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Summary

Background: Satellite observations demonstrate wide-spread changes in terrestrial
vegetation since the 1980s. For example, vegetation activity (or greenness) increases
across the globe (“greening”). Observations also show regional decreases (“browning”)
in parts of boreal forests and temperate grasslands, and changes in phenology, like an
earlier beginning or a delayed end of the growing season in temperate and boreal
forests. Satellite-derived indices of vegetation activity are indicative of changes in
photosynthesis, and thus the terrestrial carbon cycle. For example, it has been
suggested that greening and enhanced photosynthetic carbon uptake in high-latitude
ecosystems is causing the observed increase in the seasonal amplitude of atmospheric
COz. However, the relationship between greening and the seasonality of atmospheric
CO: has not yet been assessed while comprehensively accounting for other possible
controls such as changes in agricultural productivity.

Moreover, the reliability of satellite-observed greening and browning trends has been
contested, because regional trends cannot be detected in all satellite datasets and
results might also differ depending on the chosen statistical analysis method. For
example, browning of boreal forests in North America can be only detected in some
datasets, and lead to different competing explanations for these trends. An overall
greening and an earlier start of the growing season in high-latitude ecosystems have
been explained by long-term increases in temperature. However, although global
ecosystem models mostly rely on temperature relationships to simulate phenology,
they do not reproduce observations of seasonal to long-term greenness dynamics well.
This suggests that it is necessary to comprehensively consider several factors in global
ecosystem models in order to represent and explain the observed seasonal to decadal
changes in vegetation activity.

Research aims: The overall aim of this doctoral research is to better understand recent
dynamics of land surface phenology and greenness in the Earth system by integrating
satellite observations with global ecosystem models. Specifically, four research
questions are addressed (Figure 1.2 and chapter 1.5). The first question aims to assess
the contribution of observational uncertainties to the quantification of dynamics in
land surface phenology and greenness. Observational uncertainties arise from
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differences between several satellite datasets and from varying accuracies of time series
analysis methods that are used to detect trends and trend changes, or to detect
phenology events. The second aim is to improve the representation of phenology in a
global ecosystem model (specifically LPJmL, Lund-Potsdam-Jena managed Lands), and
to assess the impact of these model improvements on inter-annual and decadal
changes in vegetation greenness and carbon cycle simulations. The third aim is to
identify the regional and global importance of several controls on land surface
phenology and greenness at multiple time scales (i.e. seasonality, inter-annual
variability and trends). Finally, the fourth aim is to comprehensively assess the
contribution of recent trends in vegetation greenness and productivity on the
increasing amplitude of atmospheric CO..

Data, Methods and Models: A variety of datasets and methods was used to address
the research questions. Regarding the first aim, newly available satellite datasets of
vegetation greenness were used together with a variety of time series analysis methods
to assess observational uncertainties. For the second aim, a new phenology module
(called LPJmL-GSI) was implemented within LPJmL and several observational data
sets were integrated into the model to improve diagnostic model simulations. The new
phenology module comprehensively accounts for effects of temperature, radiation and
water availability on the seasonal development of canopies. Regarding the third aim,
the improved model was applied in a factorial experiment to assess the regional and
global importance of different controls on land surface phenology and greenness on
multiple time scales. The considered controls are temperature, radiation, water
availability, land wuse/land cover change, permafrost dynamics, fire, and CO:
fertilization. Finally, LPJmL was used together with an atmospheric transport model
(TM3) to comprehensively assess the role of several factors, including greening in
boreal and arctic ecosystems, on trends in the seasonal amplitude of atmospheric CO..
Main results: The thesis provides a more comprehensive assessment of 1) the controls
on vegetation activity on seasonal to decadal time scales and 2) the consequent effects
on the seasonal amplitude of atmospheric COs.

It is essential to rigorously assess observational uncertainties for a robust detection of
changes in land surface phenology and greenness and to ensure the reliability of
scientific results. Trend change detection methods can have a weak accuracy in
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detecting the real underlying trend of a time series especially under high inter-annual
variability. All methods were prone to detect trends opposite to the underlying reality.
Phenology detection methods can result in large differences in the estimation of the
start and end of growing season. Differences between satellite datasets further add to
these methodical uncertainties. Therefore it is necessary to take observational
uncertainties into account in the detection of dynamics in vegetation activity and in
model-data integration.

The newly implemented phenology module in LPJmL with optimized model
parameters outperforms the original model in reproducing several observed patterns
and dynamics of vegetation activity such as the global patterns of gross primary
production, biomass and tree cover; and the seasonal to decadal changes in vegetation
greenness. Specifically, the model agreement with observations is higher than the
agreement among satellite datasets regarding start and end of growing season
dynamics in temperate, boreal and arctic ecosystems. Moreover, the improved model
better reproduces observed trends in the seasonal amplitude of atmospheric COzthan
the original model.

The comparison of LPJmL with observations suggests that the model can be used to
diagnose controls of climate and different environmental conditions on vegetation
greenness at multiple time scales. The importance of controls varies regionally and
depends on time scale. However, water availability and temperature are co-dominant
controls on vegetation greenness seasonality, inter-annual variability and trends
globally. Water availability affects vegetation seasonality not only in water-limited
biomes but also in boreal and arctic regions where it is regulated through the seasonal
freezing and thawing of permafrost soils. An increase in water availability from
increased seasonal melting of permafrost contributed to greening trends in the arctic
tundra and boreal forests of Siberia. Additionally, changes in vegetation cover and
composition through vegetation dynamics and land use change are important controls
for the inter-annual variability and trends in land surface greenness globally.

The observed increase of the seasonal amplitude of atmospheric CO:z in northern high
latitudes can be mainly explained by a stronger increase in gross primary production
rather than in ecosystem respiration. This results in an increasing carbon sink strength
in boreal and arctic ecosystems. Although the effects of CO: fertilization on
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photosynthesis and global agricultural areas contribute moderately to the trends in
CO2 amplitude, the latitudinal gradient,, showing much stronger trends in northern
latitudes than in low latitudes, cannot be explained without the climate-induced
amplification of vegetation activity in boreal and arctic regions.

General conclusions: Overall the thesis demonstrates the value of satellite
observations in understanding global vegetation dynamics, carbon cycle trends, and
for the improvement of global ecosystem models. At the same time, observational
uncertainties and multiple independent data streams need to be considered. A rigorous
comparison of ecosystem observations and models provides a more comprehensive
understanding of the functioning of global ecosystems and the Earth system. However,
little is known about the global importance of ecosystem disturbances (beyond fire)
and mortality on biogeographic patterns, ecosystem carbon turnover and thus the
global carbon cycle. Compilations of ground observations such as plant traits or
mortality events in harmonized global databases and new retrievals from upcoming
multi-spectral and radar satellite missions of the land surface will need to be explored
and persistently integrated with continuously developed ecosystem models to further

uncover the role of ecosystems in the Earth system.



Zusammenfassung

Hintergrund: Satelliten-Beobachtungen der Erdoberflaiche zeigen grofiflachige
Veranderungen der Vegetation seit den 1980er Jahren. Beispielsweise stieg weltweit
die Vegetationsaktivitit an (,Ergriinen” der Erde). Beobachtungen zeigen aber auch
ein Absinken der Vegetationsaktivitét (,Erbraunen”) in einigen Regionen wie z. B. in
Teilen der borealen Walder oder in temperierten Graslandern. In temperierten und
borealen Waldern veranderte sich auch die Phanologie der Vegetation wie z. B. ein
zeitigerer Beginn oder ein spdteres Ende der Vegetationsperiode. Satelliten-basierte
Indizes der Vegetationsaktivitdt sind Indikatoren fiir Veranderungen in der
Photosynthese and damit im globalen Kohlenstoffkreislauf. So wurde beispielsweise
vorgeschlagen, dass das Ergriinen und der Anstieg der Kohlenstoffaufnahme durch
Photosynthese in nordlichen Okosystemen den Anstieg der Amplitude des
Jahresgangs von CO: in der Atmosphdre verursachen. Dieser Zusammenhang
zwischen dem Ergriinen und der Saisonalitdt von atmosphéarischem CO: wurde jedoch
noch nicht umfassend untersucht im Vergleich mit moglichen anderen Ursachen wie
einem Anstieg der landwirtschaftlichen Produktion.

Die Glaubwiirdigkeit von Satelliten-Beobachtungen des Ergriinen und Erbraunens
wird intensiv diskutiert, weil regionale Trends nicht in allen Satelliten-Datensatzen
detektiert werden konnen und sich auch in Abhéangigkeit von der verwendeten
statistischen Analysemethode unterscheiden. Beispielsweise wurde das Erbraunen in
borealen Waldern in Nord-Amerika nur in einigen Datensdtzen entdeckt und mehrere
alternative Erkldarungen fiir diese Trends existieren. Das generelle Ergriinen und der
zeitigere Beginn der Vegetationsperiode in ndrdlichen Okosystemen wurde meistens
mit langfristig ansteigenden Temperaturen erklart. Obwohl globale Okosystemmodelle
haufig auf Temperatur-Beziehungen basieren um Phénologie zu simulieren, kénnen
sie nicht gut saisonale bis langfristige (ca. 30 Jahre) Beobachtungen der
Vegetationsentwicklung reproduzieren. Daher ist es notwendig, zusatzliche Faktoren
in globalen Okosystemmodellen zu beriicksichtigen um beobachtete saisonale bis
langfristige Veranderungen der Vegetationsaktivitit zu reproduzieren und zu

erklaren.
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Ziele: Das iibergeordnete Ziel dieser Promotion ist es, ein besseres Verstandnis von
Veranderungen der Phanologie und der Vegetationsaktivitit der Landoberflache in
den letzten Jahrzehnten zu schaffen wobei Satellitenbeobachtungen mit globalen
Okosystemmodellen integriert werden sollen. Dabei werden vier spezifische
Forschungsziele adressiert (Abbildung 1.2 und Kapitel 1.5). Erstens soll bewertet
werden, wie Unsicherheiten in den Beobachtungen zur Abschitzung von
Veranderungen der Phanologie und der Vegetationsaktivitit der Landoberfldche
beitragen. Unsicherheiten ergeben sich aus Unterscheiden zwischen verschiedenen
Satellitendatensatzen und variablen Genauigkeiten von Zeitreihen-Analysemethoden,
die genutzt werden um Trends, Verdnderungen in Trends oder phanologische
Ereignisse zu detektieren. Das zweite Ziel ist, die Simulation von Phéanologie in einem
globalen Okosystemmodell zu verbessern (speziell in LPJmL, Lund-Potsdam-Jena
managed Lands). Dabei soll bewertet werden wie sich diese Modellverbesserung auf
Simulationen der Vegetationsaktivitait und des Kohlenstoffkreislaufes auswirkt. Das
dritte Ziel ist es, die regionale und globale Bedeutung von verschiedenen
Einflussfaktoren auf saisonale, jahrliche und langfristige Verdnderungen der
Phanologie und Vegetationsaktivitdt der Landoberflache zu bewerten. Schliefilich ist
das vierte Ziel eine umfassende Bewertung des Beitrages von Vegetationsaktivitat und
-produktivitat auf den Anstieg der saisonalen COz:-Amplitude in der Atmosphare.

Daten, Methoden und Modelle: Eine Vielzahl von Datensatzen und Methoden wurde
genutzt um die Forschungsfragen zu adressieren: Hinsichtlich der ersten Zielstellung
wurden neue Satellitendatensiatze der Vegetationsaktivitit zusammen mit mehreren
Zeitreihenanalysemethoden genutzt um die Beobachtungs-Unsicherheiten zu
bewerten. Fiir die zweite Fragestellung wurde ein neues Phanologie-Modul in LPJmL
(genannt LPJmL-GSI) implementiert und mehrere Beobachtungsdatensatze wurden in
LPJmL integriert um diagnostische Modellsimulationen zu verbessern. Das neue
Phanologiemodul  Dberticksichtigt Effekte von Temperatur, Strahlung und
Wasserverfligbarkeit auf die saisonale Blattentwicklung von Vegetation. Hinsichtlich
der dritten Forschungsfrage wurde LPJmL in einem Modellexperiment genutzt um die
regionale und globale Bedeutung von verschiedenen Einflussfaktoren auf die
Vegetationsaktivitat and Phanologie der Landoberfldche auf verschiedenen Zeitskalen
zu bewerten. Die dabei beriicksichtigten Faktoren sind Temperatur, Strahlung,
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Wasserverfligbarkeit, Verdanderungen der Landnutzung und -bedeckung, Waldbrande
und CO:-Diingung der Photosynthese. Schliefllich wurde LPJmL fiir die vierte
Forschungsfrage zusammen mit einem atmosphédrischen Transportmodell (TMB3)
genutzt um umfassend die Rolle verschiedener Faktoren, u. a. des Ergriinens von
arktischen und borealen C)kosystemen, fiir Trends in der saisonalen Amplitude von
CO2in der Atmosphare zu erklaren.

Hauptergebnisse: Diese Dissertation stellt eine umfassende Bewertung dar
hinsichtlich, 1) der Einflussfaktoren fiir die Vegetationsaktivitit auf saisonalen bis
langjahrigen Zeitskalen und 2) der Effekte von Veranderungen der Vegetation auf die
saisonale CO2-Amplitude in der Atmosphare.

Die Berlicksichtigung und Bewertung von Unsicherheiten ist essentiell um
Veranderungen der Phanologie und Vegetationsaktivitat aus Satellitendaten robust zu
detektieren und um damit die Glaubwiirdigkeit wissenschaftlicher Ergebnisse
sicherzustellen. Methoden der Trend- und Trendverdanderungsanalyse konnen eine
geringe Genauigkeit beziiglich der Detektion des realen Trends einer Zeitreihe
aufweisen insbesondere dann, wenn die Zeitreihe eine hohe Jahr-zu-Jahr-Variabilitat
aufweist. In solchen Fillen konnen einige Methoden sogar Trends mit gegensatzlicher
Veranderung als die realen Trends detektieren. Methoden zur Detektion von
phénologischen Ereignissen konnen in enormen Unterschieden hinsichtlich des
Beginns oder Endes der Vegetationsperiode resultieren. Unterschiede zwischen
Satellitendatensatzen tragen zusatzlichen zur Unsicherheit bei. Daher ist es notwendig
solche Unsicherheiten bei der Detektion von Verdnderungen der Vegetationsaktivitat
und bei der Modell-Daten-Integration zu beriicksichtigen

Das neue Phanologiemodul in LPJmL mit optimierten Modellparametern iibertrifft das
Originalmodell, da es einige beobachtete Muster und Dynamiken der
Vegetationsaktivitat besser reprasentiert, wie z. B. globale raumliche Muster der
Bruttoprimarproduktion, der Biomasse und Baumbedeckung und zeitliche Dynamiken
der Vegetationsaktivitdt, d. h. Saisonalitdt, Jahr-zu-Jahr-Variabilitit und Trends. Die
Ubereinstimmung des Modells mit den Satellitenbeobachtungen ist insbesondere
hoher als die Ubereinstimmung der Satellitenbeobachtungen untereinander
hinsichtlich des Beginns und Endes der Vegetationsperiode in temperierten, borealen
und arktischen Okosystemen. Dariiber hinaus reproduziert das Modell auch besser die
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beobachteten Trends in der saisonalen CO:-Amplitude in der Atmosphdre als das
Originalmodell.

Die Evaluierung von LPJmL anhand von Beobachtungsdaten schafft die Grundlage fiir
die Modellanwendung um Einflussfaktoren fiir die Vegetationsaktivitit auf
verschiedenen Zeitskalen zu diagnostizieren. Die Bedeutung von Einflussfaktoren
variiert dabei regional und hadngt von der Zeitskala ab. Jedoch sind weltweit
Wasserverfligbarkeit und Temperatur ko-dominante Faktoren fiir die Saisonalitit,
Jahr-zu-Jahr-Variabilitdt und fiir Trends der Vegetationsaktivitit. Wasser limitiert die
Vegetationsaktivitat nicht nur in ariden und semi-ariden Regionen sondern auch in
borealen und arktischen Regionen wo die Wasserverfiigbarkeit durch das saisonale
Gefrieren und Auftauen der obersten Schicht von Permafrostbdoden reguliert wird. Ein
Anstieg der Wasserverfiligbarkeit aufgrund des verstarkten saisonalen Auftauens des
Permafrostes hat zum Ergriinen der arktischen Tundra und der borealen Walder in
Sibirien beigetragen. Zusitzlich sind Veranderungen der Vegetationsbedeckung durch
natiirliche Vegetationsdynamik und durch Landnutzungsanderungen bedeutende
Faktoren fiir die Jahr-zu-Jahr-Variabilitdt und fiir Trends in der Vegetationsaktivitat
weltweit.

Der beobachtete Anstieg der saisonalen Amplitude von CO2 in der Atmosphire in
nordlichen Breiten kann hauptsdchlich durch einen starkeren Anstieg der Brutto-
Photosynthese im Vergleich zur Okosystematmung und damit einem Anstieg der
Kohlenstoffsenke in borealen und arktischen Okosystemen erklirt werden. CO»x-
Diingung der Photosynthese und globale landwirtschaftliche Gebiete tragen mafsig zu
COz-Amplitudentrends bei. Jedoch kann der Gradient von stiarkeren CO:z-
Amplitudentrends in nordlichen Breiten zu schwachen Trends in niedrigen Breiten
nicht ohne den Effekt von Klimawandel auf die Verstarkung der Vegetationsaktivitat
in borealen und arktischen Regionen erklart werden.

Allgemeine Schlussfolgerung: Die Dissertation demonstriert den Nutzen von
Satellitenbeobachtungen fiir das Verstandnis von globalen Dynamiken der Vegetation,
von Trends im Kohlenstoftkreislauf und fiir die Verbesserung globaler
Okosystemmodelle. Dabei miissen Unsicherheiten der Beobachtungen und mehrere
voneinander unabhingige Datensadtze beriicksichtigt werden. Ein konsequentes
Gegeniiberstellen von Okosystembeobachtungen und -modellen erlaubt dabei
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umfassendere Erklarungen iiber die Funktionsweise von globalen Okosystemen und
des Erdsystems. Jedoch ist das Wissen iiber die globale Bedeutung von
Okosystemstérungen  (abgesehen von Waldbranden) und -mortalitat — fiir
biogeographische Muster, fiir den Umsatz von Kohlenstoff in Okosystemen und damit
fiir den globalen Kohlenstoffkreislauf sparlich. Zusammenstellungen von in situ
Beobachtungen wie z. B. von Pflanzenmerkmalen oder Mortalitdtsereignissen in
globalen harmonisierten Datenbanken und neue Abschitzungen der Vegetations-
aktivitdt von zukiinftigen multispektralen Satelliten bzw. der Biomasse von Radar-
Satelliten miissen stdndig in kontinuierlich fortentwickelte Okosystemmodelle

integriert werden, um die Rolle von Okosystemen im Erdsystem weiter aufzudecken.
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1 Introduction

“Wenn auch der Charakter der verschiedenen Erdriume von allen dufSeren Erscheinungen
abhingt (...) so ist doch nicht zu leugnen, dass das Hauptbestimmende dieses Eindrucks die
Pflanzendecke ist.”

(Humboldt 1845/2004, p.180)

Figure 1.1: A satellite’s view on the land surface of the Earth.
This image is a cloud-free true-colour composite of MODIS satellite observations from July 2004
from the NASA Blue Marble Next Generation dataset (Stockli et al., 2005).
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1 Introduction

1.1 Vegetation greenness and climate: scope of the thesis

Alexander von Humboldt, the pioneer of modern physical geography, had already
emphasized the dominance of vegetation on the appearance of different regions
(Humboldt 1845/2004, p.180). Humboldt describes that the presence of certain plant
groups changes from the equator to the poles or from low to high latitudes. This
change in plant groups is indicative for differences in climate conditions (Humboldt
1845/2004, p.182). The close relationships between the distribution of plant species and
climate have been later used by Koppen (1884) and Képpen and Geiger (1954) to define
and map climate zones that correspond to dominant plant species. The definition of
these climate zones considered also seasonal variations of temperature and
precipitation. The seasonality of temperature and precipitation has later been described
and especially visualized in climographs by Walter and Lieth (1960). Thereby
climographs were mostly developed based on temperature and water availability
conditions that are descriptive of the seasonality of plant growth (Walter, 1970). The
seasonality of plant growth is one of the most noticeable phenomena in nature that
shows the strong interaction between climate and vegetation: new leafs of deciduous
plants emerge in spring and fall again in autumn. The study of the timing of such
seasonal biological changes is called phenology (Lieth, 1976). Phenology of vegetation
is usually controlled by temperature, day length and dormancy (Korner and Basler,
2010; Lieth, 1974). Therefore phenology of vegetation has a strong year-to-year
variability following variations in weather conditions (Walther et al., 2002). For
example, annual weather conditions and harvest yields have been documented over
centuries in monasteries, which reported a close relationship between the variability of
air temperature and vine harvest dates in Europe (Chuine et al., 2004; Maurer et al.,
2009). Modern phenological observations demonstrate an advanced leafing, flowering
or fruiting in Europe in the last four decades which is caused by warming (Menzel et
al.,, 2006). Thus, changes in the phenology and in distribution of the terrestrial

vegetation are direct indicators for past and recent changes in climate conditions.
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Satellite observations of the Earth are nowadays indispensable tools to investigate
interactions between climate and the terrestrial vegetation (Figure 1.1). The emergence
of aerial photography during the first half of the 20* century and of Earth observation
satellites during the 1970s opened possibilities to complement local ground
observations of phenological changes with spatial covered observations (Morain, 1974).
Nevertheless, the use of satellite images to study phenology required spectral
observations that are comparable under different vegetation types and temporal and
spatial conditions. Only the development of spectral vegetation indices like the NDVI
(Normalized Difference Vegetation Index, chapter 1.3.1) allowed to observe temporal
changes in vegetation conditions (Tucker, 1979). Vegetation indices are measures of the
“greenness” of the vegetation (Huete, 2012) and are based on the characteristic spectral
properties of vegetation. Vegetation reflects relatively more radiation in the green
region (ca. 500-600 nm) of the visible part of the electromagnetic spectrum by
chlorophyll than in the blue (ca. 400-500 nm) and the red regions (ca. 600-700 nm).
Radiation in blue and red regions is absorbed as energy source for photosynthesis
(Emerson and Lewis, 1943; Engelmann, 1894). Additionally, almost all incoming solar
radiation is reflected in the near-infrared region. Thus, the difference between the high
reflection (low absorption) in the near-infrared and the low reflection (high absorption)
in the red region is a proxy for the photosynthetic light absorption. This difference
usually increases with an increasing coverage of green vegetation. Therefore the value
of a vegetation index is a measure of the “greenness” although spectral vegetation
indices are based on the absorption of radiation in the red region.

Multi-temporal satellite observations of vegetation indices made it possible to study
the spatial variability and temporal development of greenness (Justice et al., 1985) and
phenology (Reed et al., 1994). The use of satellite-derived time series of vegetation
indices to study variations in vegetation phenology is usually referred to as “land
surface phenology” because satellite observations integrate signals of the land surface
across different ecosystems and species (de Beurs and Henebry, 2004a, 2010b). Satellite
observations during the last three decades allow the derivation of vegetation index
time series that can be used to detect changes in land surface phenology and greenness.
Time series of vegetation indices show significant changes in land surface phenology

and greenness since the 1980s. Already in the period from 1981 to 1991 an increased
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plant growth measured by an increase in annual growing season NDVI has been
observed in the Northern Hemisphere (Myneni et al., 1997a). Such positive trends in
time series of vegetation indices are called “greening” and occur in many terrestrial
regions across the Earth (Figure 1.3). Greening trends in high latitudes are
accompanied by trends towards an earlier start and a lengthening of the growing
season (Julien and Sobrino, 2009; Tateishi and Ebata, 2004; Tucker et al., 2001). These
greening and growing season trends in high-latitude ecosystems can be explained by
increasing temperatures that enhance plant growth (Keenan et al., 2014; Lucht et al,,
2002; Xu et al., 2013). Greening trends occur also in the Sahel (Herrmann et al., 2005;
Olsson et al., 2005) and are explained by a recovery of vegetation after severe droughts
in the 1960s and 1970s (Hickler et al., 2005). Nevertheless, the greening of the Sahel is
highly debated because it cannot be detected in all satellite datasets (Fensholt and
Proud, 2012; Horion et al., 2014) and it is generally surprising given the fact that the
Sahel has experienced strong land degradation in the last decades (Dardel et al., 2014b;
Fensholt et al., 2013). Besides greening, also negative trends in vegetation greenness
(named “browning”) have been observed, especially in boreal forests of North America
(Bi et al., 2013; Goetz et al., 2005) (Figure 1.3). Browning trends in boreal forests occur
more often in evergreen than in deciduous forests and more often in North America
than in Siberia (Beck and Goetz, 2011). In newer NDVI datasets with extended time
series after 2006 a change from greening to browning trends has also been observed in
some boreal forests of Eurasia (Buermann et al., 2014; de Jong et al., 2011b) (Figure 1.3).
Browning trends in boreal forests have been explained by several and often regionally
different factors like increased fire activity (Goetz et al., 2005), increasing drought
stress (Buermann et al., 2014; Bunn et al., 2007), cooling spring temperatures (Wang et
al.,, 2011) or decreased soil moisture because of reduced snow packs (Barichivich et al.,
2014). Browning trends have also been observed in some temperate and subtropical
grasslands in Asia and South America (de Jong et al., 2011b) which are explained by an
increased drought stress and increased pasture farming (Hilker et al., 2014; van
Leeuwen et al., 2013). Greening, browning, and phenology trends in boreal and arctic
regions in the last three decades are seen as first signs of climate change induced shifts
in the global distribution of vegetation (Beck et al., 2011). It is hypothesized that the

boreal forest biome shifts northwards at the expense of the tundra biome given climate
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warming scenarios for the next century (Lucht et al., 2006). The existence of multiple
competing explanations for greening and browning trends in biomes such as boreal
forests or the Sahel as well as the interpretation of these trends as first signs of biome
shifts require a better understanding of the climatic, environmental and anthropogenic
controls on dynamics of land surface phenology and greenness.

The overall aim of this thesis is to better understand recent dynamics of land surface
phenology and greenness in the Earth system by combining satellite observations with
global vegetation models. The introduction continues with a state-of-the-art assessment
about the role of vegetation greenness and phenology in the Earth system (chapter 1.2)
and with two methodological chapters focussed on remote sensing (chapter 1.3),
modelling, and model-data integration (chapter 1.4, Figure 1.2). The introduction ends
with a description of the four major research questions of this thesis (chapter 1.5). The
research questions are addressed in several research chapters (chapters 2-5 with
corresponding supplements in chapters 7-9). The main conclusions of the thesis as a

whole are summarized with respect to the research questions in chapter 6.

Chapter 1: Introduction | 1.1 Vegetation Greenness and Climate: Scope

Overall aim: to better understand recent dynamics of lalid surface phenology and greenness in the Earth system
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Figure 1.2: Overview of research questions and the structure of this thesis.
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1.2 Greenness and phenology in the Earth system

The greenness of vegetation is regulated through the temporal development and
senescence of foliage, the physiological activity of canopies and the plant composition
of ecosystems (Figure 1.4) (Richardson et al., 2013). Thus, the seasonal dynamic of
vegetation greenness is to a large extent regulated through vegetation phenology.
Vegetation greenness and phenology affect the Earth system by several mechanisms
(Figure 1.4) (Bonan, 2008a, 2008b; Pefiuelas et al., 2009; Richardson et al., 2013). These
mechanisms are regulated by a structural and a physiological component of vegetation
phenology (Richardson et al., 2013). The obvious structural component of phenology
through leaf development and senescence regulates litterfall, microclimate, surface
roughness and albedo. Albedo is the fraction of the incident solar radiation that is
reflected by the surface (Bonan, 2008a, p.199). Albedo regulates the energy balance of
the land surface and thus affects also the energy balance of the atmosphere. Green
vegetated land surfaces are associated with low albedo and therefore increased
absorbed radiation. An increased absorbed radiation alters the surface energy balance
by increasing latent heat fluxes, meaning higher evapotranspiration and therefore
increased water cycling. In a modelling scenario, contrasting a “desert” with a “green”
Earth, Kleidon et al. (2000) estimated that the maximum potential effect of the
terrestrial vegetation is to triple land evapotranspiration. Thus the structural
development of vegetation canopies regulates the physiological activity of vegetation
and controls photosynthesis, evapotranspiration and energy fluxes (Figure 1.4). These
phenology-regulated mechanisms influence the composition of the atmosphere
through the uptake of carbon dioxide (CO:z) by photosynthesis, through the release of
water (H20) by evapotranspiration or the emission of volatile organic compounds
(VOCs) (Petiuelas et al., 2009). The biogeophysical effect of land surface albedo and the
biogeochemical effect of photosynthetic carbon uptake are thought to be the dominant

regulators of the green terrestrial vegetation that affect the Earth system.
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Figure 1.4: Feedbacks between vegetation phenology and the Earth System.
The scheme was adapted from Richardson et al. (2013). Grey-coloured text and arrows were
added to the original figure.

1.2.1 Warming-greening-albedo feedback

Greening trends and associated changes in land surface albedo could potentially
contribute to further climate warming especially in arctic regions (Chapin et al., 2005).
Land surface albedo is strongly affected by vegetation type. For example, evergreen
needle-leaved forests have the lowest albedo values (0.05-0.15), followed by deciduous
broadleaved forests (0.15-0.2), and grass or croplands (0.16-0.26) (Bonan, 2008a, p.200;
Cescatti et al., 2012; Hollinger et al., 2010). The phenology of these vegetation types
affects strongly the seasonality of land surface albedo. Whereas evergreen forests have
not or only a small seasonal variation of albedo because of the stable canopy structure,
the seasonal development of foliage in grasslands and deciduous forests cause larger
variations in albedo (e.g. seasonal amplitude of albedo ~0.05 in deciduous forests,
Cescatti et al., 2012). Additionally, the seasonal development of canopies affects the
relative contribution of background albedo from litter, soil or snow cover to the total
land surface albedo. Snow has high albedo values (> 0.45 for old snow, > 0.8 for fresh
snow) (Bonan, 2008a, p.200). Thus, the albedo seasonality of seasonal snow-covered
ecosystems is mostly affected by snow melt and snow fall.

Greening trends in high-latitude ecosystems, especially in the arctic tundra, are directly

connected with changes in land surface albedo (Chapin et al., 2005). The arctic greening
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is related to an increase of shrub cover (Forbes et al., 2010; Myers-Smith et al., 2011;
Sturm et al., 2001) which is mainly due to warming and thus more favourable growth
conditions (Blok et al., 2011a). An increasing shrub cover is in turn related to an
increasing NDVI and decreasing land surface albedo (Loranty et al., 2011). A further
increase of vegetation cover in arctic regions will decreases land surface albedo and
consequently result in an increased absorption of solar radiation. This increased
absorption will result in surface warming and an increased heat flux to the atmosphere
which could amplify climate warming (Chapin et al., 2005; Jeong et al., 2014; Myers-
Smith et al., 2011). Indeed, positive relations between land surface temperature and
greenness, and negative relations between greenness and albedo have been observed in
the taiga-tundra transition zone in the last three decades (Urban et al., 2013). On the
other hand it has been also shown that increasing shrub cover does not generally
decrease land surface albedo, e.g. in cases when shrubs replace wetlands with initial
low albedo (Blok et al., 2011b). Nevertheless, an increasing coverage of shrubs or trees
generally decreases land surface albedo especially during the snow season when the
trees or shrubs are masking the underlying snow (Loranty et al., 2014). Consequently,
the increasing tree and shrub cover in high latitude regions that can be observed as
greening, decreases land surface albedo especially in winter and therefore contributes
to increasing winter temperatures (Chapin et al., 2005; Loranty et al., 2014). Thus the
warming is causing arctic greening and decreasing land surface albedo, meaning
increased absorption and surface warming. Therefore high-latitude greening and

associated albedo changes are part of a positive feedback in the Earth system.

1.2.2 Greening and the global carbon cycle

1.2.2.1  Owerview of the global carbon cycle

Contrary to the greening-albedo feedback, the relation between greening and
photosynthesis could dampen climate warming. Plants assimilate CO: from the
atmosphere during photosynthesis. Global terrestrial gross photosynthesis (or gross
primary production, GPP) is the largest flux of CO: in the carbon cycle (Figure 1.5)
with 123 PgC yr! globally with an uncertainty of 8 PgC yr! (standard deviation across
different estimate approaches) (Beer et al.,, 2010). Part of this assimilated carbon is

respired as energy source for plant growth and to maintain living cells. The sum of this
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growth and maintenance respiration, autotrophic respiration (Ra), is about 50% of GPP
(Bonan, 2008a, p.275). The difference between GPP and Ra is referred to as net
photosynthesis (or net primary production, NPP) and is about 56 PgC yr! with an
uncertainty of 14.3 PgC yr? (standard deviation across different estimates) (Ito, 2011).
This carbon is used by plants to produce biomass. Around 450-650 PgC are stored as
biomass at the global land surface (Ciais et al., 2013) (Figure 1.5). Carbon is transferred
from vegetation to soils through mortality and litterfall which is around 32% to 43% of
NPP (Bonan, 2008a, p.310). Soils are the largest terrestrial carbon stock with 1500-2400
PgC with additionally approx. 1700 PgC stored in permafrost (Ciais et al., 2013) (Figure
1.5). The large uncertainties in soil carbon stock estimates depend on the limited
representativeness of soil profile measurements (Carvalhais et al., 2014). Carbon in
litter and soils is released back into the atmosphere through respiration by
microorganisms (heterotrophic respiration, Rh). Carbon in ecosystems is also released
to the atmosphere through fires (1.71-2.46 PgC yr?, Thonicke et al. (2010)) or exported
by rivers to oceans (~ 1.7 PgC yr, Ciais et al. (2013)). As GPP and total ecosystem
respiration (Reco = Ra + Rh) are the largest carbon fluxes in ecosystems, the net carbon
uptake of an ecosystem (net ecosystem productivity, NEP, or net ecosystem exchange,
NEE), is in most ecosystems dominated by these two components (Chapin et al., 2006;
Schulze, 2006):
NEP =GPP — Reco =(GPP — Ra) - Rh = NPP — Rh (1.1)

NEE = Reco — GPP = -NEP (1.2)
The entire carbon balance of an ecosystem includes also non-respiratory losses such as
fire C emissions, emissions of volantile organic compounds, and lateral transport and
is defines as net ecosystem carbon balance (NECB) (Chapin et al., 2006) or for large
scales as net biome productivity (NBP) (Schulze, 2006). The global terrestrial NBP is
around 2.6 PgC yr! (Ciais et al., 2013) (Figure 1.5), i.e. the terrestrial land surface takes
up CO2 and thus is a “sink” for atmospheric COz. The amount of carbon that is stored
in the atmosphere increases by ca. 4 PgC yr! because of increased emissions from
burning of fossil fuels and cement production (7.8 PgC yr?) and changes in land use
(1.1 PgC yr?) (Ciais et al., 2013) (Figure 1.5). Similar in magnitude to terrestrial NBP,
oceans take up atmospheric carbon (2.3 PgC yr?) and store it mainly in the deep ocean

(37100 PgC) (Ciais et al., 2013) (Figure 1.5). Nowadays, terrestrial ecosystems take up
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more carbon (+1.2 PgC yr', Ciais et al. (2013)) than before the industrial revolution
(~1750) which is largely driven by stronger trends in gross primary production than in
ecosystem respiration. In summary, the terrestrial land surface is a net sink of carbon,
dampening the growth of atmospheric CO: concentrations which is a negative

feedback in the Earth system.
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Figure 1.5: Simplified schematic of the global carbon cycle (Ciais et al., 2013, p.471).
Numbers represent reservoir mass, also called ‘carbon stocks” in PgC and annual carbon
exchange fluxes (in PgC yr-1). Black numbers and arrows indicate reservoir mass exchange
fluxes estimated for the time period prior to the industrial era, about 1750 (see Ciais et al. (2013,
p-471) for a further description).

1.2.2.2  Greening and carbon cycle trends

Greening trends are concordant to positive trends in photosynthetic carbon uptake.
Greening trends in high latitudes in 1982-2000 caused increased absorption of radiation
for photosynthesis and thus resulted in positive NPP trends (Lucht et al., 2002; Nemani

et al., 2003; Sitch et al., 2007). Lucht et al. (2002) estimated an annual NPP increase by
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34.6 gC m? yr'! in the boreal zone in 1982-1998 by using the LPJ] model. A relationship
between greening and increased NPP in the taiga-tundra transition zone is also
confirmed by ground observations that demonstrate significant correlations between
annual mean growing season NDVI and annual tree ring widths (Berner et al., 2011,
2013). Nemani et al. (2003) estimated a global increase of NPP of 3.42 PgC in the period
1982-1999 which was mostly dominated from tropical regions. Nevertheless, for the
global terrestrial carbon budget Reco needs to be considered to quantify NEP (or NEE).
Weaker Rh trends than NPP trends resulted in a net uptake of carbon by boreal
ecosystems during 1982-1998 (NEE trend of -2.9 gC m? yr?) (Lucht et al., 2002). Also on
a global scale, ecosystem models simulate stronger NPP than Rh trends and thus an
increasing global net land uptake in the last decades of the 20™ century (Sitch et al.,
2008, 2013). Therefore satellite observations of greening trends are indicative of

positive trends in photosynthetic carbon uptake.
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Figure 1.6: High-latitude greening and increasing amplitude of atmospheric CO:s.

(a) Time series of atmospheric CO: as observed at Point Barrow, Alaska and (b) annual
seasonal amplitude of CO:z and trend. Figures (a) and (b) are taken from manuscript 4, data
from NOAA, (Conway et al., 1994). (c) Correlation between growing season-integrated NDVI
(GIMMS3g dataset) and the seasonal minimum of de-trended CO: at Barrow (black dot) from
1982 to 2010. Only significant correlations are shown (p <0.1). Figure (c) is courtesy of Jonathan
Barichivich (Barichivich et al., 2013).
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Trends in the terrestrial net carbon balance are likely to affect atmospheric CO:
concentrations (Le Quéré et al., 2009). Atmospheric monitoring demonstrates globally
an increase in CO2 because of fossil fuel emissions (Keeling et al., 1976). Additionally, it
has been shown that the seasonal amplitude of atmospheric CO: increased over the last
four decades of the 20 century especially at high latitude monitoring stations (Figure
1.6b) (Bacastow et al., 1985; Keeling et al., 1996). This CO: amplitude increase was also
observed in the middle and upper troposphere by aircraft observations and is likely
linked to changes in boreal and arctic ecosystems (Graven et al., 2013). Indeed, the
increase of the CO: amplitude correlates well with greening trends in northern high
latitudes (Figure 1.6c) (Barichivich et al., 2013; Myneni et al., 1997a). On the other hand,
it has been hypothesized that the intensification of agriculture in temperate regions is
an important control on the CO: amplitude trend (Gray et al., 2014; Zeng et al., 2014).
However, these studies did not comprehensively account for other possible controlling
factors and ignored especially the role of atmospheric transport. The co-occurrence of
greening and CO: amplitude trends in high latitudes suggests a possible relationship.
Nevertheless, despite of correlation analyses the effect of greening on the increase in
the seasonal amplitude of atmospheric CO: has not yet been demonstrated and
quantified.

The current role of the terrestrial land surface as carbon sink in the Earth system might
change under future climate conditions but is highly uncertain. While some global
climate/carbon-cycle models project a terrestrial carbon sink until 2100, others project a
terrestrial carbon source (Friedlingstein et al., 2006, 2014). This spread among models is
related to differences in the simulation of land use change emissions and to the
sensitivity of the simulated terrestrial carbon cycle to rising atmospheric CO:
(Friedlingstein et al., 2014). Especially global vegetation models diverge regarding their
future projected vegetation residence time which defines if a model will project a
carbon source or sink (Friend et al., 2014). Generally, global coupled climate/carbon-
cycle models underestimate the turnover time of carbon in terrestrial ecosystems in
comparison to data-oriented estimates which might be related to a too weak sensitivity
of models to precipitation (Carvalhais et al., 2014). The spread in simulated vegetation
residence times among models is related to how demographic processes such as

recruitment, mortality and vegetation composition are considered (Friend et al., 2014).
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Satellite observations of vegetation greenness provide information about changes in
vegetation phenology, type and vegetated area. Therefore these observations could
partly help to improve some of these processes in ecosystem models that contribute to

the uncertainties in the future development of the land carbon cycle feedback.

1.3 Remote sensing of greenness and phenology
1.3.1 Vegetation indices and biophysical properties

The greenness of the vegetation is quantified from satellite observations by vegetation
indices. A vegetation index is a combination of spectral bands from an optical sensor
that contain information about spectral properties of vegetation (Huete, 2012). Green
healthy vegetation absorbs radiation especially in the blue and red regions of the
electromagnetic spectrum and reflects a large part of the incoming radiation in the near
infra-red (NIR) regions (Figure 1.7a). On the other hand, soil has an increasing
reflectance from the blue to the NIR region. These distinct differences between red and
NIR absorption by vegetation and bare soil allow the formulation of the Normalized
Difference Vegetation Index (NDVI) to quantify these differences (Tucker, 1979):

Npvi = NIR=red (1.3)
NIR +red

NDVI ranges between -1 and 1 whereas vegetated surfaces usually have NDVI values >
0.2. Bare soil, snow and water have lower NDVI values.

The greenness of vegetation affects the carbon cycle through the absorption of
radiation for photosynthesis. The absorbed photosynthetic active radiation (APAR)
depends on the total incoming photosynthetic active radiation (PAR) and on the
greenness of the vegetation:

APAR = FAPARx PAR (1.4)
where FAPAR is the fraction of absorbed photosynthetic active radiation (Monteith,

1972). Moreover, FAPAR has a linear relationship to NDVI (Huete, 2012; Myneni and
Williams, 1994) although this relationship is variable depending on site conditions,
plant types or the development stage of the canopy (Fensholt et al., 2004; Gamon et al.,
1995; Myneni et al., 1997b). The amount of leaves in a canopy affects NDVI (FAPAR).
The amount of leaves is often quantified as leaf area index (LAI) which is the one-sided

area of all leaves (Awas) in relation to the ground area (Aground) (Bonan, 2008a, p.253):
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LAl = Aleafs /Aground (15)
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Figure 1.7: Reflectance of vegetation, soil and location of spectral bands from different satellite
Sensors.

(a) Spectral reflectance for green vegetation, dry soil, and wet soil in the visible and near
infrared part of the electromagnetic spectrum (from Tucker, 1979). (b) Location of spectral
bands from different satellite sensors that are used to retrieve long-term global datasets of

vegetation greenness (Baret et al., 2007; Huete et al., 2002; Pinzon and Tucker, 2014; Richards
and Jia, 2006, p.5).

If LAI becomes higher (e.g. during leaf development in spring) more PAR is absorbed
by the canopy and thus FAPAR (NDVI) increases. Nevertheless, at high LAI values
FAPAR (NDVI) increases only marginally or saturates because this relationships

follows approximately a Lambert-Beer relation of light absorption (Monsi and Saeki,

1953, 2005):

FAPAR =1—¢ P4 (1.6)
where k is the light extinction coefficient which depends on solar zenith angle, leaf
orientation, clumping and thus plant species (Chen et al., 2005; Monsi and Saeki, 1953).
Nevertheless, this simple relationship of canopy radiation transfer assumes that light is
completely absorbed and no reflection or scattering within the canopy occurs (Bonan,

2008a, p.255; Sellers, 1985). As FAPAR (NDVI) depends on the amount of leaves, it is
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also closely related to the fractional area coverage of green vegetation which can be
expressed as fractional vegetation cover (Carlson and Ripley, 1997) or foliar projective
cover (FPC) (Specht, 1972, 1981). FPC is the fractional coverage of the ground by leaves
(Huete, 2012). Other vegetation indices that account for soil reflectance, that have a
higher sensitivity to photosynthetic light absorption, or that are sensitive to water
availability exist and are reviewed in Huete et al. (2012). However, such vegetation
indices are not readily available from long-term (30 years) harmonized satellite

datasets and could therefore not be used in this thesis.

1.3.2 Observational uncertainties from sensors and datasets

Vegetation index time series are prone to uncertainties. One major source of

uncertainty originates from the availability of several datasets that differ by the used

satellite sensor with associated spectral properties and retrieval algorithms. Different

“families” of satellite sensors have been used to derive long-term time series of

vegetation greenness (Figure 1.7b), e.g.:

- The Landsat program provides the longest record of relative high spatial resolution
satellite images since 1972 (NASA, 2015; Richards and Jia, 2006, p.393). However,
Landsat imagery has only been used in regional studies to assess long-term
changes in vegetation greenness (Baird and Verbyla, 2012; Fraser et al., 2011; Neigh
et al., 2008). This is due to the initially high cost for imagery, the sparse temporal
sampling, the high spatial resolution and thus high requirements for data storage,
and the relatively high efforts that are needed to process Landsat data (atmospheric
correction, cloud removal, inter-sensor calibration).

- AVHRR (Advanced Very High Resolution Radiometer) instruments on board
NOAA (National Oceanic and Atmospheric Administration) satellites provide the
second longest and most used records of greenness time series starting in July 1981
(Pinzon and Tucker, 2014; Tucker et al., 2005). AVHRR sensors have a very coarse
spatial (4 * 4 km) and spectral resolution (Figure 1.7b). Nevertheless, these sensors
provide a daily coverage of the Earth which is the crucial advantage of using these
sensors to derive time series of vegetation greenness.

-  MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on Terra

and Aqua satellites were launched 1999 and 2002, respectively. The spectral
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properties of the MODIS sensor and its medium spatial resolution (250 to 1000 m
depending on spectral band) makes it suitable for large scale assessments of
vegetation greenness dynamics (Huete et al.,, 2002). Therefore MODIS-derived
greenness time series are often used as a benchmark for the longer AVHRR-derived
time series (Fensholt et al., 2009; Fensholt and Proud, 2012; Tucker et al., 2005).

- Vegetation (VGT) instruments onboard the SPOT 4 and 5 (Satellite Pour
I'Observation de la Terre) and Proba-V satellites were launched 1998, 2002 and
2013, respectively. The spectral (Figure 1.7b) and spatial resolution (~300 m) and
the approximately daily return interval of this sensor has a similar suitability for
large-scale vegetation observation as MODIS (Baret et al., 2007, 2013).

Other vegetation index datasets have been derived from the SeaWifs (Sea-viewing

Wide Field-of-view Sensor, 1997-2011) and MERIS (Medium Resolution Imaging

Specrometer, 2002-2012) sensors (Gobron et al., 2006, 2008).

The different orbital and spectral properties of these satellites and sensors result in

different estimates of vegetation indices. Moreover satellite sensors are affected by

orbital drift (Kaufmann et al., 2000) and from sensor degradation (Wang et al., 2012)

which result in a changing sensitivity of the sensors to the received signal.

Additionally, high sun zenith angles, clouds, aerosols, or snow cover can distort

observations and frequently result in an underestimation of NDVI (Holben, 1986).

Therefore, satellite observations need to be calibrated, multiple sensor observations

need to be harmonized and measurements need to be corrected for distortions to

ensure consistent long-term time series of vegetation greenness. A major sensor
calibration and across-sensor harmonization effort was achieved by the GIMMS

(Global Inventory Monitoring and Modelling Study) group that created a global NDVI

dataset with 8 km spatial resolution starting in July 1981 based on data from AVHRR

sensors (Tucker et al., 2005). This NDVI dataset has recently been newly calibrated and
updated to the present (GIMMS3g, 3 generation, Pinzon and Tucker (2014)). FAPAR
and LAI datasets were derived from the GIMMS3g NDVI dataset as well (Zhu et al,,

2013). Vegetation indices were also retrieved from other sensors using different

retrieval algorithms (Baret et al., 2007, 2013; Gobron et al., 2006; Gobron and Verstraete,

2009; Knyazikhin et al., 1999; Pinty et al., 2007; Plummer et al., 2007). Nevertheless, the

-45 -



GIMMS NDVI dataset has been most widely used for the analysis of trends in land
surface phenology and greenness because of the longer time coverage.

Despite harmonization efforts, vegetation index datasets from different sensors or
processing algorithms still show remarkable differences. For example, FAPAR datasets
differ in mean values and seasonality across different ecosystems (D’Odorico et al.,
2014; McCallum et al., 2010). NDVI time series from different datasets differ in the
timing of spring onset or start of growing season (Atzberger et al., 2013; White et al.,
2014). Moreover, the extent and spatial distribution of greening and browning trends
in boreal forests does not agree among datasets which led to doubts about the
reliability, especially of browning trends (Alcaraz-Segura et al., 2010). Although
datasets from other satellites generally confirmed the existence of browning trends in
boreal forests of North America (Beck and Goetz, 2011; Parent and Verbyla, 2010), the
new GIMMS3g version shows less extensive browning trends than its predecessor
(Jiang et al., 2013). Greening occurs more in deciduous boreal forests and browning
occurs more in evergreen boreal forests (Beck and Goetz, 2011). On the other hand,
datasets generally agree less on the scale and direction of these trends in evergreen
forests (McCallum et al., 2010). Differences in the temporal dynamics between satellite
datasets were found across the world (Fensholt and Proud, 2012) such as the tundra
(McCallum et al., 2010), temperate grasslands (D’Odorico et al., 2014; Scheftic et al.,
2014), tropical savannahs like the Sahel (Fensholt et al., 2009), and tropical forests
(Morton et al., 2014). Consequently, studies of land surface phenology and greenness

should consider such uncertainties from datasets to robustly assess ecological changes.

1.3.3 Observational uncertainties from time series analysis methods

An additional source of uncertainty in the analysis of satellite-observed vegetation
greenness dynamics arises from time series analysis methods. The availability and
specific advantages of different time series analysis methods affects the analysis of land
surface phenology as well as of long-term greenness trends.

Satellite-derived vegetation index time series require pre-processing in order to assess
land surface phenology (de Beurs and Henebry, 2010b). Some datasets have gaps
because of the removal of observations under cloudy conditions or snow cover. These

gaps, noise, and the coarse temporal resolution necessitate interpolation and
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smoothing of time series to extract the main seasonal features. Several methods have
been used for interpolation and smoothing of vegetation index time series (Beck et al.,
2006; Delbart et al.,, 2006; Jonsson and Eklundh, 2002; Verbesselt et al., 2010b).
However, the quality of these methods differs and it is difficult to identify a best
method (Geng et al., 2014). The performance of methods decreases under higher levels
of noise and is dependent on the length of gaps, seasonality, vegetation type and
sensor characteristics (Geng et al., 2014; Hird and McDermid, 2009; Kandasamy et al.,
2013; Musial et al., 2011). The varying performance of interpolation and smoothing
methods contributes to uncertainties in the estimation phenology metrics from
vegetation index time series. Metrics of land surface phenology are for example the
start and end of the growing season (SOS or EOS) which define the length of the
growing season (LOS). Nevertheless, no generally accepted definition or detection
methods exist for these metrics which introduces remarkable uncertainties (Beck et al.,
2006; de Beurs and Henebry, 2010b; Elmore et al., 2012; Jonsson and Eklundh, 2002;
Karlsen et al., 2006; Tateishi and Ebata, 2004; White et al., 2014, 2009). For example,
methods can differ in up to two months in estimated SOS (White et al., 2014, 2009).
Consequently, studies of land surface phenology should consider different time series
interpolation and smoothing methods, and different methods for the extraction of
phenology metrics for a robust assessment of land surface phenology dynamics.

Different methods exist to quantify trends in land surface phenology or greenness. A
frequently used method is to estimate the trend as the slope of a linear regression.
However, the use of linear regressions violates statistical assumptions such as the
independence of observations due to temporal autocorrelation or homogeneity (de
Beurs and Henebry, 2004b). Alternative approaches consider temporal autocorrelation
structures (Goetz et al., 2005) or non-parametric trend tests, like the Mann-Kendall test
(Kendall, 1975; Mann, 1945), to circumvent the limitations of regression analysis (de
Beurs and Henebry, 2004b, 2010a). Although different trend methods agree on the
overall patterns of the major greening and browning trends, they reveal clear
differences in regions with weak trends (de Jong et al., 2011a) which suggests that the
performance of trend methods depends on the trend magnitude. Additionally, trends
in NDVI time series are often non-monotonic, i.e. they might change because of climate

variability, disturbances or land cover change (de Beurs and Henebry, 2004a; de Jong et

-47 -



al., 2011b, 2013b). Therefore methods were developed that consider abrupt or gradual
changes in trends (Bai and Perron, 2003; Mudelsee, 2009; Verbesselt et al., 2010a,
2010b). De Jong et al. (2013b) found trend changes in the GIMMS3g NDVI dataset
globally, like changes from initial greening to browning. However, the performance of
different trend methods and the reliability of trend changes have not yet been
investigated, especially in arctic and boreal ecosystems, which are the most prominent

examples of such trends.

