design and preparation of random peptide libraries

Combinatorial retroviral peptide library approach has been used to screen potential

peptides helping in elucidating various mechanisms a cell undergoes. Random peptide library

based on nnk codon system, where n denotes all four nucleotides and k denotes g and t was

synthesized to screen bioactive peptides. nnk coding system ensures a more equal distribution

of the amino acids in the library and two out of three stop codons are omitted. Peptide library

has vast diversity due to presence of large number of different peptides which makes it more

suitable medium to isolate a bioactive peptide. Peptide libraries are preferred to cDNA

libraries due to limited diversity of cDNA library. A random peptide library of 13 amino acids

based on pOS IRESGFP vector (pOS) was synthesized. For library synthesis two partly

complementary oligonucleotide sequences were used, one having bases for 13 random amino

acids and restriction site for Not1 and BamH1 on 5´ and 3` of random bases respectively.

Another, short oligonucleotide sequence complementary to first one was used for elongation

to make the complementary double stranded, followed by restriction digestion with Not1 and

BamH1. Digestion product after cloning in pOS was extensively used for transformation of

E.coli to get as many as 106 colonies. Each colony represents vector with different peptide of

13 amino acids. All colonies were scrapped and proceeded to get the vector DNA. Peptide

library has complexity of 106 peptides, theoretically a sufficient number to cover a vast

diversity. Peptide libraries have an advantage of comprising a number of different

combinations of amino acids thus enhancing chances of getting bioactive peptides.    

3.3.2 Identification of peptide conferring resistance to dexamethasone toxicity in
fibroblasts

Employing combinatorial peptide approach, an attempt was made to screen peptide

library to isolate peptides that could provide resistance to cells against anti-proliferative effect

of dexamethasone. Dexamethasone, a known antiproliferative agent blocks cell progression in
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different cell lines normally by causing an arrest in the G1-phase of the cell cycle. Random

peptide library of 13 amino acids based on pOS was designed with approximately 106 peptide

combinations, a satisfactory number to cover the theoretical diversity of the library with this

aim aim to get a peptide able to overcome the dexamethasone induced toxicity.

Retroviral vector approach was employed as it ensures presence of single peptide in a single

virus particle, which could be rescued and sequenced. Peptide library was transfected in Eco

Pack packaging cell line, viruses were collected after 48h and 72h of infection and used to

infect (transduce) target NIH3T3 cells. NIH3T3 cells post 72h of transduction were plated and

treated with dexamethasone (10-4M) for 48h. This concentration was chosen after comparing

the toxicity on cells by various concentrations (10-4M, 10-5M, and10-6M). 10-4M was found to

Scheme for the peptide library screen. To initiate a screen, a peptide library (complexity 1x 106)
encoded  within the vector was transfected into the retroviral packaging cell line Ecopack Tm 293. The viral
particles were collected and then used to transduce NIH3T3 cells. The infected cells were treated with a high
dose of dexamethasone. The peptide sequence were rescued from surviving and FACS sorted cells by PCR
from genomic DNA, isolated peptide was recloned in the vector to confirm the dexamethasone resistivity.

PEPTIDE IRES EYFP

Peptide library insert

NIH3T3 cells

Dexamethasone

Transduction

FACS Sorting

Infected
fluorescent cells

Dead cells

Sorted cells were allowed to grow, Genomic DNA
was extracted.

PCR was done to identify peptides from cells
resisting toxicity
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be more toxic and causes considerable cell death than other concentrations. On treatment of

normal cells with dexamethasone (10-4M) cells die drastically (Fig 23), while cells infected

with peptide library on treated with dexamethasone for 48h showed little resistance to

dexamethasone induced toxicity. Cells that resisted toxicity were sorted by FACS sorter and

allowed to grow in 96-well plate for few days. Genomic DNA was extracted from these cells.

PCR was carried out (Fig 22) using vector specific primers to get the specific peptides present

in the cells. Sequencing of PCR product resulted in identification of a peptide that could have

provided resistance to cells against dexamethasone. Amino acid sequence of the peptide

referred as (Dex Pep) was found is as MSRRHRGGLLSVDT. In order to be sure that the

peptide provided resistance to dexamethasone toxicity, peptide was recloned in pOS. NIH3T3

cells were transduced with this vector followed by dexamethasone treatment. As seen in (Fig

23) cells infected with screened peptide resisted dexamethasone induced cell death and an

enhancement in cell growth was observed compared to dexamethasone treated uninfected

cells. To further make sure that this resistive effect is by screened peptide, cells were infected

separately with normal pOS and with pOS having a non-specific peptide (a random peptide

having no effect on resisting dexamethasone inducing toxicity). Both have no effect on

resisting dexamethasone induced toxicity after analyzing cells post  24 and 48 h (Fig 23 and

24) of drug treatment. As seen from figures, with increase in time period of treatment extent

of cell death increases. No effect on suppressing induced toxicity by normal vector and vector

with non-specific peptide emphasizes the role of screened peptide in resisting toxicity of cells

and also indicates that this effect is not vector specific. Proliferation assay (Fig 21) of cells

further confirm the role of screened peptide in enhancing the cell growth of dexamethasone

treated cells. It overrides dexamethasone induced toxicity to some extent, if not completely.

