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Part I

Introductory Part





CHAPTER

ONE

INTRODUCTION

1.1. Challenges in Information Technology

Since the invention of transistors in the 1940s and their utilization in integrated cir-

cuits, miniaturization with respect to new production processes led to an exponential

growth of the number of sheeted transistors per processing unit, commonly known as

Moore’s law. [1,2] Thereby, also the computational power of microprocessors used for

scientific, business, military or intelligence purposes made a huge leap forward. While

the 22 nm technology is established at the moment and new lithography processes

(extreme ultraviolet lithography, multiple patterning) are in principle able to achieve

much smaller structures, future miniaturization will face problems due to tunneling

effects for source-drain distances below 5 nm. [3] Similar problems will be encountered

for magnetic data storage systems. Commercially available hard disks exhibit storage

densities of 1Tbit/in2, implying elementary magnetic registers of ≈ 100nm2 size. [4] Re-

cent jumps in storage density were achieved by perpendicular magnetic recording [5]

and shingled magnetic recording, [6] while further improvements are still developed

(heat-assisted [7] and bit-patterned [8] techniques). However, ongoing shrinking of the

magnetic cells might also reach the superparamagnetic limit of materials with larger

coercivities and smaller grain sizes, respectively. [7]

These challenges demand completely fresh approaches. One idea for new computer

architectures possible with further miniaturization are so-called quantum computers,

as first suggested in the 1980s by Feynman [9] amongst others. Quantum computers

are made up of quantum bits (Qubits), that have to suffice the criteria formulated by

DiVincenzo, [10] and may exist in two states |0〉 and |1〉. In contrast to classical bits,

3



1. Introduction

Qubits are also able to exist in superpositions |Ψ〉 = c0 |0〉+ c1 |1〉 of the state vectors.

Furthermore, entanglement of several Qubits forming quantum registers leads to new

basis vectors |00〉 , |01〉 , |10〉 , |11〉 (for the case of two Qubits), that cannot be decom-

posed into states of single Qubits. Particular strengths of quantum computers lie at

completely different algorithms possible to be effectively implemented. Shor’s algo-

rithm [11] challenges asymmetric encryption algorithms, that depend on integer fac-

torization (i.e. the RSA cryptosystem*). An ideal implementation should be able to sig-

nificantly reduce the computation times for such problems. Furthermore, database

queries might be substantially accelerated by the randomized algorithm proposed by

Grover. [12,13] However, a recent benchmark of a commercially available 512 Qubit quan-

tum computer† did not yield any speedups compared to conventional computers. [14]

Over the years, numerous implementations for Qubits were suggested. Some proposed

systems for Qubits originate from the field of molecular magnets, challenging the field

of magnetochemistry. Possible implementations might be realized with single-mole-

cule magnets (SMMs), [15] antiferromagnetically coupled systems with an odd number

of spin carriers [16,17] or spin frustrated molecules. [18,19]

For the storage of data, basically every bistable system which can be read and writ-

ten, and exhibits a sufficient stability of the storage, might be used. FePt nanoparti-

cles with a 3 nm diameter, for instance, show the largest magnetocrystalline anisotropy

known so far. [4] On the molecular level, especially iron complexes are known for spin

crossover (SCO) behavior, describing a change of the ground state multiplicity. [20] Also,

SMMs might be useful for this application. [21]

The outstanding magnetic properties putting these molecular species in the spot-

light arise from the interactions within the distinct paramagnetic metal ions and/or

from interactions between them. In the next section, major influences on the mag-

netic behavior of chemical systems are outlined.

1.2. Magnetism of Paramagnetic Ions

Magnetism is a quantum mechanical effect, that arises from unpaired electrons. These

may be found in the metal ions from the d- and f-block of the PSE as well as in certain

stable radicals (e.g. the triphenylmethyl radical or nitroxide radicals). The electrons

afford a magnetic moment due to their spin of s = 1
2 . Unfortunately, the prediction of

*Named after the inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
†www.dwavesys.com

4
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1.2. Magnetism of Paramagnetic Ions

Table 1.1.: Estimated magnitudes of the interactions in paramagnetic ions
of d- and f-elements. [22]

Interaction System Energy Equivalent [cm-1]

Ĥee 3d, 4d, 5d 3d > 4d > 5d ≈ 104

4f, 5f 4f > 5f ≈ 104

ĤLF 3d, 4d, 5d 3d < 4d < 5d ≈ 2 ·104

4f ≈ 102

5f ≈ 103

ĤSO 3d, 4d, 5d 3d < 4d < 5d ≈ 103

4f, 5f 4f < 5f ≈ 103

magnetic properties is not intuitive, and many aspects have to be considered, of which

the most important are explained in this section.

1.2.1. Electronic Structure of Paramagnetic Ions

There are different quantum mechanical effects, that have an influence on the elec-

tronic structure of paramagnetic ions, and therefore, on their magnetic properties.

With respect to the position of the paramagnetic ion in the periodic system of ele-

ments, the order and magnitude of the distinct effects may vary. Below, the most im-

portant interactions in the ground state are briefly explained. Estimated magnitudes

according to Lueken [22] are listed in Table 1.1. Visual representations of the resulting

energy spectra are shown in Fig. 1.1 utilizing the model system cobalt(II) and dyspro-

sium(III) due to their importance in this work.

Electron-Electron Interaction The interelectronic interaction, Ĥee , shows the

largest impact on the electronic structure for most of the d- and f-ions. It results in

the splitting into energy terms defined by the total spin S and the orbital momentum

L, with the ground term predicted by the first and second Hund’s rule for ideal (spher-

ical) symmetry of the ion. [23,24]

Ligand Field The ligand field interaction, ĤLF , is caused by the interelectronic re-

pulsion between the electrons of the metal ion and the ligands. Depending on the sym-

metry of the coordination environment, orbital degeneracies are lifted completely or

just to a certain degree, and, thus, requirements for strong spin-orbit interaction may

5



1. Introduction

(a) Co(II)

(b) Dy(III)

Figure 1.1.: Electronic structure of the Co(II) and Dy(III) ions with sequen-
tial perturbations of interactions with decreasing magnitude.
For Co(II), an elongated Oh environment was assumed, where
Γ6 and Γ7 denote the MS =±1

2 and ±3
2 doublets, respectively.

6



1.2. Magnetism of Paramagnetic Ions

−−→
ZFS

Figure 1.2.: Effect of ZFS on the energy of the Zeeman states in a S = 3
2 sys-

tem.

be met or denied. The stronger the repulsion between the electrons, the larger the lig-

and field splitting becomes. The magnitude of ĤLF increases within the row 3d<4d<5d,

giving rise to a low-spin ground state for the majority of 4d and 5d complexes.

Spin-Orbit Coupling The spin-orbit coupling (SOC) term, ĤSO , results from the

interaction of the electron spin with the orbital momentum of its orbit function. It

originates from relativistic quantum mechanics and causes a shift or splitting of the

ligand field states. In the case of 4f ions, its influence is even larger than ĤLF , which

is illustrated by the interchanged order of perturbation shown in Fig. 1.1b for Dy(III).

For orbitally non-degenerated ground states with S ≥ 1, the interaction resulting from

second-order SOC is called zero-field splitting (ZFS) and may lift the degeneracy of the

|MS〉 states of a given S multiplet. The effect on the energies of the Zeeman states is

described in the spin Hamiltonian formalism by

Ĥ = D


Ŝ2

z −
1

3
S (S +1)


+E


Ŝ2
x − Ŝ2

y


, (1.1)

where D is the axial and E is the rhombic ZFS parameter. The influence of D is depicted

in Fig. 1.2, whereas the effects of the rhombic parameter E are more complicated. The

fraction E
D is the rhombicity and has to be in the range 0 ≥ E

D ≥ 1
3 according to its defi-

nition.

Zeeman Effect Interaction of the magnetic field and the MS states is described by

the Zeeman effect. The energy of MS levels changes according to

ĤZ E = gµB H Ŝ, (1.2)

7



1. Introduction

where g is the g -tensor and H the external magnetic field. Depending on the electron

configuration, g may be isotropic (gx = g y = gz), axial (gx = g y ̸= gz), or rhombic (gx ̸=
g y ̸= gz ̸= gx). The free electron exhibits ge = 2.0023, whereas it may vary widely for

paramagnetic ions. Deviations from the free-electron value are caused by SOC. The

MS state energies with respect to the Zeeman effect without and with ZFS for an S = 3
2

system are shown in Fig. 1.2.

1.2.2. Cooperative Effects Between Paramagnetic Ions

Many macroscopic magnetic phenomena can only be explained, if the interaction be-

tween paramagnetic centers is accounted for. If the overall interaction between mag-

netic moments results in a parallel alignment (see Fig. 1.3a), a ferromagnetic phase is

obtained. They exhibit a complex behavior in the magnetic field and show hysteresis

effects in the M vs. H plot below the Curie temperature TC . Above TC , paramagnetic

behavior obeying the Curie or Curie-Weiss law [25] shown in Eqs. (1.3) and (1.4), respec-

tively, is observed.

χM = C

T
(1.3)

χM = C

T −Θp
(1.4)

Antiferromagnetism is observed, when interaction between magnetic moments yield

(speaking in classical terms) antiparallel alignment (see Fig. 1.3b) with a resulting mag-

netic moment of zero. The transition to Curie(-Weiss) behavior is possible in the same

manner as for ferromagnets above the Neél temperature TN . When two ferromagnetic

sublattices with different magnetic moments underly antiferromagnetic interaction

(a) Ferromagnetism (b) Antiferromagnetism (c) Ferrimagnetism

Figure 1.3.: Cooperative effects between permanent magnetic moments in
the solid state.
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1.3. Recent Areas of Interest in Magnetochemistry

between those two sublattices, the overall magnetic moment does not vanish. Such

ferrimagnetic phases (e.g. magnetit) were the first observed evidence of magnetism

due to the forces between them and iron. [26]

In molecular species, cooperative effects are treated with an exchange term in the

spin Hamiltonian. While in literature, the expressions −J Ŝ1Ŝ2, −2J Ŝ1Ŝ2, and J Ŝ1Ŝ2 are

mentioned, [22] in this work, only the first form is used.

1.3. Recent Areas of Interest in Magnetochemistry

The aforementioned phenomena applicable in future information technology will be

shortly reviewed. Due to the utter importance of SMMs in this work, they will receive

the most attention. Spin frustrated systems are also explained due to the systems en-

countered in Sections 7.2 and 7.3, which are closely related to research in this area. Al-

though no SCO systems were investigated in this work, recently, such complexes have

received considerable attention, and, therefore, a few basics are presented.

1.3.1. Single-Molecule Magnets

A thermal barrier for the reversal of the magnetic moment is normally observed

for regular permanent magnets, demanding ferromagnetic behavior in a magnetic

domain of several thousands of paramagnetic centers. Thus, it was very surpris-

ing to find an out-of-phase signal during dynamic susceptibility measurements for

[Mn12O12(AcO)16(H2O)4] ·2 AcOH ·4 H2O, [28] which at that time was already known for

several years. [29] More oligonuclear manganese carboxylate complexes with SMM be-

havior became known a short while afterwards. [30] SMMs involving iron, nickel, cobalt

and vanadium were also reported, [31] while the first mononuclear SMMs contained

terbium(III) ions, whose S8-symmetric complexes still exhibit the largest reported spin

reversal barriers. [32–35] Closely related complexes paved the road for the next successes

in this research area. Recent examples of Co(II) and lanthanide(III) SMMs are shortly

reviewed in the Chapters 4 and 6, respectively.

Spin-orbit interactions within single ions or ferromagnetically coupled clusters

manifest as ZFS. Therefrom, a double-well potential of |MS〉 states‡ is created. The

energy ladder of the double-well potential is depicted in Fig. 1.4 without and with an

applied external field. Ideally, only thermal relaxation should occur to obtain large

‡Or
M J


states, depending on which quantum numbers are better suited for the situation.

9
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(a) (b)

(c) (d)

Figure 1.4.: Double-well potential seen by the spin resulting from magnetic
anisotropy and possible relaxation pathways. The underlying
theory of the double-well potential in SMM was published by
Leuenberger and Loss. [15,27] (a) Without external stimuli, the
magnetic moments are aligned statistically. (b) Upon applica-
tion of an external magnetic field, one direction of the magnetic
moment is preferred, and this +MS state is populated. (c) Re-
moving the external field may result in thermal relaxation pro-
cesses over the barrier Ueff. (d) Under certain requirements, also
tunneling processes are observed.

Figure 1.5.: Important relaxation processes in single-molecule magnets be-
tween the lowest |MS〉 states.
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1.3. Recent Areas of Interest in Magnetochemistry

Figure 1.6.: Schematic representation of a frustrated system of three S = 1
2

spins. The result is a twofold degenerated S = 1
2 ground state, as

depicted on the right.

spin reversal barriers. In real compounds, however, relaxation of the magnetization

between the lowest spin-orbit states by tunneling is also often found (quantum tun-

neling of magnetization, QTM). The relaxation kinetics of the tunneling processes do

not depend on the temperature, whereas the kinetics of thermal processes do. Com-

bination of thermal and tunneling processes leads to thermally assisted quantum tun-

neling (TAQT) (see Fig. 1.5). Transitions between
MS,max

→ ±MS,max+1


are called

Orbach processes. Both these processes depend on the energy separation between the

lowest and the first excited |MS〉 state.

Large barriers are obtained, when the mixing of different |MS〉 states is prevented

due to an ideal rotation symmetry. Otherwise, large transversal elements of the g -

tensor occur and open tunneling pathways. However, the best-suited coordination

environment for achieving a permanent magnetization heavily depends on the prop-

erties of the ion itself. For example, lanthanides do exhibit different spatial electron

distributions for the
M J ,max


state, demanding different geometries for a large separa-

tion of the ground state, which is explained in more detail in Chapter 6.

1.3.2. Spin-Frustration

For molecular species with competing magnetic interactions, a situation may arise,

that does not suffice the preferred alignment of the involved local spins. The most

simple example might be an equilateral triangle of S = 1
2 spins, that interact antifer-

romagnetically. As depicted in Fig. 1.6, this gives rise to a situation, where (in the

classical picture) not all spins can be aligned antiparallel, and, hence, frustration is

achieved. Half-integer spins will then give rise to an orbitally degenerated ground state

with S = 1
2 , while for integer spins, the magnetic moment of the resulting ground state

vanishes. Thus, according to Kahn, [36] only the former case should explicitly named

spin-frustration. For Cu3 triangles, antisymmetric and anisotropic exchange inter-

actions are necessary for the correct description of the electronic structure, illustrat-

ing the non-triviality of such systems. [37] A very promising candidate was prepared in
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1. Introduction

our group by Zharkuskaya, [38] utilizing triaminoguanidine-based ligands to obtain C3-

symmetric copper(II) complexes.

1.3.3. Spin-Crossover

Ions with d4-d7 configurations are known to exist as high-spin or low-spin systems with

respect to the ligand field strength of the employed ligands. While most ligands are

associated with a distinctive spin state, some, mainly polydentate, ligands tend to gen-

erate ligand field strengths of intermediate size. Odd magnetic behavior upon thermal

stimuli was reported as early as 1931 by Cambi and Szergö for dithiocarbamate com-

plexes of iron(II). [39] A crucial influence of the axial ligands on the magnetic moment

of iron heme complexes was found by Pauling a few years later. [40] The nature of this

properties was clarified by Mößbauer spectroscopy, [41] finding that the ground state

multiplicity changes, and thus, also the structure of the complexes (i.e. ionic radius of

the metal). The average metal-ligand bond length is in general shorter for the low-spin

state than for the high-spin state. Later, also stimulation by pressure [42] and light [43,44]

was found to induce spin-crossover. Under certain circumstances, also cooperative ef-

fects play a significant role, potentially yielding bistable systems with hysteresis effects

(e.g. [45–49]).

1.4. Aims of this Work

In this work, several aspects of the above mentioned systems were considered. Based

on the work of Eike T. Spielberg [19,50] about carbazole-based ligands for transition

metal complexes, new ligands with potential photoreactivity will be designed and syn-

thesized. As presented in Chapter 3, also the synthesis and magnetic properties of

complexes of these ligands with transtition metal ions will be investigated.

In the other parts of this work, quantum mechanical methods will be employed to

clarify the magnetic behavior and its origin of numerous magnetic compounds con-

nected to different recent synthetical results. The theoretical methods used are ex-

plained in Chapter 2. One major goal is the calculation of energies and g -tensors of

the spin-orbit states for several classes of SMM candidates. Therefore, the multicon-

figurational CASSCF method in addition with the RASSI-SO method will be used. In

Chapter 4, the focus will lie on tetra-coordinated Co(II) complexes described in Chap-

ter 3, and some of those reported by Buchholz [51] and Ziegenbalg [52] as well as a few

12
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more. These complexes will also be investigated concerning the structural influences

on the ZFS parameters. Inspired by recent results of Zadrozny, [53] different linear Co(II)

complexes from approximately 20 years of literature will be calculated in Chapter 5

to possibly identify high-performing SMM candidates. Complexes of the metal ions

with the probably largest growth of confirmed SMMs, the lanthanides, will be studied

in Chapter 6. Properties of the dysprosium(III) and erbium(III) complexes with tri-

aminoguanidine (TAG) based ligands prepared by Schuch [54] and Möller [55] showed

large spin reversal barriers, and, hence, their spin-orbit spectrum will be calculated.

For complexes with hydrogen-bridged dimers present in the crystal structure, the in-

teractions between the lanthanide(III) ions are an interesting aspect to look into.

Finally, in Chapter 7, several exchange coupled system will be theoretically investi-

gated in order to gain insight into the exchange interactions between transition metal

ions. This task will be performed within the broken-symmetry formalism. Cu4O4

cubanes prepared by Burkhardt [56] under the premise of exploring the coordination

properties of sugar-based ligand systems with a possible magnetochiral effect will be

studied in Section 7.1. In Section 7.2, a long-known metallacoronate with H3O+ guest

molecules [38] will be reinvestigated, since its magnetic properties still leave some ques-

tions unsolved. Trinuclear chromium(III) complexes with the TAG ligand yield ferro-

magnetic exchange, as reported by Schuch [54], and will be calculated in Section 7.3.
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CHAPTER

TWO

THEORETICAL METHODS

In general, ab initio methods are based exclusively on the laws of quantum mechanics

without involving any empirical parameters except for the natural constants. Meth-

ods addressing the electronic ground state usually aim to solve the time-independent

Schrödinger equation ĤeffΨel = EelΨel with Ĥeff = Ĥel +Vnn by constructing a min-

imum energy wave function Ψ and finding its energy eigenvalue E . All methods dis-

cussed below are treated within the Born-Oppenheimer approximation, [57] which sep-

arates the nuclear wave function from the electronic wave function. The electronic

non-relativistic Hamiltonian for many-electron systems is then given by:

Ĥel =−1

2


i
∇2

i −


i


α

Zα
riα

+
i


j>i

1

ri j
. (2.1)

For ab initio methods, the Hamiltonian is known within the chosen approximations.

The task is then to find an eigenfunction of Ĥel, the electronic wave function Ψel. The

Pauli principle [58] demands an antisymmetric wave function, which is satisfied by us-

ing the antisymmetrisized product of one-electron wave functions (also called spin

orbitals) χi , known as Slater determinantΦSD for N electrons in the general form:

ΦSD = 1p
N !



χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
. . .

...

χ1(xN ) χ2(xN ) · · · χN(xN )


. (2.2)
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2. Theoretical Methods

The spin orbitals are products of the spatial orbital ψ(r ) and a spin wave function:

χi (x j ) =
ψi (r j ) ·α(ω j )

ψi (r j ) ·β(ω j )
(2.3)

For open shell systems, eigenfunctions of the Hamiltonian are not necessarily single

Slater determinants, but linear combinations thereof. The linear combinations, that

are eigenfunctions are also called configuration state functions (CSF). For closed-shell

calculations, a single Slater determinant by definition is a CSF.

Hartree-Fock theory is one way to calculate and minimize the energy of a Slater de-

terminant. It is explained briefly to illustrate important concepts immanent to all ab

initio methods. Furthermore, one concept for the calculation of correlation energy

is explained utilizing the configuration interaction method. Thereafter, the multicon-

figurational CASSCF method and the multirefence CASPT2 method are outlined in a

compact form, since they were used to obtain a significant part of the results of this

work.

2.1. Ab initio Methods

2.1.1. Hartree-Fock Approximation

The Hartree-Fock approximation [59,60] is a way to minimize the energy of a wave func-

tion in the form of a single Slater determinant. [60] By the application of the variational

principle for minimizing the energy of the determinant in Eq. (2.2), the Hartree-Fock

equations are obtained:

f̂ (xi )
χ (xi )

= ϵ χ(xi )


, (2.4)

that lead to the one-electron wavefunctions
χ (xi )


for the electrons i and their eigen-

values ϵ. The Fock operator f̂ (xi ) is defined by the one-electron operator ĥ(xi ) and the

two-electron operators Ĵµ(xi ) (Coulomb operator) and K̂µ(xi ) (exchange operator):

f̂ (xi ) = ĥ(xi )+
N
µ=1


Ĵµ(xi )− K̂µ(xi )


(2.5)
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2.1. Ab initio Methods

with

ĥ(xi ) =−ħ
2
∇2 − 1

4πε0

Nnuc
n=1

Zne2

|ri −Rn |
, (2.6)

Ĵµ(xi )
χν(xi )

=χµ(x j )

 1

|r1 − r2|
χµ(x j )

χν(xi )


, (2.7)

and K̂µ(xi )
χν(xi )

=χµ(x j )

 1

|r1 − r2|
χν(x j )

χµ(xi )


. (2.8)

Since Ĵµ and K̂µ depend on the wave functions
χν(xi )


, these equations are not linear

and have to be solved with an iterative procedure. For atoms, the Hartree-Fock equa-

tions may be solved numerically, whereas for molecular systems, no practical proce-

dures are available. Therefore, Roothaan proposed the use of atomic basis function

φµ, from which the spatial part of the MOs ψi are constructed using the linear combi-

nation of atomic orbitals (LCAO) ansatz. [61]

ψi (r j )
= 

µ=1
cµi
φµ(r j )


. (2.9)

Usually, either Slater-Type-Orbitals (STOs) or Gaussian-Type-Orbitals (GTOs) are em-

ployed in molecular calculations, but due to the computational advantages of GTOs,

most quantum chemical codes use these basis functions. When the basis set expan-

sion is introduced into the Hartree-Fock equation in Eq. (2.4) and the closed-shell case

is implied (equal number of α- and β-electrons), the Roothaan-Hall equations may be

formulated in matrix notation [61,62]:

F C = SCε. (2.10)

The matrices will have K ·K elements with respect to the number K of basis functions.