1.4 Model-data integration for greenness and phenology

Global ecosystem models have previously been used to assess the importance of
different environmental controls over greening trends or to quantify their effects on
terrestrial net primary production (Lucht et al., 2002; Mao et al., 2012, 2013; Nemani et
al., 2003; Piao et al., 2006). This chapter provides an overview of global ecosystem
models; provides an overview about how current state-of-the-art model reproduce
observed phenology and long-term greenness dynamics; introduces concepts of model-
data integration; and finally provides examples of how phenology models can be

improved through model-data integration.

1.4.1 Dimensions and groups of global ecosystem models

Global ecosystem models are simplified representations of the terrestrial biosphere that
serve different purposes, such as the assessment of the distribution of vegetation types
or the quantification of carbon and water fluxes in ecosystems. In a broader sense,
classification schemes like the climate classification of Kppen (1884) are models of the
distribution of global vegetation. However, in a narrower sense global ecosystem
models are codified formulations which are used to quantify states and responses of
terrestrial ecosystems to environmental conditions (Prentice et al., 2007). The
comprehensiveness of the biosphere representation depends mostly on the historical
origins of a model and the main area of application. Consequently global ecosystem
models can be grouped according to different dimensions (Figure 1.8). Models can be
grouped according to their main application domain (diagnostic to prognostic models),

according to the level of physical process representation (empirical to
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physical/mechanistic), and according to how comprehensively they account for
ecosystem structure and processes. However transitions between model groups are
smooth. Diagnostic models are used to assess ecosystems in the present or in the recent
past. Prognostic models are applied to assess ecosystem responses in the future or in
the far past where ecosystem states cannot be constrained by observations and thus

need to be fully simulated.

Processes and topics:
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Figure 1.8: Dimensions of global ecosystem models.

Empirical models depend on observational data. For example, machine learning
approaches have been used to estimate spatial-temporal patterns of ecosystem carbon
and water fluxes based on ecosystem-level and satellite observations (Papale and
Valentini, 2003; Reichstein et al., 2007) and, more recently to quantify ecosystem carbon
and water fluxes globally (Beer et al., 2010; Jung et al., 2011). Although machine
learning approaches are simplified representations of biosphere processes, they are not
generally seen as ecosystem models in a narrow sense but rather as data-oriented
estimates because they do not depend on assumptions about physical relations in
ecosystems.

Global ecosystem models are sometimes distinguished between terrestrial
biogeochemical models (TBM) and dynamic global vegetation models (DGVM). TBMs
simulate the carbon and water cycle of terrestrial ecosystems by assuming a fixed
ecosystem composition. DGVMs simulate additionally changes in ecosystem
composition and structure (Bonan, 2008a, p.379; Prentice et al., 2007). Historically, the
primary aims of TBMs and DGVMs was to simulate net primary production and the

distribution of global vegetation, respectively (Prentice et al., 2007). Both groups of
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models represent ecosystem processes based on a wide range of empirical to physical
formulations. For example, a group of TBMs are light-use efficiency models (LUE, also
radiation-use efficiency, RUE) that rely on an empirical relation to estimate NPP or
GPP from FAPAR (Monteith, 1972; Potter et al., 1999; Running et al., 2000):

GPP = FAPAR x PAR x LUE .« x f(T, W ,...) (1.7)
where LUEm» is the maximum light-use efficiency, i.e. the maximum amount of
assimilated carbon per unit light, and AT,W,...) are scalar functions that account for
environmental stresses such as temperature (T) and water stress (W). The definition of
these stress functions differs among implementations of LUE-models which causes
large differences in simulated GPP (Cai et al., 2014). LUE-models are also diagnostic
models because they rely on (satellite) datasets of FAPAR or NDVI and have therefore
no prognostic capabilities. Other TBMs which are prognostic simulate photosynthesis
based on mechanistic formulations (Knorr, 2000; Melillo et al., 1993).

Another group of global vegetation models was originally developed within global
climate and weather forecast models to account for the exchange of energy, heat and
momentum between the land surface and atmosphere; namely land surface models
(LSMs) (Sellers et al., 1997). Later, LSMs were developed further to fully account for
terrestrial carbon and water cycles and thus developed into full global ecosystem
models (Bonan, 2008a, p.396; Sellers et al., 1997). However, prognostic TBMs and LSMs
had a limited capability to be used for long-term projections of climate impacts on
vegetation because they did not account for the effects of climate change on changes in
vegetation structure and composition.

Therefore DGVMs were developed to comprehensively account for the impacts of
climate change on vegetation dynamics, i.e. plant growth, competition, mortality and
ecosystem structure (Cramer et al., 2001). DGVMs represent vegetation as a set of plant
functional types (PFTs). PFTs are often defined based on biome (tropical, temperate,
boreal), plant form (tree, grass), leaf type (needle-leaved, broad-leaved) and phenology
(evergreen, deciduous) (Prentice et al., 2007; Sitch et al., 2003). The development of
TBMs, LSMs and DGVMs converges nowadays by increasing the comprehensiveness
of represented ecosystem structural and process components in all of these models.
Recent developments in global ecosystem models are for example the incorporation of

human-induced land use change and agriculture (Bondeau et al., 2007; Gervois et al.,
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2004; Kucharik, 2003), disturbance as fire (Kloster et al., 2010; Thonicke et al., 2001,
2010; Venevsky et al., 2002), or the consideration of biodiversity by replacing fixed
PFT-parameterizations with variable plant traits (Bodegom et al., 2014; Pavlick et al,,
2013). DGVMs have been adapted to atmospheric models and thus increasingly replace
classical LSMs in coupled biosphere-atmosphere models (Bonan et al., 2003; Foley et
al., 2000). Based on this convergence in model development barriers between TBMs,
LSMs and DGVMs disappear and such a distinction becomes obsolete.

It is evident to use an ecosystem model (DGVM) that considers vegetation dynamics to
assess environmental controls on vegetation greenness and phenology. Although most
prognostic ecosystem models simulate phenology and vegetation greenness (FAPAR),
only a DGVM is suitable for such an application because greening and browning
trends are related to changes in vegetated area and vegetation composition. Vegetation
composition in DGVMs depends thereby on bioclimatic limits, net primary production,
carbon allocation, competition, mortality, and disturbance (Cramer et al., 2001; Prentice
et al,, 2007; Sitch et al.,, 2003). For example, the LPJ (Lund-Potsdam-Jena) DGVM
simulates the allocation of the annually assimilated carbon (NPP) to leaves, wood and
roots (Sitch et al., 2003). Increasing leaf carbon (Cus) results in an increasing LAI of
individual trees:

Cleaf X SLA

LA]md = CA

(1.8)

where SLA and CA are the specific leaf area (m? gC') and crown area, respectively
(Sitch et al., 2003). LAI is then converted to FPC and finally to FAPAR by using the
Lambert-Beer equation (eq. 1.6). Therefore DGVMs such as LP] can be used
diagnostically (as in Lucht et al. (2002)) to assess controlling factors for land surface

phenology and greenness dynamics and to assess effects on the global carbon cycle.

1.4.2 Evaluation of phenology and greenness in global ecosystem models

Recent studies have shown that global ecosystem models have a poor performance in
representing observed greenness dynamics. For example, most ecosystem models
simulate a too early start of the growing season in deciduous forests of North America
in comparison to ground measurements of LAI (Richardson et al., 2012). The same

study also shows that the inter-annual variability of the start of the growing season is
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poorly reproduced by ecosystem models. These misrepresentations of phenology also
resulted in an overestimation of GPP in spring and autumn (Richardson et al., 2012).
Although ground observations are probably less uncertain than satellite observations,
they provide only a limited insight in the large spatial performance of ecosystem
models. A global evaluation of FAPAR simulations from the ORCHIDEE model
against MODIS NDVI time series was done by Maignan et al. (2011). They found high
correlations (> 0.8) in most deciduous ecosystems (Europe, North America, Savannas),
weak correlations (~ 0.6) in most boreal forests and the tundra, and low correlations for
tropical forests and some drylands. Although such a correlation analysis between
observed NDVI and modelled FAPAR gives a general notion on problems of modelled
phenology, it is too simplistic because the NDVI-FAPAR relationship depends on
vegetation type and phenological status. Therefore, differences in correlations between
regions might not only reflect a poor model performance but also differences in the
NDVI-FAPAR relationship. Thus, a model evaluation of simulated FAPAR (or LAI)
against satellite-derived FAPAR (or LAI) estimates would be a more direct approach to
assess spatial patterns of model performance. Thereby FAPAR estimates are closer to
the actual spectral measurements than LAI estimates (Kelley et al., 2013).

A set of DGVMs was evaluated against the GIMMS LAI dataset over the Northern
Hemisphere for the period 1986-2005 to assess the model performance for vegetation
phenology and long-term greenness trends (Murray-Tortarolo et al., 2013). All models
overestimated LAI over boreal forests and some models overestimated high-latitude
greening trends whereas other models did not simulate greening at all (Murray-
Tortarolo et al., 2013). Murray-Tortarolo et al. (2013) also evaluated simulated start and
end of growing season dates but did not consider the above-mentioned observational
uncertainties such as from different satellite datasets or phenology methods and
therefore provides no insight in the reliability of these model evaluation results.
Despite these methodological weaknesses, all studies (Anav et al., 2013; Kelley et al.,
2013; Murray-Tortarolo et al., 2013; Richardson et al., 2012) demonstrate that global
ecosystem model need to be improved to better represent seasonal, inter-annual and

long-term greenness dynamics especially through a better representation of phenology.
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1.4.3 Concepts of model-data integration

Observations or “data” are necessary during several steps of model development
(Figure 1.9). Observations are especially needed during model characterization as
consistency checks, during the estimation of model parameters, and for evaluation of
model results (Williams et al., 2009). This concept is known as model-data fusion
(MDF), model-data synthesis (MDS), data assimilation (DA), or model-data integration
(MDI) (Keenan et al., 2011; Mathieu and O’Neill, 2008; Raupach et al., 2005; Wang et al.,
2009). MDI is the combination of information from observations with information from
models to evaluate models, to estimate model parameters or model states in order to
quantify and reduce the uncertainty of the model structure, parameters, states or

predictions (Liu and Gupta, 2007; Raupach et al., 2005).

Model application
(within domain of validity)

Model (re)formulation
/. (definition of model structure) N
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Figure 1.9: Use of data in model development and model-data integration.
The figure is taken from Williams et al. (2009) and was described in the context of FLUXNET
eddy covariance data. The same model-data integration process can be also applied to satellite-
derived greenness time series and prognostic ecosystem models such as DGVMs.

In a narrow sense, MDI is restricted to parameter and state estimation (Liu and Gupta,
2007; Raupach et al., 2005; Wang et al., 2009). In the following MDI is explained in the
context of parameter optimization. Parameters are time-invariant properties of the
model that usually define the sensitivity of a response to a forcing variable (Liu and
Gupta, 2007). Generally, a MDI framework for parameter optimization consists of
several components (Figure 1.10). The core of this framework is an ecosystem model

that simulates an output as response to an input and model parameters (Liu and
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Gupta, 2007). The model output is compared to an appropriate observed variable in a
cost function. The cost function quantifies the mismatch between model and
observation. An optimization method is used to reduce the cost by automatically
adjusting model parameters. Cost functions are often defined based on the sum of
squared errors (Keenan et al., 2011; Liu and Gupta, 2007; Raupach et al., 2005; Wang et
al., 2009):

2

J:i[MJ as)

t=1 i

where m and o are the modelled and observed quantities at time ¢, respectively. o is the
uncertainty of observations and x is a vector of model parameters that needs to be
adjusted in order to reduce J. In Bayesian optimization approaches the uncertainty of
models parameters is considered in the cost function as well (Liu and Gupta, 2007).
Cost functions can be also defined based on other model performance metrics (Janssen
and Heuberger, 1995; Krause et al., 2005) or based on combined metrics (Gupta et al.,
2009).

Input Parameter Fi

Model Optimization
method

T

Output A H Cost |<—| Observation A |

output = f(input, parameter)

Output B H Evaluation |<-—‘ Observation B |

Figure 1.10: Schematic diagram of the structure of a model-data integration framework.

The reduction of the cost between model and observation is achieved by applying
optimization techniques (Trudinger et al., 2007). In general, local and global search
optimization techniques are distinguished (Wang et al., 2009). Local search (or
gradient-based) methods such as the Levenberg-Marquardt (Levenberg, 1944;
Marquardt, 1963) or BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
algorithms use the first or second derivative of the model to find an optimum. Local
search methods are computationally fast but are prone to result in a local optimum
dependent on the initial parameter values. Alternatively, global search methods such

as genetic optimization algorithms (Mitchell, 1998) or Markov Chain Monte Carlo
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approaches (Metropolis et al., 1953) explore the full parameter space, thus more likely
converging towards the global optimum parameter set and allow a non-parametric
characterization of posterior parameter uncertainties. However, it has been shown that
the variability in estimated parameters terrestrial biogeochemical models is more
affected by the definition of the cost function than by the chosen optimization
algorithm (Trudinger et al., 2007). Cost functions can have several local minima, a
parameter might be insensitive to the cost function, or parameters are correlated, i.e. a
reduced cost can be achieved with different combinations of model parameters;
referred to as equifinality (Wang et al., 2009). Equifinality can be avoided by reducing
the number of considered parameters (and thus changing the model structure); by
using narrower prior estimates for parameter ranges; or by using additional
observations that might help to distinguish correlated parameters (Carvalhais et al.,
2010; Wang et al., 2009).

Some general rules of good practice should be considered within parameter estimation
in ecosystem models (Keenan et al., 2011): 1) Observational uncertainties should be
quantified and included within parameter optimization; 2) Alternative model
structures should be explored and tested; 3) Optimization should be done against
multiple data streams; 4) The MDI system should be tested by using synthetic data
from a forward model run; 5) The model should be evaluated against independent
observations; 6) Posterior uncertainties of model parameters and predictions should be
quantified. These rules will help to efficiently reduce parameter uncertainties, to avoid
equifinality, and to avoid over-fitting of the model to a specific data set.
Satellite-derived vegetation indices are useful data sets in model-data integration
because they contain information about phenology and vegetation dynamics (Prentice
et al., 2007). Satellite observation of vegetation indices can be used to force diagnostic
and empirical ecosystem models (Running et al., 2000), to estimate states of ecosystem
models (Quaife et al., 2008), or to estimate model parameters of mechanistic ecosystem
models (Dorigo et al., 2007). However, observational uncertainties of satellite-derived
vegetation index data sets need to be considered in model-data integration (Raupach et
al., 2005). In summary, the use of satellite-derived vegetation index time series within a

model-data integration framework can potentially help to overcome limitations of
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current global ecosystem models in representing observed phenology and long-term

greenness dynamics.

1.4.4 Improved phenology modelling through model-data integration

Phenology in ecosystem models can be improved by either reformulating the model
structure and/or by optimizing model parameters (Figure 1.9). Migliavacca et al. (2012)
have shown that model structural uncertainty is of higher importance than parameter
uncertainty for the uncertainty of future climate change scenarios of phenology. This
finding requires a careful characterisation and evaluation of current phenology model
structures. Many prognostic ecosystem models describe the seasonal leaf development
dependent on growing degree days (GDD), i.e. leaves emerge and develop as heat
accumulates during spring (Richardson et al., 2012). Although this concept might be
appropriate for temperate deciduous trees, it fails for temperate grass ecosystems that
have an additional strong control by water availability (Kramer et al., 2000; Liu et al.,
2013; Yuan et al., 2007). Therefore it might be necessary to test alterative phenology
models to current model structures that consider alternative or additional controlling
factors for phenology (Migliavacca et al.,, 2008, 2012). A modelling approach to
consider different factors for phenology is the Growing Season Index (GSI) (Jolly et al.,
2005). GSI considers different climate limits on the development of foliage and is an
index between 0 (no foliage, or inactive) and 1 (full developed foliage). The original
GSI is calculated from three multiplicative functions that account for effects of
minimum temperature (Tmin), vapour pressure deficit (VPD) and day length (Jolly et
al., 2005):

GSI = f(Tipin) < f (VPD) x f (daylength) (1.10)
The three functions are stepwise linear functions that are defined based on certain
threshold parameters. However these parameters are empirical and need to be
estimated. For example, it has been shown that the original parameters of the GSI
model needed to be optimized to accurately reproduce the seasonality of larch trees in
the Alps (Migliavacca et al., 2008). Moreover the GSI approach is valuable because it
allows easy consideration of other potentially influencing factors on phenology by
simply multiplying additional controlling functions. For example, the phenology of

subalpine grasslands was best modelled using the GSI approach when the VPD-
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function was replaced by a function depending on soil water content and by
additionally accounting for snow cover (Migliavacca et al., 2011). The GSI functions
provide an estimation of the climatic constraints and therefore can be used to map the
importance of climatic factors on phenology (Jolly et al., 2005; Migliavacca et al., 2008;
Stockli et al., 2008b). Nevertheless, adding a new functional relation to the GSI
approach requires estimation of the empirical parameters. Parameters of GSI were
optimized against MODIS LAI and FAPAR products globally which demonstrated the
possibility of successfully applying GSI for a variety of biomes (Stockli et al., 2011).
Nevertheless, GSI is a stand-alone phenology model and not linked to a full ecosystem
model.

The optimization of a phenology model within a full global ecosystem model is even
more challenging because it is additionally necessary to constrain processes like
photosynthesis. For example, phenology- and photosynthesis-related parameters have
been for example optimized in the BETHY model against satellite FAPAR data and
atmospheric CO: measurements (Kaminski et al., 2012), and in the ORCHIDEE model
against site eddy covariance measurements of ecosystem carbon and water fluxes
(Kuppel et al., 2012, 2014). These model optimization studies resulted in improved
representations of phenology and in a reduced uncertainty of simulated regional and
global carbon and water fluxes. However, these model optimizations studies were only
done based on relatively short observational time series (~ 5 years). It is therefore not
clear if these efforts also result in an improved representation of long-term greenness
or carbon cycle dynamics.

In summary, improvements of global ecosystem models through reformulations of
model structures and parameter optimization need to be performed with respect to
long observational time series (> 30 years). Such long time series allow assessment of
the ability of models to reproduce recent observed phenology, greenness, and carbon
cycle dynamics like greening or browning trends, and positive trends in the seasonal
CO:z amplitude. By considering observational uncertainties the model could be applied

to identify environmental controls on these recent dynamics in the Earth system.
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1.5 Research questions

As mentioned above, the overall aim of this thesis is to better understand recent dynamics
of land surface phenology and greenness in the Earth system by combining satellite
observations with global vegetation models. Land surface phenology and greenness refers
to the timing of seasonal changes in vegetation (phenology) and to instantaneous or
temporally averaged values (greenness) of vegetation index (NDVI or FAPAR) time
series as derived from satellite observations or model simulations of the land surface.
Recent dynamics involve multiple time scales like seasonal changes, inter-annual
variability and trends between 1982 (1970 in chapter 5) and 2011. Understanding means
1) objectively quantifying these dynamics from observations while accounting for
uncertainties; 2) modelling these dynamics with process-based ecosystem models
while contrasting models with observations; 3) explaining the controlling factors for
these dynamics; and 4) quantifying their effects (especially of greening trends) on the

terrestrial carbon cycle.

1.5.1 How do observational uncertainties contribute to the quantification of

dynamics in land surface phenology and greenness?

The quantification of dynamics in land surface phenology and greenness is affected by
several observational uncertainties that originate from different satellite datasets and
time series processing. Trend analysis methods differ in how they account for
seasonality in time series. Additionally, some recently developed trend methods
account for non-monotonic changes that can be caused by abrupt changes like
disturbances and thus can be identified as breakpoints in time series (Verbesselt et al.,
2010a, 2010b). However, the reliability of such trend change detection methods (i.e.
detecting breakpoints in trends) has not yet been assessed in boreal and arctic
ecosystems. This thesis aims to assess the performance of different trend change detection
methods, and the reliability of estimated trends and breakpoints in boreal and arctic ecosystems
(chapter 2, Forkel et al., 2013). The performance of these methods was evaluated by
simulating surrogate time series based on real time series properties of the GIMMS3g
NDVI dataset. Furthermore, methods were applied to the GIMMS3g NDVI dataset

over Alaska. Alaska is a suitable region to test trend change detection methods because
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greening trends have been previously observed in the Alaskan tundra as well as
browning trends in the boreal forests (Baird and Verbyla, 2012; Beck et al., 2011; Parent
and Verbyla, 2010). Additionally, boreal forests in Alaska are often and severely
affected by wild fires (Kasischke et al.,, 2010). Thus, the availability of long-term
observation of fires can be used to assess the reliability of estimated breakpoints.

Time series interpolation, smoothing and phenology extraction methods, as well as
different satellite datasets can give remarkably different results of phenology dynamics
(de Beurs and Henebry, 2010b; White et al.,, 2014, 2009). The identification of a
phenology method with an optimal performance depends on the availability of ground
observations and is therefore not possible for global scale applications. This thesis aims
to quantify the observational uncertainty from different satellite datasets and phenology
detection methods in global patterns and dynamics of land surface phenology and greenness
(chapter 4 and supplement in chapter 8). The quantification of these uncertainties

allows a more robust evaluation of model simulations.

1.5.2 How can DGVMs be improved to better represent phenology and

greenness dynamics?

It has been shown that ecosystem models need an improved representation of
phenology and long-term greenness dynamics (Murray-Tortarolo et al, 2013;
Richardson et al.,, 2012). Phenology models have previously been improved by
reformulating model structures or by optimizing model parameters (Kaminski et al.,
2012; Kuppel et al., 2012, 2014; Migliavacca et al., 2012). Nevertheless, such model
improvements have not yet been done with respect to long-term (30 years)
observations of greenness dynamics. This thesis aims to improve the representation of
phenology in the LPJmL DGVM and to assess the impact of these model improvements on long-
term greenness dynamics and carbon cycle simulations (chapter 3 and supplement in
chapter 7, Forkel et al., 2014). Thereby it is of special interest if model optimization at
seasonal but long-term time series results also in an improvement regarding inter-
annual variability and trends. The LPJmL DGVM (Bondeau et al., 2007; Sitch et al.,
2003) has been selected as the central ecosystem model of this thesis because it has been
previously used to explain greening trends (Lucht et al., 2002) and because it considers

several processes that might be of importance for explaining trends in boreal and arctic
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ecosystems like vegetation dynamics, fire (Thonicke et al., 2010) and permafrost
(Schaphoff et al., 2013). Similar to other DGVMs, it has been shown that the phenology
of LP] requires improvements (Kelley et al.,, 2013; Mahecha et al., 2010b; Murray-
Tortarolo et al., 2013; Richardson et al., 2012). An improved version of the LPJmL
model that accurately reproduces observations of land surface phenology and
greenness dynamics can be potentially applied to identify controlling factors for these
trends (chapter 4) and furthermore might useful in assessing the role of greening in

recent carbon cycle trends (chapter 5).

1.5.3 What are the controls on land surface phenology and greenness on

multiple time scales?

Greening and phenology trends in high-latitude ecosystem have usually been related
to warming temperatures (Lucht et al., 2002; Wang et al., 2011; Xu et al., 2013). A large
proportion of the temporal dynamic of vegetation greenness is related to the seasonal
development and senescence of leaves. Although leaf phenology is usually explained
by temperature in temperate forests (Keenan et al., 2014), temperature control might be
an insufficiently or an inaccurately represented controlling factor as most ecosystem
models show significant limitations in reproducing the observed phenology
(Richardson et al., 2012). This thesis aims at a comprehensive assessment of the controls on
vegetation greenness phenology by considering effects of light and water availability and their
spatial-temporal importance (chapter 3 and 7, Forkel et al., 2014). Furthermore, if other
factors than temperature might be of importance for phenology, it is also necessary to
assess their importance on inter-annual variability and trends in land surface
phenology and greenness. For example, it has been suggested that fire (Goetz et al.,
2005), drought (Buermann et al., 2014) and seasonal changes in snow and water
availability (Barichivich et al.,, 2014) contribute to long-term greenness dynamics in
boreal forests. This thesis aims to quantify the regional importance of seasonal controlling
factors like temperature, short-wave radiation, and water availability, and of factors like CO:
fertilization, fire, permafrost, and land cover dynamics on the inter-annual variability and
trends in land surface phenology and greenness (chapter 4 and 8). Such a quantification of
regional controls could potentially clarify the divergent continental patterns of more

greening in boreal Eurasia than in boreal North America (Bi et al., 2013). These research
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aims is addressed by performing factorial model experiments with LPJmL using an

improved phenology module.

1.5.4 What is the contribution of high latitude greening on the increasing

amplitude of atmospheric CO2?

The increasing seasonal amplitude of atmospheric CO: (Graven et al., 2013; Keeling et
al., 1996) is concordant with the greening of boreal and arctic ecosystems (Barichivich
et al.,, 2013; Myneni et al., 1997a). On the other hand, the intensification of agriculture
has been suggested as an additional important controlling factor but without
comprehensively accounting for other factors (Gray et al., 2014; Zeng et al., 2014). This
thesis aims to identify the controlling factors for the increase of the seasonal CO: amplitude by
comprehensively considering other factors such as atmospheric transport (chapter 5 and
extended data in chapter 9). Specifically, the role of greening trends and changes in
photosynthetic carbon uptake in boreal and arctic ecosystems will be quantified. To
answer this research question, the LPJmL DGVM is coupled to the TM3 atmospheric
transport model (Heimann et al.,, 1989) in order to simulate temporal dynamics of
atmospheric CO2. The LPJmL model is evaluated against several independent data sets
to analyse the plausibility of simulations of the recent carbon cycle. These independent
datasets cover gross primary production (Jung et al., 2011), biomass (Saatchi et al.,
2011; Thurner et al., 2014) (both in chapter 3), net biome productivity (Rodenbeck et al.,

2003), and atmospheric CO:z from ground observations (chapter 5).
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2 Trend change detection in NDVI time
series: effects of inter-annual variability

and methodology
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2 Trend change detection in NDVI time series: effects of

inter-annual variability and methodology

Abstract

Changing trends in ecosystem productivity can be quantified using satellite
observations of Normalized Difference Vegetation Index (NDVI). However, the
estimation of trends from NDVI time series differs substantially depending on
analyzed satellite dataset, the corresponding spatiotemporal resolution, and the
applied statistical method. Here we compare the performance of a wide range of trend
estimation methods and demonstrate that performance decreases with increasing inter-
annual variability in the NDVI time series. Trend slope estimates based on annual
aggregated time series or based on a seasonal-trend model show better performances
than methods that remove the seasonal cycle of the time series. A breakpoint detection
analysis reveals that an overestimation of breakpoints in NDVI trends can result in
wrong or even opposite trend estimates. Based on our results, we give practical
recommendations for the application of trend methods on long-term NDVI time series.
Particularly, we apply and compare different methods on NDVI time series in Alaska,
where both greening and browning trends have been previously observed. Here, the
multi-method uncertainty of NDVI trends is quantified through the application of the
different trend estimation methods. Our results indicate that greening NDVI trends in
Alaska are more spatially and temporally prevalent than browning trends. We also
show that detected breakpoints in NDVI trends tend to coincide with large fires.
Overall, our analyses demonstrate that seasonal trend methods need to be improved
against inter-annual variability to quantify changing trends in ecosystem productivity

with higher accuracy.
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2.1 Introduction

Climate change will likely change biome distributions, ecosystem productivity and
forest carbon stocks (Lucht et al., 2006). Such ecosystem changes can be detected and
quantified using multi-temporal satellite observations of the land surface. Different
states of the land surface can be measured by satellite-derived biophysical parameters
(Coppin et al., 2004). The Normalized Difference Vegetation Index (NDVI) (Tucker,
1979) is a remotely-sensed measure of vegetation greenness and is related to structural
properties of plants — like leaf area index (Turner et al., 1999) and green biomass
(Gamon et al., 1995) — but also to properties of vegetation productivity — like absorbed
photosynthetic active radiation and foliar nitrogen (Fensholt et al., 2004; Gamon et al.,
1995). As NDVI is related to such a variety of vegetation properties, multiple
explanations for a change in NDVI signals are possible. Nevertheless, the NDVI from
AVHRR (Advanced Very High Resolution Radiometer) satellite observations is the
only global vegetation dataset which spans a time period of three decades and thus
allows the quantification and attribution of ecosystem changes as a result of ecosystem
dynamics and varying climate conditions. Different ecosystem changes can be
analyzed from NDVI time series. For example, annual mean or peak NDVI provides an
integrated view on photosynthetic activity (Myneni et al., 1995), the seasonal NDVI
amplitude is related to the composition of evergreen and deciduous vegetation
(DeFries et al., 1995) and the length of the NDVI growing season can be related to
phenological changes (Tucker et al., 2001). Thus, trend detection in NDVI time series
can help to identify and quantify recent changes in ecosystem properties from a local to
global scale.

Indeed, positive NDVI trends (“greening”) occur in the high latitudes (Myneni et al.,
1997a). These greening trends were reproduced by a Dynamic Global Vegetation
Model (DGVM) and attributed to increasing temperatures (Lucht et al., 2002). The
temperature increase drives an expansion of shrubs in the arctic Tundra, which can be
observed as greening trends (Myers-Smith et al., 2011). The initial greening trend
stalled or reversed in large parts of the boreal forest of Northern America. Negative
NDVI trends (“browning”) are associated with fire activity (Goetz et al., 2005),
increasing water vapour pressure deficit (Bunn et al., 2007) or to cooling spring

temperatures (Wang et al., 2011). Regional changes in summer precipitation changed
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greening NDVI trends to browning trends also in Eurasian boreal forests in the late
1990s (Piao et al., 2011). Nevertheless, browning NDVI trends are highly discussed
because they differ based on the used satellite dataset (Beck and Goetz, 2011; Fensholt
and Proud, 2012). Most studies used the GIMMS (Global Inventory, Monitoring, and
Modeling Studies) NDVI dataset which was produced based on 4 km AVHRR satellite
observations (Tucker et al., 2005). A comparison between the GIMMS dataset and a
Canadian dataset shows weaker post-fire recovery trends and more negative NDVI
trends in unburned forests in the GIMMS dataset (Alcaraz-Segura et al., 2010). Other
studies confirm trend estimates based on the GIMMS dataset: Despite of some regional
differences in areas at very high latitudes with low vegetation cover, NDVI trends from
the GIMMS dataset agree with trends from MODIS data (Moderate Resolution Imaging
Spectrometer) (Beck and Goetz, 2011; Fensholt and Proud, 2012; Parent and Verbyla,
2010). Trends from the GIMMS dataset compare well with trends computed from
Landsat imagery (Fraser et al., 2011). Changes in tree rings (Beck et al., 2011; Berner et
al., 2011), temperature-induced drought stress or insect disturbances (Verbyla, 2011)
were also observed in regions with browning NDVI trends. In fact, impacts of recent
trends and variability of climate on ecosystems can be observed using long-term NDVI
time series.

The estimation of trends depends on the length, temporal and spatial resolution of the
time series, the quality of the measured data (Sulkava et al, 2007) and the used
statistical method. Many studies calculated trends based on annual time steps from
annually or seasonally aggregated values using regression analysis (Eklundh and
Olsson, 2003). However, the use of linear regression analysis for estimating trends in
NDVI time series violates statistical assumptions such as the independence of
observations, due to temporal autocorrelation or homogeneity (de Beurs and Henebry,
2004b). Accordingly, the application of temporal autocorrelation structures (Goetz et
al., 2005) or the use of the non-parametric Mann-Kendall test on NDVI time series was
suggested to circumvent the limitations of regression analysis (de Beurs and Henebry,
2004b, 2010a). The annual aggregation of time series for trend analysis reduces the
temporal resolution and time series length. The time series length is critical in
determining the significance of the trend in a statistical test. On the other hand, annual

aggregation supports the analysis of trends by eliminating the seasonal cycle in the
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NDVI time series. The seasonal cycle introduces a seasonal correlation structure that
hampers trend analysis. In this context, methods were developed that make use of the
full resolution time series by estimating and subtracting the seasonal cycle or by
modelling the seasonal signal (de Jong et al., 2011a; Mahecha et al., 2010a; Verbesselt et
al., 2010a, 2010b; Wu et al., 2008). Overall, trend estimates from these different methods
result in similar general spatial patterns of the major regional greening and browning
trends but substantial differences in areas with weak trends (de Jong et al., 2011a). In
short, all trend estimation methods embed caveats that may be more or less critical
depending on the application.

NDVI trends are not always monotonic but can change. A positive trend can change
for example into a negative one and vice versa. Changes between initial greening
trends in the 1980s to browning trends from the 1990s onwards in high latitude regions
were detected based on the GIMMS NDVI dataset (de Jong et al., 2011b). NDVI trend
changes of this kind can be either gradual or abrupt (de Jong et al, 2013b). For
example, increasing temperatures in temperature-limited ecosystems can first support
vegetation growth that results in greening NDVI trends, while a further warming can
induce drought stress that slightly turns the initial greening to a browning trend
(gradual change). Disturbances such as fire events can reduce the NDVI signal and
initiate post-fire recovery that results in a greening trend (abrupt change). Recently,
statistical methods were developed and applied to NDVI time series to detect such
changes (called breakpoints) in trends. Methods like BFAST (Breaks for additive
seasonal and trend) (Verbesselt et al., 2010a, 2010b) combine trend estimation with
approaches that account for breakpoints in the trend. However, the reliability of such
breakpoints in NDVI trends in high latitude regions is not yet assessed.

Breakpoints in NDVI time series are related to different effects caused by inter-annual
variability. Inter-annual variability of NDVI time series can be caused by (1) artefacts of
a harmonized dataset from different sensors, (2) meteorological distortions like clouds
or snow cover and (3) environmental processes like effects of year-to-year variations in
weather conditions on plant activity or ecosystem disturbances. Inter-annual
variability affects the annual mean (e.g., reduction of NDVI because of a disturbance),
seasonality (e.g., longer growing season because of prolonged warmer temperatures)

as well as short-term patterns (e.g., unusual snowfall in a summer month) of NDVI

-67 -



time series. The aggregation of NDVI time series to mean annual values integrates
these different effects which, despite the loss in temporal detail, allow us to define and
quantify inter-annual variability as the standard-deviation of mean annual NDVI
values.

The purpose of this study is to evaluate the performance of different methods for
detecting trends and trend breakpoints in long-term NDVI time series. Previous
studies have used different trend and breakpoint analysis methods on NDVI time
series without or with limited demonstration of its methodological robustness (Wang
et al., 2011). By evaluating the performance of such methods, this study will enable a
critical appraisal of combined trend and breakpoint detection methods for their
application on NDVI time series. The methods chosen for evaluation differ on their
used temporal resolution of NDVI time series, how seasonality is accounted for, and
how the trend is estimated. All approaches make use of the same breakpoint detection
algorithm (Bai and Perron, 2003). A factorial experiment was performed based on
surrogate (or “artificial”) NDVI time series with different levels of trend magnitude,
inter-annual and short-term variability, seasonal amplitudes and a varying number of
trend changes. We tested whether the methods are able to re-detect the prescribed
trend (i.e., slope of the trend) and trend changes (i.e, number and timing of
breakpoints) in the surrogate time series. Additionally, methods were applied to real
NDVI time series of Alaska and the plausibility of breakpoints was assessed in
comparison to fire events and drought periods. Our results reveal a clear dependence

of the method’s performance on the degree of inter-annual variability.

2.2 Data and methods

2,21 GIMMS NDVI3g dataset

The GIMMS NDVI3g dataset (third generation GIMMS NDVI) is a newly available
long-term NDVI dataset and was derived from NOAA AVHRR data (National Oceanic
and Atmospheric Administration, Advanced Very High Resolution Radiometer)
(Pinzon and Tucker, 2014; Xu et al., 2013). In comparison to a previous version of the
dataset (Tucker et al., 2005), it was improved for applications in high-latitude regions

through calibrations to stable targets in these regions (Pinzon and Tucker, 2014; Xu et
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al,, 2013). The dataset covers the period July 1981 until December 2011 with a 2-weekly
temporal and 8 km spatial resolution. The quality of AVHRR data is affected from
sensor changes between the NOAA satellites and orbital decay but it was shown that
trends based on the previous NDVI dataset are not affected by these artefacts
(Kaufmann et al.,, 2000). In the new GIMMS NDVI3g dataset such effects were
substantially reduced (Pinzon and Tucker, 2014; Xu et al., 2013).

We further pre-processed the GIMMS NDVI3g dataset for the specific requirements of
our study. The year 1981 was excluded from our analysis in order to analyse only years
with full data coverage. Especially in high-latitude regions NDVI observations are
often affected from snow or cloud cover. Such NDVI values are flagged as “snow” or
“interpolated” in the GIMMS NDVI3g dataset (Pinzon and Tucker, 2014; Xu et al,,
2013). The reliability of such interpolated NDVI values under snow or cloud conditions
is unclear. We addressed this fact in two ways: (1) we assumed interpolated NDVI
observations under snow conditions are the best available estimate and we did not
change these NDVI values (hereinafter called “all” observations). (2) NDVI values that
were flagged as “snow” were excluded from the analysis (hereinafter called “ex”
observations). We kept interpolated observations that were not additionally flagged as
“snow” to make sure to use enough observations throughout the growing season
because three of the four assessed trend methods need seasonal observations in order
to be applicable for trend detection (Section 2.2.3). To exclude potentially remaining
effects of cloud or haze contaminations, the dataset was further aggregated to monthly
temporal resolution using the monthly maximum value which is a commonly applied

procedure (Holben, 1986).

222 Breakpoint detection algorithm

The breakpoint detection algorithm as described by Bai and Perron (2003) and Zeileis et
al. (2003) was used in this study. The breakpoint detection algorithm searches for a
structural change in a regression relationship, i.e.,, for varying regression parameters
before and after the breakpoint. That means a detected breakpoint splits a time series in
two segments. In a first step, the ordinary-least squares moving sum (MOSUM) test is
used to test for the existence of breakpoints in the time series. If the test indicates

significant structural changes (p < 0.05), different numbers and locations of breakpoints
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are iteratively tested in the second step. For this purpose, the optimal number of
breakpoints is estimated by minimizing the Bayesian Information Criterion (BIC). The
optimal position of a breakpoint is estimated by minimizing the residual sum of
squares of this regression (Bai and Perron, 2003; Zeileis et al., 2003).

The breakpoint detection algorithm was used based on recommendations of Bai and
Perron (2003). In order to detect long-term trend changes, a minimum amount of
observations between two breakpoints was defined as 48 monthly observations (or
four years) and a maximum number of two allowed breakpoints were selected.
Therefore, an optimized number of breakpoints between zero and two can be detected.
This prevented that detected breakpoints are solely affected by year-to-year changes
and supported the detection of only major breakpoints in the long-term trend. Further,
detected time series segments of a length smaller than eight years were not considered

as trends.

2.2.3 Methods for trend estimation

2.2.3.1  Trend estimation on annual aggregated time series (Method AAT)

Method AAT estimates trends and trend changes on annual aggregated time series.
The seasonal NDVI time series is first aggregated to annual values. The annual mean,
growing season mean or annual peak NDVI can be calculated to aggregate the seasonal
NDVI time series to annual values. Mean annual NDVI was used for the factorial
experiment based on surrogate time series. Breakpoints are estimated on the annual
time series using the method of Bai and Perron (2003). For each derived trend segment
the slope of the trend is estimated by linear least-squares regression of the annual
values against time. The significance of the trend in each time series segment is
estimated by the Mann-Kendall trend test applied on the annual aggregated NDVI
values (Mann, 1945).

2.2.3.2 Trend estimation based on a season-trend model (Method STM)
The trend and breakpoint estimation in method STM (season-trend model) is based on

the classical additive decomposition model and we followed the formulation used in

BFAST (Verbesselt et al., 2010b, 2012). The full temporal-resolution NDVI time series is
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explained by a piecewise linear trend and a seasonal model in a regression
relationship. Thus, the NDVI value y at a time ¢ can be expressed as:
yt:a1+a2t+iyjsin(27w+5j]+gt (2.1)
= I

where a1 is the intercept and a2 the slope of the trend, y are the amplitudes and ¢ the
phases of k harmonic terms and ¢ is the residual error (Verbesselt et al., 2012). The
frequency f is the number of observation per year (i.e., 12 for monthly observations).
Parameters a1, a2 are estimated using ordinary least squares (OLS) regression whereby
the derived time series segments are considered as categorical interaction term with the
trend slope az. The significance of the trend in each segment is estimated from a t-test

on the interaction parameter of the regression between time series segment and a.

2.2.3.3  Trend estimation on de-seasonalized time series
Methods MAC (mean annual cycle) and SSA (annual cycle based on singular spectrum
analysis) estimate trends on seasonal-adjusted time series, which is the full-resolution
time series with removed seasonality. The seasonal-adjusted time series a is the
difference between the original NDVI time series y and the seasonal cycle s:
a=y-s 2.2)

The slope of the trend a: is estimated using OLS from the seasonal-adjusted time series:

a, =oa, +a,t+eg, (2.3)
Breakpoints are estimated on Equation (3) with different regression coefficients for
each trend segment. The significance of the trend in each time series segment is
estimated with the Mann-Kendall trend test applied on the seasonal-adjusted time
series.
The seasonal cycle (or annual cycle) s (Equation (2)) is represented by a mean annual
cycle (method MAC) and by a modulated annual cycle (method SSA). The MAC is
estimated as the mean seasonal cycle from the seasonal cycles of all years. This implies
that each year has the same amplitude and frequency in the seasonal cycle. However,
the concept of a fixed seasonal cycle is questionable as it can change due to external
forcing (Wu et al., 2008). For example, phenological cycles might change without
affecting the overall trend in a time series. Therefore, method SSA is based on a

modulated annual cycle with slightly varying frequencies and amplitudes of the

-71 -



seasonal cycle amongst years. The modulated seasonal cycle was estimated using a
one-dimensional singular spectrum analysis (SSA) as described in (Golyandina et al.,
2001). Singular spectrum analysis was previously used to separate remotely-sensed
FAPAR (fraction of observed photosynthetically active radiation) time series into low
and high frequency and seasonal time series components (Mahecha et al., 2010a). SSA
decomposes in a first step a time series into different sub-signals with characteristic
frequencies. In a second step, the sub-signals with an annual frequency were summed

to build up the modulated annual cycle.

224 Simulation of surrogate time series

2.2.4.1  Estimation of inter-annual variability, seasonality and short-term variability from
observed time series
An important aspect of the experimental design was the prescription of time series
properties in the surrogate (artificial) data that were observed in the NDVI datasets. In
order to create surrogate time series that mimic the full range of possible real world
data, the mean, trend, inter-annual variability, seasonality and short-term variability
was estimated for all observed NDVI time series of Alaska in a simple step-wise
approach (Figure 2.1):
(1) The mean of each NDVI time series was calculated.
(2) In the second step, monthly values were averaged to annual values and the trend
was calculated according to method AAT but without computing breakpoints. Hence,
the slope of the annual NDVI trend over the full length of the time series was
estimated.
(3) To estimate the inter-annual variability, the standard deviation and range of the
annual anomalies were calculated. The mean of the time series and the derived trend
component from step (2), were subtracted from the annual values to derive the trend-
removed and mean-centred annual values (annual anomalies). If the trend slope was
not significant (p > 0.05), only the mean was subtracted. The standard deviation and
the range of the annual anomalies were computed as measures for the inter-annual
variability of the time series.
(4) In the next step, the range of the seasonal cycle was estimated. The mean, the trend

component and the annual anomalies were subtracted from the original time series to
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calculate a detrended, centered and for annual anomalies adjusted time series. Based
on this time series the seasonal cycle was estimated as the mean seasonal cycle and the
range was computed.

(5) In the last step, the standard deviation and the range of the short-term anomalies
were computed. Short-term anomalies were computed by subtracting the mean, the
trend component, the annual anomalies and the mean seasonal cycle from the original
time series. The result is the remainder time series component. The standard deviation

of the remainder time series component is a measure of short-term variability.
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Figure 2.1: Estimated time series components for a random-selected example grid cell in central
Alaska (3*3 grid cells averaged around central pixel 146.424°W, 64.762°N).

The upper panel shows the original Normalized Difference Vegetation Index (NDVI) time series
with its mean value (red line). The next panels show the estimated trend, inter-annual
variability (IAV) (i.e., annual anomalies), seasonality (i.e., mean seasonal cycle) and short-term
variability (remainder component), respectively. The sum of mean, trend, IAV, seasonal and

remainder component equals the original time series.

All the described time series properties were estimated on the full NDVI dataset
including all observations (i.e., including snow-affected observations). Hence, we could
generate a wide range of gap free surrogate time series. This procedure was applied for

all NDVI time series of Alaska to estimate spatial and statistical distributions of the
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mean NDVI, the overall trend slope, the inter-annual variability as the standard

deviation of the annual anomalies, the range of the seasonal cycle and the short-term

variability as the standard deviation of the remainder time series (Figure 2.2).
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Figure 2.2: Spatial and statistical distributions of NDVI time series properties in Alaska and
time series components of the simulated NDVI time series.

The left panel shows from top to bottom maps of the following time series properties: mean
annual NDVI, slope of the annual trend (ANDVI/year), standard deviation of the inter-annual
variability (iav), range of the seasonal cycle (seas), and the standard deviation of the remainder
component (rem). The middle panel shows the statistical distribution of these properties,
respectively. The right panel shows examples of the surrogate time series components.
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2.2.4.2  Surrogate time series and factorial experiment
Surrogate time series were simulated based on addition of different time series
components that were estimated from observed time series properties:
yvi,=m+T,+1,+8S, +R, (2.4)
where m is the mean, T is the trend component value, I the inter-annual variability
component value, S the seasonal component and R the remainder component at time
step t. As the estimated values of T and I have an annual temporal resolution, they
were repeated for each time step t of the same year (forming a step function) to create
the simulated monthly time series. The mean was taken from the mean of the observed
distribution of average NDVI. We selected only one mean value for all surrogate time
series because differences in mean are expressed by the intercept of the linear
regression models and will not affect the trend estimate. For each of the other
components, different levels were used to create surrogate time series:
(1) Trend: Time series with strong and weak positive, strong and weak negative and
without a trend were created. Different magnitudes of trend slopes were derived from
the 1% percentile of the observed distribution of trend slopes (strong decrease), 25%
percentile (weak decrease), median (no trend), 75% percentile (weak increase) and 99%
percentile (strong increase), respectively.
(2) Inter-annual variability: Time series with low, medium and high inter-annual
variability were created based on normal-distributed random values with zero mean
and a standard deviation according to the 1%, 50% and 99% percentiles of the observed
distribution of the standard deviation of annual anomalies. Values outside the
observed ranges of inter-annual variability were set to the minimum or maximum of
the observed distribution, respectively.
(3) Seasonality: Seasonal cycles based on a harmonic model with low, medium, and
high amplitudes were created according to the observed 1%, 50% and 99% percentiles
of the distribution of seasonal ranges.
(4) Short-term variability: Different levels of short-term variability were created based
on normal-distributed random values with zero mean and a standard deviation
according to the 1%, 50% and 99% percentiles of the observed distribution of the

standard deviation of remainder time series values.
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Figure 2.3: Examples of simulated time series with different components of trend, IAV, seasonal
and remainder referring to the simulated trend, inter-annual variability, seasonal and
remainder time series components, respectively.

The sum of these time series components gives the total simulated surrogate NDVI time series
(upper panel). Left: time series with one breakpoint and gradual change (e.g., caused by
gradual changes in environmental conditions), no trend in the first segment and decreasing
trend in the second segment, medium inter-annual variability, medium seasonality and
medium short-term variability. Right: Time series with one breakpoint and abrupt change (e.g.,
caused by a few years with exceptional favourable growing conditions), increasing trend in first
segment and decreasing trend in second segment, high inter-annual variability, medium
seasonality and low short-term variability.

To introduce trend changes in these surrogate time series, trend components with one
and two breakpoints as well as gradual or abrupt changes were created. In case of one
breakpoint, the break was introduced 120 months after the beginning of the time series
and in case of two breakpoints after 107 and 215 months, respectively. That means one
time series can have one to three time series segments with a length of 360 months (30
years) in case of no breakpoint, 120 and 241 months in case of one breakpoint,
respectively, and 107, 107 and 146 months in case of two breakpoints, respectively. The
type of trend change was considered as an additional factor, whereby gradual change
and abrupt changes were distinguished. A gradual change is a change between two
trend segments, for which the last value of the trend component in the first segment

equals the first value of the following trend segment (Figure 2.3). In case of abrupt
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changes, trend components are disconnected between two segments (Figure 2.3). In
summary, the following factors with different levels were considered in the
experiment:

(1) Type of trend and number of breakpoints/segments (maximum 2 breakpoints =
maximum 3 segments per time series with positive, negative or no trend = 27
possibilities),

(2) Trend magnitude (weak, strong),

(3) Inter-annual variability (low, medium, high),

(4) Short-term variability (low, medium, high),

(5) Type of trend change (gradual, abrupt) and

(6) Range of seasonal cycle (low, medium, high).

For each combination of these factors one surrogate time series was created. Because
some combination are physically not possible (e.g., abrupt or gradual change but 0

breakpoints), in total 1377 surrogate time series were created.

2.2.5 Evaluation of method performances

2.2.5.1  Evaluation of breakpoints

To evaluate the performance of the methods regarding the estimated breakpoints, the
difference in number and timing of breakpoints were compared. The difference
between the estimated number of breakpoints and the number of real breakpoints was
calculated. The number of real breakpoints is the amount of breakpoints that was used
to simulate the surrogate time series.

The timing of an estimated breakpoint was compared against the timing of the real
breakpoint. For each estimated breakpoint the nearest real breakpoint was selected and
the absolute temporal difference (in months) between them was calculated. If the

difference is larger than five years the real breakpoint was set as undetected.

2.2.5.2  Evaluation of trend slopes and significances

In order to evaluate the direction and significance of an estimated trend, estimated
trends were compared with the real trend in a trend segment of the simulated time
series. The slope and p-value of the real trend was calculated for each method based on

the known real breakpoints and time series segments. To compare direction and
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significance of trends, trend slopes and p-values of real and estimated trends in a time
series segment were classified in six trend classes:

N3: significant negative trend (slope <0 and p < 0.05)

N2: non-significant negative trend (slope <0 and 0.05<p <0.1)

N1: no trend with negative tendency (slope <0 and p >0.1)

P1: no trend with positive tendency (slope >0 and p > 0.1)

P2: non-significant positive trend (slope >0 and 0.05 < p <0.1)

P3: significant positive trend (slope >0 and p < 0.05).

Confusion matrices of estimated and prior trend classes were computed for each
method in order to evaluate the accuracy of the methods for trend estimation.
Confusion matrices (alternatively called contingency table or error matrix) are standard
tools to compare errors between two classifications (Foody, 2002). Congalton et al.
(1991) suggested to normalize confusion matrices in order to eliminate effects of
different sample sizes per class and to make confusion matrices between different
classifications, i.e., different trend methods, comparable. Iterative Proportional Fitting
Procedure (IPFP) (Deming and Stephan, 1940) was used to normalize confusion
matrices to row and column (marginal) totals of 100%. Based on normalized confusion
matrices, the total normalized accuracy and the Kappa coefficient were calculated
(Congalton, 1991; Foody, 2002) to quantify the performance of methods for trend
estimation. The total accuracy ranges between 0% (worst accuracy) and 100%
(complete agreement of the two classifications) and the Kappa coefficient ranges

between 0 (worst agreement) and 1 (complete agreement).

2.2.5.3  Evaluation of the overall performance for trend and breakpoint estimation

The overall performance of a method was quantified by comparing the estimated with
the real trend component (Equation 2.4). For this purpose, the root mean square error
(RMSE) between the estimated and the real trend component T was calculated for the

total length n of the simulated time series:

n
Z (Test - Treal )2

2.5
RMSE ==, 22

n
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This formulation involves both an effect of the estimated trend and the estimated
breakpoints. An analysis-of-variance (ANOVA) was calculated for the RMSE in order
to identify the factors that explain the highest fraction of the RMSE. Trend magnitude,
inter-annual variability, seasonality, short-term variability, type of trend change,
number of real breakpoints and method as well as their second-order interactions were

used as explanatory variables in the ANOVA.