The resistance to dexamethasone induced toxicity by the peptide raises the question whether

the peptide after expression is functioning within the cell or it is secreted outside the cell to

overcome the dexamethasone induced toxicity shown by the cells. Spent medium from the

cells infected with the screened peptide (Dex pep) was added to NIH3T3 cells followed by

dexamethasone treatment for 48h. Cells did not resisted dexamethasone induced cell death as

was seen in cells expressing the peptide (Dex pep), it may indicate that the peptide is not

secreted outside the cell. In case the peptide is secreted outside the cells resistance to the

dexamethasone induced cell death should have been observed by adding the spent medium

from the infected cells to normal NIH3T3 cells. Lack of resistivity effect on cell toxicity was

also observed in cells treated with spent medium from pOS infected cells and pOS IRESGFP

vector having non specific peptide. This led us to speculate that the peptide after expression
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remains within the cell after expression and functions somehow to overcome the induced

toxicity. The mechanism by which this peptide overcomes the dexamethasone toxicity and

induces resistance needs to be studied further. Retroviral peptide libraries were used also by

other groups (Matza-Porges et al.,2003; Xu et al.,2001) to search and isolate peptides that

influence cellular proliferation and lead to better survival of the cell. So far the targets through

which these peptides act have been identified only in a few cases (Xu et al.,2001; Tenson et

al.,1997).

 1         M          2

Fig 22; NIH3T3 cells infected with random peptide library, showing resistance to dexamethasone
toxicity were sorted by FACS sorter and allowed to grow. Genomic DNA extracted from these cells was used
to perform PCR using vector specific primers to isolate provirus sequence, providing resistance to induced
toxicity  were further recloned to check their response again. Lane 1 and 2 shows PCR products from the
extracted DNA using vector specific primers. In case of Lane 1, primers were having Not1 and BamH1
restriction sites, these enzymes were used to digest and recloned  PCR product again in the vector.
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Fig 21; NIH3T3 cells treated with dexamethasone underwent considerable cell death. Cells
transduced with pOS control vector and pOS vector with any peptide (referred as Neg peptide) exhibited
cell death by dexamethasone treatment for 48h. While cells infected with pOS vector having screened
peptide less cell death was observed compared to other infected cells, inferring that resistivity to
dexamethasone induced toxicity is due to the screened peptide.

Cell proliferation of NIH3T3 cells; Effect of screened peptide
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Normal NIH3T3 cells

a

      NIH3T3 cells + Dexamethasone

b

NIH3T3 cells infected with control pOS IRES GFP
vector, treated with  dexamethasone

c

NIH3T3 cells, infected with pOS IRES GFP
vector having recloned screened peptide and
treated with dexamethasone

d

NIH3T3 cells, infected with pOS IRES GFP vector
 having a non specific peptide and treated
 with dexamethasone

e

Fig 23; Photomicrographs of (a) control NIH3T3 cell (b) NIH3T3 cells treated with dexamethasone
(10-4 M) (c) NIH3T3 infected with pOS-IRESGFP vector and treated with dexamethasone (10-4M) (d) NIH3T3
infected with pOS-IRESGFP vector with screened peptide and treated with dexamethasone (e) NIH3T3 infected
with pOS-IRESGFP vector with a negative peptide, treated with dexamethasone post 24h of treatment.
Dexamethasone (10-4 M) caused cell toxicity to a great extent, while cells infected with screened peptide resisted
the toxicity, peptide was screened from the cells infected with peptide library post dexamethasone challenge.
Recloning of this peptide in pOS IRES GFP vector and infecting the vector in NIH3T3 cells showed a
considerable resistance to the dexamethasone induced toxicity. Vector alone and vector with any non-specific
peptide did not showed any resistance to the dexamethasone induced toxicity, emphasizing role of the screened
peptide.
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NIH3T3 cells infected with control pOS IRES GFP
vector, treated with  dexamethasone

NIH3T3 cells, infected with pOS
IRES GFP vector having recloned
screened peptide and treated with
dexamethasone

NIH3T3 cells, infected with pOS IRES GFP
vector having a non specific peptide and treated
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Fig 24; Photomicrographs of  (a) control NIH3T3 cell (b) NIH3T3 cells treated with Dexamethasone (10-4

M) (c) NIH3T3 infected with pOS-IRESGFP vector and treated with dexamethasone (10-4 M) (d) NIH3T3 infected
with pOS-IRESGFP vector with screened peptide  and treated with dexamethasone (e) NIH3T3 infected with pOS-
IRESGFP vector with a negative peptide and treated with dexamethasone after 48h of treatment . Dexamethasone
(10-4 M) caused cell toxicity to a great extent, while cells infected with screened peptide resisted the toxicity;
peptide was screened from the cells infected with peptide library post dexamethasone challeng. Recloning of this
peptide in pOS IRES GFP vector and infecting the vector in NIH3T3 cells showed a considerable resistance to the
dexamethasone induced toxicity. Vector alone and vector with any non specific peptide did not showed any
resistance to the dexamethasone induced toxicity, emphasizing role of the screened peptide.



Discussion                                                                      64  

Discussion

Proteins are key players in cellular processes and plays a dominant role in many

biological functions within a cell. Many cellular processes and biochemical events are

achieved by a group of proteins interacting with each other. Protein interactions also had  a

pivotal role in the functional selectivity of enzymes participating in cellular signal

transduction cascades. Interaction between specific binding proteins control, at least in part,

the temporal and spatial orchestration of the functions mediated by these signaling events.

