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It is generally accepted that the Asian summer monsoon systems, 

particularly the Indian summer monsoon and the East Asian summer 

monsoon, as well as the westerlies affect the precipitation regime on the 

Tibetan Plateau. The Tibetan Plateau serves as “water tower” for the 

adjacent lowlands as the rivers originating on the plateau deliver water to 

over 1.4 billion people in the Asian lowlands. As these rivers are fed by 

the monsoonal precipitation to a significant extent, the predictability of 

monsoonal precipitation on different time-scales is crucial. This obvious 

importance inspired extensive climatic research on the Tibetan Plateau 

to further understand monsoonal dynamics.  

The spatial and temporal variability of the monsoon has, however, 

been under strong discussion in recent years. The question arose 

whether the spatial and temporal monsoonal dynamics show a generally 

homogenous or heterogeneous pattern, i.e., has the monsoonal 

variability been spatially and temporally synchronous or not. Moreover, 

results of climate models launched the discussion about the annual cycle 

of precipitation on the Tibetan Plateau and the impact of local water 

recycling and pre-monsoon precipitation.  

However, a systematic study of the spatial and temporal monsoonal 

variability has been lacking until now. To contribute to the ongoing 

discussion and to better understand the monsoonal variability the 

research project “Reconstruction of the Hydrological Cycle in the 

Southern Transect of the Tibetan Plateau Utilizing Sediment Records” 
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within the framework of the DFG priority program 1372 “TiP – Tibetan 

Plateau: Formation–Climate–Ecosystems” was initiated. The overall aim 

of this subproject is to systematically investigate the spatial and temporal 

variability of monsoonal dynamics by targeting three lakes along an east-

west-transect on the southern Tibetan Plateau including Nam Co, Tangra 

Yumco, and Taro Co, and to furthermore assess if a currently existing 

east-west-gradient in available moisture has had an impact on the 

temporal variability of the monsoon. This thesis comprises three 

independent studies, examining the central lake Tangra Yumco and its 

catchment. 

The first study of this thesis was conducted on a small lake named 

TT Lake within the Tangra Yumco catchment in order to assess modes 

of sediment deposition, sedimentary dynamics, and trigger mechanisms 

in the catchment. The results show that sedimentation in TT Lake is 

controlled by two modes of sediment deposition, particularly background 

sedimentation and event-related deposition. These event-related 

deposits (ERDs) have been attributed to hydrologic events.  

In the second study of this thesis optically stimulated luminescence 

(OSL) dating was applied to recently exposed lacustrine sediments in the 

Tangra Yumco catchment. These results were compared to recalculated 

cosmogenic nuclide data and other previously published data to set up a 

Holocene lake level reconstruction. Results show that the lake level 

began to rise prior to 10.5 ka, reached a highstand thereafter, and 

dropped from that level at 8.5 ka. Lake levels subsequently continued to 

decline but this trend was interrupted by a short-term lake level rise at 

2.1 ka. The lake level is steadily rising since 0.3 ka. 

The third study examined an 11.5 m long sediment core from the 

northern part of Tangra Yumco. Implications from the TT Lake allowed to 
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demarcate seventeen ERDs that could probably also be attributed to 

hydrological events. Results furthermore show that the record covers 

17.4 cal ka BP. Aeolian sediment transport prevailed prior to 

17.1 cal ka BP and temperatures rose thereafter. A significant increase 

in moisture availability is shown at 16.0 cal ka BP, conditions were 

moister and warmer at 13.6-12.4 cal ka BP, and colder and drier at 

12.4-11.4 cal ka BP. A rapid increase in moisture availability occurred at 

the transition to the Holocene at 11.4 cal ka BP and moistest conditions 

were recorded at 10.1-9.4 cal ka BP. As OSL and cosmogenic nuclide 

data could not resolve the onset of the lake level highstand, data from 

the sedimentary record were used to refine and likely the onset of the 

highstand co-occurred with moistest conditions at 10.1-9.4 cal ka BP. 

After this highstand, the moisture availability gradually declined showing 

only minor variations.  

The east-west transect was extended by comparing the 

aforementioned results to published data from Tso Moriri, located in the 

northwestern Himalaya, and Naleng Co on the south-eastern Tibetan 

Plateau (investigations on Taro Co are currently in progress). The 

comparison of all records on the southern Tibetan Plateau shows a 

homogenous pattern indicating that moisture availability evolved 

synchronously on the southern Tibetan Plateau. Another comparison 

with records from the lakes Pumoyum Co (southern Tibetan Plateau) and 

Lake Qinghai (northeastern Tibetan Plateau) suggests a large-scale 

synchronous pattern on the entire Tibetan Plateau. Variations in moisture 

availability on the southern Tibetan Plateau were then compared to 

monsoonal intensity records from the Bay of Bengal and the Arabian 

Sea. The comparison revealed that the records from the southern 

Tibetan Plateau are primarily governed by monsoon-related 
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precipitations but minor deviations may be related to local peculiarities in 

the annual precipitation cycle. A nowadays observed east-west-gradient 

in moisture availability does not result in temporal shifts of climatic 

change.  
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Das Niederschlagsregime auf dem Tibet-Plateau, auch Hochland von 

Tibet genannt, ist hauptsächlich geprägt durch die asiatischen 

Sommermonsune, bestehend aus dem Indischen und Ostasiatischen 

Monsun, sowie der Westwinde. Besonders die Monsunniederschläge 

liefern einen erheblichen Teil der Feuchtigkeit für die zahlreichen Flüsse, 

die auf dem Tibet-Plateau entspringen und über 1,4 Milliarden Menschen 

in Asien mit Frischwasser versorgen. Daher gilt das Tibet-Plateau auch 

als Wasserturm Asiens und eine Verbesserung der Vorhersagbarkeit der 

Monsunniederschläge ist zwingend notwendig. Um zu einem besseren 

Verständnis der Monsundynamik beizutragen, wurde das Tibet-Plateau 

daher zum Ziel intensiver Forschung. 

Die räumliche und zeitliche Variabilität der Feuchteverfügbarkeit auf 

dem Tibet-Plateau seit dem Spätglazial wurde in den vergangen Jahren 

kontrovers diskutiert. Es stellte sich besonders die Frage, ob die 

räumlichen und zeitlichen Veränderungen der Monsundynamik ein 

homogenes oder heterogenes Muster zeigen. Zu dieser Diskussion 

kommt erschwerend hinzu, dass Klimamodelle für den Zeitraum vom 

mittleren Holozän bis heute und Reanalyse-Daten für die Jahre 

2001-2011 eine deutliche saisonale Variabilität und einen signifikanten 

Einfluss von Recycling- und Prä-Monsun-Niederschlägen zeigen. 

Systematische Studien zur Erfassung der räumlichen und zeitlichen 

Variabilität fehlen bisher. Um zur gegenwärtigen Diskussion über ein 

homogenes oder heterogenes Muster der Monsundynamik beizutragen, 
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wurde das Teilprojekt “Reconstruction of the Hydrological Cycle in the 

Southern Transect of the Tibetan Plateau Utilizing Sediment Records” im 

Rahmen des DFG Schwerpunktprogramms 1372 “TiP – Tibetan Plateau: 

Formation–Climate–Ecosystems” initiiert. Zu diesem Zweck wurde ein 

Ost-West-Transekt aus drei Seen, namentlich Nam Co, Tangra Yumco 

und Taro Co, auf dem südlichen Tibet-Plateau aufgespannt. 

Untersuchungen sollen zeigen, wie sich die räumliche und zeitliche 

Monsunvariabilität seit dem Spätglazial verhält und ob sich ein rezent 

existierender Ost-West-Gradient der Feuchteverfügbarkeit auf die 

zeitliche Variabilität auswirkt. Diese Dissertation wird den mittleren See 

des Transekts, den Tangra Yumco, und sein Einzugsgebiet detailliert 

untersuchen und zur Diskussion um die räumliche und zeitliche 

Monsunvariabilität beitragen. 

Die erste Studie dieser Dissertation wurde an einem kleinen See 

namens TT Lake innerhalb des Tangra Yumco-Einzugsgebietes 

durchgeführt. Mit einem Multi-Proxy-Ansatz wurden zum einen die 

Prozesse im Einzugsgebiet des TT Lakes und zum anderen die 

verschiedenen vorherrschenden Sedimentationsprozesse erfasst. Die 

Ergebnisse zeigen, dass die Sedimentation im Wesentlichen durch zwei 

Faktoren gesteuert ist: die Hintergrundsedimentation und eine ereignis-

gesteuerte Sedimentation. Letztere können Starkregenereignissen, die 

klimaunabhängig sind, zugeordnet werden. 

In der zweiten Studie dieser Dissertation wurde optisch stimulierte 

Lumineszenz (OSL) angewendet, um zurzeit exponierte lakustrine 

Sedimente im Tangra Yumco-Einzugsgebiet zu datieren. Die 

Zusammenführung dieser Ergebnisse mit neu berechneten kosmogenen 

Nuklid-Altern sowie weiteren publizierten Daten von 

Seeterrassendatierungen resultierte in einer absoluten holozänen 
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Seespiegelrekonstruktion, die in dieser Form einzigartig auf dem 

südlichen Tibet-Plateau ist. Ein steigender Seespiegel wurde zunächst 

um 10.5 ka verzeichnet, worauf ein weiterer Anstieg des Seespiegels zu 

einem holozänen Hochstand folgte. Nach Erreichen dieses Hochstandes 

fiel der Seespiegel ab 8.5 ka, um danach kontinuierlich weiter zu fallen. 

Unterbrochen wurde dieser Seespiegelabfall nur von einem kurzzeitigen 

Anstieg um 2.1 ka. Seit einem Tiefstand um 0.3 ka steigt der Seespiegel 

wieder. Der rekonstruierte Seespiegelhochstand zwischen 10.5 und 

8.5 ka ist ungefähr zeitgleich mit Hochständen in anderen Seesystemen 

auf dem Tibet-Plateau.  

In der dritten Studie wird ein 11.5 m langer Sedimentkern aus dem 

nördlichen Teil des Tangra Yumco untersucht, der, basierend auf 

Radiokarbondatierungen, eine Zeitspanne von 17.4 cal ka BP bis heute 

abdeckt. Sedimentologische Erkenntnisse vom TT Lake erlaubten am 

Tangra Yumco eine Ausweisung von siebzehn ereignis-gesteuerten 

Sedimentlagen. Die Untersuchungen des Kerns zeigen, dass äolischer 

Sedimenttransport als Trockenheitsanzeiger nur vor 17.1 cal ka BP zu 

verzeichnen war. Im Gegenzug dazu zeigt sich um 16.0 cal ka BP ein 

signifikanter Anstieg an Feuchteverfügbarkeit. Um 13.6-12.4 cal ka BP 

sind die klimatischen Bedingungen weiterhin feucht und warm, im 

Anschluss, um 12.4-11.4 cal ka BP, hingegen kalt und trocken. Am 

Übergang zum Holozän stieg die Feuchtigkeit erneut rapide an und die 

klimatischen Bedingungen zeigen die höchste verfügbare Feuchtigkeit 

um 10.1-9.4 cal ka BP. Da OSL- und kosmogene Nuklid-Alter den 

Beginn des Seespiegelhochstandes nicht auflösen können, ermöglichen 

die neuen Erkenntnisse aus Untersuchungen des Sedimentkerns eine 

genauere Erfassung des Beginns des Hochstandes, der vermutlich mit 

den feuchtesten klimatischen Bedingungen um 10.1-9.4 cal ka BP 
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zusammenfällt. Nach diesem Hochstand nimmt die Feuchteverfügbarkeit 

graduell ab und zeigt nur noch geringe Variationen. 

Das Ost-West-Transekt wurde durch die Seen Tso Moriri 

(nordwestlicher Himalaya) nach Westen und Naleng Co (südöstliches 

Tibet-Plateau) nach Osten verlängert. Der Vergleich der Archive auf dem 

südlichen Tibet-Plateau zeigt, dass sich die Feuchteverfügbarkeit 

synchron und grundsätzlich homogen entwickelt. Ein weiterer Vergleich 

mit Archiven vom Pumoyum Co (südliches Tibet-Plateau) und Lake 

Qinghai (nordöstliches Tibet-Plateau) zeigt auch großräumig ein 

synchrones Muster der Feuchtverfügbarkeit. Die Archive vom südlichen 

Tibet-Plateau wurden dann mit Monsunintensitätsraufzeichnungen aus 

dem Golf von Bengalen und dem Arabischen Meer verglichen, um den 

kontrovers diskutierten Einfluss des Monsuns auf das 

Niederschlagsregime des Tibet-Plateaus zu zeigen. Der Vergleich zeigt, 

dass monsunähnliche Niederschläge den größten Beitrag zum 

hydrologischen Budget leisten. Ein heutzutage existierender Ost-West-

Gradient der Feuchteverfügbarkeit hat keine Auswirkungen auf die 

zeitliche Entwicklung der Feuchteverfügbarkeit.  



CHAPTER 1  9 

 
 

 CHAPTER 1 — Introduction 

 

 

 

1.1  Moisture availability on the Tibetan Plateau 

It is generally accepted that the precipitation regime on the Tibetan 

Plateau is affected by the Asian summer monsoon system (e.g., Gasse 

et al. 1991, Lehmkuhl and Haselein 2000, Holmes et al. 2009, Liu et al. 

2009, An et al. 2012b, Maussion et al. 2014; Figure 1.1). This system is 

characterized by a seasonal reversal of the wind direction combined with 

changes in the precipitation pattern (e.g., Ramage 1971, Goswami 

2005). These processes are driven by seasonal changes in the latitude-

dependent insolation (Dallmeyer et al. 2012). Different heat capacities of 

the ocean water and the continental landmass result in a thermal 

contrast between ocean and landmasses generating a large-scale 

pressure gradient (Krishnamurti 1971b, Krishnamurti 1971a, Webster et 

al. 1998), which induces seasonally reversing wind circulations following 

the insolation (Dallmeyer et al. 2012). The Indian monsoon (Figure 1.1) 

is characterized by a meridional pressure and temperature gradient 

(Webster et al. 1998, Dallmeyer et al. 2012) and is mainly linked to a 

northward migration of an east-west oriented low pressure belt also 

known as Intertropical Convergence Zone or ITCZ (Gadgil et al. 2004). 