For an N electron system, the N
2 MOs with the lowest energy will be doubly occupied,

while the remaining K − N
2 orbitals are unoccupied (also called virtual orbitals). The

elements of the Fock matrix F are given by

Fi j =

φi (r )

 f̂ (r )
φ j (r )


, (2.11)

those of the overlap matrix S by

Si j =

φi (r )

φ j (r )


, (2.12)
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and coefficient matrix C has the form

Ci j =


C11 C12 · · · C1K

C21 C22 · · · C2K
...

...
. . .

...

CK 1 CK 2 · · · CK K

 . (2.13)

The elements of the Fock matrix F are sums of integrals involving the one-electron

operators and a sum over the coefficients of all occupied MOs multiplied with two-

electron integrals. The latter term is often expressed as a product of the density matrix

D and the two-electron integrals G :

F = h +G ·D . (2.14)

Diagonalization of F leads to a set of new coefficients to be used in an iterative Self-

Consistent Field (SCF) procedure (see Fig. 2.1) until the set of coefficients are con-

verged. These converged coefficients minimize the energy of the Slater determinant.

The orbital energies are then found on the diagonal of ε:

εi j =


ε1 0

ε2

. . .

0 εK

 (2.15)

The initial set of coefficients is usually obtained from a prior semiempirical calculation

(e.g. extended Hückel theory). In the case of a complete basis, the orbital energies

would be the exact energies within the HF approximation (HF limit). But due to the

computational limitations, only a finite number of basis functions can be used.

A major drawback of this method is the negligence of the correlated motion of the

electrons. The electron-electron interaction is treated by the operators Ĵ and K̂ , expos-

ing each electron to an averaged electrostatic field caused by all other electrons. The

correlation energy is therefore defined as the difference between the exact electronic

energy and the HF limit.

Ecorr = Eexact −E limit
HF (2.16)
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Initial guess
for den-

sity matrix

Calculate
h and G

Form Fock
matrix F

Diagonalize F

Calculate
Density

matrix D

Updated
coefficients

Coefficients
converged?

SCF-Solution

no

yes

Figure 2.1.: Simplified SCF procedure used in the Hartree-Fock method.

For the correct treatment of electronic correlation, different approaches are avail-

able. One of these approaches is the variational Configuration Interaction (CI) method,

that includes excited determinants in a linear combination and is further explained be-

low in Section 2.1.2. The multiconfigurational CASSCF approach, closely related to CI,

is addressed in Section 2.1.3. A perturbational ansatz is the Møller-Plesset method [63]

(MP2 for perturbation to second order), which includes electron correlation by means

of Rayleigh-Schrödinger perturbation theory. [64] While MP2 is not explained further,

the multiconfigurational perturbation method CASPT2 [65] is portrayed in a compact

form in Section 2.1.4.
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2.1.2. Configuration Interaction

Probably the most straight-forward way of accounting for the correlation energy is the

expansion of the wave function into a linear combination of all possible singly, doubly,

triply, . . . excited configurations, where Ψ0 is the HF ground state determinant. The

variational method optimizing the wave function in such a way is called configuration

interaction (CI). a,b,c, . . . and r, s, t , . . . denote excitations from the previously occupied

MOs ψa ,ψb ,ψc , . . . to the virtual MOs ψr ,ψs ,ψt , . . . .

|Φ0〉 = a0 |Ψ0〉+

ar

ar
a

Ψr
a

+
a<b
r<s

ar s
ab

Ψr s
ab

+ 
a<b<c
r<s<t

ar st
abc

Ψr st
abc

+ . . . (2.17)

For the sake of clarity, the CI expansion can be written in a more compact form.

|Φ0〉 = a0 |Ψ0〉+aS |S〉+aD |D〉+aT |T 〉+ . . . (2.18)

Minimizing the energy of the wave function by optimization of the CI coefficients ai in

Eq. (2.18) leads to a constrained optimization, that can be formulated in a similar fash-

ion as the MO optimization within the HF method. Hence, a very similar eigenvalue

problem is obtained. The matrix elements between excitation levels are summarized

in the CI matrix as shown in Table 2.1. Between the HF ground state determinant |Ψ0〉
and the singly excited CSFs |S〉, the matrix elements disappear (Brillouin’s theorem). [66]

Non-zero matrix elements of |Ψ0〉 are only obtained with |D〉, which should therefore

show the largest influence on the CI wave function |Φ0〉. The interaction of the other

CSFs with |Ψ0〉 is only mediated through off-diagonal elements of |D〉 with other ex-

cited states.

If all possible excitations are accounted for, the method is referred to as full CI (FCI).

Table 2.1.: General Structure of the CI matrix.

|Ψ0〉 |S〉 |D〉 |T 〉 |Q〉 · · ·
〈Ψ0|


Ψ0
 Ĥ Ψ0


0


Ψ0
 Ĥ D 0 0 · · ·

〈S| 0


S
 Ĥ S 

S
 Ĥ D 

S
 Ĥ T  0 · · ·

〈D| 
D
 Ĥ Ψ0

 
D
 Ĥ S 

D
 Ĥ D 

D
 Ĥ T  

D
 Ĥ Q · · ·

〈T | 0


T
 Ĥ S 

T
 Ĥ D 

T
 Ĥ T  

T
 Ĥ Q · · ·

〈Q| 0 0

Q
 Ĥ D 

Q
 Ĥ T  

Q
 Ĥ Q · · ·

...
...

...
...

...
...
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2.1. Ab initio Methods

In theory, FCI can recover the entire correlation energy when applied with a complete

basis. Unfortunately, the number of CSFs increases factorially with the number of ba-

sis functions and electrons. With a set of K spatial orbitals and N electrons to be dis-

tributed, the rapidly growing number of


K

N


= K !

N !(N −K )!
CSFs has to be considered.

Even for moderately sized molecules like water, this generates computational prob-

lems with large basis sets. Hence, certain approximations are encountered regularly.

Within the frozen-core approximation, excitations from core orbitals are excluded for

the construction of CSFs. Different truncated CI methods only allow an arbitrary num-

ber of excitations (CISD, CISDT, . . . ), but suffer from an increasing loss of recovered

correlation energy for increasing molecular size. Furthermore, the single-reference CI

approach fails, where multiple configurations are necessary to draw a qualitatively cor-

rect picture of the electronic ground state.

2.1.3. Complete Active Space SCF Method

The complete active space SCF (CASSCF) method [67] is a widely used variety of the

multiconfigurational SCF (MCSCF) method. The main idea behind MCSCF is the use

of wave functions expressed by linear combinations of CSFs Φ = i aiΨi , somewhat

similar to the CI wave functions in Eq. (2.18), respectively. However, in addition to

the variation of the CI coefficients ai (Eq. (2.18)), the MO coefficients ci (Eq. (2.9)) are

varied simultaneously. To illustrate the nature of a MCSCF wave function, in Eq. (2.19)

the ground state wave function of the He atom using two basis functions χi (i = 1,2) is

shown. Not only does it rely on two CI coefficients a j ( j = 1,2), but also on four MO

coefficients ci j .

Φ= a1Ψ1 +a2Ψ2 = a1

φ1φ1

+a2

φ2φ2


= a1

(c11χ1 + c21χ2)(c11χ1 + c21χ2)
+a2

(c12χ1 + c22χ2)(c12χ1 + c22χ2)
 (2.19)

During a regular CI calculation, the MO coefficients of the optimized reference deter-

minant are used for all CSFs. The separate optimization of the MOs for each CSF often

leads to a faster convergence for MCSCF than for CI calculations.

To decrease the number of used CSFs, within the CASSCF method, the orbitals are

divided into three subspaces: inactive, active, and virtual orbitals (see Fig. 2.2). The

inactive orbitals are fully occupied for all included CSFs, whereas all excitations arising

from n active electrons in m active orbitals are explicitly treated in a FCI-like way. The
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2. Theoretical Methods

size of the active space is denoted as CAS(n, m). Due to the omitted excitations from

the inactive orbitals, the method is not appropriate for recovering large fractions of the

correlation energy. The correlation treated within the active space arises from elec-

trons that have relatively similar energy and is called the non-dynamical or static cor-

relation. The remaining correlation energy, obtained when more orbitals are included

into the CI-expansion, is called the dynamical correlation. Using the CASSCF reference

wave function, it may be calculated with variational (MRCI) or perturbational methods

(CASPT2).

Later, the CASSCF methodology was extended, yielding the RASSCF (restricted ac-

tive space SCF) method. It is an approach to enlarge the number of active orbitals with-

out making the number of CSFs unmanageable (see Fig. 2.2, right). Therein, the active

orbitals are assigned to the RAS1, RAS2, and RAS3 subspaces with a certain number of

allowed holes (RAS1) and excited electrons (RAS3). The RAS2 subspace is equivalent to

the active space in the CASSCF methodology.

Despite its shortcomings, CASSCF is especially useful to describe systems, where

single-reference methods are not able to draw a qualitatively correct picture. Single-

reference methods will fail, when non-equivalent resonance structures are encoun-

tered. Benzene for instance can be described by two equivalent resonance structures,

and thus, its electronic structure is handled correctly even by HF theory. The ozone

molecule is a more challenging example for single-reference methods because ionic

Figure 2.2.: Included excitations for the construction of the CSFs in FCI,
CASSCF and RASSCF calculations. For solid arrows, all possible
excitations are allowed, whereas for dashed arrows the number
of simultaneous excitations is restricted.
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2.1. Ab initio Methods

and biradical resonance structures are readily formulated. Since the CASSCF method

is able to treat excited states, it is also very well suited for electronic structure calcula-

tions on 3d- and 4f-elements, which possess a manifold of excited states close to the

ground state. Therefore, especially state-averaged CASSCF (SA-CASSCF) is of interest,

where averaged MOs are used for all states.

2.1.4. CASPT2 Method

Unfortunately, the scope of the CASSCF method suffers from the maximum number

of excitations, which can be treated with reasonable effort. The correlation energy re-

covered by excitations of electrons distant in energy from the “chemically active” ones

in the active space is called dynamical correlation, as stated above. An established

method to account for this shortcoming of CASSCF, is the perturbational treatment of

these excitations by the CASPT2 method. [65,68] As found generally for all perturbational

methods, the Hamiltonian is defined as a sum of a zeroth-order Hamiltonian Ĥ0 and a

perturbation V̂ :

Ĥ = Ĥ0 + V̂ , (2.20)

where Ĥ0 is defined as:

Ĥ0 = P̂0F̂ P̂0 + P̂SDF̂ P̂SD + P̂TQ. . . F̂ P̂TQ. . . (2.21)

and the projection operators P̂i . P̂0 = |ΦCASSCF〉〈ΦCASSCF| is the projection operator

with respect to the reference function, whereas P̂SD does the same for single and dou-

ble excited states. Projections on higher excited states by P̂TQ. . . are omitted in CASPT2.

F̂ generalized Fock operator:

F̂ =
p,q

fpq Êpq (2.22)

with the matrix element fpq for the orbitals
ψp


and
ψq


and Êpq being the spin-

summed excitation operator (see [65] for further details). To obtain the second order

perturbation, in fact, the first-order wave function
Φ(1)

CASSCF


has to be known. A simi-

lar method as used in MP2 is therefore employed:

Φ(1)
CASSCF


= 

pqr s
tpqr s Êr s Êpq |ΦCASSCF〉 =

M
k

ck

Φ(1)
k,CASSCF


, (2.23)

where Êpq denotes the annihilation operator for the electrons p and q , and Êr s denotes
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the creation operator for the electrons r and s, respectively. The diagonal second-order

energies are then obtained as:

E (2)
el,CASSCF =−

M
k=1

Φ(1)
k,CASSCF

V̂ ΦCASSCF

2
ϵk −E (0)

el,CASSCF

. (2.24)

The form of the denominator reveals possible problems for states of the first-order in-

teraction space, if ϵk gets close to the CASSCF energy E (0)
el,CASSCF. These so-called in-

truder states may be avoided by introducing a level shift ε, [69,70] leaving the second-

order energy in the form of:

E (2)′
el,CASSCF =−

M
k=1

Φ(1)
k,CASSCF

V̂ ΦCASSCF

2
ϵk −E (0)

el,CASSCF +ε
. (2.25)

Values of ε= 0.2-0.3 a.u. have proven suitable for transition metal complexes. [71]

2.2. Density Functional Theory

Many chemists, who are not exclusively working in the field of computational chem-

istry, which is the vast majority, are nowadays performing calculations on their own to

interpret or verify experimental results. Therefore, they usually rely on density func-

tional theory (DFT), as it is nowadays easy to use and yields meaningful results for

many applications. This is emphasized by the tremendous increase of works using

DFT for understanding reaction mechanisms, prediction of products, calculations of

the optical properties, and so on. From less than 100 publications in 1990, 23 years

later there are more than 17000 publications per year where density functional the-

ory was mentioned. Probably the main reason for the wide acceptance of DFT is the

good description of the electronic structure including correlation effects with the same

or less computational costs than ab initio Hartree-Fock calculations. In 1998, Walter

Kohn was awarded the Nobel Prize in Chemistry (together with John Anthony Pople)

for his contributions especially to density functional theory. [72,73]

2.2.1. Hohenberg-Kohn Theorems and Kohn-Sham Method

When the purely electronic non-relativistic Hamiltonian from Eq. (2.1) is applied to a

n-electron wave function, the energy is expressed in terms of one- and two-electron
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Figure 2.3.: Number of publications with “Density Functional Theory” as
a topic. The search was done with CAS Scifinder on July 31st,
2014.

integrals, involving three, respectively six spatial coordinates. In their first theorem, [74]

Pierre Hohenberg and Walter Kohn proved, that for a non-degenerate ground state,

the energy and the entire electronic structure are determined by the electron density

ρ0(x, y, z) of the electronic ground state described by only three spatial coordinates.

The electronic energy obtained from Eq. (2.1) is the sum of the kinetic energy of the

electrons T , the electron-nuclear attraction VNe , and the electron-electron repulsion

Vee . In the case of ρ0(x, y, z), each of this terms is a functional of ρ0:

E0 = E

ρ0
= T


ρ0
+VNe


ρ0
+Vee


ρ0


(2.26)

The second theorem proven by Hohenberg and Kohn, shows, the inequality E0 ≤
Ev

ρtr


holds true for all trial density functions ρtr. Only the ”right“ electron density

ρ0 will yield the true ground state energy: E0 = Ev

ρ0

. Thus, the true ground-state

electron density will minimize the functional Ev

ρ0

.

The two Hohenberg-Kohn theorems only tell us, that it is possible to calculate the

ground-state energy E0 from the correct electron density ρ0, but neither how to find

the correct ground-state density, nor, how to calculate the energy from that density.

In principal, the method allows to calculate the exact energy, but since the functional

is unknown, an approximate functional has to be used, delivering only approximate

energies.

A method to obtain ρ0 and from there finding E0 was proposed by Walter Kohn and
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Lu J. Sham. [75] At first, a reference system of non-interacting electrons (subscript s) is

introduced, where all electrons experience the potential vs (ri ), that has to influence

the electron density ρs (r) in such a way, that it becomes equal to the true ground-state

density ρ0 (r). For this system, the Hamiltonian can be formulated as

Ĥs =
n

i=1


−1

2
∇2

i + vs (ri )


≡

n
i=1

ĥKS
i . (2.27)

Now, also the antisymmetry requirement is met and the ground-state wave function

Ψs,0 is the antisymmetrisized product of the lowest Kohn-Sham spin-orbitals (Slater

determinant) as a product of spatial orbitals θKS and spin functions σ, with their ener-

gies εKS determined by ĥKS. The electron density is easily obtained by the summation

over the square of the KS-orbitals.

uKS
i = θKS

i (ri )σi (2.28)

ĥKS
i θKS

i = εKS
i θKS

i (2.29)

ρs =
n

i=1

θKS
i

2 (2.30)

To obtain the ground-state energy from the Kohn-Sham spin-orbitals, 2.31 is used. For

the deduction of this formula standard text books can be consulted (e.g. [76]).

E0 =−
α

Zα


ρ (r1)dr1 − 1

2

n
i=1


θKS

i (1)
∇2

1

θKS
i (1)


+ 1

2

Ï
ρ (r1)ρ (r2)

r12
dr1dr2 +Exc


ρ
 (2.31)

The exchange energy as well as the correlation energy are not yet accounted for. They

are both included in the term Exc

ρ


and cannot be derived straight-forward. Different

approaches for accounting for these energies have been made and the most important

examples are given below.

2.2.2. Important Exchange-Correlation Functionals

Local Density Approximation

For the Local Density Approximation (LDA), the electrons are viewed as a uniform

electron gas, the exchange energy is then given by the Dirac formula (Eq. (2.32)). The

functional of the correlation energy Ec

ρ


was derived by fitting the exact correlation
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energy values calculated with quantum Monte Carlo simulations to a set of parameters.

The complete expression is rather complicated, but the functional itself became well-

known by the initials of three scientist: Vosko, Wilk, and Nussair (2.33). [77]

E LDA
x


ρ
=−3

4


3

π

 1
3

ρ

4
3 (r)dr (2.32)

E LDA
c


ρ
= E VWN

c


ρ


(2.33)

The corresponding unrestricted formulation of LDA is the local spin-density approx-

imation (LSDA), where the α- and β-orbitals are allowed to have different spatial KS

orbitals.

General Gradient Approximation

The integrand in 2.32 is only a function of ρ, which is only appropriate for systems

with a slowly varying electron density, like the homogenous electron gas. A correction

of LSDA for the variation of the electron density is introduced in functionals, that also

include gradients of ρ in the integrand. Therefore, these kind of functionals are as-

signed to the General-Gradient Approximation (GGA) or are called gradient-corrected

functionals. One of the most widely used GGA functional is called Becke’s 1988 func-

tional, denoted B88. [78]

E B88
x = E LSDA

x −b


σ=α,β

 
ρσ
 4

3 χ2
σ

1+6bχσ ln

χσ+


χ2
σ+1

dr (2.34)

where χσ ≡
∇ρσ
ρσ
 4

3

(2.35)

The most used correlation functionals include the Lee-Yang-Parr correlation func-

tional (LYP) [79] and the Perdew 1986 correlation functional (P86). [80] Combinations of

different exchange and correlation functionals found their way to a wide scientific au-

dience and are known under names like BP86 (B88 + P86) and BLYP (B88 + LYP).

Hybrid Functionals

Hybrid functionals additionally introduce a term for the exact Hartree-Fock ex-

change energy E HF
x . The most popular hybrid functional is without doubt the B3LYP

functional (Becke’s 3-parameter functional). The exchange energy is formulated as a
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sum of different percentages of E LSDA
x , E HF

x , and E B88
x , while the correlation part in-

cludes E VWN
c and E LYP

c . The complete expression includes three parameters, which

were fitted to match the atomization energies of a certain set of molecules (a0 = 0.20,

ax = 0.72, ac = 0.81).

E B3LYP
xc = (1−a0 −ax)E LSDA

x +a0E HF
x +axE B88

x + (1−ac )E VWN
c +ac E LYP

c (2.36)

2.2.3. The Broken-Symmetry Formalism

In principle, multiconfigurational ab initio methods would also be suitable to calcu-

late the interactions of several paramagnetic ions, and are in fact applied on these

systems. [81] But unfortunately, the active space would be rather large, if all neces-

sary orbitals (d-orbitals of the metal ions, orbitals of the bridging ligands) were in-

cluded. Hence, the computational limitations demand a more simplified approach.

While most magnetically interesting transition metal ions are unsuited for DFT due to

their low-lying excited states, methods have been developed to give reasonable results

concerning their chemical properties. One of these methods is the Broken-Symmetry

approach proposed in the early 80s by Noodleman [82] for the treatment of magnetic

exchange interacting between interaction metal ions.

Dinuclear complexes with two spin sites SA and SB may be aligned ferromagnetically

in order to give a ferromagnetic ground state spin S = SA+SB. The Kohn-Sham method

describes this state well, since only one determinant is necessary for the construction

of the CSF. The antiferromagnetic state, however, demands multiple determinants for

a correct description. A system of two centers with each one unpaired electron, for

instance, would lead to the CSF

ΨAF = 1p
2

a1b1

− a1b1
 , (2.37)

where a1 and b1 are orbitals localized at A and B, respectively. Within DFT, such a

state cannot be represented correctly. Noodleman [82] proposed the broken-symmetry

approach, where the calculation of the antiferromagnetic state starts from orbitals ob-

tained from calculations on the ferromagnetic state. The spin coordinate of one con-

verged singly occupied MO (SOMO) η is therefore changed and taken as the starting

point:

ΨFM = (core)ηaηb
−→Ψ

guess
BS = (core)ηaηb

 . (2.38)
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It is an easy task to show, that the determinant Ψguess
BS always lies energetically above

ΨFM. Applying the variational principle on Ψguess
BS yields a more relaxed picture of the

unpaired electrons. While the broken-symmetry solution was subject of discussion in

the DFT community, regularly, results of almost quantitative agreement with exper-

imental exchange interaction parameters were reported. As stated by Neese, [83] the

strong spin contamination with


Ŝ2
 > S (S +1) is not a matter of concern, but a re-

quirement in order to obtain the correct influence of the neutral and ionic compo-

nents of the antiferromagnetic state. To obtain the correct exchange spectrum of the

magnetic species under investigation, the energies of the states ΨFM and ΨBS have to

be mapped onto the states of the spin Hamiltonian. A straightforward approach might

see both ΨHS and ΨBS as eigenfunctions of Ŝ A and ŜB and map the expectation val-

ues of the Born-Oppenheimer Hamiltonian onto the spin Hamiltonian, as suggested

by Yamaguchi et al.:


ΨBS

 ĤSpin
ΨBS

=−J


Ŝ2
BS −S A (S A +1)−SB (SB +1)


= EBS =


ΨBS

 ĤBO
ΨBS

 (2.39)


ΨFM

 ĤSpin
ΨFM

=−J


Ŝ2
FM −S A (S A +1)−SB (SB +1)


= EFM = ΨFM

 ĤBO
ΨFM


.

(2.40)

The energy difference is then:

EBS −EFM = J


Ŝ2
FM −Ŝ2

BS


, (2.41)

as shown by Yamaguchi et al. [84] The case of small subsystem interaction was already

formulated by Noodleman in his first works on the broken-symmetry formalism [82]

and may be written as:

EBS −EHS = JS2
max. (2.42)

The strong interaction limit was advocated by Ruiz et al. [85]:

EBS −EHS = J (S1S2 +S2) with S1 ≤ S2. (2.43)
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Corresponding Orbital transformation

Unfortunately, the Kohn-Sham-Orbitals obtained from the broken-symmetry DFT (BS-

DFT) calculations are very likely delocalized over a large part of the molecule and

are not of much help for the interpretation of the exchange pathway. Also, orbital-

symmetry considerations are only helpful in cases not too complicated, but lose their

practicalness for low molecular symmetry. Hence, Neese proposed the use of the

Corresponding Orbital Transformation (COT) [86] to localize magnetic orbitals of the

broken-symmetry solution. [87] COT is suited to localize the SOMOs in a way, that

gives a chemically more intuitive description. When the transformation of the BS

determinant is performed, the corresponding orbitals can be divided into three MO-

subspaces:

1. spin-orbitals with a spatial overlap close to 1, essentially containing covalent

bonds and non-bonding electron pairs

2. non-orthogonal magnetic spin-orbital pairs (orbitals responsible for the ex-

change interaction)

3. unpaired α-orbitals, when S1 > S2.