The ability to modulate protein-protein interactions provides a means to elucidate the role of

specific proteins and enzymes in various signaling cascades in normal and diseased states.

Many of the signaling enzymes belong to families of related proteins, each mediating a unique

physiologic functions. Little is known, however, about the role of the individual family

members, mainly due to the lack of selective modulators. One important strategy to search

selective modulators of intracellular signaling enzymes capitalizes on the finding that upon

stimulation many enzymes, including protein kinases, translocate from one cell compartment

to another, which bring proteins close to their activator and /or specific substrates for their

function mediated by selective binding proteins.

Modulation of protein interactions by small molecules (including short peptides)

remains a big challenge. In vivo expression of short specific peptides derived from domains of

one interaction partner could be an approach to alter interaction between two known

interacting protein partners. On expressing short peptides derived from Ros tyrosine kinase

phosphorylation domain in modified cells, expressing PTP SHP-1 and Ros tyrosine kinase

receptor cellular proliferation was successfully modulated. Interaction between tyrosine

kinase Ros and PTP SHP-1 is known to inhibit cell proliferation, growth and differentiation

(Keilhack et al.,2001). Modulation in cell growth was observed only when the receptor from

which the peptides are derived is expressed also along with its interaction partner. A

significant increase in proliferation was observed with peptide that was exact homologues to

the tyrosine phosphorylation domain. Substitution of tyrosine by phenylalanine in the

expressed peptide reduced the observed pro-proliferative effect but did not fully abolish the

proliferation enhancement. Another modification of peptides, addition of two self annealing

flanking clamp sequences on both C and N termini led to reduction of pro-proliferative effect

as exhibited by the peptide with out modification. The idea behind the modification was to

increase the stability of peptides. Self annealing clamp is reported to give a stem loop like

structure (Gururaja et al.,2000) to the expressed peptide that reduces  chances of proteolytic

cleavage and also provides a stable frame to the peptides, but making them less flexible. It
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seems that the rigid structure reduced peptide activity significantly which led to the

speculation that, for pro-proliferative effect peptides should be in less structurally constrained

form and in right frame, to interfere a particular interaction. However, from these

observations it is clear that  small peptides do exert an effect when expressed in vivo. In

normal NIH3T3 cells lacking expression of tyrosine kinase Ros and PTP SHP-1, expressed

peptides showed no effect on enhanced cellular proliferation. This clearly showed that

tyrosine kinase Ros and PTP SHP-1 interaction is influenced by the homologous peptides.

 On analyzing effect of peptides in response to stimulation of the chimeric TrkA-Ros

receptor with NGF, a slight increase in cell proliferation was observed with Pos. However,

relative enhancement by various peptides remained same. This indicates that activation by

NGF uses a signaling mechanism that is complementary to the effect mediated by the

peptides, which led to the suggestion that expression of domain specific peptides directly

influences the activity of the corresponding domain of a target protein. This effect may be

mediated by a direct interaction with other proteins that need to interact with the target protein

(here Ros) for signal transduction. An alternative explanation might be that expression of

homologous peptides interferes with the formation of target protein complexes, which in turn

also affect signal transduction. From these observations it was not clear enough to dissect the

role of in vivo expressed short peptides in Ros-signaling. However, results showed that

expression of short peptides can significantly influence cellular proliferation, based on

specifically influencing the activity of the protein domain from which the peptides are

derived. Addition of the flanking sequence reduced observed enhanced proliferative effect,

probably by hindering the interaction of peptide, thus highlighting significance of proper

frame required for interaction. From these observations it can be summed up that short

peptides can be  expressed in vivo and are able to exert an influence when presented in right

frame. 

Peptides ( LXXLL) as  antagonists of receptor  induced transcription

Transcription factors play an important role in expressing various genes to perform

different cellular functions. VDR, a transcriptional factor and a member of nuclear receptor

(NR) family functions to alter expression of specific genes in response to 1, 25(OH)2D3

(Evans, 1989). NR recruits additional co-modulators to regulated promoters (Rachez et al.,
2000), which involves an activation domain on the receptor and an LXXLL motif within the

comodulator; these factors may function to elicit architectural changes in chromatin structure

essential for enhanced transcription. In response to Vit D, RXR is believed to be a necessary
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partner for VDR to form a heterodimer (Whitfield et al.,1995, Cheskis et al.,1996). VDR

also forms homodimers or heterodimer with RAR. 

LXXLL motif are present in coactivators whose number varies from coactivator to coactivator

are known to interact with AF-2 domain (Hall et al.,2000) of nuclear receptor ligand

complex. An attempt to use LXXLL peptides as antagonists to induced effect was carried out.