Moisture bearing air from the Indian Ocean is transported northwards to 

the Tibetan Plateau by the Indian summer monsoon. In contrast, the 

East Asian monsoon (Figure 1.1) is determined by a zonal pressure and 

temperature gradient (Webster et al. 1998) and the seasonality is 

reflected by the northwards excursion of a planetary subtropical front that 
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forms due to this zonal thermal contrast (Ding 2007). In winter, the ITCZ 

migrates to the southern hemisphere, while a cold high pressure zone 

develops over Asia causing dry and cold conditions over the Tibetan 

Plateau (Figure 1.1).  

 

 

Figure 1.1: Monsoon on the Tibetan Plateau. (a) Schematic summer (July; left) and 

winter (January; right) conditions with high (H) and low (L) pressure areas, changing 

position of the Intertropical Convergence Zone (ITCZ; red line) and prevailing winds 

(arrows). Images based on Google Earth. (b) Mean precipitation [mm] on the Tibetan 

Plateau (red circles) in summer (July; left) with enhanced precipitation due to 

monsoon influence and in winter (January; right) with reduced precipitation. 

(Schneider et al. 2014, modified). 

 

The Tibetan Plateau, as all mountain ranges, is often called a “water 

tower” as it provides important sources of freshwater that are supplied by 

rivers such as Ganges, Yangtze, Yellow River, Indus, Brahmaputra, 

Salween, and Mekong (Figure 1.2) to the adjacent Asian lowlands 
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(Liniger et al. 1998, Viviroli et al. 2007). The discharge of these rivers 

basically depends on seasonal precipitation, i.e., monsoonal rainfall 

(Wang et al. 2006, Jian et al. 2009) and snowmelt (Immerzeel et al. 

2010) providing water to more than 1.4 billion people (Immerzeel et al. 

2010). The water consumption is divers and includes agricultural 

irrigation, freshwater supply, and hydropower generation (Mukhopadhyay 

and Khan 2014). The Yellow River, being the second largest river in 

China (Miao et al. 2011), provides water for 162 million people 

(Immerzeel and Bierkens 2012) but experienced a significant reduction in 

river discharge in the past decades (Yang et al. 1998) carrying only 

28.7% of the discharge of the 1950s (Wang et al. 2006). Generally, 

climate change (Vörösmarty et al. 2000, Immerzeel et al. 2010, Miao et 

al. 2011) and enhanced human impact (Miao et al. 2011), namely 

growths in water demand due to increasing population (Vörösmarty et al. 

2000) have been recognized as the main drivers of current or 

prospective water scarcity (Wang et al. 2006, Immerzeel and Bierkens 

2012). Water scarcity, by definition, is a shortage in the freshwater 

availability relative to the demand (Taylor 2009, Gain and Giupponi 

2015). Many Asian riverine basins are likely to be affected by water 

scarcity in future (Viviroli et al. 2007, Gain and Giupponi 2015). Between 

1970-2008, the reduction in the Yellow River water discharge was 

attributable 17% to climate change and 83% to human impact (Miao et 

al. 2011). 70% of the annual runoff of the Indus River are attributable to 

monsoonal rainfall (Liniger et al. 1998) and a recent assessment of risk 

factors for water scarcity in river basins of Asia concludes that it bears a 

very high risk for future water scarcity (Immerzeel and Bierkens 2012). 

The river supplies densely populated areas (Immerzeel and Bierkens 

2012) providing much of Pakistan’s irrigation water and hydropower 
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generation (Ahmad 1974, Liniger et al. 1998, Meadows and Meadows 

1999). Ganges, Yangtze, and Yellow River (Figure 1.2), which also 

depend on monsoonal rainfall, have an intermediate risk for water 

scarcity but also supply densely populated areas, whereas for 

Brahmaputra, Salween, and Mekong the vulnerability to water scarcity is 

relatively limited (Immerzeel and Bierkens 2012). Freshwater scarcity not 

only affects food and drinking water security as well as public health but 

can also hamper economic progress and foster civil disturbances (Taylor 

2009). For example, the economic damage of a reduction in monsoonal 

rainfall by 19% in India in 2002 was estimated to billions of dollars 

(Gadgil et al. 2004). In contrast, the rivers Ganges and Brahmaputra 

regularly cause severe floods in Bangladesh as their increase or 

decrease in discharge is controlled by the intraseasonal monsoon 

variability (Jian et al. 2009).  

 

Figure 1.2: Rivers originating on the Tibetan Plateau. Basins and riverine courses of 

Indus River, Ganges, Yangtze, Brahmaputra, and Yellow River. Blue shaded areas 

are above 2000 m asl (Figure source: Immerzeel et al. 2010). 

 

Reliable predictions about the prospective water supply from river 

discharge are of critical importance for local and regional authorities to 
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ensure agricultural sustainability, constant freshwater supply, and 

disaster prevention (Morrill et al. 2003, Jian et al. 2009, Mischke et al. 

2010a): They are closely coupled to a profound understanding of 

monsoonal dynamics, its driving mechanisms, and its response to 

climate change since most rivers’ discharge depends on monsoonal 

rainfall. The thorough investigation and reconstruction of past monsoonal 

variations may contribute to a better understanding of monsoonal 

dynamics and may provide an analogue for future scenarios. The 

Tibetan Plateau is particularly suitable for investigation of past 

monsoonal variability due to several reasons: (1) as described above, 

the Tibetan Plateau affects the climate of Asia significantly by triggering 

and maintaining the Asian monsoon system (Broccoli and Manabe 1992, 

An et al. 2001, Morrill et al. 2006); (2) the modern extent of the monsoon 

partly crosses the Tibetan Plateau making it particularly vulnerable for 

monsoonal variations (Morrill et al. 2006); and (3) relative to the densely 

populated regions of the adjacent Asian lowlands, the human impact on 

the Tibetan Plateau is limited simplifying the climate proxy interpretation 

(Morrill et al. 2006). Therefore, numerous studies have been conducted 

on the Tibetan Plateau in the past decades to assess past monsoonal 

variations (e.g., Gasse et al. 1991, Overpeck et al. 1996, Gupta et al. 

2003, Shen et al. 2005, Morrill et al. 2006, Li et al. 2009, Doberschütz et 

al. 2014, Günther et al. 2015, Kasper et al. 2015).  

The spatial and temporal variability of monsoonal dynamics has 

thoroughly and controversially been discussed during the recent years 

(e.g., An et al. 2000, Yu and Kelts 2002, Morrill et al. 2003, He et al. 

2004, Feng et al. 2006, Herzschuh 2006, Zhou et al. 2007, Chen et al. 

2008, Mischke et al. 2008, Dong et al. 2010, Mischke and Zhang 2010). 

A heterogeneous and non-uniform or at least partly heterogeneous 
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summer monsoon development was proposed by An et al. (2000), Yu 

and Kelts (2002), Morrill et al. (2003), He et al. (2004), Herzschuh 

(2006), Mischke et al. (2008), and Mischke et al. (2010a). The arguments 

were manifold and the question arose whether non-representative 

catchment-specific peculiarities or underestimated but complex climatic 

and atmospheric conditions caused this spatial heterogeneity (He et al. 

2004, Mischke et al. 2010a). Catchment-specific peculiarities such as 

water sources like ice, snow, and ground water as well as the complex 

interplay between precipitation, evaporation, and temperature complicate 

the interpretability of data (Mischke and Zhang 2010). However, not 

solely causal reasons but also methodical uncertainties like uncertain 

chronologies (Mischke et al. 2013) or a poor understanding of the 

interpreted proxies (Mischke et al. 2010b, Opitz et al. 2015) lead to 

inconsistencies between the records. A generally homogeneous 

monsoon development (within each monsoon domain), on the contrary, 

was proposed by Feng et al. (2006), Zhou et al. (2007), Chen et al. 

(2008), Dong et al. (2010), and Mischke and Zhang (2010). 

In these above mentioned studies changes in moisture availability 

were equated to monsoonal dynamics. However, these studies reveal 

annual to centennial changes in moisture availability lacking a 

subseasonal resolution. Thus, these studies cannot assess seasonal 

climate phenomena such as the summer monsoon (Dallmeyer et al. 

2012) but rather long-term changes in moisture availability. Most studies 

assumed a dominance of summer rainfall (e.g., Morrill et al. 2006, Daut 

et al. 2010, Dietze et al. 2013, Miehe et al. 2014) but the seasonal 

pattern of the precipitation is more complex (Maussion et al. 2014). 

Recently published reanalysis and modelled data suggest that the 

precipitation regimes on the Tibetan Plateau are influenced by additional 
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precipitation processes besides the monsoon (Dallmeyer et al. 2012, 

Maussion et al. 2014). Recycling and pre-monsoon (spring) precipitation 

contribute to changes in the precipitation pattern on the Tibetan Plateau 

meaning that these changes cannot solely be attributed to monsoonal 

dynamics but to the sum of monsoon and pre-monsoon precipitation 

(Dallmeyer et al. 2012, Maussion et al. 2014). The controlling 

mechanism of pre-monsoon precipitation are, similar to the summer 

monsoon, changes in insolation (Dallmeyer et al. 2012). The seasonal 

precipitation pattern is, however, spatially very different (Dallmeyer et al. 

2012, Maussion et al. 2014). During the years AD 2000–2011, pre-

monsoon precipitation contributed a substantial amount to the annual 

precipitation on the western, southern, and northern Tibetan Plateau, 

whereas the contribution of pre-monsoon precipitation on the central 

Tibetan Plateau is negligible (Maussion et al. 2014). Dallmeyer et al. 

(2012) observed differences in the seasonal precipitation pattern in the 

Indian and East Asian monsoon domain. As the Indian summer monsoon 

has a meridional orientation and the East Asian monsoon a zonal 

orientation of the pressure and temperature gradients they react 

differently to the zonally uniform changes in summer insolation 

(Dallmeyer et al. 2012).  

The discussions about the spatial and temporal variability of 

moisture availability and the annual cycle of precipitation reveal 

significant gaps of knowledge concerning the processes and dynamics of 

moisture availability on the Tibetan Plateau and highlight the necessity of 

ongoing research. 
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1.2  The east-west-transect on the southern Tibetan Plateau – 

a subproject within the DFG priority program 1372 “TiP – 

Tibetan Plateau: Formation–Climate–Ecosystems” 

Until now, an interregional linking of results of spatial and temporal 

variations of climate change on the Tibetan Plateau was based on a 

reassessment of previously published data from individual sites (e.g., 

Herzschuh 2006, Mischke and Zhang 2010). In subprojects within the 

DFG priority program 1372 “TiP – Tibetan Plateau: Formation–Climate–

Ecosystems” (http://www.tip.uni-tuebingen.de/index.php/de/) lacustrine 

archives have been examined along east-west-transects established on 

the northern and southern Tibetan Plateau using comparable methods to 

systematically assess spatial and temporal variations in moisture 

availability. Subprojects within the TiP program generally focus on 

forcing mechanisms on the Tibetan Plateau and their effects on the 

environment on three time scales: plateau formation during the past tens 

of millions of years, climate development during the past ten to hundreds 

of thousands of years, and human impact during the past ca. 8000 years 

(http://www.tip.uni-tuebingen.de/index.php/de/). The southern east-west-

transect, to which this thesis contributes, represents the subproject 

“Reconstruction of the Hydrological Cycle in the Southern Transect of the 

Tibetan Plateau Utilizing Sediment Records” funded with the grant 

number MA1308/23-2. This bilateral research project is jointly financed 

by the National Natural Science Foundation of China (Grant No. 

41271225) and supported by the Institute of Tibetan Plateau Research 

(Beijing, China) as a part of the Chinese Academy of Sciences (CAS). 

The overall objective of this joint research approach has been to 

combine the outcome from the northern and the southern east-west-

transects with the aim of a better understanding of monsoonal dynamics, 
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their spatial and temporal variations, and the resulting environmental 

processes. 

The east-west-transect established on the southern Tibetan Plateau 

consists of three lakes called Nam Co, Tangra Yumco, and Taro Co. The 

objectives were twofold: (1) to investigate, if the modern gradual 

decrease of moisture availability from east to west (Maussion et al. 2014) 

had an impact on the temporal variability of the moisture pattern; (2) to 

explore the spatial and temporal variability of moisture availability on the 

southern Tibetan Plateau and thereby contribute to a better 

understanding of monsoonal dynamics. 

The easternmost lake of the introduced east-west transect Nam Co 

was thoroughly investigated in a first phase of the TiP initiative (e.g., 

Mügler et al. 2008, Zhu et al. 2008, Daut et al. 2010, Mügler et al. 2010, 

Günther et al. 2011, Kasper et al. 2012, Kasper et al. 2013, Doberschütz 

et al. 2014, Kasper 2014, Günther et al. 2015, Kasper et al. 2015, Wang 

et al. 2015). The reconstruction of variations in moisture availability and 

temperature of the past 24 cal ka BP showed that after a cold and dry 

Last Glacial Maximum the lake level initially rose at 20 cal ka BP (Kasper 

et al. 2015). A moister and warmer phase prevailed at 14-13 cal ka BP 

(Bølling/Allerød chronozone) followed by cold and dry condition 

coinciding with the Younger Dryas chronozone (Kasper et al. 2015). 

Conditions were moistest at 9.4 cal ka BP and moisture availability 

gradually decreased thereafter (Doberschütz et al. 2014, Kasper et al. 

2015). Günther et al. (2011) presented a record of evapotranspiration 

and relative humidity for the past 1000 years based on δD values of 

sedimentary n-alkanes that agrees with climatic events known from the 

northern Hemisphere such as the Medieval Warm Period and the Little 

Ice Age. A recently published study by Wang et al. (2015) thoroughly 
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investigated the modern mechanisms controlling the lake surface 

sediments and revealed the prevailing processes. Investigations on the 

westernmost lake Taro Co are currently in progress. Preliminary and 

unpublished multi-proxy results show a gradual decrease in moisture 

availability and increasing aridification since about 7.4 cal ka BP. 