This procedure has proven to be useful in a number of cases like the theoretical treat-

ment of complexes with non-innocent ligands, [88–90] or for determining the origins of

magnetostructural correlations of different bridging motifs. [91]

2.3. Practical Aspects for Calculations on 3d and 4f

Complexes

In this work, the magnetochemistry of 3d and 4f ions is of special concern, and there-

fore, the most important aspects for quantum chemical calculations are briefly out-

lined. The energy scheme in 2.4 illustrates the applicability of different theoretical

methods for the energy spectrum with succeeding introduction of the quantum me-

chanical effects mentioned in Chapter 1 for the example of octahedral Co(II). HF and

DFT as monodeterminantal methods can only handle the ground state. HF theory, in

general, is not applied anymore due to the superior properties of density functionals

available in all standard program packages. Extensive benchmarks showed a remark-

able precision of the structural predictions for transition metal complexes already met
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Figure 2.4.: Employed methods for computational treatment of different in-
fluences on the electronic structure for the example of Co(II) in
an axially elongated Oh environment. Γ6 and Γ7 denote MS =
±1

2 respectively MS =±3
2 doublets.

by GGA-DFT methods. [92,93] Otherwise, DFT is likely to fail if a statement about the

ground state multiplicity is desired.

Excited states of all multiplicities can be accounted for with state-averaged CASSCF

(SA-CASSCF) calculations, where also results about state degeneracies are rather ac-

curate. Pierloot et al. were able to show, how the use of a second set of d-functions

for the description of the active space orbitals largely improved the performance of

CASSCF calculations for late 3d ions due to ”angular correlation“ effects. [94] Therefore,

10 d-orbitals localized at the transition metal were included in all CASSCF calculations

of this work, which is also a de facto standard in actual research. [95–97] Unlike found

in Pierloots early work, where atomic spectra were the subject of research, the s- and

p- orbitals were not included in the active space, since the s→d transitions are much

less important in complexes of the ions. For energetically close states of different mul-

tiplicities, CASSCF results have to be taken with care, since the correct order of the

states may demand the CASPT2 method for the correct treatment of dynamical corre-

lation (e.g. in Co(III) complexes [98]). For lanthanide(III) ions, a multiconfigurational

ansatz is mandatory because of the large number of low-lying states to be accounted

for. Dynamical correlation was reported not to change the picture qualitatively for lan-

thanide ions (i.e. order of states in CASSCF and CASPT2 calculations), [99] but it also

worth noting, that the sheer number of basis functions and states of real complexes

demand very large computational resources.

Scalar relativistic effects may be included in the Hamiltonian by two ma-

jor approaches used in literature, either the zeroth-order regular approximation
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(ZORA) [100–102] or the Douglas-Kroll-Hess Hamiltonian (DKH). [103] They become non-

negligible for heavy atoms (Z > 40), but may also substantially enhance the results for

lighter elements, like calculations of atomic spectra of Cu. [104] Due to the availabil-

ity in the program package MOLCAS, [105] the DKH approach was used for all calcula-

tions. The remaining relativistic effect due to spin-orbit coupling, which is necessary

to understand the non-intuitive magnetic properties of ions exhibiting this effect, is

treated by the restricted active space state interaction method with spin-orbit coupling

(RASSI-SO). [104]

As stated-above examination of cooperative effects between 3d metals, are regular-

ily treated by means of BS-DFT. It was found in several studies, that almost quanti-

tative agreement with experiment is achieved, especially if the B3LYP functional was

employed, whereas GGA functionals often heavily deviate. [85,106] Magnetic interac-

tions between 4f ions on the other hand are of much lower magnitude and contain

a significant part of dipole-dipole interactions. Because calculations on the magnetic

properties of lanthanide(III) ions are outside the abilities of BS-DFT, their interactions

with other ions in oligonuclear complexes was only investigated by simulations. The

POLY_ANISO routine developed by Chibotaru et al. [98,99,107] is able to calculate dipole-

dipole interactions between these ions from their spin-orbit functions obtained by the

RASSI-SO method. Exchange interactions of arbitrary size can be included and the

χM T curves can be compared with measured data.
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CHAPTER

THREE

DINUCLEAR METALLAMACROCYLES WITH

CARBAZOLE-BASED LIGANDS

When derivatives of 3,6-diaminocarbazole are condensated with salicylic aldehydes,

Schiff-base ligand with two bidentate binding pockets are formed. The distance be-

tween the two coordination sites and the rigidity of the carbazole backbone induce the

formation of dinuclear metallamacrocycles, when the carbazole-based ligands react

with transition metals. [108] To introduce new functionalities (e.g. optical), also anchor-

ing groups were attached to the carbazole nitrogen. [50]

To obtain new properties of the carbazole system, some results of Fischer & Neuge-

bauer were introduced into the ligand design. Besides preparing different substitution

patterns of different tert-butyl carbazoles, [109] Fischer & Neugebauer showed that the

lithium salt of 1,3,6,8-tetra-tert-butyl carbazole can be oxidized with elemental iodine

in benzene. [110] The neutral radical was shown to be stable in the solid state by recrys-

tallization from a benzene solution. EPR measurements of the radical revealed large

spin densities located at the nitrogen atom as well as at the carbon atoms at position

1 and 3. Large spin densities should result in a higher reactivity of this positions com-

pared to the other ring positions. But since positions 1, 3, 6, and 8 are protected by

bulky tert-butyl groups, the aminyl radical remains stable.

To obtain transition metal complexes based on carbazole that are possibly able to

be oxidized to aminyl radicals, tert-butyl groups are introduced at the positions next to

the hetero atom of the ring system.
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Figure 3.1.: Overview of the preparation of the ligands 4 and 5.
(a) Cu(NO3)2, AcOH, Ac2O; (b) 60 bar H2, Pd/C, EtOH,
60°C; (c) derivative of salicylic aldehyde, MeOH, reflux, 1h.

3.1. Synthesis

3.1.1. Synthesis of the Ligand

The synthesis of the ligand in 4 steps is lined out in Fig. 3.1. In the first step, 9H-

carbazole is tetra-alkylated. The procedure proposed by Neugebauer & Fischer de-

livers a mixture of all possible substitution patterns with tert-butyl groups in postion

1, 3, 6, and/or 8. [109] A procedure reported by Moskalev proved to be more effective:

the carbazole is alkylated employing tert-butyl alcohol in trifluoro acetic acid with an

almost quantitative yield of 1 and no side products. [111] 1 is then nitrated with cop-

per(II) nitrate in a mixture of glacial acetic acid and acetic acid anhydride. Under this

conditions, the intermediate nitration agent acetyl nitrate is formed, which is known to

react very selectively, but is also potentially explosive. The main product is the desired

1,8-di-tert-butyl-3,6-dinitro carbazole 2, which is easily purified by recrystallization. 2

is then reduced in a hydrogen atmosphere at 60 bar employing palladium on charcoal

as the catalyst. 3,6-Diamino-1,8-di-tert-butyl carbazole 3 is obtained in quantitative

yield by filtering off the catalyst and removing the solvent in vacuo.

The Schiff-Base ligands are generated by a condensation reaction of 3 and either

salicylic aldehyde or 3,5-di-tert-butyl salicylic aldehyde, leading to H2LH (4) or H2LtBu

(5), respectively. When methanol is used as solvent, the product can be filtered off

after refluxing the reaction mixture for one hour due to the low solubility of the ligands

in polar solvents. The ligands were characterized by 1H- and 13C-NMR spectroscopy,

mass spectrometry, elemental analysis, and IR spectroscopy.
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Figure 3.2.: Cyclic voltammetric oxidation of 1.33 mM of complex 8 using a
scan rate of 1 V/s.

3.1.2. Synthesis of the Complexes

When the ligands 4 and 5 are reacted with copper(II) acetate, cobalt(II) acetate, or

zinc(II) acetate, dinuclear metallamacrocycles of the formula [M2(L)2] are formed. Due

to the different solubilities of the ligands and the metal acetates, a mixture of methanol

and chloroform was used. When a solution of a metal(II) acetate is added to a solution

of a ligand, the complex is obtained as a microcrystalline precipitate. Slow diffusion

of a methanolic layer of the metal salt into a layer of the ligand in chloroform yielded

crystals suitable for single crystal diffraction. X-ray crystallography revealed the forma-

tion of dinuclear complexes [Cu2(LH)2] (6), [Cu2(LtBu)2] (7), [Co2(LH)2] (8), [Co2(LtBu)2]

(9), and [Zn2(LH)2] (10). All complexes were characterized by IR spectroscopy, mass

spectrometry and elemental analysis.

Unfortunately, all experiments involving the oxidation of the complexes employing

PbO2, I2, or electrochemical methods did not yield any aminyl radicals as found for

1. [109] For the chemical oxidation agents, no reaction at all was observed, while cyclic

voltammetric measurements shown in Fig. 3.2 revealed two irreversible oxidation steps

above 0.8 V. A similar behavior at this potential was already observed for salicylidene

anils, [112] and, hence, the imine group is probably oxidized before the desired oxida-

tion of the carbazole nitrogen can take place. In addition, a reversible oxidation pro-

cess is found, if the CV was recorded over a smaller potential range, that was assigned

to the oxidation of the Co(II) ions to Co(III).
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3.2. Crystal Structures

X-Ray diffraction measurements on single crystals reveal a closely related structure of

the transition metal complexes of ligands 4 and 5. All obtained complexes exhibit a

macrocyclic constitution formed by two doubly deprotonated ligand molecules and

two metal ions, as depicted in Fig. 3.3. Each coordination pocket of the ligands do-

nates one phenolate oxygen atom and one imino nitrogen atom to form a [N2O2] donor

set for each metal ion. Structural parameters of the coordination environments of the

complexes 6-10 are listed Table 3.1. Despite the similarities of the molecular struc-

tures, the complexes crystallize in different space groups. Only crystals of 6 and 9 ex-

hibit the same space group P21/c. But, however, the symmetry operations for creating

symmetrically equivalent atoms of one complex molecule (see note below Table 3.1)

reveals a different alignment of the complex molecules within the unit cell. These

symmetry operations furthermore illustrate the inversion symmetry of all complexes.

Metal-oxygen bond distances are all in the range of 190± 2pm,while metal-nitrogen

bond lengths show a larger variance. The shortest M−N bond lengths were found

for the Cu(II) complexes with ≈ 195pm. 8 exhibited a M−N bond length difference

of 4 pm with distances of 195.5 pm and 199.7 pm, whereas for 9 these bond lengths

were rather similar (198.8 pm and 198.4 pm). For the Zn(II) complex 10, the largest

M−N bond lengths of more than 200 pm are observed. The bite angles ∡O1–M–N1

and ∡O2A–M–N2A are somewhat smaller for 6 and 7 (≈ 94°), than for the other com-

plexes. Furthermore, for the Cu(II) complexes, the largest distances between the metal

and the salicylidene planes (d(M–Sal1), d(M–Sal2)) are encountered. More differences

become obvious by comparing the dihedral angle ∡Sal1/Sal2 between the salicylidene

moieties, yielding ≤ 50◦ for Cu(II), while values of ≈ 76◦ are found for the Co(II) and

Zn(II) complexes. Also, the Cu(II) ion in 6 and 7 does have a larger distance to the

salicylidene planes than in the Co(II) and Zn(II) complexes. A similar trend is found

for the dihedral angle between the carbazole moiety and the the salicylidene moieties

(∡Sal1/Carb, ∡Sal2/Carb), being a bit smaller for the Cu(II) compounds. Although the

molecular structures of all complexes are quite similar, the d9 configuration of Cu(II)

favors a square planar coordination environment (Jahn-Teller effect), while Co(II) and

Zn(II) are satisfied with a tetrahedral arrangement.

The shape of the coordination polyhedra was further characterized utilizing contin-

uous shape measures (CShM) as proposed by Avnir et al., [113] with Si values describing

the differences compared to an ideal geometry with a real value between 0 and 100. The
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3.2. Crystal Structures

Table 3.1.: Selected bond lengths [pm], bond angles [°], dihedral angles
[°] between mean planes of the salicylidene moieties (Sal1 and
Sal2)a and the carbazole body (Carb),b the tilting [°] between the
two benzene moieties (Ar1 and Ar2),c the deviation d(M–Sali )
[pm] of the metal ion and the salicylidene planes, and the CShM
parameters for the complexes 6, 7, 8, 9, and 10.

6 7 8 9 10
M Cu Cu Co Co Zn

M–O1 188.9(2) 189.1(3) 191.2(2) 189.8(2) 191.8(2)
M–O2A 190.6(2) 189.6(3) 189.8(2) 189.5(2) 190.3(2)
M–N1 194.8(2) 194.2(3) 199.4(2) 198.4(2) 202.3(2)
M–N2A 194.7(2) 195.3(3) 198.8(2) 198.8(2) 200.7(2)

O1–M–O2A 93.59(7) 99.63(12) 118.81(9) 121.87(7) 122.22(8)
O1–M–N1 94.18(8) 93.73(13) 96.24(8) 95.26(7) 96.26(8)
O1–M–N2A 149.62(8) 140.58(13) 124.27(9) 121.87(7) 122.59(8)
O2A–M–N1 143.64(8) 143.90(14) 120.20(8) 120.85(8) 119.17(8)
O2A–M–N2A 94.02(8) 94.08(13) 96.74(8) 95.41(7) 97.92(8)
N1–M–N2A 96.92(8) 96.53(13) 101.04(8) 101.69(8) 97.42(8)

∡Sal1/Sal2 47 50 77 75 76
∡Sal1/Carb 46 30 49 42 55
∡Sal2/Carb 27 36 46 62 39
∡Ar1/Ar2 5 5 3 7 4
d(M–Sal1) 47 59 1 25 0
d(M–Sal2) 62 57 20 48 16

SD4h 8.229 10.498 23.404 24.142 24.043
STd 10.263 8.018 1.931 1.993 1.882
SSS4 5.676 5.266 6.272 6.988 6.612
ΦD4h→Td [%] 47 54 82 84 83

Atoms with the suffix A were generated by the following symmetry operations:
6: −x,−y,1− z
7: 2−x,−y,1− z
8 and 9: 1−x,1− y,1− z
10: 2−x,−y,2− z

aSalicylidene mean planes are defined by the following atoms. Sal1: O1, N1, C1, C2, C3, C4,
C5, C6, and C7. Sal2: O2, N2, C20, C21, C22, C23, C24, C25, and C26.

bCarbazole mean plane is defined by the following atoms: N3, C8, C9, C10, C11, C12, C13,
C14, C15, C16, C17, C18, and C19.

cMean planes of the benzene rings of carbazole body is defined by the following atoms. Ar1:
C8, C9, C10, C11, C12, and C13. Ar2: C14, C15, C16, C17, C18, and C19.
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3. Dinuclear Metallamacrocyles with Carbazole-Based Ligands

(a) [Cu2(LH)2] ·5 CHCl3 (6) (b) [Cu2(LtBu)2]·2.75CHCl3 (7)

(c) [Co2(LH)2]·2.67CHCl3 (8) (d) [Co2(LtBu)2]·4.75CHCl3 (9)

(e) [Zn2(LH)2] ·4 CHCl3 ·2 MeOH (10)

Figure 3.3.: Molecular structure of all five carbazole-based complexes. Non-
carbon atoms are turquoise (Cu), pink (Co), yellow (Zn), red (O),
and blue (N). Thermal ellipsoids are drawn at 50% probability.
Hydrogen atoms were omitted for the sake of clarity.
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3.2. Crystal Structures

Table 3.2.: Solvent accessible voids for the crystal structures where the co-
crystallized solvent molecules could not be resolved.

Complex
Refined solvent Volume

e− Modeled
molecules per dimer of void solvent

6 5 CHCl3 – – –
7 2 CHCl3 375.1 42.7 0.75 CHCl3
8 – 408.9 155.0 2.67 CHCl3
9 2 CHCl3 546.5 160.5 2.75 CHCl3

10 4 CHCl3 +2 MeOH – – –

results are listed at the end of Table 3.1. While the transition metal in 8, 9, and 10 ex-

hibits primarily tetrahedral coordination (low STd values), the CShM results for Cu(II)

in 6 and 7 are more or less ambiguous. Si values may suggest a Seesaw (SS4) consti-

tution (cis-divacant octahedron) at first, but employing minimal distortion pathways

along with the deviation from these paths reveals for all five complexes to lie closest

to the distortion pathway from tetradehedral to square planar geometry. The angular

fractions φ(D4h → Td ) show, that the coordination polyhedra of 6 and 7 lie almost ex-

actly halfway on the transition between ideal Td and D4h symmetry. As already found

above utilizing Si values, the Co(II) and Zn(II) are closer to tetrahedral coordination.

While the crystal structures of all complexes contained co-crystallized solvent

molecules, only for 6 and 10 it was possible to completely refine their position to

a satisfactory extent. During the refinement of the solvent molecules in the crys-

tal structures 7 and 9, one CHCl3 molecule was possible to refine, whereas a part of

the electron density data had to be modeled as solvent accessible voids utilizing the

SQUEEZE/BYPASS procedure [114] (see Section 10.2 for details). For Complex 8, no sta-

ble refinement besides the electron density of the complex molecule itself was possi-

ble, and therefore, all of the co-crystallized solvent had to be modeled this way. The

amount of electrons accounted for and the number of solvent molecules modeled

therefrom are listed in Table 3.2.
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3. Dinuclear Metallamacrocyles with Carbazole-Based Ligands

Figure 3.4.: Hydrogen bonds formed by co-crystallized solvent molecules in
the crystal structures of 6. Only the asymmetric unit is depicted.
The chloroform molecules drawn with broken bonds are disor-
dered around the same position each with a fractional occupa-
tion of 0.5.

Table 3.3.: Bond lenghts [pm] and angles [°] found for the hydrogen bonds
in [Cu2(LH)2] ·5 CHCl3 (6).

D–H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) ∡(D–H· · ·A)

C1C–H· · ·O2 100 223 309.3(2) 144.0

C3C–H· · ·O2 100 220 316.7(2) 163.1

C4C–H· · ·O1 100 220 319.5(2) 170.5

Unlike the carbazole-based complexes synthesized by Spielberg, [50] π-π-stacking

does not play an important role for the packing of the complex molecules in the crystal.

Due to the bulky tert-butyl groups, preventing the aromatic moieties from ordering in

a coplanar arrangement, large voids are found between the molecules, thus, enabling

the cocrystallization of solvent molecules. For 6 and 10, the solvent molecules form hy-

drogen bonds with the phenolate-oxygen atoms. The packing diagrams can be found

in Appendix A.

In the crystal structure of 6, CHCl3 molecules are found at 3 positions, of which one

is fully occupied (CHCl3(1)), one is half occupied (CHCl3(2)), and the third one ex-

hibits a 1:1 disorder of an entire CHCl3 molecule (CHCl3(3) and CHCl3(4)). According

to the bonding parameters listed in Table 3.3, CHCl3(1) and CHCl3(3) form hydrogen

bonds to O2, while CHCl3(4) is oriented towards the oxygen atom O1. Due to the rather
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3.3. Magnetic Properties

Figure 3.5.: Hydrogen bonds formed by co-crystallized solvent molecules in
the crystal structure of 10. Only the asymmetric unit is depicted.

confusing depiction of one complex molecule of 6 with hydrogen-bound chloroform

molecules at 6 positions, only the asymmetric unit is shown in Fig. 3.4.

The structure of 10 reveals, that the methanol molecule as well as one chloroform

molecule each form hydrogen bonds to one of the phenolate-oxygen atom in the

asymmetric unit. The second CHCl3 molecule is bound to the methanol molecule

(see Fig. 3.5 and Table 3.4). The sterically demanding tert-butyl groups at the salicyli-

dene moieties of the ligand LtBu in 7 and 9 do not allow hydrogen bonds with solvent

molecules in a similar manner, and thus, are found only to underlie van-der-Waals in-

teractions with the aliphatic groups.

Table 3.4.: Bond lenghts [pm] and angles [°] found for the hydrogen bonds
in [Zn2(LH)2]·4CHCl3·2MeOH (10).

D–H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) ∡(D–H· · ·A)

O1M–H1M· · ·O1 84 192 276.2(3) 175.2

C2C–H2C· · ·O1M 100 209 304.7(3) 159.7

C1C–H1C· · ·O2 100 227 307.9(3) 136.8

3.3. Magnetic Properties

All magnetic measurements on the Cu(II) and Co(II) complexes were carried out on

powdered samples of crystalline complexes. According to elemental analysis, the
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Figure 3.6.: Thermal dependence of χM (empty boxes) and χM T (black
boxes) for 6 (left) and 7 (right). The solid lines are the simulated
values using parameters mentioned in the text.

powders of 6, 7, and 9 did not contain any residual solvents. The sample of 8 used

for magnetic measurements contained a different amount of co-crystallized solvent

compared than proposed for the crystal structure, leading to the overall formula

[Co2(LH)2] ·4 CHCl3 ·1 MeOH. But this difference could also be attributed to the mod-

eling by solvent accessible voids for the crystal structure of 8, due to the lack of any

statement about the atoms in the cavities.

Temperature-dependent susceptibility measurements were performed for 6, 7, 8,

and 9 with a static applied field of 5000 Oe in the temperature range from 2 to 300 K. In

additon, for 8 and 9, variable-field magnetization measurements from 0 to 50000 Oe in

the temperature range between 2 to 5 K were performed. Furthermore, the Co(II) com-

plexes were investigated utilizing ac SQUID susceptibility measurements. The powder

of 8 was mixed with molten paraffin, since otherwise, it aligned in the magnetic field.

3.3.1. Copper(II) Complexes

Plots of the experimental χM and χM T values for 6 and 7 are shown in Fig. 3.6. Upon

cooling from room temperature, χM T descends linearly. Below 50 K, the χM T value

drops to less than half of the r.t. value.

Ĥ = gµBH ·
2

i=1
Ŝi − J Ŝ1Ŝ2 (3.1)

For complex 6 χM T = 0.87cm3Kmol-1 was measured at room temperature, linearly de-

creasing to 0.77 cm3Kmol-1 at 30 K. The linear behavior may be attributed to diamag-
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3.3. Magnetic Properties

Figure 3.7.: Spin density plot for the broken-symmetry state of 6. The iso-
surface was drawn at 0.001 e−/Å3. The gray surface represents
α-spin density, while the black surface represents β-spin den-
sity, respectively.

netism yet unaccounted for. A further reduction of the temperature causes χM T to de-

crease to 0.40 cm3Kmol-1 at 2 K. To simulate the dinuclear system with two S = 1
2 ions,

the Hamiltonian shown in Eq. (3.1) was used. It takes into account the Zeeman interac-

tion and the isotropic exchange interaction. For the description of the diamagnetism,

the temperature-independent susceptibility term χTIP was introduced. A least-squares

fit yields the parameters geff = 2.05, J =−2.3cm-1, and χTIP = 2.76 ·10-4 cm3mol-1.