2.2.6 Application to real time series of Alaska: ensemble of NDVI trends

All trend and breakpoint methods were applied to real NDVI time series of Alaska and
parts of Yukon to assess differences between methods based on real data. The
application of the four methods (AAT, STM, MAC, SSA) allows creating a multi-
method ensemble of NDVI trend estimates. As many NDVI observations in northern
regions are affected from snow, clouds or other distortions, the use of such poor
quality observations causes additional uncertainties in NDVI trend estimates. To
account for the effect of snow-affected observation, all methods were applied on the
NDVI time series with all observations (“all”) and on the NDVI time series excluding
snow-affected values (“ex”) (see Section 2.2.1). Additionally, method AAT was applied
on the annual peak NDVI (defined as the annual quantile 0.9) to analyse trends (called
AAT-peak) because vegetation growth in high-latitude ecosystems is usually limited to
the peak production period. This setup of trend methods on the real dataset resulted in
nine trend and breakpoint estimates for Alaska (AAT-all, AAT-ex, AAT-peak, STM-all,
STM-ex, MAC-all, MAC-ex, SSA-all, SSA-ex). From all the nine trend estimates, the
ensemble mean and standard deviation of the number of detected breakpoints, of the
duration of greening and browning trends and of the trend slope were calculated. The
ensemble mean NDVI slope a was calculated from the weighted mean slope am of a
method m, weighted by the length [ of the corresponding time series segment seg and

the p-value p of the trend in the segment expressed as significance:

a=——— Y a, (2.6)

-79 -



seg=nseg

Z am,seg X (lseg X (1 - pseg ))
a, = 2.7)

seg=nseg

Z (lseg X (1 ~ Pseg ))

seg=1

Time series segments with a length I shorter than eight years were excluded from this
analysis and remaining segment lengths (between eight and 30 years) were scaled to 0-
1 before using them as weights in Equation 2.7. The uncertainty of NDVI trend slopes
was calculated as the standard deviation of mean slopes am.

Additional datasets were used to assess the plausibility of detected breakpoints. Fire
perimeter observations from the Alaskan Large Fire Database (Frames, 2012; Kasischke
et al., 2002) were compared against the spatial distribution and timing of detected
breakpoints. Gridded precipitation time series from the GPCC dataset (Global
Precipitation Climatology Center) (Schneider et al., 2008) and temperature time series
from the CRU dataset (Mitchell and Jones, 2005) were used to compare breakpoints
with annual temperature and precipitation anomalies (baseline 1982-2009).
Additionally, photos taken in 2008 at burnt areas of the year 2004 were compared with
detected breakpoints in NDVI time series to visually inspect the post-fire vegetation

status in NDVI time series with breakpoints.

2.3 Results
2.3.1 Observed and simulated properties of NDVI time series

To simulate surrogate time series, statistical distributions of NDVI mean, trend,
seasonality, inter-annual and short-term variability were computed from observed
NDVI time series in Alaska (Figure 2.2). Mean NDVI ranged between 0.2 and 0.87 with
an average value of ca. 0.37. The highest NDVI means occurred in the central Alaskan
boreal forest and the lowest values in the northern Tundra regions (Figure 2.2). The
mean of 0.37 was used as the mean value in all simulated time series. NDVI trend
slopes ranged from —0.0047 to 0.0034 ANDVlI/year, with the lowest values in some
boreal forest regions and the highest values in the northern Tundra regions. NDVI
trend slopes of —0.0038 (strong decrease), -0.0013 (weak decrease), 0 (no trend), 0.002

(weak increase) and 0.003 ANDVI/year (strong increase) were used to create trend
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components for the surrogate time series. The standard deviation of the annual
averaged NDVI values was used as a measure for inter-annual variability. It ranged
between 0.009 in some regions and 0.045 in south-western Alaska. The 0.01, 0.5, and
0.99 quantiles of 0.0097, 0.016 and 0.039 were used to create surrogate NDVI time series
with low, medium and high inter-annual variability, respectively (Figure 2.2). The
range of the mean seasonal cycle ranged from 0.27 in southern coastal regions of
Alaska to 0.93 in some northern Tundra regions. Seasonal ranges of 0.34 (low), 0.76
(medium) and 0.91 (high) were used to create surrogate time series. The standard
deviation of the remainder time series component was used a measure of short-term
variability and ranges between 0.03 and 0.1. Values of 0.031 (low), 0.048 (medium) and
0.096 (high) were used as the standard-deviation of normal distributed random
number to create surrogate time series components of short-term variability (Figure
2.2). Because of the fact, that the percentiles 1% and 99% were chosen as the low and
high levels for inter-annual variability, seasonality and short-term variability,
simulated time series can be strongly dominated by seasonality (e.g., in case of high
seasonal range but low inter-annual and short-term variability) or can show almost
random behaviour (e.g., in case of low seasonality but high inter-annual and short-
term variability). Consequently, the simulated NDVI time series covered not only a
wide and extreme range of observed time series properties of the study region but
contain time series properties that might occur under different environmental

conditions.

23.2 Evaluation of estimated breakpoints

To evaluate the performance of the methods to detect breakpoints in trends, the real
and estimated breakpoints were compared. For this purpose, the difference between
the estimated and real number of breakpoints was calculated and analysed grouped by
methods and factors (Figure 2.4). All methods underestimated the number of
breakpoints, i.e., the number of false positive detected breakpoints was small (0.36%
for method AAT, 3.8% for STM, 15.5% for MAC and 15.3% for SSA). Method AAT did
not detect any breakpoint if there was no breakpoint whereas methods STM, MAC and
SSA detected in up to 35% of all cases one or two breakpoints if there was no

breakpoint in the surrogate time series (Figure 2.4 e). The range of the seasonal cycle
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had no effect on the estimation of the number of breakpoints (Figure 2.4 g). The
performance of all methods to estimate the correct number of breakpoints depended
also on inter-annual and short-term variability. The performance of method AAT did
not change with increasing inter-annual and short-term variability while methods
STM, MAC and SSA had an increasing number of false positive detected breakpoints
with increasing inter-annual variability and a slightly decreasing number of false
positive detected breakpoints with increasing short-term variability (Figure 2.4 c-d). All
methods tended to perform better in case of abrupt trend changes than in case of
gradual trend changes (Figure 2.4 f). In short, the difference between estimated and
real number of breakpoints depended mostly on the number of real breakpoints as well
asshort-term and inter-annual variability.

Furthermore, the temporal difference between a detected and the closest real
breakpoint was calculated, to evaluate the performance of methods regarding the
timing of breakpoints (Figure 2.5). The difference in timing was not calculated if a
method did not detect a breakpoint although there were real breakpoints. In average,
method AAT performed better (mean absolute difference in breakdates = 9.2 months)
than method STM (16 months) and methods MAC and SSA (both 19 months) (Figure
2.5 a). The error of the timing of breakpoints increased with increasing inter-annual
variability (Figure 2.5 c). Increasing short-term variability resulted only for method
AAT in an increasing timing error (Figure 2.5 d). All methods had a better timing of
breakpoints in case of abrupt changes (Figure 2.5 f). The difference in breakdates was
lower in case of multiple breakpoints (Figure 2.5 e). The range of the seasonal cycle has
no effects on the timing of breakpoints (Figure 2.5 f). In summary, the correct timing of

breakpoints depended mostly on inter-annual variability and the type of trend change.
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Figure 2.4: Frequencies of differences between real and estimated number of breakpoints for the
different methods from all experiments.

Blue indicates underestimation, red overestimation of the number of real breakpoints. (a)
Performance of the methods in all experiments. (b) Grouped by trend magnitude. (c) Grouped
by inter-annual variability. (d) Grouped by short-term variability. (e) Grouped by the real
number of breakpoints. (f) Grouped by the type of trend change. (g) Grouped by the range of

the seasonal cycle.
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Figure 2.5: Distribution of the temporal absolute difference between real and estimated

breakpoints.

(a) Performance of the methods in all experiments. (b) Grouped by trend magnitude. (c)
Grouped by inter-annual variability. (d) Grouped by short-term variability. (e) Grouped by the
real number of breakpoints. (f) Grouped by the type of trend change. (g) Grouped by the range

of the seasonal cycle. + denotes the mean of the distribution. The difference is only based on
detected breakpoints. As method AAT detected fewer breakpoints, it has a much smaller
sample size (n = 42) than the other methods (STM n =732, MAC n =1,368, SSA n = 1,380).

2.3.3 Evaluation of estimated trends

In order to evaluate if methods detect the correct trends, the direction and significance
of estimated trends were compared against the direction and significance of real trends
in a time series segment (Figure 2.6). The estimated slopes from method AAT were
higher correlated with the real slopes (r = 0.74) than the estimated slopes from other
methods (method STM r = 0.7, MAC r = 0.62 and SSA r = 0.61). The agreement was

lower if only one of the real or estimated trend was significant (r = 0.24, AAT) or if
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neither the real nor the estimated trends were significant (r = 0.22, AAT). Nevertheless,
estimated trend slopes from all methods were highly correlated (up to r = 0.98 between
MAC and SSA, scatterplots not shown). Generally, slope estimates from method AAT
were less correlated with the other methods while especially methods MAC and SSA
were highly correlated. Hence, the annual aggregation approach in method AAT

resulted in the most unique slope estimates compared to the other methods.
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Figure 2.6: Comparison of real and estimated slopes from different methods, all time series
segments and all experiments.
Slopes are coloured blue if both real and estimated slopes are not significant, green if only the
real or estimated slope was significant and red if both slopes were significant (0.95 significance
level).

Confusion matrices were calculated to evaluate the accuracy of trend classes based on
the direction and significance of a trend. Method AAT had usually higher class
accuracies as well as a higher total accuracy (37.6%) and Kappa coefficient (K = 0.25)
than other methods (Table 2.1). While method AAT correctly detected 55.24% (47.34%)
of significant negative (positive) trends, methods STM, MAC and SSA correctly
detected only 47.9% (47.4%), 48.1% (45.15%) and 48.1% (45.9%) of significant negative
(positive) trends, respectively. Nevertheless, method AAT detected 3.1% (3.6%),
method STM 5.4% (4.6%), method MAC 5.5% (6.1%) and method SSA 5.9% (6.2%) of
significant negative (positive) trends as significant positive (negative), i.e., opposite,
trends (Table 2.1). Thus, trend slopes from method AAT were higher correlated with
real trend slopes and method AAT detected fewer false positive trends and more

correct positive trends than methods STM, MAC and SSA.
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Table 2.1: Normalized confusion matrices of estimated and real trend classes for each method.
N3: significant negative trend, N2: non-significant negative trend, N1: no trend with
negative tendency, P1: no trend with positive tendency, P2: non-significant positive trend,
P3: significant positive trend. ToAcc: total normalized accuracy, Kappa: Kappa coefficient.

Method AAT Real.N3 Real.N2 Real.N1 Real.P1 Real.P2 Real.P3 Sum
Est.N3 55.24 11.18 15.57 8.44 5.95 3.62 100.00
Est.N2 12.48 43.27 26.76 11.11 0.00 6.38 100.00
Est.N1 13.27 14.55 24.55 17.46 17.74 12.42 100.00
Est.P1 10.37 10.57 15.29 24.43 24.85 14.49 100.00
Est.P2 5.54 13.72 11.98 22.01 31.01 15.74 100.00
Est.P3 3.09 6.70 5.85 16.56 20.45 47.34  100.00
Sum 100.00 100.00 100.00 100.00 100.00 100.00 600.00
ToAcc = 37.64, Kappa = 0.25

Method STM Real.N3 Real.N2 Real.N1 Real.P1 Real.P2 Real.P3 Sum
Est.N3 47.90 20.68 13.18 7.58 6.07 459 100.00
Est.N2 20.58 32.21 14.54 11.05 15.14 6.48 100.00
Est.N1 14.60 18.92 22.68 14.79 18.47 10.54 100.00
Est.P1 10.37 11.09 20.22 25.48 17.20 15.65 100.00
Est.P2 1.15 8.16 19.91 25.21 30.22 15.35 100.00
Est.P3 5.41 8.94 9.47 15.89 12.89 47.39 100.00
Sum 100.00 100.00 100.00 100.00 100.00 100.00 600.00
ToAcc = 34.31, Kappa = 0.21

Method MAC Real.N3 Real.N2 Real.N1 Real.P1 Real.P2 Real.P3 Sum
Est.N3 48.08 22.05 11.81 7.56 4.37 6.13 100.00
Est.N2 13.24 29.18 14.06 10.84 26.98 5.69 100.00
Est.N1 15.15 19.12 27.35 14.75 10.87 12.76  100.00
Est.P1 10.91 16.97 15.94 25.79 18.33 12.06 100.00
Est.P2 7.14 4.45 22.71 26.33 21.16 18.22 100.00
Est.P3 5.48 8.23 8.13 14.73 18.29 4515 100.00
Sum 100.00 100.00 100.00 100.00 100.00 100.00 600.00
ToAcc = 32.79, Kappa = 0.19

Method SSA Real.N3 Real.N2 Real.N1 Real.P1 Real.P2 Real.P3 Sum
Est.N3 48.08 17.79 14.94 6.76 6.21 6.22 100.00
Est.N2 9.07 37.14 19.66 11.88 18.57 3.69 100.00
Est.N1 15.20 20.16 24.72 14.54 14.08 11.31  100.00
Est.P1 13.80 9.59 13.99 24.52 24.76 13.34  100.00
Est.P2 7.88 6.19 18.57 25.12 22.70 19.55 100.00
Est.P3 5.98 9.13 8.12 17.17 13.69 4590 100.00
Sum 100.00 100.00 100.00 100.00 100.00 100.00 600.00
ToAcc = 33.84, Kappa = 0.21

2.3.4 Effects on the overall performance of the methods

To quantify the overall error of breakpoint and trend detection, the root mean square

error (RMSE) between the estimated and real trend component was computed. The

distribution of RMSE for the different experimental factors and methods is shown in

Figure 2.7. Overall, method AAT and STM performed better than methods MAC and

SSA. The error increased with increasing inter-annual variability for all methods

(Figure 2.7 c). For all methods the error slightly increased with increasing short-term

variability (Figure 2.7 d). All methods had higher errors in time series with breakpoints

than in time series without breakpoints (Figure 2.7 e). The range of the seasonal cycle
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did not affect the performance of the different methods (Figure 2.7 f). The error was
larger in time series with strong trends and abrupt changes than in time series with
weak trends and gradual changes (Figure 2.7 b, f). The higher error under strong
trends was a result of the worse timing of breakpoints under these conditions (Figure
2.7 b). To quantify the relative effects of the correct timing of breakpoints and inter-
annual variability on the error in trend estimation, an analysis-of-variance was

computed in the next step.
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Figure 2.7: Distribution of the root mean square error (RMSE) between real and estimated trend
component for the different methods from all experiments.

(a) Performance of the methods in all experiments. (b) Grouped by trend magnitude. (c)
Grouped by inter-annual variability. (d) Grouped by short-term variability. (e) Grouped by the
real number of breakpoints. (f) Grouped by the type of trend change. (g) Grouped by the range

of the seasonal cycle.
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The contribution of different factors to the error between estimated and real trend
component was analysed by an analysis-of-variance (Table 2.2). All considered factors
explained a significant proportion of the error. Inter-annual variability explained the
largest part of the error distribution (30.7%). Additionally, the type of trend change, the
interaction between inter-annual variability and applied method and the trend
magnitude explained large parts of the error. This is illustrated by the similar error of
all methods under low and medium inter-annual variability while for methods MAC
and SSA the error increased strongly under high inter-annual variability (Figure 2.7 c).
The seasonal range had in general only a small contribution to the overall error
(0.002%). In summary, the inter-annual variability of the time series was the most

important factor for the error of breakpoint and trend estimation.

Table 2.2: Analysis of variance table for the RMSE between real trend and estimated trend. IAV
and STV denote inter-annual and short-term variability, respectively. NBP is the number of

breakpoints.

Sum Sq/

Factor Df Sum Sq Mean Sq F value P (>F) Total Sq
(%)

IAV 2 02136 0.1068 4096.7 <2.2e-16 30.73
Type of change 1 0.0511 0.0511 1959.3 <2.2e-16 7.35
IAV * Method 6 0.0469 0.0078 299.8 <2.2e-16 6.75
Trend magnitude 1 0.0252 0.0252 966.5 <2.2e-16 3.62
IAV * STV 4 0.0153 0.0038 146.8 <2.2e-16 2.20
Type of change * Method 3 0.0121 0.0040 1546 <2.2e-16 1.74
Method 3 0.0108 0.0036 137.8 <2.2e-16 1.55
Trend magnitude * Method 3 0.0073 0.0024 93.9 <2.2e-16 1.06
NBP 2 0.0072 0.0036 137.6 <2.2e-16 1.03
STV * Type of change 2 0.0061 0.0030 116.5 <2.2e-16 0.87
STV 2 0.0024 0.0012 46.1 <2.2e-16 0.35
Trend magnitude * Type of change 1 0.0022 0.0022 86.3 <2.2e-16 0.32
Trend magnitude * NBP 2 0.0022 0.0011 41.7 <2.2e-16 0.31
Type of change * NBP 1 0.0022 0.0022 83.4 <2.2e-16 0.31
Trend magnitude * STV 2 0.0022 0.0011 413 <2.2e-16 0.31
IAV * Type of change 2 0.0005 0.0003 10.4 2.962E-05 0.08
Seasonality * NBP 4 0.0005 0.0001 5.0 4.945E-04 0.08
STV * NBP 4 0.0005 0.0001 45 1.238E-03 0.07
Trend magnitude * 1AV 2 0.0004 0.0002 7.4 0.001 0.06
STV * Method 6 0.0003 0.0001 2.1 4.948E-02 0.05
Trend magnitude * Seasonality 2 0.0002 0.0001 4.6 0.010 0.03
Seasonality * Type of change 2 0.0002 0.0001 4.2 1.526E-02 0.03
IAV * NBP 4 0.0002 0.0001 2.0 8.910E-02 0.03
Seasonality 2 0.0000 0.0000 0.2 0.799 0.00
Residuals 10,952 0.2855  0.0000 41.07
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Figure 2.8: Ensemble of breakpoint and trend estimates from all methods in Alaska.
AAT, STM, MAC and SSA are the four applied trend methods. ‘all’ indicates that all NDVI
values were used (i.e., including interpolated and snow-affected observations). ‘ex” snow-

affected values were excluded from trend analysis. ‘peak’ trend was computed only on annual
peak NDVI. (a) Mean number of detected breakpoints from all methods. (b) Uncertainty of the
number of detected breakpoints (standard deviation of number of breakpoints from all
methods). (c) Number of detected breakpoints grouped by method. (d) mean duration of
greening trends (years) with associated uncertainties (e) and distribution of greening duration
per each method (f). (g) mean duration of browning trends (years) with associated uncertainties
(h) and distribution of browning duration per each method (i). (j) Multi-method mean trend
slope (ANDVI/year) with associated uncertainties (k) and distributions per each method (1).
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2.3.5 Multi-method ensemble of breakpoint and trend estimates in Alaska

To compare breakpoint and trend estimates of the different methods under real
conditions, all methods were applied to GIMMS NDVI3g time series of Alaska and the
number and timing of breakpoints as well as the duration of significant greening and
browning trends were calculated (Figure 2.8). Breakpoints were detected by multiple
methods in northern Tundra regions, in some parts of eastern boreal Alaska and in
south-western Alaska (Figure 2.8 a). Method MAC detected in 40 % of all land grid
cells one or two breakpoints if snow-affected values were excluded from the analysis
(MAC-ex) (Figure 2.8 c). All other methods detected less breakpoints. Especially the
seasonal methods detected more breakpoints if snow-affected observation were
excluded from the analysis. The lowest number of breakpoints was detected by method
AAT applied to the annual peak NDVI (AAT-peak). Despite method SSA, all other
methods detected breakpoints around the year 2000 with following browning trends in
the northern Tundra. The detection of breakpoints controls the multi-method average
duration of significant greening and browning trends. The duration of greening ranges
between 20 and up to 30 years with a standard deviation between two to six years in
most tundra regions. In some north-eastern parts of the study region significant
greening trends last between 20 and 30 years as well but with higher uncertainties of
six to 10 years (Figure 2.8 d-e). Browning NDVI trends between 20 and 30 years
occurred in some boreal regions of central Alaska and in south-western Alaska usually
with small uncertainties of up to four years (Figure 2.8 g-h). The multi-method average
NDVI trend slope demonstrates that greening NDVI trends were more spatially and
temporally prevalent and of higher magnitude than browning trends (Figure 2.8 j-1).
Greening occurred mostly in Tundra regions while browning occurred only spotted in
the boreal forest. Nevertheless, greening trends occurred in some parts of the central
Alaskan boreal forests too but were associated with higher uncertainties because some
methods detected breakpoints with greening NDVI trends while other methods
detected no significant greening trends in these regions. All methods detected stronger
greening and browning trends if snow-affected values were excluded from the analysis
or only peak NDVI was used and weaker trends if all values were used (Figure 2.8 1).
In short, methods agreed in the estimation of the major 30 year greening and browning

trends, while they had larger differences in regions where breakpoints were detected
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by some methods and thus trend changes are likely. Nevertheless, the treatment of
snow-affected NDVI values and thus the inherent inter-annual variability of the NDVI
time series caused larger differences in NDVI trend estimates than the applied trend

estimation method.

24 Discussion
24.1 Effect of temporal resolution on method performance

The correct timing of breakpoints does not depend on the temporal resolution of the
time series but on how full-temporal resolution methods deal with seasonality. Two
types of temporal resolution of NDVI time series were explored in this study: Method
AAT makes use of a low temporal resolution based on annual aggregated data and
methods STM, MAC and SSA were using a monthly temporal resolution of the time
series. A more accurate detection of breakpoints was expected if a method uses the full
temporal resolution than annual aggregated data. Nevertheless, the annual
aggregation approach (method AAT) compared well in the timing of breakpoints like
one full-temporal resolution method (method STM) although it largely under-
estimated the number of breakpoints. Although the other full-temporal resolution
methods (methods MAC and SSA) detected more often the right number of
breakpoints, they had larger errors in the timing of these breakpoints (Figure 2.5).
These results suggest that the estimation of the timing of breakpoints is highly
sensitive on how the temporal decomposition methods account for seasonality and
inter annual variability. Thus, the lower precision of the annual method limits the
correct timing of within-year breakpoints, although it does not reduce the accuracy of
this method in comparison to seasonal methods.

The temporal resolution of the time series affects the estimation of the trend
significance. The major problem of using annual aggregated data rather than full-
resolution time series is the reduction in the number of observations. This involves an
underestimation of the significance of the trend (de Beurs and Henebry, 2004b;
Verbesselt et al., 2010a). However, this assumed limitation of the annual aggregation
approach turned out to be an advantage as it decreases the risk of detecting false

positive trends, i.e., a significant positive trend in case of a significant negative real
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trend and vice versa. Nevertheless, the application of all methods to real data resulted
in similar trend slope estimates from different methods. Similar trend slopes with a
low multi-method uncertainty were found in regions where methods usually did not
detect breakpoints (Figure 2.8 a ,j). Also previous studies reported similarities in trend
estimates from annual-aggregated and full-temporal resolution approaches as well
(Mahecha et al., 2010a). Hence, the detection of significant trends depends rather on the
estimated breakpoints and thus on time series length than on the temporal resolution

of the time series that was used by the trend detection method.

24.2 Effect of trend changes on method performance

The performance of the four methods to estimate trends is lower in time series with
breakpoints. All methods estimate trends with a lower error in case of simple time
series with no breakpoints or in case of gradual than abrupt changes (Figure 2.7 e, f)).
All methods present a prevalent tendency to underestimate the number of breakpoints.
Method AAT underestimates the number of breakpoints in almost all cases, being the
most conservative approach for estimating breakpoints, which ultimately resulted in
the best overall performance for trend estimation (Figure 2.7 a). On the other hand,
methods MAC and SSA tended to detect breakpoints in time series without
breakpoints (Figure 2.4 e). In complex time series with one or multiple breakpoints or
abrupt trend changes the error of the estimated underlying trend component is higher
for all methods (Figure 2.7 e-f). This higher error is caused by the estimated timing of
the breakpoint. A larger difference between the estimated and the real breakpoint
causes a higher difference between estimated and real trend slope in the time series
segment before or after the breakpoint and thus a higher error in the estimated trend
component. The seasonal-adjusted approaches (methods MAC and SSA) have a worse
overall performance than the season-trend model approach (method STM) (Figure 2.7
a). Although methods MAC and SSA detected in more cases the right number of
breakpoints they had a significant number of false positive detected breakpoints
(Figure 2.4 a). The overestimation and/or the strong mismatch in the timing of the
breakpoints cause a false detection of the underlying trend or even a detection of
opposite trends, especially under high inter-annual variability (Figure 2.5 c). Taken

together, in order to detect the correct trends, the underestimation of breakpoints
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results in better trend estimates, and better estimates of the timing of major

breakpoints are more important than the detection of the right number of breakpoints.

2.4.3 Effect of inter-annual variability on method performance

The capability to estimate trends and breakpoints depends mostly on the robustness of
a method against inter-annual variability (Figure 2.7, Table 2.2). Inter-annual
variability increased the timing error of breakpoints (Figure 2.5 c). The error of the
estimated trend component increased for all methods with increasing inter-annual
variability. Nevertheless, the error increase with increasing inter-annual variability is
much stronger for methods STM, MAC and SSA than for method AAT (Figure 2.7 c).
Thus, the annual aggregation method is a relatively robust approach against inter-
annual variability for estimating trends and trend changes. This effect is also evident
from the application of the methods on real NDVI time series: The inter-annual
variability of NDVI time series in Alaska is 1.6 times higher if snow-affected
observations are excluded (figure not shown). This inter-annual variability caused a
detection of a higher number of breakpoints if snow-affected observation were not
used to compute breakpoints in all methods (Figure 2.8 c). The use or non-use of snow-
affected NDVI observations for trend analysis and the associated inter-annual
variability of the NDVI time series caused larger differences in breakpoint estimates
and trend slopes than the choice of the trend method (Figure 2.8 1).

However, we have to be cautionary in the assessment of the effect of inter-annual
variability on the method performance: We assumed that the inter-annual variability as
well as the short-term variability are independent, i.e.,, temporally uncorrelated
processes. Real world observations may depict long-range correlations that can be
expected to induce year-to-year dependencies in the inter-annual variability. This
would imply that the separation of trend and inter-annual variability is not
straightforward. However, an investigation on effects of this kind is beyond the scope
of our study but we assume that additional uncertainties would affect the timing of

changes in trends in any methodological approach and attribution study.
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24.4 Plausibility of trend and breakpoint estimates in Alaska

Alaska is of special interest for the analysis of trend change detection methods because
previous studies reported greening NDVI trends in tundra ecosystems of the Alaska
North Slope as well as browning trends in the Alaska boreal forests (Beck and Goetz,
2011; Goetz et al., 2005; de Jong et al., 2011a; Neigh et al., 2008). On the other hand, it is
not clear if these browning trends are monotonic trends as also different number of
trend changes and a considerable amount of years with greening trends were detected
(de Jong et al., 2013b). No trend changes or browning trends have been reported in
previous studies for the Alaskan tundra (de Jong et al, 2013b). We detected
breakpoints in the Alaskan tundra around the year 2000 with following browning
trends across different methods and regardless if snow-affected NDVI observations or
only peak NDVI were used for trend analysis or not (Figure 2.8 g—i). That means that
these breakpoints with following browning in the Alaskan tundra are not artefacts due
to snow or cloud contaminations or other radiative surface changes outside the peak-
growing season. This browning is observable due to the extended length of the GIMMS
NDVI3g dataset until 2011 in comparison to previous dataset versions. It needs to be
assessed if these greening-to-browning trend changes in the Alaskan tundra are due to
regime shifts in climate-ecosystem interaction processes or due to inter-annual
variations. Browning trends were detected by all methods in some parts of boreal
Alaska. Previous studies reported negative NDVI trends especially in eastern boreal
Alaska (Parent and Verbyla, 2010). These browning trends are associated with
wildfires (Goetz et al., 2005), occur mainly in evergreen needle-leaf forests (Beck and
Goetz, 2011) and are related to temperature-induced drought stress and insect
disturbances (Parent and Verbyla, 2010; Verbyla, 2011). Browning trends in western
boreal Alaska based on a previous version of the GIMMS NDVI dataset are more
doubtful because such GIMMS NDVI had only a weak agreement with MODIS NDVI
in this often cloud-affected region (Parent and Verbyla, 2010). In contrast to previous
results of de Jong et al. (2011b), we detected fewer trend changes in boreal Alaska and

more monotone browning trends over this 30 year period.
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Figure 2.9: Comparison of detected breakpoints with temporal fire and climate patterns in
Alaska.
(a) Time series of the total number of detected breakpoints per year for each method. (b) Total
annual burnt area and annual anomaly of flagged GIMMS NDVI3g pixels with reduced quality.
(c) Annual temperature and precipitation anomalies (baseline 1982-2009) averaged for Alaska.
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Figure 2.10: Comparison of detected breakpoints of the year 2004 from four different methods
with 2004 burnt areas and in situ photos (taken in 2008).

NBP is the total number of breakpoints that was detected in 2004 in this region. BPinBA denotes
the percentage of breakpoints that was found inside a burnt area polygon. For methods AAT-ex
and AAT-peak breakpoints for both 2003 and 2004 are shown to compensate for the lower
breakpoint timing precision of these methods. All breakpoints that were found by AAT-peak
were found at least also by one other method.
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To evaluate the plausibility of detected breakpoints in NDVI time series of Alaska, the
temporal dynamics and spatial patterns of breakpoints were compared against quality
flags of the GIMMS NDVI3g dataset, temperature and precipitation anomalies as well
as burnt areas from the Alaskan Large Fire Database (Figure 2.9, Figure 2.10). We
cannot fully make sure that all detected breakpoints are only due to climate or
environmental changes but might be caused by sensor changes in the GIMMS NDVI3g
dataset. Sensor changes took place in 1985, 1988, 1994, 1995, 2000 and 2004 (Tucker et
al., 2005). Although most breakpoints were detected in the year 2000 which had the
highest number of flagged NDVI values with reduced quality and where a sensor
change took place (Figure 2.9), previous studies have shown that trends computed on
GIMMS NDVI data are not affected by sensor changes (Kaufmann et al., 2000; Tucker
et al., 2005). Clearly, some breakpoints can be related to drought periods or fire events.
Some larger fire events occurred in 1988, 1990, 1997, 2002 and 2004 and methods
detected breakpoints in NDVI trends during or one year after these fire events (Figure
2.9 a-b). Methods AAT, STM and MAC detected breakpoints in 1997 and 1998 in
central and south-western Alaska that can be related to patterns of negative
precipitation anomalies and fire activity. Alaskan fire activity is caused by droughts
that are related to large-scale circulation patterns (Macias Fauria and Johnson, 2006).
For example, El Nino causes drought and fire weather conditions in interior Alaska
(Hess et al., 2001; Macias Fauria and Johnson, 2006). Thus it is probable, that detected
breakpoints in 1997/1998 are a result of decreased NDVI signals because of drought
effects after the 1997 El Nino event (McPhaden, 1999). The largest total burnt area in
Alaska occurred in 2004 under low precipitation and high temperature conditions
(Figure 2.9 b-c). The detection of breakpoints in NDVI time series in 2004 agreed with
the spatial distribution of wildfires and in situ observations. Large conifer forests were
burned in 2004 and were replaced by low broadleaved shrubs (dwarf birch and aspen)
and grasses during post-fire succession which results in a structural change in NDVI
time series (Figure 2.10). Especially methods AAT and MAC detected the highest
number of breakpoints exactly at burn scar locations (AAT-ex n = 40, MAC n = 124)
while methods STM and SSA found less breakpoints at burnt areas (STM n = 27 and
SSA n = 29). Nevertheless, only a few fire-related breakpoints were detected by

multiple methods and especially methods STM and MAC detected many breakpoints
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outside burnt areas. As method MAC had a high number of false positive detected
breakpoints (Figure 2.4), some of these breakpoints might be false positives too.
However, we cannot assess if they were caused by other environmental processes. In
short, detected breakpoints can be related to environmental conditions like fire events
or drought periods but need to be cross-checked against quality flags of the GIMMS
NDVI3g dataset and additional environmental datasets to exclude false positive

detected breakpoints.

2.4.5 Practical recommendations

Based on our results we want to summarize advantages and limitations of the methods
and give recommendations for practical applications of trend and breakpoint detection
methods on long-term NDVI time series. All tested methods offer advantages but
involve also different limitations for trend and breakpoint estimation. Removing a
mean annual cycle from seasonal time series (method MAC) in order to calculate
trends is an often applied method. However, even if this trend analysis on seasonal-
adjusted time series had the highest number of correct detected breakpoints, it involves
also the highest number of false positive detected breakpoints and had a low overall
performance for trend and breakpoint detection. The method that removes a
modulated annual cycle as detected by singular spectrum analysis (method SSA)
allows distinguishing and quantifying changes that are caused by changes in
seasonality or caused by the long-term NDVI trend. Although this method resulted in
a high proportion of correct detected breakpoints, it involves a high number of false
positive detected breakpoints as method MAC. Additionally, the de-seasonalisation by
a modulated annual cycle can remove the inter-annual variability that is related to
trends and results in a low overall performance of this method. Trend and breakpoint
estimation based on a season-trend model (method STM) quantifies trends while
taking into account the seasonality and noise of the NDVI time series. Thus, it allows
detecting, distinguishing and quantifying changes in the phenological cycle as well as
in the long-term NDVI trend (Verbesselt et al., 2010a, 2010b, 2012). Although this
method under-estimated the number of breakpoints and had 5% false positive detected
breakpoints, it had a good overall performance. Trend analysis on annual aggregated

values (method AAT) highly underestimated the number of breakpoints but had the
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best overall performance of all methods considering the estimation of trends. The
annual aggregation method had the lowest number of wrong detected breakpoints and
detected real breakpoints were found with the highest accuracy of all methods (Figure
2.5). While this method reduces the temporal resolution and has a lower precision for
the timing breakpoints, it offers the potential to calculate trends on specific properties
of NDVI time series like annual or growing season means, as well as peak NDVI or
seasonal amplitudes. The specific properties of NDVI time series in high-latitude
regions (short vegetation period, snow cover, often cloud affected) limit the
applicability of the seasonal methods and ultimately suggest using method AAT on
peak NDVI to exclude observations affected by distortions.

Based on different advantages and limitations of all methods, we recommend using
method AAT on mean growing season or peak NDVI for regions where the time series
are often affected by distortions. If the seasonal NDVI time series values outside the
peak NDVI period are credible, the calculation of a multi-method ensemble based on
full time series could help to detect robust trends and breakpoints assuming that the
agreement of multiple methods is more reliable than a single method. The later
approach allows not only to detect trends but also to quantify the uncertainty of the
trend estimate based on the choice of the trend method. Breakpoints can be considered
as more robust if they were detected by multiple methods. Nevertheless the
environmental plausibility of detected breakpoints needs to be assessed. Breakpoints
with abrupt changes, i.e., with higher magnitudes, were detected more accurately than
breakpoints with gradual changes, i.e., with low magnitudes. On the other hand false
detected abrupt changes caused a low overall performance of all trend methods. Thus,
we recommend to check the magnitude of changes at breakpoints and to relate these
breakpoints in a driver-oriented framework (de Jong et al., 2013b) to potential causes of
changes like land cover changes, drought or disturbances as fire or insect infestations.
As the detection of breakpoints causes additional uncertainties in trend estimates, the
purpose of the breakpoint detection in analysis of NDVI trends needs to be clearly
defined: Are trends or trend changes (breakpoints) in the focus of a study? Although
the detection of breakpoints offer the potential to detect disturbances in NDVI time

series, trend changes and trends in sub-segments of the NDVI time series, a false
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detection of non-existing breakpoints can result in wrong or even opposite NDVI trend
estimates.

Inter-annual variability is the most important factor for the performance of methods to
detect trends and breakpoints in NDVI time series. Main sources for inter-annual
variability in NDVI time series are (1) contaminants like insufficient pre-processed data
or insufficient harmonized multi-sensor observations, (2) meteorological distortions
like clouds, dust, aerosols or snow cover and (3) environmental processes like climate
variability, disturbances and land cover changes with associated changes in ecosystem
structure and productivity. Usually, only the later source of inter-annual variability is
of interest in NDVI time series analyses. Users of long-term NDVI datasets rely on the
pre-processing and harmonization of multi-sensor observations performed in all
conscience by dataset providers. Meteorological distortions can be excluded from
analyses by excluding NDVI observations that are flagged as snow or poor quality; by
aggregating the bi-monthly GIMMS NDVI3g dataset to monthly temporal resolution;
or by analysing only annual peak NDVI observations. As snow cover and clouds have
low NDVI values, an extended snow cover can likely cause a detection of weaker
NDVI greening or even the detection of browning trends. Thus, the use or non-use of
snow-affected and low quality NDVI observations directly affects the inter-annual
variability of the NDVI time series and such NDVI values should be excluded from

trend and breakpoint analyses.

2.5 Conclusions

We demonstrated that increasing inter-annual variability in Normalized Difference
Vegetation Index (NDVI) time series decreases the performance of methods to detect
trends and trend changes in long-term NDVI time series. Trend estimation based on
annual aggregated NDVI time series and the season-trend method had good overall
performances. Hence, in order to detect trend changes in NDVI time series with higher
precision and accuracy, one needs to improve methods that work on the full temporal
resolution time series regarding the robustness against inter-annual variability. Inter-
annual variability of NDVI time series can be caused by artefacts from the

harmonization of a dataset from different sensors, meteorological distortions like
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clouds or snow and environmental processes such as climate patterns or disturbances.
As a consequence, snow-affected NDVI observation or observations with poor quality
need to be excluded from trend and breakpoints analyses as the performance of trend
and breakpoint estimation methods decreases with increasing inter-annual variability.
Methods can detect wrong or even opposite NDVI trends if they detect breakpoints in
time series that have no breakpoints. Nevertheless, the detection of breakpoints offers
the potential to detect trend changes or disturbances in NDVI time series.

We evaluated for the first time different methods to detect trends and trend changes in
newly available 30 year GIMMS NDVI3g time series. Future studies of trends and
breakpoints in long-term NDVI time series should assess the plausibility of detected
breakpoints against multi-method ensemble estimates of breakpoints, quality flags of
the NDVI time series and further environmental data streams, in order to prevent a

detection of wrong NDVI trends.
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3 Identifying environmental controls on vegetation

greenness phenology through model-data integration

Abstract

Existing dynamic global vegetation models (DGVMs) have a limited ability in
reproducing phenology and decadal dynamics of vegetation greenness as observed by
satellites. These limitations in reproducing observations reflect a poor understanding
and description of the environmental controls on phenology, which strongly influence
the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation.
Combining DGVMs with observational data sets can potentially help to revise current
modelling approaches and thus enhance the understanding of processes that control
seasonal to long-term vegetation greenness dynamics. Here we implemented a new
phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and
integrated several observational data sets to improve the ability of the model in
reproducing satellite derived time series of vegetation greenness. Specifically, we
optimized LPJmL parameters against observational time series of the fraction of
absorbed photosynthetic active radiation (FAPAR), albedo and gross primary
production to identify the main environmental controls for seasonal vegetation
greenness dynamics. We demonstrated that LPJmL with new phenology and
optimized parameters better reproduces seasonality, inter-annual variability and
trends of vegetation greenness. Our results indicate that soil water availability is an
important control on vegetation phenology not only in water-limited biomes but also
in boreal forests and the Arctic tundra. Whereas water availability controls phenology
in water-limited ecosystems during the entire growing season, water availability co-
modulates jointly with temperature the beginning of the growing season in boreal and
Arctic regions. Additionally, water availability contributes to better explain decadal
greening trends in the Sahel and browning trends in boreal forests. These results
emphasize the importance of considering water availability in a new generation of
phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-

decadal dynamics of vegetation greenness.
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3.1 Introduction

The greenness of the terrestrial vegetation is directly linked to plant productivity,
surface roughness and albedo and thus affects the climate system (Richardson et al.,
2013). Vegetation greenness can be quantified from satellite observations for example
as Normalized Difference Vegetation Index (NDVI) (Tucker, 1979). NDVI is a remotely
sensed proxy for structural plant properties like leaf area index (LAI) (Turner et al.,
1999), green leaf biomass (Gamon et al., 1995) and plant productivity. In particular,
NDVI of green vegetation has a linear relationship with the fraction of absorbed
photosynthetic active radiation (FAPAR) (Fensholt et al., 2004; Gamon et al., 1995;
Myneni et al., 1995, 1997b; Myneni and Williams, 1994). Satellite-derived FAPAR
estimates are often used to estimate terrestrial photosynthesis (Beer et al., 2010; Jung et
al., 2008, 2011; Potter et al., 1999). Decadal satellite observations of NDVI demonstrate
widespread positive trends (“greening”) especially in the high-latitude regions (Lucht
et al., 2002; Myneni et al., 1997a; Xu et al., 2013) but also in the Sahel, southern Africa
and southern Australia (Fensholt and Proud, 2012; de Jong et al, 2011b, 2013b).
Surprisingly, these trends are accompanied by negative trends (“browning”) which
were observed regionally in parts of the boreal forests of North America and Eurasia,
and in parts of eastern Africa and South America (Baird and Verbyla, 2012; Bi et al.,
2013; de Jong et al., 2013b). Regionally different causes have been identified for the
observed greening and browning trends. The greening of the high latitudes is
supposed to be mainly induced by rising air temperatures (Lucht et al., 2002; Myneni et
al., 1997a; Xu et al., 2013). Browning trends in subtropical regions were related to
changing drought conditions and land use change (Cook and Pau, 2013; van Leeuwen
et al., 2013). On the other hand, the environmental controls on the browning of boreal
forests have been intensively investigated but no concluding or general explanation
has been found so far (Barichivich et al., 2014; Beck et al., 2011; Beck and Goetz, 2011;
Bunn et al., 2007; Goetz et al., 2005; Piao et al., 2011, Wang et al., 2011). Trends in
vegetation greenness are often related to changes in vegetation phenology like an
earlier onset and an associated lengthening of the growing season in mid- and high-
latitude regions (Atzberger et al., 2013; Hogda et al., 2001, 2013; Tucker et al., 2001;
Zeng et al., 2011). Changes in vegetation greenness are linked to changes in primary

production and thus affect atmospheric CO: concentrations and the terrestrial carbon
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cycle (Barichivich et al., 2013; Keeling et al., 1996; Myneni et al., 1997a). Additionally,
vegetation greenness affects the climate system by influencing surface albedo. For
example, greening trends in high latitudes are associated with decreasing surface
albedo (Urban et al., 2013) which alters the surface radiation budget (Loranty et al.,
2011). This can potentially further contribute to a warming of Arctic regions (Chapin et
al.,, 2005). Thus, satellite observations of vegetation greenness demonstrate the recent
interactions and changes between terrestrial vegetation dynamics and the climate
system.

Dynamic global vegetation models (DGVM) or generally climate/carbon cycle models
are used to analyse and project the response of the terrestrial vegetation to the past,
recent and future climate variability (Prentice et al., 2007). DGVMs can be used to
explain observed trends in vegetation greenness (Lucht et al., 2002) or to quantify the
related terrestrial CO2 uptake. While most global models simulate an increasing uptake
of CO: by the terrestrial vegetation under future climate change scenarios, the
magnitude of future changes in land carbon uptake largely differs among models
(Friedlingstein et al., 2006; Sitch et al., 2008). The spread of land carbon uptake
estimates among DGVMs might be partly related to insufficient representations of
vegetation phenology and greenness (Richardson et al., 2012). Coupled climate—carbon
cycle models and uncoupled DGVMs have been compared against 30-year satellite-
derived time series of LAI (Anav et al., 2013; Murray-Tortarolo et al., 2013; Zhu et al,,
2013). Models usually overestimate mean annual LAl in all biomes and have a too long
growing season because of a delayed season end (Anav et al., 2013; Murray-Tortarolo
et al., 2013; Zhu et al., 2013). Additionally, most DGVMs have more positive LAI trends
than the satellite-derived LAI product, i.e. they underestimate browning trends in
boreal forests while a few DGVMs do not reproduce the general greening of the high
latitudes (Murray-Tortarolo et al.,, 2013). The limitations of DGVMs in reproducing
observed LAI or FAPAR time series is mostly related to limited phenology routines
that often miss environmental controls on seasonal leaf development (Kelley et al.,
2013; Murray-Tortarolo et al., 2013; Richardson et al., 2012). In conclusion, with
improved modelling approaches for vegetation phenology and greenness, DGVMs can
potentially more accurately reproduce the recent, and project the future response of the

terrestrial vegetation to climate variability.
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Past studies successfully demonstrated the use of vegetation greenness observations to
improve stand-alone phenology models or to optimize phenology and productivity-
related parameters in DGVMs. The growing season index (GSI) is an empirical
phenology model that is used to estimate seasonal leaf developments (Jolly et al., 2005).
Empirical parameters of GSI have been optimized against globally distributed 10-year
FAPAR and LAI time series from MODIS to reanalyse climatic drivers for vegetation
phenology (Stockli et al, 2008b, 2011). This optimization resulted in a good
representation of temporal FAPAR and LAI dynamics in all major biomes except
evergreen tropical forests (Stockli et al., 2011). Model parameters of the Biome-BGC
model were optimized against eddy covariance flux observations and NDVI time
series from MODIS for poplar plantations in northern Italy which resulted in a more
accurate representation of carbon fluxes and NDVI (Migliavacca et al., 2009). The
BETHY-CCDAS model was optimized against FAPAR time series from MERIS for
seven eddy covariance sites (Knorr et al., 2010) and later for 170 land grid cells using
coarse 8 by 10° spatial resolution (Kaminski et al., 2012). These studies demonstrated
the improvements in simulated vegetation phenology by optimizing model parameters
against observations of vegetation greenness.

Nevertheless, spatial patterns and temporal dynamics of vegetation greenness were not
yet optimized in a DGVM globally at a higher spatial resolution (0.5°) and by using
long-term (30 year) satellite-derived time series of vegetation greenness. Newly
developed 30 year time series of LAI or FAPAR from the GIMMS3g data set (Global
Inventory Modeling and Mapping Studies, third generation of data sets; Zhu et al,,
2013) make it possible to improve DGVMs not only based on seasonal cycles of single
years (i.e. phenology) but additionally against decadal time series properties including
inter-variability and trends. By integrating the GIMMS3g FAPAR data set in a DGVM,
we can potentially improve spatial patterns and seasonal to long-term temporal
dynamics of vegetation greenness. We use the LPJmL DGVM (Lund-Potsdam-Jena
managed lands). Similar to other DGVMs, LPJmL does not accurately reproduce the
growing season onset and seasonal amplitude of observed LAI and FAPAR time series,
presumably because of a limited phenology model (Kelley et al, 2013; Murray-
Tortarolo et al., 2013). Thus integrating long-term observations of FAPAR in the LPJmL

DGVM potentially requires the development of an improved phenology scheme.
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We aim to improve environmental controls on vegetation phenology and greenness in
LPJmL by (1) developing a new phenology module for LPJmL, by (2) optimizing
FAPAR, productivity and phenology-related parameters of LPJmL against 30-year
satellite-derived time series of FAPAR, against 10-year satellite-derived time series of
vegetation albedo and against spatial patterns of mean annual gross primary
production (GPP) from a data-oriented estimate and by (3) integrating further data
streams into LPJmL to constrain land cover dynamics and disturbance effects on
vegetation greenness in diagnostic model simulations. This model-data integration
approach for LPJmL (LPJmL-MDI) will be applied to identify the environmental

controls on vegetation greenness phenology.
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Figure 3.1: Structure of the model-data integration approach for LPJmL (LPJmL-MDI).
The LPJmL model structure is highly simplified.

3.2 Model, data sets and model-data integration
3.2.1 Overview

LPJmL is a dynamic global vegetation model that simulates ecosystem processes such
as carbon and water fluxes, carbon allocation in plants and soils, permafrost dynamics,
fire spread and behaviour and vegetation establishment and mortality. We used LPJmL
version 3.5. This version is based on the original LP] model (Sitch et al., 2003). The

model has been extended for human land use (Bondeau et al., 2007), and agricultural
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water use (Rost et al., 2008). It includes a process-oriented fire model (Thonicke et al.,
2010), an improved representation of surface albedo and snow coverage (Strengers et
al., 2010) and a newly implemented soil hydrology scheme and permafrost module
(Schaphoff et al., 2013). This study focuses on the natural vegetation plant functional
types (PFTs) (Sitch et al., 2003), i.e. our model developments and optimizations were
not applied for crop functional types (CFTs) (Bondeau et al.,, 2007) because crop
phenology is highly driven by human practices.

We developed a model-data integration approach for the LPJmL DGVM (LPJmL-MD],
Figure 3.1). LPJmL-MDI allows us (1) to directly insert land cover, tree cover and burnt
area data sets in LPJmL for diagnostic model applications (Sect. 3.2.4.1); (2) to optimize
LPJmL model parameters against data sets (here FAPAR, GPP, albedo; Sect. 3.2.4.2);
and (3) to evaluate and benchmark LPJmL simulations against observations or
observation-based data sets (Sect. 3.2.4.3). Like in a prognostic mode, LPJmL was
driven by climate forcing data. Additionally, observed burnt areas were directly
inserted into LPJmL to consider observed fire dynamics in diagnostic model
applications. For this, we directly replaced the simulated burnt area in the LPJmL-
SPITFIRE fire module (Thonicke et al., 2010) by observed burnt areas using the
approach of Lehsten et al. (2008). Thus, the timing and location of fire spread is
constrained by observations whereas fire effects on vegetation are still simulated by
LPJmL-SPITFIRE. We further prescribed observed land cover and tree cover fractions
to control for vegetation dynamics in parameter optimization experiments. Observed
FAPAR and albedo time series as well as observation-based mean annual spatial
patterns of GPP were used in a joint cost function to optimize productivity, phenology,
radiation, and albedo-related model parameters using a genetic optimization
algorithm.

LPJmL was previously evaluated against site measurements of net carbon ecosystem
exchange (Schaphoff et al., 2013; Sitch et al., 2003), atmospheric CO: fractions (Sitch et
al., 2003), soil moisture (Wagner et al., 2003), evapotranspiration and runoff (Gerten et
al., 2004; Schaphoff et al., 2013), fire regimes (Thonicke et al., 2010), and permafrost
distribution (Schaphoff et al., 2013). Here we evaluate LPJmL against additional and
partly new available global data sets of FAPAR (Baret et al., 2013; Zhu et al., 2013), GPP
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and evapotranspiration (ET) (Jung et al., 2011), tree cover (Townshend et al., 2011) and
biomass (Carvalhais et al., 2014; Saatchi et al., 2011; Thurner et al., 2014).

3.2.2 FAPAR and phenology in the LPJmL DGVM
3.22.1  FAPAR
FAPAR is defined as the ratio between the photosynthetic active radiation absorbed by

the green canopy (APAR) and the total incident photosynthetic active radiation (PAR).
Thus, the total FAPAR of a grid cell is the sum of FAPAR that is distributed among the

individual PFTs:
APARppr
FAPAR =4 3.1
PFT PAR (3.1)
PFT=n
FAPARgigeen = 9 FAPARppr (32)
PFT=1

where 7 is the number of established PFTs in a grid cell. The FAPAR of a PFT depends
on the annual maximum foliar projective cover (FPC), on the daily snow coverage in
the green canopy (Fswuwg), green-leaf albedo () and the daily phenology status (Phen):
FAPARppr = FPCppr x(Phenppy —(Phenppr X Fspow,gv, PFT ))* (1= Bieaf, PFT)  (3.3)
Thus, the temporal dynamic of FAPAR in LPJmL is affected on an annual time step by
changes in foliar projective cover (FPCrrr) and on daily time steps by changes in
phenology (Phenrrr) and snow coverage in the green canopy (Fswwgerrr) (Figure 7.1).
This approach extends the previous implementation of Sitch et al. (2003) where FAPAR
depends only on FPC and phenology but leaf albedo and snow effects on FAPAR were
missing.
FPCrrr expresses the land cover fraction of a PFT. It is the annual maximum fractional
green canopy coverage of a PFT and is annually calculated from crown area (CA),
population density (P) and LAI (Sitch et al., 2003):
FPCppy = CAppy x Pppp x (1—e~Fprr LAl prr (3.4)
The last term expresses the light extinction in the canopy which depends exponentially
on LAI and the light extinction coefficient k of the Lambert-Beer law (Monsi and Saeki,
1953). The parameter k had a constant value of 0.5 for all PFTs in the original LPJmL
formulation (Sitch et al., 2003). We changed k to a PFT-dependent parameter because it

varies for different plant species as seen from field observations (Bolstad and Gower,
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1990; Kira et al., 1969; Monsi and Saeki, 1953). Crown area and leaf area index are
calculated based on allocation rules and are depending on the annual biomass
increment (Sitch et al.,, 2003). Population density depends on establishment and

mortality processes in LPJmL (Sitch et al., 2003).