A palynological record covering the past 10.3 cal ka BP generally 

supports these preliminary results showing steadily increasing aridity 

after 7.4 cal ka BP (Ma et al. 2014). The central lake Tangra Yumco and 

its catchment is the research object of this thesis.  

The counterparts to the east-west-transect on the southern Tibetan 

Plateau are the lakes Donggi Cona and Heihai Lake spanning an east-

west-transect on the northern Tibetan Plateau (Figure 1.3). Donggi Cona 

was thoroughly investigated but results were not straightforward (e.g., 

Mischke et al. 2010a, Dietze et al. 2012, IJmker et al. 2012, Opitz et al. 

2012, Dietze et al. 2013). Analyses of exposed lake terraces consisting 

of fluvial–alluvial to littoral lacustrine facies (Dietze et al. 2013) and a 

multi-proxy data set from a sedimentary record (Opitz et al. 2012) 

document a high lake level and moist conditions in the early Holocene. In 

contrast, ostracod analyses reveal unstable conditions in the early 

Holocene, moistest conditions after 6.8 cal ka BP, and indicate that 

sediments interpreted as sediments from Donggi Cona by Dietze et al. 

(2013) rather represent small ponds, not lacustrine sediments (Mischke 

et al. 2010a, Mischke et al. 2015). The lake levels of the other lake from 

the northern transect, Lake Heihai, were lowest in the Late Glacial and 

earliest Holocene and highest in the early to mid-Holocene (G. Lockot, 

personal communication). A short dry spell occurred at around 3 cal ka 

BP and lake levels were rising thereafter (G. Lockot, personal 

communication).  
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Figure 1.3: Tibetan Plateau with study sites mentioned in the text. Southern east-

west-transect including Taro Co, Tangra Yumco, and Nam Co (circles). Heihai Lake 

and Donggi Cona form a similar east-west-transect on the northern plateau (circles). 

Additionally, Tso Moriri and Naleng Co are shown which extend the southern east-

west-transect (http://www.geomapapp.org).  

 

 

1.3  Objectives and outline of thesis 

As a part of the above-mentioned bilateral TiP subproject, this thesis 

focuses on the central lake of the east-west-transect on the southern 

Tibetan Plateau, Tangra Yumco, and its catchment (Figure 1.3). Tangra 

Yumco (30°45’-31°22’N, 86°23’–89°49’E; Figure 1.4) is located at an 

elevation of 4545 m asl (Rades et al. 2013) in a north-south-trending 

graben structure (Miehe et al. 2014). It is a brackish lake with a salinity of 

8.3‰ and a water depth of 230 m covering 818 km² (Long et al. 2012) 

while its catchment covers 8219 km
2
 (Long et al. 2012). A small lake 

named TT Lake (31.10°N, 86.57°E, 4750 m asl; Figure 1.4) is located 

~1.5 km west and ~205 m above the recent western shoreline of lake 

Tangra Yumco but within its catchment. 
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Figure 1.4: Sampling and coring locations in the Tangra Yumco area. Several gravity 

cores were investigated from the TT Lake (chapter 2), a Holocene lake level history 

is based on OSL ages from three locations (chapter 3), and a long core (white dot) 

from Tangra Yumco was studied to reveal past moisture availability (chapter 4). 
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The overall aim of this thesis is to contribute to a better 

understanding of the variability of variations in moisture availability on the 

southern Tibetan Plateau. To extent the east-west-transect, Tangra 

Yumco and its catchment processes were thoroughly examined in three 

individual studies presented in this thesis. An initial study on gravity 

cores from the small TT Lake was conducted to reveal the sedimentary 

dynamics as a response to catchment processes prevailing in the 

catchment of Tangra Yumco (Figure 1.4). In a second study the 

Holocene lake level history of the Tangra Yumco lake system was 

reconstructed by dating currently exposed lacustrine sediments 

(Figure 1.4). A third study investigated a long sediment core from Tangra 

Yumco to receive a high-resolution record of changes of moisture 

availability since the Late Glacial and evaluated the results from all three 

studies (Figure 1.4). More precisely the objectives of my thesis are: 

(1) the assessment of catchment processes and sedimentary 

dynamics of the small TT Lake that is located within the Tangra Yumco 

catchment and their connection to climate settings (chapter 2);  

(2) the quantitative reconstruction of lake level variations by 

optically stimulated luminescence dating (OSL) on currently exposed 

lacustrine sediments to reveal the rate and the scale of lake level 

changes (chapter 3); 

(3) the continuous and high-resolution reconstruction of past 

variations of moisture availability by applying a multi-proxy approach on 

a sediment core from Tangra Yumco (chapter 4); 

(4) the synthesis of results from OSL and sediment core analyses 

yielding in a continuous, high-resolution and quantitative approach 

suitable to assess magnitude, timing, and environmental impact of 

variability of moisture availability on lake levels of 
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Tangra Yumco (chapter 4); 

(5) the comparison of results from Tangra Yumco to Nam Co to 

deduce spatial and temporal variability on the east-west-transect on the 

southern Tibetan Plateau (chapter 4); 

(6) the assessment of the monsoonal impact on the southern 

Tibetan Plateau by a comparison to monsoon intensity records 

(chapter 4); 

(7) a first preliminary comparison of the southern and the northern 

east-west-transect to reveal possible synchronicities or asynchronicities 

of the variability of moisture availability (chapter 5). 

This thesis consists of five chapters. Chapter 2 contains a peer-

reviewed article published in The Holocene dealing with the TT Lake. 

The content of chapter 3 presents the Holocene lake level history of the 

Tangra Yumco lake system based on OSL data and is accepted by The 

Holocene, while the content of chapter 4 discusses the moisture 

availability at Tangra Yumco and the southern Tibetan Plateau and was 

submitted to Quaternary Science Reviews. Finally, the gained insights 

and implications for the development of the Tibetan climate are 

synthesized and discussed in chapter 5 containing also proposals for 

future research. 
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Abstract 

A possible heterogeneity of the spatial and temporal climate 

development on the Tibetan Plateau has controversially been discussed 

in recent years. Here we present the first attempt to systematically 

investigate possible spatial and temporal variations of moisture 

availability by examining two lakes, Nam Co and Tangra Yumco, on an 

east-west-transect on the southern-central Tibetan Plateau that is 

extended by Tso Moriri (northwestern Himalaya) and Naleng Co (south-

eastern Tibetan Plateau). In this study, an independent record from 

Tangra Yumco was investigated with a multi-proxy approach to 

reconstruct moisture variations since the Lateglacial. Results were 

subsequently compared to Nam Co, Tso Moriri, and Naleng Co. As the 

precipitation regime on the Tibetan Plateau is significantly influenced by 

recycling and pre-monsoon precipitation, we compared our results to 

several records of monsoon intensity to investigate a possible impact of 

summer monsoon precipitation on the southern Tibetan Plateau.  

Tangra Yumco was probably ice covered with only episodically 

thawing prior to 17.1 cal ka BP. A temperature rise after 17.1 cal ka BP 

resulted in seasonal ice coverage of the lake and probably thawing of the 

permafrost resulting in an increased input of organic material from the 

catchment. At 16.0 cal ka BP moisture availability initially increased, 

while it was highest at 10.1–9.4 cal ka BP coincident with highest 

temperatures. After 9.4 cal ka BP the moisture availability gradually 

decreased and showed only minor amplitude variations.  

The comparison with Nam Co and Tso Moriri revealed a 

synchronous climate pattern on the southern Tibetan Plateau which is in 

phase with monsoon intensity in the Arabian Sea, the Bay of Bengal, and 

a Dole effect record. The synchronous pattern of moisture availability on 
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the southern Tibetan Plateau and monsoon intensity probably implies 

that moisture availability is predominantly controlled by monsoon-like 

processes. 

 

 

Keywords 

Monsoon, precipitation, lake sediments, Tangra Yumco, Nam Co, 

Tibetan Plateau 
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4.1  Introduction 

Monsoon, by definition, is a seasonal change in wind direction and 

precipitation pattern (Goswami 2005). It is widely accepted that 

precipitation regimes on the Tibetan Plateau are influenced by the 

summer monsoon systems (e.g., Morrill et al. 2006, Jin et al. 2009, An et 

al. 2012b, Dallmeyer et al. 2012, Chen et al. 2013, Maussion et al. 

2014). However, the precipitation regime on the Tibetan Plateau is 

generally dominated by convective precipitation not solely attributed to 

monsoon but also to recycling and pre-monsoon (spring) precipitation 

having regionally a significant effect on the hydrological cycle (Dallmeyer 

et al. 2012, Maussion et al. 2014). In recent years, numerous studies 

have been conducted on the Tibetan Plateau in order to reveal past 

hydrological variations (Shen et al. 2005, Wang et al. 2005, Morrill et al. 

2006, Mischke et al. 2010a, Kasper et al. 2012, Doberschütz et al. 2014, 

Günther et al. 2015). In these studies moisture was equated to monsoon 

meaning that all changes in moisture availability were attributed to 

monsoonal dynamics. However, most proxies cannot define seasonal but 

rather annual to centennial changes in moisture availability and thus 

cannot provide information about seasonal changes in precipitation 

necessary for a summer monsoon reconstruction (Dallmeyer et al. 2012). 

Several studies suggested an asynchronous pattern of moisture 

availability of the Tibetan Plateau since the Last Glacial Maximum (An et 

al. 2000, He et al. 2004, Herzschuh 2006, Mischke et al. 2008). In 

contrast, other studies rather indicate a synchronous pattern of moisture 

availability (Feng et al. 2006, Chen et al. 2008, Dong et al. 2010, 

Mischke and Zhang 2010). However, as reliable, continuous records 

covering the Lateglacial and the Holocene are rare, a holistic picture of 

variability of moisture availability, including spatial and temporal 
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heterogeneities, and the impact on the environment is still missing 

(Herzschuh 2006, Mischke and Zhang 2010). 

To investigate past climate variability on the southern Tibetan 

Plateau, two lakes along an east-west-transect, including Nam Co and 

Tangra Yumco (Figure 4.1) were recently targeted for 

paleoenvironmental studies. Nam Co has thoroughly been investigated 

in recent years (e.g., Daut et al. 2010, Mügler et al. 2010, Kasper et al. 

2012, Kasper et al. 2013, Doberschütz et al. 2014, Günther et al. 2015, 

Kasper et al. 2015) and several studies have been conducted in the 

Tangra Yumco catchment (Kong et al. 2011, Long et al. 2012, Rades et 

al. 2013, Miehe et al. 2014, Ahlborn et al. 2015a, Ahlborn et al. 2015b, 

Akita et al. 2015, Long et al. 2015, Rades et al. 2015, Henkel et al. 

revised, Henkel et al. subm.). In this study we present results from an 

11.2 m-long lacustrine sediment record from Tangra Yumco. The 

objectives of this study are fourfold: (1) we aim to deduce changes in 

moisture availability for the Tangra Yumco area since 17.4 cal ka BP. (2) 

We infer the temporal and spatial moisture availability on the southern 

Tibetan Plateau by comparison to Nam Co (Kasper et al. 2015) and, as 

they extend our transect, Tso Moriri (northwestern Himalaya; for reasons 

of simplification we refer to southern Tibetan Plateau; Mishra et al. 2015) 

and Naleng Co (south-eastern Tibetan Plateau; Opitz et al. 2015) 

(Figure 4.1). Plateau-wide inferences are based on a comparison to Lake 

Qinghai (An et al. 2012b) and Pumoyum Co (Nishimura et al. 2014). (3) 

As nowadays the moisture gradually decreases from west to east 

(Maussion et al. 2014) we furthermore assess, if this moisture gradient 

has an impact on the temporal variability. (4) To reveal if the moisture 

availability on the southern Tibetan Plateau is influenced by monsoonal 

variations, the southern Tibetan Plateau will then be compared to 
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monsoon records from the Bay of Bengal (Rashid et al. 2011), the 

Arabian Sea (Schulz et al. 1998), and to a Dole effect record which 

reflects the deviation of the isotopic composition of air from seawater and 

is primarily governed by Asian and African monsoon variations 

(Severinghaus et al. 2009). 

 

Figure 4.1: Study site. A: Map of China with Tibetan Plateau and Tangra Yumco 

(circle), Nam Co (circle), Naleng Co, Tso Moriri, Pumoyum Co, Lake Qinghai. B: 

Bathymetric map of Tangra Yumco with sampling location of cores TAN10/4 and 

TAN12 with tracks of hydro-acoustic survey (black lines). Source: 

http://www.geomapapp.org. 

 

 

4.2  Regional setting 

Tangra Yumco (30°45’–31°22’N, 86°23’–89°49’E; Figure 4.1) is located 

on the southern-central Tibetan Plateau at an elevation of 4545 m asl 

(Rades et al. 2013) with a catchment of 8219 km
2
 (Long et al. 2012). The 

Tangra Yumco basin belongs to a north-south-trending graben at the 

northern slope of the Transhimalaya (Miehe et al. 2014). Well-preserved 

paleoshorelines are exposed up to ~185 m above the recent lake level 

(m arll) (Rades et al. 2013), whereas poorly-preserved paleoshorelines 

are exposed up to >260 m arll indicating extensive lake level changes 

during the past (Kong et al. 2011). Precipitation at Tangra Yumco is 

dominated by convective rainfall (Maussion et al. 2014) often attributed 
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to the Indian summer monsoon originating from the south (Miehe et al. 

2014). Westerly winds prevail during the winter months (Maussion et al. 

2014). The extrapolated mean annual precipitation is 200–250 mm, the 

mean temperature in January is -11.4°C, and the mean July temperature 

10.9°C (Miehe et al. 2014). 