The susceptibility measurements of 7 show similar magnetic properties. In the high-

temperature regime, χM T is found to be 1.10 cm3Kmol-1. This value decreases almost

linearly to 0.92 cm3Kmol-1 at 50 K. χM T further declines to a value of 0.43 cm3Kmol-1

at 2 K. By a least-squares fit, the parameters geff = 2.19, J = −2.4cm-1, and a tempera-

ture-independent paramagnetism of χTIP = 6.6 ·10-4 cm3mol-1 were obtained.

The g -values found were slightly larger than 2.0, which is in the typical region

for Cu(II) ions. Both complexes exhibit a small antiferromagnetic exchange inter-

action, which is in agreement with similar reported complexes. [50,108] Due to the

planar arrangement of the carbazole moieties and the coordinating imino nitrogen

atoms, a spin-polarization model gives a reasonable explanation in spite of the large

intramolecular Cu · · ·Cu distances of over 1000 pm. Additional BS-DFT calculations

(B3LYP, def2-TZVP) for 6 suggest an exchange interaction parameter J of −1.5cm-1,

which perfectly well reproduces the antiferromagnetic interaction experimentally

found within the computational accuracy. The spin density plot in Fig. 3.7 illustrates

the small delocalization of spin-density along the carbazole moiety. Calculations for 7
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3. Dinuclear Metallamacrocyles with Carbazole-Based Ligands

gave similar results with a calculated coupling constant of J =−2.3cm-1
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Figure 3.8.: X-band EPR spectra for 6 (left) and 7 (right). The simulations
were done with the parameters given in the text.

Table 3.5.: g -values and hyper fine constants [G] obtained from simulations
of the EPR spectra of 6 and 7.

gx g y gz Ax Ay Az

6 2.058 2.092 2.232 9 10 45

7 2.055 2.257 23 142

EPR spectra of the Cu(II) complexes recorded with an X-band EPR spectrometer are

shown in Fig. 3.8. Complex 6 exhibits a rhombic signal, whereas 7 is found to give an

axial spectrum. While the spectrum of 6 lacks any hyper fine structures, the parallel

signal of 7 is split into 7 lines, of which one lies under the perpendicular signal. The

hyper fine structure suggests an interactions between the electron spin and the two

copper nuclei, which exhibit a nuclear spin of I = 3
2 . The EPR spectra were simulated

accounting for the Zeeman interaction and the hyper fine splitting A using Hamilto-

nian shown in Eq. (3.2) for one Cu(II) ion with the natural isotope abundance (69.17%
63Cu, 30.83% 65Cu, both I = 3

2 ). Due to the large magnitude of J found by SQUID mea-

surements, transitions between exchange coupled states cannot be observed with a

microwave energy of ≈ 0.33cm-1 as employed in X-band EPR.

Ĥ = gµB H Ŝ + AŜ · Î (3.2)

The g -values obtained have a magnitude of< 2.1 for the transversal elements and close

to 2.20 for the parallel elements (see Table 3.5), which is in the expected range for dis-

torted tetrahedral Cu(II). The hyper fine interaction for 6 does not manifest in multiple
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Figure 3.9.: Left: Thermal dependence ofχM (empty boxes) andχM T (black
boxes) for 8. The solid lines are the simulated values using pa-
rameters mentioned in the text. Right: Variable-field magneti-
zation data for 8 at different temperatures. Solid lines are simu-
lated values with the parameters mentioned in the text.

signals, but rather broadens the signals, yielding relatively small A values. For 7, the

perpendicular hyper fine constant A⊥(= Ax = Ay ) is also small, but the characteristic

splitting pattern of the parallel signal with seven maxima leads to a significantly larger

A∥(= Az) of 142 G in the simulation.

3.3.2. Cobalt(II) Complexes

The temperature-dependent susceptibilities and variable-field magnetizations for

both complexes 8 and 9 show similar behavior and are depicted in Fig. 3.9 (complex

8) and 3.10 (complex 9), respectively. EPR measurements only gave very broad signals

in both parallel and perpendicular modes.

At 300 K, 8 is found to exhibit χM T = 5.93cm3Kmol-1. χM T stays almost constant

when cooled to 100 K. Further cooling causes χM T to decrease to 5.73 cm3Kmol-1 at

50 K, and from there, to drop more steeply, reaching 3.70 cm3Kmol-1 at T = 2K. The

magnetization measurements for all temperatures show a steady increase of M with

increasing magnetic field applied. For the lowest temperature, M approximates a value

of 4.09µBNA at 50000 Oe, but has not reached saturation yet.

For complex 9, χM T = 4.67cm3Kmol-1 was measured at room temperature. This

value slightly decreases to 4.57 cm3Kmol-1 at 100 K. On further cooling, χM T steadily

drops to 2.87 cm3Kmol-1 at 2 K. Magnetization measurements at 2.0 K show a value of

M = 3.73µBNA at 50000 Oe, but also here, the magnetization is not yet saturated.
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Figure 3.10.: Left: Thermal dependence of χM (empty boxes) and χM T
(black boxes) for 9. The solid lines are the simulated values
using parameters mentioned in the text. Right: Variable-field
magnetization data for 9 at different temperatures. Solid lines
are simulated values with the parameters mentioned in the
text.

Ĥ = gµBH ·
2

i=1
Ŝi +D

2
i=1


Ŝ2

z,i −
1

3
Si (Si +1)


− J Ŝ1Ŝ2. (3.3)

The decrease of χM T for both complexes can be attributed either to an exchange

interaction between different Co(II) centers or to the zero-field splitting of individual

centers. The measured data for 8 and 9 were evaluated using full matrix diagonaliza-

tion employing the Hamiltonian Eq. (3.3). In the most cases, an anisotropic g -value

is neccessary to correctly describe Co(II) ions, but to avoid overparametrization, only

an isotropic g -tensor was assumed. A least-squares fit of the χM T for 8 data yields

geff = 2.50, |D| = 17cm-1, and an isotropic exchange interaction of J = 0.15cm-1. For

9, the parameters geff = 2.20, |D| = 18cm-1 and J = 0.10cm-1 are obtained. The sign

of the axial ZFS parameter cannot be determined from the χM T data for an S = 3
2 ion,

since no characteristic differences between simulation with ±D are expected. [115] Fits

of the magnetization measurements yielded somewhat different parameter sets. For 8

the magnetic quantities found are geff = 2.57, D =−37cm-1, and J =−0.07cm-1, while

the fits of M for 9 gave geff = 2.38, D =−38cm-1 and J =−0.08cm-1.

Dynamic Magnetic Measurements

The magnetic measurements of the dynamic behavior were performed with oscillating

magnetic fields of 1 Oe magnitude and frequencies between 10 Hz and 1143 Hz. The in-
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Figure 3.11.: Plots of the ac SQUID data for complex 8 with zero applied
static field at different frequencies of the oscillating field. Mea-
sured data (symbols) and simulated values with the parame-
ters mentioned in the text (solid lines). Left: Real part χ′M .
Right: Imaginary part χ′′M .

phase signal χ′M and the out-of-phase signal χ′′M of the susceptibility were measured in

the temperature range from 2 to 10 K in steps of 0.5 K.

The ac SQUID data measured for complex 8 with zero applied static field is shown

in Fig. 3.11. For frequencies of 10 Hz and higher, χ′′M exhibit a clear maxima. At 10 Hz,

the maximum is found at ca. 3.5 K, and is shifted to 5.5 K at a frequency of 1143 Hz.

The temperature dependence of the maximum of χ′′M indicates a thermal relaxation

process.

χ(ω) =χS + χ0 −χS

1+ (iωτc)1−α (3.4)

The dynamic behavior of the susceptibility was treated with Eq. (3.4). A least-square

fit of the complex function delivers a set of parameters for each temperature, including

the adiabatic susceptibility χS, the isothermal susceptibility χ0, the relaxation time τc ,

and the distribution width α. The quality of these parameters can be visualized with

Cole-Cole-plots (plot of χ′′M vs. χ′M ), where the values for each temperature should lie

on a (stretched of compressed) half-circle (see Fig. 3.12, left). Assuming a relaxation

process of first order, a linear fit of the ln(τc ) vs. 1
T plot is feasible (Fig. 3.12, right).

From the fit, a thermal relaxation barrier Ueff = 53K was obtained. Application of a

static dc field did not yield significantly different barrier heights. Unfortunately, several

later experiments trying to reproduce the dynamic magnetic properties failed. Those

samples contained considerably less solvent molecules according to their elemental
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Figure 3.12.: Left: Cole-Cole-plot of imaginary susceptibility χ′′M vs. the real
susceptibility χ′M for 8. The lines are simulated values with
the parameters obtained by the fit of the complex function 3.4.
Right: Arrhenius plot of τc values vs. 1/T for 8 with the error
bars at each temperature. The red line is the linear regression
function to obtain Ueff. The values depicted by red squares
were omitted in the fit.

analysis. Thus, co-crystallized solvent molecules seem to be crucial in order to main-

tain the structure found to exhibit slow magnetic relaxation with zero applied field.

Nevertheless, this also suggests, that the Co(II) ion, given the right coordination ge-

ometry, is able to show slow magnetic relaxation in a [N2O2] environment. This donor

set is rather common and easily accessible within the family of Schiff-bases of salicylic

aldehydes. Furthermore, the very small exchange interaction indicates a mononuclear

nature of this phenomenon.

For complex 9, no out-of-phase susceptibility with zero applied field was observed.

However, with an applied magnetic field of 400 Oe magnitude, complex 9 exhibited

features of slow magnetic relaxation, e.g. maxima of the imaginary susceptibility, as

shown in Fig. 3.13. For the lowest frequency of 10 Hz, the maximum is found at 3.0 K,

and is shifted to 4.5 K for 1143 Hz. This again suggests a thermal relaxation process.

The plots for all frequencies show increasing χ′′M values at lower temperatures, possi-

bly indicating additional relaxation processes below 2.0 K. Fits of the complex function

Eq. (3.4) gave all parameters to obtain Cole-Cole-plots (Fig. 3.14, left) as well as lin-

ear fits of the relaxation dynamics (Fig. 3.14, right), which yielded a relaxation barrier

height Ueff = 52K. A larger magnitude of the dc field of 1000 Oe does not induce a larger

relaxation barrier height.

Since the two complexes exhibited rather similar coordination parameters in the

crystal structures, also a closely related magnetic behavior had to be expected. The
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Figure 3.13.: Real and imaginary susceptibility of 9 with an applied mag-
netic field of 400 Oe

dc field measurements revealed, that the ZFS parameters of 8 and 9 was practically the

same. The ac SQUID measurements did in fact yield SMM behavior for both complexes

with comparable barrier heights Ueff of 53 and 52 K, but the absence of an out-of-phase

susceptibility for 9 at zero external field seems rather random, since their coordination

geometry is very similar. Due to the independence of Ueff from the magnitude of the

external magnetic field, an Orbach process explains best the dynamic magnetic prop-

erties, since for a thermally-assisted quantum tunneling (TAQT) process, the lifting of

the degeneracy of the excited KD would heavily affect the relaxation dynamics, or even

prevent them completely. Absence of an χ′′M -signal for 9 at zero external field may

be caused by tunneling processes within the ground state KD, which is investigated

further in Chapter 4 by theoretical methods. Furthermore, this illustrates the large in-

fluence of small changes in the coordination environment on the magnetization relax-

ation processes.

SMM behavior of Co(II) ions was previously mainly described for octahedral and

square pyramidal coordination environments. The first reported zero-field SMM, how-

ever, had a tetrahedral surrounding of the Co(II) ion by four thiophenolate anions.

Here, another promising coordination geometry was found to enable SMM behavior

for Co(II) ions. Thus, more known and unknown complexes with tetrahedral [N2O2]

donor sets were prepared by our workgroup and investigated for their magnetic be-

havior. Theoretical investigations on some of the examples exhibiting SMM behavior

were performed and are presented in the following chapter.
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Figure 3.14.: Left: Cole-Cole-plot of imaginary susceptibility χ′′M vs. the real
susceptibility χ′M for 9. The lines are simulated values with
the parameters obtained by the fit of the complex function 3.4.
Right: Arrhenius plot of τc values vs. 1/T for 9 with the error
bars at each temperature. The red line is the linear regression
function to obtain Ueff. The values depicted by red squares
were omitted in the fit.
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CHAPTER

FOUR

ELECTRONIC STRUCTURE OF TETRAHEDRAL COBALT(II)

SMMS

Co(II) complexes may be obtained with coordination numbers between two and

eight, [116] and, depending on the exact coordination environment, are able to exhibit

a low-spin or high-spin ground state. Most commonly encountered are the coordi-

nation numbers four (tetrahedral, square-planar), five (trigonal-bipyramidal, square-

pyramidal), and six (octahedral, rarely trigonal-prismatic). [117,118] Octahedral Co(II)

may exhibit high-spin or a low-spin ground state, depending on the nature of the

ligand field. From the d7 Tanabe-Sugano diagram shown in Fig. 4.1, it can be seen,

that for weaker ligand fields an orbitally threefold degenerate 4T1g ground term is

present, while stronger ligand fields induce a 2Eg ground term. For complexes with

a ligand field close to this ground term transition, the spin-crossover phenomenon is

regularly encountered, as reported for terpyridinone and terpyridinone complexes of

Co(II). [47,119,120] Fivefold coordinated Co(II) may exhibit square-pyramidal or trigonal-

bipyramidal geometry, and, due to the intermediate ligand-field splitting, low- and

high-spin complexes are possible. [121] Fourfold coordination leads to two important

geometries for Co(II): tetrahedral, which is mostly encountered and only enables a

high-spin ground state, and square-planar, causing low-spin compounds in all re-

ported cases. [117,121] For the slow magnetic relaxation phenomenon, only the d7 high-

spin ground state is of interest.

The first reported Co(II) compound with SMM behavior was, similar to other tran-

sition metals, a polynuclear complex, namely [Co4(hmp)4(MeOH)4Cl4]*, exhibiting

*hmp– is the anion of hydroxymethylpyridine.
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

Figure 4.1.: Tanabe-Sugano diagram for the d7 configuration in an octahe-
dral coordination environment. The vertical line marks the lig-
and field strength, where the ground state changes. Dashed
lines designate terms of different multiplicity than the ground
term.

hysteris of magnetization. [122] In the following years, mostly oligonuclear complexes

with primarily octahedral coordination environments were published. [123] Though it

was not recognized in the literature, the first mononuclear SMM involving trigonal-

bipyramidal Co(II) (and at that time, also the first mononuclear transition metal SMM

in general) was reported by Boča et al. [124] A tetrahedral complex, that also demon-

strated the interplay with theory, [125] was reported by Zadrozny et al., [126] and showed

a relaxation barrier of 70 K without an applied dc field. Large relaxation barriers were

also achieved with heterospin systems involving diazo-substituted ligands, that were

irradiated to afford stable carbenes at low temperatures. [127,128]

In theory, high-performing SMMs are obtained, when a large ZFS interplays with

a strong axiality of the g -tensor, effectively inhibiting tunneling processes. However,

even if the molecular structure is known, predicting D and E is not a straight-forward

task. [115] In the last years, several investigations of ZFS in Co(II) addressed the ratio-

nalization of certain cases and its correlation with structural parameters. [129–133] Two

of these studies examine tetrahedral Co(II) complexes, but, unfortunately, only inves-

tigate Co(II) complexes with moderate ZFS of |D| < 10cm-1. The Co(II) complexes

described in Chapter 3 and those reported by Buchholz et al., [51] however, exhibit
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4.1. [N2O2] Coordinated Cobalt(II) Complexes

tetrahedral [N2O2] donor environments, which are able to easily generate values of

D ≈ −30cm-1. Thus, also taking a closer look at recently synthesized complexes with

SMM behavior, ab initio calculations were performed, to obtain new insights on the

electronic structure of Co(II) in tetrahedral [N2O2] environments and possibly new in-

spirations for the design of new high-performing SMMs. Unfortunately, the theoretical

description of Co(II) is rather complicated, due to the strong intrinsic spin-orbit cou-

pling. Here, the multiconfigurational CASSCF/CASPT2/RASSI methodology was em-

ployed.

4.1. [N2O2] Coordinated Cobalt(II) Complexes

The tetrahedral Co(II) complexes under investigation are listed in Table 4.1. Complexes

8 and 9 were described earlier in Chapter 3. 11, 12, 13, and 14 were prepared by Ziegen-

balg during his diploma thesis [52] and show slow magnetic relaxation under applied

magnetic field. Furthermore, if oxygen is present, the oxidized Co(III) ion may be octa-

hedrally coordinated by ligands with suitable substituents. Ziegenbalg also found, that

symmetric condensates of 1,4-diaminobutane and salicylic aldehydes mainly form oc-

tahedral complexes of Co(III) preferably in dinuclear aggregates. Only in the case of 14,

a distorted tetrahedral coordination was observed. Moreover, the mononuclear Co(II)

SMMs 15 and 16 containing imidazole-based ligands were included. [51] To confirm the

correct prediction of the ground state, four square-planar complexes listed in Table 4.2

were included in the set of calculated complexes. Complex 17 was also prepared by

Ziegenbalg, [52] whereas 18, 19, and 20 were reported elsewhere. [134–136]

A search in the Cambridge Structure Database (CSD) using the substructure shown

in Fig. 4.2 (left) features the distribution of the distance r (Co-X) with respect to the

angle δ† depicted in the scatter plot in Fig. 4.2 (right). The vast majority of reported

complexes exhibits values of either δ < 15◦ (square-planar) or δ > 65◦ (tetrahedral).

Furthermore, Fig. 4.2 shows shorter Co–O and Co–N bond lengths for the square-

planar complexes than found in tetrahedral ones, representing their different ground

state multiplicities (low-spin for square-planar, high-spin for tetrahedral coordina-

tion). Four data sets, however, lie in the range between. For none of them, mea-

surements for determining the ground state multiplicity are available. The two sets at

20.8 and 22.4° are values from two non-equivalent molecules of the same crystal struc-

ture [137] with essentially distorted square-planar geometry, that most probably leads

†δ is defined as the angle between the planes containing the atoms (Co, N1, O1) and (Co, N2, O2).
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

Table 4.1.: Tetrahedral Co(II) complexes investigated concerning their pos-
sible SMM behavior.

Complex HnLa Constitution Ueff [K] D [cm-1] δ [◦]

8

H
N

N

t-But-Bu

N

OH HO

Co2L2 53 (0 Oe) −37 78.7

9

H
N

N

t-But-Bu

N

OH HO

t-Bu

t-Bu t-Bu

t-Bu

Co2L2 52 (400 Oe) −38 80.6

11 NH

O

CoL2 61 (400 Oe) −40 64.8

12 NH

O

Br

CoL2 51 (400 Oe) −37 85.6

13 NH

O

Cl

CoL2 56 (400 Oe) −24 85.0

14
NN

OH HO

t-Bu

t-But-Bu

t-Bu

CoL tunneling −46 71.4

15
N

H
N

HO

Ph

Ph

CoL2 89 (400 Oe) −41 72.6

16
N

H
N

HO

Ph

Ph

NO2

CoL2 – −35 74.9

an corresponds to the number of acidic protons shown in the structure.
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4.1. [N2O2] Coordinated Cobalt(II) Complexes

Table 4.2.: Square-planar Co(II) complexes investigated concerning their
possible SMM behavior.

Complex HnLa Constitution δ [◦]

17
O

NH

i-Pr i-Pr

CoL2 3.7

18
OHN

Ph

CoL2 0.0

19 NN

OH HO

CoL 10.9

20 NN

OH HO t-Bu

t-But-Bu

t-Bu

CoL 9.8

an corresponds to the number of acidic protons shown in the structure.
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Figure 4.2.: Structural motif employed for the CSD search and scatter plot of
the bond lengths in reported complexes with respect to δ.
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

(a) 13 (b) 14

Figure 4.3.: Employed structures for two of the calculated Co(II) complexes
with the designated orientation of the easy-axis of magnetiza-
tion.

to a low-spin ground state, as suggested by the bond lengths below 1.9 Å. For the data

sets found at δ= 34.3◦ [138] and 48.2°, [139] the bond distances point towards a high-spin

ground state. The corresponding values of δ for the investigated complexes, which are

listed in Tables 4.1 and 4.2, confirm, that all of them belong to one of the aforemen-

tioned groups.

For all investigated complexes, a quartet ground state is suggested by the CASSCF

calculations (energies listed in Tables D.1 and D.3). The quartet-doublet gap EQ-D =
ED−EQ is found to be at least 14000 cm-1 for the tetrahedral complexes, (ED and EQ are

the energies of the lowest doublet and quartet states, respectively). The square-planar

complexes, however, exhibit a substantially smaller EQ-D between 2300 and 3700 cm-1.

Introducing dynamic correlation via CASPT2 does not change the picture for the tetra-

hedral complexes, since the quartet-doublet gap is lowered by only 2000-3000 cm-1.

The lowest quartet state shows an energy separation between 1700 and 2500 cm-1 to

the first excited quartet state and may be interpreted as the A2 ground term. For

the square-planar complexes, on the other side, the ground state multiplicity changes

upon the introduction of dynamic correlation, reproducing the experimentally found

ground state. Thus, it is shown, that the use of CASPT2 is essential to obtain the cor-

rect ground state for Co(II) complexes. In order to obtain slow magnetic relaxation

behavior, an S = 1
2 ion is not desired, and, hence, complexes 17-20 were not further

investigated concerning spin-orbit interaction.

To further analyze the electronic structure behavior of the tetrahedral Co(II) com-
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4.1. [N2O2] Coordinated Cobalt(II) Complexes

Table 4.3.: Angular fraction of minimal distortion pathway between D4h and
Td symmetry, calculated ZFS parameter, energy barrier between
the two lowest KDs, and main values of the g -tensors for 8, 9, and
11-16.

ΦSP4→T4 δ D |E | Ueff KD g1 g2 g3[%] [◦] [cm-1] [cm-1] [K]

8 82.0 78.7 -28 1 82
1 0.3068 0.3301 7.4576
2 2.5056 3.9937 4.5751

9 83.6 80.6 -30 0 88
1 0.0885 0.0914 7.5101
2 2.5347 4.1984 4.3587

11 65.6 64.8 -35 4 104
1 0.6501 0.7703 7.6893
2 2.5691 3.6526 4.8057

12 86.7 85.6 -27 0 77
1 0.0248 0.0284 7.4644
2 2.5255 4.2626 4.3110

13 86.0 85.0 -26 0 75
1 0.0108 0.0140 7.4441
2 2.5181 4.2751 4.3035

14 73.2 71.4 -30 3 87
1 0.6106 0.7045 7.4554
2 2.4710 3.6715 4.8051

15 73.7 72.6 -37 3 108
1 0.4105 0.4551 7.8085
2 2.6588 3.9209 4.6093

16 76.5 74.9 -36 1 102
1 0.1613 0.1660 7.7728
2 2.6567 4.1720 4.4025
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

plexes, the spin-orbit states were calculated utilizing the RASSI-SO procedure in com-

bination with the SINGLE_ANISO routine for the calculation of the ZFS parameters.