3.2.2.2  Phenology

The daily phenology and green leaf status of a PFT (Phenrrr) in LPJmL expresses the
fractional cover of green leafs (from 0 = no leafs to 1 = full leaf cover). Thus, it
represents the temporal dynamic of the canopy greenness. We explored two phenology
models in this study: First, we were trying to optimize model parameters of the
original phenology module in LPJmL (LPJmL-OP, Sitch et al., 2003). Secondly, we
implemented a new phenology module based on the growing season index (GSI)
concept (Jolly et al., 2005), hereinafter called LPJmL-GSI.

LPJmL-OP has three different routines for summergreen (i.e. temperature-driven
deciduous), evergreen (no seasonal variation) and rain-green (i.e. water-driven
deciduous) PFTs (details in Supplement 7.1.1). Obviously, LPJmL-OP misses important
controls on phenology like effects of light in all PFTs or effects of water in
summergreen and herbaceous PFTs. Additionally, in herbaceous PFTs the end of the
growing season is not controlled by environmental conditions but is defined based on
fixed calendar dates.

Because of the obvious limitations of LPJmL-OP, we developed the alternative LPJmL-
GSI phenology module. The growing season index (GSI) is an empirical phenology
model that multiplies limiting effects of temperature, day length and vapour pressure
deficit (VPD) to a common phenology status (Jolly et al., 2005). We modified the GSI
concept for the specific use in LPJmL (LPJmL-GSI). We defined the phenology status as
a function of cold temperature, short-wave radiation and water availability.
Additionally to the original GSI model, we added a heat stress limiting function
because it has been suggested that vegetation greenness is limited by temperature-
induced heat stress in several ecosystems (Bunn et al., 2007; Verstraeten et al., 2006)
and has been demonstrated that heat stress reduces plant productivity also without
additional water stress (Jiang and Huang, 2001; Van Peer et al., 2004; Poirier et al.,

2012). Thus, the daily phenology status of a PFT is the product of the daily cold
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temperature (feoldrrr), light (fightprr), water (fwaerprr) and heat stress (fheatprr) limiting
functions:
Phenppr = feola, PET X Jlight, PFT % fwater, PFT X fheat, PFT (3.5)

Examples for the four functions are shown in Figure 3.2.
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Figure 3.2: Examples of the cold temperature, heat stress, light and water limiting functions for
phenology in LPJmL-GSL
Depending on the chosen parameters the functions have different shapes for each PFT.

The cold temperature limiting function at a daily time step ¢ is defined as:

t _ pt-1 1 t—1
eold . PFT = cold PFT J{ 1+ o~ Sleota prr *(T~basecoiq prr) ~Jcold, PFT ]”wldaPFT (36)

where slewiarrr and basecod prr are PFT-dependent slope and inflection point parameters
of a logistic function based on mean daily air temperature T (°C). The parameter Tcold,prr
is the change rate parameter based on the difference between the actual predicted
limiting function value and the previous-day cold temperature limiting function value.
This parameter introduces a temporal autocorrelation in the phenology status and
avoids abrupt phenological changes because of changing weather conditions.

The light-limiting function was implemented accordingly:
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1 -1

t_
I X T 3.7
+e_Sllight,PFTX(SW_baselight,PFT) flzght,PFTJ light, PFT ~ (3.7)

t -l
Jiight,PFT = Jiight, PrT * {1

where sligneprr and baselignierr are the PFT-dependent slope and inflection point
parameters of a logistic function based on daily shortwave downward radiation SW (W
m). The parameter Tiignrrr is the temporal change rate for the light-limiting function.

The water-limiting function fwatrprr depends on the daily water availability W (%) in

LPJmL:

1 -1
- X
1+ e_slwater,PFT ><(W_basewater,PFT) water,PFT Twater,PFT (38)

t t-1
fwater,PFT :fwater,PFT +(

where slwaterprr and basewaterprr are the PFT-dependent slope and inflection point
parameters of a logistic function based on daily water availability. W is a ratio between
water supply from soil moisture and atmospheric water demand (Supplement 7.1.2)
(Gerten et al., 2004). The parameter Twaerrrr is the temporal change rate for the water-
limiting function.

The heat-stress limiting function is defined as the cold-temperature limiting function

based on daily air temperature but with a negative slope parameter:

t -l 1 -1
Sheat, PFT = S hear PPT [ L+ oSlhear i *(T =05 cqrprT) = Jhear,PFT ) * Theat, PFT (3.9)

where slheatprr and basenearprr are the PFT-dependent slope and inflection point
parameters of a logistic function based on T. The parameter Theprr is the temporal
change rate for the heat limiting function.

Besides the additional use of the heat stress limiting function, LPJmL-GSI has
important differences to the original GSI phenology model (Jolly et al., 2005). We made
the water limiting function dependent on water availability. VPD has been used
instead in the original GSI phenology model. Nevertheless, it has been shown that
phenology is more driven by soil moisture and plant available water than by
atmospheric water demand especially in Mediterranean and grassland ecosystems
(Archibald and Scholes, 2007; Kramer et al., 2000; Liu et al., 2013; Yuan et al., 2007) and
that GSI performed better when using a soil moisture limiting function instead of the
VPD limiting function (Migliavacca et al., 2011). With the implementation of the water
limiting function in LPJmL-GSI, phenology depends not only on atmospheric water

demand as in the original GSI model but also on water supply from soil moisture.
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Additionally, the soil moisture can be modulated through seasonal freezing and
thawing in permafrost soils according to the permafrost routines in LPJmL (Schaphoff
et al., 2013). Another important difference to the original GSI phenology model is the
use of logistic functions instead of stepwise linear functions with fixed thresholds
because smooth functions are generally easier to optimize than functions with abrupt
thresholds and potentially better represent biological processes. A moving average of
21 days has been used in the original GSI model to create smooth phenological cycles
and to avoid abrupt phenology changes because of daily weather variability (Jolly et
al., 2005). It has been shown that PFT- and limiting function-dependent time averaging
parameters are needed instead of one single time averaging parameter (Stockli et al.,
2011). We implemented change rate parameters Tcold, Tiight, Twater and Theat that are PFT-
and limiting function-dependent instead of moving average window lengths because
LPJmL cannot use the same running window time averaging approach as a prognostic

model.

3.2.3 Data sets

3.2.3.1  Data sets for parameter optimization: FAPAR, albedo and GPP

We used FAPAR, albedo and GPP data sets to optimize phenology, FAPAR,
productivity and vegetation albedo-related parameters in LPJmL (Figure 3.2). We
require long-term FAPAR data sets to improve vegetation greenness in LPJmL on
seasonal to decadal timescales. Two recently developed data sets provide 30-year time
series of FAPAR. The Geoland2 BioPar (GEOV1) FAPAR data set (Baret et al., 2013)
(hereinafter called GL2 FAPAR) and the GIMMS3g FAPAR (Zhu et al., 2013) data sets
were used in this study.

GL2 FAPAR is defined as the black-sky green canopy FAPAR at 10:15 solar time and
has been produced based on SPOT VGT (1999-2012) and AVHRR (1981-2000)
observations (Baret et al., 2013). The GL2 FAPAR data set has a temporal resolution of
10 days and a spatial resolution of 0.05° for the AVHRR-period and of 1/112° for the
SPOT VGT period. GIMMS3g FAPAR corresponds to black-sky FAPAR at 10:35 solar
time and has been produced based on the GIMMS3g NDVI data set (Pinzon and
Tucker, 2014; Zhu et al., 2013). GIMMS3g FAPAR has a 15-day temporal resolution and

a 1/12° spatial resolution and covers July 1981 to December 2011. We excluded in both
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FAPAR data sets observations that were flagged as contaminated by snow, aerosols or
clouds. Additionally, we excluded FAPAR observations for months with temperatures
<0°C to exclude potential remaining distortions of snow cover. Both data sets were
aggregated to a 0.5° spatial and monthly temporal resolution to be comparable with
LPJmL simulations. We found that the GL2 AVHRR and GL2 VGT FAPAR data sets
have not been well harmonized (Supplement 7.2.1). Thus, we did not use the combined
GL2 VGT and AVHRR FAPAR data set for parameter optimization and for analyses of
interannual variability and trends but only for analyses and evaluations of mean
seasonal cycles and spatial patterns of FAPAR. The GIMMS3g FAPAR data set has no
uncertainty estimates. Uncertainty estimates are necessary in multiple data stream
parameter optimization to weight single data streams in the total cost function. As a
workaround we estimated the uncertainty based on monthly varying quantile
regressions to the 0.95 quantile between FAPAR and the FAPAR uncertainty in the
GL2 VGT data set. We applied the fitted regressions to the GIMMS3g data set to
estimate FAPAR uncertainties (Supplement 7.2.2). The fit to the upper quantile
provides conservative uncertainty estimates for the GIMMS3g FAPAR data set.

We used monthly shortwave white-sky albedo time series ranging from 2000-2010
from the MODIS C5 data set (Lucht et al.,, 2000; Schaaf et al., 2002) to constrain
vegetation albedo parameters. Albedo observations in months with <5°C air
temperature and above an albedo of 0.3 were excluded from optimization because we
are optimizing only vegetation-related albedo parameters. High albedo values at low
temperatures are probably affected by changing snow regimes which is not within our
focus of model development and optimization. Thus we are only optimizing growing
season albedo. We used mean annual total GPP patterns from the data-oriented MTE
(model tree ensemble) GPP estimate (Jung et al, 2011). This GPP estimate uses
FLUXNET eddy covariance observations together with satellite observations and
climate data to upscale GPP using a machine learning approach (Jung et al., 2011). This
data set is not an observation but a result of an empirical model. Nevertheless,
evaluation and cross-validation analyses have shown that this data set well represents
the mean annual spatial patterns and mean seasonal cycles of GPP whereas it has a
poor performance in representing temporal GPP anomalies (trends and extremes)

(Jung et al., 2011). Thus, we are only using the mean annual total GPP from this data
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set for parameter optimization to constrain LPJmL within small biases of mean annual
GPP. We used the mean seasonal cycle from the MTE GPP product as an independent

benchmark for model evaluation.

3.2.3.2  Data sets for the prescription of land cover, tree cover and burnt area

The FAPAR, albedo and GPP data sets do not presumably contain enough information
to constrain all processes that control FAPAR dynamics — especially processes like
establishment, mortality, competition between PFTs, allocation and disturbances
control FPC and thus FAPAR. The optimization of parameters of these processes
against appropriate data streams is not feasible within this study. Thus, we directly
prescribed land and tree cover fractions as well as burnt areas from observed data to
control for some of these processes.

To prescribe land and tree cover in LPJmL, we combined several data sets to create
observation-based maps of FPC (Supplement 7.3.1). Land cover maps from remote
sensing products are not directly comparable with PFTs in global vegetation models
due to differences in classification systems (Jung et al., 2006; Poulter et al., 2011a). PFTs
in LPJmL are defined according to biome (tropical, temperate or boreal), leaf type
(needle-leaved, broadleaved) and phenology type (summergreen, evergreen, rain
green). We extracted the biome information from the Koppen—Geiger climate
classification (Kottek et al., 2006) whereas leaf type and phenology were extracted from
the SYNMAP land cover map (Jung et al., 2006). FPC was derived from MODIS tree
cover (Townshend et al., 2011). Because LPJmL so far classified herbaceous vegetation
according to their photosynthetic pathway (i.e. C3, temperate herbaceous and C4,
tropical herbaceous), we further subdivided herbaceous PFTs according to biome and
introduced a polar herbaceous PFT (PoH) based on the existing temperate herbaceous
PFT (TeH) to differentiate tundra from temperate grasslands.

Burnt area data were prescribed directly in LPJmL by combining three data sets, the
Global Fire Emissions Database (GFED) burnt area data set (Giglio et al., 2010), the
Alaska Large Fire Database (ALFDB) (Frames, 2012; Kasischke et al., 2002) and the
Canadian National Fire Database (CNFDB) (CFS, 2010; Stocks et al., 2002). GFED
provides monthly burnt area estimates in 0.5° resolution from 1996-2011. Burnt areas

from the Alaska (ALFDB) and Canada (CNFDB) fire databases were used to extend
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burnt area time series before 1996 for boreal North America. Fire perimeter
observations from 1979-1996 from ALFDB and CNFDB were aggregated to 0.5°x0.5°
gridded monthly burnt area time series. Observations before 1979 were excluded
because fires were not reported for all provinces in Canada. Although the CNFDB
contains only fire perimeters >200ha, in both databases some fires are missing due to
different mapping techniques, and fire perimeters do not agree with burned area, the
integration of these data sets provides unique information about spatial-temporal
patterns of disturbances especially in boreal ecosystems. It is necessary to simulate fire
activity also during the model spin-up as fire influences the equilibrium between
vegetation, soil and climate as well. Otherwise biomass would be overestimated at the
beginning of the transient model run. For this purpose, we created artificial burnt area
time series for the periods 1901-1978 (North America) and 1901-1995 (rest of the
world). For this, observed annual total burnt areas from the periods 1979-2011 (North
America) and 1996-2011 (rest of the world) were resampled according to temperature
and precipitation conditions and assigned to the pre-data period in order to include
fire regimes that agree with observed fire regimes in the spinup of LPJmL. This
approach assumes that fire regimes in the pre-data period were not different than in

the observation period.

3.2.3.3  Data sets for model evaluation

LPJmL was evaluated against data sets that are independent of the optimization and
prescription data sets and against independent temporal or spatial scales of the
optimization and prescription data sets. We compared LPJmL against mean annual
patterns and mean seasonal cycles of ET from the MTE estimate (Jung et al., 2011).
Further, we evaluated model results against spatial patterns of biomass. Ecosystem
biomass estimates were taken from satellite-derived forest biomass maps for the
tropics (Saatchi et al., 2011) and for the temperate and boreal forests (Thurner et al.,
2014) including an estimation of herbaceous biomass (Carvalhais et al, 2014).
Additionally, we evaluated LPJmL against independent temporal and spatial scales of
the integration data (mean seasonal cycle of GPP, tree cover, inter-annual variability
and trends of FAPAR). We were using tree cover from MODIS to evaluate LPJmL

model runs with dynamic vegetation.
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3.2.3.4  Climate forcing data and model spin-up

LPJmL was driven by observed monthly temperature and precipitation data from the
CRU TS3.1 data set ranging from 1901-2011 (Harris et al., 2014) as well as by monthly
shortwave downward radiation and long-wave net radiation reanalysis data from
ERA-Interim (Dee et al., 2011). LPJmL needs a model spin-up to establish PFTs and to
bring vegetation and soil carbon pools into equilibrium. The spin-up was performed
according to the standard LPJmL modelling protocol (Schaphoff et al., 2013; Thonicke
et al., 2010): LPJmL was run for 5000 years by repeating the climate data from 1900-
1930. After the spin-up model run, the transient model run was restarted from the
spin-up conditions in 1901 and LPJmL was run for the period 1901- 2011. Model
results were analysed for the observation period (1982-2011). For model optimization
experiments we used a different spin-up scheme because the spin-up is computation
time demanding and many model runs are needed during optimization experiments.
As in the standard modelling protocol, we firstly spin-up the model for 5000 years by
repeating the climate from 1901-1930. Secondly, a transient model run was restarted
from the spin-up conditions in 1901 and was performed for the period 1901-1979.
Thirdly, each optimization experiment was restarted from the conditions in 1979 and a
second spin-up for 100 years by recycling the climate from 1979-1988 was performed.
The transient model run was restarted from the conditions of the second spin-up and
simulated for the period 1979-2011. This second spin-up is needed to bring the
vegetation into a new equilibrium which can be caused by a new parameter
combination during optimization. From visual analyses of model results, we found
that a spin-up time of 100 years for the second spin-up was enough to eliminate trends

in FAPAR and GPP that resulted from other equilibrium conditions.
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Total number of grid cells used in all optimization experiments
B TrBE=237 @ TeBE=63 ® BoBS=101 O TeH=105 O TeML=0

O TTBR=88 B TeBS=60 B BoNS=111 O PoH =167
B TeNE=107 B BoNE=241 O TrH =344 B TTML=0

Figure 3.3: Map of the dominant PFT in each grid cell as derived from SYNMAP, Képpen—
Geiger climate zones and MODIS VCF.

Grid cells that were used in any of the optimization experiments are shown as black crosses.
Some grid cells were used in multiple optimization experiments. Grid cells that are dominated
by agriculture were not used for optimization (TrML, tropical managed lands and TeML,
temperate managed lands).

3.24 Model-data integration

3.2.4.1  Prescription of land and tree cover

Land cover is expressed as FPC in LPJmL. We used the observation-based FPC data set
to prescribe land and tree cover in LPJmL (Sect. 3.2.3.2, Supplement 7.3.1). The
presence of a PFT in a grid cell depends on establishment and mortality in LPJmL
(Sitch et al., 2003). A PFT establishes in a grid cell if the climate is within the bioclimatic
limits of the PFT for establishment and survival. On the other hand, a PFT dies in a
grid cell if the climate is no longer suitable for the PFT. Additionally, mortality occurs
because of heat stress, low productivity, competition among PFTs for light, and
because of fire disturbance (Sitch et al., 2003; Thonicke et al., 2010).

FPC is the major variable that contributes to inter-annual variability of FAPAR in
LPJmL despite the daily phenological status. Thus fixing FPC to the observed value is
not a desired solution to prescribe land cover in LPJmL. Fixing FPC would neglect
mortality effects on land cover but would also permit the simulation of post-fire
succession trajectories. Consequently, we prescribed land cover in LPJmL using a

hybrid diagnostic-dynamic approach. In this approach we prescribed the annual
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maximum FPC in LPJmL similar to previous approaches (Poulter et al., 2011b). Firstly,
we switched off the effects of bioclimatic limits on establishment and mortality. Only
these PFTs were allowed to establish in a grid cell that occurred in the observed land
cover data set. Vegetation growth depends on the annual biomass increment and
allocation rules in LPJmL. This leads to an extension of FPC of each PFT. We limited a
further expansion of FPC if the simulated FPC exceeded the observed FPC by replacing
the simulated FPC with the observed FPC (prescribed maximum FPC). Consequently,
the simulated FPC can be lower than the observed FPC because the PFT is still growing
or because the FPC was reduced due to fire, heat stress or low productivity. For
herbaceous PFTs we only reduced the FPC if the observed total fractional vegetation
cover in a grid cell was exceeded. This allowed herbaceous PFTs to replace tree PFTs if
the FPC of trees was reduced due to fire or other mortality effects in the model. With
this approach a prescription of land cover can be achieved in LPJmL which well
represents observed PFT distributions (Supplement 7.3.2) but still allows for main

processes of dynamic vegetation.

3.2.4.2  Parameter optimization

Photosynthesis, albedo, FAPAR and phenology-related model parameters of LPJmL
were optimized against observed FAPAR and albedo satellite observations and data-
oriented estimates of GPP. A description of all parameters including parameter values
is given in Supplement 7.4.1. The parameter a. is the most important parameter in
LPJmL for photosynthesis (Zaehle et al., 2005). This parameter accounts for the amount
of radiation that is absorbed at leaf level in comparison to the total canopy. Thus, this
parameter is a replacement for a more enhanced model formulation for canopy
structure and leaf clumping. We used this parameter to adjust biases in GPP. The PFT-
dependent leaf, stem and litter albedo parameters (i, Pstem and Piiwer) are mostly
sensitive for model simulations of albedo. The parameter [t affects additionally the
maximum FAPAR of a PFT. The light extinction coefficient k controls the FPC of a PFT
and thus affects mainly land cover, maximum FAPAR and the available radiation for
photosynthesis. All other parameters that were considered in optimization experiments
are the parameters of the LPJmL-OP and LPJmL-GSI phenology modules. These

parameters contribute mainly to seasonal variations in FAPAR. Some parameters were
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excluded from optimization experiments that were identified as insensitive to GPP and
FAPAR simulations in PFTs. The temporal change rate parameters cold, light, heat
and water are insensitive in most PFTs because of the monthly temporal resolution of
the climate forcing data used. The optimization of model parameters was performed
by minimizing a cost function between model simulations and observations using a
combined genetic and gradient-based optimization algorithm (GENOUD, genetic
optimization using derivatives, Mebane and Sekhon, (2011), see Supplement 7.4.2 for
details). The cost function ] of LPJmL for a single model grid cell (gc) depends on the
scaled model parameter vector d (d = proposed parameter value/prior parameter value)
and is the sum of square error (SSE) between model simulation and observation

weighted by the number of observations (nobs) for each data stream (DS):

DS=n
SSE ps (d
J(d)ge = Y, S5Eps(d) (3.10)
Dso1 "obsps
The SSE for a single data stream is calculated from the LPJmL simulation of this data

stream (xteme) and the corresponding observed values (xobs) weighted by the

uncertainty of the observations (xobsunc) for each time step ¢:

S (x ppgmL1 (A X DO) = Xops )
SSE(d) =) 5 (3.11)
t=1

Xobsunc,t

where p0 are LPJmL prior parameters. That means that the minimization of the cost
function | is based on scalars of LPJmL parameters relative to the prior parameter
values. Different model optimization experiments were performed for individual grid
cell and for multiple grid cells of the same PFT for LPJmL-OP as well as for LPJmL-GSI
(Table 3.1). In the grid-cell-based optimization experiments model parameters of the
established target tree PFT and the established herbaceous PFT were optimized at the
same time. The purpose of grid cell level optimization experiments was to explore the
variability of parameters within different regions and PFTs. In the PFT level
optimization experiments the cost of LPJmL was calculated as the sum of the cost for

each grid cell weighted by the grid cell area A:
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gc=n

D J(d) g x Age
-1
J(d) ppr =5 (3.12)

n
2 Age

ge=1

For PFT level optimizations parameters of herbaceous PFTs were first optimized for
grid cells where only the herbaceous PFT was dominant. In a second step, the
optimized parameters of the herbaceous PFTs were used in the optimization of the
target tree PFT (Figure 7.9). The purpose of PFT level optimization experiments is to
derive optimized parameter sets that can be used for one PFT in global model runs. For
grid cell as well as PFT level optimization experiments, we only used grid cells that are
vegetated, dominated by one PFT and that are only marginally affected by agricultural
use or fire disturbances. These grid cells are called candidate grid cells in the following.
We randomly selected grid cells from the set of candidate grid cells to perform grid
cell- or PFT level optimization experiments. Table 3.1 gives an overview of all
optimization experiments for LPJmL-OP and LPJmL-GSI with the number of used grid
cells. Grid cells that were selected for optimization experiments are also shown in
Figure 3.3. The PFT level optimization of LPJmL-OP (OP.pft) did not result in plausible
posterior parameter sets because of structural limitations of the LPJmL-OP phenology
model for herbaceous PFTs (i.e. no water effects, calendar day as end of growing
season), raingreen PFT (i.e. binary phenology) and evergreen PFTs (i.e. constant
phenology) and was therefore excluded from further analysis. Posterior parameter
sensitivities, uncertainties and correlations were explored by analysing the maximum
likelihood and the posterior range of each parameter as derived from all parameter sets

from the genetic optimization algorithm (Supplement 7.4.3).

3.24.3  Model evaluation and time series analysis

Global model runs of LPJmL were performed in order to evaluate model results
against the integration data, against independent metrics of the integration data and
against independent data streams. We evaluated results from LPJmL-OP with standard
parameters (LPJmL-OP-prior), from LPJmL-OP with optimized productivity, albedo
and FAPAR parameters from grid cell level optimization experiments (LPJmL-OP-gc)

and from LPJmL-GSI with optimized parameters from PFT level optimization
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experiments (Table 3.2). We did not use optimized phenology parameters in the

LPJmL-OP-gc model run because we were not able to derive plausible phenology

parameters in optimization experiments of LPJmL-OP. All model runs were performed

with dynamic vegetation and prescribed burnt areas.

Table 3.1: Overview of optimization experiments with information sources for prior and
posterior parameter sets. Parameter values and prior parameter ranges for each parameter set

are listed in Supplement 7.4.1.

E . L Number of randomly Prior parameter set and Posterior
Xperiment Description .
selected grid cells sources parameter set
OP.prior Parameters or -- Table 7.2 --
model results of Sitch et al. (2003): a,, k,
LPJmL-OP with ramp, aphenmi, aphenmay,
standard Wscalmin
parameters Strengers et al. (2010): sfc
and albedo parameters
(partly estimated from
MODIS albedo)
OP.gc Optimization of 530 in total Table 7.2 One optimized
single grid cells of TrBE 66, TrBR 51, Parameters as in OP.prior parameter set per
LPJmL-OP. TeNE 46, TeBE 32, grid cell. Median-
TeBS 32, BoNE 68, averaged values for
BoBS 40, BoNS 49, PFTs (Table 7.3)
TeH 66, TrH 80
OP.pft Optimization of 673 in total Median-averaged values for -- (No useful
(results not multiple grid of TrBE 50, TrBR 80, PFTs from posterior values of  posterior parameter
shown) LPJmL-OP. TeNE 50, TeBE 50, OP.gc (Table 7.3) sets were found)
Multiple grid cells of TeBS 80, BoNE 50,
the same dominant  BoBS 80, BoNS 158,
PFT were TeH 50, TrH 25
optimized at the
same time.
GSl.prior Parameters or -- Table 7.4 --
model results of OP.gc: a,, K, sfc, Bieat, Biiters
LPJmL-GSI with and Bstem
standard Stockli et al. (2011):
parameters. parameters for cold and light
limiting functions derived
from fitting logistic functions
to stepwise functions as
reported in Stockli et al.
(2011)
GSl.gc Optimization of 348 in total Parameters as in GSl.prior One optimized
single grid cells of TrBE 33, TrBR 33, (Table 7.4) parameter set per
LPJmL-GSI. TeNE 32, TeBE 22, grid cell.
TeBS 43, BoNE 30,
BoBS 41, BoNS 30,
TeH 46, TrH 38
GSl.pft Optimization of 500 in total Parameters as in GSl.prior Table 7.5 (one

multiple grid of
LPJmL-GSI.
Multiple grid cells of
the same dominant
PFT were
optimized at the
same time.

TrBE 30, TrBR 30,
TeNE 30, TeBE 30,
TeBS 30, BoNE 50,
BoBS 30, BoNS 60,
TeH 70, TrH 70, PoH
70

(Table 7.4)

optimized parameter
set per PFT)

We aggregated monthly FAPAR time series to mean annual FAPAR to evaluate inter-

annual variability and trends. Mean annual FAPAR time series were averaged from all

monthly values with mean monthly air temperatures >0°C to exclude potential

remaining effects of snow in the observed FAPAR time series. Trends in mean annual
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FAPAR time series and trend breakpoints were computed using the “greenbrown”
package for the R software (Forkel et al.,, 2013). In this implementation, trends are
computed by fitting piece-wise linear trends to the annual FAPAR time series using
ordinary least squares regression. The significance of trends was computed using the

Mann-Kendall trend test (Kendall, 1975; Mann, 1945).

Table 3.2: Overview of global model runs that were used in this study for model evaluation.

Phenology

Model run model Parameter set Further settings
LPJmL-OP- original LPJmL standard parameters as in the dynamic vegetation/no prescribed land
prior phenology OP.prior experiment (Table 7.2) cover, prescribed agricultural land use,
LPJmL-OP- original Optimized productivity, FAPAR and prescribed observed burnt area
gc phenology albedo parameters from the OP.gc

optimization experiment, but original
phenology parameters as in the OP.prior
experiment (Table 7.3)
LPJmL-GSI GSl-based Parameters from the GSI.pft optimization
phenology experiment (Table 7.5)
3.3 Results and discussion
3.3.1 Parameter optimization

3.3.1.1  Performance of phenology models

The newly developed LPJmL-GSI phenology model resulted in significantly higher
correlations with monthly GIMMS3g FAPAR than LPJmL-OP in all PFTs except in the
tropical broadleaved evergreen (TrBE) and boreal broadleaved summergreen (BoBS)
PFTs (Figure 3.4). LPJmL-OP with prior parameters had high correlations with
monthly GIMMS3g FAPAR in broadleaved summergreen PFTs (TeBS median r = 0.87,
BoBS median r = 0.92) and medium correlations in boreal needle-leaved PFTs (BoNE
median r = 0.53, BoNS median r = 0.6). In all other PFTs, LPJmL-OP had low
correlations with monthly GIMMS3g FAPAR. The correlation against monthly
GIMMS3g FAPAR did not significantly improve in all PFTs after grid cell level
optimization experiments of LPJmL-OP (Figure 3.4). The use of the newly developed
LPJmL-GSI phenology model already significantly improved the correlation with
monthly GIMMS3g FAPAR in all PFTs except in the temperate herbaceous (TeH) and
BoBS PFTs. LPJmL-GSI had significantly higher correlations with monthly GIMMS3g
FAPAR after grid cell level optimization experiments in the TrBR, TeNE, TeBS, TeH,
BoBS and BoNS PFTs. After PFT level optimization experiments, LPJmL-GSI had

median correlation coefficients > 0.5 in all PFTs except in broadleaved evergreen PFTs
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(TrBE, TeBE). These results prove that the raingreen, evergreen and herbaceous
phenology schemes of LPJmL-OP were not able to reproduce temporal FAPAR
dynamics despite the attempt of parameter optimization and that LPJmL-GSI can

reproduce seasonal FAPAR dynamics in most PFTs.
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Figure 3.4: Distribution of the correlation coefficient between monthly LPJmL and GIMMS3g
FAPAR (1982-2011) for several grid cells in prior model runs and optimization experiments
grouped by plant functional types and biomes.

Correlation coefficient for LPJmL-OP with default parameters (a, OP.prior), after grid cell level
optimizations (b, OP.gc); cost for LPJmL-GSI with prior parameters (c, GSI.prior), after grid cell
level optimizations (d, GSIL.gc) and after PFT level optimizations (e, GSL.pft). Biomes are Tr
(tropical), Te (temperate) and Bo (boreal/polar). Each distribution is plotted according to usual
boxplot statistics. The point symbols indicate the plant functional type. The significance flag on
top of each distribution shows if a distribution is significant different (p < 0.01) to the
corresponding distribution of the same PFT in another optimization experiment. The
significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a significant
difference to the main categories (a) (OP.prior), (c) (GSI.prior) and (d) (GSI.gc) but no significant
difference to (b) (OP.gc) and (e) (GSI.pft).

The low correlation coefficients between LPJmL-GSI and GIMMS3g FAPAR after
optimization experiments in broadleaved evergreen PFTs (TrBE, TeBE) might be
caused by the specific properties of the FAPAR data set in these PFTs. GIMMS3g
FAPAR does not have a clear seasonal cycle but a high short-term variability in
broadleaved evergreen forests. These regions are often covered by clouds that inhibit
continuous optical satellite observations. The high short-term variability results

ultimately in low correlation coefficients between both LPJmL versions (LPJmL-OP and
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LPJmL-GSI) and GIMMS3g FAPAR time series. In temperate broadleaved evergreen
forests, the GIMMS3g FAPAR data set might have a wrong seasonality. In these
regions, the mean seasonal FAPAR cycles from the GIMMS3g and GL2 VGT FAPAR
data sets are anti-correlated and FAPAR from LPJmL-GSI agrees better with the GL2
VGT data set. Because of these reasons, we did not expect to improve seasonal FAPAR
dynamics in broadleaved evergreen forests with the current model-data integration
setup.

All optimization experiments of LPJmL-OP and LPJmL-GSI resulted in a significant
reduction of the cost in comparison to the respective prior models (Supplement 7.4.4,
Figure 7.10). Nevertheless, the prior parameter set of LPJmL-GSI resulted already in a
significant lower cost than the grid cell level optimized parameter sets of LPJmL-OP in
tropical and polar herbaceous PFTs, and in temperate broadleaved summergreen and
boreal needle-leaved summergreen PFTs. The reduction of the overall cost was in all
model optimization experiments usually associated with a significant reduction of the
annual GPP bias (Figure 7.11). LPJmL-OP with prior parameters underestimated mean
annual GPP in the tropical broadleaved evergreen PFT and overestimated mean annual
GPP in all other PFTs. Grid cell level optimization experiments of LPJmL-OP resulted
in a significant reduction of the GPP bias in all PFTs except in the polar herbaceous PFT
(PoH). We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP
and of LPJmL-GSI in the PoH PFT in optimization experiments because of
inconsistencies between the FAPAR and GPP data sets or in the LPJmL formulation.
LPJmL was not able to sustain the relatively high peak FAPAR in tundra regions as
seen in the GIMMS3g data set given the low mean annual GPP of the MTE data set
(Supplement 7.4.4). These inconsistencies might be related to higher uncertainties of
the GPP and FAPAR data sets in tundra regions where the MTE GPP data set is not
covered by many eddy covariance measurement sites, and where satellite-based
FAPAR observations are affected from high sun zenith angles (Tao et al., 2009; Walter
- Shea et al., 1998). On the other hand, dominant tundra plant communities like
mosses and lichen are not represented in LPJmL (Supplement 7.4.4). All model
optimizations experiments kept growing season albedo within reasonable ranges in
comparison to MODIS albedo (Figure 7.12). These results demonstrate an improved

performance of optimized model parameter sets over prior model parameter sets and
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of LPJmL-GSI over LPJmL-OP regarding a cost that is defined based on 30 years of

monthly FAPAR, mean annual GPP and 10 years of monthly vegetation albedo.
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Figure 3.5: Uncertainty and sensitivity of LPJmL-GSI parameters derived from all individuals of
genetic optimizations at PFT level.

Shown is the relationship between parameter values and the likelihood of the corresponding
parameter vector. The likelihood is normalized with the likelihood of the optimum parameter
set. Only individuals with dAIC <2 are shown. Grey areas indicate the uniform prior parameter
range. Red crosses indicate the optimum parameter value. The optimum parameter value is
indicated as text in a plot if it is outside of the plotting range. Results from two independent
optimization experiments are shown for the BoNS, TrH, TeH and PoH PFTs (black and blue
colours, respectively) but not all parameters were included in both experiments. The parameter
ALBEDO_LITTER in the TrBE and TeBE PFTs was not considered in optimization experiments.
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3.3.1.2  Parameter sensitivities and uncertainties

The uncertainty of productivity and albedo-related parameters was reduced after
optimization of LPJmL-GSI in most PFTs while the reduction of the uncertainty of
phenology-related parameters depended often on plant functional type (Figure 3.5).
Prior and posterior parameter values from each optimization experiment are listed in
the Supplement (Tables 7.2 to 7.5).

The parameter a. (absorption of light at leaf level in relation to canopy level) was
sensitive within a narrow parameter range for all PFTs. The posterior aa parameter
range was smaller than the uniform prior range in all PFTs. In all optimization
experiments we found for the parameter a. a gradient from high values in tropical to
low values in boreal PFTs (Figure 7.13). This pattern reflects the initial overestimation
of mean annual GPP in temperate and boreal PFTs and underestimation of GPP in
tropical regions with the prior parameter set of LPJmL-OP. Thus, the low aa parameter
values probably account for nitrogen limitation effects on productivity in boreal forests
(Vitousek and Howarth, 1991) that are currently not considered in LPJmL. A future
implementation of nitrogen limitation processes in LPJmL requires a re-optimization of
the aa parameter.

The leaf albedo parameter Piar was sensitive in all PFTs and the posterior iear
parameter range was smaller than the prior parameter range in evergreen PFTs. In
these evergreen PFTs the Pt parameter was well constrained because albedo satellite
observations are less affected by variations in background albedo (soil, snow) than in
deciduous PFTs. In all other PFTs the Piar posterior parameter range was equal the
prior parameter range or the optimized parameter value was close to a boundary of the
prior parameter range. This result indicates that the albedo routines in LPJmL should
consider variations in background albedo caused by changes in soil properties, soil
moisture, or snow conditions in order to accurately reproduce satellite-observed
albedo time series (see discussion in Supplement 7.4.5). Nevertheless, the optimization
of the leaf albedo parameter {iaf resulted in values that differed especially between
broadleaved and needleleaved evergreen PFTs as well as herbaceous PFTs (Figure 3.5,
Figure 7.14). Low leaf albedo parameters in needle-leaved evergreen PFTs (TeNE and
BoNE) and high leaf albedo parameters in broadleaved summergreen and herbaceous

PFTs agree well with the patterns reported by Cescatti et al. (2012).
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The light extinction coefficient k was sensitive for all PFTs but the posterior parameter
range was only in herbaceous PFTs and in the BoBS PFT smaller than the prior
parameter range (Figure 3.5). In all PFTs this parameter had a large spatial variability
(Figure 7.15). The parameter k affects mostly the FPC and thus the maximum FAPAR.
Thus, this parameter cannot be well constrained for tree PFTs in the current
optimization setup because the maximum FPC of trees was prescribed from the land
and tree cover data set. On the other hand, the maximum FPC of herbaceous PFTs was
not prescribed from observations which resulted in narrow k posterior parameter
ranges for herbaceous PFTs. The parameter k was optimized towards a very high value
in the BoNS PFT (k = 0.7) due to high tree mortality rates after low productivity years
(Supplement 7.4.5). This parameter would result in an overestimated PFT coverage in
model runs with dynamic vegetation. Thus, we performed a second optimization
experiment for this PFT (blue in Figure 3.5) where ksons was limited to 0.65. This
optimization experiment resulted in similar posterior values for the other parameters.
Although the k parameter was well constrained for the TrH, TeH and PoH PFTs, these
parameters cannot be used in the final parameter set of LPJmL-GSI. In dynamic
vegetation model runs, the relatively low k parameter values for the TrH and TeH
PFTs and relatively high values for the PoH PFT would result in an underestimation of
herbaceous coverage in temperate and tropical climates and an overestimation of
herbaceous coverage in boreal and polar climates, respectively. Therefore, we
performed three more optimization experiments for herbaceous PFTs where we fixed k
at 0.5 (blue in Figure 3.5). These optimization experiments resulted in similar aa
parameters but different albedo parameters and phenology parameters in order to
compensate for biases in FAPAR and albedo that were introduced by the fixed k
parameter. Thus, the high spatial variability and the large uncertainty of the light
extinction coefficient k require re-addressing this parameter in a model optimization
setup with dynamic vegetation using tree and vegetation cover data or perhaps a
replacement by a better representation of canopy architecture and radiative transfer.

The sensitivity and posterior uncertainty of phenology-related model parameters
depended often on plant functional type. The parameter basewia which controls the
effect of cold temperature on phenology was sensitive in all PFTs except the TrBE and

TrH PFTs. The posterior parameter range was smaller than the prior parameter range
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in temperate PFTs (TeNE, TeBS and TeH). The parameter basencat which controls the
effect of heat stress on phenology was sensitive in TrBR, TrH, TeH, BoNE and BoNS
PFTs while in other PFTs this parameter was only sensitive towards the boundaries of
the prior parameter range. Nevertheless, the posterior parameter range was only
smaller than the prior parameter range in TrBR and TrH PFTs. The parameter baseiight
was sensitive in temperate and boreal PFTs. In tropical PFTs this parameter is only
sensitive above a certain threshold (i.e. 60 W m for TrBE and 100W m for TrBR). The
parameter basewater was sensitive in all PFTs. The posterior parameter range of this
parameter was smaller in all PFTs except in TeBS, BoNE, BoBS and BoNS PFTs.
Although the parameter basewater had a large variability among PFTs, it was generally
optimized towards higher values in PFTs that are presumably water controlled (TrBR,
TeBS, TrH, TeH) and optimized towards lower values in PFTs that are presumably less
water controlled (TrBE, TeNE, BoNE, BoNS, PoH). This result indicates that FAPAR of
water-controlled PFTs reacts already to small decreases in water availability whereas
other PFTs react only to strong decreases in water availability. We found no strong
correlations between posterior values of the phenology-related model parameters
(Figure 7.16) which indicates the ability to disentangle the relative effects of
temperature, light and water on phenology. As the basewaer parameter was the only
phenology parameter which was sensitive in all PFTs, this indicates that water

availability is the only phenological control that acts in all PFTs.

3.3.2 Effects of an improved phenology module in LPJmL

3.3.2.1  Effects on seasonal and inter-annual greenness dynamics

LPJmL-GSI represents better the observed spatial patterns and seasonal-to-decadal
temporal dynamics of vegetation greenness (FAPAR) than LPJmL-OP (Figure 3.6,
Supplement 7.5.3). Whereas LPJmL-OP overestimated mean annual FAPAR in many
high-latitude and semi-arid regions, LPJmL-GSI was closer to both data sets and within
the uncertainty of the GL2 VGT FAPAR data set in most regions and under most
climate conditions (Figure 7.22). LPJmL-GSI still overestimated mean annual FAPAR in
temperate dry regions, but this overestimation was reduced in comparison to LPJmL-
OP. We further observe a substantial improvement in LPJmL-GSI regarding the

seasonal cycles, monthly and annual dynamics of FAPAR as retrieved from the
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GIMMS3g and GL2 VGT FAPAR data sets (Figure 3.6, Figures A23-A25). Monthly
FAPAR time series from LPJmL-GSI were significantly (p < 0.05) higher correlated with
GIMMS3g than from LPJmL-OP in boreal forests of eastern Siberia, in the North
American tundra, in temperate and tropical grasslands of central Asia, North America,
Australia and especially, in the Sahel (Figure 3.6a). This is because of an improved
representation of spring onset and the end of the growing season in temperate and
boreal forests and in herbaceous PFTs (Figure 7.24). The highest differences between
simulated and observed mean seasonal FAPAR cycles were observed in the temperate
broadleaved evergreen PFT, where both model versions had opposite, although
insignificant, relationships to the GIMMS3g data sets. For this PFT, the observational
constraints are particularly problematic, where a weak agreement and opposite
relationship is observed between the two data sets (r = -0.48). Globally, LPJmL-GSI
describes better the inter-annual dynamics of GIMMS3g FAPAR when compared to the
previous model versions (Figure 3.6). In 20% of the land the difference to other model
versions is statistically significant, and in 40% does not detract from the previous
model versions. This improvement in inter-annual variability is especially seen in
temperate and tropical dry regions, with sparse tree cover and grassland dominated
ecosystems (western United States, central Asia, the Sahel, southern Africa, and
Australia) (Figure 7.25). In the Arctic, boreal and temperate climates LPJmL usually
shows a higher correlation with the GIMMS3g data set than the correlation observed
between both data sets (GIMMS3g and GL2 VGT). These results demonstrate that
LPJmL-GSI can explain the inter-annual variability of the GIMMS3g FAPAR data set
especially in temperate and boreal forests and temperate and tropical grasslands.
Overall, the global spatial representation of phenological dynamics in LPJmL-GSI
improves significantly over the previous model versions from seasonal to inter-annual
timescales. Given the inclusion of water controls on phenological development, these
results emphasize the importance of water availability in explaining the mean spatial
patterns of vegetation greenness, but also the seasonal phenology as well as inter-

annual dynamics in vegetation development.
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a) Monthly FAPAR b) Mean annual FAPAR
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Figure 3.6: Best LPJmL model runs for (a) monthly FAPAR dynamics (1982-2011, n =360
months) and (b) time series of mean annual FAPAR (1982-2011, n = 30 years).
The best LPJmL model run has the highest correlation coefficient between simulated LPJmL
FAPAR and GIMMS3g FAPAR. If one model run is shown the correlation coefficient of this
best model is significantly higher than that of the second best model run (p < 0.05, Fisher z
transformation on difference in correlation). If two model runs are shown the correlation
coefficients of the first and second best model runs are not significantly different from each
other (p > 0.05).

3.3.2.2  Effects on trends in vegetation greenness

The role of different climate drivers underlying the greening and browning trends in
vegetation activity is still highly debated and the dominant factors show a strong
spatial variability (de Jong et al., 2013a). The consideration of different environmental
controls on the phenological development in LPJmL shows a significant improvement
in representing such dynamics when compared to the previous model formulations
(Figure 3.7).

Both LPJmL-OP and LPJmL-GSI reproduced the observed greening trends in tundra
regions and in boreal forests of Siberia. In both model versions this greening is mostly
driven by annual changes in foliar projective cover and effects of temperature on
spring phenology. This agrees with observational studies that identified temperature
increases as drivers for an increasing shrub cover in tundra ecosystems (Blok et al.,
2011a; Forbes et al., 2010; Myers-Smith et al., 2011; Raynolds et al., 2013; Sturm et al.,
2001) and that found a positive association between warming, increasing tree ring
widths and NDVI greening in boreal forests of eastern Siberia (Berner et al., 2011,

2013).
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Figure 3.7: Comparison of trends in mean annual FAPAR from LPJmL and from satellite data.
Trends were computed between 1982 and 2011 as linear trends. The significance of a trend was
determined using the Mann—Kendall trend test. Only significant trends slopes (p < 0.05) are
displayed in each map. Spatial correlations of trend slopes (Spearman coefficient) between
LPJmL and the GIMMS3g data set are given in the map titles. Time series are showing mean
annual FAPAR time series and trends spatially averaged for the regions as indicated in the first
map. The blue area in time series represents the uncertainty of the GL2 VGT FAPAR data set.
Numbers in the time series plot are correlation coefficients between mean annual FAPAR time
series from GIMMS3g and from GL2 or LPJmL model runs, respectively. The significance of a
trend and of the correlation is indicated as point symbol: *** p <0.001, ** p <0.01, * p <0.05, . p
<0.1.

Parts of the boreal forests in North America showed significant browning trends in the
GIMMS3g data set but a tendency to positive trends in the GL2 data set. The
simulation results from LPJmL-GSI are in agreement with the GIMMS3g-based
browning trends, rather than greening trends. However, these model-based browning
trends were not as strong as in the GIMMS3g data set. In LPJmL-GSI these browning

trends are caused by the effects of seasonal light and water effects on phenology, and
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by fire activity. In the GIMMS3g data set these browning trends were related to several
environmental factors like fire activity (Goetz et al., 2005), temperature-induced
drought stress (Beck et al., 2011; Bunn and Goetz, 2006) and to snow-regulated changes
in soil water availability (Barichivich et al., 2014).

The Sahel had widespread greening trends in the GIMMS3g FAPAR data set. Whereas
LPJmL-OP simulated browning trends, the implementation of water availability effects
on phenology enabled LPJmL-GSI to reproduce the observed greening trends.
Increases in precipitation and rain-use efficiency were also identified in observational
studies as the main drivers of positive trends in vegetation greenness in the Sahel
(Fensholt et al., 2013).

Overall, we observed that both LPJmL-OP and LPJmL-GSI reproduced the greening
trends in tundra, boreal and temperate forests, although LPJmL-GSI showed a wider
agreement in the extent of browning trends in the boreal forests of North America.
Further, in the Sahel region, the greening trends can only be reproduced through the
inclusion of water availability controls on the phenology development. These results
demonstrate that environmental controls like light, heat stress and water availability
contribute to a better description of regional greening and browning trends in very
different bioclimatic regions of the globe. Hence, a comprehensive characterization of
the different environmental controls on phenological development is essential in

performing model-based analysis of long-term trends in vegetation activity.

3.3.2.3  Effects on carbon fluxes and stocks

LPJmL-GSI and LPJmL-OP-gc with optimized parameters represented better the global
patterns and mean seasonal cycles of gross primary production and biomass than
LPJmL with original phenology and prior parameters (LPJmL-OP-prior) (Figure 3.8).
LPJmL-OP-prior overestimated mean annual GPP and biomass in most polar, boreal
and temperate regions. LPJmL-OP-prior underestimated mean annual GPP but
overestimated mean annual biomass in tropical regions around the equator. These
biases were reduced in LPJmL-OP-gc and LPJmL-GSI. LPJmL generally overestimated
GPP also in arid regions but these biases were reduced after optimization in LPJmL-
OP-gc and LPJmL-GSI (Figure 7.18). We also found that the mean seasonal cycle of
GPP from LPJmL-GSI agreed better with the mean seasonal GPP cycle from the MTE
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estimate especially in temperate forests and in tropical, temperate and polar grasslands
(Supplement 7.5.1, Figure 7.17) although no information about the seasonality of GPP
was included in optimization experiments. LPJmL-GSI still overestimated biomass in
some tropical regions (African Savannas, southeast Brazil, south and south-east Asia)
(Figure 7.19). These regions were mainly simulated as agricultural lands in LPJmL, i.e.
as different crop functional types (CFTs). The LPJmL-GSI phenology module was not
applied or optimized for agricultural regions, where the seasonal phenological
development is prescribed according to the CFTs parameterizations from Bondeau et
al. (2007). Generally, LPJmL-GSI performed substantially better than LPJmL-OP-prior
and LPJmL-OP-gc when comparing the global total carbon fluxes and stocks to the
data-oriented estimates (Supplement 7.5.1, Table 7.6). These results demonstrate that in
addition to the optimization of productivity parameters in LPJmL, the implementation
of the new GSI-based phenology improved estimates of spatial patterns, seasonal

dynamics, and global totals of gross primary production and biomass.
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Figure 3.8: Latitudinal gradients of (a) gross primary production (GPP), (b) evapotranspiration,
(c) biomass and (d) tree cover from data-oriented estimates and from LPJmL model
simulations.

Gradients were spatially averaged (median) from all 0.5° grid cells for latitudinal bands of 1°
width. Grey areas represent uncertainty estimates for the data-oriented estimates.
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3.3.2.4  Effects on forest distribution

LPJmL-GSI with dynamic vegetation better represented the observed tree cover in
high-latitude regions than LPJmL-OP-prior and LPJmL-OP-gc (Figure 3.8d). LPJmL-
OP-prior highly overestimated tree cover in boreal and Arctic regions and simulated a
too northern Arctic tree line in comparison with tree cover from MODIS observations.
Although this overestimation was reduced after optimization, LPJmL-OP-gc still
highly overestimated tree cover in boreal and temperate regions. The occurrence of
trees was shifted southwards in LPJmL-GSI. Although LPJmL-GSI still overestimated
tree cover in boreal regions, this overestimation was much lower than in LPJmL-OP-gc.
LPJmL-OP-prior and LPJmL-OP-gc slightly underestimated tree cover in temperate
regions around 45°N but this was well reproduced by LPJmL-GSI. We found no
differences in tree cover between LPJmL-OP and LPJmL-GSI in other parts of the
world where tree cover is highly affected from agricultural land use and thus implicitly
prescribed to LPJmL. These results demonstrate that additional to the optimization of
productivity parameters in LPJmL-OP-gc, the newly developed GSI-based phenology
model and the optimized model parameters contribute to a better representation of tree

cover in high-latitude regions.

3.3.2.5  Effects on evapotranspiration processes

Evapotranspiration from LPJmL agreed well with the data-oriented MTE estimates
(Figure 3.8b). The implementation and optimization of the new GSI-based phenology
did not affect ET much. ET increased only in tropical rainforests around the equator in
LPJmL-GSI and LPJmL-OP-gc in comparison to LPJmL-OP-prior because of the
increased GPP in these regions. In other regions ET remained almost unchanged. But
this does not imply that the structural improvements in LPJmL-GSI did not affect the
transpiration processes (Figures. A20, A21). Indeed, LPJmL-GSI had lower interception
losses than LPJmL-OP in boreal forests because of the reduced tree cover. On the other
hand this implies that simulated soil evaporation was increased. Furthermore,
interception and soil evaporation had slightly shifted seasonal cycles in LPJmL-GSI
compared to LPJmL-OP due to the seasonal differences in timing of leaf development

and senescence stages (Figure 7.21). Consequently, small differences in total
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evapotranspiration result from opposite and compensatory changes in interception and

soil evaporation and slight changes in transpiration fluxes in LPJmL-GSL.

3.3.3 Applicability and challenges of the LPJmL-GSI phenology module

The LPJmL-GSI phenology module is part of a DGVM that is applied for climate
impact studies. In order to assess how well the model performs under different climate
conditions, we additionally tested how the model performance changes in grid cells
that were not used during optimization (Figure 7.26). We found no general decrease in
model performance with distance to the nearest grid cell used for optimization, or
under different temperature conditions. Especially, no significantly lower correlations
(p < 0.05, Wilcoxon rank-sum test, Figure 7.26) were found between simulated and
observed FAPAR time series in grid cells that were 3 to 5°C warmer than the closest
optimization grid cell. From a typical perspective of space for time substitution, this
could indicate that the confidence in the simulation of FAPAR dynamics should not
detract under climate warming scenarios of 0.3 to 4.8°C (IPCC, 2014).