Tangra Yumco (Figure 4.1) is a brackish lake with a salinity of 8.3‰ 

(Akita et al. 2015) covering 818 km² (Long et al. 2012). With a water 

depth of 230 m Tangra Yumco is the deepest lake recorded on the 

Tibetan Plateau so far (Wang et al. 2010). The lake has a northern and a 

southern part connected by a bottleneck-like structure. Two large rivers 

drain into Tangra Yumco entering the southern part of the lake from the 

southeast and west. Tangra Yumco lacks an outflow and is currently a 

terminal lake. A connection to the nearby Tanqung Co (about 18 km 

north of Tangra Yumco) is possible when the lake level of Tangra Yumco 

reaches an elevation of ~64 m arll (Ahlborn et al. 2015b). Due to its 

terminal character lake level variations of Tangra Yumco are mainly 

controlled by precipitation and temperature (evaporation), while the 

contribution of glaciers is negligible (Rades et al. 2013). The population 

in the Tangra Yumco area is sparse and human impact is mainly 

restricted to pastoralism (Miehe et al. 2014). 

 

4.3  Material and methods 

4.3.1  Field methods 

Hydro-acoustic surveys (Innomar SES-96 light and Lowrance 

Echosounder HDS 5) were conducted in the northern part of Tangra 

Yumco in 2010 and 2011. Based on these results coring locations were 

selected for the field campaigns in 2010 and 2012, when the sediment 

cores TAN10/4 and TAN12 were recovered (Table 4.1). 
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4.3.2  Non-destructive laboratory methods 

Until further processing all cores were stored in darkness at +4°C. The 

cores were split and subjected to an initial core description including 

high-resolution imaging and magnetic susceptibility logging. The split 

cores were XRF scanned and X-rayed (ITRAX Corescanner; Croudace 

et al. 2006). XRF-scanning was conducted with 2 mm resolution for 

sections TAN12/1 to 7 and with 0.2 mm resolution for sections TAN12/8 

to 11 and TAN10/4 using a molybdenum tube set to 55 kV and 40 mA. 

Exposure time was 10 s for all sections of core TAN12 and 4 s for 

TAN10/4. To compensate for different exposure times, element peak 

area [pa] values were normalized to the exposure time applied and 

subsequently to kilo counts per second [kcps]. For principle component 

analysis (PCA), normalized values were z-transformed. Since core 

TAN10/4 was obtained from a different location within Tangra Yumco, 

overlapping XRF data of core TAN10/4 were plotted on a separate x-axis 

and adjusted to the data of core TAN12. Elements with pa >100 were 

considered as reliable and used for interpretation (Brunschön et al. 2010, 

Kasper et al. 2012). Core TAN10/4 was parallelized with the upper part 

of core TAN12 based on lithology and Ti. 
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Table 4.1: Metadata of cores TAN10/4 and TAN12. 

 

 

4.3.3  Destructive laboratory methods 

Double-L-channels (Nakagawa 2007, Nakagawa et al. 2012) were taken 

from all sections and continuously sub-sampled in 1 cm intervals for 

grain size and geochemical analyses. For grain size analysis, samples 

were pretreated with H2O2 10% p.a. and HCl 10% p.a. to dissolve 

organic compounds and carbonates. Dispersion of the grains was 

ensured using sodium pyrophosphate (Na4P2O7•10 H2O, 0.1 mol L
-1

) and 

samples were shaken for 2 h. Grain size distribution was measured in 

seven cycles of 60 s each and the first reproducible signal was used for 

interpretation applying the Frauenhofer optical model and a modified 

version of Gradistat 4.2 (Blott and Pye 2001) for statistical calculations. 

Samples for geochemical analysis were freeze-dried and ground 

(<40 µm). For core TAN10/4 and section TAN12/10 analyses were 

performed in a varying resolution of 1 to 10 cm depending on observed 

variations. All samples were subjected to analyses of total carbon (TC), 

TAN10/4 TAN12/2/1-11

Longitude E 86°43.369' E 86°43.246'

Latitude N 31°15.159' N 31°13.926'

Water depth 220 m 213 m

Coring methods
modified ETH gravity 

corer
Uwitec piston corer

Year of coring 2010 2012

Number of sections 1 11

Total length 1.62 m 11.5 m

Diameter 63 mm 90 mm

Number of radiocarbon ages 6 22

Cores metadata
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total sulfur (TS), and total nitrogen (TN) using an elemental analyzer 

(Vario El Cube). Carbonates were dissolved using HCl 30% p.a. prior to 

measurements of total organic carbon (TOC). Total inorganic carbon 

(TIC) was calculated as the difference of TC and TOC and atomic C/N 

ratios were calculated. The error was estimated based on two triplicate 

measurements for core TAN10/4 and sixteen for core TAN12. Mean 

relative errors are 0.6% for TC, 11.2% for TS, 9.3% for TN, and 4.6% for 

TOC.  

 

4.3.4  Event corrected composite depth (ECCD) 

Possible event-related deposits (ERD; Ahlborn et al. 2015a) resulting 

from deposition of relocated sediment material were identified based on 

lithology, radiographic images, Ti values, grain size data, and water 

content (Henkel et al. revised). For final interpretation, event layers and 

corresponding data were excluded from the record. The event corrected 

record is presented on an artificial depth axis, the so-called event 

corrected composite depth (ECCD) that is used hereafter (Henkel et al. 

revised). Sedimentological units were established to subdivide the ECCD 

record based on the patterns of K, TOC, and grain size. Due to coring 

artefacts (piston and core catcher) data gaps of 17 cm occur between 

the sections (Figure 4.3). 

 

4.3.5  Chronology 

The chronology of core TAN10/4 is based on four 
14

C AMS ages and 

confirmed by magnetostratigraphy (Haberzettl et al. 2015), while the 

chronology of core TAN12 is based on 14 
14

C AMS ages (Henkel et al. 

revised). Dating measurements were generally made on bulk sediment 

samples except one piece of wood that was dated from core TAN10/4 
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(Beta Analytics Inc., USA). To estimate the reservoir effect the water-

sediment-interface was dated as well as one recent water plant. The 

mean of these ages was calculated as the reservoir effect and was 

subtracted from all 
14

C ages except the age obtained from wood 

presuming that the reservoir effect was constant over time (Henkel et al. 

revised). To set up the chronology the ages were calibrated with 

Calib 7.0 (Stuiver and Reimer 1993) applying the IntCal13 dataset 

(Reimer et al. 2013) and linearly interpolated (Henkel et al. revised). 

Ages that would considerably alter the sedimentation rate although the 

changes in the lithology can be observed, were considered as too old 

and excluded from the chronology. The chronologies of cores TAN10/4 

and TAN12 are discussed in detail by Haberzettl et al. (2015) and Henkel 

et al. (revised). 

 

4.4  Results 

4.4.1  Chronology and Lithology 

The composite profile of the parallelized core sections has a total length 

of 11.2 m. The event-corrected ECCD of the sediment sequence 

comprises 849 cm covering 17.4 ka cal BP (Figure 4.2) (Henkel et al. 

revised). K, TOC, and grain size data enabled a subdivision of the core 

into six units (849–736 cm, 17.4–17.1 cal ka BP; 736–625 cm, 17.1–

16.0 cal ka BP; 625–558 cm, 16.0–12.8 cal ka BP; 558–456 cm, 12.4–

11.4 cal ka BP; 456–355 cm, 11.4–7.6 cal ka BP; 355–0 cm, 7.6–

0.0 cal ka BP; Figure 4.3). 
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Figure 4.2: Chronology of record TAN12 as published in Henkel et al. (revised). A 

change in sedimentation rate occurs around at 16.0 cal ka BP. The sedimentation 

rate is ~3.3 mm a
-1
 prior to 16.0 cal ka BP and mostly <0.6 mm a

-1
 thereafter. 

 

Sediments are generally silty in the entire record and are disturbed 

by microfaults. Black sandy layers occur exclusively below 736 cm 

sediment depth. Colors are dark gray with faint lamination of millimeter-

scale below 626 cm sediment depth. At 626-575 cm sediment depth, 

sediments are gray but overall lighter with clearly defined lamination of 

submillimeter scale. Above 575 cm sediment depth, sediments are 

brownish with light gray to gray laminae of subcentimeter to centimeter 

scale. Seventeen ERDs were identified (Henkel et al. revised) (Figure 

4.3). The sedimentation rate is 0.9-3.3 mm a
-1

 prior to 16.0 cal ka BP and 

<0.6 mm a
-1

 after 16.0 cal ka BP.   
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4.4.2  Geochemical data 

Ti is positively correlated with K, Fe, and Rb (RTi:K=0.69, RTi:Fe=0.69, and 

RTi:Rb=0.59) whereas the correlation to Ca is negative (RCa:K= -0.47, 

RCa:Ti= -0.47, RCa:Fe= -0.60, RCa:Rb= -0.73). Sr and Ca show a similar 

pattern although the correlation coefficient of RCa:Sr=0.40 is rather low. 

Results of the PCA show that the principle components 1 (PC1) and 

2 (PC2) account for 77.48% of the total variance. PC1 yields high values 

for K, Ti, Fe, and Rb and accounts for 63.06% of the total variance while 

PC2 accounts for 14.43% and basically represents Sr (Figure 4.3). The 

remaining PCs have only low account on the total variance with <10% 

each. PC1 is rapidly increasing at 625 cm sediment depth showing a 

minor peak at 594–558 cm sediment depth. It is highly variable at 456–

355 cm sediment depth and remains relatively stable above 355 cm. 

Between 456 and 297 cm sediment depth Ca is strongly negatively 

correlated with PC1 as the correlation coefficient is RCa:PC1= -0.83 

(Figure 4.3). 

TIC, TOC, TN, and C/N data generally show related patterns 

(Figure 4.3). TIC values range from 0.66–6.56 % and resemble the Ca 

pattern with a correlation coefficient of RTIC:Ca=0.74. Due to the higher 

temporal resolution of Ca compared to TIC, Ca is used for further 

interpretations instead of TIC. Even though there are similar trends in the 

TOC and TIC patterns, the correlation coefficient of RTOC:TIC=0.30 is low. 

TOC content is generally low, varies from 0.1–1.1 %, and is highly 

correlated to TN with RTOC:TN=0.93. TOC and TN reveal lowest values in 

the entire core below 736 cm, highest values at 736–625 cm, lower but 

generally stable values at 625–594 cm, and a minor peak 594–558 cm 

sediment depth. Values are markedly reduced at 558–456 cm, 

increasing thereafter, and culminating in a broad maximum at 418–383 
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cm sediment depth. TOC and N are relatively stable above 297 cm with 

a maximum at 23–13 cm sediment depth. C/N ratios vary from 3.9–10.1 

only exceeding 10 at 736–625 cm sediment depth (Figure 4.3). 

 

Figure 4.3: Results of XRF (4 mm resolution), PC1 representing the minerogenic 

input (gray) with 5 cm running mean (red) and event-related deposits (ERD), the past 

6000 a on a different axis to reveal further details, CNS analyses (<10 cm resolution), 

and grain size analyses (1 cm resolution, gray) with 1 cm running mean (red) on a 

logarithmic scale. Discontinuity of the plots is due to data gaps between core 

sections. 

 

TIC, TOC, TN, and C/N data generally show related patterns 

(Figure 4.3). TIC values range from 0.66-6.56 % and resemble the Ca 

pattern with a correlation coefficient of RTIC:Ca=0.74. Due to the higher 

temporal resolution of Ca compared to TIC, Ca is used for further 

interpretations instead of TIC. Even though there are similar trends in the 

TOC and TIC patterns, the correlation coefficient of RTOC:TIC=0.30 is low. 

TOC content is generally low, varies from 0.1-1.1 %, and is highly 

correlated to TN with RTOC:TN=0.93. TOC and TN reveal lowest values in 

the entire core below 736 cm, highest values at 736-625 cm, lower but 

generally stable values at 625-594 cm, and a minor peak 594-558 cm 
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sediment depth. Values are markedly reduced at 558-456 cm, increasing 

thereafter, and culminating in a broad maximum at 418-383 cm sediment 

depth. TOC and N are relatively stable above 297 cm with a maximum at 

23-13 cm sediment depth. C/N ratios vary from 3.9-10.1 only exceeding 

10 at 736-625 cm sediment depth (Figure 4.3). 

 

Figure 4.4: Results of the principle component analysis. The PC1 accounts for 

63.06% while PC2 accounts for 14.43% of the total variance and basically represents 

Sr. PC1 is considered to reflect the allochthonous clastic input as it has high 

accounts of K, Ti, Fe, and Rb. 

 

4.4.3  Grain size data 

Arithmetic mean values of the grain size data vary between 7.3–

225.1 µm and roughly resemble the PC1 pattern (Figure 4.3). Large 

modes between 120 and 220 µm only occur below 736 cm associated 

with an unimodal distribution and maximum mean values (220 µm). 

Gravel (>2 mm) is recorded at 768 and 750 cm sediment depth 

(Figure 4.3). Above 736 cm mean values decrease down to 12 µm 

followed by a sharp increase to 30 µm at 625 cm, and relatively stable 

values thereafter. A drop to 8 µm occurs at 558 cm sediment depth, 

followed by a maximum of 56 µm at 418–387 cm. Values decline down to 

9 µm until 297 cm sediment depth and show minor variations thereafter 
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(Figure 4.3). A final coarsening is visible towards the top of the sequence 

within the uppermost 72 cm. 

 

4.5  Interpretation 

4.5.1  Geochemical data 

As demonstrated in previous studies Ti can be considered as indicator 

for allochthonous clastic input into a lake system (Haberzettl et al. 2009, 

Kasper et al. 2012, Doberschütz et al. 2014). Clastic material is often 

transported fluvially into the lake due to enhanced surface runoff (Kasper 

et al. 2012). Surface runoff, in turn, is closely related to moisture 

availability in terms of precipitation (Haberzettl et al. 2005). As observed 

in other studies before (Brunschön et al. 2010) high correlations of Ti 

with K, Fe, and Rb indicate that these elements represent the 

allochthonous clastic input into Tangra Yumco. As these elements have 

a high load on PC1, it reflects the allochthonous clastic input by runoff 

and is hence interpreted as indicator for precipitation (Figure 4.3). 