Since different coactivators have specific numbers of consensus LXXLL motifs and are

conservely separated from one another, in the present study short peptide with varying

number of motifs and number of amino acid residues around the motif were expressed. Pike

et al.,2003 and  Hall et al.,2002 reported antagonistic property of LXXLL peptides with

different number of motifs, however, for the first time peptides with one LXXLL motif and

with or with out additional flanking residues around the motif were employed to study their

influence on the induced activation. Peptides with additional amino acid residues on both

sides of motif were in format of  X7LX2LLX7 (where L is leucine and X is any amino acid)

which reduces the biasness for any particular amino acid residue. Peptides having additional

residues on both N and C termini of LXXLL motif exhibited better suppressing effect on

activation than peptides lacking additional residues indicating that these residues have a role

in binding and recognizing nuclear receptor to block transcriptional activation induced by Vit

D treatment. Comparing amino acid residues around LXXLL motifs in various coactivators

(Table1), leads to the result that expressed peptides with additional residues bear residual

resemblance with them particularly LX4, it shares residual similarity with the various

coactivators and with so called High affinity peptides (Heery et al.,2001) present in some

strong coactivators which could be the reason for their role in being more potent suppressor

peptide than other peptides. Peptides LX1-LX3 with additional residues has relatively lower

effect than LX 4 peptide. Comparison of flanking amino acid residues of these peptides with

various coactivators showed that they share less residual similarity with them, which could

explain their less effectiveness. It may indicate presence of specific amino acid residues are

important for the interaction and recognition of the AF2 region of the receptor for the peptides

to interact. Peptide LX7 with only two residues on C terminus of motif showed better effect

than peptides lacking residues (LX5 and LX6). Peptide LX7 has amino acid glutamine (Q)

after LXXLL motif which is shared by few high affinity peptides and also by LX4,

implicating presence of a single amino acid residue can have effect in addition to LXXLL

motif. (Hall et al.,2000) reported presence of tryptophan in a peptide as third amino acid

residue before LXXLL motif increases its antagonistic ability.
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 Is antagonistic effect of peptides dependent only on the flanking residues or also on

number and location of LXXLL motifs? Peptide (LX6) was designed with two LXXLL motifs

separated by three amino acid residues without additional residues on both C and N termini of

motif. If the number of motifs were criteria for a peptide to be better antagonist LX6 was the

peptide expected to be more efficient than other peptides. Surprisingly LX6 exhibited less

antagonistic property as indicated by the marker (SEAP) activity than other peptides leading

to the conclusion that number of motifs is not the most important factor for a peptide to act,

especially, if they are close to each other. However, as in most of the coactivator’s position of

LXXLL motifs have conserved spacing (Heery et al.,1997; Torchia et al.,1998) and are

apart from each other. Observed effects from peptide LX6 reconfirms that number of LXXLL

motifs play a role when spaced properly as is case of coactivators. Since, making

oligonucleotides for such long peptide is not practically feasible, no attempt was done to

express long peptide with varying number of motifs conservely spaced. This may suggest that

the AF2 domain where coactivators (LXXLL sequences) interact has a specific binding space

and orientation and interacts efficiently with LXXLL motifs conservely spaced. As mentioned

earlier peptide with only one LXXLL motif (LX5) and with out additional amino acid

residues on C and N termini of motif is employed for the first time for studying effect on

induced transcription. Results are indicating that one motif could act as an antagonist to

induced effect. However, the effect was considerably less than the peptides with additional

residues. This confirms that a single motif can perform the function though not so efficiently. 

In addition to the effect of peptides on vitamin D induced transcription, influence on

dexamethasone and Forskolin induced effects were studied by expressing peptides. Almost in

all treatments peptides with flanking sequences proved to be exerting better effect than non

flanked ones. This demonstrates the importance of amino acid residues around the LXXLL

motif playing  an important role in binding to the AF-2 region of receptor  to act as a strong

antagonist. Interestingly in case of forskolin treatment peptides exerting antagonistic effect

showed considerable variation in their specific effect than observed in dexamethasone and

vitamin D treatment. Peptide LX4 was found to have better antagonistic effect in

dexamethasone and Vit D, while in forskolin treatment peptide LX3 turned out to be efficient

in antagonizing the induced effect. These results indicate peptide affinity varies with

treatment and possibly also with the interacting partner (in present case receptor or other

proteins activated by ligand binding on receptor). On increasing the concentration of peptide

expressing vectors antagonistic effect was found to be concentration dependent, inferring with
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higher concentration of peptides possibly more copies of peptides are available to interact

with the receptor to block coactivator recruitment.

Is peptide effect cell line specific?

Is antagonistic effect of peptide is subjected to change in case peptides are expressed

in different cell lines? To answer this, in addition to HeLa cells peptides were expressed in

NIH3T3 cell line. Surprisingly, expressed peptides exert their effects in similar fashion as in

case of HeLa cells with peptides having flanking sequence proving to be better antagonists in

suppressing the induced transcriptional activity caused by various agents like Vit D,

dexamethasone and forskolin. Effect of peptides was also found to be dose dependent as

observed in HeLa cells. Thus, indicating a similar antagonistic effect of peptide in HeLa and

NIH3T3 cells. Although, being two different cell lines, similar behavior of peptide action may

indicate a common mechanism of interaction of ligand binded receptor with coactivators in

both cells, which coincides with observed effect of peptide effect on interaction with activated

receptor when treated with  different transcription inducing agents.