Nevertheless, model optimization experiments and model evaluation indicated further
needs for improvement in future studies — for example, simulations of surface albedo
could improve through the implementation of time-varying effects of snow conditions
and surface moisture on albedo. Also, an enhanced representation of canopy
architecture and canopy radiative transfer could reduce the large spatial variability and
parameter uncertainty found for the light extinction coefficient and hence improve the
simulation of tree coverage and peak FAPAR. In addition to temperature, light and
water availability, phenology also depends on other factors that are not considered in
LPJmL-GSI. Phenology is also driven by leaf age (Caldararu et al., 2012, 2014) and
nutrient availability (Wright, 1996). These effects are neither considered in the original
GSI phenology model (Jolly et al., 2005; Stockli et al., 2011) nor in the LPJmL-GSI or
other traditional formulations. Here, the lower posterior values found for the
parameter aa may be compensating for missing nitrogen limitation effects on
productivity in boreal forests (Vitousek and Howarth, 1991). Thus a future
implementation of nitrogen limitation processes in LPJmL requires a re-optimization of
the aa parameter. Additionally, the current implementation of phenology in LPJmL

affects photosynthesis only through changes in APAR. In future model developments a
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stronger coupling between phenology and ecosystem carbon cycle dynamics could be
explored. For example, the LPJmL-GSI phenology module could demand carbon for
leaf development from photosynthesis or additional storage pools on the one hand and
could trigger carbon turnover through litterfall on the other hand. In this case a
phenology module could partly regulate an optimal carbon gain for a canopy similar to
the approach of Caldararu et al. (2014). Nevertheless, such an analysis needs to go
beyond the approach of Caldararu et al. (2014) and demands for additional
observational constraints on ecosystem carbon fluxes, leaf area, biomass and litterfall.
In order to better understand couplings between leaf phenology, changes in carbon
allocation and photosynthesis it will be of benefit to use site level eddy covariance
measurements from the FLUXNET network (Baldocchi et al., 2001) together with
ancillary data in ecosystem-scale model optimization experiments (Carvalhais et al.,
2010; Kuppel et al., 2012; Williams et al., 2009). Thus the LPJmL-GSI phenology module
and the LPJmL model-data integration approach can serve as a framework to further
explore hypotheses of ecosystem processes and vegetation dynamics.

We demonstrated the improved performance of LPJmL-GSI over LPJmL-OP in
representing observed carbon fluxes and stocks, forest cover and seasonal to decadal
dynamics of vegetation greenness. Thus, similar approaches to the LPJmL-GSI
phenology module can be applied in other DGVMs to improve model simulations in
comparison with observations. However, the adaptation of current results to other
models should be cautionary because the phenology scheme of LPJmL-GSI is an
empirical approach with PFT-dependent parameters that need to be estimated. This
estimation is model-specific because (1) different models do not necessarily use the
same definition and set of PFTs; (2) our parameterizations depend on model structure,
e.g. different models often use different hydrology routines; and (3) our posterior
parameters for phenology were also constrained by using albedo and GPP data. Thus
LPJmL-GSI model parameters cannot be easily transferred to other models. It might be
possible to use the parameters of the temperature and light limiting functions in other
models because these functions depend uniquely on the forcing data. On the other
hand, the parameters for the water availability limiting function might need to be re-
optimized because of differences in soil moisture computations. However, depending

on the co-variability between forcing variables and simulated water availability by
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other models, the best parameterizations may differ from the ones presented here.
Consequently, we acknowledge the potential need to optimize parameters of the
LPJmL-GSI phenology model in order to obtain plausible results in other modelling
structures. However, it is likely that the LPJmL-GSI phenology model can be easily
applied to other models of the LP] group of models (Prentice et al., 2011; Smith et al.,
2001) that are using the hydrology routines of Gerten et al. (2004) while probably
additional parameter optimization exercise are required to adapt the model to other

types of DGVMs or ecosystem models.

3.3.4 Environmental controls on vegetation greenness phenology

As the newly developed GSI-based phenology model of LPJmL can reproduce the
seasonality and monthly dynamics of observed FAPAR in most biomes, it can be used
to identify environmental controls on vegetation greenness phenology. The importance
of phenological controls differed by climate regions, ecosystems and season (Figure
3.9). We identified environmental controls on seasonal FAPAR dynamics by analysing
the mean seasonal cycles of FAPAR, of the cold temperature, light, water availability
and heat stress limiting functions for phenology from the LPJmL-GSI model run. This
analysis is comparable to previous investigations of limiting factors for vegetation
phenology (Caldararu et al., 2014; Jolly et al., 2005). FAPAR seasonality in high-latitude
regions (tundra, boreal forests) was mainly controlled by cold temperature (entire year)
and light (October to February). We also found an important control by water
availability in February to April in the tundra and in boreal forests of North America
and eastern Siberia. This water limitation in early spring was due to the seasonal
freezing of the upper permafrost layer in LPJmL. FAPAR seasonality in temperate
grasslands in western North America and central Asia was controlled from a mixture
of cold temperature (January to April), of water availability (May to November) and
light (November to January). FAPAR seasonality in temperate forests in Europe was
mainly limited by cold temperature in spring and by a combination of cold
temperature and light in autumn. Additionally, heat stress and water availability
contributed to a small reduction in summer FAPAR in temperate and boreal forests.
The FAPAR seasonality in savannas (Sahel) was limited by water availability in the

entire year and additionally by heat stress before the beginning of the rain season. The
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FAPAR seasonality of temperate regions in South America was limited by water
availability in the entire year. Cold temperature was additionally limiting between
May and September. Thus, water availability was the only environmental factor in

LPJmL-GSI that controlled phenology globally from tropical to Arctic biomes.
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Figure 3.9: Phenological controls on seasonal FAPAR dynamics.

The maps are red—green—blue composites of the mean monthly values for the water (red), light
(green) and cold temperature (blue) phenology limiting function values from the LPJmL-GSI
model run. White regions in the maps are without vegetation or dominated by croplands for

which the LPJmL-GSI phenology model was not applied. Time series represent the mean
seasonal cycles (January to December) (averaged over 1982-2011) of simulated and observed
FAPAR and phenology limiting function values averaged for different regions as indicated in
the first map. Phenology limiting function values close to 0 indicate a strong control by

phenology limiting functions whereas values close to 1 indicate no phenological control. The
correlation coefficients of each time series with the simulated FAPAR time series are shown in

each time series plot. The significance of the correlation is indicated as point symbol (see Figure

3.7 for an explanation of significance symbols).
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The implementation of the water limiting function on phenology in LPJmL-GSI
resulted in unique patterns of phenological controls that were different from results
reported in similar analyses (Caldararu et al., 2014; Jolly et al., 2005). LPJmL-GSI
showed water limitation on phenology in many subtropical and dry temperate regions
(especially Mediterranean, Pampas and Patagonia in South America, Mongolia, and
northern Great Plains). The original GSI model showed mainly temperature and light
limitation in these regions. In contrast to the original GSI, our implementation
considers water limitations on phenology based on plant available water and not on
VPD (Jolly et al., 2005). As considered by Caldararu et al. (2014), soil water availability
exerts a more direct control on phenology development, which has been demonstrated
for Mediterranean ecosystems (Kramer et al., 2000; Richardson et al., 2013) and in dry
temperate grasslands (Liu et al., 2013; Yuan et al., 2007).

Additionally, we identify water availability as an important limiting function for
spring phenology in boreal and Arctic regions in LPJmL-GSI because of the seasonal
freezing of the upper active layer in permafrost soils. Although no relationships
between active layer depth and vegetation greenness were found so far (Mcmichael et
al., 1997), frozen grounds limit the seasonal tree growth in boreal forests because of
limited water supply and nutrient uptake (Benninghoff, 1952; Jarvis and Linder, 2000).
As the seasonal freezing and thawing of permafrost soils is to a large extent driven by
changes in air temperature, one might argue that air temperature is enough to explain
phenology dynamics in boreal and Arctic regions. Nevertheless, we found weak
correlations between posterior model parameters for the cold temperature and water
limiting function for phenology in PFTs that experience strong permafrost dynamics
(BoNS r = 0.2, PoH r = -0.28) (Figure 7.16). This indicates that the water and cold
temperature limiting functions in boreal and Arctic regions are only weakly correlated.
Indeed, we did not find a completely synchronized temporal dynamic of the cold
temperature and water limiting functions for phenology (Figure 3.9). These results
emphasize the ability to disentangle effects of seasonal air temperature and soil
moisture on phenology in boreal and Arctic regions. Air temperature and soil thawing
are not completely synchronized because soil temperature depends also on
topography, substrate and the insulating effects of the snow, litter and vegetation cover

(Jorgenson et al., 2010; Shur and Jorgenson, 2007; Zhang, 2005). Soils might be still
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frozen if air temperature is already positive or vice versa. Also experimental studies
highlighted the role of permafrost-regulated soil moisture on phenology and
productivity in boreal and Arctic ecosystems (Natali et al., 2012; Schuur et al., 2007). It
also has been observed that the seasonal freezing and thawing in permafrost regions
regulates ecosystem evapotranspiration (Ohta et al., 2008) and fire activity (Forkel et
al., 2012) especially during extreme dry years. Thus, although temperature might be
enough to explain average spatial patterns of phenology in boreal and Arctic regions
we acknowledge that variations in snow or vegetation cover that affects soil
temperature and thus moisture might be important factors in explaining inter-annual
variations of land surface phenology.

The heat stress limiting function was additionally introduced in LPJmL-GSI. Heat
stress had no importance for seasonal FAPAR dynamics in most regions except in
temperate and tropical grasslands. The heat stress function was highly correlated with
the water availability function in temperate grasslands. This suggests that summer
FAPAR is both regulated by water-induced and temperature-induced drought
conditions in temperate grasslands. In tropical grasslands, heat stress and water
availability were driving the temporal dynamics of seasonal FAPAR but
asynchronously (in the Sahel). These results suggest that soil moisture needs to be
considered in observational data analyses and in other ecosystem models as a
controlling factor for vegetation phenology in all biomes.

Interestingly, Caldararu et al. (2014) identify leaf age as the dominant factor for
phenology development in many permanent moist subtropical and tropical forests, but
also in several water-limited regions which were here identified as seasonally
controlled by water availability. We cannot identify a dominant control on seasonal
FAPAR dynamics in evergreen forests, as leaf age is not explicitly simulated in LPJmL-
GSI. We acknowledge that the consideration of leaf age effects on phenology could
further enhance the representation of ecosystem processes. However, the seasonal co-
variation between LAI or FAPAR and environmental controls on phenology
complicates the ability to disentangle the leaf aging signal from a temperature, light or
water availability-driven signal, especially in seasonally deciduous vegetation types,
where climate-driven models explain a significant fraction of seasonal variability and

the realized age of leafs is shorter than a year. In addition, cloud cover contamination
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over moist tropical or subtropical forests pertain usually a weak seasonal signal and a
high short-term variability, hinging on the reliability of the seasonal signal. In
particular, Morton et al. (2014) show that seasonal changes in MODIS LAI in the
Amazon forests are linked to insufficient corrections of the sun-sensor geometry,
which challenge the representation of vegetation phenology. However, in these
tropical moist regions, where we find no environmental seasonal controls, and the
realized age of oldest leafs are higher than a year, leaf age may be an important
contributor for further consideration regarding the above-seasonal frequency of
phenology. Hence, grasping the relevance of leaf longevity, especially in tropical
perennial systems, would necessarily require ground observations of leaf development
and litter fall to constrain leaf age parameters, as well as measurements of soil water

content to address the appropriateness of soil moisture effects.

3.4 Conclusions

We have demonstrated a major improvement of the LPJmL dynamic global vegetation
model by implementing a new set of phenological controls on vegetation greenness
and by integrating multiple decadal satellite observations. We have proven that the
original phenology model in LPJmL is unable to explain temporal dynamics of FAPAR.
As an alternative we implemented a new phenology model (LPJmL-GSI) which
considers effects of cold temperature, heat stress, light, and water availability on
vegetation phenology. We developed a model-data integration approach for LPJmL
(LPJmL-MDI) to (1) constrain model parameters against observations, (2) to directly
integrate observed land cover fractions and burnt area time series and (3) to evaluate
LPJmL against independent data streams. Specifically, phenology, productivity, and
albedo-related model parameters of LPJmL-GSI were optimized jointly against 30-year
time series of satellite observations of FAPAR, against 10-year time series of vegetation
albedo and against mean annual patterns of gross primary production using a genetic
optimization algorithm.

The new phenology model and the parameter optimization clearly improved LPJmL
model simulations. LPJmL-GSI better reproduces observed spatial patterns of gross

primary production, tree cover, biomass and FAPAR than the original model. LPJmL-
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GSI simulates global total carbon stocks and fluxes that are closer to independent
estimates than from the original model. LPJmL-GSI better represents observed
seasonal, monthly, inter-annual and decadal FAPAR dynamics than the original
model. The improvements of LPJmL in representing observed patterns and temporal
dynamics of vegetation greenness allows assessing environmental controls on
vegetation phenology and greenness. Contrasting to previous studies (Jolly et al., 2005;
Stockli et al., 2011), our results indicate that soil water availability is a major control of
seasonal FAPAR dynamics not only in water-limited biomes but also in boreal forests
and the Arctic tundra where water availability is regulated through seasonal thawing
and freezing of the active permafrost layer. Until now the phenology of these
ecosystems was mostly considered as temperature-limited. The consideration of the
effect of soil water availability on phenology in LPJmL improved model simulations of
greening trends in the Sahel and of browning trends in parts of the boreal forests of
North America. Our results demonstrate that improved phenology models that
consider seasonal effects of water availability on a continuous canopy development are
needed in order to correctly explain seasonal to long-term dynamics in vegetation

greenness.
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4 Co-dominant water control on global inter-annual
variability and trends in land surface phenology and

greenness

Abstract

Identifying the relative importance of climatic and other environmental controls on the
inter-annual variability and trends in global land surface phenology and greenness is
challenging. Firstly, quantifications of land surface phenology and greenness dynamics
are impaired by differences between satellite datasets and phenology detection
methods. Secondly, dynamic global vegetation models (DGVM) that can be used to
diagnose controls still reveal structural limitations and contrasting sensitivities to
environmental drivers. Thus we assessed the performance of a new developed
phenology module within the LPJmL (Lund Potsdam Jena managed Lands) DGVM
with a comprehensive ensemble of three satellite datasets of vegetation greenness and
ten phenology detection methods, thereby thoroughly accounting for observational
uncertainties. The improved and tested model allows us quantifying the relative
importance of environmental controls on inter-annual variability and trends of land
surface phenology and greenness at regional and global scales. We found that start of
growing season inter-annual variability and trends are in addition to cold temperature
mainly controlled by incoming radiation and water availability in temperate and
boreal forests. Warming-induced prolongations of the growing season in high latitudes
are dampened by a limited availability of light. For peak greenness, inter-annual
variability and trends are dominantly controlled by water availability and land use and
land cover change (LULCC) in all regions. Stronger greening trends in boreal forests of
Siberia than in North America are associated to a stronger increase in water availability
from melting permafrost soils. Our findings emphasize that in addition to cold
temperatures, water availability is a co-dominant control for start of growing season

and peak greenness trends at the global scale.
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4.1 Introduction

Satellite observations demonstrated globally significant inter-annual variability and
trends of phenology and greenness in the last three decades (Myneni et al., 1997a;
Tucker et al., 2001; Xu et al., 2013; Zeng et al., 2013). The use of satellite-derived time
series of vegetation indices, such as the normalized difference vegetation index (NDVI)
(Tucker, 1979) to study the timing of changes in vegetation greenness is usually
refereed as land surface phenology (de Beurs and Henebry, 2004a). Variability and
trends in land surface phenology and greenness have been associated with regionally
different climatic and environmental controlling factors: Positive trends in land surface
greenness (“greening”) (Goetz et al., 2005; Myneni et al., 1997a) and phenological
changes like an earlier start and a lengthening of the growing season (Julien and
Sobrino, 2009; Tateishi and Ebata, 2004; Tucker et al., 2001) in high-latitude regions
have been concordantly associated to warming climate (Keenan et al., 2014; Lucht et al.,
2002; Menzel et al., 2006; Xu et al., 2013). Nevertheless, also increasing atmospheric CO2
and nitrogen deposition can potentially fertilize vegetation and thus contribute to
global greening trends (Mao et al., 2012; Piao et al., 2006). The CO: fertilization effect is
supposed to be mainly important in drylands (Donohue et al., 2013). On the other
hand, multiple controls have been identified for negative trends in vegetation
greenness (“browning”) in boreal forests of North America, and in some temperate and
subtropical grasslands (Bi et al., 2013; Goetz et al., 2005; de Jong et al., 2013b) like fire
regimes (Goetz et al., 2005), heat stress (Bunn et al., 2007), forest type (Beck and Goetz,
2011), cooling spring temperatures (Wang et al., 2011), reduced soil moisture, and
possibly permafrost (Barichivich et al., 2014). In the Sahel, greening trends are
discussed in face of opposing effects of increasing precipitation and increasing land
degradation (Dardel et al., 2014a; Fensholt et al., 2013). Land management might be
also important for end of growing season in temperate regions (Garonna et al., 2014).
For tropical forests, it has been intensively discussed whether vegetation index time
series have seasonal dynamics and if these are driven by variations in light or water
availability (Huete et al., 2006; Morton et al., 2014; Samanta et al., 2010). Seasonal to
decadal dynamics of land surface greenness affect ecosystem structure (Fridley, 2012;
Wolkovich and Cleland, 2010) and the climate system through changes in albedo,

surface roughness, and through exchange of energy, water and carbon (Bonan, 2008b;
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Richardson et al., 2013). Consequently, it is important to understand the relative
importance of regional competitive explanations and controlling factors on average
spatial patterns, inter-annual variability and trends in land surface phenology and
greenness. An observation-based identification of this relative importance is difficult
because of several challenges that limit the use of explanatory data analysis approaches
because controlling factors: 1) act on different spatial scales (e.g. uniform atmospheric
CO: increase vs. regional fire events), 2) are temporally correlated (e.g. CO: and air
temperature increase), 3) exhibit non-linear dynamic interactions (e.g. drought, fire,
land cover change and succession), or 4) are not readily available from observations
(e.g. spatial distributed observation of permafrost dynamics). On the other hand, a
consistent framework like a dynamic global vegetation model (DGVM) is not limited
by these challenges if such processes are accurately represented in the model and can
be applied to identify the relative importance of controlling factors like temperature,
prescription, fire disturbance, CO: fertilization, permafrost dynamics and soil moisture,
and land use and land cover change (LULCC) (Piao et al., 2011).

DGVMs were previously applied to identify controlling factors for land surface
phenology and greenness (Lucht et al., 2002; Mao et al., 2012, 2013; Piao et al., 2006) but
need to be critically evaluated with respect to the model performance in reproducing
observations. Especially, DGVMs cannot well reproduce observed phenology
(Richardson et al., 2012) and seasonal to decadal dynamics of land surface greenness
(Anav et al., 2013; Murray-Tortarolo et al., 2013). On the other hand, new phenology
models have been recently developed and parameterized using satellite-derived
greenness observations (Caldararu et al., 2014; Forkel et al., 2014; Knorr et al., 2010;
Stockli et al., 2011). This new generation of phenology models describes the temporal
development of canopy greenness and thus follows a different paradigm than
traditional phenology models that usually simulate specific events of leaf development
like budburst or leaf senescence (Richardson et al., 2012). Forkel et al. (2014) developed
and parameterized a new phenology model within the LPJmL (Lund Potsdam Jena
managed Lands) DGVM that better reproduces satellite observations of seasonal to
decadal dynamics of the fraction of absorbed photosynthetic active radiation (FAPAR)
by considering effects of temperature, light and water availability. Using LPJmL with

this improved phenology scheme and additional model developments (Bondeau et al.,
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2007; Schaphoff et al., 2013; Thonicke et al., 2010) allows going beyond an earlier LPJ-
based analysis of climate effects on peak greenness (Lucht et al., 2002) to additionally
quantify effects of water availability, light, fire, permafrost, and land cover dynamics
on land surface phenology and greenness.

The estimation of land surface phenology and greenness metrics (PGMs) and their
inter-annual and decadal dynamics from satellite-derived time series is challenging for
several reasons: 1) PGMs like the start and end of the growing season (SOS, EOS) are
known to control the annual CO: uptake but they are limited descriptors of site-specific
seasonal changes in canopy structure and plant physiology (Fu et al., 2014a; Liang et
al.,, 2011; Schwartz and Reed, 1999; Studer et al., 2007; Xiao et al., 2009). 2) Satellite
datasets differ remarkably in spatial patterns and temporal dynamics due to different
sensor properties (sun-sensor geometry, spectral and spatial resolution), observational
distortions (cloud and snow cover, aerosols) and processing algorithms (D’Odorico et
al., 2014; Fensholt and Proud, 2012; Guay et al., 2014; Jiang et al., 2013; McCallum et al.,
2010; Scheftic et al., 2014; Wang et al., 2012). Additionally, the temporal resolution of
satellite datasets and thus of greenness time series affects the timing of phenological or
trend changes but it has been shown that temporal resolution is of minor importance
for the variability in timing in comparison to the statistical time series analysis method
(Forkel et al., 2013; White et al., 2014; Zhang et al., 2009). Thus, 3) the estimation of
PGMs from vegetation index time series is highly sensitive to the chosen analysis
methods. Satellite-derived greenness time series require usually smoothing and
interpolation to exclude short-term variability and to estimate daily phenology events
from less frequent observations. Therefore different smoothing, interpolation, curve
fitting and detection methods were developed (hereinafter simplifying called
“phenology methods”) (de Beurs and Henebry, 2010b). These methods can result in
remarkable differences in estimated patterns and dynamics of land surface phenology
and greenness (Forkel et al., 2013; Geng et al.,, 2014; Hird and McDermid, 2009;
Kandasamy et al., 2013; Musial et al., 2011; White et al., 2014). Thus, it is necessary to
consider the uncertainty from different datasets and phenology methods for a robust
quantification and for model evaluation of recent patterns and temporal dynamics of

land surface phenology and greenness.
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Here we aim to 1) to quantify the relative importance of climatic and ecosystem
controlling factors on average patterns, inter-annual variability and trends in land
surface phenology and greenness at the regional and global scale; for which we need to
2) quantify global patterns and temporal dynamics of land surface phenology and
greenness by considering uncertainties from different satellite datasets and phenology
methods; and to 3) evaluate the performance of the LPJmL DGVM with an improved
phenology scheme (Forkel et al.,, 2014) in reproducing the observed patterns and

dynamics when considering these uncertainties.

FAPAR datasets Phenology methods to extract PGMs _,| Data comparison and model
Monthly FAPAR time series (phenology and greenness metrics) evaluation using Kling-Gupta
aggregated to 0.5° spatial resolution PGM: SOS, EOS, LOS, POP, PEAK, MGS, MSP, MAU efficiency (KGE)
Satellite-based FAPAR —> Filling of permanent (winter) gaps KGE (data ~ data)
GIMMS3g (1982-2011) . v
' Temporal smoothing and interpolation using x 10 methods
MODIS (2001-2011) '»— 5 methods: LIN, si>|_, SSA, DL1, DL2
GL2-VGT2 (2003-2011) '— Calculation of PGMs using 2 approaches: KGE (LPJmL ~ data)
Trs, Deriv
LPJmL FAPAR (1982-2011) ¥ x 10 methods
LPJmL-OP '— Dataset-method ensemble of PGMs
(original phenology) 10 PGM estimates per dataset
o S e & S S Q-}\O“ & LPJmL model performance within
- — & £ k& P & & & <& & L
PP EEEWE - s v 0r | |
Factorial model experiments VDG e si ved, R
with LPJmL-GS| OOOOEOEIEW -~ v o 1o metoss
rrrrrrrrrroree I\VA\d‘ \QR\ Wilcoxon rank-rum test,
viean © paired by methods
Il:gjmli—nol(foli? @__ PO EWE - s vedor HO: KGE(LPJmL~data) — KGE(data~data) = 0
e mL -nOWIQt t 15 [ 1157 (157 [ [ [ [V [l [ Mean, sd Med, IQR H1: KGE(LPJmL~data) - KGE(data~data) < 0
mL-noWater
I—‘

LPJmL-noLULCC
LPJmL-noPermafrost
LPJmL-noFire

LPJmL-noCO2 eTotal (LPJmL-factor ~ LPJmL-GSI) MF—F—/ 7 x 10 methods } Ensemble median + IQR

Quantification of effects of a controlling factor on phenology and greenness
Total effect = sqrt(effects on mean, variance, correlation and trend)

Figure 4.1: Flow chart of the described datasets and methods.
Abbreviations of methods are explained in the Data and methods section and in Table 8.1,
respectively.

4.2 Material and methods

421 FAPAR datasets

FAPAR time series used here originate from three satellite-based datasets and from
LPJmL with two different phenology schemes (Figure 4.1). The GIMMS3g (Global
Inventory Modeling and Mapping Studies, 3rd generation) FAPAR dataset was
derived from a harmonized NDVI dataset (Pinzon and Tucker, 2014; Zhu et al., 2013)
and covers fully the years 1982 to 2011. MODIS FAPAR (Moderate-Resolution Imaging
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Spectroradiometer) was taken from the MOD15A2 product (Knyazikhin et al., 1999;
USGS, 2001) and covers the period since February 2000. GL2-VGT2 FAPAR (Geoland2
BioPar GEOV1, Vegetation 2) was derived from SPOT (Satellite Pour I'Observation de
la Terre) observations (Baret et al., 2013). The dataset covers originally the period 1999
to 2012 based on VGT1 and VGT2 observations. However, we only use the dataset
from 2003 onwards (only VGT2 observations) because the combined dataset has
discontinuities at the sensor shift between VGT1 and VGT2 (Forkel et al., 2014; Horion
et al., 2014). FAPAR from GIMMS3g, MODIS and GL2-VGT2 are defined as black-sky
green canopy instantaneous FAPAR at 10:35, 10:35 and 10:15 solar time, respectively.
Instantaneous FAPAR observations during this time are close approximations of the
daily integrated FAPAR (Baret et al., 2007) and thus comparable with LPJmL model
simulations. All satellite-based datasets were aggregated from their original resolution
to 0.5° spatial resolution and to monthly time steps to be comparable with LPJmL
model simulations. Sub-monthly FAPAR values were aggregated to monthly values
using the maximum value composite approach (Holben, 1986) to exclude potential

remaining low-biased FAPAR values.

4.2.2 FAPAR and phenology in LPJmL

The LPJmL DGVM simulates carbon and water fluxes and stocks as a result of natural
vegetation dynamics (Sitch et al.,, 2003) and has extensions for human land use and
agriculture (Bondeau et al., 2007), fire (Thonicke et al., 2010), surface albedo and snow
cover (Strengers et al., 2010), and soil hydrology and permafrost dynamics (Schaphoff
et al., 2013). Additionally, a new phenology scheme for natural vegetation plant
functional types (PFT) has been implemented in LPJmL and FAPAR-related model
parameters were optimized against GIMMS3g FAPAR, albedo and gross primary
production data (Forkel et al., 2014). FAPAR of a PFT in LPJmL depends mainly on
annual changing foliar projective cover (FPC) and the daily phenology status (PHEN)
(Forkel et al., 2014).

We applied two phenology schemes in LPJmL to simulate PHEN. LPJmL-OP is the
original LP] phenology scheme (Sitch et al., 2003) and is based on accumulated
temperature conditions (i.e. growing-degree days) for summergreen PFTs. LPJmL-GSI

(growing season index) is an alternative and improved phenology scheme and
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simulates seasonal leaf development in response to cold temperature, light, water
availability and heat stress controlling functions:

PHEN ppr = feoid,pET(T) % flight, pT (SWdown) X fuyater, pET (W) X fheat, pET (T) @.1)
where T is the average daily air temperature, SWdown the daily short-wave radiation

and W is the percentage water availability (Forkel et al., 2014).

4.2.3 LPJmL model setup and factorial model experiments

LPJmL was driven by monthly time series of air temperature and precipitation from
the CRU TS3.1 dataset (Harris et al., 2014), and by monthly short-wave downward and
long-wave net radiation time series from the ERA-Interim reanalysis dataset (Dee et al.,
2011). Monthly observed burnt area time series were prescribed to the fire module as
described in Forkel et al. (2014) to constrain fire simulation by observations. For this,
we used burnt area estimates from the Global Fire Emissions Database (GFED4) (Giglio
et al., 2010) for the period 1996-2011, from the Alaskan Large Fire Database (Frames,
2012; Kasischke et al., 2002), and from the Canadian National Fire Database (CFS, 2010;
Stocks et al., 2002) for North America for the period 1979-1996. To assess LULCC
effects, we prescribed to LPJmL a dataset of recent and historic (1700-2005) cropland
distributions (Fader et al., 2010). All model simulations and the required model spinup
were performed according to the standard LPJmL modelling protocol (Schaphoff et al.,
2013; Thonicke et al., 2010). Transient model runs were analyzed for the period 1982-
2011 for which FAPAR satellite observations are available.

We performed several experiments with LPJmL-GSI to quantify the effects of different
controlling factors on inter-annual variability and trends in land surface phenology
and greenness (Table 4.1). Specifically, we investigated the effects of seasonal climatic
controls (cold temperature, light and water availability), fire, land use and land cover
change (LULCC), permafrost dynamics and CO: fertilization by running the LPJmL-
GSI phenology model. In a second step, we run a series of model experiments using the
same set-up and drivers as the standard model run but with one factor fixed at a time
(Table 4.1). We fixed the cold temperature, light, and water availability controlling
functions of the LPJmL-GSI phenology scheme to unity to assess the effects of
temperature, light and water availability, respectively. This implies that temperature,

light or water availability do not affect FAPAR phenology in LPJmL-GSI but can still
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affect productivity and thus FAPAR through annual changes in FPC. All other model
experiments directly affected FAPAR dynamics through annual changes in FPC. We
disabled the simulation of soil thermal dynamics to assess a possible effect of
permafrost. This experiment implies that seasonal soil freezing and thawing does not
affect soil moisture and rooting depth and thus generally increases productivity and
thus FPC. We made another model run without simulating any fire activity to assess
the possible effect of fire disturbance. To assess the importance of LULCC, we fixed
land use and land cover fractions. For this, cropland fractions and the maximum FPC
of natural vegetation in a grid cell were kept constant after 1982. This approach implies
that the FPC of PFTs can still change because of competition or mortality but the area
extent cannot exceed the coverage conditions of 1982. To assess the effect of CO:
fertilization, atmospheric CO: fractions were kept constant at 341.22 ppm after 1982,
and thus did not further fertilize photosynthesis and increase FPC. Finally, we
performed one model experiment with the original LPJmL phenology model (LPJmL-
OP) (Sitch et al., 2003) to use a classical growing degree day-based phenology model as

an alternative and benchmark in model evaluation.

Table 4.1: Overview of factorial model experiments and corresponding effects on FAPAR in

LPJmL.
LP‘LmIL Effect on Factorial cha:ge_s to LPJr'r\}Ltmoti'lel components
mode’ Factor FAPARin  Pheno- Perma- gri- atura Burnt
experi- LPJmL logy frost culture vege- area CO,
ment (land use) tation
LPJmL- . .
GsI Standard - GSI yes yes dynamic observed growing
LPJmL-OP - -- OP yes yes dynamic observed growing
LPJmL- Direct GSlI, but . .
noCold Cold effects on fog = 1 yes yes dynamic observed growing
LPJmL- . phenology GSI, but . .
noLight Light status o = 1 yes yes dynamic observed growing
LPJmL- Water PHEN GSl, but es es dynamic observed rowin
noWater (daily) fuater = 1 Y Y y! g g
Direct land use maximum
LPJmL- effect on fractions ) .
noLULCC LULCC FPC GSlI yes fixed to FPC fixed observed growing
to 1982
(annual) 1982
LPJmL- Permafrost . .
noPf (Pf) Indirect GSlI no yes dynamic observed growing
LPJmL- . effects on . ) .
noFire Fire FPC GSlI yes yes dynamic no fire growing
LPJmL- (annual) . constant
noCO?2 CO, GSI yes yes dynamic observed after 1982

4.2.4 Phenology methods and trend analysis

Different phenology methods were used to estimate the uncertainty in PGMs that is

caused by different smoothing, interpolation and analysis methods (Figure 4.1).
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Although FAPAR time series from LPJmL model simulations are gap-free and without
observational distortions like in satellite datasets, we applied all phenology methods
also to modelled FAPAR time series to ensure comparability with estimated PGMs
from satellite datasets. All applied methods are freely available in the R software
package “greenbrown” (http://greenbrown.r-forge.r-project.org/).

In our approach, all phenology methods consist of three steps (Figure 4.1): 1)
permanent gaps (i.e. usually winter months in northern regions) were filled in each
time series; 2) the time series were smoothed and interpolated to daily time steps using
five different methods; 3) PGMs were calculated from smoothed and daily interpolated
time series using two different approaches. All methods are described with more
details within the Supporting Information 1.

In the first step, we filled months with permanent gaps series (i.e. gaps that occur in at
least 20% of all years during the same season) with the minimum FAPAR value. This
approach was already used by Beck et al. (2006) to fill missing winter observation in
NDVI time series.

In the second step, we used five different methods for temporal smoothing and for
interpolation to daily values (Supporting Information 1). These methods use linear
interpolation, spline smoothing and interpolation (Migliavacca et al., 2011; Musial et
al.,, 2011), singular spectrum analysis (Golyandina et al., 2001; Mahecha et al., 2010a), or
two curve-fitting approaches with double-logistic functions (Beck et al., 2006; Elmore et
al., 2012) to derive daily interpolated and smoothed FAPAR time series.

In the third step, we used the smoothed and daily interpolated time series to estimate
start of growing season (SOS) and end of growing season (EOS) by either using 50%
thresholds on the seasonal greenness curve (approach Trs) (White et al., 1997) or the
derivative of the seasonal curve (approach Deriv) (Tateishi and Ebata, 2004)
(Supporting Information 1). Both approaches are based on the definition of SOS and
EOS as the midpoints of spring green-up and autumn senescence, respectively. We
followed this definition of SOS and EOS (Tateishi and Ebata, 2004; White et al., 1997),
although lower thresholds or extreme values of the second derivative of the seasonal
greenness curve better agree with phenology transitions observed at the surface (White
et al., 2014). Nevertheless, SOS and EOS definitions that are based on lower values are

more strongly affected from non-vegetation changes as snow cover or cloud
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contaminations and thus less reliable. All other PGMs were derived afterwards: The
length of the growing season (LOS) is the difference between EOS and SOS. Mean
growing season FAPAR (MGS) is the average FAPAR value from all days between SOS
and EOS. Mean spring (MSP) and mean autumn (MAU) FAPAR are the average
FAPAR values from a period of 20 days around SOS and EOS, respectively. Peak
FAPAR (PEAK) is the maximum FAPAR value of the year from the smoothed and
interpolated curve. The position of the peak (POP) is the day of the year when PEAK is
reached. In summary we used ten phenology methods (five smoothing and
interpolation methods in step #2 times two detection approaches in step #3). Thus we
derive for each dataset and each PGM an ensemble of ten annual time series of land
surface phenology and greenness metrics.

Trends in all annual PGM time series were computed based on linear least-square
regression with breakpoint detection (Bai and Perron, 2003; Forkel et al., 2013; Zeileis et
al., 2003). The significance of the trend was estimated by using the Mann-Kendall trend

test (Kendall, 1975; Mann, 1945).

4.2.5 Data comparison, model evaluation and quantification of factorial effects

We compared the time series of PGM derived from all satellite datasets to assess their
agreement and their uncertainty with the aim of evaluating the performance and
usability of LPJmL. Specifically we assessed the agreement of PGM time series
regarding the mean, two measures of inter-annual variability (standard deviation and
correlation) and overall agreement. For this we computed the Kling-Gupta efficiency
(KGE) with its components that account for bias, difference in standard deviation and
correlation (Gupta et al, 2009). KGE ranges between negative infinity (worst
agreement) and 1 (perfect agreement) and is defined based on the Euclidean distance

in a 3-dimensional coordinate system of agreement measures:

KGE=1-(@-1)%+(B-1)% +(y -1)2 (42)
where v is the Pearson correlation coefficient between two time series. « and 3 account
for the difference in standard deviation o and in the mean values 1 between a times

series x and a reference time series r, respectively:

a=x (4.3)

Oy
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=M
B m (4.4)

We computed KGE between two datasets for the same phenology method. This
resulted for each satellite dataset in an ensemble of 20 KGEs (e.g. GIMMS3g compared
against MODIS and GL2-VGT2 using 10 methods each) and for each LPJmL model
experiment in an ensemble of 30 KGEs (i.e. LPJmL compared against 3 satellite datasets
using 10 methods each). We tested if the performance of LPJmL is within the
agreement of the datasets by testing if the differences between KGE from LPJmL
against satellite datasets and KGE from the cross-comparison of satellite datasets are
significant less than 0 by using the Wilcoxon rank-sum test (paired along phenology
methods, Figure 4.1).

We also applied the KGE metric to quantify the effect of a factor on PGM time series in
the factorial model experiment. For this we computed KGE between a PGM time series
from a factorial model run and the reference LPJmL-GSI model run for each phenology
method. In order to additionally quantify the effect on the trend, we extended the KGE
metric by a fourth metric d which accounts for the differences in linear trend slopes t
between a times series from a factorial model experiment x and a time series r from the

reference model run:
== (4.5)

Thus, we are defining the total effect (eTotal), the effect on the mean (eMean), the effect
on the variance of annual values (eVar), the effect on correlation or inter-annual
dynamic (eCor), and the effect on the trend (eTrend) of a factor accordingly to the

Kling-Gupta efficiency as the Euclidean distance in a 4-dimensional space:

eTotal = \eVar + eMean + eCor + eTrend (4.6)
where eVar, eMean, eCor and eTrend are defined as the squared differences between 1
and «a, 3, v and 0, respectively. To consider the uncertainty of phenology methods, we
are reporting results as the median and inter-quartile range of an effect over all

phenology methods.
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4.3 Results

4.3.1 Comparison of land surface phenology and greenness metrics from

datasets and models

Spatial patterns of phenology and greenness metrics differed remarkably between
datasets (Figure 4.2, Table 4.2). In most biomes, the mean annual SOS and EOS dates
were detected earlier in the GIMMS3g dataset and later in the GL2-VGT2 dataset
(Figure 4.2, Table 4.2). Mean annual SOS differed between satellite datasets by up to 50
days in Savannas and in boreal needle-leaved summergreen forests. Mean annual SOS
and EOS dates simulated by LPJmL-OP were out of phase in temperate grasslands and
in Savannas. All satellite datasets and LPJmL-GSI agreed regarding the global patterns
of mean annual peak FAPAR but LPJmL-OP overestimated peak FAPAR in temperate
to arctic regions (Figure 4.2 c). These differences between LPJmL-OP and LPJmL-GSI
are related to structural limitations hampering the optimization of LPJmL-OP (Forkel
et al., 2014).

Estimated PGMs had large differences between phenology methods (Figure 4.2, Table
4.2). For example, mean annual SOS ranged over almost 80 days for the GL2-VGT2
dataset in boreal needle-leaved summergreen forests. These differences cannot be
solely associated to distortions of optical remote sensing observations but also to
weaknesses on the phenology methods as well, since similar differences were found for
the LPJmL model. These wide ranges cannot be related to single methods because the
estimated PGMs of a method depend also on biome and dataset, i.e. a method might
result in an extreme SOS in one biome or dataset whereas it might result in an average
SOS in another biome or dataset (Figure 8.5). Thus the use of a single phenology
method can result in wrong conclusions about land surface phenology and greenness

dynamics in some biomes.
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Figure 4.2: Latitudinal gradients of mean annual (a) SOS, (b) EOS and (c) peak FAPAR from

datasets and LPJmL.

For each dataset or model the median and the inter-quartile range of the method ensemble are

shown.

Table 4.2: Biome-averaged mean annual start of season (SOS) and end of season (EOS) (in days
of year, DOY) from satellite-based datasets (GIMMS3g, MODIS, GL2-VGT2) and LPJmL
phenology models.
Numbers are the mean, standard deviation and the minimum and maximum values (in square
brackets) of SOS (or EOS) from 10 phenology methods. Star symbols indicate the p-value of a
two-sided Wilcoxon rank-sum test (paired by phenology method) if the multi-method ensemble
of SOS (or EOS) estimates of a dataset or model equals the ensemble of all other satellite-based
datasets (null hypothesis) or if it is outside the dataset ensemble (alternative hypothesis). P-
values are: *** p <0.001, ** 0.001 < p <0.01, * 0.01 < p <0.05, no symbol for p > 0.05. All biome-
averaged values were derived for the northern hemisphere (except Savannas). Results in bold
font highlight datasets or models without a significant difference to the other datasets. See

Figure 8.1a for definitions of biomes.

Biome PGM GIMMS3g MODIS GL2-VGT2 LPJmL-OP LPJmL-GSI
sSOS 13718 [129, 146110 [137, 14718 [137, 133#20 [105, 138+5[130,
Savannas (N- 153] *** 165] ** 161] ** 157] 146]
hemisphere) EOS 287+9 [270, 286+12 [270, 291+14[269, 272+20[253, 280+7 [267,
301] 306] 318] * 298] *** 290] ***
SOS 261+13 [233, 27749 [261, 275%12 [253, 29118 [277, 265110 [246,
Savannas (S- 275] *** 292] ** 293] 305] *** 273] *
hemisphere) EOS 15246 [143, 161%8 [151, 17049 [158, 139+18 [119, 162114 [146,
161] *** 176] 185] *** 167] *** 183]
SOS 11316 [106, 1206 [112, 13949 [124, 10215 [98, 1297 [119,
Temperate 123] *** 132] 150] *** 112] *** 138]
grasslands EOS 266112 [247, 272%15[253, 271%12[252, 28919 [280, 258114 [244,
290] ** 302] 290] 306] *** 281] ***
Temperate sOS 98+4 [92, 1045 [98, 11846 [111, 88+4 [84,97] 87+5([77, 95]
broad-leaved 104] *** 111] 127] *** el bl
summergreen EOS 288+13 [274, 294+13[281, 300+12[284, 280114 [264, 292%17 [275,
forests 305] *** 312] 320] *** 301] *** 316]
Boreal needle- SOS 10045 [94, 11349 [102, 14046 [129, 1188 [108, 10549 [92,
leaved 106] *** 131] 146] *** 132] 120] **
evergreen EOS 286114 [274, 295+15[280, 306+16[262, 29211 [277, 268+10 [251,
forests 313] *** 325] 3201 * 306] 279] ***
Boreal needle- SOS 107116 [85, 121+£11 [101, 149422 [120, 136124 [102, 116%16 [94,
leaved 129] *** 132] 199] *** 180] * 137]
summergreen EOS 257+10 [237, 272%11[255, 27027 [212, 275+9 [258, 260+12 [239,
forests 268] ** 284] 301] 287]** 276]
SOS 120+21 [90, 138+14 [112, 16048 [149, 142421 [113, 123116 [99,
Tundra 147] *** 160] 178] *** 175] 146] ***
EOS 263110 [244, 276%12[259, 291+24[228, 282%10[263, 269%12[247,
272] *** 287] 317] ** 296] 282]
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Table 4.3: Biome-averaged trends in SOS (days/year).
Numbers are the mean, standard deviation and the minimum and maximum values (in square
brackets) of SOS trend slopes from 10 phenology detection methods. Numbers in round
brackets indicate the number of methods that resulted in significant SOS trends (p < 0.05, Mann-
Kendall trend test). Results in bold font highlight trends for which most methods agree in trend
direction and for which at least one method indicated a significant trend. See Figure 8.1a for

definitions of biomes.

Biome GIMMS3g MODIS GL2-VGT2 LPJmL-OP LPJmL-GSI
Time period 1982-2011 2001-2011 2003-2011 1982-2011 1982-2011
Savannas: 0.04+0.16 -0.35+0.33 0.3640 .4 0.13+£0.14 0.09+0.04
N- [-0.24, 0.26] [-0.96, 0.15] [0.03, 1.07] (0) [-0.09, 0.41] [0.01, 0.14] (1%)
hemisphere (3%) (1) T (5) T
Savannas: -0.030.1 0.19+£0.54 0.64+0.6 0.210.09 0.08£0.19
S- [-0.18, 0.12] [-0.67, 0.99] [-0.33, 1.56] [6 08_ 0 39] (7%) [-0.21, 0.39]
hemisphere (2 (1% (1%) R (4%
Temperate  -0.07%0.04 0.39£0.22 0.5£0.16 od 001 1022 0.02]
grasslands [-0.13, 0] (2%) [0.1, 0.72] (0%) [0.19, 0.76] (0%) (6*.) > (2*') T
gf’orgg_el;a;\‘je g -0.12:049 0£0.13 -0.32+0.27 -0.09+0.04 -0.090.05
[-1.22, 1.31] [-0.22, 0.18] [-0.94, 0.16] [-0.12,-0.01] [-0.16, -0.01]
Sammer (7) (0%) (1) (0%) (1)
green forests
Boreal
needle- -0.1110.05 -0.29+0.26 -0.2+0.29 -0.1210.05 -0.11+0.04
leaved [-0.23, -0.06] [-0.88, 0.14] [-0.48, 0.31] [-0.2, -0.01] [-0.18, -0.05]
evergreen (4%) (0%) (0%) (5%) (5%)
forests
Boreal
needle- -0.03+0.05 -0.94+0.25 0.09+1.63 -0.14+0.11 -0.23%£0.13
leaved [-0.11, 0.04] [-1.33, -0.49] [-1.31, 3.74] [-0.29, 0.08] [-0.53, -0.09]
summergree  (1%) (7*) (1%) (4%) (5%)
n forests
-0.01+0.05 -0.2710.17 -0.1+£0.18 -0.1710.08 -0.18+0.08
Tundra [-0.09, 0.07] [-0.66, 0.02] [-0.33, 0.19] [-0.26, -0.03] [-0.3, -0.07]
(0% (3%) (0%) (7%) (8%)

Temporal dynamics and trends in PGMs agreed only partly between datasets Figure
4.3, Table 4.3). Peak FAPAR had significant greening in tundra, boreal forests of
Siberia, and temperate forests of Europe in GIMMS3g and LPJmL-GSI in 1982-2011. In
boreal forests of North America, peak FAPAR had significant greening in LPJmL-GSI
and negative but non-significant trends in the satellite-based datasets. Nevertheless, in
the overlapping period of all datasets (2003-2011), GIMMS3g had positive peak FAPAR
trends whereas MODIS and GL2-VGT2 had negative trends, reflecting also a disparity
between datasets for this region. In the Sahel, most datasets had greening trends (but
only for GIMMS3g significant), which was reproduced by LPJmL-GSI. In the Amazon,
only the GIMMS3g dataset had significant greening whereas MODIS, GL2-VGT2 and
LPJmL-GSI had no trends. In the Congo basin, only MODIS had significant browning
whereas the other datasets had positive trends (GL2-VGT2) or no trends (GIMMS3g,

LPJmL-GSI). All datasets had (partly significant) trends towards earlier SOS in boreal
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and temperate forests and in the tundra (Figure 4.3 h-i). Negative SOS trends in
temperate forests of Europe were in agreement with positive trends in LOS (Figure
8.3). We found no trends in LOS in boreal forests of Siberia because trends towards
earlier SOS were compensated by trends towards an earlier EOS (Figure 8.3). These
parallel changes in spring and autumn phenology have also been observed in some
temperate tree species (Fu et al., 2014c). LPJmL-GSI reproduced the observed SOS, EOS
and LOS trends in these regions. We found no significant trends in SOS, EOS or LOS in
other regions (Figure 8.3). Nevertheless, SOS trends for one dataset had partly large
uncertainties and even opposite trend directions depending on the phenology method
(Table 4.3). These results demonstrate the need to use multiple phenology methods and
satellite datasets in order to robustly provide confidence for the application of LPJmL

to identify controlling factors for land surface phenology and greenness.
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Figure 4.3: Regional averaged time series and linear trends of (a-g) peak FAPAR and (h-i) SOS.
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linear trend for the overlapping period of all datasets (2003-2011). The significance of the trend
in each segment is indicated by star symbols. See Figure 8.1b for definitions of regions.
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Figure 4.4: Kling-Gupta efficiency for SOS, EOS and peak FAPAR for datasets and LPJmL
phenology models.

(a-c) Latitudinal gradients of KGE. For each dataset the median KGE and the range between the
1st quartile and the maximum of the method ensemble are shown. As KGE can potentially
reach until negative infinity, the figures are cutted at -1.5. (d-e) p-value maps for the test if the
performance of LPJmL-GSI is within the agreement of datasets.

The evaluation of the performance of LPJmL-OP and LPJmL-GSI with respect to the
uncertainty of satellite datasets and phenology methods showed that LPJmL-GSI
agreed for SOS and EOS in temperate, boreal and arctic regions better with the
satellite-based datasets than the datasets with each other (Figure 4.4, Figure 4.5 i-k).
Especially in boreal forests and tundra, the KGE of LPJmL-GSI for SOS, EOS and LOS
was in more than 96% of all grid cells within the KGE ensemble of the satellite datasets.
In regions south of 40°N, the KGE ensemble of LPJmL was usually significantly lower
than the KGE ensemble of each dataset. Nevertheless, it is possible to find always a
combination of a satellite dataset and phenology method that attests the model either a
modest or almost perfect performance for SOS (Figure 8.7). For peak FAPAR, LPJmL-
GSI had lower KGEs than the satellite data ensemble in most regions except the arctic
tundra and tropical evergreen forests (Figure 4.4) where satellite datasets had generally
the lowest agreements (Figure 4.5 a-h). LPJmL-GSI had the weakest performance for
peak FAPAR in comparison to the satellite datasets in the Sahel where the KGE was
only in 6% of all grid cells within the KGE ensemble of the datasets. In all other
regions, the performance of LPJmL-GSI in reproducing peak FAPAR was in at least

29% of all grid cells within the agreement of the datasets. Globally, the null hypothesis
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that the KGE ensemble for peak FAPAR and SOS from LPJmL-GSI equals the KGE
ensemble of dataset cross-comparisons was accepted in 42% and 74% of all land grid
cells, respectively. The KGE of LPJmL-GSI was for most PGMs and grid cells higher
than the KGE of LPJmL-OP. Low KGEs between satellite datasets and between LPJmL-
GSI and satellite datasets were usually related to weak correlations and secondly to
differences in standard deviation (Figure 4.5). In summary, we demonstrate large
uncertainties in the timing of land surface phenology from different methods and
satellite-based datasets but also highlight the improved usability of LPJmL-GSI over

LPJmL-OP to explain phenology and greenness dynamics.
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Figure 4.5: Kling-Gupta efficiency (KGE) for satellite data comparison and LPJmL-GSI model
evaluation for peak FAPAR (a-h) and SOS (i-k) globally and for different regions.
Boxplots are regional distributions of KGE from all grid cells of a region and from the full data-
method ensemble. Plots are limited to -1. Barplots show the regionally averaged (median)
components of KGE and are plotted as the difference between the regional median KGE and a
perfect KGE at 1. HO indicates the percentage of grid cells in a region for which the null
hypothesis, HO: KGE (LPJmL-GSI ~ data) — KGE (data ~ data) = 0, was accepted (one-sided
Wilcoxon rank-sum test, paired by phenology methods, p <0.05).
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Figure 4.6: Total effect of different factors on (a) peak FAPAR, (b) SOS and (c) EOS.

The maps are red-green-blue composites of the maximum eTotal of grouped factors. Red
colours indicate a high total effect of seasonal water limitation or permafrost, green colours of
LULCC, fire or CO, and blue colours of seasonal cold or light limitation. In case of black or
white colours all factors have a low or high total effect, respectively. Shown are the eTotal
results from the median of the phenology method ensemble. All eTotal values were mean-
centered, scaled and histogram stretching was applied to enhance plotting. Grey areas are
without vegetation or seasonality was not detected.
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4.3.2 Controls on phenology and greenness dynamics

We identified seasonal water limitation and land-use driven changes in vegetation
composition as the globally dominant controls on annual changes in vegetation
phenology and greenness (Figure 4.6, Figure 8.6). Water availability had the highest
total effects on peak FAPAR in latitudes south of 40°N (Figure 4.7). Seasonal cold
temperature and light limitation determined total effects on peak FAPAR in regions
pole-wards of 30°N and 30°S, respectively. A multitude of factors had high total effects
on peak FAPAR in temperate, boreal and arctic regions north of 40°N, especially
through seasonal cold temperature, seasonal light limitation, LULCC, and permafrost.
CO: fertilization had an effect on peak FAPAR in all regions but was of minor
importance in comparison to all other factors. Fire had small total effects on peak
FAPAR at the global scale but dominated regionally in fire-prone ecosystems such as

Savannas and parts of boreal forests.
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Figure 4.7: Latitudinal gradients of the total effect of different factors on peak FAPAR.
Shown is the median and inter-quartile range of the phenology method ensemble. eTotal
values were averaged (median value) over 1° bands and a 7° running median filter was
applied.