Non-vascular aquatic plants contain high proportions of N-rich 

protein resulting in low C/N ratios that are typically between 4 and 10. 

Terrestrial vascular plants have a low protein content but are enriched in 

TOC due to their cellulose content resulting in higher C/N ratios of >10 

(Kemp et al. 1977, Krishnamurthy et al. 1986, Meyers and Ishiwatari 

1993). As C/N ratios in this record are constantly <10, the TOC content 

mainly reflects changes in the lake-internal biogenic production. C/N 

values >10 can suggest enhanced input of terrestrial plant remains from 

the catchment. Despite the weak correlation of TIC and TOC, the similar 

pattern indicates a common long term controlling mechanism. Hence, it 

is assumed that on long time scales carbonate production is coupled to 

enhanced biological production. Sr is mainly associated with carbonates 
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(Wu et al. 2006) but strongly influenced by the carbonate phase 

dominating in the lake sediments as Sr can substitute Ca in the aragonite 

crystal lattice (Jin et al. 2005). Since Sr closely resembles the Ca 

pattern, Sr, Ca (and TIC), and TOC are thus indicative for autochthonous 

biological production which has often been linked to temperature 

variations (Zhu et al. 2008, Kasper et al. 2012).  

 

 

 

 

Figure 4.5: Grain size distribution of sand layers prior to 17.1 cal ka BP. Layer at 

835 cm sediment depth (17.4 cal ka BP; red bold) has a mode at 176.9 µm. Layer at 

741 cm sediment depth (17.1 cal ka BP; blue dashed) has a mode at 133.8 µm. 

Unimodal distribution indicates aeolian transport. Rolling and saltation happens to 

grains with a size of 90–250 µm (brown; Dietze et al. 2014) or 100–300 µm (gray; 

Pye and Tsoar 2009). 
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4.5.2  Grain size data and sedimentation rate 

Coarser grains are associated with enhanced surface runoff which is 

linked to moister conditions, whereas grain sizes are finer when runoff is 

reduced (Håkanson and Jansson 2002). Unimodal and well sorted grain 

size distributions with modes between 120 and 170 µm are probably 

linked to aeolian processes such as saltation and associated with strong 

winds (Figure 4.5) (Pye and Tsoar 2009, Dietze et al. 2014). The 

sedimentation rate can serve as indicator for lake level variations 

(Kasper et al. 2015). As the sedimentation rate is controlled by the 

distance to the shore, the sedimentation rate is higher when the lake 

level is low, while the sedimentation rate is lower when the lake level is 

higher because less material is transported to the coring location (Kasper 

et al. 2015) and the catchment to lake surface (which is the area of 

potential deposition of transported sediment to the lake) becomes 

smaller. 

 

4.6  Discussion 

4.6.1  Paleohydrology of Tangra Yumco 

Unit 1: 17.4-17.1 cal ka BP, 849-736 cm. A high sedimentation rate, low 

allochthonous clastic input, and low lake-internal biological production 

(Figure 4.6) suggest that Tangra Yumco probably has been a very 

shallow lake and environmental conditions were therefore generally dry. 

Sandy layers might reflect aeolian transport (Figure 4.5) which also 

points to a dry environment with sparse vegetation cover making 

sediments easily available for erosion and aeolian transport. As the 

climatic conditions on the Tibetan Plateau during this time have been 

interpreted to be also rather cold (Kasper et al. 2015), this combination of 

cold and dry climate is favorable for the formation of clear lake ice 
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without a snow cover which would inhibit an aeolian transport by 

saltation. Hence, Tangra Yumco probably was ice covered during long 

periods of the year and sediments were moved by saltation on the ice. 

Deposition of the coarse aeolian sediments probably occurred during 

episodic thawing. Gravel might have been transported as ice-rafted 

debris to the center of the lake and deposited during these thawing 

episodes. The low internal biological production supports the idea of 

cooler temperatures.  

 

Unit 2: 17.1-16.0 cal ka BP, 736-625 cm. During this time the highly 

variable, but in general enhanced carbonate precipitation and biological 

productivity as well as enhanced input of terrestrial organic matter 

suggest rising temperatures probably leading to a thawing of the 

permafrost. The thawing permafrost released large amounts of terrestrial 

TOC from the topsoil then available for erosion, transport, and deposition 

in the lake. Higher temperatures moreover could have enhanced 

autochthonous biological production resulting in higher carbonate 

production, while climatic conditions were persistently dry as indicated by 

low allochthonous clastic input. 

 

Unit 3: 16.0-12.4 cal ka BP, 625-539 cm. The sudden rise of the 

allochthonous clastic input and the decrease in sedimentation rate at the 

beginning of this period (Figure 4.6) suggests the onset of moister 

conditions at 16.0 cal ka BP probably associated with a rising lake level 

(Figure 4.6). Tangra Yumco might have been a very shallow lake until 

this time and the rising lake levels might have increased the distance of 

the coring location to the shore consequently reducing the delivery and 

deposition of terrestrial TOC from the catchment. The increasing water 
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volume might have altered the water chemistry and decreased the 

carbonate production. Autochthonous biological production and moisture 

availability peak at 13.6–12.4 cal ka BP pointing to warmer and moister 

conditions, coinciding with the first occurrence of ERDs in this record 

(Figure 4.6). ERDs are generally caused by seismic events triggering 

landslides or subaquatic mass movements (e.g., Karlin et al. 2004, 

Petersen et al. 2014), hydrologic events (e.g., Brown et al. 2000, Nesje 

et al. 2001, Ahlborn et al. 2015a), or lake level variations causing 

instability of the slopes (e.g., Schnellmann et al. 2006, Akita et al. 2015). 

Microfaults can be found within the sediment record, clearly proving 

seismic impacts. However, there is no evidence for a seismic trigger of 

ERDs or strong lake level variations leading to instability of the slopes at 

this time. Probably hydrologic events, associated with intensive 

precipitation (peak in PC 1), as described at the small TT Lake located 

within the Tangra Yumco catchment (Ahlborn et al. 2015a), are more 

likely triggers for these ERDs and support the idea of a rising lake level. 

 

Unit 4: 12.4-11.4 cal ka BP, 539-456 cm. Reduced allochthonous clastic 

input, lower biological productivity (Figure 4.6), and variable but in 

general finer grain sizes indicating variable sediment transport energy in 

the tributaries, point to generally reduced moisture availability. ERDs do 

not occur in unit 4 (Figure 4.6) possibly due to enhanced aridity and an 

apparent lack of intensive precipitation events. Reduced intra-lake and 

terrestrial biological productivity probably point to generally lower 

temperatures during this time. However, cooler conditions would also 

extend the ice covered winter season associated with calm water 

conditions, probably leading to the deposition of the finer particles. 
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Unit 5: 11.4-7.6 cal ka BP, 456-355 cm. The strong negative correlation 

of the allochthonous input and the carbonate precipitation (Figure 4.3) in 

this unit indicate a dilution effect of the clastic input by carbonate 

precipitation. Thus, between 11.4 and 7.6 cal ka BP moisture availability 

is reflected solely by the sediment transport energy (i.e., grain sizes) 

revealing an increasing tendency until 10.1 cal ka BP and a decreasing 

trend from 9.4 to 7.6 ka cal BP (Figure 4.6). A decoupling of biological 

productivity and carbonate precipitation seems to have occurred during 

this unit, probably due to a substantial change of the water chemistry 

(lowering of ion concentration) caused by input of large amounts of 

freshwater (Kasper et al. 2015). The freshwater could have been 

provided by the nearby Xuru Co which would generate an overflow to 

Tangra Yumco at about 24 m above its recent lake level and might have 

discharged into Tangra Yumco at that time (Ahlborn et al. 2015b). ERDs 

at 11.1 and 9.9 cal ka BP may coincide with enhanced moisture 

availability and related hydrologic events or slope instabilities due to a 

quick lake level rise. ERDs at 7.8 and 7.6 ka cal BP are likely related to 

reduced moisture availability and probably a falling lake level and hence 

exposed loose easily erodible sediments coupled with hydrologic events. 

A Holocene lake level reconstruction from Tangra Yumco 

(Figure 4.6) based on optically stimulated luminescence (OSL) ages of 

exposed lacustrine sediments and recalculated cosmogenic nuclide ages 

of beach terraces indicate a rising lake level at 10.5 ka, a lake level 

highstand prior to 8.5 ka, and falling lake level thereafter (Ahlborn et al. 

2015b). These results are well in phase with increasing moisture 

availability until 10.1 cal ka BP and its maximum at 10.1–9.4 cal ka BP 

observed in this study. Comparison with the OSL derived lake level 

reconstruction also confirms a falling lake level after 9.2 cal ka BP 
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(Ahlborn et al. 2015b). Results from the Targo Xian peat bog, located 

about 16 km east of the southern shore of Tangra Yumco but within its 

catchment, are in phase with reconstructions from Tangra Yumco as 

they reveal an onset of wetter conditions at 11.5 cal ka BP and a further 

increase in moisture availability at 11.0 cal ka BP (Miehe et al. 2014). 

 

Unit 6: 7.6-0.0 cal ka BP, 355-0 cm. Environmental conditions during this 

period were rather stable with only minor variations in autochthonous 

biological production and moisture availability (Figure 4.6). Sediment 

transport energy is again decoupled from the allochthonous clastic input 

which is apparently still affected by dilution by Ca prior to 6.8 cal ka BP. 

As finer particles were deposited, the sediment transport energy further 

declined, suggesting a decrease in moisture availability at the onset of 

this period. Moisture availability constantly diminished with several short-

term wet spells at 5.5–5.3, 2.4–2.1, and 1.5–1.3 cal ka BP. After 

0.8 cal ka BP a trend towards moister conditions is visible Figure 4.6). 

Autochthonous biological productivity fluctuated slightly prior to 

5.2 cal ka BP and remained stable afterwards except for a significant 

warm spell at about 0.8–0.4 cal ka BP. Eleven ERDs occurred in unit 6 

(Figure 4.6) possibly due to a further falling lake level exposing large 

amounts of sediments making them prone to erosion.  

Lake level reconstructions at Tangra Yumco (Ahlborn et al. 2015b) 

confirm the further falling lake level (Figure 4.6). An OSL dating derived 

short-term lake level rise at 2.1 ka (Ahlborn et al. 2015b) might be 

associated with wet spells shown by the allochthonous clastic input in 

this study. The increase in moisture availability revealed by 

allochthonous clastic input prior to 0.8 cal ka BP appears to be a little 

earlier in this study than the OSL dated lake level rise at 0.3 ka (Ahlborn 
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et al. 2015b). Probably the higher temperatures at 0.8–0.4 cal ka BP 

enhanced the evaporation maintaining a stable lake level of Tangra 

Yumco although the moisture supply was still high (Figure 4.6). Data 

from the Targo Xian peat bog imply drier condition after 7.5 cal ka BP 

(Miehe et al. 2014) being in phase with the climatic conditions 

reconstructed for Tangra Yumco (this study; Ahlborn et al. 2015b). After 

2.6 cal ka BP dry conditions prevailed at Targo Xian interrupted by a 

moist phase at 1.8–1.0 cal ka BP that might correspond to increased 

moisture at 1.5–1.3 cal ka BP at Tangra Yumco. Moist conditions at 

Targo Xian after 0.9 cal ka BP are in phase with the onset of enhanced 

moisture supply at Tangra Yumco at 0.8 cal ka BP. 

 

4.6.2  Paleohydrology of the southern Tibetan Plateau 

As unit 1 comprises only 300 years, it is not used for comparison to other 

records. At 17.1–16.0 cal ka BP (unit 2, Lateglacial) similar conditions as 

at Tangra Yumco are observed at Nam Co (Kasper et al. 2015), Tso 

Moriri (Mishra et al. 2015), and Pumoyum Co (Nishimura et al. 2014). At 

Nam Co warming conditions (Figure 4.6) resulted in thawing permafrost 

promoting terrestrial vegetation and higher input of TOC as a 

consequence of now erodible topsoil, while melting glaciers contributed 

to rising lake levels during generally dry climatic conditions (Kasper et al. 

2015). At Tso Moriri (Figure 4.6) meltwater inflow increased at 

16.4 cal ka BP causing rising lake levels (Mishra et al. 2015), while at 

Pumoyum Co deglaciation started as early as 18.5 cal ka BP (Nishimura 

et al. 2014). Conditions at Naleng Co have continuously been cold and 

dry which is not in phase with results from other records on the southern 

Tibetan Plateau (Opitz et al. 2015).  
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From 16.0–12.4 cal ka BP (unit 3) the sharp increase in moisture 

availability at 16.0 cal ka BP at Tangra Yumco and warmer and moister 

conditions peaking at 13.6–12.4 cal ka BP have also been observed at 

Nam Co (Kasper et al. 2015), whereas only the latter at Tso Moriri 

(Mishra et al. 2015) and Naleng Co (Opitz et al. 2015). Moisture 

availability at Naleng Co increased significantly at 14.8 cal ka BP (Opitz 

et al. 2015) but because of this temporal shift of 1,200 years the 

correspondence to enhanced moisture availability at Tangra Yumco is 

vague. A comparison of the records from Tangra Yumco and Nam Co to 

those of Naleng Co (Opitz et al. 2015) and Tso Moriri (Mishra et al. 2015) 

might be hampered by the different resolution of the chronologies 

especially during the Lateglacial. At Nam Co climate started to get 

moister at 16.2 cal ka BP (Kasper et al. 2015), while an increase in 

moisture availability is not clearly detectable at Tso Moriri (Mishra et al. 

2015). At Pumoyum Co (Nishimura et al. 2014) and Lake Qinghai (An et 

al. 2012b) climatic conditions became moister at 15.0 cal ka BP. At 

Naleng Co (Opitz et al. 2015) and Nam Co (Kasper et al. 2015) peaks in 

moisture availability at 13.4–12.3 and 14.0–13.0 ka cal BP, respectively, 

while at Lake Qinghai conditions were moister at 13.7–12.5 cal ka BP. 