The calculated ZFS parameters D and E , the theoretical spin reversal barrier Ueff as

well as the g -values of the two lowest KDs of 8, 9, and 11-16 are listed in Table 4.3. In

addition, the angular fraction ΦSP4→T4 along the minimal distortion pathway (see Ap-

pendix C) and the angle δ are listed in Table 4.3. The remarkable similarities between

the numerical values of ΦSP4→T4 and δ are more or less coincidental. The theoreti-

cal value of D was found between −28 and −40cm-1, while the rhombic parameter

E lies between 0 and 5 cm-1. This is in good agreement with the experimental D val-

ues, that were all in the range between −35 and −41cm-1, with the largest deviation

(10 cm-1) was found for 12. Orientations of the easy-axis of magnetization are approx-

imately the same for all complexes and approximately run through the centers of both

binding pockets. 13 and 14 are depicted exemplarily for all tetrahedral complexes in

Fig. 4.3. Due to the small variance of the experimental D values, a comparison with

the theoretical ones proves difficult. It is worth noting, that the magnitude of the ZFS

obtained from least-squares fits of the magnetization is very sensitive to the utilized

model Hamiltonian and small fractions of impurities. Furthermore, the rhombic pa-

rameter E was not included in the least-squares fits to avoid overparametrization.

All complexes close to ideal tetrahedral coordination (ΦSP4→T4 > 80%) exhibit calcu-

lated relaxation barriers between 77 and 88 K, whereas the more heavily distorted com-

plexes reach a maximal value of 118 K (11). The only exception is found for complex 14,

where only Ueff = 87K is predicted despite the second strongest distortion of the tetra-

hedral environment. This complex, however, shows also a large deviation from ligand

mean planes of about 30pm between the Co(II) ion and the ligand planes. In general,

Ueff is overestimated by about 20-25% compared to experiment. A look at the axiality of

the g -tensor provides also a correlation with the degree of distortion. Small transversal

elements (g < 0.1) are found only for complexes with mainly tetrahedral geometries,

which, in theory, should prevent QTM. Despite having the most pronounced axiality,

none of the complexes 9, 12, or 13 shows slow magnetic relaxation without applied

dc field in the experiment. Furthermore, there is no obvious correlation between the

size of the transversal g -elements and the magnitude of deviation from experimental

Ueff-values. Nevertheless, with an applied dc field, considerable spin reversal barrier

heights were found for all complexes, but surprisingly not for two of the more strongly

distorted complexes, namely 14 and 16. The two other remaining complexes 11 and

15 withΦSP4→T4 < 80% on the other hand exhibit the highest measured relaxation bar-

60



4.2. Systematic Calculations on the Distortion of Tetrahedral Cobalt(II)

riers. Unfortunately, both the experimental findings of the complete absence of SMM

behavior for 16 as well as the slow magnetic relaxation with zero applied field for 8

cannot be explained by results from the ab initio calculations performed.

Although the exact prediction concerning slow magnetic relaxation behavior is not

possible with the CASPT2/RASSI-SO results, trends concerning the ZFS are well repro-

duced. Thus, a systematic investigation on the effect of the distortion angle δ was per-

formed. The dynamic properties of SMMs have already been investigated employing

transition dipole moments between the SO states, [98] but until recently, the calculation

of this quantities was not yet implemented in the SINGLE_ANISO module. [140]

4.2. Systematic Calculations on the Distortion of

Tetrahedral Cobalt(II)

As seen above, the more distorted tetrahedral Co(II) complexes tended to show larger

magnitudes of ZFS and spin reversal barriers. To obtain better performing SMMs, it

might be helpful to systematically examine the influence of the distortion on the elec-

tronic properties. Therefore, the dependency of the energy spectrum of Co(II) from

the distortion angle δ is further investigated. Due to the lack of experimental struc-

tures for the whole range of angles, model structures had to be utilized. The possible

coordination modes of complexes with the substructure shown in Fig. 4.2 are depicted

in Fig. 4.4. Square-planar coordination may be obtained by two bidentate ligands with

large sterical hindrance, as found for 17 and 18, or with a tetradentate ligands involving

a diamine with a small distance between the imino nitrogens, as in 19 and 20. Due to

sterical reasons, the bidentate ligands show a trans-coordination, while the tetraden-

tate ligands exhibit cis-coordination. Since most of the tetrahedral complexes do also

Co

ONR

O N R

Co

O N R

O N R

Co

O N R

O N R

cis-square-planar tetrahedral trans-square-planar

Figure 4.4.: Coordination modes of two Schiff-base ligands and Co(II).
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

(a) Position of the ghost atom X used for
the generation of the transition geome-
tries.

(b) Transition structures of the
model complex.

Figure 4.5.: Model complex used for the investigation of δ on the ground
state properties of Co(II).

contain two bidentate ligand molecules, only the transition between tetrahedral and

trans-square-planar coordination can be investigated without larger problems. Gen-

erating the transition structures between tetrahedral and cis-square-planar geome-

try would encounter difficulties, since the aniline moieties will inevitably come closer

than their van-der-Waals radii.

The model ligand chosen for the subsequent investigations was the Schiff base of

salicylic aldehyde and methylamine, a sub structure encountered practically in all pre-

viously mentioned Co(II) SMM candidates, except for the aliphatic nature of the N -

substituent. Preliminary CASPT2 calculations on the model complex CoL2 constructed

from the optimized model complexes faced the problem of not predicting a low-spin

ground state, even for the square-planar geometries. Furthermore, the structures with

varying δ generated from a truncated experimental structure of a high-spin complex

gave similar results. Hence, the crystal structure of a square-planar complex 17 was

taken in order to obtain structures for the entire range between square-planar and

tetrahedral coordination.

The structures with 0◦ ≤ δ≤ 90◦ in steps of 5° were then constructed with the bond-

orientated manipulation tool implemented in the program AVOGADRO. [141] The rota-

tion axis of the salicylidene moiety containing O2 and N2 (Fig. 4.5a, right ligand) was

chosen to be the connection CoX, where X was placed at the perpendicular intersec-

tion from Co onto the connecting line N1 O1, as shown in Fig. 4.5a. This led to the tran-

sition structures shown in Fig. 4.5b, that were used for the subsequent calculations.

The energy differences EQ-D between the lowest quartet and doublet states obtained
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Figure 4.6.: Plots of EQ-D, state weights, and ZFS parameters for the model
complex with respect to δ.
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4. Electronic Structure of Tetrahedral Cobalt(II) SMMs

by both the CASSCF and CASPT2 methods are depicted in Fig. 4.6a. Both methods

show an almost linear increase of EQ-D with increasing δ for δ ≥ 20◦. The CASSCF re-

sults suggest a quartet ground state for all angles, whereas CASPT2 predicts a change of

the ground-state below δ< 20◦. The difference between quartet-doublet gaps EQ-D ob-

tained from CASSCF and CASPT2 calculations remains almost constant over the whole

range of δ. RASSI-SO calculations were performed using the CASPT2 energies. The

composition of the SO ground state concerning both the lowest two quartet and dou-

blet states is depicted in Fig. 4.6b. Above δ= 50◦, the state weight of the lowest quartet

function is found to be at least 0.9. For lower angles δ, a stronger mixing of the two

lowest quartet functions is observed, reaching almost a 1:1 ratio at δ= 20◦. Correlating

with the small degree of mixing of the quartet states, the ZFS parameters D and E (the

absolute value |E | was plotted, respectively) are relatively constant (D ≈−30cm-1 and

|E | close to zero) between δ= 70◦ and 90°. A larger distance to tetrahedral coordination

leads to larger negative values for D , reaching almost −100cm-1 at δ= 25◦, while |E | in-

creases to 13 cm-1. At the angle of 20°, a positive D is predicted. Even more obvious is

the increase of the rhombicity
 E

D

, that experiences a constant increase below δ= 60◦.

So what exactly do these results mean for the desired structure of Co(II) SMMs? As

already observed for complexes investigated in Section 4.1, a stronger deviation from

ideal tetrahedral coordination up to δ= 60◦ only offers D-values of maximal −40cm-1,

corresponding to 115 K. Getting closer to square-planar coordination lets the rhom-

bicity increase, and, hence, may be counterproductive for slow magnetic relaxation

behavior due to opening of tunneling pathways. Contrary to this assumption, large

rhombicities did not suppress SMM behavior for the strongly distorted complexes 11

and 16, still leaving hope for a possible increase due to suitable ligands. Especially

complexes in the range of δ ≤ 60◦ were not yet reported, probably demanding new

ideas for the ligand design.
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FIVE

LINEAR COBALT(II) COMPLEXES

Within coordination chemistry, linear geometry is rarely observed, however, more or

less well-known examples are the silver(I) complexes [Ag(NH3)2]+ and [Ag(S2O3)2]3–,

encountered already by undergraduate students in practical courses of general/inor-

ganic chemistry. Otherwise, only few examples found their way into standard text-

books, [121] suggesting that linear coordination is primarily promoted by a d10 configu-

ration. By the right choice of ligands, however, a considerable number of stable linear

complexes with d1–d9 configuration has been synthesized and characterized. [142]

Recently, a series of Fe(II) complexes [143] with linear coordination was discovered

to show slow magnetic relaxation. Furthermore, in 2013, the linear Fe(I) complex

[K(crypt−222)][Fe(C(SiMe3)3)2] was found to be a very potent SMM exhibiting a re-

laxation barrier of Ueff = 325K, [53] a magnitude priorly unheard of for transition metal

complexes. The origins for the outstanding performance were investigated by mul-

ticonfigurational calculations employing the CASSCF/NEVPT2/QDPT protocol as im-

plemented in ORCA. [144] It was found, that the weak ligand field generated by the linear

coordination leads to an almost unquenched orbital momentum for the d7 configu-

ration. Hence, the almost degenerate lowest quartet states are then split heavily by

spin-orbit coupling.

Although some (bent) linear Co(II) complexes have been reported during the last

three decades, [45,145–151] no dynamic susceptibility measurements were performed to

examine their SMM behavior. Encouraged by the good agreement of the calculations

with respect to the experimental data for the Fe(I) complex anion, it should be pos-

sible to predict the magnetic properties of linear Co(II) complexes respectively. For

comparison, the spin-orbit energies of [Fe(C(SiMe3)3)2]– were also calculated with the
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Figure 5.1.: Molecular structure of the anion of the complex
[K(crypt−222)][Fe(C(SiMe3)3)2] [53] (green: Fe, black: C, or-
ange: Si). Hydrogen atoms were omitted for clarity.

CASSCF/CASPT2/RASSI protocol, yielding very similar results to those reported by

Zadrozny et al. [53] Therefore, a set of two-coordinate Co(II) with a variety of donor

atoms was chosen for spin-orbit calculations. While the electronic states of linear com-

plexes are often discussed in terms of ligand field theory employing D∞h symmetry

(e.g. in [145,146,149]), the existing literature remains inconsistent concerning the ground

state in ideally symmetric d7 complexes. Therefore, at first, a closer look at the simple

molecule CoCl2 was taken.

5.1. Energy Spectrum of CoCl2

For a simplified explanation of the electronic structure for linear Co(II) complexes, the

molecule CoCl2 will be discussed. Though the complexes investigated later do not

obey D∞h symmetry, CoCl2 will be studied within this point group. Since this point

group is scarcely encountered, its character table is listed in Table 5.1. The electronic

spectra of this molecule were measured at high temperatures in the gas phase [152,153]

and were interpreted by different researchers within the frameworks of ligand field the-

ory [152–154] and angular overlap model. [155,156] Upon the application of a linear ligand

field, the d-functions split into three sets, according to the character table: σ+
g (dz2 ), πg

(dxz , dy z), and δg (dx y , dx2−y2 ) (depicted in Fig. 5.2). Neglecting interelectronic repul-

sion, the expected energies for these orbitals would be in the order δg < πg < σ+
g . For
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5.1. Energy Spectrum of CoCl2

Table 5.1.: Character table of the point group D∞h .

D∞h E 2CΦ∞ ·· · ∞σv i 2SΦ∞ ·· · ∞C2

Σ+
g 1 1 · · · 1 1 1 · · · 1 x2 + y2,z2

Σ−
g 1 1 · · · −1 1 1 · · · −1 Rz

Πg 2 2cosΦ · · · 0 2 −2cosΦ · · · 0 (Rx ,Ry ) (xz, y z)
Δg 2 2cos2Φ · · · 0 2 2cos2Φ · · · 0 (x2 − y2, x y)
Φg 2 2cos3Φ · · · 0 2 −2cos3Φ · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Σ+

u 1 1 · · · 1 −1 −1 · · · −1 z
Σ−

u 1 1 · · · −1 −1 −1 · · · 1
Πu 2 2cosΦ · · · 0 −2 2cosΦ · · · 0 (x, y)
Δu 2 2cos2Φ · · · 0 −2 −2cos2Φ · · · 0
Φu 2 2cos3Φ · · · 0 −2 2cos3Φ · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

σ+
g

πg

δg

Figure 5.2.: Average Natural Orbitals of the active space of the CoCl2
molecule. The nomenclature implies D∞h symmetry.
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Table 5.2.: State energies [cm-1] and natural orbital poulations of CoCl2 in
terms of ligand field terms arising from the free ion 4F term.

State CASSCF CASPT2 Population of NOs
energy energy σ+

g πg δg

4Φg 0 0
1.00 1.50 1.50 1.50 1.50
1.00 1.50 1.50 1.50 1.50

4∆g 307 917
2.00 1.00 1.00 2.00 1.00
2.00 1.00 1.00 1.00 2.00

4Σ−
g 1693 1644 1.00 1.57 1.57 1.43 1.43

4Πg 1659 1807
1.00 1.36 1.64 1.64 1.36
1.00 1.64 1.36 1.64 1.36

handling a d7 configuration, however, this zeroth order approximation is not helpful.

The free Co(II) ion possesses a 4F ground term, that is split into the ligand field states

Φg (ML = 3), ∆g (ML = 2),Πg (ML = 1), and Σ−
g (ML = 0).

First ligand field investigations suggested a Σ−
g ground state with a very low lying

first excited Φg state, [152] while in later works by DeKock et al., [153] a Πg ground state

is proposed employing the angular overlap model. Furthermore, Smith suggested a

Φg ground state. [155] Introducing a parameter for the bonding nature, Lever et al. [156]

stated a dependence of the ground state upon the nature of bonding. With increasing

π-bonding fractions, the ground states Σ−
g → Φg → ∆g may arise. Further complica-

tion of the electronic situation may be expected by the possibility of the mixing of the

4s and 3dz2 orbitals due to their similar symmetry race in D∞h. In 1998, Schwarz et

al. reported DFT calculations on CoCl2 and deduced a Σ−
g ground state from the or-

bital energies, admitting the possible deficiencies of the method regarding multide-

terminantial wave functions. [157] All Co(II) halides CoF2, CoCl2, CoBr2, and CoI2 have

been investigated by Sliznev et al. with CASSCF/MCQDPT2 calculations, [158] predict-

ing a ∆g ground state for all species, which would only agree with earlier results from

Lever et al. [156] for the case of large π-bonding fractions. Furthermore, Sliznev et al.

used rather small basis sets for the ligand atoms for this calculations and neglected

the double-d-shell effect proposed by Pierloot [94] (five 3d- and one 4s-orbital in active

space).

Due to this contradicting statements in the literature, CASSCF/CASPT2 calculation

on CoCl2 were performed. The experimental structure parameters from literature were
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5.2. Potential Linear Cobalt(II) SMM Candidates

used (r (Co−Cl) = 211.3 pm, ∡(Cl−Co−Cl) = 180◦). [159] Deviating from the usual proto-

col, the ANO-RCC-VQZP basis set was employed for all atoms. The chosen CAS con-

sisted of the 3d and 4d orbitals of the cobalt atom. As predicted above, the 4s orbital

mixes into the σ+
g orbital, but with a rather small coefficient (c = 0.18). This clearly il-

lustrates, how linear systems reach the boundaries of ligand field theory. Inclusion of

an additional s-type orbital into the active space resulted in a diffuse active orbital, that

had a natural population of 0.0008, and therefore does not give a meaningful increase

of accuracy.

The state energies obtained from the CASSCF and CASPT2 calculations are listed in

Table 5.2. While the CASSCF method yields a small energy gap of 307 cm-1 between the
4Φg ground state and the excited 4∆g state, CASPT2 calculations show a moderate sep-

aration of 917 cm-1. The order of the higher states arising from the 4F term (4Σ−
g and

4Πg ) switches upon the introduction of dynamic correlation. Due to the twofold de-

generacy and the large orbital momentum of the 4Φg state (ML = 3), strong spin-orbit

coupling is observed and causes the |Ω〉 states* to split heavily. RASSI-SO calculations

show a complex mixing of the quartet states, producing the spectrum of spin-orbit

states depicted in Fig. 5.3. The ground state is characterized by a large Ω=±9
2 and an

energetic separation of 295 cm-1 from the first excited SO state. This might be a good

indication of the suitability of a linear coordination environment for the preparation

of new SMMs with relaxation barriers well above the known Ueff values for Co(II) com-

plexes.

5.2. Potential Linear Cobalt(II) SMM Candidates

Seven reported complexes were chosen from the literature. To obtain a comprehensive

picture, the set of calculated complexes contained a large variety of donor environ-

ments: Co(Ar1)2
† (21), [148] (Ar1)CoN(SiMe3)2 (22), [148] Co(NHAr2)2

‡ (23), Co(NHAr3)2
§

(24), [149], Co(OAr2)2 (25), Co(OAr1)2 (26), [151] and Co(SAr3)2 (27). [147] The structures

are depicted in Fig. 5.4. Structural parameters of the coordination environment of the

Co(II) ion are summarized in Table 5.3. The molecular structures were truncated to a

reasonable size by substituting moieties distant to the coordination environment by

hydrogen atoms. Complexes 23 and 24 involve amide ligands with a hydrogen atom

*The angular momentum for linear molecules is denoted with the quantum numberΩ instead of J .
†Ar1 = C6H3-2,6-(C6H3-2,6-iPr2)2
‡Ar2 = C6H3-2,6-(C6H2-2,4-6-Me3)2
§Ar3 = C6H3-2,6-(C6H2-2,4-6-iPr3)2
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4F

4Πg

4Σg
-

4Δg

4Φg

±9/2

±7/2

±5/2

±7/2
±5/2
±1/2

±3/2

±3/2

±1/2
±3/2

±5/2

±1/2

±3/2
±1/2

Ω

Ligand

 Field SOC

3
33

0 
cm

-1

Figure 5.3.: Correlation diagram of the 4F state under the influence of a lin-
ear ligand field and subsequent spin-orbit coupling. The rela-
tive energies resemble the real ratio as taken from the CASPT2
results.
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Figure 5.4.: Investigated two-coordinated cobalt(II) complexes.
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bound to the coordinating nitrogen. Therefore, the influence of the position of the

hydrogen was also investigated, but no significant differences of the energy levels be-

tween the crystal structure (riding atom) and the structure with optimized hydrogen

coordinates was found.

The CASSCF results yield a quartet ground state for all linear complexes with a con-

siderable separation from the lowest doublet state as well es from the excited 4P with

a separation of at least 15000 cm-1, respectively. In accordance with the results from

section 4.1, introducing the dynamic correlation via the CASPT2 method decreases

the relative energy of the lowest doublet state by 3000-4000 cm-1, not changing the

ground state multiplicity for any of the complexes. All complexes show a low-lying

excited quartet state with an energy gap of less than 1000 cm-1. The energy differ-

ences ∆ECASPT2 between the two lowest quartet states are listed in Table 5.3, exhibiting

a clear dependence on the bonding angle. Small separations are found for bond an-

gles not too far from 180°. The smallest separations of < 200cm-1 are found for bond

angles from 180 down to 159°, as found for 21. Hence, an efficient mixing between

the two lowest quartet states via spin-orbit coupling is possible. An increasing devi-

ation from ideal linear geometry raises the splitting up to 413 and 896 cm-1 for and

23 and 25, respectively, that exhibit bond angles below 150°. Furthermore, a value of

∆ECASPT2 = 197cm-1 for 27 seems large compared to the other complexes closer to lin-

ear coordination. The substantially elongated Co–S distance and softness of the donor

atoms compared to the rest of the series might be the reason for differences of the en-

ergy spectra.

According to their CASPT2 energies, all complexes except the strongly bent ones (23

and 25) show similarities with ideal D∞h coordination, and, hence, their ground state

is well described as of 4Φ nature. For 21, the overall splitting of the 4F state is of the

same magnitude as for the other less bent complexes, probably due to the dominat-

ing influence of the aryl ligand and the weak π-donor capabilities of the aryl ligands.

The ligands of the other complexes, however, are π-donors, but, unless their coordina-

tion angle deviates from 180°, the near-degeneracy of the ground state is maintained.

Smaller angles in 23 and 25 induce a splitting of the 4Φg ground state, and, hence,

lower the orbital momentum of the ground state.

The RASSI-SO calculations for all complexes show large spin reversal barriers Ueff

(listed in Table 5.3) and low rhombicities E
D (see Table D.7). The largest Ueff value was

found for phenolate-coordinated complex 26 (582 K). Among the other complexes, 22,

24, and 27 were found to have the largest barrier heights (≥ 500K) with bond angles
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5. Linear Cobalt(II) Complexes

21 22 23

24 25 26

27

Figure 5.5.: Used models of the investigated two-coordinated cobalt(II)
complexes with the main anisotropy axis of the ground Kramers
doublet. Hydrogen atoms are omitted for clarity.
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5.2. Potential Linear Cobalt(II) SMM Candidates

close to 180°. Smaller angles (144° for 23, 130° for 25) afford significantly lower barri-

ers (432 K and 308 K, respectively), which, nevertheless, are both still larger than values

calculated in 4.1. Another property to be closely looked at is the axiality of the ground

state KD (listed in Table 5.3). A very strong axiality is found for the complexes with co-

ordinating carbon anions, showing gx,y < 0.1. Somewhat larger, but still considerably

low transversal g -values were obtained for the ideally linear complexes 24 and 26. The

largest transversal g -values (≥ 0.39) are found for 25 and go hand in hand with the low-

est theoretical relaxation barrier. Therefore, the C-coordinated cobalt complexes and

the linear complexes containing O- and N donors have to be considered to exhibit the

largest relaxation barrier of the investigated complexes. The aryl ligands may further-

more cause very low tunneling probabilities due to the strong axiality of the ground

state KDs. But still, also all the other complexes show barrier heights of three to five

times the size of the tetrahedral complexes investigated in Section 4.1. In compari-

sion with [Fe(C(SiMe3)3)2]–, the linear Co(II) complexes might exhibit a substantially

increased spin reversal barrier, since their calculated Ueff values are almost twice as

large as the theoretical value obtained for the Fe(I) complexes (≈ 300K). Still, the prob-

lem of the influence of tunneling processes on the relaxation dynamics remains hard

to predict, but the obtained g -tensors of the ground state KDs look promising.
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CHAPTER

SIX

MULTICONFIGURATIONAL CALCULATIONS ON

LANTHANIDE(III) SMMS

The chemical properties of lanthanide(III) ions are largely governed by the [Xe] core

electron configuration. The 4f orbitals penetrate the xenon core appreciably and there-

fore are not able to overlap with ligand orbitals and, thus, do not participate in chem-

ical bonding. Hence, all lanthanide(III) ions show very similar equilibrium geometries

when coordinated by the same ligand system, except for a small contraction of the ra-

dius of the ions along increasing charge of the nucleus. Despite the relatively small

influence of the ligand field on the 4f shell, it proves to be crucial for the SMM proper-

ties of lanthanide(III) complexes. In general, it is desired to stabilize the
∣∣MJ ,max

〉
state,

because it offers the largest magnetic momentum and, given the right coordination

geometry, can exhibit the largest energetic separation of all
∣∣MJ

〉
states.