Dexamethasone and forskolin induced cross talk

Glucocorticoids modulate gene expression in mammalian organisms primarily at the

level of transcription although there are reports of post transcriptional effects of

glucocorticoids (Ulbright et al.,1993). Dexamethasone treatment led to CRE mediated

transactivation indicating a possible cross talk of dexamethasone with CRE mediating protein

CREB, as CREB interacts with CRE to initiate the transcription. Glucocorticoids are reported

(Gonzalez et al.,1989; Son et al.,2001; Whitehead et al.,1997) to cause phosphorylation of

CREB , a critical step in its activation. In many cases glucocorticoids are reported to have a

permissive effect on transcription by enhancing ability of cAMP to induce transcription

(Nakamura et al.,1987; Noda et al.,1988). These studies are in agreement with the observed

effect of dexamethasone induced cross talk as confirmed by SEAP activity. However, the

transcriptional activity carried out by CREB on stimulation by dexamethasone is considerably

lower than that from forskolin induced treatment. CREB is known to bind CRE as homodimer

and transcriptional activity is mediated by cAMP dependent protein kinase mediated

phosphorylation (Schmid et al.,1987) which may suggest that CREB phosphorylation by

dexamethasone induction is not sufficient enough to cause the CRE mediated transcription as

caused by forskolin. Dexamethasone is also reported to increase mRNA level of CREB

(Jungmann et al.,1992) in rat C6 glioma cells. Dexamethasone induced transcriptional

activity after cross talk with CREB was found to be suppressed by LXXLL peptides, although

the transcriptional activity as depicted by SEAP activity was less. However, suppression
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pattern of induced cross transactivation by peptides was similar as in case of GRE mediated

transcriptional activity of dexamethasone, with LXXLL peptides having flanking amino acid

residues proving to be more potent in antagonizing than non flanked peptides. Similar cross

transactivation was found in GRE mediated transcriptional activity on treatment with

forskolin. This cross treatment was subjected to suppression by LXXLL peptides indicating

interruption in normal interaction of proteins was responsible for transcriptional activity.

Antagonizing cross talk effect caused by either dexamethasone or forskolin by LXXLL

peptides further proved that LXXLL peptides could be strong antagonists of induced effect if

LXXLL motif in peptides is having additional amino acid residues and bear residual

resemblance with high affinity peptides.

Peptide expression resulted in enhanced anti proliferative effect of dexamethasone, an

effect not observed in Vit D and forskolin treatments. Dexamethasone is known to inhibit cell

growth by blocking progression at G1 phase and also exerting its effect by inhibiting signal

pathways in particular mitogen activated protein kinase (MAPK)  pathway (Lasa et al., 2001;

Reider et al.,1996) There are many reports on the relationship between MAPK and

proliferation e.g. follicle-stimulating hormone has growth stimulatory effect on ovarian

surface epithelial cells, which may be caused by activation of the MAPK (ERK) cascade

(Choi et al.,2002). Phorbol esters inhibit fibroblast growth factor-2-stimulated fibroblast

proliferation by a p38 MAP kinase dependent pathway (Maher P 2002). Previous reports have

suggested the ability of glucocorticoid receptor to suppress transactivation by transcription

factors like AP-1, NF-kB or NFAT as hallmark of glucocorticoid action (Cato et al.,1996;

Barnes, 1998) and p38 kinase as a target for negative regulation by glucocorticoids. However,

p38 activation in HO-8910 cells is reported to get enhanced in a time and dose dependent

manner on dexamethasone treatment (Xia et al.,2003). Antibody array data of MAP Kinases

from peptide expressing cells treated with dexamethasone show considerable decrease in

various proteins involved in MAP kinase pathway, which is consistent with other known data.

Mechanism underlying in down regulating especially ERK1/2 according to (Kassel et al.,
2001) might be via increased expression and decreased degradation of the MAP kinase

phosphatase-1 (MKP-1). However, antibody array data showed an increase in NF-kB, STATs

which are usually down regulated by dexamethasone. An increase in p38 which is negatively

regulated in HeLa cells on dexamethasone was also observed. As p38 is also expressed in

stress conditions, present enhancement may be correlated with stress induced by expressed

peptides, similar can be said of NFkB enhancement. Cross talk between offer an elegant
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approach to study cell surface markers, specific proteins, signal transduction p38 and NF-kB

(McKay et al.,1998) may be also responsible for enhancement in NF-kB expression.

Peptide library screen

A retroviral combinatorial library method based on functional screening of selection of

active peptides expressed in mammalian cells was employed in the present study to screen

peptide preventing dexamethasone induced toxicity. On functional screening of peptide

library in dexamethasone treated cells a peptide was found to provide the cells resistance

against the induced toxicity of dexamethasone. Although the size of screened library was not

so high, it may be possible to screen a library of higher complexity to get a large number of

positive effector peptide. Retroviral vector based transduction ensures stable one cell- one

peptide expression as opposed to other library technologies and allows efficient functional

screening to isolate the desired peptide. Retroviral library approach based on peptide library

has been used by few groups. Xu et al., 2001 reported peptides conferring resistance to taxol

employing peptide library of 18 random acids of higher complexity. Tenson et al.,1997

screened peptides based on retroviral library of 21 amino acids providing resistance to

Erythromycin. Similarly peptides conferring resistance to induced apoptosis were reported by

(Matza-Porges et al.,2003) on screening 15 amino acid random peptide library. Previously,

retroviral library technology has been used in the context of cDNA libraries and in few cases

successful functional cloning of cDNA molecules were reported (Rayer et al.,1994;

Kitamura et al., 1995). Another technology complementary to random peptide library uses

libraries of cDNA fragments, termed genetic suppressor elements for functional screening in

mammalian cells (Holzmayer et al.,1992; Roninson et al.,1995). However in the present

study instead of cDNA libraries, a synthetic nucleotide based library was preferred as the

library components can have any sequence which can be encoded after mixing four

nucleotides and not only sequences already existing in nature, which makes it better candidate

for drug target discovery too. Results from screening of synthetic or phage display peptide

libraries have shown that unnatural higher affinity peptides capable of competing with

naturally occurring protein-protein interactions can be pulled out from random libraries

(Aramburu et al.,1999). Since the size of individual library peptide is in range of 5-20 amino

acids which may suggests that the potential effector peptide may act by blocking crucial

protein-protein interactions via binding directly to localize active sites on their target proteins.