These peaks were associated with the Bølling-Allerød chronozone (B/A) 

(Kasper et al. 2015, Opitz et al. 2015) and occurred simultaneously to 

minor peaks in moisture availability and temperature at Tangra Yumco at 

13.6–12.4 cal ka BP and a significant peak in moisture availability at 

13.1–11.7 cal ka BP in Tso Moriri (Mishra et al. 2015).  

Similar cold and dry conditions as recorded at Tangra Yumco at 

12.4–11.4 cal ka BP (unit 4) occurred at Naleng Co at 12.3–

11.6 cal ka BP and at Nam Co (Figure 4.6) at 13.0–11.8 cal ka BP 

(Kasper et al. 2015). Cold and dry conditions prevailed at Tso Moriri at 



CHAPTER 4  76 

 
 

11.7–11.4 cal ka BP (Mishra et al. 2015) and at Lake Qinghai at 12.5–

11.5 cal ka BP, while the Pumoyum Co record revealed only a minor 

reduction of moisture at 12.2–11.6 ka BP (Nishimura et al. 2014). Aside 

of the co-occurrence in all considered archives on the southern Tibetan 

Plateau this climatic event has been discovered on the entire Northern 

Hemisphere denoted as the Younger Dryas chronozone (Bard et al. 

2000). 

After 11.4 cal ka BP (unit 5) rapidly rising moisture availability at 

Tangra Yumco culminating in the highest lake level at 10.1–9.4 cal ka BP 

coincides with increasing moisture availability and temperature at Naleng 

Co at 11.5 cal ka BP reaching their maxima prior to 8.3 cal ka BP (Opitz 

et al. 2015). The highest lake levels since the Last Glacial Maximum at 

Nam were recorded Co at 9.5 cal ka BP (Kasper et al. 2015) and highest 

available moisture appeared at Tso Moriri at 11.2–8.5 cal ka BP (Mishra 

et al. 2015; Figure 6). Contemporaneously, wettest conditions occurred 

at Pumoyum Co at 10.8–10.0 cal ka BP (Nishimura et al. 2014). At Lake 

Qinghai an abrupt increase in moisture availability at 11.5 cal ka BP 

marks the transition to the Holocene (An et al. 2012b; Figure 4.6). All 

archives discussed here reveal a rapid increase in moisture availability at 

the transition from the Late Glacial to the Holocene. Further, they show 

their individual highest lake levels during the early Holocene suggesting 

a homogenous evolution of moisture availability on the southern Tibetan 

Plateau. 

Nam Co shows a generally similar pattern as Tangra Yumco during 

the mid- and Late Holocene (after 7.6 cal ka BP, unit 6) with gradually 

decreasing moisture availability but reveals higher amplitude variations in 

moisture availability probably representing local peculiarities. However, a 

warm period at 0.8–0.4 cal ka BP and a lake level increase after 
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0.3 cal ka BP occurred concurrently with Tangra Yumco (Figure 4.7) 

(Kasper et al. 2015). At Naleng Co (Opitz et al. 2015), Tso Moriri (Mishra 

et al. 2015), and at Lake Qinghai (An et al. 2012b) the moisture 

availability also gradually decreased or showed only minor variations 

(Figure 4.6) suggesting a homogeneous aridification on the Tibetan 

Plateau during the mid- and Late Holocene. Like at other lakes, 

aridification prevailed at Pumoyum Co but was interrupted by higher 

moisture availability at 4.5–2.5 cal ka BP attributed to local convective 

precipitation (Nishimura et al. 2014).  

 

Figure 4.6: Comparison of clastic input of Tso Moriri (Mishra et al. 2015), summer 

insolation at Tangra Yumco (Berger and Loutre 1991), PC1 of Tangra Yumco with 

lake level curve (blue dots; Ahlborn et al. 2015b), inflow–evaporation index (IEI; 

Kasper et al. 2015), mean annual precipitation (MAP) of Naleng Co (Opitz et al. 

2015), Asian and African monsoon record (Severinghaus et al. 2009), Indian 

monsoon record from the Arabian Sea (Schulz et al. 1998), Indian monsoon record 

from the bay of Bengal (Rashid et al. 2011). Increase in moisture availability around 

16.0 cal ka BP; moisture and temperature peak at around 13.6-12.4 cal ka BP on the 

southern Tibetan Plateau; cold and dry conditions prior to Holocene transition at 

around 13.6-12.4 cal ka BP on the southern Tibetan Plateau; increase in moisture 

availability around 11.4 cal ka BP on the southern Tibetan Plateau (see text).  
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As shown by the comparison of Tangra Yumco, Naleng Co, Nam 

Co, and Tso Moriri (Figure 4.6) the evolution of the precipitation pattern 

shows no temporal or spatial variability but a generally homogenous 

evolution on the southern Tibetan Plateau superimposed by local 

peculiarities. However, the onset of moister conditions recorded at 

Tangra Yumco and Nam Co at around 16.0 cal ka BP are either less 

pronounced (Tso Moriri) or a little later (Naleng Co and Pumoyum Co). 

These effects might be due to dating uncertainties in the cases of Naleng 

Co and Pumoyum Co. 

 

 

Figure 4.7: Indicators for temperature variations from the southern Tibetan Plateau. 

TOC as indicator for biological productivity of Tangra Yumco (this study), TOC as 

indicator for biological productivity of Nam Co (Kasper et al. 2015), and mean annual 

temperature (MAT) of Naleng Co (Opitz et al. 2015). 
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The nowadays documented east-west-gradient of available moisture 

(Maussion et al. 2014, Biskop et al. 2015) does not influence the 

temporally synchronous evolution of moisture availability. However, the 

methods used in this study cannot determine quantitative moisture 

availability and a potential moisture gradient may have existed in the 

past. The precipitation pattern on the southern Tibetan Plateau is 

generally consistent with results from Pumoyum Co (Nishimura et al. 

2014) and Lake Qinghai (An et al. 2012b) probably suggesting a plateau-

wide synchronous climate pattern (Figure 4.6). 

 

4.6.3  Implications for precipitation regimes on the Tibetan Plateau 

To assess a possible monsoonal influence on the precipitation regime on 

the southern Tibetan Plateau, records of monsoon intensity from the 

Arabian Sea (Schulz et al. 1998), the Bay of Bengal (Rashid et al. 2011), 

and a Dole effect record from an ice core from Antarctica that is primarily 

governed by the African and Asian monsoon intensity (Severinghaus et 

al. 2009; Figure 6) were compared to our data. The onset of higher 

moisture availability on the southern Tibetan Plateau at 16.0 cal ka BP 

(unit 3) occurs almost synchronous with an increase in monsoon 

intensity recorded in the Bay of Bengal after 15.6 cal ka BP (Rashid et al. 

2011) and in the Arabian Sea at 15.3 cal ka BP (Schulz et al. 1998), 

while a strengthening of the African and Asian monsoon was recorded in 

the Dole effect record at 15.1 cal ka BP (Severinghaus et al. 2009). 

A moister and warmer period at 13.6–12.4 cal ka BP (unit 3) on the 

southern Tibetan Plateau matches a peak in monsoon intensity in the 

records from the Bay of Bengal at 14.6–12.7 cal ka BP (Rashid et al. 

2011), the Arabian Sea at 14.4–12.9 cal ka BP (Schulz et al. 1998), and 

the Dole effect record around 13.0 cal ka BP (Severinghaus et al. 2009), 
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which has been denoted as the B/A chronozone (Figure 6). This phase is 

followed by distinct colder and drier conditions on the southern Tibetan 

Plateau at 12.4–11.4 cal ka BP (unit 4). Contemporaneous reduced 

monsoon intensities are reported from the Bay of Bengal at 12.8–

11.4 cal ka BP (Rashid et al. 2011), in the Arabian Sea at 12.8–

11.8 cal ka BP (Schulz et al. 1998), and in the Dole effect record around 

12.0 cal ka BP (Severinghaus et al. 2009) and identified as the 

YD chronozone. The subsequent rapid and significant increase in 

moisture availability on the southern Tibetan Plateau around 

11.4 cal ka BP (unit 5) coincides with a monsoonal strengthening as 

shown in the Bay of Bengal at 11.0 cal ka BP (Rashid et al. 2011), the 

Arabian Sea at 11.7 cal ka BP (Schulz et al. 1998), and in the Dole effect 

record around 11.4 cal ka BP (Severinghaus et al. 2009). Monsoon 

intensity recorded by the Dole effect record reaches its maximum at 9.8–

9.4 cal ka BP (Severinghaus et al. 2009) matching the moistest 

conditions on the southern Tibetan Plateau. During the Mid- and Late 

Holocene, monsoon intensity records suggest stable or decreasing 

monsoon intensity with only minor amplitude variations (Schulz et al. 

1998, Severinghaus et al. 2009, Rashid et al. 2011; Figure 6) similar to 

the conditions on the southern Tibetan Plateau.  

Moisture availability on the southern Tibetan Plateau appears to be 

mainly synchronous to monsoon intensity as recorded in the Arabian Sea 

(Schulz et al. 1998), the Bay of Bengal (Rashid et al. 2011), and in the 

Dole effect record (Severinghaus et al. 2009). Even though synchronicity 

of climatic events and shifts does not prove causality, a causal link 

between moisture availability on the southern Tibetan Plateau and the 

Asian summer monsoon is suggested based on the presented data. This 

implies that moisture availability on the southern Tibetan Plateau and 
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monsoon intensity in the Arabian Sea and the Bay of Bengal are likely 

governed by the same processes. As the increase of moisture availability 

on the southern Tibetan Plateau at around 16.0 cal ka BP coincides with 

increased monsoon intensity (Schulz et al. 1998, Severinghaus et al. 

2009, Rashid et al. 2011; Figure 6), it might probably reflect an initial 

influence of monsoonal precipitation on the southern Tibetan Plateau 

possibly caused by a rising summer insolation (Berger and Loutre 1991) 

(Figure 6). The rapid increase in moisture availability at around 

11.4 cal ka BP corresponds to a maximum in summer insolation at 

Tangra Yumco (Berger and Loutre 1991). The mid- to Late Holocene 

gradual decrease in precipitation also follows the declining summer 

insolation pattern (Berger and Loutre 1991) (Figure 6) implying that 

precipitation is probably controlled by changes in summer insolation as 

previously assumed for the monsoon domain (Kutzbach 1981). As the 

evolution of moisture availability at Pumoyum Co (Nishimura et al. 2014) 

and Lake Qinghai (An et al. 2012b) is synchronous to the transect of 

Tangra Yumco, Nam Co, Tso Moriri, and Naleng Co, a homogenous 

monsoon pattern on the Tibetan Plateau is suggested. As indicated by 

climatic models and reanalysis data locally occurring peculiarities may 

probably be attributed to spatial differences in the annual cycle of 

precipitation, i.e. the amount of pre-monsoon or winter precipitation in 

different region of the Tibetan Plateau (Dallmeyer et al. 2012, Maussion 

et al. 2014). Significant influences of pre-monsoon precipitation are 

nowadays occurring, for example, at Tso Moriri (Mishra et al. 2015) but 

cannot be assessed by our study. However, as all reviewed records 

generally show a similar pattern corresponding to monsoon intensity 

records a monsoon-like precipitation regime is suggested. 
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4.7  Conclusions 

The initial onset of moist conditions at Tangra Yumco occurs at 

16.0 cal ka BP, while maximum moisture is reached in the early 

Holocene and following a decreasing trend thereafter. A comparison to 

results from Naleng Co, Nam Co, and Tso Moriri suggest a generally 

synchronous precipitation pattern on the southern Tibetan Plateau. A 

nowadays observed east-west-moisture-gradient did apparently not 

result in a temporal shift of moisture variability. However, a spatial 

moisture gradient referring to the amount of moisture might be likely and 

could probably be revealed in future studies based on transfer functions 

utilizing pollen or microfossils. A homogenous precipitation regime on the 

entire Tibetan Plateau is indicated by a supraregional comparison to 

records in the southernmost (Pumoyum Co) and northernmost (Lake 

Qinghai) regions on the Tibetan Plateau. However, more systematical 

studies are urgently needed to investigate spatial and temporal climate 

evolution on the Tibetan Plateau and adjacent areas. Further, as implied 

by the synchronicity of moisture evolution on the southern Tibetan 

Plateau and monsoon intensity recorded in the source area of the 

monsoon, the precipitation regime on the southern Tibetan Plateau is 

primarily governed by monsoon-like processes. 
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 CHAPTER 5 — Synthesis 

 

 

 

5.1 Synthesis 

Changes in moisture availability and the sedimentary response to 

catchment processes was thoroughly investigated by three studies 

conducted in the Tangra Yumco area. The initial study of a sediment 

core from the small TT Lake (chapter 2) assessed sedimentary 

dynamics, its controlling mechanisms, and catchment processes and 

thereby revealed that probably hydrologic events related to intense 

precipitation triggered event-related deposits (ERD). The deposition of 

ERD was apparently independent from the prevailing climatic conditions 

showing that hydrologic events could appear in all climatic settings 

arising in the Tangra Yumco region during the past.  

The findings from TT Lake enabled the deciphering of sedimentary 

modes during the past 17.4 cal ka BP which are covered by the sediment 

record from Tangra Yumco (chapter 4). The validated methods and 

criteria for ERD identification from TT Lake were employed at Tangra 

Yumco identifying eleven ERDs in the record that are probably also 

mostly triggered by hydrologic events. These ERDs including all 

associated data were removed from the Tangra Yumco record allowing 

the establishment of an event-corrected record. The multi-proxy 

approach (chapter 4) applied on the sedimentary record from Tangra 

Yumco proved to be useful to determine changes in moisture availability 

and allowed the establishment of a well-dated record going far back in 

time, which is generally scarce on the Tibetan Plateau. The different 
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analytical methods applied allowed a more comprehensive assessment 

of processes controlling proxies in the Tangra Yumco record. This was 

shown for example in the early Holocene when allochthonous clastic 

input loses correlation to grain size data indicating a dilution of the 

allochthonous clastic input by biologically induced carbonates 

complicating a straightforward interpretation and assessment of the 

prevailing conditions. Striking climatic features in the Tangra Yumco 

record are the aeolian input limited to the period prior to 17.1 cal ka BP, 

an increase in moisture availability at 16.0 cal ka BP, a rapid increase in 

moisture availability at the transition to the Holocene at 11.4 cal ka BP, 

and moistest conditions at 10.1-9.4 cal ka BP. 