(a) Tb(III) (b) Dy(III) (c) Ho(III)

Figure 6.1.: Angular part of the charge density distribution of the
∣∣MJ ,max

〉
state of lanthanide(III) ions important in SMM research.

77



6. Multiconfigurational Calculations on Lanthanide(III) SMMs

To obtain a qualitative picture, Rinehart and Long[160] correlated the f-electron

charge density distributions on the basis of a simple quadrupole treatment of the

angular momentum J of the ground state state multiplet according to Hund’s rules.

From this consideration, an oblate shape is expected for Ce(III), Pr(III), Nd(III), Tb(III),

Dy(III), and Ho(III), whereas a prolate shape is expected for the free ions Pm(III),

Sm(III), Er(III), Tm(III), and Yb(III). A more detailed picture is obtained by the cal-

culation of charge density distributions of the particular
∣∣±MJ

〉
states as reported by

Sievers, [161] which are drawn for the
∣∣MJ ,max

〉
states of the ground multiplet for the free

Tb(III), Dy(III), and Er(III) ions in Fig. 6.1. These are the most important SMM ions

besides Ho(III). A stabilization of these states may be achieved by distributing the neg-

ative charges of the ligands to have the smallest electrostatic repulsion with these
∣∣MJ

〉
states instead of other states of the J-multiplet. But especially for Er(III), a meaningful

deduction of a suitable coordination environment for SMM purposes proves difficult,

since, although formerly classified as prolate type ion, the charge density distributions

for the
∣∣MJ

〉
states of the 4I15/2 term lack characteristic differences between them (see

Fig. 6.2). This also manifests in the low number of reported examples for Er(III) SMMs.

(a)
∣∣1

2

〉
(b)

∣∣3
2

〉
(c)

∣∣5
2

〉
(d)

∣∣7
2

〉

(e)
∣∣9

2

〉
(f )

∣∣11
2

〉
(g)

∣∣13
2

〉
(h)

∣∣15
2

〉
Figure 6.2.: Charge density distributions (only angular part plotted) of the∣∣MJ

〉
states of the 4I15/2 term of the erbium(III) ion.

Obviously, all lanthanide(III) SMMs listed above contain late 4f ions. In contrast, the

commercially available Nd-Fe-B and Sm-Co permanent magnets, known for large co-

ercivities and remanences, utilize early lanthanides. The Sm(III) ion, which was earlier

mentioned for having a prolate charge density in its
∣∣±5

2

〉
doublet of the 6H5/2 ground

term, is hexagonally planar surrounded by cobalt atoms, thus preferring the KD with

the largest MJ value. The Nd-Fe-B magnets are not as easily explained, because their
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6.1. Noteworthy Examples

production involves the sintering of a ground powder, where neodymium is enriched

on the surface of the particles.

6.1. Noteworthy Examples

The first examples of lanthanide(III) SMMs were double-decker complexes

TBA+ · [Ln(Pc)2]– (Pc2– = dianion of phthalocyanine), that were investigated by

Ishikawa [32] (structure depicted in Fig. 6.3). The Tb(III) and the Dy(III) complexes

showed out-of-phase susceptibility signals with relaxation barrier heights of 331

([Tb(Pc)2]–) and 40 K ([Dy(Pc)2]–), respectively, for yttrium-doped crystals. The

considerably larger Ueff value of [Tb(Pc)2]– may be attributed to the stabilization of

the |±6〉 doublet, which shows the most oblate-like charge distribution of the 7F6

multiplet. [160] Ideal S8 symmetry ensures the pairwise degeneracy of all
±M J


states

for this interger-spin ion. For the Kramers ion Dy(III), the
±M J


states are always

degenerated, but the coordination environment encountered in [Dy(Pc)2]– does

not provide a stabilizing influence on the
±15

2


state, but rather prefers the

±13
2


doublet due to its more planar charge distribution. [160] By suitable substitution with

thio-alkylether groups, Ueff values of [Tb(Pc)2]– analogues were increased to 871 K. [35]

Oxidizing the dianion of phthalocyanine to the monoanion, even a spin reversal

barrier of 923 K may be achieved in the complex [TbIII(Pc)2]Br . [34] In case ideal axial

symmetry is not met, non-Kramers ions like Tb(III) and Ho(III) may exhibit mixing of

|M J | states mediated by off-diagonal matrix elements with the M J = 0 state.

Although the [Tb(Pc)2]– complex anion showed a significantly larger relaxation

Figure 6.3.: Molecular structure of the [Tb(Pc)2]– anion (green: Tb, blue: N,
black: C). The structure was reported by Loosli et al. [162] Hydro-
gen atoms were omitted for clarity.

79



6. Multiconfigurational Calculations on Lanthanide(III) SMMs

N
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HO
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(a) H5TAGH (R=H), H5TAGMe (R=Me),
H5TAGBr (R=Br)
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NHN
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N

HO

N

OH N OH

(b) H5TAGNaph

Figure 6.4.: Ligands used for the synthesis of the lanthanide(III) complexes.

barrier than [Dy(Pc)2]–, the latter lanthanide proved to exhibit much more likely

SMM behavior, as the sheer number of reported examples shows. [163] The largest

yet reported Ueff was reported by Blagg et al. for the yttrium-diluted complex

[Dy4K2O(OtBu)12] ·C6H14 exhibited a barrier height of Ueff = 842K, thus increasing the

already remarkable value of Ueff = 693K for the undiluted complex.

In contrast to the numerous examples of dysprosium(III) SMMs, only four er-

bium(III) SMMs have been reported in the literature. [164–167] The mononuclear com-

plex [(Cp*)Er(COT)] [164] deserves a closer look due to its large barrier height. The two

aromatic π-donors (COT, Cp*) cause the
±15

2


KD to be lowered by 273 K relative to the±13

2


KD (according to fits of the susceptibility), making it possible to achieve a barrier

of Ueff = 260K with zero applied dc field. The cyclicπ-donors seem to fit well the charge

density distribution of the
15

2


state (Fig. 6.2h), but for a generalization, more exam-

ples have to be investigated. The polyoxo metallate anion in Na9[Er(W5O18)2] [165] also

exhibits SMM behavior in the absence of a dc field with a barrier height of 55 K. Larger

aggregates involving two erbium(III) ions ([KL8][Er2{N(SiMe3)2}4(thf)2(N2)]) [166] and

four erbium(III) ions ([Er4(salen)6]) [167] need an applied dc field to show slow mag-

netic relaxation and exhibit barrier heights of Ueff = 52K and Ueff = 14K, respectively.

6.2. Dysprosium(III) and Erbium(III) Complexes with

Triaminoguanidine-Based Ligands

Schiff-bases of triaminoguanidine (TAG) with derivatives of salicylic aldehyde are able

to form trinuclear complexes with transition metals. [38,54] Ln(III) ions also form com-
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Table 6.1.: Triaminoguanidine-based complexes investigated with
CASSCF/RASSI-SO procedure with their measured and cal-
culated thermal relaxation barrier.

Constitution Ueff [K]

28 [Dy(H4TAGH)2(MeOH)2]Cl 131
29 [Dy(H4TAGH)2(MeOH)2]NO3 262
30 [Dy(H4TAGMe)2(MeOH)2]NO3 251
31 [Dy(H4TAGBr)2(MeOH)2]Cl 222
32 [DyNa2(H4TAGNaph)2(MeOH)2]BPh4 311
33 [Er(H4TAGNaph)(H3TAGNaph)(MeOH)2] 14

plexes with the TAG ligand system, but due to their significantly larger ion radii, they

prefer a mononuclear constitution rather than a trinuclear one. [168] The ligands used

for the syntheses are depicted in Fig. 6.4. For the preparation, the hydrochlorides or

hydronitrates of the ligands were utilized, and the Schiff-base ligand itself is set free

by the application of a suitable base. The five dysprosium(III) complexes and one er-

bium(III) complex prepared by Schuch [54] and Möller chosen for this investigation are

listed in Table 6.1.

Among all Dy(III) complexes investigated, the metal ion is coordinated by two dou-

bly deprotonated ligand molecules, each contributing a [N2O] donor set. For 33, the

coordination mode is the same, but one ligand is only singly deprotonated. The coor-

dination sphere is saturated by two methanol molecules, giving rise to a [N4O4] donor

set, with two negative charges located at the phenolate-oxygen atoms. Other coordina-

tion scenarios, like a dimer involving a [N4O3] donor set, also have been observed, [54]

but exhibit significantly lower Ueff values. Although only the complex cations present

in the crystal lattice were considered for the calculations, certain differences emerging

from the presence of different counterions or the lack thereof has to be mentioned.

Due to the use of hydronitrates of the corresponding ligands, the complexes 29 and 30

involve a nitrate counterion in their crystal structure. The complexes 28 and 31, how-

ever, were prepared employing the hydrochloride of H5TAGH, and therefore involve a

chloride anion. A short look at Figs. 6.5a and 6.5b obviously shows structural differ-

ences among the complex cations. 32 features a BPh–
4 anion, because of the addition

of NaBPh4. The erbium(III) complex 33 completely lacks an anion and, thus, one of

the ligands is only threefold protonated. Furthermore, the complexes 28, 29, 30, and

31 show dimeric units in their crystal structures, which are connected by hydrogen
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bonds between the methanol ligands and exhibit inversion symmetry. All of the dys-

prosium(III) complexes were found to show slow magnetic relaxation under zero ap-

plied dc field with relaxation barriers between 131 and 311 K (see Table 6.1). Magnetic

interactions between the Dy(III) ions, especially within dimeric units, are expected to

lower the height of the relaxation barrier by a considerable size. 33 does not exhibit

SMM behavior without applied dc field. The thermal relaxation barrier found with an

applied dc field of 1000 Oe is Ueff = 14K, which is far below the values for the dyspro-

sium(III) complexes. But nevertheless, with only four reported Er(III) SMMs, this has

to be considered a success.

The complexes were investigated by CASSCF/RASSI-SO calculations to obtain the

thermal relaxation barrier and the properties of the g -tensor of the mononuclear com-

plexes. All CASSCF states of the highest multiplicity were considered, whereas only an

arbitrary number of states of lower multiplicities was used (see Chapter 11). Further

information was obtained utilizing the SINGLE_ANISO routine [96] developed by Chi-

botaru et al., allowing the simulation of variable field and variable temperature mag-

netic measurements as well as a decomposition of the spin-orbit wave functions into

definite M J projections. Magnetic properties arising from the dimeric constitution of

some complexes were examined with the POLY_ANISO routine, [98] considering both

dipolar interaction and exchange interaction.

6.2.1. CASSCF/RASSI-SO Calculations on Dy(III) and Er(III)
Complexes

Dysprosium(III) TAG Complexes

The CASSCF calculations for all Dy(III) complexes clearly show a 6H ground multi-

plet for the Dy(III) ion. The overall splitting of the 6H term is ≤ 1000cm-1. Approxi-

mately 8000cm-1 above the ground state, the lowest state of the excited 6F multiplet

can be found. The next-closest free ion multiplet is the 4G term with a relative energy

of ≈ 25000cm-1. The lowest doublet state follows at ≥ 37000cm-1 and is therefore very

unlikely to mix into the low-lying spin-orbit functions. The two lowest CASSCF sextet

states are nearly degenerated with a small energy difference (E1) between 1.4 cm-1 for

32 and 8.7 cm-1 for 28 (see Table 6.2). The energy of the second excited state (E2) was

found to lie between 205 for 31 and 383 cm-1 for 32. According to Aravena et al. first

excited CASSCF state need to be close in in energy to the ground state, whereas the sec-

ond excited state should lie well above the ground state [169] to achieve slow magnetic

relaxation behavior.
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(a) 28 (b) 29

(c) 30 (d) 31

(e) 32

Figure 6.5.: Structure of the mononuclear units of the Dy(III) complexes.
The arrow designates the main anisotropy axis of the ground
state KD (easy-axis of magnetization).
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Table 6.2.: Energies of the low-lying CASSCF sextet states (in cm-1), and
weights of the most involved states in the ground Kramers dou-
blet for the dysprosium(III) complexes (wsi and wqi : weights of
the i th sextet respectively quartet state for the ground state spin-
orbit function).

E1 E2 ws1 ws2 wq1 wq2

28 8.7 233.7 0.441 0.449 0.020 0.020
29 4.3 258.0 0.452 0.458 0.021 0.021
30 3.0 308.7 0.455 0.458 0.021 0.021
31 2.2 204.8 0.451 0.455 0.018 0.019
32 1.4 383.3 0.470 0.471 0.022 0.022

RASSI-SO calculations were performed including all 21 sextet states, 128 quartet

states, and 32 doublet states. The spin-orbit functions obtained reproduce the ex-

pected energy spectrum of eight KDs, of the 6H15/2 multiplet of the Dy(III) ion. The

excited 6H13/2 term is separated by almost 3000 cm-1 from the ground state. A closer

look on the energies of the spin-orbit states reveals significant differences between the

Dy(III) complexes. The calculated energies of the first excited Kramers doublet are

listed in Table 6.3 and range from 241 for 31 to 402 K for 32. Obviously, Ueff is con-

stantly overestimated compared to the observed relaxation barrier heights. For 28, the

largest deviation was found with Ueff, calc approximately 50% larger than the value ex-

tracted from the ac SQUID measurements. The calculations for the other complexes

show deviations of ≤ 25%.

For all Dy(III) complexes, a strong mixing of the two lowest spin-free sextet wave

functions is observed with weights of ≈ 0.45 in the lowest spin-orbit wave functions

(see Table 6.2), leading to an overall contribution of ≥ 0.9. The ground KDs do also

involve the first two quartet CASSCF functions with weights close to 0.02. Mixing of

other spin-free states into the ground state doublets is not observed.

At first, the differences between the calculated and measured relaxation barriers

seem large, but considering the necessary negligence of other relaxation pathways, this

maybe also a good indication for the existence of such channels. Hence, only processes

relying on the thermal population of the first excited KD of single ions (Orbach relax-

ation, TAQT) can be accounted for in the CASSCF/RASSI-SO method. The interactions

themselves are addressed later in Section 6.2.2 for the interpretation of the dc SQUID

measurements.
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Table 6.3.: Measured and calculated thermal relaxation barriers Ueff, and
parameters used for the correlation.

Ueff [K] ∡(O–Dy–O)
g⊥exp. calc. [°]

28 131 250 113.3 0.0051
29 262 292 115.1 0.0039
30 251 326 112.6 0.0014
31 222 241 105.1 0.0020
32 311 402 126.3 0.0011

To explain the differences within the series of Dy(III) complexes, additional struc-

tural and electronic properties were considered for correlations with Ueff (see Ta-

ble 6.3). A coordination environment involving 8 donor atoms offers a large degree

of freedoms for different distortions. The Continuous Shape Measure [170] (CShM) was

employed to characterize the coordination polyhedra of all Dy(III) complexes, but no

significant differences manifested in the similarities Si for all considered geometries

(see Appendix C.2). In addition, it does not account for the different charges localized

on the donor atoms.

Ruiz et al. proposed the evaluation of the electrostatic potential for statements con-

cerning the SMM behavior. [169] Only the phenolate-oxygen atoms carry a negative

charge and therefore, should have the largest influence on the potential interacting

with the Dy(III) ion. Thus, the angle between the Dy(III) ion and the two phenolate

oxygens∡(O–Dy–O) (listed in Table 6.3) might be correlated with the relaxation barrier.

The largest ∡(O–Dy–O)= 126.3° is found for complex 32, coinciding with the largest

measured and calculated relaxation barrier. 31 shows the smallest angle of 105.1°, cor-

relating with the smallest calculated Ueff, but not with the minimum experimental Ueff.

The remaining three complexes exhibit a ∡(O–Dy–O) rather close to each other, but

with no clear trend concerning their SMM behavior. Hence, a magnetostructural cor-

relation with this simple parameter does not yield meaningful statements

To unravel the nature of the SO wave functions, the g -tensors of the eight lowest

KDs were calculated using a pseudospin formalism for eight pseudospins S̃ = 1
2 , one

for each KD. It is clearly seen in Fig. 6.5, that the main anisotropy axis of the ground

state KD is similarly orientated for all Dy(III) complexes. They are best described as

parallel to the vector defined by the two phenolate-oxygens. All complexes exhibit a

strong axiality of the g -tensor of the ground state. Nonetheless, all Dy(III) complexes
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Table 6.4.: Energies and g-values of the spin-orbit states belonging to the
6H15/2 multiplet.

KD ∆E [cm-1] ∆E [K] g1 g2 g3 g⊥ ∡(−→g 3(1)−−→g 3(i )) [◦]

28

1 0 0.0 0.0015 0.0049 19.4944 0.0051 0.0
2 174 250 0.0568 0.1348 15.7786 0.1463 10.7
3 265 381 0.2761 0.4231 13.2474 0.5052 8.3
4 375 539 2.1366 2.5683 11.4461 3.3408 16.1
5 447 643 3.2282 6.0101 9.4867 6.8222 54.3
6 512 737 1.4309 4.0833 13.8368 4.3268 89.3
7 560 805 0.6006 1.4831 18.3676 1.6001 86.7
8 620 892 0.1332 0.1841 18.3233 0.2272 87.9

29

1 0 0 0.0017 0.0035 19.6662 0.0039 0.0
2 203 292 0.0746 0.1757 16.2917 0.1909 14.6
3 293 421 0.1515 0.2845 13.3116 0.3223 5.8
4 385 554 1.7212 2.2261 11.2495 2.8139 12.8
5 455 655 3.9199 5.9987 9.4616 7.1659 53.2
6 517 744 1.2363 3.8596 14.1672 4.0528 84.3
7 560 806 0.9091 1.5079 18.4718 1.7607 89.8
8 639 919 0.0835 0.1517 18.7401 0.1732 90.9

30

1 0 0 0.0006 0.0013 19.6877 0.0014 0.0
2 227 326 0.0319 0.0772 16.1105 0.0835 9.4
3 320 461 0.0824 0.1465 13.3992 0.1681 6.4
4 417 600 0.3808 0.5946 12.0080 0.7061 12.3
5 487 700 2.4051 3.1542 10.2629 3.9665 26.6
6 534 768 1.5757 5.4651 9.5749 5.6877 63.7
7 560 805 2.6370 3.8435 14.9751 4.6611 85.1
8 702 1010 0.0026 0.0309 18.9659 0.0310 89.1

31

1 0 0 0.0003 0.0020 19.6727 0.0020 0.0
2 167 241 0.1751 0.3651 16.2328 0.4049 22.6
3 218 314 0.1966 0.6686 14.6618 0.6969 33.9
4 311 448 0.9866 1.7602 11.4802 2.0178 12.8
5 415 598 1.9088 4.2251 8.4083 4.6363 22.1
6 505 727 1.9937 3.6907 10.9072 4.1948 68.9
7 569 819 0.9702 3.5866 14.9369 3.7155 89.1
8 662 953 0.2217 0.5321 19.3581 0.5764 63.4

32

1 0 0 0.0007 0.0008 19.8227 0.0011 0.0
2 280 402 0.0775 0.1005 16.8140 0.1269 7.5
3 435 627 0.6560 0.7840 13.5342 1.0222 5.5
4 553 795 1.7508 2.6505 10.2336 3.1765 13.0
5 638 918 4.6692 5.7758 9.2760 7.4271 75.4
6 748 1076 0.5552 1.9509 14.8547 2.0284 86.3
7 833 1199 0.8481 3.0483 13.4828 3.1641 81.2
8 852 1226 0.8063 3.8707 14.7310 3.9538 88.1
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Figure 6.6.: Structure of 33. The arrow designates the main anisotropy axis
of the ground state KD (easy-axis of magnetization).

show small non-axial components of the ground state g -value, that might cause the

relaxation barrier height Ueff to be reduced by tunneling processes. Transversal ele-

ments (also listed as geometric mean g⊥ =


g 2
1 + g 2

2 ) show a magnitude of ≤ 0.0051.

The largest g⊥ is found for 28, which is one possible reason for the lowering of Ueff in

case of the real compound compared to the calculated monomeric species. For the

remaining complexes, no clear correlation of the size of transverse elements of g and

Ueff is observed. Relatively small differences of ≈ 10% between Ueff,exp and Ueff,calc for

29 (g⊥ = 0.0039) and 31 (g⊥ = 0.0020) are in contrast with larger errors (> 20%) for 32

and 30 despite having the smallest g⊥-values. g3 is close to 20 for all complexes, which

is typical for a
M J =±15

2


doublet.

The angles between the g3-axis of the SO ground states and the other KDs were also

calculated (listed in Table 6.4), but no clear correlations with the measured or calcu-

lated relaxation barriers were found.

Erbium(III) TAG Complex

CASSCF calculations for 33 considering 35 quartet states and 112 doublet states yield

a 4I ground term, which is split by ≈ 500cm-1. The two lowest quartet states are al-

most degenerate with a separation of 5 cm-1. The lowest excited multiplets are of 4F

and 2H character, found both at ≈ 18000cm-1. From RASSI-SO calculations, a 4I15/2

ground multiplet is obtained. Relative energies and main values of the g -tensors of

the spin-orbit states are listed in Table 6.5. The orientation of the main anisotropy
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Table 6.5.: Energies and g-values of the lowest Kramers doublets of 33.