This could be the case with dexamethasone as it blocks cell progression at G1 phase and also

down regulates  signal pathways especially MAP kinase pathways, it may be argued that the
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screened peptide may be able to overcome the dexamethasone mediated effect by acting on

some crucial proteins and interfere with its interaction. Peptide action was further confirmed

on basis on negative controls and vector alone which exerted no effect on the induced toxic

effect by dexamethasone. 
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Summary 
Interaction of proteins is central to various cellular processes like cell growth,

proliferation, differentiation and programmed cell death. The interactions can furthermore be

attributed to specified biochemical processes like transcription, translation or replication

Some proteins are highly specific to interact with certain partners. They also can interact with

many other proteins and even form larger multifunctional complexes. To study the specific

role of a single protein-protein interaction of a multifunctional protein or protein complex, it

is necessary to interrupt each single interaction individually to elucidate their respective role

and influence they exert. 

There are many ways to interrupt protein interactions. One is expressing specific peptides in

vivo to target a known protein-protein interaction. In order to accomplish this, an efficient

retroviral expression vector system capable of expressing peptides was developed. To target

known protein-protein interactions, peptides with sequences homolog to one of the interacting

domains were expressed. As one example, peptides derived from the Ros tyrosine

phosphorylation domain were expressed to target the interaction between the tyrosine kinase

Ros and PTP SHP-1. In a second example peptides based on the LXXLL motif important for

the interaction of transcription factors and coactivators were expressed to disrupt this

interaction. Furthermore, the peptide expression system was used to establish a peptide library

that can be used to screen for new peptides influencing cellular processes. 

The dephosphorylation of tyrosine kinase Ros by PTP SHP-1 is an important step to inhibit

cellular proliferation and growth. To target this interaction, peptides derived from the Ros

tyrosine phosphorylation domain were expressed using retroviral expression system in

modified NIH3T3 cells. These cells express an artificial TrkA-Ros fusion receptor tyrosine

kinase and under the control of anhydrotetracycline expresses PTP SHP-1. Upon expression

of the tyrosine domain homologous peptide an increase in cell proliferation was observed.

Surprisingly, this enhancement in cell growth was independent of PTP SHP-1 and of receptor

stimulation. To exclude that these peptides stimulate proliferation by an independent

mechanism, peptides were also expressed in the unmodified parent NIH3T3 cell line. In this

case no significant stimulation was observed. The peptides only enhanced proliferation in the

presence of the TrkA-Ros receptor containing the homologous domain. A single point

mutation replacing the tyrosine by phenylalanine (negative mutation) significantly reduced

the observed enhancement of proliferation. Modification of peptides by addition of self

annealing complementary flanking sequences at both N and C termini influenced peptide

activity similarly as the replacement of tyrosine. In combination with the negative mutation

(phenylalanine) the self annealing clamps had no observable additional effect. 
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The enhanced proliferation observed with the Ros tyrosine domain peptide was not only the

result of a disruption of the Ros SHP-1 interaction. The effect was dependent on the presence

of the cytoplasmic Ros domain, the functional homology and a relative flexibility of the

peptide. Mutation or structural constrain lead to a strong disruption of the proliferation

enhancement.

To address the question if peptides expressed by this system are also active in the nucleus,

transcription factor coactivator interactions were targeted. Ligand binding nuclear receptors

recruit coactivators for full activation in transcription control. Coactivators interact with AF-2

domains of nuclear receptors via consensus LXXLL motifs present in all coactivators. To

interfere with coactivator and receptor interaction short LXXLL peptides with or without

additional amino acid residues around the LXXLL motif were expressed in HeLa and

NIH3T3 cells. Expressed peptides were found to antagonize transcription activation by

various agents like vitamin D, dexamethasone, 9-cis retinoic acid and forskolin. The

antagonizing effect of the peptides increased with additional amino acids around the LXXLL

motif. The inhibitory effect was found to depend on the number of amino acids that an

expressed peptide shares with the high affinity motifs present in strong coactivators when

aligned. Presence of two close LXXLL motifs separated by a few amino acids in a peptide

were less efficient. The peptide with only one LXXLL motif with out additional amino acids

showed the least suppressive effect. These studies demonstrate the importance of

neighbouring amino acid residues around the central LXXLL motif for nuclear receptor

coactivator interaction selectivity. Peptides lacking the LXXLL motif did not show any

antagonistic effect in these experiments.

Comparing transcription induction with the various inducers a pattern of relative specificity

for the various flanking amino acids was found. With this, two main groups are identified, one

containing Vit D, dexamethasone and 9-cis-retinoic acid and the other for forskolin. This

pattern fits well with the known coactivator specificity of the respective transcription factors. 