The comparison of these results to the quantitative reconstruction of 

lake level variations, based on OSL dating of currently exposed 

lacustrine sediments, recalculated cosmogenic nuclide ages, and 

previously published data, allowed a detailed assessment of lake level 

variations and revealed magnitude, timing, and pace of lake level 

changes as response to variations of moisture availability (chapters 3 

and 4). A rising lake level was recorded at 10.5 ka and a lake level 

highstand occurred prior to 8.5 ka. The lake level continuously dropped 

after 8.5 ka intercalated by a minor lake level rise starting at 2.1 ka. 

A recent ongoing lake level rise started at 0.3 ka. During the early 

Holocene, the lake level decline at 8.5 ka is indicated by recalculated 

cosmogenic nuclide ages but the onset of the lake level highstand prior 

to 8.5 ka could not be resolved by OSL and cosmogenic nuclide data. A 

refining of the lake level reconstruction in the early Holocene became 

possible by the combination of both Tangra Yumco data sets. The 

moistest conditions were recorded in the sedimentary record at 

10.1-9.4 cal ka BP, while recalculated cosmogenic nuclide ages indicate 
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a falling lake level after 8.5 cal ka BP. The lake level apparently rose 

more quickly than suggested by the OSL based lake level reconstruction 

and reached a highstand of 181-183 m arll probably during moistest 

conditions at 10.1-9.4 cal ka BP (Figure 5.1). 

 

5.2 Discussion 

5.2.1 Tangra Yumco 

Two previously published studies on lacustrine sediments from the 

Tangra Yumco catchment (Long et al. 2012, Miehe et al. 2014) are 

available for comparison with the Tangra Yumco sediment core and the 

lake level history. Results of these studies from the Tangra Yumco 

catchment (Long et al. 2012, Miehe et al. 2014) are generally in phase 

with Tangra Yumco records presented in this thesis. As successfully 

demonstrated by the OSL based lake level history and a study published 

by Long et al. (2012) facies identification based on bedding, grains size, 

and/or microfossils of exposed sedimentary profiles combined with 

dating of the respective facies can provide valuable information about 

lake levels changes. Long et al. (2012) found moist conditions at 

7.6-2.3 ka in the Tangra Yumco catchment by dating exposed lacustrine 

sediments that are generally consistent with the Holocene lake level 

reconstruction in this study. Due to methodical uncertainties the ages of 

Long et al. (2012) may underestimate the true age and do not define the 

onset of moister conditions at Tangra Yumco (Rades et al. 2013). 

Considering this underestimation, the onset of moister conditions of Long 

et al. (2012) might be synchronous with the onset of lacustrine deposition 

defined by the lake level reconstruction at 10.5 ka. The Targo Xian peat 

bog, located within the Tangra Yumco catchment, revealed climatic 

conditions similar to the pattern derived from the Tangra Yumco record in 
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this study. Moisture availability rapidly increases around 11.5 cal ka BP, 

is highest during the early Holocene, and declines around 8.0 cal ka BP 

(Miehe et al. 2014). The established lake level history of Tangra Yumco 

allowed a refining of the lake level of Tangra Yumco changes previously 

proposed by Miehe et al. (2014). According to their data the Targo Xian 

peat bog was flooded by Tangra Yumco at 11.1 cal ka BP until at least 

2.6 cal ka BP. However, the reconstructed lake level history of Tangra 

Yumco suggests that the lake level of Tangra Yumco reached the Targo 

Xian peat bog initially around 10.0 cal ka BP and retreated from this site 

as early as approximately 7-6 cal ka BP. Probably a small pond or lake 

persisted at the peat bog site indicating prolonged lacustrine conditions 

(Rades et al. 2013). 

 

5.2.2 The southern Tibetan Plateau 

This thesis evaluates and compares the results from the easternmost 

lake of the east-west-transect Nam Co (Kasper et al. 2012, Kasper et al. 

2013, Doberschütz et al. 2014, Kasper et al. 2015) and the central lake 

Tangra Yumco (chapter 4) for the first time and provides implications for 

the variability of moisture availability on the southern Tibetan Plateau. As 

investigations on Taro Co, the westernmost lake on the east-west-

transect, are currently in progress, the east-west-transect was extended 

by recently published data from lake Tso Moriri further to the west 

(Mishra et al. 2015) and Naleng Co further to the east (Opitz et al. 2015).  

All four records, Tangra Yumco, Nam Co (Kasper et al. 2015), Tso 

Moriri (Mishra et al. 2015), and Naleng Co (Opitz et al. 2015) generally 

show a similar climatic pattern, whereas Tangra Yumco, Nam Co, and 

Tso Moriri also record a synchronous rise in temperature at around 

17.1 cal ka BP (Figure 5.1). All records reveal a moisture and 
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temperature peak at around 13.6-12.4 cal ka BP, drier and colder 

conditions at around 12.4-11.4 cal ka BP, sharply increasing moisture 

availability at the transition to the Holocene around 11.4 cal ka BP, and 

moistest conditions during the early Holocene followed by a gradual 

decrease in moisture availability thereafter (Kasper et al. 2015, Mishra et 

al. 2015, Opitz et al. 2015). Lake level of Tangra Yumco and Nam Co are 

both constantly rising since 0.3 cal ka BP (Kasper et al. 2015). More 

moisture became available around 16.0 cal ka BP at Tangra Yumco and 

Nam Co, whereas this signal is indistinct and fuzzy at Tso Moriri and 

occurs later at Naleng Co (Figure 5.1). The chronologies of Tso Moriri 

and Naleng Co have a different resolution than chronologies of Tangra 

Yumco and Nam Co especially in the Late Glacial what might complicate 

the comparison of the records during that time. Hence, inconsistencies 

between the records from Naleng Co and Tso Moriri with those from 

Tangra Yumco and Nam Co at around 16.0 cal ka BP might be attributed 

to the differences in the chronological resolution.  

Despite the apparent similarities of the records on the southern 

Tibetan Plateau, reanalysis data (Maussion et al. 2014) and the 

ECHAM5/JSBACH climate model (Dallmeyer et al. 2012) revealed 

differences in the past availability of moisture and the annual cycle of 

precipitation. Reanalysis data covering the period AD 2000–2011 

indicate that the decadal seasonal mean of precipitation shows a strong 

east-west-gradient in summer rainfall (JJA) with more precipitation in 

west than is the east (Maussion et al. 2014, Biskop et al. 2015). This 

gradient in moisture availability was also observed during field 

campaigns showing a decrease in moisture availability from Nam Co in 

the east to Taro Co in the west as indicated by sparser vegetation and 

dune formation closer to Taro Co (T. Haberzettl, personal 
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communication). As all records shown here only provide data that 

indicate a relative change in moisture availability over time (except for 

Naleng Co), it cannot be assessed if a similar gradient existed in the 

past. Moreover, all sites are currently affected by summer precipitation, 

but Tso Moriri additionally receives a significant amount of winter 

precipitation (Maussion et al. 2014). This winter precipitation regime 

cannot be traced further back in time as an impact on the hydrological 

budget cannot be assessed with the parameters used in this study 

(Mishra et al. 2015). The data of the ECHAM5/JSBACH climate model 

showed differences in moisture availability in the regions of the Tangra 

Yumco, Nam Co, Tso Moriri, and Naleng Co regions during mid- to Late 

Holocene (Dallmeyer et al. 2012). While Tangra Yumco and Nam Co 

received more moisture during the mid-Holocene than today, regions of 

Tso Moriri and Naleng Co were drier than today (Dallmeyer et al. 2012). 

These results agree with sedimentary records from Tangra Yumco and 

Nam Co (Kasper et al. 2015) but do not agree with records from Tso 

Moriri (Mishra et al. 2015) and Naleng Co (Opitz et al. 2015). 

While the long-term trend appears to be similar on the southern 

Tibetan Plateau, minor short-term differences between the records could 

possibly represent local peculiarities attributed to temporary differences 

in the annual cycle of precipitation. While the moisture availability in the 

Tangra Yumco record gradually decreases during the mid- to Late 

Holocene (chapters 3 and 4), the variability of moisture availability was 

markedly higher in Nam Co during this period (Kasper et al. 2015). 

Pumoyum Co shows an increase in moisture availability at 

4.5-2.5 cal ka BP that was not recorded elsewhere (Nishimura et al. 

2014). These differences might result from local differences in the 

precipitation regime (Nishimura et al. 2014) and probably represent 
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deviations from the synchronous long-term trend of the records.  

 

5.2.3 The precipitation regime on the Tibetan Plateau 

As the impact of water recycling and pre-monsoon (spring) precipitation 

was recently under discussion (Dallmeyer et al. 2012, Maussion et al. 

2014), a thorough assessment of the monsoonal impact on the study 

sites is of crucial importance because a significant amount of pre-

monsoon precipitation or water recycling may alter the pattern of 

moisture availability and lead to misinterpretations concerning the 

climatic development. Most studies equal moisture availability on the 

Tibetan Plateau with monsoonal precipitation without defining the 

prevailing precipitation process but lack a seasonal resolution to actually 

determine season-related climate events such as monsoonal 

precipitation (e.g., Morrill et al. 2006, Daut et al. 2010, Dietze et al. 2013, 

Miehe et al. 2014). As the data presented here also lack a seasonal 

resolution and cannot reveal the annual cycle of precipitation, a 

comparison of the records from the southern Tibetan Plateau to records 

of monsoon intensity from the Indian Ocean (Schulz et al. 1998, Rashid 

et al. 2011) as well as a Dole effect record (Severinghaus et al. 2009) 

systematically assessed the monsoonal impact on past variations of 

moisture availability on the southern Tibetan Plateau. The Dole effect 

describes the different isotopic composition of sea water and the 

atmospheric water and is primarily governed by the African and Asian 

monsoonal strength (Severinghaus et al. 2009).  
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Figure 5.1: Comparison of moisture availability on the southern Tibetan Plateau with 

monsoon intensity records from the source area of the monsoon and summer 

insolation. Indicated is high or highest moisture availability (darker bars) and 

increasing moisture availability (light bars). The comparison reveals a generally 

synchronous pattern of moisture availability. An increase in moisture availability 

around 16 cal ka BP at Tso Moriri is not clearly defined (question mark). 

 

The comparison revealed that the most pronounced features of the 

records from the southern east-west-transect occur synchronous with the 

monsoon intensity records. The moisture availability rose synchronously 

around 16.0 cal ka BP (indistinct at Tso Moriri and delayed in Naleng 

Co). Moisture availability and temperature were higher at around 

13.6-12.4 cal ka BP followed by drier and colder condition until 

11.4 cal ka BP, and a sharp increase in moisture availability thereafter 

(chapter 4; Schulz et al. 1998, Severinghaus et al. 2009, Rashid et al. 

2011, Kasper et al. 2015, Mishra et al. 2015, Opitz et al. 2015). The rapid 

increase in moisture availability on the southern Tibetan Plateau 

coincides with highest summer insolation, and the general pattern of both 

through time match (Berger and Loutre 1991). This is in accordance with 
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observations of Maussion et al. (2014) who showed that the southern-

central Tibetan Plateau, where Tangra Yumco and Nam Co are located, 

is controlled by a summer precipitation regime, i.e., monsoon today. 

The increase in moisture availability at around 16.0 cal ka BP 

probably represents a first pulse of monsoonal influence on the southern 

Tibetan Plateau. Similar inferences are also indicated by palynological 

analysis on the Nam Co record. A significant change in the pollen 

assemblage at 16.5 cal ka BP suggests a shift in the prevailing wind 

direction (L. Zhu, personal communication). This change in wind 

direction is interpreted as a modification of the controlling atmospheric 

circulation and a change from westerly to monsoonal influence (L. Zhu, 

personal communication). 

A comparison of the southern (Tangra Yumco, Nam Co, Tso Moriri, 

and Naleng Co) east-west-transect with the northern (Donggi Cona and 

Lake Heihai) east-west-transect was supposed to reveal implications for 

the precipitation regime on the entire Tibetan Plateau and has been one 

of the major aims of the TiP research projects. However, until now, this 

comparison does not allow a final conclusion about a synchronicity of 

moisture development on the northern and southern Tibetan Plateau as 

results from Donggi Cona, the eastern lake of the northern east-west-

transect, are not straightforward. Results from a multi-proxy record 

indicate deglaciation after around 19.0 cal ka BP, cold and dry condition 

during the Younger Dryas chronozone, a moist early to mid-Holocene, 

and an aridification thereafter (Opitz et al. 2012). These results are well 

in phase with the southern east-west-transect suggesting that moisture 

availability evolved synchronously on the northern and southern Tibetan 

Plateau and that this moisture availability is governed by the same 

precipitation processes, most likely linked to monsoon. In contrast, 
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results from ostracod analyses from Donggi Cona indicate drier condition 

in the early Holocene and wettest condition after 6.8 cal ka BP (Mischke 

et al. 2010a) and do not correspond to the southern east-west-transect. 

This would imply a rather asynchronous development of moisture 

availability or that moisture availability on the northern Tibetan Plateau is 

probably not controlled by the same precipitation processes as on the 

southern Tibetan Plateau. However, as suggested by a climate model 

and reanalysis data influences of different monsoon regimes such as the 

Indian and the East Asian monsoon or significant amounts of water 

recycling and pre-monsoon precipitation may probably alter the 

hydrological budget of a specific study site and complicate climatic 

reconstructions (Dallmeyer et al. 2012, Maussion et al. 2014). Donggi 

Cona, for instance, is located in a region where the climate model of 

Dallmeyer et al. (2012) assessed drier conditions in the mid-Holocene (6 

ka) compared to the present-day situation due to an East Asian monsoon 

influence matching the results of the ostracod analysis (Mischke et al. 