The inter-annual variability of land surface phenology was not only affected by
seasonal effects of cold temperature, light and water availability, but also by annual
effects like LULCC and fire (Figure 4.6 b-c). In subtropical regions (South America,
Sahel, India, northern Australia), water availability together with LULCC and fire had

high total effects on SOS, whereas EOS was more influenced by water availability. In
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temperate regions (eastern US, Europe), SOS and EOS were mostly affected by seasonal
cold temperature, seasonal light limitation and by LULCC. In agricultural regions in
the central US, Ukraine and southern Russia, LULCC was the dominant controlling
factor for SOS and EOS. In boreal and arctic regions, a mixture of seasonal cold
temperature, light, water availability and permafrost dynamics had high total effects
on SOS and EOS. These results demonstrate the importance of water availability,

LULCC and permafrost dynamics for annual dynamics in vegetation phenology.
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Figure 4.8: Regional distributions and averaged total effects with components on (a-g) peak
FAPAR and (h-i) SOS.

Environmental factors had regionally different effects on mean, variance, correlation
and trends of vegetation phenology and greenness (Figure 4.8). In the tundra, the
variance and correlation of annual peak FAPAR was mainly affected by seasonal cold
temperature, permafrost and LULCC (Figure 4.8 a). Light limitation strongly

influenced the trend in peak FAPAR because LPJmL-GSI resulted in even stronger
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peak FAPAR greening trends if the length of the growing season in tundra regions
would not be limited by radiation. In boreal forests of Siberia, permafrost determined
the variance in annual peak FAPAR whereas both LULCC and permafrost had high
effects on trends in peak FAPAR (Figure 4.8 b). On the other hand, permafrost
dynamics were less important in boreal forests of North America than in Siberia: The
variance of annual peak FAPAR was equally affected by a mixture of seasonal cold,
light and water limitation whereas LULCC had the highest effect on correlation and
trends (Figure 4.8 c). In temperate forests of Europe, peak FAPAR was mostly affected
by LULCC, which mainly affected the variance, correlation and trend of annual
dynamics (Figure 4.8 d). In the Sahel, seasonal water availability and LULCC had both
high effects on the mean, variance, correlation and trends in peak FAPAR (Figure 4.8
e). In tropical forest regions, the trends in peak FAPAR were dominantly affected by
water availability (Figure 4.8 £, g). Although the total effect of CO: fertilization was
small in all regions, CO2 affected mainly trends in peak FAPAR.

In temperate forests of Europe the SOS was mainly affected by seasonal cold
temperature and light limitation (Figure 4.8 h). In boreal forests of Siberia SOS trends
were additionally affected by permafrost (Figure 4.8 i) pointing to a combined effect of
increasing temperatures, melting permafrost and thus higher water availability. Light
had an additional strong effect on SOS trends because these trends would be even
stronger if light is not ultimately limiting the growing season in these high-latitude
regions.

On the global scale, two satellite datasets and the LPJmL-GSI standard simulation had
greening trends and trends towards earlier start of season (but not significant) (Figure
4.9 a-b). These positive trends in peak FAPAR and negative trends in SOS are well
correlated with global trends in air temperature and water availability (Figure 4.9 c-d).
Positive trends in water availability from LPJmL-GSI are related to positive trends in
global precipitation (Figure 8.8). Interestingly, peak FAPAR from LPJmL-GSI and GL2-
VGT2, and SOS from LPJmL-GSI, GIMMS3g and MODIS had globally stronger
correlations with water availability than with temperature (Figure 4.9 b). Specifically,
the trends and variance of global peak FAPAR was mostly affected by seasonal cold
temperature and water limitation and LULCC in the factorial model experiment

(Figure 4.9 e). Correlation and trends in SOS were in the global average dominated by
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seasonal cold temperature and water limitation (Figure 4.9 f). These results suggest
that increasing water availability is a co-dominating control for the global greening and

start of season trends, along with air temperature.
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Figure 4.9: Global temporal dynamic and controlling factors for land surface phenology and
greenness.

Globally averaged time series with trends in (a) peak FAPAR and (b) SOS anomalies,
respectively. SOS anomalies are differences to the mean SOS of each grid cell. SOS time series
from MODIS and GL2-VGT2 were shifted by +4 days to improve the readability. Scatterplots
with linear regression and correlation coefficients between (c) peak FAPAR and (d) SOS, and

global averaged anomalies (relative to 1982) of air temperature (CRU TS3.2) and water
availability (LPJmL) for satellite datasets and LPJmL-GSI. Global distribution and global
averaged total effects with components on (e) peak FAPAR and (f) SOS. See Figure 8 for an
explanation of (e) and (f).
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4.4 Discussion

4.4.1 Uncertainties in detection and explanation of land surface phenology and

greenness

Our results demonstrated the need to use multiple datasets and phenology methods
for detection and model evaluation of land surface phenology and greenness metrics.
Moreover, the detection and explanation of land surface phenology and greenness
dynamics is affected from several sources of uncertainties like: 1) the used
observational response variable (here FAPAR) (Walker et al., 2014; White et al., 2014;
Wu et al., 2014), 2) the definition of phenology events, 3) the phenology method
applied, 4) the used observational datasets with associated errors and differences in
processing algorithms, and 5) the explanatory model.

We did not account for the uncertainty sources #1 and #2 in this study to ensure the
comparability of LPJmL model results with satellite-based datasets. A major source of
uncertainty or mismatches between different PGM estimates is the definition of
phenology events (especially SOS and EOS) (de Beurs and Henebry, 2010b).
Commonly, SOS and EOS from vegetation index time series are either defined as (A)
the start of spring greenup and the end of autumn senescence (Jonsson and Eklundh,
2002; Zhang et al., 2004) or (B) as the mid-days of spring greenup and autumn
senescence (Karlsen et al., 2006; Tateishi and Ebata, 2004; White et al., 1997). The latter
definition was used in this study. Definition (A) has the disadvantage that such
observations are often affected by soil reflectance, snow cover or are prove to noise
(Beck et al., 2006; Delbart et al., 2006; Huete et al., 1992) and thus might result in a
wrong timing. These are less important issues for definition (B). Although our results
by using definition (B) are to a limited extent comparable with ecological changes at
the surface (White et al.,, 2014), we avoid drawing conclusions about dynamics or
model performance that were likely affected by such observational limitations.

The use of different phenology methods (uncertainty #3) is one of the major source of
uncertainty (de Beurs and Henebry, 2010b). Smoothing and interpolation methods
have been developed to exclude short-term variability and non-vegetation changes
from phenology detection (Beck et al., 2006; Delbart et al., 2006; Jonsson and Eklundh,
2002). The accuracy of these methods often depends on the number of missing

observations, land cover type, dataset properties and the magnitude of short-term and
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inter-annual variability (Forkel et al., 2013; Geng et al., 2014; Kandasamy et al., 2013;
Musial et al.,, 2011; Verbesselt et al.,, 2010a). Additionally, the approach to detect
phenology dates (i.e. thresholds, extreme values of the derivative of the smoothed time
series, or parameters of fitting functions) introduces further differences (de Beurs and
Henebry, 2010b; White et al., 2014). It is possible to identify an optimal phenology
method for an ecosystem if ground observations are available (White et al., 2014).
Nevertheless, for continental to global applications an identification of an optimal
phenology method is not straightforward. Phenology methods tuned in a particular
area with ground observation can be too specific and not easily generalizable and
usable in another area. This implies that a phenology method might result in a good
agreement between datasets whereas another phenology method might result in a
worse agreement (Fig. S4e). Thus, the use of a single method may result in erroneous
diagnostics on phenology dynamics, and may undermine the robustness in analysing
dataset agreement or model performance. Unless a single robust method can be
identified from ground observations, the use of ensembles of state of the art methods
for detection of land surface phenology and greenness provide an empirical
probabilistic approach to detect PGMs.

The fourth source of uncertainty arises from the variety of datasets with differences in
sensor properties, observational errors and processing algorithms. Our results confirm
previous findings of negative SOS trends in Europe, North America and Asia
(Hamunyela et al., 2013; Julien and Sobrino, 2009; Zhang et al., 2014) and of greening
trends from the GIMMS3g dataset (Bi et al., 2013; Fensholt and Proud, 2012; de Jong et
al., 2013b; Xu et al., 2013). The weak agreement between datasets was more related to
low correlations and variance than to biases (Figure 4.5). Low correlations between
PGMs were found previously in Europe (Atzberger et al., 2013), Mongolia (Miao et al.,
2013), tundra, temperate arid regions and tropical forests (Fensholt and Proud, 2012),
and in parts of the USA and Mexico (Scheftic et al., 2014). Given these differences
between datasets, the use of a single dataset for model evaluation might result in
biased conclusions about model performance (Anav et al., 2013; Murray-Tortarolo et
al., 2013). Thus, the use of multiple datasets (Guay et al., 2014) and their uncertainty is

required for a robust analysis and of land surface phenology and greenness dynamics.
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Finally, the structure, parameters and forcing data of the used model to explain land
surface phenology and greenness is another uncertainty source (Migliavacca et al.,
2012; Raupach et al.,, 2005). Differences between forcing datasets like precipitation
introduce a high model uncertainty in the simulation of FAPAR inter-annual
variability especially in regions with sparse coverage of weather stations (Traore et al.,
2014). Thus the low performance of LPJmL in the Sahel is probably to a large extent
caused by the uncertainty in the precipitation and land use datasets. To assess
structural uncertainty, we compared results of two phenology modules, LPJmL-OP
and LPJmL-GSI, and demonstrated an improved ability of the latter for reproducing
observed dynamics. Generally, different model structures from empirical models
(Barichivich et al., 2014; Broich et al.,, 2014; e.g. de Jong et al.,, 2013a), model-data
integration approaches (Caldararu et al., 2014; e.g. Stockli et al., 2011) to process-
oriented models (e.g. Lucht et al., 2002; Mao et al., 2013; Piao et al., 2006) were used to
explain observed phenology and greenness dynamics. It has been shown that
structural uncertainty is larger than parameter uncertainty in phenology modelling
(Migliavacca et al., 2012). We reduced the uncertainty of FAPAR and phenology-
related parameters by optimizing LPJmL-GSI against observations (Forkel et al., 2014).
Consequently, modelled SOS and EOS were within the uncertainty of datasets in many
regions (Figures 5). On the other hand, the model performance for peak FAPAR was
usually lower than the data agreement. Peak FAPAR is related to FPC in LPJmL and
thus depends on productivity, allocation, mortality, establishment, fire and land use
change. These model routines were not yet improved through parameter optimization
and thus provide potential for further model development. Other controls on
greenness are not considered in LPJmL like nutrient availability (Fisher et al., 2012) or
disturbances as insect infestations and storms (Bright et al., 2013; Eklundh et al., 2009),
changes in grazing (Hilker et al., 2014) or in topography and soil conditions (Frost et
al., 2014; Walker et al., 2009). However, we assume that these potential drivers, as for
the case of fires, can be important regionally but are not of global importance for
dynamics of land surface greenness and phenology. Increasing nutrient availability
like increasing nitrogen deposition might be the reason why LPJmL underestimated
peak FAPAR trends in comparison to the GIMMS3g in temperature forests of Europe

(De Vries et al., 2006). Nevertheless, although nitrogen deposition changes globally
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(Vitousek et al., 1997), nitrogen deposition was only identified of regional importance
for trends in LAI in another modelling study (Mao et al., 2013). In summary, our
approach considers uncertainties from different datasets and phenology methods, and
allowed us for the first time to quantify the relative importance of light and water
availability, observed fire activity, permafrost dynamics and LULCC on annual

dynamics in land surface phenology and greenness.

4.4.2 Importance of light, water availability, and LULCC for phenology

dynamics

Besides the known effect of seasonal cold temperature on SOS in temperate and boreal
forests (Jeong et al., 2011; Keenan et al., 2014; Menzel et al., 2006; Wolkovich et al., 2012;
Zhang et al., 2007), we demonstrated additionally the importance of seasonal light and
water availability for inter-annual variability and trends in phenology. The availability
and intensity of light affects spring leaf development especially in understory or late-
successional species (Caffarra and Donnelly, 2011; Korner and Basler, 2010; Maeno and
Hiura, 2000; Richardson et al., 2009). Moreover, our results suggest that the warming-
induced advancing SOS trend is dampened by a limited availability of light in boreal
forests. Thus, further warming in temperate and boreal regions might not necessarily
result in a longer growing season (Korner and Basler, 2010; Richardson et al., 2013).

We found a strong effect of water availability and permafrost on SOS in boreal forests
(Figure 4.8 i). The absence of permafrost in LPJmL increased water availability which
resulted in stronger advancing SOS trends. Permafrost soils and the seasonal dynamic
of the active layer are regulating the plant available water in many tundra and boreal
forest regions and thus are affecting species composition and productivity
(Benninghoff, 1952; Schuur et al., 2007; Sugimoto et al., 2002) and possibly phenology
(Molau, 1997; Natali et al., 2012). Moreover, is has been shown that winter precipitation
determines spring greenup in northern latitudes (Fu et al., 2014b). The equally
important roles of seasonal light and water availability on trends and variance in SOS
suggest that the temperature sensitivity of phenology might be overestimated if these
factors are neglected in experimental studies (Wolkovich et al., 2012).

It is generally known that phenology depends on land cover type or species (Cleland et
al., 2007; Korner and Basler, 2010; Richardson et al., 2013). However, the role of LULCC
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on inter-annual dynamics of phenology was only little studied (Bradley and Mustard,
2008; Davison et al., 2011). Our findings emphasize, to our awareness for the first time,
the control of LULCC on SOS in temperate regions (Figure 4.6 b). Therefore, we
conclude that beside climatic drivers, anthropogenic factors need to be carefully
considered to explain the inter-annual variability and trends of land surface

phenology.

4.4.3 Regional controls for greening and browning trends

Seasonal water availability and LULCC had dominant effects on variance, correlation
and trends in peak greenness in all regions (Figure 4.8). In boreal forests and tundra,
permafrost and land cover change had the highest effects on variance and trends in
peak FAPAR (Figure 4.8 a-c), despite temperature. Conversely to previous studies
explaining greening trends in arctic and boreal regions with warming temperatures
(Bhatt et al., 2013; Jia et al., 2009; Lucht et al., 2002; Xu et al., 2013), our results indicate
that this warming is mediated into greening through cold temperature effects on
phenology, and through changes in permafrost-regulated water availability and
increasing vegetation coverage. The arctic and boreal greening is associated to an
increase and intensification of shrub cover (Berner et al.,, 2013; Forbes et al., 2010;
Myers-Smith et al., 2011). Warming increases the risk of permafrost degradation
(Jorgenson et al., 2010; Shur and Jorgenson, 2007) and the associated increases in water
availability in lowlands and nutrient availability contribute to greening trends (Berner
et al., 2013; Frost et al., 2014; Raynolds et al., 2013; Walker et al., 2009). The importance
of these effects could be a potential explanation for the weakening relationship
between temperature and greenness dynamics (Piao et al., 2014). The influence of
permafrost dynamics on greening trends contributes to the divergent continental
patterns of less greening/more browning in boreal forests of North America than in
Eurasia (Bi et al., 2013) because boreal forests of Eurasia are too larger extent underlain
by permafrost.

In temperate forest of Europe, inter-annual variability and trends in peak FAPAR were
mostly related to LULCC (Figure 4.8 d). Indeed, large areas experienced forest
regrowth in the last decades (Fuchs et al., 2013). In central and eastern Europe, this was

induced through socio-economic transitions in the former socialist states from the 1980
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to the 1990s: croplands were reforested (Alcantara et al., 2013; Kozak, 2003; Kuemmerle
et al., 2008) and forests experienced a recovery after damages by air pollution in the
1980s (Kubikova, 1991; Main-Knorn et al., 2009; Poldk et al., 2006; Schulze, 1989).
Additionally, disturbance-induced land cover changes like storms and insect
infestations damaged especially the dominant spruce forests (Jonsson et al., 2009;
Wermelinger, 2004). This effect can be also seen in satellite-derived vegetation indices
(Eklundh et al., 2009). Although not all of these disturbances that affect land cover are
represented in LPJmL, our results demonstrate that fixed land cover conditions of 1982
cannot explain the observed greening trends in temperate forests of Europe.

In the Sahel, peak FAPAR was equally affected by seasonal water availability and
LULCC (Figure 4.8 e). This is in agreement with previous findings of re-greening in
1982-2011 because of increasing precipitation trends after a period of severe droughts
(Eklundh and Olsson, 2003; Herrmann et al., 2005; Hickler et al., 2005; Olsson et al.,
2005). Opposing to this precipitation-induced greening trends, increased land
degradation occurs (Dardel et al., 2014a). Increasing trends in precipitation and land
degradation are accepted as the main controls for the variability and trends in
greenness in the Sahel, but the relative contribution of these opposing factors is
debated (Brandt et al., 2014a; Dardel et al., 2014a; Fensholt et al., 2013). Some studies
associate the greening to a recovery of trees (Brandt et al., 2014b), but it has been
shown that changes in tree cover depend highly on the used satellite dataset with
diverging results (Horion et al., 2014). Our results demonstrate that changes in
vegetated area are more important for the trend in peak FAPAR than seasonal changes
in water availability.

In both tropical forest regions (Amazon and Congo), seasonal water availability and
LULCC were the dominant controls for variance and trends in peak FAPAR (Figure 4.8
f-g). Although some datasets have significant trends in vegetation greenness over the
Amazon and the Congo basin (Figure 4.3), the satellite datasets have a poor agreement
in temporal dynamics. Greenness observations over tropical forest regions are affected
from several observational limitations (Samanta et al., 2012) and seasonal changes have
been identified as artefacts from sun-sensor geometries (Morton et al., 2014).
Consequently, previous hypotheses about a greening of the Amazon during drought

periods because of increased light availability (Huete et al., 2006; Myneni et al., 2007;
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Saleska et al.,, 2007) have been falsified (Morton et al., 2014). Moreover decreased
productivity and increased tree mortality was reported during drought periods
(Nepstad et al., 2007; Phillips et al., 2009; Zhou et al., 2014). Our results support these
findings that water availability rather than light affect seasonal to decadal variations in

peak greenness in topical forests.

444 Controls for global greening trends and consequences for prognostic

modelling

Our results demonstrate that global greening and phenology trends are mostly
associated to 1) annual changes in land cover and land use, and 2) to seasonal effects of
cold temperature and water availability on phenology (Figure 4.9 e-f). This finding
partly agrees with previous studies about warming-induced greening trends in high-
latitudes conducted at regional scale (Lucht et al., 2002; Xu et al., 2013). However, we
additionally emphasize the strong contributions of LULCC and water availability on
inter-annual and decadal variability of vegetation greenness globally. Thus, greening
trends are linked to an intensification of the global water cycle (Huntington, 2006) that
leads to regional increasing precipitation (New et al., 2001), soil moisture (Sheffield and
Wood, 2008) or earlier soil thaw dates (Smith et al., 2004). Land use changes have
global consequences for ecosystem structure, functions and services (Foley et al., 2005).
Important changes in forests cover have been reported for the last decade (Hansen et
al., 2013) that should clearly be represented in the inter-annual variability of land
surface phenology and greenness. Additionally, changes in anthropogenic land use
affected the inter-annual variability and trends in land surface phenology and
greenness especially in agricultural regions of Europe, the US, south-east Asia, sub-
Sahelian Africa and South America (Mueller et al., 2014; Wang et al.,, 2014). Although
CO: fertilization clearly affected the trend in global greenness in 1982-2011, the effect of
CO: fertilization was small in comparison to seasonal temperature and water effects,
land use and land cover change.

In conclusion, our study reveals spatially and temporally distinct drivers of land
surface phenology and greenness dynamics. The importance of a driver varies
according to temporal scale, region, and metric of interest (start of season, end of

season, peak greenness). Thus future studies should clearly state the investigated

-176 -



aspect of phenology. In temperate and boreal forests, seasonal light and water
availability, in addition to seasonal cold temperature, mainly control inter-annual
variability and trends of the start of growing season. In all regions, inter-annual
variability and trends of peak greenness are driven by seasonal water limitation and
land use and land cover change (LULCC). The large importance of LULCC and water
availability on phenology and greenness dynamics requires a better observation-based
quantification and understanding of land transitions, natural vegetation dynamics, and
water-vegetation couplings in order to improve prognostic land surface models.
Current prognostic land surface models have large uncertainties about the future
development of the terrestrial carbon cycle (Friedlingstein et al., 2006, 2014). These
uncertainties are partly related to an underestimation of the role of water in
comparison to temperature in ecosystem carbon turnover (Carvalhais et al., 2014) and
to different representations of vegetation transitions (Friend et al., 2014). Our findings
emphasize that in addition to limitation by low temperatures, water availability is
globally a co-dominant control for start of growing season and greening trends. These
results point towards the reformulation of phenology models contributing to a better
prognostic description of vegetation controls on the global carbon cycle. The model

introduced and tested here overcomes some of these limitations and missing drivers.
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5 Enhanced seasonal CO: exchange caused by amplification

of plant productivity in the northern biosphere

Abstract

The seasonality of atmospheric carbon dioxide (CO:) in the northern hemisphere is
mainly controlled by photosynthetic carbon uptake and respiratory release of the
terrestrial biosphere (Keeling et al, 1996). Monitoring of atmospheric CO:
concentrations has shown an amplification of the seasonal CO: cycle in high northern
latitudes (> 40°N) since the 1960s (Bacastow et al., 1985; Graven et al., 2013; Keeling et
al., 1996). However, the mechanisms behind this amplification of the CO: amplitude
are not yet fully understood (Graven et al., 2013; Randerson et al., 1997). Here we show
by coupling a terrestrial biosphere model (LPJmL) to an atmospheric transport model
(TM3) that the larger CO: amplitude trend in high northern latitudes compared to
lower latitudes is mainly driven by an enhancement of photosynthetic carbon uptake
in boreal and arctic regions. The interaction of direct climate effects on photosynthesis
and indirect effects on ecosystem productivity through changes in vegetation coverage
are able to explain the observed trend, which results in increasing net biosphere carbon
uptake during the boreal summer. CO: fertilization and agricultural land-use change
(Gray et al., 2014; Zeng et al., 2014) contribute moderately to the CO: amplitude trends,
but these factors cannot explain the latitudinal gradient of the trend. Our results
emphasize the importance of the high-latitude climate-vegetation-carbon cycle
feedbacks, and indicate that during the last decades photosynthetic carbon uptake has
more reacted strongly to high-latitude warming than carbon release processes

implying a sustained negative feedback.

Main text

Atmospheric monitoring has shown an increase in the atmospheric abundance of CO:
due to anthropogenic emissions but also an increase in the amplitude of the seasonal

cycle of COz in the northern hemisphere (IPCC, 2014; Keeling et al., 1996). Based on
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evidence from surface stations as well as integrative flight campaigns in the middle
and upper troposphere (Graven et al., 2013; Keeling et al., 1996), the observations
consistently show that the amplitude of the seasonal cycle of CO: (hereinafter shortly
called “CO:2 amplitude”) has increased more strongly in high latitudes (50% increase
north of 45°N) (Graven et al., 2013) than in low latitudes (< 25% increase south of 45°N)
(Graven et al., 2013) since the 1960s. The CO: amplitude in the northern hemisphere is
primarily driven by the difference in phase and amplitude between photosynthetic
carbon uptake (gross primary production, GPP) and ecosystem respiration (Reco) by
the land biosphere (Heimann et al., 1989; Randerson et al., 1997). The strong
seasonality of these processes in northern land ecosystems causes the average CO:
amplitude to increase from low to high northern latitudes (Randerson et al., 1997).

Changes in the CO: amplitude are thus likely an indicator for trends in the terrestrial
carbon cycle of northern ecosystems. In particular, boreal and arctic regions
experienced strong warming trends in the last decades (IPCC, 2014) (Figure 1a). In the
same period an enhanced plant growth was observed from satellites (Lucht et al., 2002;
Myneni et al., 1997; Xu et al., 2013) which is usually referred as “greening” (Figure 1b).
Satellite observations of a greening land surface are confirmed by ground observations
of an increasing coverage of deciduous shrubs in the tundra and along the arctic/boreal
tree line (Berner et al., 2011; Myers-Smith et al., 2011). Accordingly to the increase in
vegetation cover, independent estimates of GPP from machine learning approaches
(Jung et al., 2011) and of net biome productivity (NBP) from atmospheric inversions
(Rodenbeck et al., 2003), respectively, demonstrate an increasing terrestrial gross and
net carbon uptake (Figure 1c-d). These multiple observational signals demonstrate an
amplification of plant productivity in northern ecosystems which could likely cause the
increase in CO2 amplitude (Bacastow et al., 1985; Barichivich et al., 2013; Keeling et al.,
1996; Myneni et al.,, 1997). A recently proposed alternative hypothesis is that the
intensification of agriculture in mid-latitudes contributes to CO: amplitude trends
(Gray et al., 2014; Zeng et al., 2014). Accordingly to these studies, the intensification of
agriculture explains around 20% (Gray et al., 2014) or up to 45% (Zeng et al., 2014) of
the observed mean global amplitude trend, depending on methodology used.
However, these do not comprehensively account for the importance of other factors

like changes in vegetation cover in high latitude ecosystems, fossil fuel emissions or
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atmospheric transport. Other plausible contributing factors are the direct effects of
climate change and CO: fertilization on plant photosynthesis and ecosystem
respiration, as well as an indirect effect of increasing vegetation coverage on ecosystem
productivity. Current earth-system models consistently underestimate the amplitude
trend (Graven et al.,, 2013), and a comprehensive explanation of the patterns of CO2
amplitude changes based on these factors is still missing.

Here we examine this question by combining observations from long-term monitoring
stations of atmospheric CO: concentration, satellite observation of vegetation greenness
(Zhu et al., 2013), global observation-based datasets of GPP (Jung et al., 2011), and NBP
(Rodenbeck et al., 2003) with the LPJmL dynamic global vegetation model (Bondeau et
al., 2007; Sitch et al., 2003) and the TM3 atmospheric transport model (Heimann et al.,
1989) (hereinafter called LPJmL+TM3, see Methods) to explain the latitudinal gradient
of CO: amplitude trends. Unlike other biosphere models that were previously
evaluated against CO: amplitude trends (Graven et al., 2013; Zeng et al., 2014), LPJmL
considers several processes that potentially contribute to a better explanation of these
trends like agriculture, irrigation and land use change (Bondeau et al., 2007);
vegetation dynamics; and important processes for boreal and arctic ecosystems like
permafrost (Schaphoff et al., 2013), fire and post-fire succession (Thonicke et al., 2010).
Moreover, LPJmL uses an improved phenology module (Forkel et al., 2014), which has
been optimized against satellite observations of FAPAR (fraction of absorbed
photosynthetic active radiation), albedo, and an observation-based data set of GPP,
altogether resulting in a better representation of vegetation greenness dynamics, tree
cover, as well as global carbon fluxes and stocks (Forkel et al, 2014). Note that

atmospheric CO: data were not used to constrain LPJmL.
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Figure 5.1: Amplification of plant activity in the northern biosphere.

Annual time series and linear trends of (a) mean annual air temperature, (b) peak FAPAR
(fraction of absorbed photosynthetic active radiation), (c) annual amplitude of gross primary
production (GPP), (d) annual amplitude of net biome productivity (NBP), and (e) seasonal
amplitude of atmospheric CO2 at Barrow (BRW) and Mauna Loa (MLO). Time series in (a-d)
were spatially aggregated for boreal and arctic land regions north of 41°N, and the 1982-2011
mean has been subtracted. Dashed lines indicate the trends for the overlapping period of
LPJmL simulations and observations. P-values were calculated with the Mann-Kendall trend
test.

We estimated CO: amplitude trends in observed time series at 19 monitoring stations
with at least 20 years of data (Extended Data Table 1, Methods on CO: time series
processing and site selection). We found much stronger positive CO: amplitude trends
at high latitude stations (e.g. 0.093 ppm yr! = 0.53% yr! at Point Barrow, BRW in 1971-
2011) than at low latitude stations (e.g. 0.072 ppm yr! = 0.076% yr?! at Mauna Loa,
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MLO, in 1970-2011, Figure le). These estimated trends were of similar magnitude to

previous studies (Graven et al., 2013; Randerson et al., 1997) although not identical

because of differences in the used station records, time series analysis methods, and

especially time series length. Especially at MLO we found much weaker CO:

amplitude trends because this trend originates mostly from low CO: amplitude values

in the 1960s and disappears from 1970 onwards. To account for the effect of time series

length, we estimated the uncertainties in CO: amplitude trends by computing trends

for different start and end years (Methods on trend analysis, Extended Data Figure 1).

The estimated uncertainties (0.538:% % yr! at BRW, 0.076

(_)'&%59 % yr! at MLO,

503.75'5 %-iles of trend slope ensemble) demonstrate that only high latitude stations

have persistent long-term increases in COz amplitude. We found a large longitudinal

variability with partly large uncertainties in CO2 amplitude trends at mid-latitude

stations (30-60°N) (Figure 2a) which was already shown previously based on much

shorter time series (Randerson et al., 1997).
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Figure 5.2: Latitudinal gradients of trends in the seasonal CO2 amplitude and its drivers.

(a) Simulated and observed CO: amplitude trends with 95% confidence intervals. (b) Global effects of
CO: fertilization and climate change on the latitudinal gradient. Removing the effect of CO2
fertilization on photosynthesis reduces CO2 amplitude trends globally but has no effect on the
latitudinal gradient. The latitudinal gradient disappears with a constant climate. (c) Separation of the
effects of greening and climate change in high-latitude regions on the latitudinal gradient. The
latitudinal gradient disappears both without high-latitude greening (i.e. constant vegetated area but
still climate change) and without climate change (i.e. no climate change but still forcing changes in

vegetated area).

In comparison to the observations, LPJmL+TM3 had on average stronger CO:

amplitude trends than the observations at station level (Figure 2a). It nevertheless



reproduced the observed pattern of strong positive CO: amplitude trends north of
45°N, the large variability of trends in mid-latitudes, and small or no trends south of
20°N. LPJmL+TM3 had also similar CO: amplitude trends at higher atmosphere levels
like previously observed (Graven et al., 2013) (Extended Data Figure 2). We found that
simulations of CO: amplitudes were sensitive to the choice of the meteorological
forcing dataset for the TM3 transport model (Extended Data Figure 3a). Therefore we
propagated the uncertainty both from time series length and meteorological forcing to
the overall uncertainty of simulated CO: amplitude trends for a more robust model
evaluation. We additionally checked if the inter-annual variability of ocean CO: uptake
could contribute to CO: amplitude trends but found no distinct contribution in
comparison to just using a climatology of ocean uptake (Extended Data Figure 3b).
LPJmL+TM3 simulations were well correlated with observations regarding spatial
patterns of mean CO: amplitude values (r = 0.84) and trends (r = 0.51) (Extended Data
Figure 4). LPJmL also reproduces observations of the amplification of plant
productivity in northern ecosystems like the observed greening trend (Forkel et al.,
2014). LPJmL simulates increasing coverage of deciduous vegetation in arctic and
boreal regions as seen in ground observations, and also agrees with independent
observation-based estimates of trends in the amplitude of GPP and NBP (Figure 1b-e,
Extended Data Figure 5). We conclude from these comparisons of model simulations
against multiple observational data sets that LPJmL-TM3 can be applied to
comprehensively assess controlling factors for COz2 amplitude trends.

We quantified the contribution of terrestrial NBP from different regions to CO:
amplitude trends (Extended Data Table 3a, Extended Data Figure 6b, Methods on
Factorial model experiments and quantification of contributions). Boreal NBP
contributed 51% to the average CO: amplitude in the 1970s at northern high latitude

sites (> 45°N). In the 2000s, the contribution of boreal regions increased to 54% which is
related to an annual increase of 0.3581411}1 % yr-l. The contribution of arctic NBP was 17%
in the 1970s and increased with 0.188%2l % yr'. NBP from global agricultural regions

contributed with 11% in the 1970s and increased with 0.148:(1)? % yr'. Temperate and

tropical regions had only minor contributions to the trends in CO: amplitude.

However, only trends in the contribution of arctic and boreal NBP were significant (p =
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0.03 and p = 0.01, respectively) at northern sites. At low latitude sites (0 — 45°N), NBP

from boreal regions still contributed dominantly to the increase in COz amplitude with

0.46818% % yr! (p = 0.12), followed by NBP from agricultural regions with 0.179’531 %

yr'! (p = 0.37) and NBP from arctic regions with 0.148:6593 % yr! (p = 0.12). Therefore

boreal regions contributed approximately with 57%, arctic regions with 25% and
agricultural regions with 17% to the overall CO: amplitude trend at northern latitude
sites (41%, 14% and 20% at low latitude sites, respectively). These contributions from
agricultural regions provide support for the lowest of the previous estimates (17%-
25%) (Gray et al., 2014) for the contribution to the increase in CO: amplitude from
increased cropland productivity. We found no profound change in the contribution
from fossil fuel emissions or ocean CO: uptake to the trends in CO: amplitude. These
results demonstrate that boreal and arctic regions dominate the increase in the CO:
amplitude globally. Consequently, besides agriculture, processes such as permafrost
dynamics (Schaphoff et al., 2013) or phenology (Forkel et al., 2014), that are of major
importance for vegetation productivity in boreal and arctic regions, strongly affected
the simulation of CO2 amplitude trends (Extended Data Figure 6c), suggesting a strong

climate control on long term ecosystem dynamics.
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Figure 5.3: Trends in the seasonal amplitude of terrestrial net biome productivity (NBP), gross
primary productivity (GPP) and ecosystem respiration (Reco) per latitudinal bands of 3° width.
Uncertainty bands represent 95% confidence intervals of the amplitude trend depending on
time series length.
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Both GPP and ecosystem respiration (Reco) can potentially contribute to the increasing
CO2 amplitude. We found stronger GPP than Reco amplitude trends across all
northern latitudes (Figure 3) and therefore GPP had a stronger contribution than Reco
to the CO: amplitude (Extended Data Table 3b). For example, GPP contributed with
250% and Reco with -154% to the CO2 amplitude across northern high latitude sites in
the 1970s. The sum of these two contributions shows that terrestrial net ecosystem
exchange (NEE) contributed with 96% to the CO: amplitude. In the 2000s, terrestrial
NEE contributed with 97% (= 234% — 137%, GPP — Reco) to the seasonal CO: amplitude

at northern latitudes. The increasing terrestrial net contribution is caused by an

increase in the contribution of GPP with a trend of 2.3%‘02'1 % yr' whereas the

contribution of Reco showed a weaker increase (—1.59‘%%4 % yrl, a negative sign for a

trend in the contribution of Reco to the COz amplitude indicates an increase because of
the negative overall contribution of Reco to the seasonal cycle). The increasing

contribution of the net land uptake on the CO: amplitude is reflected by an increase of

total net biome productivity (NBP) in northern lands (> 41°N) of 0.0117 0> PgC yr!

(LPJmL) and 0.016818%11 PgC yr-1 (Jena Inversion) per year. These results suggest that

the positive trends in the seasonal CO: amplitude can be explained by a
photosynthesis-driven increase in net uptake of the northern biosphere.

Several factors can contribute to the increased photosynthetic carbon uptake, and thus
the latitudinal gradient of the increasing CO: amplitude. Rising atmospheric CO: and
warming that relax climatic limits for plant growth in northern ecosystems are direct
physiological effects that can enhance photosynthesis (Norby et al., 2005). To test the
relative effect of CO: fertilization and climate change on CO: amplitude trends, we
performed two model experiments with LPJmL where we 1) kept temperature and
precipitation at 1965-1975 levels for the period 1970-2011 (i.e. no climate change); and
2) held COz constant at 325.7 ppm after 1970 to quantify the effect of CO: fertilization
(Figure 2b). We found that both climate change and CO: fertilization affect CO:
amplitude trends, but with regional differences: Climate change was the dominant

factor on CO: amplitude trends north of 40°N. For example, the simulated trend

increased from — 0.05(_]‘8?27 % yr' without climate change to 0.568:2% % yr'! with climate

change at Barrow. On the hand, CO: fertilization was the dominant factor south of
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40°N. For example, the simulated trend increased from —0.5(_)'&267% yr'! without CO:

fertilization to 0.079 9‘3.1061 % yr! with CO: fertilization at Mauna Loa. Without the effect

of CO: fertilization, CO:2 amplitude trends were generally lower (ca. -0.04 ppm yr!
across all latitudes) but the latitudinal gradient of stronger CO: amplitude trends in
northern than in southern regions was not affected. Without the effect of climate
change, the strong CO: amplitude trends in northern latitudes disappeared and thus
the latitudinal gradient reverted towards stronger trends south of 40°N (Figure 2b).
These results show that the much stronger COz amplitude trends at northern latitudes
are mainly dominated by NBP from boreal and arctic regions, from gross primary
production and climate change. We further quantified the role of an increasing
vegetation coverage (or “greening”) in boreal and arctic regions on CO: amplitude
trends. To disentangle the effect of climate change and greening in boreal and arctic
regions, we performed two more model experiments: 1) We again fixed climate in the
period 1970-2011 according to the temperature and precipitation conditions in 1965-
1975 but prescribed changes in vegetated area as simulated in the standard model run
(i.e. no climate change but still greening). 2) We used observed climate but fixed
vegetated area after 1970 (i.e. no greening but still climate change). Both experiments
were performed only for boreal and arctic regions while the rest of the world was
simulated following the normal simulation protocol. The latitudinal gradient of
stronger CO2 amplitude trends in northern latitudes disappeared without the effects of
greening and climate change in northern ecosystems, respectively (Figure 2c). The
effect of climate change in northern regions had a higher importance than the greening
effect on photosynthesis. However, this result demonstrates that the increase in
vegetated area was a major contribution especially to the strong CO: amplitude trends
in northern latitudes. This relationship between greening in northern ecosystems and
CO: amplitude trends has been suggested previously based on observations
(Barichivich et al., 2013; Myneni et al., 1997) but the attribution to regional drivers and
mechanisms has been not treated comprehensively before.

Our results demonstrate that the latitudinal gradient of CO: amplitude trends is
ultimately shaped by the interaction of recent climate change and vegetation dynamics
in boreal and arctic ecosystems. Overall, we offer a parsimonious and plausible

explanation of the decadal trend of seasonal CO: amplitude in the high latitudes based
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on a comprehensive consideration of several possible factors. Our analysis indicates
that in the last decades photosynthetic carbon uptake reacted more strongly to changes
in climate than carbon release processes implying a sustained negative feedback.
Stimulation of photosynthesis and greening by warming and associated drivers can
however not be unlimited, because of limitations by photoperiod, nutrients and
possibly increased mortality. Thus at some point in the future the positive trend in the
seasonal CO: amplitude might stall. Continued long-term observation of atmospheric
CO: together with satellite observations of productivity and vegetation dynamics will

be the key to detect such change in the high-latitude carbon cycle dynamics.
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6 Conclusions and future research

How do observational uncertainties contribute to the quantification of dynamics in
land surface phenology and greenness?

The consideration and quantification of observational uncertainties in the analysis of dynamics
in land surface phenology and greenness are essential to ensure the reliability of scientific

results.

How can DGVMs be improved to better represent phenology and greenness
dynamics?

The LPJmL DGVM required the implementation and optimization of a new phenology model to
better represent greenness dynamics on seasonal to decadal time scales. Thereby it was
important to consider water availability as an additional control on phenology. In addition,
these model improvements also resulted in a better representation of global carbon cycle

observations.

What are the controls on land surface phenology and greenness on multiple time
scales?

The importance of environmental controls for land surface phenology and greenness varies
regionally and depends on time scale. However, water availability and temperature play co-
dominant roles globally for seasonal dynamics, inter-annual variability and trends in land

surface phenology and greenness.

What is the contribution of high latitude greening on the increasing amplitude of
atmospheric CO2?

The increasing seasonal amplitude of atmospheric CO: in northern latitudes is mainly driven by
enhanced terrestrial gross primary production in boreal and arctic ecosystems, which is caused

by the climate-induced greening trend.
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6 Conclusions and future research

6.1 Accounting for observational uncertainties

The consideration and quantification of observational uncertainties in the analysis of dynamics
in land surface phenology and greenness are essential to ensure the reliability of scientific
results.

Differences in satellite datasets affect estimates of land surface phenology and
greenness on all temporal scales from instantaneous to mean values, seasonal cycles,
inter-annual variability and trends (Figures 4.2, 4.3; Tables 4.2, 4.3). The use of a single
satellite dataset can therefore result in biased conclusions about ecosystem dynamics
and model performances when applied in the evaluation of ecosystem models.

The availability and varying performance of time series analysis methods is a major
source of observational uncertainty that needs to be quantified. The results
demonstrate that the performance of trend change detection methods in detecting the
real underlying trend and breakpoints decreases as the inter-annual variability of the
time series increases (Figure 2.7, Table 2.2). Specifically, all methods were prone to
detect trends opposite to the underlying reality (e.g. detecting browning instead of
greening) (Table 2.1). Nevertheless, detected breakpoints in NDVI trends in Alaska
coincide with drought periods, fire events, but also with sensor changes in the NDVI
record, and the amount of flagged NDVI values due to low data quality (Figures 2.9
and 2.10; chapter 2.4.4). Thereby the use or exclusions of snow-flagged NDVI values
had a strong effect on the estimation of trends and breakpoints (Figure 2.8). Given the
strong dependence of trend-detection method performance on inter-annual variability,
a different trend analysis approach was used in chapter 5 and is proposed for future
studies (Figure 9.1). This approach computes an ensemble of trend slopes for different
combinations of years of the time series and thus quantifies the uncertainty of a trend
by accounting both for the effects of time series length and inter-annual variability. In
summary, given the low reliability of trend change detection methods, satellite-derived
vegetation greenness time series need to be screened for low quality values (snow,

clouds) and the uncertainty of estimated trends needs to be quantified by either using
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ensembles of trend methods or by directly accounting for inter-annual variability and
time series length.

The varying performance of phenology detection methods introduces major
uncertainties in estimates of phenology events like the start or end of growing season
and their temporal dynamics. Based on previous findings about the reliability of
phenology methods for vegetation index time series (e.g. de Beurs and Henebry, 2010;
Kandasamy et al., 2013; White et al., 2014, 2009), an ensemble of phenology methods
and satellite datasets was used in this study (chapter 4.3.1). Enormous differences in
the timing of the start or end of growing season were found by using different
phenology methods and datasets (chapter 4.3.1). As it is almost impossible to identify a
single best phenology method for continental or global-scale applications, the use of an
ensemble of several satellite datasets and phenology methods is an robust approach to
assess dynamics in land surface phenology and greenness and to evaluate ecosystem
models.

Previous satellite-based studies of greening and phenology trends rarely accounted for
observational uncertainties, i.e. they just relied on one satellite dataset and analysis
method (e.g. Huete et al., 2006; de Jong et al., 2011, 2013; Piao et al., 2011; Wang et al.,
2011). By considering differences between satellite datasets some of these studies need
to be critically re-evaluated or have been refuted (Guay et al., 2014; Jiang et al., 2013;
Morton et al., 2014). For example, strong browning trends in boreal forests in the
GIMMS dataset are not confirmed by the newer GIMMS3g dataset or by datasets from
other sensors (Guay et al.,, 2014; Jiang et al., 2013) (Table 4.3, Figure 4.3). Additionally,
previous observations of a seasonal green-up of the Amazon under drought conditions
and increased shortwave radiation (Huete et al., 2006; Myneni et al., 2007) have been
rebutted (Morton et al.,, 2014; Samanta et al., 2010) and are neither supported by the
results of this thesis (chapter 4.4.3). In summary, in future studies about land surface
phenology and greenness dynamics, it is imperative that observational uncertainties
from different satellite datasets and time series analysis methods are always assessed
and evaluated against alternative observational datasets in order to avoid wrong or
biased conclusions.

Several alternative data sets that are valuable to evaluate findings from coarse-scale

satellite greenness time series and to get a better understanding of phenology and
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vegetation dynamics already exist or will become available in the near future. As this
thesis shows, vegetation dynamics or land cover change (1) strongly affect land surface
phenology and greenness, and (2) interacts with climate dynamics, resulting in positive
trends of the terrestrial net carbon uptake in high-latitude ecosystems. However, the
current availability of datasets impedes the evaluation of such model simulations of
vegetation-carbon cycle dynamics. Current land cover maps usually have no temporal
domain and hold several uncertainties that prohibit their use to assess land cover
change (Congalton et al., 2014). On the other hand, re-analyses of land cover change
often depend on uncertain country-level statistics, have coarse spatial resolution, or are
only available at high resolution only regionally (e.g. Fuchs et al., 2014 for an overview
of available datasets). Alternatively, the long time series of Landsat sensors since 1972
could be used but is currently under-exploited for large scale analyses of vegetation
dynamics. Landsat images were used to assess long-term (30 years) greenness trends
regionally (Fraser et al., 2011, 2014; Verbyla, 2008), to assess regional changes in
vegetation cover (1973-2012) (Urban et al., 2014), and to quantify changes in tree cover
globally but for a shorter time period only (2000-2012) (Hansen et al., 2013). The higher
spatial resolution of Landsat data provided a better understanding of the regional
variability of greening and their dependence on vegetation types (Fraser et al., 2014;
Urban et al., 2014). Consequently, future efforts within remote sensing should aim to
harmonize historical high resolution satellite images with recent (Landsat 8, Proba-V)
and future high resolution multi-spectral satellite data (e. g. from Sentinel-2, Drusch et
al. (2012)). Such harmonization efforts can provide consistent half-century time series
of vegetation indices and land cover change globally. The higher spatial resolution of
these datasets might provide a better insight in the spatial dependencies of vegetation
dynamics and will be ultimately the basis to account for land cover change in re-
analyses of terrestrial carbon fluxes regardless of the used modelling approach.

Another alternative data stream for future analyses of land surface phenology (i.e. for
the evaluation of satellite remote sensing data or for model-data integration) is
obtained from the PhenoCam network (Klosterman et al., 2014; Migliavacca et al., 2011;
Sonnentag et al.,, 2012). PhenoCam is a network of measurement sites at which
photographic images of an ecosystem (“near-surface” remote sensing) are taken

automatically several times per day. High-temporal resolution time series of canopy
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greenness can be derived from these images. Although PhenoCam cannot provide the
large spatial coverage of satellite remote sensing, it provides phenological observations
with less uncertainty because of the higher temporal resolution, the reduced effect of
atmospheric distortions on observations, and the higher spatial details that allow the
distinction of vegetation patches or individual plants. As PhenoCam time series
become longer with ongoing measurements, they will become valuable for the

assessment of inter-annual variability and trends of ecosystem or species phenology.

6.2 From phenology modelling to multi-scale model-data integration

The LPJmL DGVM required the implementation and optimization of a new phenology model to
better represent greenness dynamics on seasonal to decadal time scales. Thereby it was
important to consider water availability as an additional control on phenology. In addition,
these model improvements also resulted in a better representation of global carbon cycle
observations.

The original phenology model of the LPJmL DGVM (LPJmL-OP) was unable to
reproduce observed greenness dynamics especially in grasslands (Figure 3.4). It has
been shown that water availability needs to be considered as a controlling factor for the
phenology of perennial dry ecosystems or grasslands (Liu et al., 2013; Richardson et al.,
2013; Yuan et al., 2007). Therefore we adapted the GSI phenology model (Jolly et al.,
2005) for LPJmL (LPJmL-GSI) but introduced a new functional relationship that
depends on water availability (chapter 3.2.2.2). As this is an empirical approach to
simulate phenology, model parameters need to be estimated. Parameters that account
for phenology, canopy light absorption, albedo, and gross primary productivity were
estimated to improve model simulations of greenness dynamics within plausible
estimates of photosynthetic carbon uptake. These model parameters were estimated by
using long-term satellite observations of FAPAR (30 years), vegetation albedo (10
years), and mean annual GPP using a genetic optimization algorithm (chapter 3).
LPJmL-GSI resulted in a better representation of seasonal, inter-annual (Figure 3.6) and
decadal FAPAR dynamics (Figure 3.7). In particular, LPJmL-GSI reproduced observed
greening and browning trends in the Sahel and in North American boreal forests

respectively, which was not the case for LPJmL-OP. By considering observational
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uncertainties from three satellite datasets and ten phenology detection methods, the
results demonstrate that LPJmL-GSI outperforms LPJmL-OP and has an even better
agreement with the satellite datasets than the datasets have with each other especially
regarding the start and end of the growing season in boreal forests (Figures 4.3-4.5).
The implementation of the new phenology model and the optimization of model
parameters additionally contributed to a better representation of global carbon cycle
observations. LPJmL-GSI better reproduced tree cover and biomass especially in high-
latitude ecosystems (Figure 3.8). LPJmL-GSI simulations of global carbon stocks and
fluxes were closer to independent estimates than those of the original model (chapter
7.5.1). Furthermore, LPJmL-GSI simulations of NBP trends in high-latitude ecosystems
agree well with independent estimates from atmospheric inversions (Figure 5.1, Figure
9.5). Finally, LPJmL-GSI reproduces the temporal dynamics of atmospheric CO:
observations, especially of the amplitude of the seasonal cycle of COz, which is an
indicator for the photosynthetic carbon uptake of northern terrestrial ecosystems (Beer
et al. (2010), chapter 5, Figures 5.1, 5.2, 9.7). In summary, DGVMs can be improved by a
new generation of phenology models that simulate the continuous temporal
development of canopies and that account for water availability. Such new phenology
models in combination with parameter optimization approaches against long
observational time series result in a better representation of seasonal to long-term
greenness and carbon cycle dynamics.

The new phenology module in LPJmL can serve as a basis for future model
developments and as a framework to assess alternative controls on vegetation
phenology. Although FAPAR seasonality, growing season albedo, and mean annual
GPP were optimized in LPJmL within this thesis, no attempt was made to directly
improve the seasonal dynamics of ecosystem carbon and water fluxes. The results
show that the seasonality of ecosystem carbon fluxes needs further improvement in
LPJmL (in particular the seasonal peak photosynthetic carbon uptake happens too
early in temperate PFTs, Figure 7.18). This model-data mismatch could be resolved by
optimizing model parameters for photosynthesis, evapotranspiration and phenology
against measurements of ecosystem carbon and water fluxes from eddy covariance
observations (Carvalhais et al., 2010; Kuppel et al., 2012; Williams et al., 2009). Thereby

the importance of additional controls on phenology that are currently not considered in
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LPJmL-GSI could be explored. For example, chilling (i.e. a required time period of
dormancy before leaves can develop) is of importance for some species (Migliavacca et
al.,, 2012; Richardson et al., 2013) and leaf age might be an important factor for
senescence globally (Caldararu et al., 2012, 2014). Although such controls might be of
importance on individual or species-level, the results of this thesis show that such
controls are not needed to explain global land surface phenology. Similar to the study
of Migliavacca et al. (2012) the suitability of such alternative controls on phenology
could be tested in a model-data integration framework with LPJmL-GSI but with the
additional advantage of simultaneously modelling ecosystem carbon and water fluxes,
stocks, and vegetation dynamics within a DGVM. Additionally to eddy covariance
data, PhenoCam data and preferably additional measurements of leaf biomass and
litter fall could be used to constrain parameters for productivity, phenology and leaf
turnover. Such a model optimization against multiple ecosystem-level data streams
would allow for the assessment of explanative capabilities of alternative controls on
phenology and to accurately represent the relations between phenology,
photosynthesis and evapotranspiration for ecosystems under a range of climate
conditions.