Finally, a combinatorial retroviral peptide library was synthesized to screen novel bioactive

peptides. The random peptide library was synthesized on the basis of nnk codon system,

where n denotes all four nucleotides and k denotes g and t. This nnk system ensures a more

equal distribution of amino acids in the library and of possible three stop codons two are

omitted. With this system a random retroviral peptide library encoding for peptides of 13

amino acid residues was prepared. After ligation of the template into the retroviral vector a

large number of transformations of E.coli were performed to get at least 106 colonies. Each

colony represented a single vector with a different peptide. All colonies were scrapped and
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used for preparation of vector DNA resulting in a peptide library with about 106 independent

members, all present in a large number of copies. With this expression library new peptides

can be identified in a suitable functional assay. Retroviral infection ensures that in each cell

only one peptide is expressed and present over several generations.

The peptide library was employed to screen bioactive peptides conferring resistance to cells

against dexamethasone induced toxicity. Higher concentration of dexamethasone (10-4 mol/l)

caused considerable cell death of NIH3T3 cells. Using this strategy only one successful

selection could be carried out. Surprisingly, only a single active peptide was identified. Its

activity was reconfirmed after repeated cloning into the retroviral expression system and

subsequent infection suppresses the toxic effect of dexamethasone. How the peptide

influences cellular regulation is not immediately clear and could not be resolved within this

work.
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Zusammenfasung

Wechselwirkungen zwischen Proteinen spielen eine zentrale Rolle in verschiedenen

regulatorischen Prozessen, die das Zellwachstum, die Vermehrung, Differenzierung und

programmierten Zelltod (apoptose) steuern. Auch beim Blick auf biochemischen Prozessen,

wie z.B. Transkription und Translation, spielen Protein-Protein-Interaktionen eine

entscheidende Rolle. Proteine zeigen eine sehr hohe Spezifität bei der Interaktion mit

Partnermolekülen. Sie können darüberhinaus meist mit vielen anderen Proteinen interagieren

und multifunktionelle Komplexe bilden. Um die spezifische Rolle einer Protein-Protein-

Interaktion innerhalb eines multifunktionellen Proteins oder Komplexes zu untersuchen, ist es

erforderlich, jede Interaktion innerhalb des Komplexes individuell beeinflussen zu künnen.

Protein-Wechselwirkungen können durch verschiedene Methoden unterbrochen

werden. Eine Möglichkeit bietet die Expression von Peptiden, die gegen spezifische Protein-

Protein-Interaktionen gerichtet sind. Dazu wurde im Rahmen der vorliegenden Arbeit ein

effizientes Expressionssystem für die kontrollierte Expression kleiner Peptide auf Basis von

retroviralen Vektoren entwickelt. In einem ersten Schritt wurde dieses System genutzt, um

bekannte Protein-Protein-Interaktionen zu beeinflussen. Dazu wurden Peptide exprimiert, die

mit einer der interagierenden Domänen homolog sind und daher die entsprechende Interaktion

kompetitiv unterbinden sollten. Zum einen wurde die Tyrosin-Phosphorylierungsdomäne von

Ros genutzt, um die Interaktion der Ros-Tyrosin-Kinase mit der Phosphatease SHP-1 zu

beeinflussen, zum anderen Peptide mit LXXLL-Motiven, um entsprechender Weise die

Interaktion von Transkriptionsfaktoren und Koaktivatoren zu unterbinden. Darüber hinaus

wurde ein System zur Expression einer Peptid-Bibliothek entwickelt, die es ermöglicht nach

neuen Peptiden zu suchen, die zelluläre Prozesse beeinflussen.

Die Dephosphorylierung von Ros durch SHP-1 Phosphatase ist ein wichtiger Schritt

zur Inhibierung zellulärer Proliferation und Wachstum.  Um dies zu untersuchen, wurden die

Ros-abgeleiteten Peptide mit dem retroviralen Expressionssystem in einer modifizieten

NIH3T3 Zelllinie exprimiert. Diese Zellen enthalten einen artifiziellen TrkA-Ros Rezeptor

und können auch SHP-1 unter Kontrolle von Tetrazyklin exprimieren. Durch Expression der

zur Tyrosin-Domäne homologen Peptide wurde eine signnifikante Zunahme der Proliferation

beobachtet. Überraschender Weise war diese unabhängig von SHP-1 und der Aktivierung des

Rezeptors. Um auszuschließen, daß die Peptide über einen anderen Mechanismus die

Proliferation stimulieren, wurden diese auch in nicht modifizierten NIH3T3 Zellen exprimiert.

Dabei konnte keine nennenswerte Stimulierung beobachtet werden. Die Peptide waren nur

proliferationsfördernd, wenn der TrkA-Ros Rezpetor mit der homologen Domäne in den
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Zellen exprimiert wurde. Das Ersetzen des funktionellen Tyrosins durch Phenylalanin im

Peptid (negative Mutation) führte zu einer deutliche Abschwächung der

Proliferationsförderung. Eine weitere Veränderung der vom Rezeptor abgeleiteten Peptide

durch Hinzufügen von selbst-bindenden („self-annealing“) komplementären flankierenden

Sequenzen an N- und C-Terminus führte zu einer vergleichbaren Verminderung der

Proliferationsförderung wie das Ersetzen des Tyrosins durch Phenylalanin. In Verbindung mit

der negativen Mutation (Phenyalanin) hatten die selbst-bindenden flankierenden Sequenzen

jedoch keinen zusätzlichen Effekt. 