2010a). This is in contrast to the findings presented in this thesis, as on 

the southern Tibetan Plateau the mid-Holocene was apparently moister 

than present-day conditions and an exclusive control of the Indian 

monsoon is indicated (Dallmeyer et al. 2012).  

Lake Heihai, the western lake of the northern east-west-transect, 

shows moist conditions during the early Holocene synchronous to the 

southern east-west-transect. The rising lake levels after 3 cal ka BP are 

not observed on the southern Tibetan Plateau suggesting a rather 

different controlling mechanism of moisture availability (G. Lockot, 

personal communication). Rising lake levels after 3 cal ka BP at Lake 

Heihai could possibly either represent a local peculiarity resulting from a 

site-specific annual cycle of precipitation or a distinct different 
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precipitation regime after 3 cal ka BP. Wet conditions in the late 

Holocene were also observed at the lakes Bosten and Balikun, north of 

Lake Heihai, and were attributed to westerly wind influence (Huang et al. 

2009, An et al. 2012a). This is possibly suggesting that a distinct different 

precipitation regime from the southern Tibetan Plateau, particularly 

westerly circulation, is prevailing in this region after 3 cal ka BP. As 

monsoonal and westerly winds are in anti-phase relationship dependent 

on their individual strength (An et al. 2012b), Lake Heihai might have 

been under monsoonal influence during the early Holocene when 

monsoonal influence was strongest and its northward extension 

maximal. In the late Holocene, on the contrary, the lake might have been 

under reinforced westerly dominance as a result of the weakened 

monsoon with a reduced extension due to a decreased summer 

insolation (Berger and Loutre 1991). These mechanisms controlling the 

moisture availability in the Lake Heihai region might explain the 

differences to the climate pattern on the southern Tibetan Plateau during 

the mid- to Late Holocene. 

 

5.3 Conclusions 

5.3.1 Tangra Yumco 

This thesis is part of the southern east-west-transect of TiP investigating 

lake Tangra Yumco and its catchment processes in three individual 

studies. The synthesis of these three studies allowed a better 

understanding of climatic processes prevailing in the Tangra Yumco area 

and of the variations of moisture availability during the past 

17.4 cal ka BP and its impact on the lake levels changes. Results from 

the sediments from TT Lake were transferable to the record from Tangra 

Yumco and helped to decipher sedimentary dynamics in the Tangra 
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Yumco long core during the past 17.4 cal ka BP. The combination of 

sediment records with shoreline investigations allowed a detailed 

assessment of the lake level history of Tangra Yumco. The long core 

study further refined the early Holocene lake level highstand that was 

determined based on recalculated cosmogenic nuclide ages highlighting 

the value of this multi-proxy and multi-dating approach. This record is 

suitable for comparison to other records along the east-west-transect on 

the southern Tibetan Plateau. 

 

5.3.2 The southern Tibetan Plateau 

The results of the comparison of the records from the east-west-transect 

on the southern Tibetan Plateau indicate a synchronous pattern of 

moisture availability on the southern Tibetan Plateau. These results 

contribute to the controversial discussions about the spatial and temporal 

variability of moisture availability. Presented results support a 

synchronous spatial pattern of moisture availability on the southern 

Tibetan Plateau that was suggested previously. If the observed modern 

east-west-gradient in available moisture prevailed also during the past, it 

has apparently had no impact on the synchronicity of the records. Even 

though the magnitude of changes in moisture availability might have 

been different, their timing was not. The systematic study of several 

lacustrine systems along the east-west-transect on the southern Tibetan 

Plateau proved to be a target-aimed and reasonable research approach. 

 

5.3.3 The precipitation regimes on the Tibetan Plateau 

The major climatic features appear synchronous on the southern Tibetan 

Plateau and in the monsoon intensity records. This correspondence of 

the records suggests a similar dominating precipitation process. 
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Therefore, it can be assumed that monsoonal or monsoon-related 

precipitation contributed the major amount to the total annual 

precipitation on the Tibetan Plateau. Water recycling as well as pre-

monsoon precipitation seem to be negligible in the hydrological budget of 

the studied sites. The comparison of the records from the east-west-

transect to the monsoon intensity records demonstrates an easy 

approach to assess the influence of monsoonal precipitation on the 

annual cycle of precipitation on a certain study site. The coincidence of 

the pattern of moisture availability and the summer insolation probably 

indicates that summer insolation is the main controlling factor on the 

precipitation regime. 

The comparison to the northern east-west-transect is complicated. 

Inconsistencies between studies from Donggi Cona demonstrate the 

necessity to carefully assess the prevailing precipitation regime and the 

impact of recycling and pre-monsoon precipitation. A comparison of Lake 

Heihai and the southern Tibetan Plateau suggests that the same 

precipitation process, most likely monsoon-related, prevailed before 

approximately 3 cal ka BP at both sites. After 3 cal ka BP, however, 

monsoon-related processed prevailed on the southern Tibetan Plateau, 

while the area of Lake Heihai was possibly controlled by the westerly 

winds. The comparison of the southern and northern Tibetan Plateau 

reveals valuable information about the spatial limit of the monsoon-

related precipitation regime. However, a straightforward association to a 

specific precipitation regime seems to be more difficult in the marginal 

regions of the Tibetan Plateau than in the core regions such as the 

Tangra Yumco and Nam Co areas.
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5.4 Outlook and future research 

5.4.1 Extension of the multi-proxy data set for Tangra Yumco 

Biomarker analyses were successfully applied on the sedimentary 

records from Nam Co (e.g., Günther et al. 2011, Günther et al. 2015) 

showing that compound-specific δD values of sedimentary n-alkanes 

primarily record evapotranspiration and relative humidity (Günther et al. 

2011). Evapotranspiration cannot be assessed with methods used in this 

thesis. However, as biomarker analyses on the sedimentary record from 

Tangra Yumco are currently in progress, these data will provide valuable 

additional information about the environmental response to temperature 

and solar radiation. 

A change in moisture availability at Tangra Yumco at around 

16.0 cal ka BP may probably represent a change in the atmospheric 

circulation as observed at Nam Co (L. Zhu, personal communication). 

This hypothesis is supported by the presented data, and further research 

needs to assess this change in moisture availability more precisely. For 

this purpose a high-resolution palynological analysis on the Tangra 

Yumco long record is currently in progress performed by Qingfeng Ma 

(Key Laboratory of Tibetan Environment Changes and Land Surface 

Processes, Institute of Tibetan Plateau Research, Chinese Academy of 

Sciences, China). It is aimed to reveal a potential change in the wind 

direction indicated by a change in the pollen assemblage as it occurs at 

Nam Co at 16.5 cal ka BP (L. Zhu, personal communication) which is in 

the same timeframe as at Tangra Yumco. 
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5.4.2 Quantitative reconstructions of moisture availability on the 

southern Tibetan Plateau 

To distinguish a possible spatial east-west-gradient in moisture 

availability in the past, quantitative estimates of precipitation or other 

environmental parameters are necessary. Transfer functions based on 

pollen (e.g., Herzschuh et al. 2014) or ostracods (e.g., Frenzel et al. 

2010) or multi-proxy data sets (e.g., Giralt et al. 2011) should be applied 

to quantitatively assess the differences in moisture availability in future 

works. Although climate reconstructions based on pollen can be biased, 

if anthropogenic activity modified the past vegetation pattern, pollen-

based transfer functions of suitable records provide a good estimation of 

quantitative amounts of precipitation (Herzschuh et al. 2014). 

Quantitative reconstruction of lake level or precipitation can assess the 

magnitude of the monsoonal impact and absolute changes in 

precipitation as recently demonstrated with a pollen transfer function 

applied on pollen from Naleng Co by Opitz et al. (2015).  

 

5.4.3 Spatial and temporal extension of the southern east-west-

transect 

Efforts should be undertaken to complete the east-west-transect and to 

extent it temporally and spatially. Preliminary results from Taro Co show 

a decrease in moisture availability after 7.4 cal ka BP (unpublished data) 

which is in phase with recently published palynological data (Ma et al. 

2014). In 2014 colleagues from the Key Laboratory of Tibetan 

Environment Changes and Land Surface Processes, Institute of Tibetan 

Plateau Research, Chinese Academy of Sciences, China retrieved two 

paired parallel cores from the profundal zone of Taro Co. The composite 

record is about 12 m long and a basal radiocarbon age of this sediment 



CHAPTER 5  98 

 
 

core is 27 cal ka BP (J. Wang, personal communication). This record is a 

promising basis for completing the east-west-transect and will further 

contribute to a detailed picture of spatial changes of moisture availability 

on the southern Tibetan Plateau.  

A spatial extension of the east-west-transect into arid central Asia in 

the west and the Chinese or Southeast Asian lowlands would allow to 

further investigate the monsoon-westerly interaction and the relationship 

and variability of the Indian and the East Asian monsoon systems. This 

would be helpful for unraveling which climatic records may have been 

influenced by the East Asian monsoon or by both monsoon domains in 

the past.  

A temporal extension of the records from the southern Tibetan 

Plateau would allow valuable insights of monsoonal development during 

a glacial-interglacial cycle. A recently conducted seismic survey on Nam 

Co suggests that this lake is filled with more than 800 m of sediments as 

no acoustic basement was detected down to this depth (Haberzettl 

2015). These sediments could possibly represent the past 

460 to 1.900 ka as indicated by an extrapolation of the known sediment 

accumulation rates of the past 24 cal ka BP (Haberzettl 2015). As these 

first results suggest Nam Co is a suitable archive for an International 

Continental Drilling Program (ICDP) campaign a workshop proposal was 

submitted to the ICDP in January, 2015. 

 

5.4.4 Comparison of southern and northern east-west-transect 

A more detailed comparison of the northern and southern east-west-

transect should be pursued in future. The preliminary comparison 

conducted in this thesis provides first promising results that imply a 

change in the precipitation in the Lake Heihai area, whereas the 
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southern Tibetan Plateau is constantly controlled by the same 

precipitation regime. A more detailed investigation about a potential 

movement of the monsoonal limit on the northern Tibetan Plateau would 

allow for a more detailed understanding of the forcing mechanisms of the 

monsoon extension and intensity.  

 

5.4.5 Understanding of the annual cycle of precipitation 

A higher temporal resolution of the data sets would allow for a more 

detailed assessment of short-term climatic fluctuations superimposed by 

the long-term trend as well as an improved understanding of the annual 

cycle of precipitation. Until now the knowledge about the impact of 

recycling and pre-monsoon precipitation on the hydrological budget on 

the Tibetan Plateau is very limited. There are only few archives that can 

provide a subseasonal resolution to allow insights in the annual cycle of 

precipitation on the Tibetan Plateau but there are efforts to access 

archives with subseasonal resolution such as varved lake sediments 

(e.g., Zhang et al. 2010, Chu et al. 2011), tree-rings (e.g., Bräuning 

2006, Shao et al. 2010), and skeletal remains of animals (Wang et al. 

2008, Taft et al. 2012). However, the complexity of the annual cycle of 

precipitation and its spatial extent highlights the necessity to include the 

pre-monsoon season into climate reconstructions (Dallmeyer et al. 2012) 

that is difficult to realize in studies using the common archives as the 

temporal resolution is too low. While XRF data from Tangra Yumco partly 

provide annual resolution, CNS data, for example, have a rather 

bicentennial resolution. However, since CNS samples integrate over at 

least 1 cm sediment thickness in this study, the potential resolution has 

also been limited by methodical constrains. The complexity might be, 

most properly assessed by climate models and reanalysis data. More 
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climate models and reanalysis data sets are needed to better understand 

cause and effect of variability on the annual cycle of precipitation and 

improve the reliability of climatic predictions. Models such as an 

atmosphere-only general circulation model (ECHAM5) have been used 

to simulate the Indian monsoon through time on a interannual to multi-

decadal timescale (Polanski et al. 2013). The validity of this model is 

monitored by a comparison to paleoclimate reconstructions based on 

various proxies obtained from sedimentary records highlighting the 

importance of establishing well-dated long-term climate records like the 

Tangra Yumco record.  

 

5.4.6 Moisture transport 

Unlike previously assumed (e.g., Tian et al. 2001, Herzschuh et al. 2014) 

reanalysis data show that the moisture transport from the Bay of Bengal 

is blocked by the Himalayan mountains and redirected northeastwards 

and not directly transported to the Tibetan Plateau (Maussion et al. 

2014). Thus, the sources of monsoonal air masses and the transport 

route are unknown and to further understand monsoonal dynamics a 

determination and tracking of the transport pathways of monsoonal air 

masses is obligatory by e.g., climate models.  

 

5.4.7 Improvement of understanding of the proxies 

Uncertain chronologies and a poor understanding of the proxies (Mischke 

et al. 2010b, Opitz et al. 2015) may result in misinterpretation. In this 

manner, the multi-dating approach of Tangra Yumco and Nam Co proved 

to be a suitable method. As valid chronologies are a crucial precondition 

for climate reconstruction (Mischke et al. 2013, Haberzettl 2015) more 

effort should be spent on this. Studies like the recently published 
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assessment of controlling mechanisms on sediment distribution pattern of 

Nam Co (Wang et al. 2015) provide an understanding of the proxies used 

for climatic reconstruction and should be applied more often prior to data 

interpretation to avoid misinterpretation. This study was conducted within 

the project “Central Asian Climate Dynamics – CADY”, funded by the 

Federal Ministry of Education and Research of Germany (BMBF). CADY is 

the first step towards a systematic monitoring of Tibetan lakes to reveal 

sedimentary processes helping to facilitate proxy interpretation. Supported 

by the recovery of additional sediment surface samples two morings 

equipped with sequential sediment traps, thermistors, and two multiprobes 

at the top and bottom were installed at Nam Co in order to follow seasonal 

climatic variations affecting the water column and sediment deposition. 
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