Model-data integration of phenology and carbon and water fluxes at ecosystem level
needs to be complemented by large scale observational constraints on the terrestrial
carbon cycle to ensure the applicability of DGVMs for both regional and global-scale
vegetation/carbon cycle simulations. Such constraints are, for example, long-term time
series of atmospheric CO2 measurements or newly available satellite datasets of carbon
stocks like biomass. Satellite-derived biomass maps (Saatchi et al., 2011; Thurner et al.,
2014) contain information about past vegetation dynamics like growth or mortality. By
comparing modelled and observed biomass maps, model representations of vegetation
turnover rates and the associated processes can be assessed (Carvalhais et al., 2014).
Recent satellite-derived biomass maps and future retrievals from the “biomass”
satellite mission (Le Toan et al., 2011) will potentially allow to estimate net changes in
vegetation carbon stocks and to infer environmental mechanisms behind such changes.
However, the suitability of satellite-derived biomass maps for model parameter
optimization needs to be critically assessed with respect to the uncertainties of these

datasets (Thurner et al., 2014). Although satellite-derived biomass maps probably
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represent the spatial variability of carbon stocks well, it is not clear if they can provide
constraints on model simulations of regional to global carbon cycle budgets. Therefore,
long-term observations of atmospheric CO: provide a large-scale integrated constraint
with less observational uncertainty. CO: time series are already used to estimate
parameters of land surface models in global carbon-cycle data assimilation systems
(CCDAS) (Kaminski et al.,, 2012, 2013). Nevertheless, CCDAS often have a coarse
spatial resolution and thus provide only limited information about the impact of
regional ecosystem and vegetation dynamics and their associated carbon balances on
the global carbon cycle. On the one hand, atmospheric CO: observations can constrain
large scale net carbon fluxes but only weakly constrain regional and gross carbon
fluxes (Koffi et al., 2012). On the other hand, ecosystem-level model optimization
experiments using eddy covariance flux data resulted in a good representation of the
seasonality of ecosystem carbon fluxes (Kuppel et al., 2012; Stockli et al., 2008a), but
they do not necessarily improve the seasonality of atmospheric CO;, especially at mid-
latitudes (Kuppel et al., 2014). Therefore it is recommended to use atmospheric CO2
and ecosystem-level flux observations together to constrain CCDAS (Kaminski et al.,
2013). This suggests applying model-data integration across spatial and temporal
scales by using the respective scale-dependent data sets to constrain the corresponding
parameters that are sensitive at this scale. Such a multi-scale/multi-data model
optimization approach requires for example the development of methods that help to
identify scale-dependent processes and model parameters (Mahecha et al., 2010b) and
to optimally weigh a variety of data sets with different properties in parameter
estimation (Wutzler and Carvalhais, 2014). The large and growing availability of
observational data sets at different spatial scales requires the development of
modelling and integration systems that are capable of representing ecosystem- to
global-scale processes seamlessly, which will result in a better understanding of the

Earth system.
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6.3 Co-dominant water control on phenology and greenness dynamics

The importance of environmental controls for land surface phenology and greenness varies
regionally and depends on time scale. However, water availability and temperature play co-
dominant roles globally for seasonal dynamics, inter-annual variability and trends in land
surface phenology and greenness.

On seasonal time scales, water availability is a major control of FAPAR dynamics not
only in water-limited biomes but also in boreal forests and the arctic tundra (Figure
3.9). Although the seasonality of temperature and light are the dominant controls for
the seasonality of greenness in temperate, boreal and arctic biomes, water availability
was unexpectedly also of importance in permafrost-underlain boreal and arctic
ecosystems. The seasonal freezing in autumn and thawing in spring of the upper layer
of permafrost soils (the active layer) regulates water availability and thus contributes to
leaf development in spring. Water availability was also of major importance for
greenness seasonality in temperate grasslands where previous studies found stronger
controls by temperature and light (Jolly et al., 2005). Moreover, water availability was
the only control for seasonal greenness dynamics that was of importance in all biomes,
whereas the importance of temperature and light was limited to regions north of 40°N
or high altitudes (Figure 3.9).

Inter-annual variability and trends of land surface phenology in high-latitude
ecosystems are controlled by light and water availability in addition to temperature
(chapter 4.4.2). The warming-induced trend of an advancing start of season in
temperate and boreal ecosystems is limited by the availability of light. Therefore future
warming trends in high-latitude ecosystems might not necessarily result in a
prolonged growing season. Additionally, water availability and permafrost had a
strong effect on trends in the start of growing season trends in Siberian boreal forests
(Figure 4.8). This result suggests that melting permafrost results in higher water
availability (at least in lowlands (Shur and Jorgenson, 2007)) which supports earlier
spring green-up of vegetation.

Inter-annual variability and trends of peak greenness were controlled by regionally
different combinations of factors but water availability and land use and land cover
change were important factors across all regions (Figure 4.6a, chapter 1.4.3). The

greening of the tundra and of boreal forests was mostly affected by temperature effects
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on phenology, from land cover change and permafrost dynamics. Increasing
temperatures result in a prolongation of the growing season, melting permafrost and
the resultant higher water availability, which together contribute to increased
productivity and vegetation coverage. Boreal forests in North America are less
underlain by permafrost than boreal forests in Eastern Siberia. Consequently, the role
of permafrost was less important in boreal forests in North America than in Siberia
which contributes to the divergent pattern of less greening/more browning in boreal
North America compared to Siberia. In temperate forests in Europe, land use/land
cover change was the dominant control on greening besides the effect of temperature
on phenology. Greening in Europe is often related to a re-growth of forests after socio-
economic changes in central and eastern Europe (Alcantara et al., 2013; Kuemmerle et
al., 2008; Main-Knorn et al., 2009). In the Sahel, seasonal effects of water availability
and land use/land cover change were the dominant controls on greening. CO:
fertilization contributed globally to greening but was of very minor importance in
comparison to climate effects on phenology or land use/land cover change. Fire
disturbance had an important effect on inter-annual variability and trends in
vegetation greenness regionally (savannahs, parts of boreal forests). In summary,
seasonal dynamics, inter-annual variability and trends of land surface phenology and
greenness can be regionally explained by different sets of controlling factors but water
availability is a co-dominant control in all regions — and therefore globally as well.

Several other controls on greenness dynamics, or more generally on plant growth and
vegetation dynamics, exist. For example, plant productivity and growth is limited by
the availability of the macronutrients N, P, S, K, Ca, and Mg, and of the trace elements
Fe, Mn, Zn, Cu, Mo, B, and Cl (Larcher, 2003, p.196). Such dependencies of plant
growth on nutrients are currently not implemented in LPJmL. Plant productivity is
limited by nitrogen availability across the globe (LeBauer and Treseder, 2008) and
especially in high-latitude ecosystems (Vitousek and Howarth, 1991). Whereas a
decreased availability of nitrogen results in a browning and loss of needles (Larcher,
2003, p.201), increased nitrogen availability results in an increased productivity of
forests ecosystems (Hyvonen et al., 2007). Consequently, the increasing availability of
nitrogen through deposition or through the release from thawing permafrost soils in

northern ecosystem can increase plant productivity (Keuper et al.,, 2012) and thus
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might be an important control on greening. However, another modelling study
suggests that changes in nitrogen deposition were of minor importance for greenness
trends in comparison to climatic changes in northern ecosystems (Mao et al., 2012).
Nevertheless, the assessment of the role of nitrogen limitation on global productivity
trends under changing environmental conditions is challenging: On the one hand
because of a poor representation of nitrogen uptake processes in ecosystem models,
and on the other hand because of the limited availability and understanding of
observations (Zaehle et al., 2014). Consequently, responses of plant productivity and
growth to nutrient availability (nitrogen and beyond) need to be implemented or
improved in all ecosystem models and compared to a growing number of well
documented and suitable observations or experiments.

Several other controls affect greenness trends on regional scales. For example,
industrial air pollution caused vegetation degradation around Norilsk in northern
Siberia (Tutubalina and Rees, 2001), and in the so called “Black Triangle” regions
between Germany, Poland, the Czech Republic and Slovakia (Kubikova, 1991; Main-
Knorn et al., 2009; Markert et al., 1996; Schulze, 1989). However, the reduction of heavy
industry after 1990 and the introduction of air pollution mitigation policies decreased
emissions in eastern-central Europe. This resulted in a regional re-growth of forests,
but it highly depends on forest management and disturbance histories (Main-Knorn et
al., 2009). Nevertheless, the Black Triangle region turned into a “Green Triangle”
(Ladysz, 2006). These regions experienced the strongest greening trends in Europe
(Figure 1.2). However it is not clear if the increase in NDVI is really due to increased
vegetation activity or due to the reduced aerosol content in the atmosphere for which
the GIMMS NDVI3g dataset is only marginally corrected (Pinzon and Tucker, 2014).
Nevertheless, these regional findings demonstrate the influence of human activities on
ecosystems and regional biogeography through biogeochemical processes. Other
disturbances such as insect outbreaks strongly affect forest productivity and structure
(Wermelinger, 2004) and might become more important under future climate warming
(Hlasny et al., 2011; Jonsson et al., 2009). Indeed regional observations demonstrate a
co-occurrence of insect infestations with satellite-observed browning trends (Buma et
al., 2013; Neigh et al., 2014; Olsson et al., 2012). Insects outbreaks can strongly affect

regional carbon balances by turning forests from carbon sinks to sources which might
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be of similar or even greater importance than the effect of wild fires (Kurz et al., 2008).
However, the long-term development of net ecosystem productivity is highly sensitive
to outbreak conditions and to the post-outbreak forest management and succession
(Edburg et al, 2011, 2012). In summary, regional natural or human-induced
disturbances need to be considered to explain greenness dynamics but their
peculiarities make the consideration of such processes in global ecosystem models a

challenging task for future research.

6.4 Vegetation dynamics as regulator of carbon cycle trends

The increasing seasonal amplitude of atmospheric CO: in northern latitudes is mainly driven by
an enhanced terrestrial gross primary production in boreal and arctic ecosystems, which is
caused by the climate-induced greening trend.

Greening in boreal and arctic ecosystems is related to an increase in deciduous
vegetation and to positive trends in gross primary production (Figures 6.1, 9.5). Trends
in photosynthetic carbon uptake were stronger than trends in ecosystem respiration
which results in increasing net biome productivity. By coupling LPJmL with the TM3
transport model it was possible to quantify the effect of this increased net uptake of
high-latitude ecosystems on the seasonal amplitude of atmospheric CO.. LPJmL was
able to reproduce the latitudinal gradient of stronger CO: amplitude trends in northern
latitudes than in low latitudes (Figures 6.2a, 9.4). The fertilizing effect of rising
atmospheric CO2 on photosynthesis and agricultural land use change contributed to
CO2 amplitude trends, but these factors cannot explain the much stronger trends in
northern latitudes. Climate change and greening in boreal and arctic regions were the
dominant controls on the trend in the seasonal CO: amplitude (Figure 6.2). According
to these results the “agricultural green revolution” (Zeng et al., 2014) and the “direct
human influence (...) from increased cropland production” (Gray et al., 2014) on the
trend in the seasonal COz amplitude were overestimated because these studies did not
comprehensively account for other controlling factors such as increased vegetation
activity in boreal and arctic ecosystems and the role of atmospheric transport.
Uncertainties of future trends in atmospheric CO: are related to differences between

models in the simulation of terrestrial carbon cycle and vegetation dynamics
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(Friedlingstein et al., 2014). Processes of vegetation dynamics like turnover of plant
compartments, mortality, disturbances, intra- and inter-specific competition affect
vegetation composition and finally control the residence time of carbon in terrestrial
vegetation (Friend et al., 2014). These processes dominate the uncertainty in future
carbon stocks and fluxes in the terrestrial vegetation. However, improving dynamic
global vegetation models to better represent such processes of vegetation dynamics
like tree mortality is challenging because of a lack of empirical data and process
understanding (Allen et al., 2010; Anderegg et al., 2013; McDowell et al., 2011). For
example, a globally consistent documentation of forest mortality does not exist; the
often species-specific physiological processes of mortality are poorly understood; there
are no appropriate global maps of vegetation change at a level of species or functional
groups; and mortality interacts with climate and disturbances like fire and especially
insects for which also no appropriate global observations exist (Allen et al., 2010;
Hartmann et al., 2015). Consequently, it is currently “impossible to conclude what
mechanisms and level of detail are needed” (McDowell et al., 2011, p.8) to improve
processes of mortality in vegetation models. However, the curse of mortality events is
often species-specific, which is challenging to represent in most of the current dynamic
global vegetation models that rely on a limited set of plant functional types. Therefore
the implementation of individual-dependent plant traits in ecosystem models
(Bodegom et al., 2014; Pavlick et al., 2013; Sakschewski et al., 2015) could support the
representation of the peculiarities of mortality events. Thereby trait-based modelling
approaches can be constraint by relations between traits as observed in global plant
trait databases (Kattge et al, 2011, Madani et al, 2014; Niinemets et al., 2015).
Alternative approaches could make use of international tree ring databases
(Barichivich, 2014; Rammig et al., 2015) or of satellite-derived biomass maps (Saatchi et
al., 2011; Thurner et al., 2014) to infer past productivity, environmental stress, mortality
and vegetation dynamics. Biomass maps together with global estimates of ecosystem
carbon fluxes (Jung et al., 2011) allow the estimation of ecosystem or vegetation
turnover times (Carvalhais et al., 2014). Refining and compartmentalization of such
estimates of turnover could overcome the current lack of understanding and could

contribute to a better understanding of mortality in ecosystem carbon turnover.
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In summary, the uncertainty of future climate/carbon cycle interactions results from a
limited present-day understanding. The understanding of the role of vegetation
dynamics in the Earth system can be expanded by an enhanced availability of global
observations and observation-based estimates and model-data integration approaches.
Observations at multiple spatial-temporal scales — e.g. tree rings and near-surface
remote sensing at the tree level; eddy covariance measurements at the ecosystem level;
satellite-derived greenness, land cover change, and biomass at the regional level; in-
situ or satellite-based CO2 measurements at the continental to global level — need to be
integrated within vegetation-atmosphere models to evaluate and improve our current
codified theories of Earth system functioning, and to consistently quantify Earth
system dynamics. Model-data integration is therefore the key for a consistent

understanding of the Earth system.

What is science? Humboldt or Gauf3?
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7 Supplement of chapter 3

7.1 LPJmL model details
7.1.1 Original phenology model (LPJmL-OP)

The phenology model in the original LPJmL formulation has three different routines
for summergreen (i.e. temperature-driven deciduous), evergreen (no seasonal
variation) and rain-green (i.e. water-driven deciduous) PFTs (Sitch et al., 2003).
Evergreen PFTs have a constant phenology status (Phen = 1). The daily phenology
status of summergreen PFTs depends on growing degree-days (GDD):

AT =T = GDDpyg,
(7.1)
GDD, =GDD,_; +AT, if AT >0

Where T is the daily air temperature and GDDrase is the minimum temperature
threshold to start counting GDDs. Daily GDD is scaled to the phenology status using a

parameter ramp which is the amount of GDDs to get full leave cover:

GDD/ramp if aphen < aphen
Phen ppr |[summergreen = 0 if aphen > aphen (7.2)
0 if  aphen > aphen,,;, and AT <0

The daily phenology status is set back to 0 if the accumulated phenology status (aphen)
is larger than a parameter aphenmaxor if aphen is greater than aphenmin and the daily
temperature is below GDDvase. The daily accumulated phenology status is calculated
as:
aphen, = aphen,_y + Phen; (7.3)

For rain-green PFTs the daily phenology status is calculated dependent on the daily
water availability scaling factor Wscal in LPJmL (Supplement 7.2) (Gerten et al., 2004)
and a threshold value (Wscalmin):

1 if Wscal > Wscal i,

Phen ppr|raingreen = {0 if Wscal < Wscal, (7.4)

The phenology of rain-green PFTs has no smooth behaviour but is a binary switch
between full leave cover and no leaves according to this formulation. For herbaceous
PFTs the same phenology scheme like for summergreen PFTs is used but the

phenology status is only set back to 0 at the end of the phenology year (i.e. on the 14"
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day of the year for the northern hemisphere and on the 195* day of the year for the

southern hemisphere).

—— FAPAR=FPC
g +—— FAPAR=FPC x(1-Fgnow)
—— FAPAR =FPC x (1 =Fgnow) X (1 = Biear)
—— FAPAR =FPC x (Phen - (Phen — Fsnow)) X (1= Blear)
©
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Figure 7.1: Effects on FAPAR in LPJmL for an example grid cell in Siberia.

FAPAR in LPJmL is computed from foliar projective cover (FPC), from snow coverage in the
green canopy (Fsnow), leaf albedo (fleaf) and phenology status (Phen).

7.1.2 Water availability scaling factor

The water availability scaling factor Wscal in LPJmL is a ratio between water supply S

and atmospheric water demand D for a dry canopy (Gerten et al., 2004):
S
Wscal = — (7.5)
D

In the LPJmL-GSI phenology model the water availability scaling factor is expressed as
a percentage value:

W =Wscal x100 (7.6)
Water supply is dependent on the maximum transpiration Emax under water saturation
and relative soil moisture w: (Gerten et al., 2004):

S = Emax X Wy (7.7)
Atmospheric water demand D for a dry canopy is calculated from potential
evapotranspiration PET, maximum Priestley-Taylor coefficient amax = 1.391, scaling
canopy conductance gm = 3.26 mm s-1 and potential canopy conductance gpot (Gerten et
al., 2004):
PET x 05

N 7.8
1+(Zm /€ pot) 75)
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7.1.3 Albedo

Surface albedo and snow coverage routines have been implemented in LPJmL to use it
as a land surface scheme in a coupled vegetation-climate model (Strengers et al., 2010).
We used this implementation but made the albedo parameters PFT-dependent as
albedo differs between ecosystems (Cescatti et al., 2012). The albedo of a grid cell Albgc
is the area-weighted sum of the vegetation albedo Albveg, bare-soil albedo Albvare and

snow albedo:
Albgc = Albveg + Fpare X (Esnow X Bsnow + (1= Fynow) X Bsoir) (7.9)

where Frare and Fsnow are the coverage of bare soil and snow on top of bare soil in a grid
cell and Bsoii and PBsnow are the soil and snow albedo parameters, respectively. The
parameters Bsoil = 0.4 and Bsnow = 0.7 were used as constants (Strengers et al., 2010) and
not further considered in this study. Although soil and snow albedo has clear spatial
and temporal variations which are due to changing moisture contents, an
improvement of these processes is not within the scope of our study. The vegetation

albedo is computed as the albedo of each PFT Albrrr and its corresponding FPC:

PFT=n

Albveg = ZAleFT XFPCPFT (7.10)
PFT=1

The albedo of a PFT depends on the fraction of the PFT that is completely covered by
snow Fsnow,prr and the albedo of the PFT without snow coverage (Albrernosnow) (Strengers
et al., 2010):
Albppr = Fspow, PET * Bsnow + (= Fspow, PFT) X AIDPET posnow (7.11)
The albedo of a PFT without snow coverage is the sum of leaf, stem/branches and litter
(background) albedo:
AlbprT nosnow = Albjear prT + Albgiem, prr + Albjigter, PET (7.12)
The albedo of green leaves depends on the foliar projective cover, the daily phenology
status and the PFT-dependent leaf albedo parameter:
Albjeqr prr = FPCppr X Phenppr X Bleqr prr (7.13)
The albedo of stems and branches depends on the fractional coverage of the ground by

stems and branches (cstem) and a PFT-dependent stem albedo parameter (3stem,prr:

Albgiom, prr = FPCppr x (1= Phenppr ) % cstem X Byom prT (7.14)
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The parameter cstem = 0.7 (Strengers et al., 2010) was used as a constant and not
further considered in this study. The background (i.e. litter) albedo of a PFT depends

additionally on a PFT-dependent litter albedo parameter [iiter,per:

Albjiyter, prr = FPCppr x (1= Phenppr ) x (1 - cstem) X Bjiyer, pFT (7.15)
The parameters {icatpet, Bstem,prr and Piiterprr were implemented as PFT-dependent albedo
parameters which differs from the previous implementation (Strengers et al., 2010).
The fraction of snow in the green part of the canopy that is used to compute FAPAR
(equation 3) depends on the daily phenological status and the fraction of the PFT that is

covered by snow:
anow,gv,PFT = Phenppr X anOW,PFT (7.16)

The fraction of the PFT that is covered by snow depends on snow height and the daily

calculated snow water equivalent (Strengers et al., 2010).

St.dev. FAPAR (-)

]

000 010 020 0.30

Figure 7.2: Standard deviation of mean annual FAPAR from the GIMMS3g and GL2 FAPAR
datasets in 1982-2011.
The annual mean FAPAR was calculated for each year from each monthly FAPAR value for
months with monthly mean air temperatures > 0°C. Areas with large differences are
highlighted with circles.

7.2 FAPAR datasets
7.2.1 Comparison of the Geoland2 and GIMMS3g FAPAR datasets

We compared the Geoland2 and GIMMS3g FAPAR datasets to assess 1) the agreement
of two newly developed FAPAR products and 2) to evaluate the suitability of these
products for the optimization of FAPAR and phenology-related parameters in LPJmL.
We found important differences between the Geoland2 and GIMMS3g FAPAR datasets
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during our analyses. The differences are mostly related to inter-annual variability and
trends.

The GL2 FAPAR dataset had a higher inter-annual variability in most regions
especially in northern Russia, central North America, Africa and eastern Australia
(Figure 7.2). Despite the different amplitudes of inter-annual variability, the temporal
dynamic of annual aggregated FAPAR values was well correlated in most regions
(Figure 7.25). Nevertheless, in some regions like in the North American Tundra, in
parts of the Siberian boreal forest and in the tropical forests the inter-annual temporal
FAPAR dynamic was weakly or even negatively correlated (Figure 7.1).

The temporal dynamics of mean annual FAPAR agreed relatively well between
GIMMS3g FAPAR and GL2 FAPAR in the AVHRR period. The temporal dynamic of
mean annual FAPAR agreed poorly between GIMMS3g and GL2 FAPAR in the VGT
period. Both datasets had higher biases in boreal needle-leaved evergreen forests
(Figure 7.3). An offset between the GL2 AVHRR and GL VGT FAPAR time series in the
overlapping years 1999 and 2000 is evident in all biomes. Additionally, the GL2 VGT
time series shows an abrupt jump from 2002 to 2003 which is probably due to the
sensor change from VGT1 to VGT2 (Horion et al., 2014). Because of these reasons, the
Geoland2 FAPAR dataset cannot be used for a long-term analysis of FAPAR trends

and extremes.
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Figure 7.3: Comparison of mean annual FAPAR from different datasets averaged for the extent
of boreal needle-leaved evergreen forests.
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Figure 7.4: Monthly quantile regressions between GL2 VGT FAPAR and the GL2 VGT FAPAR
fitted to the quantile 0.95.
Each monthly quantile regression was applied to the GIMMS3g FAPAR dataset to estimate
uncertainties for this dataset. Using 0.95 quantile regressions provides conservative uncertainty
estimates for the GIMMS3g FAPAR dataset.

7.2.2 Estimation of uncertainty for the GIMMS3g FAPAR dataset

The GIMMS3g FAPAR dataset was used for parameter optimization. For parameter
optimization it is necessary to consider data uncertainty in multiple data stream cost
functions. Unfortunately, the GIMMS3g dataset has no uncertainty estimates. On the
other hand the GL2 FAPAR dataset has uncertainty estimates but time series are not
well harmonized. Thus we were using the GIMMS3g dataset for parameter
optimization but estimated uncertainties by using regression to the uncertainty of the
GL2 FAPAR dataset (Figure 7.4). Therefore we fitted for each month polynomial
quantile regressions to the quantile 0.95 between FAPAR and FAPAR uncertainty from
the GL2 VGT FAPAR dataset. Then we were using these regressions to estimate
uncertainties for the GIMMS3g FAPAR dataset.

7.3 Land cover
7.3.1 Creation of an observation-based map of plant functional types

Land cover maps from remote sensing products are not directly comparable with plant
functional types in global vegetation models because they are using different legends

for the description of vegetation (Jung et al., 2006; Poulter et al., 2011a). Land cover
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classes have to be reclassified into the corresponding PFTs. We were using the
SYNMAP land cover map (Jung et al., 2006), the Koppen-Geiger climate classification
(Kottek et al.,, 2006) and tree coverage from MODIS (Townshend et al., 2011). We
decided to use the SYNMAP land cover map because it offers fractional land coverage
and synergizes already the GLCC, MODIS and GLC2000 land cover maps (Jung et al.,
2006). PFTs in LPJmL are defined according to biome (tropical, temperate or boreal),
leaf type (needle leaved, broadleaved) and phenology (summergreen, evergreen, rain
green). We extracted the biome information from the Koppen-Geiger climate
classification whereas leaf type and phenology were extracted from the SYNMAP land
cover map. The FPC of a PFT was derived from MODIS tree cover.

In a first step, we reclassified the Koppen-Geiger climate classification in to bioclimatic
zones (biomes) that correspond to the definition used in LPJmL (Figure 7.5). This
reclassification followed to a large extent the rules of Poulter et al. (2011a):

— The climate zone A was reclassified to the tropical biome.

— The climate regions BWh and BSh were reclassified to the tropical biome.

— The climate regions BWk and BSk were reclassified to the temperate biome.

— The climate region Cw was reclassified to the tropical biome.

— The climate regions Cf and Cs were reclassified to the temperate biome.

— The climate regions D and E were reclassified to the boreal biome.

Koeppen-Geiger climate classification Bioclimatic zones

| Af O BWh @O Csb B Dfb O Dsd O ET B Tropical BE Temperate B Boreal
B Am DO Bwk O Csc B Dfc @O Dwa
O As B Cfa B Cwa B Dfd @ Dwb
OAv B Cfh B Cwb @ Dsa B Dwc
BSh B Cfc B Cwc O Dsb B Dwd
O BSk @ Csa W Dfa 0O Dsc B EF

Figure 7.5: Reclassification of the Koeppen-Geiger climate classification in bioclimatic zones.
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In a second step, we created a land cover map with PFT legend by crossing the land
cover information from SYNMAP with the map of biomes following rules for each tree
PFT:

— TrBE: EBF (evergreen broadleaved forest) AND tropical biome

— TrBR: DBF (deciduous broadleaved forest) AND tropical biome

— TeNE: ENF (evergreen needleleaved forest) AND temperate biome

— TeBE: EBF (evergreen broadleaved forest) AND temperate biome

— TeBS: DBF (deciduous broadleaved forest) AND temperate biome

— BoNE: ENF (evergreen needleleaved forest) AND boreal biome

— BoBS: DBF (deciduous broadleaved forest) AND boreal biome

— BoNS: DNF (deciduous needleleaved forest) AND boreal biome

Although we translated in this step the land cover classes into PFTs, the fractions
represent still fraction of land cover and not FPC. For example, a grid cell can be
covered by 100% forest but this forest contains only 70% trees while the rest is covered
by herbaceous plants. This difference becomes evident by comparing the total coverage
of forest land cover classes from SYNMAP with tree cover from MODIS (Figure 7.6).
MODIS tree cover is always lower than forest cover but shows more spatial variability.

In a third step, we need to correct the land cover fraction with tree cover to create a
map of FPC. Thus, we calculated the FPC of each tree PFT by correcting the land cover
fraction of a PFT (LCerrr) with the ratio of fractional tree coverage from MODIS (Frree)

and the total land coverage of all 8 forest PFTs:

Fr,
FPCPFT = LCPFT X#

D LCppr
PFT=1

(7.17)

This calculation of FPC differs from the approach of Poulter et al. (2011a) who divided
each land cover class in fixed fractions of tree and herbaceous PFTs.
In the last step we need to calculate the FPC of herbaceous PFTs:

FPCherty =1~ Frree = LCBarren = LCpater = LCsnow/ Ice (7.18)
which is the residual area by removing the fractional tree coverage from MODIS and
the land cover fractions of bare soil and rocks, water and permanent snow and ice from

the total grid cell. Thus, grasslands, croplands and shrub lands were assigned to
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herbaceous vegetation. Then we divided the herbaceous FPC into the TeH, PoH and

TrH PFTs according to biomes:

— TrH: FPChens AND tropical biome

— Old TeH: FPCrer» AND temperate OR boreal biome

The TeH was further splitted in a new temperate herbaceous and a polar herbaceous

PFT to separate between temperate grasslands and tundra:

— TeH (new): old TeH AND temperate OR boreal biome AND boreal trees < 0.3

— PoH: old TeH AND (boreal biome OR Koeppen-Geiger E climate) AND boreal trees
>0.3

These steps yielded in observation-based maps of foliar projective cover for each PFT

(Figure 7.7). As the input data (SYNMAP and MODIS VCF) is based on satellite data

from the years 2000/2001 the retrieved maps reflect the distribution of PFTs for the year

2000.
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Figure 7.6: Comparison of total forest coverage from SYNMAP and MODIS tree coverage for a
region in eastern Siberia.

7.3.2 Comparison of simulated and observed PFT distributions

We compared the observation-based PFT map with the simulated PFT distribution
from LPJmL-OP for the year 2000. LPJmL with dynamic vegetation simulated usually

too high tree and too low herbaceous cover in all regions (Figure 7.8). In the central
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tropical forests (Amazon, Congo basin) LPJmL simulated too low cover of TrBE but too
high cover of TrBR. The coverage of BONE was too low in some regions in North
America and Eastern Siberia. The simulated distribution of BONS did not agree much
with the observed distribution which is almost limited to eastern Siberia. Tree cover
was especially overestimated in regions with only sparse tree cover (Savannahs,
Steppe/boreal forest transition, eastern Siberia). The extent of boreal forest PFTs (BoNE,
BoBS, BoNS) is generally too large with far southward extensions into the Steppe and

northward extensions into the Tundra.

00 02 04

06 08

Figure 7.7: Observation-based maps of the foliar projective cover of plant functional types.
Agricultural areas are included in the TrH and TeH PFTs.

As expected, the prescription of the observed PFT maps into LPJmL generally
improved the representation of the observed PFT distributions (Figure 7.8). The spatial

patterns of PFT distributions were highly correlated and the bias in comparison to the
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observed distribution was clearly reduced in comparison with the model run with
dynamic vegetation. The PFT distribution of the LPJmL model run with prescribed
land cover does not perfectly agree with the observed PFT distribution which is due to
the applied prescription approach. Tree PFTs can have a lower FPC in LPJmL than the
prescribed FPC value because the trees are still growing or because mortality reduced
the FPC. This effect especially happened in the BONE PFT where fire reduced the FPC
in large regions in Canada and eastern Siberia (Figure 7.8). Herbaceous PFTs can have
a higher FPC than the observed FPC value because these PFTs were allowed to
establish the entire grid cell (except the fraction that is barren, water or permanent
snow/ice in the observations). This happened for example when fires burnt tree PFTs
and herbaceous PFTs succeeded afterwards in LPJmL. This is the reason for the
overestimation of herbaceous coverage in large regions in Canada and eastern Siberia
where the BoNE PFT was underestimated (Figure 7.8). In summary, the prescription of
land cover improved the representation of observed spatial patterns of PFTs in LPJmL.
Differences to the observed PFT distribution are due to the desired ability of LPJmL to

represent important processes of vegetation dynamics like mortality processes.
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Figure 7.8: Comparison between simulated and observed PFT distributions for the year 2000.
The maps are difference maps between simulated FPC values from LPJmL-OP and observed
FPC values. The scatter plots show observed FPC values on the x-axis and simulated FPC
values on the y-axis. Left: LPJmL-OP with dynamic vegetation and prescribed burnt areas.
Right: LPJmL-OP with prescribed land cover and prescribed burnt areas.

7.4 Model parameter optimization
7.4.1 Parameter definitions and values

This section documents the LPJmL parameters that were addressed in this study. The

parameters and their use in the model are described in Table 7.1. The information
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sources from which prior parameter values were extracted for each optimization
experiment are shown in Figure 7.9. Tables 7.2-5 list prior and posterior parameter
values of each optimization experiment according to the logical flow of optimization

experiments indicated in Figure 7.9.

Sitch et al. 2003 || Strengers et al. 2011 || MODIS || Stockii etal. 2011 | | arbitrary |
[
: ! > GSiI par. for cold GSI par. for heat
a, | | OP par. sfc and light functions || and water functions
. LPJmL-OP i LPJmL-GSI

OP.prior |Table s2

!

» GSl.prior | Table S4

!

i | Grid cell-level Table S3 | + | Grid cell-level [ ——— i
i | optimization l_ : E ' | optimization GSl.gc: Grid i
i | (herb. + tree) OP.ge: Grid~| : | : (herb. + tree) cell-level i
: celldlevel : : medians |
i medians ' ; |
|| PFT-level 1| PFT-level — !
! | optimization i 1| optimization — i
i No plausible ! i (herb.) posterlors herb. |
parameters | | ! LSS i
e i | PFT-level [ abloSs |

| | optimization p eSS

i (tree) GSl.pft: posteriors | |

Figure 7.9: Information sources for prior and posterior parameter sets and overview of model
optimization experiments.
Grey boxes indicate model parameters or parameter sets. White boxes are information sources
for parameters. Yellow boxes are optimization experiments.
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Table 7.1: Description of LPJmL model parameters that were addressed in this study.

Para-

Alternative name Use Description Unit
meter

Photo- Leaf-to-canopy scaling parameter
Ga ALPHAA (amount of radiation absorbed at leaf- -

synthesis level in comparison to total canopy)
Bleat ALBEDO_LEAF ﬁfsg\% Albedo of green leaves -
Bstem ALBEDO STEM Albedo Albedo of stems and branches -
Biitter ALBEDO LITTER Albedo Albedo of litter -
FPC, Light extinction coefficient in Lambert-
K LIGHTEXTCOEFF FAPAR Beer relationship ]
sfc SNOWCANOPYFRA Albedo, Maximum fraction of snow in the )
C FAPAR green canopy
Original Min?mu.m value. of the water
Wscalmin MINWSCAL availability scaling factor for leaf onset -
phenology

in rain green PFTs

GDDp,se  GDDBASE Original Minimum daily temperature to start °c
phenology  counting growing degree days

Number of growing degree days to

ramp RAMP Or:g]gil) reach full leave cover in °C
P i summergreen PFTs
Original Minimum accumulated phenology
aphen,, APHEN_MIN hegnolo state to allow senescence if -
P 9 temperature < GDDBASE
Original Maximum accumulated phenology
apheny.x  APHEN_MAX g state. Phenology is set back to 0 if -
phenology ; .
this value is passed.
Sl TMIN_SL GSI Slo_pe_ of colq temperature limiting 1/°C
phenology logistic function for phenology
baser, TMIN_BASE GSI I.nfl'e.ctlon p.0|r_1t of co!d temperature °C
phenology limiting logistic function for phenology
GsI Change rate of actual to previous day
Tmin TMIN_TAU cold temperature limiting function -
phenology
value for phenology
Shignt LIGHT _SL GSl Slope of light limiting logistic function ‘I/gW/
phenology for phenology m°)
baseign LIGHT BASE GSI Infleqtlon point of light limiting logistic W/m?2
phenology  function for phenology
GsI Change rate of actual to previous day
Tiight LIGHT _TAU light limiting function value for -
phenology
phenology
Shyater WATER_SL GSI Slope of water limiting logistic function 1%
phenology  for phenology
baseyse WATER_BASE GSI Inflfac_tlon p0|_nt of water limiting %
phenology logistic function for phenology
Gs| Change rate of actual to previous day
Twater WATER_TAU water limiting function value for -
phenology
phenology
Slhoat TMAX_SL GSI Slope of heat limiting logistic function 1/°C
phenology  for phenology
baseney TMAX_BASE GSl Inflection point of heat limiting logistic °C

phenology  function for phenology

GSI Change rate of actual to previous day
henolo heat limiting function value for -
P ad phenology

Theat TMAX_TAU
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Table 7.2: Prior parameter values of LPJmL-OP (OP.prior).

The values in brackets are ranges of uniform parameter distributions that were used during
optimization. Note: * The parameter GDDbase was changed to 0°C. This value gave better
agreements between simulated and observed seasonal FAPAR dynamics than the original value
of 5°C. Nevertheless, GDDbase was not included in optimization experiments because this
parameter is highly correlated with the parameter ramp.

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

05 05 05 05 05 05 05 05 05 05
O ©.1- (©.41- (01- (01- (01- (01- (01- (0.1- (0.1-  (0.1-
09) 09) 09 09 09 09 09 09 09 0.9

0.15 0.15 0.15 0.15 0.16 0.14 0.15 0.12 0.14 0.15
Bieat (0.1- (0.1-  (0.06- (0.09- (0.086 (0.05- (0.09- (0.1- (0.072 (0.09-
0.2) 0.2) 0.23) 0.23) -0.23) 0.23) 0.21) 0.15) -0.22) 0.21)

015 0.15 013 0.15 013 014 014 013
Bsem  (0.018 (0.073 (0- (0.029 (0.038 (0- (0.059 (0.052 -- -
-0.29) -0.23) 0.31) -0.28) -0.23) 0.31) -0.23) -0.32)

015 014 013 015 014 013 014 012 014 0.13
Bier  (0.018 (0.058 (0.047 (0.044 (0.085 (0.035 (0.078 (0.088 (0.027 (0.02-
-0.29) -0.27) -0.21) -0.29) -0.2) -0.26) -0.22) -0.23) -0.38) 0.28)

04 04 04 04 04 04 04 04 04 04
sfc ©1- (©41- (01- (01- (01- (01- (01- (01- (0.1-  (0.1-
09) 09) 09) 09) 09) 09 09 09 09 009

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

k (.1- (.1- (0.1- (01- (0.1- (0.1- (0.1- (0.1- (01-  (0.1-
0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9) 0.9)
GDDba . . . . 0* . 0* 0* 0* 0*
se
Wscal 0.3 _ _ _ _ _ _ _ _
min (0'1)
300 200 200 100 100
Ramp -- - - - (0- - (0- (0- (0- (0-
1000) 1000) 1000) 1000) 1000)
aphen 10 (1- 10(1- 10 (1-
min B B B B 600) 600) 600) B
aphen 210 210 210
- - - - (1- -- (1- (1- - -
max 600) 600)  600)
7.4.2 Genetic optimization algorithm

We were using a genetic optimization algorithm to minimize the cost function J(d) by
optimizing the scaled parameter vector d. The GENOUD  algorithm (genetic
optimization using derivatives) (Mebane and Sekhon, 2011) combines global genetic
optimization search with local gradient-based search algorithms. In genetic
optimization algorithms, each model parameter is called a gene and each parameter set
is called an individual. The fitness of this individual is the cost of the model against the
observations. At the beginning of the optimization, a first generation of individuals is

initialized by random sampling of parameter sets within the prescribed parameter
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ranges. After the calculation of the cost of all individuals of the first generation, a next
generation is generated by cloning the best individuals, by mutating the genes or by
crossing different individuals (Mebane and Sekhon, 2011). This results after some
generations in a set of individuals with highest fitness, i.e. parameter sets with
minimized cost. Within the GENOUD algorithm we were using also the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) gradient search algorithm (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) to find an optimum parameter set. An
optimized parameter set of the BFGS algorithm is used as individual in the next
generation. The BFGS gradient search algorithm was first applied on the best
individual of the second last generation to avoid a too fast convergence of the
optimization algorithm towards a local optimum. For grid cell-based optimization
experiments we were applying the GENOUD algorithm with at least 20 generations
and a population size of 1000 individuals per generation, i.e. at least 20000 single
model runs. For PFT-level optimization experiments we were applying the GENOUD
algorithm with at least 15 generations and a population size of at least 700 individuals

per generation, i.e. at least 10500 single model runs.

Table 7.3: Posterior parameter values for LPJmL-OP based on grid cell-level optimization
experiments (OP.gc).

Parameters written in italics were derived as the median value of the single grid cell
optimization experiments whereas all other parameters were derived from prior parameter
sources. For the parameter ramp no plausible parameter was found. The parameter GDDbase
was changed to 0 but not included in the optimization.

TrBE  TrBR TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

Og 0.6 0.56 0.38 0.41 0.38 0.28 0.34 0.27 0.32 0.39

Brear 0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.08 0.15

Bstem 0.15 0.07 0.13 0.15 0.04 0.14 0.06 0.05

Biitter 0.15 0.06 0.13 0.15 0.09 0.13 0.08 0.09 0.1 0.14

sfc 0.4 04 0.1 04 04 0.1 0.156 0.18 04 04

k 0.36 0.73 0.41 0.44 0.74 0.71 0.51 0.88 0.39 0:46

SGeDDba - . - - 0 - 0 0 0 0

Wscal - 0.85 - - - - - - - -

Ramp = - - - 300 - 200 200 100 100

aphen . . . 10 - 10 10 - .

aphen _ _ _ 2019 _ 1816 1057 _ _
e 7 2 8
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Table 7.4: Prior parameter values for LPJmL-GSI (GSL.prior).

Parameters marked with * were identified as insensitive and were not included in the
optimization. The values in brackets are ranges of uniform parameter distributions that were
used during optimization. The values for the first 6 parameters were derived from the single

grid-cell optimization experiments of LPJmL-OP (Table 7.3).

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS  TrH ;gﬂ
06 056 038 041 038 028 034 027 039 032
a, 02-  (04- (023- (04- (0.15- (0.16- (0.15- (0.16- (0.21- (0.A-

0.8) 09) 049) 09) 06) 057) 061) 055 0.83) 0.83)

0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.15 0.08
Bieat (0.1- (0.05- (0.01- (0.09- (0.13- (0.01- (0.09- (0.1-  (0.09- (0.072
0.2) 0.2) 023) 023 019 023 021) 0.14) 0.21) -0.22)

015 007 013 015 004 014 006 0.05
Bsem  (0.018 (0.06- (O- (0.029 (0.038 (0- (0.059 (0.04- -- -
-0.29) 0.23) 031) -0.28) -0.23) 031) -0.23) 0.32)

015 006 013 015 009 013 008 009 0.14 01
Biewr  (0.054 (0.058 (0.047 (0.044 (0.085 (0.035 (0.078 (0.088 (0.02- (0.027
0.29) -0.27) -0.21) -0.29) -0.2) -0.26) -0.22) -0.23) 0.28) -0.38)

0.1 04 01 015 0.4
sfc  04* 04* (0.01- 04* (0.1- (0.01- (0.1- 018 04*  (0A-
0.9) 0.9) 09) 0.9) 0.9)
036 073 041 044 074 071 051 088 046 039
K ©02-  (04- (01- (04- (01- (04- (01- (04- (01-  (0A-
09) 09 09) 09 09 09 09 09 09 09
0.24 024 024 024 024 024 024 024 024
Shon  (0.1-  024* (0.1- (04- (0.1- (04- (0.1- (04- (0.1-  (0A-
2) 2) 2) 2) 2) 2) 2) 2) 2)
basees 88 88  33( 06(- 74  37( 22 4(6 88 07(
. (0-16) (0-16) 66) 3-1) (59) 6-6) (0-5) 6) (0-16) 3-5)
Tem  02° 02" 02 02" 02 02" 02 02 02 02
024 024 024 024 024 0.24
Sheat  (0.01-  (0.01- (0.01- (0.01- (0.01- 0.24* 024* 024* (0.01- 0.24*
3) 3) 3) 3) 3) 3)
base. 35 3 35 35 3 3 3 3B 3 3
e (25 (25- (25- (25- (25-  (25- (25- (25 (25  (25-
at A5)  45)  45)  45)  45)  45)  45)  45)  45)  45)
0.2 0.2 0.2 0.2
Tt (0.01- 02  (0.01- 02* 02¢ 02¢ (001- 02 (0.01- 02*
0.9) 0.9) 0.9) 0.9)
57 02 101 41
shgw  (0.05- 23* 20  (0.05- 58  14*  (0.05- 95*  (0.05- 23
157) 40) 220) 130)
base, (1125 62(1- 73(1- 23(1- (1525’ 57 (1- (1563 (1153?0_ (110_4 67 (1-
ht o00) 200)  200) 50) 555y 100) 554y qgg)  1s0)  180)
0.2 02 02
T (0.01- 02* 02 02° 02 02* 02 02 (0.01- (0.01-
0.9) 0.9) 009)
5 5 5 5 5 5
Sheer  (04- (04 5 &5 (01- 5  (01- 5  (04- (0.1
10)  10) 10) 10) 10)  10)
basess 20 (1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20 (1- 20 (I-
o 99) 99) 99) 99) 99) 99) 99) 99) 99) 99
08 08 08 08
Tee  (0.01- (0.01- 08 08 08 08 08 08  (0.01- (0.01-
0.99)  0.99) 0.99)  0.99)
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Table 7.5: Final parameters for LPJmL-GSIL.
Parameters written in italics were derived from PFT-level optimization experiments (GSI.pft)
whereas all other parameters were derived from prior parameter sources as described in Figure

7.9.
Bo Bo Bo
TrBE TrBR TeNE TeBE TeBS NE BS NS TrH TeH PoH
a; 0.63 0.52 0.44 0.45 0.61 0.22 0.41 0.34 0.40 0.32 0.43

Brear 013 012 0.12 012 018 0.10 0.16 012 024 0.18 0.07

Bstem 010 010 004 004 004 006 006 004 015 015 0.15

Biiter 010 010 005 010 014 001 000 001 012 0.07 0.03

k 052 074 047 070 060 044 041 066 050 050 0.50

Slimin 1.01 024 022 055 026 010 022 015 091 031 0.13

basewmn 830 7.66 -7.81 -0.63 1369 -7.52 205 -4.17 642 498 279

Ttmin 020 020 020 020 020 020 020 020 020 0.017 0.20

Slheat 186 163 183 098 174 024 174 024 147 024 0.24

baseneast 38.64 38.64 3526 41.12 41.51 27.32 41.51 44.60 29.16 32.04 26.12

Theat 020 020 020 020 020 020 020 020 020 020 0.20

Sliight 7717 23.00 20.00 18.83 58.00 14.00 58.00 95.00 64.23 23.00 23.00

basejg: 55.53 13.01 4.87 39.32 59.78 3.04 59.78 130.1 69.90 75.94 50.00

Tiight 052 020 020 020 020 020 020 020 040 0.22 0.38

Slwater 514 797 500 500 524 500 524 500 010 052 0.88

basewa 500 2221 861 882 2096 0.01 20.96 2.34 41.72 53.07 1.00

er

Twater 044 013 080 080 080 080 080 080 017 0.01 0.94

7.4.3 Parameter sensitivities and uncertainties

To explore the sensitivity and uncertainty of LPJmL-GSI parameters after PFT-level
optimizations, we computed the likelihood L and Akaikes Information Criterion AIC
from the cost ] of each individual (i.e. parameter set d) of the genetic optimization:
L=c¢ /@) (7.19)

AIC =2xn—-2xlog(L) (7.20)
Where n is the number of parameters. The optimum parameter set has the highest
likelihood and the lowest AIC. Then, we selected only these individuals with an AIC
difference dAIC of <2 in comparison to the best parameter set:

dAIC = AIC — AIC,q; (7.21)
Parameter sets or model formulations with an AIC difference < 2 are usually
considered as equally plausible like the best parameter set (Burnham and Anderson,
2002, p.70). The relationship between likelihood and the value of each parameter

provides both a qualitative insight in the uncertainty of parameters as expressed by the
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parameter range and in the parameter sensitivity as expressed by the maximum

likelihood at each parameter value.

7.4.4 Supplementary results and discussion on optimization performance

The optimization of LPJmL-OP and LPJmL-GSI resulted in a significant reduction of
the cost in comparison to the respective prior models although there were differences
between plant functional types (Figure 7.10). LPJmL-OP with prior parameters had
high costs especially in herbaceous PFTs (TrH and TeH) and in the boreal needle-
leaved summer green PFT (BoNS). The optimization of single grid cells in LPJmL-OP
resulted in a significant reduction of the cost in all PFTs (p < 0.01, Wilcoxon rank-sum
test) despite the polar herbaceous and tropical herbaceous PFTs. The global prior
parameter set of LPJmL-GSI resulted in a significant lower cost than the grid cell-level
optimized parameter sets of LPJmL-OP in TrH, TeBS, BoNS and PoH PFTs. The
optimization of single grid cells in LPJmL-GSI resulted in a significant reduction of the
cost in all PFTs except BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted
in a significant lower cost than the LPJmL-GSI prior parameter set in all PFTs except
TeBE, BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted in a significant
lower cost than the standard LPJmL-OP prior parameter set in all PFTs except TeNE.
These results demonstrate an improved overall performance of optimized model
parameter sets over prior model parameter sets and of LPJmL-GSI over LPJmL-OP
regarding a cost that is defined based on 30 years of monthly FAPAR, mean annual
GPP and 10 years of monthly vegetation albedo.

Model optimization experiments resulted in a significant reduction of the annual GPP
bias of LPJmL in comparison to the MTE data-oriented GPP product (Figure 7.11).
LPJmL-OP with prior parameters underestimated mean annual GPP in the TrBE PFT
(median Pbias -13%) and overestimated mean annual GPP in all other PFTs (up to
123% median Pbias in TeH). Grid cell-level optimization experiments of LPJmL-OP
resulted in a significant reduction of the GPP bias in all PFTs except in the PoH PFT.
Especially in the TrBE, TrBR, TrH, TeNE, TeBE, TeBS and BoBS PFTs the bias of mean
annual GPP of LPJmL was removed almost completely (i.e. Pbias within 5%). The
LPJmL-GSI prior parameter set had significant lower biases of mean annual GPP than

the prior parameter set of LPJmL-OP. This was because the median of each parameter
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from the OP.gc experiments was used as prior parameter for LPJmL-GSI. Grid cell-
level optimization experiments of LPJmL-GSI resulted in significant reductions of the
bias in mean annual GPP in most PFTs despite PFTs where the LPJmL-GSI prior
parameter set resulted already in GPP biases close to 0 (i.e. TrH, TeBE and PoH). PFT-
level optimization experiments of LPJmL-GSI resulted in significant lower biases of
mean annual GPP than the prior parameter set of LPJmL-OP in all PFTs except PoH.
These results demonstrate that through the applied model optimization biases in mean
annual GPP were significantly reduced in all PFTs (except PoH) in LPJmL-OP as well
as in LPJmL-GSI.
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Figure 7.10: Distribution of the cost for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes.

(a) Cost for LPJmL-OP with default parameters (a, OP.prior), after grid cell-level optimizations
(b, OP.gc), cost for LPJmL-GSI with prior parameters (c, GSI.prior), after grid cell-level
optimizations (d, GSI.gc) and after PFT-level optimizations (e, GSLpft). Biomes are Tr (tropical),
Te (temperate) and Bo (boreal/polar). (b) Legend for the plot. Each distribution is plotted
according to usual boxplot statistics. The point symbols indicate the plant functional type. The
significance flag on top of each distribution shows if a distribution is significant different (p <
0.01) to the corresponding distribution of the same PFT in another optimization experiment.
The significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a
significant difference to the main categories a (OP.prior), ¢ (GSL.prior) and d (GSI.gc) but no
significant difference to b (OP.gc) and e (GSL.pft).
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Figure 7.11: Distribution of the percent bias between LPJmL and MTE mean annual GPP (1982-
2011) for several grid cells in prior model runs and optimization experiments grouped by plant
functional types and biomes. See Figure 7.10 for a further explanation of this figure.

We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP and of
LPJmL-GSI in the PoH PFT (tundra) in optimization experiments because of
inconsistencies between the FAPAR and GPP datasets or in the LPJmL formulation.
Although a complete removal of the GPP bias is in principle possible by adjusting the
aa parameter, this would result in a too low FPC of the PoH PFT. Such a low FPC
cannot explain the relatively high peak FAPAR values that are seen in the GIMMS3g
FAPAR dataset in Tundra regions. It is not possible to explain the low mean annual
MTE GPP and the relatively high GIMMS3g peak FAPAR with the current LPJmL
model structure in tundra regions. The reasons for this mismatch can be caused by
inconsistencies between the GPP and FAPAR datasets or by an insufficient model
formulation. The MTE data-oriented GPP product has been upscaled from FLUXNET
eddy covariance measurements (Jung et al., 2011). Nevertheless, not many eddy
covariance measurement sites cover tundra regions with mean annual air temperatures

< 0°C. Thus, the MTE GPP estimates are not well supported by measurements in
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tundra regions. But also the FAPAR dataset might be more uncertain in tundra regions
than in other parts of the globe. Optical remote sensing in high-latitude regions is
usually performed under high-sun zenith angles. Radiation can penetrate deeper into
vegetation under high-sun zenith angles which results in higher FAPAR (Tao et al.,
2009; Walter-Shea et al., 1998). Thus, the high FAPAR values in the GIMMS3g FAPAR
dataset might be caused by satellite observations under high-sun zenith angles. Finally,
the inconsistencies between GPP and FAPAR might be also caused by an inappropriate
representation of tundra plant communities in LPJmL. The PoH PFT in LPJmL was
derived from a grass PFT but does not include shrubs or the large functional diversity
of mosses and lichen that are the dominant plant communities in tundra ecosystems
(Porada et al., 2013). We currently cannot decide if the inconsistency between FAPAR
and GPP in our optimization of productivity and FAPAR parameters in tundra regions
is more caused by the specific properties of the datasets or by an insufficient model
structure.

All optimization experiments resulted in reasonable albedo biases of LPJmL-OP and
LPJmL-GSI in comparison with monthly MODIS albedo time series (Figure 7.12).
LPJmL-OP with prior parameters overestimated growing season albedo in all PFTs.
Grid cell-level optimization experiments of LPJmL-OP resulted in significant
reductions of the bias in growing season albedo in TrBE, TeNE, TeBE, TeBS, BoNE, and
BoNS PFTs but not in TrBR, TrH, TeH, BoBS and PoH PFTs. The bias in growing
season albedo of the latter PFTs was significantly reduced with the LPJmL-GSI prior
parameter set. The optimization of LPJmL-GSI for single grid cells significantly
reduced the bias in growing season albedo in comparison to the LPJmL-GSI prior
parameter set in all PFTs except in the TeH, BoNS and PoH PFTs. These results
demonstrate that model optimizations experiments kept growing season albedo within

reasonable ranges in comparison to MODIS albedo.
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Figure 7.12: Distribution of the percent bias between LPJmL and MODIS monthly growing
season albedo (2000-2011) for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes. See Figure 7.10 for a further
explanation of this figure.