Die durch das Ros-Tyrosin-Domäne-homolge Peptid erhöhte Zellproliferation konnte

nicht auf einer Störung der Wechselwirkung zwischen Ros und der SHP-1 Phosphatase

zurückgeführt werden. Der Effekt ist jedoch abhängig von der Anwesenheit der

cytoplasmatischen Ros Domäne, der funktionellen Homologie und einer relativen Flexibilität

des Peptides. Mutation oder strukturellen Rahmen führten dagegen zu einer starken

Abschwächung der Proliferationsförderung. 

Mit dem gleichen Vektorsystem wurden auch Peptide mit-einem LXXLL Motiv

exprimiert, um zu überprüfen ob mit diesem System auch Interaktionen im Zellkern

beeinflußt werden können. Das LXXLL Motiv ist sehr charakteristisch für Koaktivatoren von

Transkriptionsfaktoren und spielt eine Rolle bei der Wechselwirkung eines Koaktivators mit

der AF-2-Transaktivierungs-Domäne eines aktivierten nukleären Rezeptors. Peptide mit oder

ohne zusätzliche Aminosäuren um das LXXLL Motiv, exprimiert in HeLa und NIH3T3

Zellen, wirkten der Trankriptionsinduktion durch verschiedene induzierende Moleküle wie

Vitamin D, Dexamethason, 9-cis Retinolsäure und Forskolin entgegen. Der antagonistische

Effekt war bei Peptiden mit flankierenden Aminosäuren stärker als bei Peptiden ohne

zusätzliche Aminosäuren. Die beobachteten Effekte waren auch von der Anzahl und Lage der

Aminosäuren um das Motiv abhängig und um so effektiver, je besser diese mit natürlichen

Nachbaraminosäuren in LXXLL Motiven starker Koaktivatoren übereinstimmten. Zwei nah

beeinander liegende LXXLL Motive hatten einen geringeren inhibierenden Effekt. Peptide

mit nur einem LXXLL Motiv zeigten im Vergleich die geringste Aktivität. Diese

Beobachtungen verdeutlichten die Bedeutung zusätzlicher Aminosäuren um das LXXLL

Motiv für die Wechselwirkung mit nukleären Rezeptoren und Transkriptionsfaktoren. Peptide

ohne  LXXLL Motiv hatten keinen antagonistischen Effekt.

In Vergleich der Trankriptionsinduktion durch die verschiedenen Induktoren, konnte

darüber hinaus eine Zuordnung der relativen Spezifität für die unterschiedlichen

flankierenden Aminosäuren gefunden werden. Dabei entstehen zwei Hauptgruppen, eine mit
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Vitamin D und Dexamethason, die andere mit Forskolin, welche gut zur bekannten

unterschiedlichen Koaktivatorspezifität der jeweils aktivierten Transkriptionsfaktoren passt. 

 Neben der Expression bekannter Peptide wurde das retrovirale Expressionssystem

auch genutzt um eine retrovirale Peptid-Expressionsbibliothek herzustellen. Die

Peptidbibliothek wurde auf der Basis von NNK Kodons generiert, wobei N für alle vier

Nukleotide steht während K nur für G und T codiert. Durch das NNK-System wird eine

bessere Verteilung von Aminosäuren erreicht und zwei von drei Stopkodons eliminiert. Mit

diesem System wurde eine retrovirale randomisierte Peptidbibliothek mit Peptiden von 13

Aminosäuren Länge generiert. Nach Ligation wurden durch wiederholte Transformation mehr

als 106 Kolonien erhalten, die jeweils einen Vektor mit einem unterschiedlichen Peptid

enthalten. Alle Klone wurden in die Präparation von Vektor-DNA eingesetzt und so eine

Bibliothek von ungefähr 106 unabhängigen Peptiden erhalten. Die sind wiederum in großer

Kopienzahl vorhanden. Mit dieser Expressionsbibliothek wird es möglich, in einem

geeigneten zellulären Funktionsassay nach neuen Peptiden zu suchen. Durch die retrovirale

Infektion wird sichergestellt, daß jede Zelle jeweils nur ein Peptid exprimiert und die

Expressionskassetten über mehrere Generationen an Tochterzellen weitergibt. 

Als Selektionsstrategie wurde der cytotoxische Effekt von Dexamethason genutzt.

Erhöhte Konzentration von Dexamethason (10-4 mol/l) führte zu einem signifikantem

Absterben von NIH3T3 Zellen. Im Rahmen der Arbeit konnte nur eine erfolgreiche Selektion

durchgeführt werden. Diese führte überraschend zur Selektion nur eines einzigen aktiven

Peptids. Dessen Aktiviät konnte, auch nach erneuter Klonierung in das retrovirale

Expressionssystem und anschließender erneuter Infektion, den cytotoxischen Effekt von

Dexamethason unterdrücken. Wie das Peptid in die zelluläre Regulation eingreift, konnte

leider bis zum Abschluß dieser Arbeit nicht geklärt werden.
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