KD ∆E [cm-1] ∆E [K] g1 g2 g3 g⊥ ∡(−→g 3(1)−−→g 3(i )) [◦]

1 0 0 0.9872 3.4341 13.1879 3.5732 0.0
2 30 43 0.1737 2.8325 10.7769 2.8378 87.3
3 62 89 2.9682 4.6355 7.5788 5.5044 77.8
4 130 188 1.5844 3.6129 10.4462 3.9450 55.4
5 185 267 0.0999 5.3473 6.5634 5.3482 39.7
6 230 331 1.0492 4.6819 12.3933 4.7980 49.1
7 319 459 0.0321 0.2086 15.2309 0.2111 48.5
8 380 546 0.0657 0.1102 15.5803 0.1283 67.4

Table 6.6.: Decomposition of the RASSI wave functions corresponding to
the lowest 4I15/2 multiplet in wave functions with definite pro-
jection of the total angular momentum

M J


.

M J w.f. 1 w.f. 2 w.f. 3 w.f. 4

-15/2 0.592 0.000 0.066 0.000
-13/2 0.119 0.000 0.003 0.010
-11/2 0.120 0.004 0.012 0.065

-9/2 0.020 0.001 0.048 0.104
-7/2 0.018 0.023 0.001 0.249
-5/2 0.044 0.018 0.095 0.102
-3/2 0.016 0.000 0.088 0.044
-1/2 0.021 0.004 0.078 0.036
1/2 0.004 0.021 0.036 0.078
3/2 0.000 0.016 0.044 0.088
5/2 0.018 0.044 0.102 0.095
7/2 0.023 0.018 0.249 0.001
9/2 0.001 0.020 0.104 0.048

11/2 0.004 0.120 0.065 0.012
13/2 0.000 0.119 0.010 0.003
15/2 0.000 0.592 0.000 0.066
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axis is depicted in Fig. 6.6. Since Er(III) is a half-integer spin system, all SO states are

doubly degenerate. Ground and first excited KD, both composed of more than five

CASSCF states (weight> 0.05), are separated by 30 cm-1. The large transversal elements

of the g -tensor (g1 = 0.9872, g2 = 3.4341) of the ground state KD suggest, that the
±15

2


KD strongly mixes with the other

M J


states. The easy-axis of magnetization (g3) is

aligned between the two negatively charged phenolate-oxygens, almost perpendicu-

lar to the orientation found in the Dy(III) complexes. A mixed nature of the RASSI-

SO wave functions is further confirmed by their decomposition in definite
M J


wave

functions. Instead of the complex coefficients c obtained from the SINGLE_ANISO

routine, the real values of the weights w = c∗· c are listed in Table 6.6, revealing a pro-

nounced mixing of the
±15

2


KD, mainly with the

±13
2


and

±11
2


doublets. The first

excited SO wave function is also a mixture of several
M J


states, primarily the
±9

2


,±7

2


, and

±5
2


functions. Hence, the mixing of the

15
2


state with other

M J


states

allows tunneling between the two degenerate ground state functions, thus prevent-

ing SMM behavior without applied magnetic field. The orientation of the easy-axis of

magnetization may be qualitatively explained with the charge distributions depicted

in Fig. 6.2. The two peaks along the z-axis will experience the strongest electrostatic

repulsion from the negative charges of the phenolate-oxygens, thus turning the ions

z-axis to the lowest electrostatic potential, which is obviously found between the two

mentioned donor atoms. Due to the non-specific shapes of the other
M J


states, they

readily mix into the ground state SO wave function.

6.2.2. Simulations of χM T

Unlike susceptibility measurements for 3d metal ions, where they readily yield valu-

able information of the electronic structure, static dc measurements for lanthanide

ions are hard to analyze due to the large number of parameters and uncharacteristic

shapes of the plots. Hence, a way to decrease the number of parameters would be

very useful for the interpretation of the susceptibility data. As aforementioned, it has

been shown, that the energy ladder and g -values of low-lying spin-orbit states can be

calculated in the framework of CASSCF and RASSI-SO methodologies. Estimating the

dynamic properties e.g. Ueff and the possibility of tunneling processes, proved to be

challenging. But nevertheless, the results may enable one to gain more insight into the

static magnetic properties. The obtained SO wave functions can be used to calculate

the static magnetic properties like χMT (T ) and M(H) with a procedure implemented

in the SINGLE_ANISO module of the MOLCAS program package.
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Figure 6.7.: Measured and calculated values for the complexes containing
monomeric units. The black squares represent the measured
data, the lines are simulated values using the RASSI spin-orbit
functions.

Monomeric Complexes

For the monomeric complexes 32 and 33, no strong magnetic interactions between

paramagnetic ions are expected. Therefore, a simulation only considering a single

complex molecule is expected to give a reasonable approximation for the solid state.

The χM T values calculated for 32 and 33 are depicted in Fig. 6.7 together with the ex-

perimental values. The theoretical values overestimate the measured χM T values by

≈ 10%, but the temperature dependence is met to a reasonable degree. For 32, the

decrease of χM T below 10 K is not reproduced, but since for higher temperatures the

shape fits well, neglected weak intermolecular interactions should be responsible for

the low-temperature behavior. The theoretical χM T values for 33 model well the de-

crease for low temperatures. Since a steady decrease upon cooling is found for the

entire temperature range, the origin of this behavior has to lie within the electronic

structure of the single Er(III) ions. A small energy gap of the lowest KDs of 33 ex-

plains the population of smaller magnetic moments already at higher temperatures,

thus decreasingχM T at higher temperatures. Due to the good agreement of theory and

experiment considering the temperature dependence, intermolecular interactions are

assumed to have a small influence on the magnetic behavior of 33.

Dimeric Complexes

As mentioned above, the four complexes 28, 29, 30, and 31 involve dimeric untis of

the complex cations, that are connected by hydrogen bonds between the methanol
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coligands. The structures of these dimers are depicted in Fig. 6.8. Due to the con-

siderably smaller Ln–Ln distances found in the dimeric complexes compared to the

monomeric complexes, significant magnetic interactions have to be expected. This

might also explain the systematically overestimated Ueff values for the dimeric species.

Here, the magnetic dipole-dipole interaction as well as the exchange interaction were

included into the considerations, due to their similar magnitude in lanthanide chem-

istry. Within the POLY_ANISO module developed by Chibotaru et al., [98] it is possible

to calculate the exact dipolar interaction using the SO wave functions, with the classic

expression:

E = µ0

4πr 3


µ1 ·µ2 − 3

r 2


µ1 · r


µ2 · r


. (6.1)

The calculation of the exact exchange interaction, however, would demand the

CASSCF calculations to be carried out with an active space including the 4f-orbitals

of interacting lanthanide ions and a particular number of ligand orbitals. With 14+ x

active orbitals, this would easily exceed available computational resources, since the

number of CSFs scales factorially. Therefore, the exchange interaction is treated with

an Ising Hamiltonian, where ideal axiality of the pseudospins S̃ is assumed:

ĤIsing =−
N

i=1

N
j>i

Ji j
ˆ̃Si z

ˆ̃S j z . (6.2)

Although the arbitrarily chosen exchange parameter Ji j is isotropic, the anisotropic

exchange interactions can be modeled by the inclusion of several KDs for each ion.

In this investigation, the eight lowest KDs were included. Furthermore, the separate

treatments of the dipolar and exchange interaction gives the possibility to deduce their

influences on the exchange spectrum, which is not possible by experimental static

SQUID measurements.
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(a) 28 (b) 29

(c) 30 (d) 31

Figure 6.8.: Dimeric units calculated with the POLY_ANISO module.

The calculated χM T values including dipolar interactions and arbitrary magnitudes

of the exchange interaction (J = 0, . . . ,−0.2cm-1) are depicted in Fig. 6.9. Theoretical

χM T values were found to be smaller than experimental values, if the molar mass of

the dimer from the crystal structure was used to process the measured data. But from

previous works, it proved to be very difficult to determine the exact molar weights for

the used powder samples due to the loss of co-crystallized solvent molecules. There-

fore, the experimental data was plotted using the molar weights from the single crys-

tal structures multiplied with a scaling factor f to match the height of the calculated

χM T curves (see captions in Fig. 6.9 for f ). In the temperature range above 100 K, the

results for all simulations do not differ much for all of the complexes. But for low tem-

peratures, the decrease of the χM T values cannot be reproduced with the theoretical

results for the mononuclear units. Purely dipolar interaction significantly improves

the agreement with the experiment. Additional inclusion of the exchange interaction
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further improves the theoretical description for some of the complexes. For 29 and

30, an exchange parameter of J =−0.05cm-1 gives the best result, 28 is best described

with J =−0.1cm-1. Simulations for complex 31, however, already yield the best agree-

ment with pure dipolar interaction. Since the dipolar interactions are represented by

a matrix, it cannot be represented by a single value like the exchange parameter J , but

the energy difference between the two lowest antiferromagnetic and ferromagnetic ex-

change states illustrates it magnitude. This difference is for all complex dimers close

to∆E = 0.4cm-1. If an exchange interaction of J =−0.05cm-1 is included,∆E increases

to ≈ 1cm-1. Calculations for 28 showed the largest overestimation of the thermal relax-

ation barrier, that is likely to be caused by exchange interactions according to largest

estimated value of J =−0.1cm-1 of the Dy(III) complexes.
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(b) 29 ( f = 0.87)
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(c) 30 ( f = 0.88)
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Figure 6.9.: Measured and calculated values for the complexes contain-
ing hydrogen-bonded dimers. The black squares represent the
measured data scaled by the factor f , the lines are simulated
values using the RASSI spin-orbit functions considering exact
dipolar interaction as well as an exchange parameter J of given
magnitude [cm-1].
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CHAPTER

SEVEN

BROKEN-SYMMETRY DFT CALCULATIONS ON

OLIGONUCLEAR TRANSITION METAL COMPLEXES

7.1. Exchange Coupling in Cu4O4 Cubanes with

Sugar-Ligands

In coordination chemistry, chiral ligands may serve a large variety of purposes. In cat-

alytic processes, for instance, chiral ligands may promote an enantiomeric excess if a

prochiral educt is employed. The asymmetric variants of the epoxidation (Sharpless)

and hydrogenation (Knowles and Noyory), who were all awarded the Nobel prize in

2001, [171–173] are among the most well-known examples. Also, the magnetic properties

of transition metal complexes might become even more interesting when involving

chiral ligands due to magnetochirality. [174] An obvious synthetic approach for obtain-

ing chiral ligand molecules is to make use of the chiral pool given by nature.

Cu

Cu

Cu

Cu

(a) 4+2 class

Cu

Cu

Cu

Cu

(b) 2+4 class

Figure 7.1.: Classification of tetranuclear cubane Cu(II) complexes accord-
ing to Cu−O and Cu · · ·O distances of the Cu4O4 core. Thick
lines represent short and broken lines long Cu−O distances.
Short Cu · · ·Cu distances are indicated by a connecting line.
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Figure 7.2.: Molecular structure of 35. Hydrogen atoms were omitted for the
sake of clarity.

Hence, during the work of Burkhardt, [56] the monomer of chitosan (2-amino-2-

deoxy-glucose) and derivatives thereof were employed to prepare chiral ligands. The

Cu4O4 cubane core is a commonly found structural motif for complexes of these lig-

ands. The complexes from the thesis of Burkhardt exhibiting this substructure are

listed in Table 7.1. Depending on the number of short and long Cu · · ·Cu distances,

the Cu4O4 cubanes are divided into two main classes, namely the 4+2 class (Fig. 7.1a)

and the 2+4 class (Fig. 7.1b).

For Schiff bases of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-α-D-glucopyranose

with salicylic aldehyde derivatives, 4+2 class cubanes were obtained. Representative

for these compounds, the structure of 35 is depicted in Fig. 7.2. Within their structure,

the Cu(II) ions are embedded in a square-planar environment with a [NO3] donor set.

Neighboring metal ions share one coordinating oxygen atom with Cu–O–Cu bridging

angles of > 120◦, causing antiferromagnetic exchange interactions.

Ligands derived from benzyl 2-amino-2-deoxy-α-D-glucopyranose, on the other

side, form 2+4 cubanes. The molecular structure of 39 is shown in Fig. 7.3 with 40 and

41 structural closely related. The 2+4 cubanes involve square-pyridal coordination of

the Cu(II) ions, with two pairs of metal ions sharing the x y-plane*, that contains the

magnetic orbital of the d9 metal ions. Thus, the magnetic behavior of 2+4 cubanes is

mainly governed by the interaction within these Cu(II) pairs. Especially 41 might be

magnetically very interesting, since, according to Crawford, [177] the two Cu2O2 pairs

*The x y-plane is the mean plane defined by the atoms of the basal [NO3] donor set and the Cu atom
itself.
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Table 7.1.: Investigated Cu4O4 cubane complexes.

Complex Ligand Reference Jexp [cm-1]
4+

2
cu

b
an

es

34

O
O

O

OBn
N

HO

OH

Ph

[175] −130

35

O
O

O

OBn
N

HO

Ph

OH

O
O

O

OBn
N

HO

Ph

[56] −183

36

O
O

O

OBn
N

HO

OH

Ph

Br
[56] −167

37

O
O

O

OBn
N

HO

OH

Ph

O2N
[56] −147

38

O
O

O

OBn
N

HO

OH

Ph

OMe

[56] −207

2+
4

cu
b

an
es

39

O
HO

HO

OBn
N

HO

OH

[176] +64,+4

40

O
HO

HO

OBn
N

HO

OH

Br
[56] –

41

O
HO

HO

OBn
HN

HO

OH

[56] –
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Figure 7.3.: Molecular structure of 39. Hydrogen atoms were omitted for the
sake of clarity.

exhibit bond angles below (≈ 91.2◦) and above (≈ 98.5◦) the boundary angle of 97.5°,

where the sign of the exchange interaction is expected to switch. Unfortunately, not all

of these complexes were fully characterized.

Nevertheless, BS-DFT calculations offer the possibility to explore the magnetic be-

havior. Different approaches for the prediction of the particular coupling constant of

Cu4O4 cubanes have been described. [178] Here, only the substitution of two Cu(II) ions

with paramagnetic Zn(II) was employed, giving access to all pairwise Cu−Cu exchange

interactions with the six possible substitution patterns. This way, the exchange inter-

action is directly accessible via Eq. (2.43).

The numeration scheme of the Cu(II) ions was chosen with respect to Fig. 7.2 for the

4+2 cubanes and with respect to Fig. 7.3 for the 2+4 cubanes. This is in accordance

with the numeration scheme used by Burkhardt. [56] Small deviations of the structural

parameters from the values given there are due to the measurement of the parame-

ters in the xyz-files generated from the crystallographic data. The xyz-files lack ther-

mal displacement parameters, that have an influence on the calculated mean value of

structural parameters, if crystallographic data are used.
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7.1.1. 4 + 2 Cubanes

As stated by Burkhardt in Ref. [56], the magnetic behavior of the 4+2 cubanes was en-

tirely interpreted employing the Hamiltonian shown in Eq. (7.1).

Ĥ =−J

Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ3Ŝ4 + Ŝ1Ŝ4


(7.1)

As mentioned above, complexes 34-38 show moderate antiferromagnetic exchange in-

teractions between −130 and −207cm-1 (see Table 7.1). [56,175] The results from the BS-

DFT calculations for the pairwise coupling constants are listed in Table 7.2 together

with the angle ∡(Cu−O−Cu) and the angle between the x y-planes of the Cu(II) ions

∡(Cux y −Cux y ). Obviously, the magnetic interactions between Cu(II) ions without a

bridging oxygen atom (J1,3 and J2,4) are small (|J | < 10cm-1) and preferably antiferro-

magnetic. The magnitude of the exchange interaction between oxo-bridged Cu(II) ions

is found between −26 and −183cm-1. Furthermore, it is easily seen, that for all com-

plexes except 35, J2,3 and J1,4 show significantly stronger antiferromagnetic coupling

than J1,2 and J3,4. From two-dimensional scatter plots of J vs ∡(Cu−O−Cu) (Fig. 7.4,

left) and J vs ∡(Cux y −Cux y ) (Fig. 7.4, right), no clear correlations are found. While

for 34, 36, 37, and 38, larger values of ∡(Cux y −Cux y ) correlate with a more positive J ,

35 shows a the decreasing J with increasing ∡(Cux y −Cux y ). The J vs ∡(Cu−O−Cu)

plot for 35, however, is distributed linearly, whereas the other 4+2 cubanes exhibit

no connection of these values. It is worth noting, that 35 is the only complex with

∡(Cu−O−Cu) > 130◦ for two Cu(II) pairs. The contour plot of J in dependence of

∡(Cu−O−Cu) and ∡(Cux y −Cux y ) shown in Fig. 7.5, however, is able to predict a gen-

eral trend of an increasing antiferromagnetic |J | for increasing ∡(Cu−O−Cu) and de-

creasing ∡(Cux y −Cux y ). Nevertheless, the data set is to small to deduce a quantitative

expression.

Comparing the DFT results with the experimental data turns out to be ambiguous,

since higher symmetry than really present in the structure was assumed for the Hamil-

tonian in the least-squares fits. Hence, the average of the four exchange parameters

J1,2, J2,3, J3,4, and J1,4 listed in Table 7.2 are used for comparison. For the complexes

34, 35, and 37, theoretical results are in good agreement with experiment, whereas for

36 and 38, J is underestimated by up to 50%. Furthermore, the theoretical results for

the exchange interactions for all 4+2 cubanes were used for simulations of the thermal

dependence of χM and χM T . Therefore, the full spin Hamiltonian from Eq. (7.2) was

employed, regarding all calculated J-values.
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Figure 7.4.: Plots of the calculated exchange interactions J between the
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Table 7.2.: Bond angles, angles between the Cux y -planesand calculated
coupling constants of Cu(II) ions for the 4+2 cubanes.

Complex Ji , j
∡(Cui −O−Cu j ) ∡(Cux y,i −Cux y, j ) Jcalc Jav.

a

[°] [°] [cm-1] [cm-1]

34

J1,2 124.5 83.7 -66

-102
J2,3 127.3 68.4 -166
J3,4 124.3 88.9 -39
J1,4 121.2 70.9 -137
J1,3 – 45.7 -5
J2,4 – 43.0 1

35

J1,2 132.8 78.1 -162

-146
J2,3 123.2 70.5 -124
J3,4 134.9 76.1 -180
J1,4 122.5 71.1 -120
J1,3 – 27.0 -4
J2,4 – 26.4 -9

36

J1,2 121.4 85.4 -31

-82
J2,3 124.1 69.1 -141
J3,4 121.1 86.1 -26
J1,4 120.2 70.0 -131
J1,3 – 45.8 -4
J2,4 – 41.4 1

37

J1,2 123.1 83.6 -46

-123
J2,3 122.4 63.8 -168
J3,4 124.9 85.5 -97
J1,4 125.7 69.5 -183
J1,3 – 46.3 -5
J2,4 – 44.9 1

38

J1,2 125.3 84.7 -94

-125
J2,3 128.0 73.9 -152
J3,4 127.5 89.1 -85
J1,4 127.1 74.4 -167
J1,3 – 45.0 -8
J2,4 – 35.9 0

a Jav. is the average of J1,2, J2,3, J3,4, and J1,4.
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Figure 7.6.: χM vs T (empty squares) and χM T vs T plots (black squares)
values for the 4+2 cubane complexes. The lines are simulations
with the calculated values listed in Tables 7.2 and 7.3.
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Table 7.3.: g , χTIP, and ρ for complexes 34-38 used for the plots of the χM

and χM T with the theoretical J-values.

Complex g χTIP

cm3mol-1 ρ [%]

34 2.01 9.2 ·10-4 0.66
35 1.82 1.9 ·10-3 2.78
36 1.78 3.9 ·10-4 0.76
37 2.11 4.1 ·10-4 0.52
38 1.76 1.4 ·10-4 1.24

Ĥ =−J1,2Ŝ1Ŝ2 − J1,3Ŝ1Ŝ3 − J1,4Ŝ1Ŝ4 − J2,3Ŝ2Ŝ3 − J2,4Ŝ2Ŝ4 − J3,4Ŝ3Ŝ4 (7.2)

The remaining parameters g , χTIP, and ρ necessary for meaningful susceptibility sim-

ulations were obtained by least-squares fits with fixed Js. Obtained values are listed in

Table 7.3. Only the fitted g -values for 34 and 37 are larger than 2.0, while this is not the

case for the complexes 35, 36, and 38. χTIP and ρ exhibit reasonable magnitudes. Plots

of the experimental and simulated data for complexes 34-38 are depicted in Fig. 7.6.

The simulations for 34 (Fig. 7.6a) and 37 (Fig. 7.6d) reproduce remarkably well the ex-

perimental χM vs T plots. While 35 still shows a good agreement of simulation and

experiment, significant deviations are found for 36 and 38. The maximum of the χM

vs T plot for the two latter compounds is shifted to lower temperatures compared to

experiment, confirming the underestimation of the calculated J-values. The g -values

below 2.0 are then just a consequence of the least-squares fit.

7.1.2. 2 + 4 Cubanes

The 2+4 cubanes show a general structural difference compared to the 4+2 cubanes,

since the Cu(II) ions share two µ2-O-bridges. Hence, two Cu−O−Cu bond angles are

listed in Table 7.4 with the results from BS-DFT. ∡(Cux y −Cux y ) is in general below the

values found for the 4+2 cubanes. Calculated exchange interactions mediated by axial

coordination of oxygen atoms (J1,2, J2,3, J3,4, and J1,4) are throughout found between

3 and 10 cm-1 due to the small spatial overlap of the magnetic orbitals. Complexes

39 and 40 exclusively show Cu−O−Cu bond angles of < 95◦, giving rise to ferromag-

netic interactions. The average of J1,3 and J2,4 is Jav. = 78cm-1 for 39, which is in good
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7. BS-DFT Calculations on Oligonuclear Transition Metal Complexes

Table 7.4.: Bond angles, dihedral angles and calculated coupling constants
of Cu(II) ions in 2+4 cubanes.

Complex Ji , j
∡(Cui −O−Cu j ) ∡(Cux y,i −Cux y, j ) Jcalc

[°] [°] [cm-1]

39

J1,3 93.9 94.3 29.5 60
J2,4 89.7 90.1 35.6 97
J1,2 99.4 97.0 24.1 4
J2,3 104.1 101.8 19.5 8
J3,4 99.8 96.6 25.4 5
J1,4 104.5 99.7 22.4 6

40

J1,3 92.8 91.2 32.5 79
J2,4 89.7 90.1 39.5 98
J1,2 98.7 97.5 28.4 3
J2,3 103.7 103.1 18.6 3
J3,4 95.2 100.3 29.9 3
J1,4 102.1 106.8 25.5 7

41

J1,3 98.3 98.7 22.5 -125
J2,4 91.3 91.2 39.9 80
J1,2 91.8 102.5 26.6 5
J2,3 105.7 97.1 21.7 9
J3,4 94.7 98.2 24.5 5
J1,4 102.5 99.4 17.9 8
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Figure 7.7.: Plots ofχM vs. T (empty boxes) andχM T vs. T (black squares) of
39. The solid lines are simulations using the theoretical J-values
and g -value obtained from a least-squares fit.
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7.2. Hexanuclear Copper(II) Metallacrown with Hydronium Guests

agreement with the experimental value of J1 = 64cm-1, obtained from a least-squares

fit utilizing the Hamiltonian:

Ĥ =−J1

Ŝ1Ŝ3 + Ŝ2Ŝ4

− J2

Ŝ1 + Ŝ3


Ŝ2 + Ŝ4


. (7.3)

A least-squares fit with the fixed theoretical J-values afforded g = 2.15, which is close

to the experimental value of 2.23, while χTIP and ρ were neglected. The χM vs T and

χM T vs T simulations depicted in Fig. 7.7 also show a very good agreement with ex-

periment. Unfortunately, reliable susceptibility data for 40 and 41 was not available,

and, hence, no comparison of the calculated values is given. BS-DFT results for 40

suggest a similar ferromagnetic behavior as already found for 39, but with a slightly

larger J1,3, correlating with a smaller ∡(Cu−O−Cu). A completely different picture

was found for 41, where the two strongly interacting Cu(II) pairs exhibit a large differ-

ence between the bond angles (91.3 and 91.2° for Cu1Cu2, 98.3 and 98.7° for Cu3Cu4),

giving rise to different signs of the exchange parameters. [177] The calculated values of

J1,3 =−125cm-1 and J2,4 = 80cm-1 confirm the predictions.