7.4.5 Supplementary results and discussion on parameter variability

The optimization of the leaf albedo parameter P resulted in values that differed
especially between broadleaved and needle-leaved evergreen PFTs (Figure 7.13).
Needle-leaved evergreen PFTs (TeNE and BoNE) had in all optimization experiments
the lowest Pleat parameter values while the broad-leaved summergreen PFTs (TeBS and
BoBS) had the highest Piar parameter values. After the PFT-level optimization of
LPJmL-GSI herbaceous PFTs had high it parameters. The leaf albedo parameter ieat
was sensitive in all PFTs (Figure 3.5 of the main text). The optimization resulted in
many PFTs in leaf and litter albedo parameters that were close to the boundaries of the
prior parameter ranges. This indicates missing environmental controls on surface
albedo. The albedo routines of LPJmL need to be further improved to account for
moisture-driven changes in surface albedo. Such improved albedo routines would

allow a more accurate and constrained estimation of albedo parameters. Because of
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these current limitations in the LPJmL albedo routines, albedo simulations in regions

or time periods with low vegetation cover need to be assessed with care.
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Figure 7.13: Prior and optimized values for the parameter aa (fraction of radiation absorbed at
leaf level relative to canopy level) grouped by plant functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure 7.10 for a further explanation of this figure.

The light extinction coefficient k had a large spatial variability in all PFTs and in both
grid cell-level optimization experiments of LPJmL-OP and LPJmL-GSI (Figure 7.15).
The spatial variability was lower after grid cell-level optimization experiments of
LPJmL-GSI than after grid cell-level optimization experiments of LPJmL-OP. The
largest variability was found in evergreen PFTs (TrBE, TeBE, TeNE and BoNE). This
result demonstrates that unique or PFT-dependent light extinction coefficient
parameter values are not meaningful. Moreover, the spatial variability of the light
extinction coefficient needs to be analyzed more detailed and perhaps replaced by a

more advanced representation of canopy architecture.
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Figure 7.14: Prior and optimized values for the parameter (. (leaf albedo) grouped by plant
functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure 7.10 for a further explanation of this figure.

The highest values of the light extinction coefficient were found in the BoNS PFT. This
was caused by an overestimation of tree mortality in years with simulated low
productivity. Trees are killed in LPJmL as a result of negative net primary production
which reduces FPC and results in a lower peak FAPAR in the following year. Having
occurred more often in the simulated time period, it can explain why FAPAR is
underestimated in some years. To remove these biases, the light extinction coefficient
was optimized towards higher values in the BoONS PFT to reach FAPAR values that are
closer to the observed FAPAR values after low-productivity years. However, such high
values for the light extinction coefficient would overestimate tree cover and FAPAR
under average conditions and when LPJmL is applied with dynamic vegetation. The
approach to simulate tree mortality in LPJmL needs further improvement by, e.g.,
considering for example reserve carbon pools that helps the plants to endure low

productivity conditions (Galvez et al., 2011).
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Figure 7.15: Prior and optimized values for the parameter k (light extinction coefficient)
grouped by plant functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure 7.10 for a further explanation of this figure.

We computed correlations between posterior parameter values for the four most
important phenology parameters of LPJmL-GSI (TMIN_BASE, LIGHT_BASE,
WATER_BASE and TMAX _BASE) (Figure 7.16). Most correlations were low to
moderate (maximum r = 0.69). Interestingly, the correlation between the TMIN_BASE
and WATER_BASE parameters was low in PFTs that experience strong permafrost
dynamics (BoNS r = 0.2, PoH r = -0.28). This indicates that the water and cold
temperature limiting in boreal and arctic regions were only weakly correlated. Indeed,
our results showed that water availability affected phenology mostly in early spring
whereas cold temperature affected phenology during the entire year in boreal and
arctic regions (Figure 9 of the main text). These results emphasize the ability to
disentangle effects of seasonal air temperature and soil moisture on phenology in

boreal and arctic regions.
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Figure 7.16: Correlations between posterior parameters for the four limiting functions for
phenology in LPJmL-GSI grouped per PFT.

Correlation matrices were computed based on all “best” individuals (i.e. parameters sets) from
PET-level optimization experiments (GSIL.pft). “Best” individuals have an AIC difference of
dAIC <2 in comparison to the individual with the lowest AIC, i.e. they are equally plausible.
Numbers are Pearson correlation coefficients. Lines in the scatter plots are LOWESS smoothing
lines (locally-weighted polynomial regression).
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7.5 Global model evaluation
7.5.1 Supplementary results and discussion on carbon stocks and fluxes

LPJmL-GSI estimated global total carbon fluxes and stocks closer to data-oriented
estimates than LPJmL-OP-prior and LPJmL-OP-gc (Table 7.1). All three LPJmL model
versions overestimated global total GPP although LPJmL-GSI was close to the upper
uncertainty estimate of the data-oriented GPP estimate. Estimates of ecosystem
respiration from LPJmL were clearly larger than the data-oriented estimates. Although
LPJmL simulated global total fire carbon emissions within the magnitude of
independent estimates (van der Werf et al., 2010), LPJmL-OP-gc had higher and
LPJmL-GSI had lower fire carbon emissions despite the use of observed burnt areas in
the SPITFIRE fire module. Data-oriented estimates of global total biomass have a large
uncertainty. All three version of LPJmL were within these uncertainties. LPJmL-GSI
estimated global total biomass the closest to the data-oriented estimates. From Table
7.1 it is obvious that LPJmL with the model settings as in (Schaphoff et al., 2013) (i.e.
without the BoNS and PoH PFTs and with simulated fire activity) resulted in global
total GPP and ecosystem respiration that were even closer to the data-oriented
estimates. This is mostly because LPJmL simulates larger burnt areas than seen in the
observations and thus higher fire emissions but lower GPP and ecosystem respiration.

Although no information about temporal variations in GPP were used in optimization
experiments, the mean seasonal cycle of GPP from LPJmL-GSI and LPJmL-OP-gc
agreed better with the MTE data estimate than the mean seasonal GPP cycle from
LPJmL-OP-prior especially in temperate and boreal PFTs and tropical grasslands
(Figure 7.18). GPP simulated by LPJmL-OP-prior increased too early and too fast in
spring and decreased too late in autumn in TeNE, TeBS, BoNE, BoBS and TeH PFTs
compared to the MTE estimate. These wrong dynamics improved after parameter
optimization in both LPJmL-OP-gc and LPJmL-GSI. Additionally, LPJmL-GSI agreed
better with the data estimate than LPJmL-OP-gc in TeNE, TeBS, TrH, PoH, TrML and
TeML. These results demonstrate that the new GSI-based phenology model improved
not only FAPAR seasonality but also GPP seasonality especially in temperate forests

and in tropical to polar grasslands.
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Table 7.6: Global total carbon fluxes and stocks from data-oriented estimates and from LPJmL
simulations.

LPJmL-OP-Standard and LPJmL-GSI-Standard are LPJmL model runs with settings as in
(Schaphoff et al., 2013), i.e. without the use of the BoNS and PoH PFTs and with using
simulated fires instead of prescribed observed burnt areas. Data sources: 1) (Beer et al., 2010;
Jung et al., 2011), 2) (van der Werf et al., 2010), 3) (Carvalhais et al., 2014; Saatchi et al., 2011;
Thurner et al., 2014), 4) (Carvalhais et al., 2014).

Gross Ecosystem Fire carbon Soil

primary respiration emissions Biomass organic
production (PgC a-1) (PgC a-1) (PgC) carbon
(PgC a-1) 9 9 (PgC)
Data estimate 124.7" 100-110Y  2.0” 451.2° 24607
Data lower 110.7" 208.8Y 1990"
uncertainty
Data upper 138.3" 695.9% 2984
uncertainty
LPJmL settings as in this study:
LPJmL-OP-prior 161.3 150.7 1.93 674.1 2723
LPJmL-OP-gc 153.8 143.9 2.45 581.1 2503
LPJmL-GSI 145.8 141.4 1.65 546.4 2508
LPJmL settings as in Schaphoff et al. (2013):
LPJmL-OP-Standard  138.9 125.8 3.48 597.8 2101
LPJmL-GSI-Standard 120.4 115.1 3.23 582.1 1392
a) LPJmL-OP-prior — MTE

_ T

c) Area-averaged mean annual GPP against
mean annual temperature
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Figure 7.17: Comparison of patterns of mean annual total gross primary production from
LPJmL and the data-oriented MTE estimate for the period 1982-2011.

(a) Difference in mean annual total GPP between MTE and LPJmL-OP-prior. (b) Difference in
mean annual total GPP between MTE and LPJmL-GSI. (c) Global spatial-averaged gradients of
mean annual GPP against mean annual temperature. Dashed lines are dry areas with mean
annual P/PET < 15 and solid lines are wet areas with mean annual P/PET >= 15. The red area
represents the uncertainty of the data-oriented GPP estimate expressed as the inter-quartile
range of the MTE ensemble.
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Figure 7.18: Comparison of the mean seasonal GPP cycle (averaged over 1982-2011) from MTE

and LPJmL spatially averaged for regions with the same dominant PFT.
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Figure 7.19: Comparison of biomass from data-oriented estimates (Thurner and Saatchi
datasets) and from LPJmL (averaged 2009-2011). See Figure 7.17 for further explanations.
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7.5.2 Supplementary figures on evapotranspiration
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Figure 7.20: Latitudinal gradients of evapotranspiration with its components.
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Figure 7.21: Mean seasonal cycle (1982-2011) of ET, evaporation, interception and transpiration
spatially averaged for PFTs.

Numbers on top of each plot are correlation coefficients between each LPJmL model run and
MTE (for ET) and between LPJmL model runs and LPJmL-OP-prior, respectively. The
significance of the correlation is indicated as point symbol: *** (p < 0.001), ** (p <0.01), * (p <
0.05), . (p<0.1).
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7.5.3
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Supplementary figures on evaluation of FAPAR
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Figure 7.22: Comparison of mean annual FAPAR from LPJmL and remote sensing datasets.
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See Figure 7.17 for further explanations.
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Figure 7.23: Comparison of the mean seasonal FAPAR cycle from GIMMS3g, GL2 VGT and
LPJmL spatially averaged for regions with the same dominant PFT.

The PFTs for which time series were averaged are shown in Figure 3. Numbers in the figures
are correlation coefficients between GIMMS3g and the corresponding time series from GL2
VGT or from LPJmL simulations. The significance of the correlation is indicated as point
symbol: *** (p <0.001), ** (p < 0.01), * (p < 0.05), . (p <0.1).
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Figure 7.24: Correlation coefficients between monthly FAPAR time series from GIMMS3g, GL2
VGT datasets and LPJmL model simulations.

Cor annual FAPAR
GIMMS3g ~ GL2 VGT GIMMS3g ~ LPJmL-OP-prior GIMMS3g ~ LPJmL-OP-gc

Figure 7.25: Correlation coefficients between annual FAPAR time series from GIMMS3g, GL2
VGT datasets and LPJmL model simulations.
Mean annual FAPAR was averaged from monthly FAPAR values with air temperatures > 0°C.
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Extrapolation capabilities of LPJmL-GSI
Correlation between monthly GIMMS3g and LPJmL-GSI FAPAR (1982-2011)
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Figure 7.26: Extrapolation capabilities of LPJmL-GSI in terms of monthly FAPAR dynamics.
(a) Correlation coefficient between monthly FAPAR time series from LPJmL-GSI and GIMMS3g
(1982-2011). Areas without vegetation, with more than 50% agricultural use, or without data are

excluded (white). (b) The map shows the distance between each 0.5° grid cell and the closest

grid cell that was used in a PFT-level optimization experiment of LPJmL-GSI (GSL.pft). (c)
Scatterplot between the correlation coefficient from (a) and the distance from (b) coloured by
the Koppen-Geiger climate type of each grid cell. Lines are smoothing splines fitted to the
quantile 0.5 of the correlation coefficient for each climate type. Star symbols indicate the p-value
of a Wilcoxon rank-sum test if the correlation coefficients of distant grid cells (between 600 and
800 km, indicated by vertical dashed lines) are significant lower than of close grid cells (<200
km). (d) Scatterplot between the correlation coefficient from (a) and the difference in mean
annual temperature between each grid cell and the corresponding closest grid cell. Star symbols
indicate the p-value of a Wilcoxon rank-sum test if the correlation coefficients of warmer grid
cells (between +3 and +5°C) are significant lower than of grid cells with similar temperature (+
1°C).
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8 Supporting information of chapter 4

This chapter contains the Supporting Information of the manuscript (chapter 4):

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U. and
Carvalhais, N.: Co-dominant water control on global inter-annual variability and
trends in land surface phenology and greenness, Global Change Biology, (submitted
2014-12-16).
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8 Supporting information of chapter 4

Table 8.1: Explanation of abbreviations.

Deriv extreme values of the first derivative of the seasonal greenness curve to detect SOS and
EOS in phenology methods

DGVM dynamic global vegetation model

DLA1 double-logistic function according to Beck et al. 2006 for time series smoothing and
interpolation in phenology methods

DL2 double-logistic function according to Elmore et al. 2012 for time series smoothing and
interpolation in phenology methods

eCor effect of a factor on the correlation of a PGM time series

eMean effect of a factor on the mean of a PGM time series

EOS end of growing season

eTotal total effect of a factor on a PGM time series

eTrend effect of a factor on the trend of a PGM time series

eVar effect of a factor on the variance of a PGM time series

FAPAR fraction of absorbed photosynthetic active radiation

FPC foliar projective cover

GIMMS3g Global Inventory Modeling and Mapping Studies, 3rd generation dataset

GL2-VGT2 Geoland2 BioPar GEOV1, Vegetation 2

KGE Kling-Gupta efficiency

LIN linear interpolation and running median for time series smoothing and interpolation in
phenology methods

LOS length of growing season

LPJ Lund Potsdam Jena DGVM

LPJmL Lund Potsdam Jena managed lands DGVM

LPJmL-GSI LPJmL model run with growing season index-based phenology module

LPJmL-OP LPJmL model run with original phenology module

LULCC land use and land cover change

MAU mean autumn FAPAR

MGS mean FAPAR of the growing season

MODIS Moderate-Resolution Imaging Spectroradiometer

MSP mean spring FAPAR

NDVI normalized difference vegetation index

PEAK annual maximum FAPAR

PFT plant functional type

PGM phenology and greenness metrics

PHEN daily phenology status in LPJmL

POP position of peak FAPAR

SOS start of growing season

SPL smoothing splines for time series smoothing and interpolation in phenology methods

SPOT Satellite Pour I'Observation de la Terre

SSA singular spectrum analysis for time series smoothing and interpolation in phenology
methods

Trs 50% thresholds on the seasonal greenness curve to detect SOS and EOS in phenology
methods

8.1 Description of phenology methods

In our approach, all phenology methods consist of three steps (Figure 4.1 of the main
text): 1) Permanent gaps in each time series were filled. 2) The time series was
smoothed and interpolated to daily time steps using five different methods. 3) PGMs
were calculated from smoothed and daily interpolated time series using two different
approaches. The in the following described methods are freely available in the R

software package “greenbrown” (http://greenbrown.r-forge.r-project.org/).
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In the first step, we identified permanent gaps as all months that have missing values
in more than 20% of all years (PGAP). This implies that also an existing FAPAR
observation in a month can be flagged as PGAP if missing values occur in the same
month in other years. PGAP months occur usually in northern high latitude regions in
winter because of snow cover or high sun zenith angles. We replaced all missing and
all non-missing FAPAR values in PGAP months with the minimum FAPAR value from
observations in the same PGAP months in other years or from the previous and next
months, respectively. The minimum value was already used by Beck et al. (2006) to fill
missing winter observation in NDVI time series.

In the second step, we used five different methods to smooth and interpolate time
series to daily time steps. In method “LIN” a running median filter and linear
interpolation was used. Although this method keeps as much as of the original data, it
can produce some abrupt changes in the time series. In method “SPL” (Migliavacca et
al., 2011) cubic splines were used to smooth (Hastie and Tibshirani, 1990) and to
interpolate (Forsythe et al., 1977) the time series. In method “SSA” the time series was
first linearly interpolated to daily values with added white noise on interpolated
observations. Afterwards one-dimensional singular spectrum analysis (SSA)
(Golyandina et al., 2001) was used to decompose the time series in components with
different frequencies and finally all low frequency components (frequency < 1.5, i.e.
trend to seasonal cycle) were summed to derive a smoothed time series without short-
term variability. SSA was previously used to fill gaps in NDVI data (von Buttlar et al.,
2014) and to analyze seasonal FAPAR dynamics (Mahecha et al., 2010a). In method
“DL1” a double logistic function as described in Beck et al. (2006) was fitted to the
FAPAR values for each year. In method “DL2” another variant of a double logistic
function was fitted to the FAPAR values for each year which better describes declining
greenness during summer months (Elmore et al., 2012). Parameters of the double
logistic functions in DL1 and DL2 were estimated by minimizing the sum squared
error between observed and estimated FAPAR values using the BFGS optimization
algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). We excluded
the estimated FAPAR values for an entire year in further analyses in case the BFGS

algorithm did not converge towards an optimum value.
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In the third step, PGMs were calculated in the third step using two different
approaches. In the “Trs” (threshold) approach (White et al., 1997), we scaled FAPAR
values of each year between 0 and 1 and computed SOS and EOS as the days when the
scaled time series crosses 0.5. In the “Deriv” (derivative) approach, SOS and EOS were
defined as the days when the smoothed and interpolated time series had the strongest
increase and decrease, respectively (Tateishi and Ebata, 2004). Both approaches are
based on the definition of SOS and EOS as the midpoints of spring greenup and
autumn senescence, respectively. Although the parameters of double logistic functions
(DL1 and DL2) can be directly interpreted as phenology metrics, we also calculated
PGMs from these fitted functions using the “Trs” and “Deriv” approaches in order to
use the same definition of SOS and EOS for all phenology methods.

PGMs as SOS, EOS and derived metrics were not calculated if a smoothed and
interpolated time series had no seasonality because these metrics are meaningless in
ecosystems without seasonality like evergreen tropical forests. We checked for
seasonality in a time series by applying three methods to the smoothed and daily
interpolated time series:

1. Periodogram: We calculated a periodogram of the time series by using fast
Fourier transformation (R Core Team, 2014; Veneables and Ripley, 2002). A
maximum value of the periodogram at a frequency of 1 indicates seasonality.

2. Auto-correlation function: We computed the auto-correlation function of the
de-trended time series (R Core Team, 2014; Veneables and Ripley, 2002). For
this we first removed a non-linear trend from the time series. The non-linear
trend was estimated by using seasonal decomposition of time series by Loess
(STL) (Cleveland et al.,, 1990). A minimum value of the auto-correlation
function of the de-trended time series at a time lag of 0.5 (frequency of the time
series) indicates seasonality. We assigned seasonality to the time series if the
auto-correlation function had a minimum at a time lag between 0.4 and 0.6.

3. Season-trend model: We fitted two linear regression models to the time series.
The first regression considers only a linear trend (trend model). The second
regression considers a linear trend and seasonal factors (season-trend model).

We computed the BIC (Bayesian Information Criterion) of both models. If the
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BIC of the season-trend model is lower than of the trend model, the time series
has probably seasonality.
We only finally assigned seasonality to a time series if all three methods indicated
seasonality. If one or more of these methods indicated no seasonality, we only
computed the PGMs POP and PEAK that are not depending on the estimation of SOS
and EOS.

8.2 Supporting figures

Ty

{”\}N& éf\,e_;:f /KW

Figure 8.1: Used masks for (a) biome-aggregated, (b) region-aggregated and (c) global-
aggregated results in tables and figures of the main text.
Masks for biomes and regions were derived from the PFT map as described in Forkel

et al. (2014).
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Figure 8.2: Latitudinal gradients of all PGMs. See Figure 4.2 of the main text for an explanation.
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Figure 8.3: Regional-averaged time series and trends in SOS, EOS and LOS. See Figure 3 of the
main text for an explanation.
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Figure 8.4: Latitudinal gradients of median annual SOS as estimated from 10 phenology
methods for (a) GIMMS3g, (b) MODIS and (c) GL2-VGT2.
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Figure 8.5: RGB composite maps of all effects on all PGMs.
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Figure 8.6: KGE between SOS from LPJmL-GSI and the data-method ensemble.

(a) Ensemble median KGE. Stippling indicates grid cells for which the KGE ensemble of
LPJmL-GSlI is significant lower than the KGE ensemble of satellite datasets. (b) Ensemble
maximum KGE. (c) Combination of satellite dataset and phenology method that resulted in the
maximum KGE. (d) Satellite dataset with maximum KGE. (e) Phenology method with
maximum KGE.
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Figure 8.7: Globally spatial averaged time series and trends of (a) peak FAPAR, (b) water
availability anomalies from LPJmL, (c) anomalies in total tree foliar projective cover from
LPJmL and (d) air temperature and precipitation anomalies. All anomalies are relative to 1982.
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9 Methods and extended data of chapter 5

This chapter contains the Methods and Extended Data of the manuscript (chapter 5):

Forkel, M., Carvalhais, N., Rodenbeck, C., Keeling, R. F., Heimann, M., Thonicke, K.,
Zaehle, S. and Reichstein, M.: Enhanced seasonal CO2 exchange caused by
amplification of plant productivity in the northern biosphere, submitted to Nature,

2015-01-30.
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9 Methods and extended data of chapter 5

9.1 Methods

9.1.1 CO: time series processing and site selection

We considered using a set of 80 CO2 measurement sites in our analysis but we selected
only a subset of 19 sites for further analyses (Table 9.1) according to two criteria: (1)
The mean seasonal CO: amplitude is larger than 5 ppm to only use sites with a
pronounced seasonality. After this check no site at the southern hemisphere remained.
(2) The site covers at least 20 years of observations to allow for trend analysis.

We used polynomial functions and harmonics to interpolate CO: observations to daily
time series and Fast Fourier Transformation to smooth time series as implemented in a
standard method (Thoning et al., 1989). We calculated the seasonal CO: amplitude as
the peak-to-trough magnitude of the de-trended seasonal cycle of a calendar year. The
number and temporal distribution of observations (or gaps, respectively) within a year
can strongly affect the estimation of the seasonal cycle and thus the seasonal
amplitude. Therefore we performed an additional “good” data coverage quality check
to remove entire years from further analyses whose seasonal cycles are likely affected
from outliers, few observations or an uneven temporal distribution of observations. A
year with “good” data coverage had at least 12 measurements that were equally
distributed among all months. To quantify how equally measurements were

distributed among months, we computed the Gini coefficient G (Zeileis, 2014):

N
inxi
i=1

G=2x-= N
Nxei
i=1

where x is an increasing-ordered vector of the number of measurements per month

_N+1
N

9.1)

and N is the number of months per year (N = 12). G ranges between 0 (equal
distribution of measurements among months) and 1 (i.e. all measurements taken in one
month). We only used the interpolated and smoothed seasonal cycle of a year in
further analysis if G < 0.4. This good data coverage quality check introduces again

missing values of the length of entire years in interpolated CO: time series. We did not
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use a site in further analyses if more than 50% gaps were introduced because of this
quality check. These quality checks avoid drawing conclusions from CO: amplitudes of

single years with a poor coverage of measurements.

9.1.2 Trend analysis, uncertainty estimation and latitudinal gradients

Trends in annual time series of CO2 amplitudes were computed as the slope of linear
trends based on ordinary least squares regression. The significance of the trend was
computed by using the Mann-Kendall trend test. We computed uncertainties in the
estimated trend by adjusting time series length (McKinley et al., 2011) (Figure 9.1). This
gives for each site a distribution of trend slopes. Uncertainties in trend slopes are
reported as the 2.5 and 97.5%-iles of this distribution.

Latitudinal gradients of CO: amplitude trends were computed based on a linear
regression between latitude and the CO: amplitude trend slope at each station. The
uncertainty in the latitudinal gradient is affected by the uncertainty of trend slopes at
each station and the selection of sites. Therefore, we took 1000 bootstrap samples of
CO:z measurement sites and randomly selected for each site a value from the site-
specific distribution of CO: amplitude trend slopes. We are showing the median

latitudinal gradient and the 2.5 to 97.5%-ile range.

9.1.3 LPJmL: simulation of terrestrial carbon fluxes, agriculture and vegetation
dynamics

We simulated terrestrial carbon fluxes and vegetation dynamics with the LPJmL
(Bondeau et al., 2007; Sitch et al., 2003) (version 3.5) dynamic global vegetation model.
LPJmL was used with recent model improvements for fire (Thonicke et al., 2010),
permafrost (Schaphoff et al, 2013), as well as phenology (Forkel et al., 2014).
Additionally, model parameters for leaf phenology and gross primary production were
previously optimized against observation-based datasets of FAPAR and GPP which
resulted in a better representation of global carbon stocks and fluxes (Forkel et al.,
2014). In LPJmL, the net terrestrial carbon uptake (net biome productivity, NBP) is
calculated from ecosystem respiration (Reco), fire C emissions (FireC), C emissions

from crop harvest (H), and gross primary production (GPP):
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NBP = (Reco + FireC + H) — GPP 9.2)
GPP includes here the LPJmL-specific establishment flux that accounts for the amount
of CO2 needed to establish new seedlings when a plant functional type colonizes
previously bare ground. The harvest flux accounts for crop yields whereas crop
residues are respired and therefore included in Reco. Net ecosystem exchange is
commonly defined as (Chapin et al., 2006; Schulze, 2006):
NEE = Reco — GPP 9.3)

Reco, GPP and Estab were simulated by using the plant physiology and vegetation
dynamics modules in LPJmL (Sitch et al., 2003). Fire emissions were estimated by
prescribing observed burnt area time series to the LPJmL-SPITFIRE fire module (Forkel
et al, 2014; Giglio et al., 2010). Emissions from land use change and agricultural
harvest were directly simulated by using the agricultural routines of LPJmL (Bondeau
et al, 2007) that consider land use changes and area changes of several types,
irrigation, and an adaptation of sowing dates to long-term changes in climate. LPJmL
was driven by observed temperature, precipitation (Harris et al., 2014), and radiation
(Dee et al., 2011) time series. We analyzed LPJmL model results for the period 1970-
2011.

We used observation-based estimates of GPP from the MTE (model tree ensemble)
approach (Jung et al., 2011) and an estimate of NBP from the Jena Inversion system
(version s81_v3.6) (Rodenbeck et al., 2003) to evaluate LPJmL (Figure 9.5). We
evaluated trends in simulated FAPAR against satellite FAPAR (GIMMS FPAR3g
dataset, 1982-2011) (Zhu et al., 2013). However, the used LPJmL version was recently
intensively improved and evaluated against this dataset, and against datasets of gross
primary production, vegetation albedo, evapotranspiration, biomass, and tree cover

(Forkel et al., 2014).

9.14 TM3 atmospheric transport model, fossil fuel emissions, and net ocean
CO2 uptake

We used the terrestrial carbon fluxes from LPJmL to simulate atmospheric CO:

fractions at measurement sites with the atmospheric transport model TM3 (Heimann et

al., 1989). We drive TM3 by meteorological data from the NCEP (Kalnay et al., 1996)

and ERA-Interim (Dee et al.,, 2011) re-analysis datasets. The choice between these two
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meteorological forcing datasets introduces differences in CO2 amplitude trends (trends
were with NCEP ca. 0.03-0.05 ppm yr-1 lower than with ERA-Interim, Figure 9.3a-c).
These differences have a similar magnitude like the CO: fertilization effect but are
considerably smaller than the main effects of climate change or high latitude greening.
Therefore we considered both meteorological datasets for model evaluation (Figure 2a,
3, 4) but used only the NCEP dataset in factorial model experiments (Figures 2b-c)
because of the longer time series length. Fossil fuel emissions data was taken from the
EDGAR 4.2 dataset (Olivier and Berdowski, 2001). For the air-sea net CO: fluxes we
either used a data-based climatology (referred as OCLIM) (combining mean fluxes
based on ocean-interior carbon data by Mikaloff Fletcher et al. (Mikaloff Fletcher et al.,
2007) and seasonality by Takahashi et al. (Takahashi et al., 2009)), or a data-based
estimate including inter-annual variability (referred as OIAV) by Rodenbeck et al.
(Rodenbeck et al., 2014) based on surface-ocean pCO2 data from the SOCAT data base
(Bakker et al., 2014). Nevertheless, we did not find major differences in simulated CO:
amplitude trends by using the OCLIM or OIAV datasets (Figure 9.3d-f). Therefore we

used in all factorial model experiments the OCLIM dataset.

9.1.5 Factorial model experiments and quantification of contributions

We performed several model experiments with LPJmL+TM3 to quantify the relative
role of different factors on CO: amplitude trends. The relative importance of each
factor to the latitudinal gradient in the CO2 amplitude trend is assessed by removing a
controlling factor at a time, by maintaining the contributions of all other factors. The
factorial model experiments and the change to factors are listed in Table 9.2.

We quantified the contribution of a component flux from a certain region (e.g.
terrestrial NBP from boreal region) or from a process (e.g. fossil fuel, ocean, NBP, GPP,
Reco) to the overall seasonal cycle. Therefore a TM3 simulation was performed for each
component flux separately. The contribution to the overall seasonal cycle was
quantified using the projection approach as in Graven et al. (Graven et al., 2013).

Thereby the amplitude A of the seasonal CO2 cycle A is defined as:

(9.4)
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where Cn is the monthly total modelled CO: cycle (long-term CO: trend removed and
annual mean pre-subtracted, so that the sum of Cm equals 0). Cn is the total of several

component fluxes Ci:

N
Cy = Coi 9.5)
=1

The contribution (in ppm) of a component flux Ci to the total amplitude A is calculated

as:
m=12 n
Aj=(1/A) Y CpiC,y with A=) A, (9.6)
m=1 i=1

The percentage contribution of a component fluxes is given by:
x;=A; [ Ax100 9.7)
Percentage contributions add to 100 but can have positive or negative sign. Annual

time series of contributions Ai are used calculate trends in contributions.
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9.2 Extended data tables and figures

Table 9.1: Summary information about the used CO2 measurement stations.
Site measurements from several institutions were combined to a single station record within the
time series smoothing and interpolation method.

Observed Measuring

Station Lat Long Alt. Used start Used end Nug\fber Mean institution
(°N) (°E) (m) date date AMPCO2 and
years
(ppm) reference
ALT 8245 -62.52 210 01.01.1977 31.12.2011 35 15.6 NOAA, EC,
CSIRO

AZR 38.75 -27.08 30 01.01.1981 31.12.2009 29 10.7 NOAA
BMW 3227 -64.88 30 01.01.1990 31.12.2011 22 10.5 NOAA
BRW 7132 -1566 11 09.05.1971 27.12.2011 40.6 16.1 NOAA, SIO
CBA 55.2 162.72 25 01.01.1979 31.12.2011 33 16.4 NOAA
FRD 4988 -81.57 210 01.01.1990 31.12.2011 22 21.3 EC
GMI 1343 14478 5 01.01.1979 31.12.2011 33 6.3 NOAA
1ZO 28.3 -16.48 2377 01.01.1992 31.12.2011 20 7.8 NOAA
KEY 25.67 -80.2 3 01.01.1973 22.12.2011 39 8.7 NOAA
LJO 32.87 11725 15 01.01.1979  31.12.2009 31 11.3 SIO
MHD 53.33 -9.9 10 03.06.1991 28.12.2011 20.6 14.6 NOAA
MID 28.22 17737 4 03.05.1985 20.12.2011 26.6 9.7 NOAA
MLO 19.53 '155 58 3397 12.01.1970 27.12.2011 42 6.7 NOAA, SIO
NWR 40.05 '105 63 3526 23.01.1970 27.12.2011 41.9 8.4 NOAA
RPB 13.17 -59.45 3 01.01.1988 29.12.2011 24 7.3 NOAA
RYO 39.03 141.83 230 01.01.1987 31.12.2011 25 14.4 JMA
SCH 4792 792 1205 01.01.1972 30.12.2011 40 13.5 UBA
SHM 5272 1741 40 01.01.1986 25.12.2011 26 18.3 NOAA
WLG 36.27 100.92 3815 07.05.1991 29.12.2011 20.6 11.1 NOAA
References

NOAA (Conway et al., 1994)
SIO (Keeling et al., 2009)

EC (Worthy, 2003)

CSIRO (Francey et al., 2003)
JMA (Watanabe et al., 2000)
UBA (Levin et al., 1995)
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Table 9.2: Overview of factorial model experiments with LPJmL+TM3.

LPJmL:

Model T™3: TM3:  Region LPJmL: LPJmL: gomii LRgmbi LPJmL:
experiment Meteo Ocean or time Meteo (o]0 ) reen- Pheno- Perma-
ing logy frost
scale
1a) Standard NCEP
(Fig 2a, ED Fig. and OCLIM global CRU MLO DYN GSI PFON
4) ERAI
1b) Standard (all - \cep ooLM global CRU MLO DYN Gsl PFON
other figures)
2) no climate NCEP OCLIM  global CRUFIX  MLO DYN GSI PFON
change (Fig. 2b)
3) no CO,
fertilization (Fig. NCEP OCLIM global CRU CO2FIX DYN* GSI PFON
2b)
4) no high
latitude greening NCEP OCLIM HL CRU MLO FPCFIX GSI PFON
(Fig. 2c)
5) no high
latitude climate NCEP OCLIM HL CRUFIX MLO PRES GSI PFON
change (Fig. 2c)
?éé?;'gg‘)CEP NCEP ~ OCLIM  global  CRU MLO DYN Gsl PFON
7) LPJmL-
NCEPfix (ED Fig. NCEPfix OCLIM global CRU MLO DYN GSI PFON
3a)
?é'd'?ig'gaE)RA' ERAI OCLIM  global  CRU MLO DYN Gsl PFON
9) LPJmL-
Mikaloff (ED Fig. NCEP OCLIM global CRU MLO DYN GSI PFON
3b)
10) LPJmL-
SOCAT (ED Fig. NCEP OIAV global CRU MLO DYN GSI PFON
3b)
11) LPJmLfix-
SOCAT (ED Fig. NCEP OIAV MSC CRU MLO DYN GSI PFON
3b)
12) Arctic NBP
(ED Fig. 6b, ED NCEP OCLIM arctic CRU MLO DYN GSI PFON
Tab. 3a)
12) Boreal NBP
(ED Fig. 6b, ED NCEP OCLIM boreal CRU MLO DYN GSI PFON
Tab. 3a)
12) Temperate
NBP (ED Fig. 6b, NCEP OCLIM temp. CRU MLO DYN GSI PFON
ED Tab. 3a)
12) Tropical NBP
(ED Fig. 6b, ED NCEP OCLIM tropical CRU MLO DYN GSI PFON
Tab. 3a)
13) Cropland
NBP (ED Fig. 6b, NCEP OCLIM cropland CRU MLO DYN GSI PFON
ED Tab. 3a)
14) LPJmL-
oldPhen (ED Fig. NCEP OCLIM global CRU MLO DYN OP PFON
6¢c)
QSI)DLFF;;%';‘)”OPF NCEP  OCLIM  global CRU MLO DYN oP PFOFF
Explanation of factors
To test the influence of meteorological forcing dataset for TM3:
TM3: Meteo NCEP: NCEP reanalysis (1970-2011)
' ERAI: ERA-Interim reanalysis (1980-2011)
NCEPfix: meteorology from NCEP of the year 1995 was used for all years
To test the effect of ocean CO2 uptake:
TM3: Ocean OCLIM (Mikaloff): dataset from Mikaloff Fletcher et al.41, without inter-annual variability and trends

OIAV (SOCAT): dataset from Rédenbeck et al.22 better accounts for inter-annual variability

LPJmL: region or
time scale

To test the contribution of NBP from different regions, or temporal scales:

global: all factors were applied globally

HL: the factorial change was only applied in high latitude ecosystems (K&ppen-Geiger D and E
climate zones, > 41°N), in the rest of the world simulation from the standard LPJmL model run
were used

MSC: the mean seasonal cycle of NBP from the LPJmL standard model run was used for all years
arctic/boreal/temperate/tropical/cropland: NBP from the LPJmL standard model run was cutout for
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the specific region and rest of the world was set to NBP =0

LPJmL: Meteo

To test the effect of climate trends and changing climate variability in LPJmL:

CRU: temperature, precipitation from CRU TS3.2, radiation from ERA-Interim

CRUFIX: CRU climate data from the years 1965-1975 was randomly repeated in the period 1970-
2011

LPJmL: CO2

To test the effect of CO2 fertilization in LPJmL.:
MLO: LPJmL is forced with mean annual CO2 time series from MLO.
CO2FIX: LPJmL is forced with a constant mean annual CO2 after 1970 (325.68 ppm)

LPJmL: greening

To test the effect of vegetation dynamics (“greening”):

DYN: simulated vegetation dynamics

DYN*: simulated vegetation dynamics but transient trends change because of fixing another factor
in LPJmL (CRUFIX or CO2FIX)

FPCFIX: foliar projective cover (fractional area coverage of plant functional types) was fixed to
constant values after 1970 in high-latitude regions at the simulated value of 1970

PRES: foliar projective cover of plant functional types as simulated in the standard model run was
prescribed to LPJmL to keep vegetation dynamics as in standard model run while fixing another
factor which would usually change vegetation dynamics

To test the effect of a new phenology module and optimized model parameters in LPJmL:

LE:::)'T(’) GSI: improved phenology scheme and optimized model parameters (Forkel et al., 2014)
P 9y OP: original phenology scheme and model parameters (Sitch et al., 2003)

LPJmL: To test the effect of the simulation of soil thermal dynamics (permafrost):

permaﬁ-fost PFON: simulation of permafrost

PFOFF: simulation of permafrost dynamics is enabled
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Table 9.3: Changes in the contribution to the seasonal amplitude of CO: separated (a) by regions
and (b) by terrestrial gross fluxes.

Shown are the average total amplitude and the fractional contributions in the 1970s (1970-1979)
and in the 2000s (2000-2011) as well as the trend in the contribution (% yr') over the full time
series length at each site. Trend p-values of the Mann-Kendall test are indicated by symbols: ***
p <0.001, * p<0.01, * p <0.05, . p>0.05. Percentage contributions may not equal 100% and the
sum of contributing trends may not equal the total trend because of rounding. Stations are
ordered by latitude from north to south. Please refer to equations 4-7 for the calculations of
these metrics.

(a) Ampli- Contribution of regional fluxes to total amplitude (x; and trend in A))

Station and tude Fossil fuel + . Temperate Tropical Cropland
period (A) ocean Arctic NBP  Boreal NBP NBP NBP NBP
ALT 1970s  16.2 ppm 5% 21% 59 % 13% 7% 9%
ALT 2000s  18.2 ppm 2% 22 % 56 % 14 % 6% 1%

0,
ALTtrend  OB4%NT g q3oppyre 023 %yt 028%yr 04%yr.  0.03%/yr.  0.14 %lyr*
BRW 1970s  17.1 ppm 5% 26 % 54 % 12 % 5% 8%
BRW 2000s _ 20.3 ppm 2% 32 % 52 % 1% 5% 9%
0,
BRWitrend O3 %N 009 oyr = 0.35%/yr 026 %lyr** 0.04%lyr.  -0.02%Jyr. 0.1 %lyr **
CBA1970s 151 ppm 7% 14 % 57 % 20 % 5% 8%
CBA 2000s  17.6 ppm 7% 13 % 57 % 19 % 5% 9%
0,
cBAtrend  UB3NT 007%yr.  045%iyr*  0.35%yr*  0.06%/yr.  0.02%/yr.  0.13 %fyr **
SCH1970s  19.8 ppm 1% 5% 35 % 46 % 7% 19 %
SCH2000s  21.9 ppm 0% 5% 35 % 44 % 6% 21%
0,
sCHtrend 037N 003 %yr.  0.04%lyr =t 041 %lyr™ 041 %/yr.  0.01%/yr.  0.14 %lyr **
NWR 1970s 5.3 ppm 16 % 10 % 59 % 27 % 17% 3%
NWR 2000s 6 ppm 1% 1% 58 % 22 % 12% 8 %
NWRtrend  1.15%/yr  -0.21 %/yr. 02 %I/yr™ 058 %/yr.  0A3%Iyr.  0.09 %/yr.  0.36 %lyr.
LJO 1970s 5.2 ppm 2% 0% 2% 21% 75 % 19 %
LJO 2000s 4.7 ppm 2% 14 % 68 % 0% 2% 13%
LIOtrend  -0.01%Jyr 026 %Iyr. 033 %Jyr™  1.61 %lyr™ 033 %lyr. 1.7 %lyr™ 017 %lyr.
KEY 1970s 111 ppm 7% 4% 26 % 12% 48 % 17 %
KEY 2000s  13.2 ppm 1% 4% 24 % 1% 48 % 14 %
0,
KEYtrend OO %NT ooy 003%yr*  0.11%yr*  0.08%yr.  052%yr*  0.03 %lyr.
MLO 1970s 7.1 ppm 10 % 7% 40 % 23 % 25 % 15 %
MLO 2000s 7.2 ppm 9% 9% 46 % 22 % 18 % 14 %
MLO trend 0.28 %lyr -0.01 %/yr.  0.12 %/yr ***  0.33 %l/yr *** 0.03 %lyr . -0.19 %lyr . 0.01 %lyr .
GMI1970s 4.8 ppm 3% 4% 27 % 21% 34 % 1%
GMI2000s 6.3 ppm 9% 5 % 33 % 18 % 23 % 12 %
0,
GMI trend LT WY g3 iy 04 %y 045 %Iyr ™t 0.41 %lyr . 0.3 %lyr . 0.1 %lyr .
Averages over high latitude (HL > 45°N) and low latitude (LL < 45°N) sites:
HL 1970s 17 ppm 4% 17% 51 % 23 % 6% %
HL 2000s 18.9 ppm 3% 16 % 54 % 20 % 5% 12 %
0,
HL trend 071 %lYT g4 oiyr.  018%Jyr*  036%/yr*  0.08%/yr.  0.05%Iyr.  0.14 %lyr.
LL 1970s 6.7 ppm 6% 5% 28 % 21% 40 % 13 %
LL 2000s 8.7 ppm 5 % 9% 47 % 18 % 14 % 17 %
LL trend 0.97 %lyr 0%/yr. 014 %/yr. 046 %/yr.  0.08%/yr. 012 %lyr.  0.17 %lyr.

(Table 9.3 continues on next page)
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(Table 9.3 continued)

(b) Ampli- Contribution of flux types to total amplitude (x; and trend in A))

Station and tude Fossil fuel Ocean Land: Land: Land: Land:
period (A) osstifue cea GPP Reco Fire Harvest
ALT 1970s __ 16.9 ppm 4% % 261% -165% % %
ALT 2000s  18.6 ppm 2% 1% 239% 141% 1% 1%

0,
ALT trend 0.58 A’,{X: -0.11 %lyr *** -0.02 %lyr . 1.7 %lyr . -1 %lyr . 0 %lyr . 0 %lyr .
BRW 1970s  17.8 ppm 5% 0% 279% -183% 2% 1%
BRW 2000s  20.8 ppm 1% 1% 235% 136% 2% 1%
0,
BRW trend 0.6 %I 0 09 %lyr 0%lyr.  1.32%yr.  -0.62%lyr.  -0.01 %lyr. 0 %lyr .
CBA1970s _ 15.7 ppm 0% 6% 285% 191% 1% 1%
CBA2000s  18.2 ppm 1% 6% 240% ~146% 1% 1%
0,
cBAtrend 0B8N gogouyrr  0.02%yr.  166%lyr.  -0.93%/yr.  -0.01%/yr.  0.01 %lyr.
SCH1970s  20.3 ppm 1% 0% 177% 78% 0% 1%
SCH2000s  22.3 ppm 0% 0% 180% -80% 0% 0%
0,
SCHtrend 037 T 04 9iyr . 0%lyr.  092%/yr*  -0.51%/yr.  0.01%/yr.  -0.01 %lyr.
NWR 1970s 5.3 ppm 4% 0% 819% 704% 1% 0%
NWR 2000s 6.1 ppm 3% 8% 593% ~482% 1% 0%
NWRtrend 122 %fyr  -0.22 %lyr.  0.01 %lyr.  -1.58 %lyr . 3%yr.  0.02%lyr.  -0.02 %lyr.
LJO 1970s 4.9 ppm 7% 3% 332% -228% 2% 1%
LJO 2000s 4.4 ppm 16% 9% 455% -360% 2% 1%
LJOtrend  -0.55%Jyr  0.58 %l/yr ™ 013 %Jyr.  -6.92%lyr. 592 %lyr.  -0.04 %lyr.  0.04 %lyr.
KEY 1970s  11.9 ppm 1% 5% 334% -229% 1% 0%
KEY 2000s  14.6 ppm 4% 5% 244% ~145% 1% 0%
0,
KEYtrend  "OSPNT ooyt 002%/yr.  0.19%/yr.  0.64%/yr.  0.01%/yr.  0.02 %lyr.
MLO 1970s 6.4 ppm 2% 9% 514% ~405% 1% 1%
MLO 2000s 7.5 ppm % 7% 412% -306% 1% 1%
0,
MLOtrend O8N go3ouyr.  003%Ayr*  -071%yr.  1.6%yr*  0.01%/yr.  -0.01 %lyr.
GMI 1970s 4.9 ppm 15% 12% 348% -260% 3% 5%
GMI 2000s 6.2 ppm 19% 10% 294% -209% 2% 4%
0,
GMI trend VAT 043 %lyr™ 006 %/yr.  0.81%yr.  019%/yr.  0.02%/yr.  0.03 %lyr.
Averages over high latitude (HL > 45°N) and low latitude (LL < 45°N) sites:
HL 1970s 17.6 ppm 2% 2% 250% 154% 1% 1%
HL 2000s 19.4 ppm 1% 2% 234% 137% 1% 1%
0,
HL trend 0.7 A’/H -0.11 %lyr . 0 %lyr . 2.31 %lyr . -1.5 %lyr . 0 %lyr . 0 %lyr .
LL 1970s 6.7 ppm 0% 7% 469% -365% 1% 1%
LL 2000s 8.9 ppm 2% 6% 399% -295% 0% 1%
LL trend 0.99 %lyr 0.05 %lyr . -0.03 %lyr . 0.55 %lyr . 0.43 %lyr . -0.01 %lyr . 0 %lyr .
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Figure 9.1: Uncertainty in observed CO: amplitude trends at (a) BRW and (b) MLO depending
on the length of the time series.
The symbols indicate the trend direction (red = positive, blue = negative), the trend slope
(symbol size), and the significance (symbol type). The inset scatter plot shows the relationship
between trend slope against p-value (Mann-Kendall trend test) with the corresponding scaling
of symbols according to trend slope. Boxplots show the distribution of trend slopes. The
symbol on top of a boxplot indicates the trend of the full time series length. While for BRW the
trend is significantly positive for all period lengths, for MLO some combinations of years can
results in a negative (but non-significant) trend which demonstrates the need to assess the
uncertainty of trends depending on the observational window.
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Figure 9.2: Changes in CO:z amplitude at 500 mb.

(a) Change in the amplitude of the seasonal cycle of CO: versus amplitude of the seasonal
cycle for 2009 to 2011 at 500 mb, averaged over 45° to 90°N. The design of the figure and results
for observations and CMIP5 models were directly taken from Fig. 4 in Graven et al. (Graven et

al., 2013). Change in CO2 amplitude is relative to 1958-1961 for observations and CMIP5

models, and relative to 1970-1973 for LPJmL+TMa3. (b) Latitudinal gradient of the CO:
amplitude trend at 500 mb as simulated with LPJmL+TM3. The bold line with significance flags
is the trend using the full time series length whereas thin lines and bands represent the 50%-ile,
and 2.5% to 97.5%-iles of the trend uncertainty estimate, respectively.
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Figure 9.3: Effect of different meteorological forcing and ocean CO: uptake datasets on CO2
amplitude trends.

(a) Latitudinal gradient of CO2 amplitude trend depending on the meteorological forcing
dataset for TM3. All simulations use NBP from the standard LPJmL model run, fossil fuel
emission from EDGAR, and ocean CO: uptake from the OCLIM dataset but they differ
according to the use of NCEP and ERA-Interim reanalysis datasets as drivers for TM3,
respectively. Simulated CO:z amplitude trends are lower with NCEP than with ERA-Interim.
The inter-annual variability of meteorological fields contributes to trends as well: CO:
amplitude trends are stronger with a fixed NCEP meteorology (LPJmL-NCEPfix, fixed by
repeating the data for the year 1995) than in the case of the usual NCEP meteorology including
inter-annual variability. (b) Latitudinal gradient of CO2 amplitude trend depending on the
ocean CO: uptake dataset. The Mikaloff dataset (Mikaloff Fletcher et al., 2007) does not contain
information about inter-annual variability whereas the SOCAT dataset (Rodenbeck et al., 2014)
well describes the inter-annual variability of ocean CO: uptake. Nevertheless, the differences
between simulated trends by using Mikaloff or SOCAT are very small. Changes in ocean CO2
uptake alone cannot explain CO2 amplitude trends: trends disappear if terrestrial NBP is fixed
to a mean seasonal cycle and if only ocean uptake has inter-annual variability (LPJmLfix-
SOCAT).
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Figure 9.4: Evaluation of simulated (a) mean values and (b) trend slopes of COz amplitude
against observations.
As both x and y values have uncertainties, linear fits were computed based on orthogonal
regression using principal component analysis.
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Latitudinal gradients of trends of (a) the area coverage of plant functional types as
simulated with LPJmL, (b) annual maximum vegetation greenness (FAPAR, fraction of
absorbed photosynthetic active radiation), (c) annual amplitude of gross primary production
(GPP), and (d) of net biome productivity (NBP).
Latitudinal gradients were derived by analyzing trends on time series that aggregated over the
land surface of 3° latitudinal bands. Star symbols indicate significant trends (p < 0.05, Mann-
Kendall trend test). The Jena Inversion version s81_v3.6 was used in (d) (using only 14 sites in

inversion but covering the longest time period from 1981 onwards).

-263 -



a b c
o | — LPImLNBP ;O o | — Total o | — Obs i
& 1 — LpumLcPp | | ® 7 — Arctic NBP © | — LPJmL-oldPhen |
— (PumL Reco | —— Boreal NBP | — LPJmL-noPF
o | i o Temperate NBP | o | — LPJmL 4
1= = Tropical NBP R /
f ~—— Cropland NBP
o i o | o
~© 7 i ~© ~© 7 4
z o | =3 z =z 4
N g * * = = *
o 1 / = o
o 3 | x ¢ ® * ¥ o
s / o g 0 o) *
2 i 2 2
®Q ) EER &2
av X Off as ~
° * = y
o | o/ o | g : Q % o
a % & @ iox ® Rk K )
A fe Mann-Kendall p-value /' Mafth-Kendall p-value /#ffiann-Kendall p-value
¢ * p<0.05 < 4 * p<0.05 o ' % p<0.05
N
N ) % 005<p<0.1 x 0.05<p<0.1 N x 0.05<p<0.1
0 p>0.1 0p>01 0 p>0.1
T T T T T T

B 0.0 0. 0. y
Trend of CO, seasonal amplitude (ppm yr

0.6
)

T T T T T
-0.10 0.00 0.05 0.10 0.15_
Trend of CO, seasonal amplitude (ppm a ')

T T T T

; .0 I 02
Trend of CO, seasonal amplitude (ppm yr )

Figure 9.6: Effects of (a) terrestrial gross fluxes, (b) regions, and (c) LPJmL model components
on the latitudinal gradient of COz amplitude trends.

(a) GPP and Reco were taken from the standard LPJmL model run and transported separately
within TM3. As GPP causes stronger COz amplitude trends in northern latitudes than Reco, the
latitudinal gradient of the overall CO2 amplitude trend is dominated by GPP amplitude trends.
(b) Boreal and arctic regions mainly shape the latitudinal gradient of CO2 amplitude trends. (c)

Effects of different LPJmL model setups on the latitudinal gradient of CO2 amplitude trends.

“LPJmL” includes permafrost dynamics and an improved phenology scheme with optimized
model parameters for phenology, greenness, albedo and productivity. “LPJmL-oldPhen” uses

the original LP] phenology scheme and original model parameters and overestimate CO:

amplitude trends especially in northern regions. “LPJmL-noPF” uses the new phenology

scheme and optimized model parameters but the simulation of permafrost dynamics was
disabled. This results in an underestimation of the slope of the latitudinal gradient.
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