While the J vs ∡(Cux y −Cux y ) plot shown in Fig. 7.4 (right) does not reveal a clear

correlation, the J vs ∡(Cu−O−Cu) plot suggests a roughly linear relation. Linear re-

gression of the values for the 2+4 cubanes yields the function J (x) =−24.8x+2341 with

a rather low correlation coefficient of R2 = 0.892. Including all values shown in Fig. 7.4

affords an even worse correlation of R2 = 0.696. It should be noted, that not only are

there different bridging modes (µ2-O for 4+2 cubanes, µ2-(O)2 for 2+4 cubanes), but

also does ∡(Cux y −Cux y ) vary over a wide range. Hence, due to a sum of structural

parameters changing for the Cu2 pairs, the small data pool forbids quantization of the

magnetostructural correlation. But, nonetheless, the partially excellent agreement be-

tween theory and experiment, in particular found for 34, 37, and 39, suggests, that the

obtained values for 40 and 41 draw generally the right picture of the magnetic behav-

ior.

7.2. Hexanuclear Copper(II) Metallacrown with

Hydronium Guests

Since the first metallacrown complex was reported in 1989 by Lah and Pecoraro, [179]

this class of compounds has grown into a vivid research area. [180] While the early def-
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Figure 7.8.: Molecular structure of the complex cation
[(H3O)2 ⊂ Cu6(tbdea)6]2+ of compound 42, viewing along
the [111] axis of the crystal. Aliphatic hydrogen atoms are omit-
ted for clarity. The thermal ellipsoids are drawn at a probability
level of 50%.

Figure 7.9.: Non-carbon atoms of the complex cation
[(H3O)2 ⊂ Cu6(tbdea)6]2+ with a view angle slightly twisted
to the [111] axis .
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Figure 7.10.: Coordination environment of two neighboring Cu(II) ions in
42 with the bond lenghts [pm] and angles [°] of the two µ2-O-
bridges.

inition of metallacoronates only incorporated a −[M−N−O]n− repeating unit, later

definitions also included for example −[M−N−C−O]n−, −[M−N−N]n−, or, even

more general, −[M−X]n− repeating units (where X is a nonmetal atom) in a cyclic

arrangement. Within the PhD thesis of Zharkuskaya, the hexanuclear copper coro-

nate [NHEt3][(H3O)2⊂Cu6(tbdea)6](ClO4)3 (42) was prepared employing N-tert-butyl

diethanolamine and copper(II) perchlorate in acetonitrile under the addition of tri-

ethylamine.

The molecular structure of the complex cation [(H3O)2⊂Cu6(tbdea)6]2+ is depicted

in Fig. 7.8. In Fig. 7.9, the non-carbon backbone of 42 is depicted with a slightly dif-

ferent viewing angle. The metallacrown complex exhibits a cyclic −[Cu−O]6− sub-

structure, and, therefore, may be counted to the 12-MC-6 class. It is not uncommon

for metallacoronates to contain guest ions (easily seen from the tables in [180]), but to

our knowledge, H3O+ ions in such a cavity were not yet reported. In the closely related

octanuclear complex [Cu8(tbdea)6(H2O)2](BF4)2 ·3 CH3OH (43), [181] where the same

ligand was employed, six Cu(II) ions are assembled in a similar fashion as in 42, but

with a two µ2-O-bridged Cu(II) ions found in the cavity. In complex 42, each Cu(II) ion

is coordinated by a [NO4] donor set in a distorted square-pyramidal coordination en-

vironment. Important bond lengths an angles are listed in Table 7.5. The basal plane

is formed by the atoms N1, O1, O2B, and O1A with bond lengths between 191 and

210 pm. O2 is coordinated in the apical position with an elongated bond length of

240 pm, as expected due to the Jahn-Teller distortion. CShMs calculated for trigonal-

bipyramidal (D3h) and square-pyramidal coordination (C4v) suggest a closer relation

to the first (SC3h = 3.91) than the latter symmetry (S4v = 6.13). Neighboring Cu(II)

ions share two µ2-bridging oxygen atoms (O1 and O2), with O1 being part of both ions

basal plane, while O2 is found in the apical position of one Cu(II) ions (see Fig. 7.10).
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Table 7.5.: Selected bond lenghts [pm] and angles [°] of 42.

Cu–O1 191.7(4) Cu–O1A 193.2(4)
Cu–O2 240.0(4) Cu–O2B 198.0(4)
Cu–N1 210.4(5)

O1–Cu–O1A 172.98(19) O1–Cu–O2 100.68(15)
O1–Cu–O2B 84.13(16) O1–Cu–N1 84.82(18)
O1A–Cu–O2 73.25(14) O1A–Cu–O2B 95.24(16)
O1A–Cu–N1 97.37(18) O2–Cu–O2B 115.62(19)
O2–Cu–N1 80.01(16) O2B–Cu–N1 162.33(18)
Cu–O1–CuB 107.72(18) Cu–O2–CuA 89.87(14)

Atoms with the suffixes A and B were generated by the following symme-
try operations:
A: −z,−x +1,−y +1
B: −y +1,−z +1,−x.

For the magnetic interaction between direct neighbors, the bridging angles ∡(Cu–O1–

CuB)= 107.7◦ and ∡(Cu–O2B–CuB)= 89.9◦ might be of crucial importance. Due to the

high symmetry of the complex 42, interesting magnetic properties like frustration phe-

nomena [182] might be found, given certain requirements concerning the exchange in-

teractions are met. Here, at first, the experimental susceptibility data of 42 is reinvesti-

gated utilizing different spin Hamiltonians including more than one exchange param-

eters. Furthermore, BS-DFT calculations were performed to verify the interpretations

of the magnetic measurements.

.

7.2.1. Magnetic Properties

The interpretation of the susceptibility data of 42 was performed by Zharkuskaya [38]

employing only a single exchange interaction parameter and the Weiss temperature θ

for modeling an intermolecular interaction. Due to the maximum visible in the χM

vs T plot depicted in Fig. 7.12, dominating antiferromagnetic exchange interaction is

assumed. While θ is only a correction term and θ ≪ J should apply, the value θ =
−117K (=− 81cm-1) tremendously exceeds the magnitude of the coupling constant

J =−15.5cm-1. Hence, the meaning of this fit remains questionable.

The magnetic properties of 42 were reinvestigated employing different Hamiltoni-

ans, namely the 1J-model shown in Eq. (7.4), the 2J-model in Eq. (7.5), and the 3J-
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Figure 7.11.: Exchange interactions considered for the simulations of the
magnetic properties. For J2 and J3, lines for the symmetrically
equivalent interactions were omitted.

model in Eq. (7.6).
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A graphical representation of the exchange interactions J1, J2, and J3 is shown in

Fig. 7.11. Unfortunately, least-squares fits of these spin Hamiltonians to the experi-

mental χM values led to g -values of ≈ 1.50, which is far too low for Cu(II) ions. There-

fore, the parameters were chosen manually to reproduce best the shape of the ex-

perimental χM vs T plots (e.g. position and height of the maximum). In addition, a

paramagnetic impurity ρ modeling a single S = 1
2 ion and temperature independent

paramagnetism χTIP were introduced. The magnitudes of both parameters were es-

timated from the low-temperature region, where the χM values increase upon cool-

ing below 4.5 K, leading to χTIP = 0.0011cm3mol-1 and ρ = 0.03. The parameters ob-

tained from simulations with the three models are listed in Table 7.6. Experimental

χM data of 42 together with the simulated values are depicted in Fig. 7.12. The ob-

tained g -values lie in the typical range for Cu(II) ions, while the exchange interaction

J1 between nearest neighbors is antiferromagnetic and of intermediate size (−50cm-1

for 1J-model, ≈ −70cm-1 for 2J- and 3J-model). This is also in good agreement with

the correlations found by Ruiz et al., [178] predicting antiferromagnetic exchange for
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Table 7.6.: Parameters and sums of square of errors χ2 for the simulation of
the χM data of 42 with the different model Hamiltonians.

model
1J 2J 3J 1J-MFT

Eq. (7.4) Eq. (7.5) Eq. (7.6) Eq. (7.4) + MFT

g 2.02 2.05 2.02 2.05
J1 [cm-1] −50 −70 −72 −44
J2 [cm-1] – −30 −25 –
J3 [cm-1] – – 3 –
λ [cm−3mol] – – – −33
χTIP [cm3mol-1] 0.0011 0.0011 0.0011 0.0018
ρ 0.03 0.03 0.03 0.02
χ2 2.89 ·10−4 6.68 ·10−5 9.87 ·10−5 3.94 ·10−6

∡(Cu−O−Cu) > 89.5◦. Thus, the 1J-model is not sufficient to describe the magnetic

interactions encountered in 42. For complex 43, a positive J was found for the inter-

action between the Cu(II) ions in the hexanuclear ring, probably owed to the smaller

Cu−O−Cu bond angles (104.1° and 85.9°). χM -fits for 42 with the 2J- or 3J-model af-

ford J2-values of −30 and −25cm-1, respectively. J3 only shows a small value of +3cm-1

in the 3J-model between the opposite Cu(II) ions. Judging by the similarity of the χM

plots, the 2J- and the 3J-model reproduce the shape of the experimental χM vs T plot

considerably better than the 1J-model. Nevertheless, the introduction of a third ex-

change interaction J3 does not yield a significant improvement with experimental χM

data, and, hence, the 2J-model is assumed to give the best agreement with experiment.

However, the exchange interaction between next-to-nearest neighbors (J2) seems a

bit large, particularly because no bridging ligands able to promote superexchange are

present.

To overcome the above mentioned drawbacks of the 2J-model, also the modeling

of a second exchange interaction by means of molecular field theory (MFT) using the

parameter λ is introduced as shown in Eq. (7.7). λ gives an average estimation of the

interaction with the eight surrounding complex cations and is defined in 7.8. [22] Sim-

ilar to the parameter Θp in the Curie-Weiss law given in 1.4, λ causes a parallel shift

of the χ−1
M (T ) plot. Already the use of a single intramolecular interaction J1 (1J-MFT-

model) is sufficient to yield a better description of the experimental χM values, as seen

from the lower χ2 values in Table 7.6.
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Figure 7.12.: Experimental χM values (empty squares) for 42. The colored
lines represent simulations for the 1J-, 2J-, and 3J-model. The
parameters used are listed in Table 7.6.
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From a least-squares fit, J1 = −44cm-1 was obtained, if χTIP = 0.018cm3mol-1 and

ρ = 0.02 were held constant. With λ=−33cm-3mol, an additional intermolecular anti-

ferromagnetic exchange interaction is present. The simulated χM vs T plot in Fig. 7.12

matches remarkably well the experimental data and shows an even lower sum of the

squares of errors χ2. Since each the 2J- model as well as the 1J-MFT-model give rea-

sonable descriptions of the magnetic properties of 42, no clear statement which one

is closer to reality may be given. To clarify this ambiguity, BS-DFT calculations were

performed as described in the following section.

7.2.2. Broken-Symmetry DFT calculations

For the DFT treatment of 42, only the complex cation [(H3O)2⊂Cu6(tbdea)6]2+ as ob-

tained from the crystal structure was considered (referred to as Cu6/H3O+). The coordi-

nates of the hydrogen atoms were optimized utilizing the GGA functional BP86. Also,

the influence of the hydronium ions on the magnetic behavior was investigated by per-

forming analogue calculations on the metallacrown without the H3O+ ions present (re-

ferred to as Cu6). Similar cyclic hexanuclear systems containing Cu(II) and Ni(II) have

already been investigated by means of BS-DFT by Ruiz et al. [183] Assuming S6 symme-
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Figure 7.13.: Spin states necessary for the calculation of all exchange in-
teraction parameters of a symmetric hexanuclear cyclic com-
plexes.
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Figure 7.14.: Spin densities of all calculated spin states of Cu6/H3O+ in the
BS-DFT calculations. Isosurfaces were drawn at a spin density
of 0.003 e/Å3. α-spin density is depicted orange and β-spin
density blue, respectively. Carbon and hydrogen atoms were
omitted for clarity.
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7.2. Hexanuclear Copper(II) Metallacrown with Hydronium Guests

try, three non-equivalent exchange interactions J1, J2, and J3 arise (see Fig. 7.11). To

obtain all three coupling constants, the single point energies of the four spin states

shown in Fig. 7.13 have to be calculated. Upon neglecting the interaction between op-

posite metal ions (J3), Eqs. (7.9a) and (7.9b) arise:

J1 = ESA −EFM

6
(7.9a)

J2 = 3ESB −2EHS −ESA

12
(7.9b)

If all three interactions are considered, Eqs. (7.10a) to (7.10c) are obtained.

J1 = 6ETC −2EFM −ESA −3ESB

12
(7.10a)

J2 = 3ETC −EFM −2ESA

6
(7.10b)

J3 = ESA +ESB −2ETC

2
(7.10c)

Furthermore, substitution of all but two Cu(II) ions with diamagnetic Zn(II) ions was

used to calculate pairwise exchange interactions with Eq. (2.43), similar to the method-

ology used in Section 7.1.

The convergence of the desired spin states was verified by Mulliken population anal-

ysis and isosurface plots of the spin density, which are shown in Fig. 7.14. The single

point energies and spin expectation values are listed in Table 7.7 for Cu6/H3O+ and Ta-

ble 7.8 for Cu6, respectively. For the high-spin state, providing the maximal spin mul-

tiplicity, the relation


Ŝ2
= S(S+1) holds true. The broken-symmetry states show spin

contamination due to the mixing of wave functions of different spin multiplicities. For

these states, Eq. (7.11) is obeyed. [63]


Ŝ2

UHF =


Ŝ2
exact +Nβ−

N
i

N
j

Sαβi j

2 (7.11)

The spin contamination is owed to the monodeterminantial ansatz of density func-

tional theory. To overcome this problem, a multiconfigurational method like CASSCF

would be necessary, but due to the large active space required, this is not performed

routinely yet.

Employing either Eq. (7.9) or Eq. (7.10) the calculated value of J1 = −63cm-1 for

Cu6/H3O+ is obtained. The interaction between next-nearest neighbors J2, however,
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Table 7.7.: Energies and spin expectation values


Ŝ2


of the high-spin state
and the broken-symmetry states for Cu6/H3O+ .

State Energy [a.u.] ∆E [cm-1]


Ŝ2


HS (S = 3) -13117.54943712 380.1 12.01
SA (S = 0) -13117.55116896 0.0 2.95
SB (S = 0) -13117.55003279 249.4 2.99
TC (S = 1) -13117.55060076 124.7 3.97

Table 7.8.: Energies and spin expectation values


Ŝ2


of the high-spin state
and broken-symmetry states for Cu6.

State Energy [a.u.] ∆E [cm-1]


Ŝ2


HS (S = 3) -12963.78384644 323.4 12.02
SA (S = 0) -12963.78531996 0.0 2.96
SB (S = 0) -12963.78435012 212.9 3.00
TC (S = 1) -12963.78483512 106.4 3.98

Table 7.9.: Calculated exchange interactions parameters [cm-1] for Cu6/H3O+

and Cu6.

Cu6/H3O+ Cu6

Eq. (7.9) Eq. (7.10) Eq. (2.43)a Eq. (7.9) Eq. (7.10) Eq. (2.43)a

J1 −63.3 −63.3 −59.1 −53.9 −53.9 −50.1
J2 −1.0 −1.0 0.6 −0.9 −0.7 0.8
J3 – 0.0 0.0 – 0.0 0.0

aAll but the two Cu(II) ions involved in the interaction were replaced by Zn(II) ions.
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is found to be −1cm-1, which is several magnitudes smaller. The exchange interaction

J3 calculated with Eq. (7.10) is zero. Calculations on Zn-substituted structures with

2.43 yielded a slightly smaller J1 of −59cm-1, whereas the sign of J2 changes to fer-

romagnetic interaction (state energies are listed in Appendix D.3). The contradicting

sign of J2 from the different calculations and the very small magnitude indicate, that

the boundary of accuracy of the method is reached. J3 remains zero. In general, the

picture does not change drastically for Cu6, where the interactions J1 = −54cm-1 and

J2 = −1cm-1 are found, while J3 remains zero. Results for the Zn-substituted species

exhibit the same trends as above, predicting J1 = −50cm-1 and a small ferromagnetic

J2.

A closer look on the spin density distributions of Cu6/H3O+ in Fig. 7.14 does not show

any spin density at the hydronium ion. Hence, no superexchange pathway involving

the guest molecule is proposed. Mulliken population analysis reveals, how the spin

density changes upon the loss of the hydronium ion in Cu6. While the spin density at

the Cu(II) ions does not change upon removing the H3O+ ions, the spin density located

at the oxygen atoms experiences moderate changes. For the oxygen atoms O1 (atom

numbering as depicted in Figs. 7.8 and 7.9 is used), all pointing away from the H3O+

ion, the spin density is decreased from 0.171e to 0.159e, whereas the bridging oxygens

O2, that point towards the center of the metallacrown, is increased from 0.082 to 0.139.

Also, the spin density at the coordinating nitrogen atoms decreases from 0.093 to 0.058.

Thus, the hydrogen bonds between the hydronium ions and O2 decrease the spin den-

sity at O1, which lies in the x y-plane of both coordinated Cu(II) ions, and has therefore

a larger influence on the Cu−Cu exchange interaction J1. The increased spin density

at O2 is not similarly decisive for the exchange coupling, since the magnetic orbitals of

neighboring do reside in their x y-planes, that intersect at the ligand atom O1.

From the calculated values of the exchange interactions, conclusions for the quality

of the aforementioned 2J- and 1J-MFT-models for the description of the experimen-

tal data in Section 7.2.1 can be made. The DFT results, especially for J2, are in direct

contrast the results from the 2J-model. While BS-DFT predicts almost zero exchange

coupling, the 2J-model demands an interaction of almost half the size ofµ2-O-bridged

neighbors, which is rather counter-intuitive. The 1J-MFT-model, however, yields a J1

of −44cm-1, which is overestimated in both models Cu6/H3O+ and Cu6. It is worth not-

ing that the position of the hydrogen atoms of the H3O+ guest ion were also optimized

in the structure of Cu6/H3O+ . Furthermore, the very small second intramolecular ex-

change interaction found from DFT is confirmed with the 1J-model including MFT.
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Unfortunately, the intermolecular interaction cannot be investigated by similar tech-

niques.

7.3. Ferromagnetic Trinuclear Chromium(III)

Complexes

C3-symmetric systems of non-integer spin centers are interesting research subjects

for chemists and physicists. For the case of antiferromagnetic exchange interaction

between the paramagnetic centers, a degenerate S = 1
2 ground state arises. In con-

trast, integer-spin centers would lead to an S = 0 ground state if antiferromagnet-

ically coupled. For example, the extensively studied triaminoguanidine complexe

[Cu3(TAGH)(bipy)3](ClO4) (44) and its derivatives show a strong antiferromagnetic ex-

change interaction with J < −300cm-1, [19,38] leading to a large energetic separation

of the degenerated ground state. Coherence time measurements revealed outstanding

properties of 44 for the application as Qubit. Other non-integer spin ions that might be

suitable candidates for potential Qubits include cobalt(II) (S = 3
2 ), iron(III) (S = 5

2 ), and

chromium(III)(S = 3
2 ). While the iron(III) complexes exhibit antiferromagnetic cou-

pling of intermediate magnitude, [38,184] the magnetic behavior of the cobalt(II) com-

plex is hard to interpret due to the strong zero-field splitting intrinsic for high-spin d7

ions. Hence, no clear value could be assigned for J of the trinuclear cobalt(II) com-

plex. [38]

For different complexes of the constitution [Cr3(TAGR)(bipy)3(Cl)3]Cl (45) however,

an increasing χM T value was measured in the low temperature range, indicating fer-

romagnetic coupling between the Cr(III) ions. [54] Three different TAG ligand deriva-

tives were used to synthesize C3 symmetric complexes, but despite numerous crys-

tallization attempts, no crystals of suitable quality for single-crystal diffraction were

obtained. The isotope patterns available from mass spectrometry undoubtfully identi-

fied [Cr3(TAGR)(bipy)3(Cl)3]+ cations. [54] The results from elemental analysis however,

do not give a meaningful result due to the formation of carbides and nitrides. TGA and

SQUID magnetometry, however, reasonably confirm the hypothesis of the constitution

[Cr3(L)(bipy)3(Cl)3]Cl for all complexes. [54] Least-squares fits of the χM T data with the

C3 symmetric spin-Hamiltonian

Ĥ =
3

i=1
giµB Ŝi H − J


Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ1Ŝ3


(7.12)
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Figure 7.15.: Energy spectrum of a C3-symmetric triangular system of S = 3
2

ions. Assuming a positive sign of J , the energy of the ferromag-
netic state was arbitrarily chosen to be zero.

yielded isotropic exchange interaction parameters between +2.3 and +2.6cm-1 for

these complexes. To clear the origin of the ferromagnetic exchange interaction, 45 was

investigated with BS-DFT calculations.

7.3.1. Energy Spectrum of [Cr3(TAGR)(bipy)3(Cl)3]Cl

For the understanding of the electronic structure of 45, the energy spectrum of the

exchange states is briefly described. For the construction of the energy ladder, the op-

erator Ŝ′ = Ŝ1 + Ŝ2 + Ŝ3 is substituted into the exchange part of the Hamiltonian from

Eq. (7.12), leading to the Hamiltonian in Eq. (7.13). Eliminating the constant terms Ŝ2
i ,

the energies of the states described by S′ can be calculated by Eq. (7.14). After arbitrar-

ily choosing E
9

2

= 0, the distribution of the spin states is illustrated in Fig. 7.15.

Ĥ =− J

2


Ŝ′2 − Ŝ2

1 − Ŝ2
2 − Ŝ2

3


(7.13)

E

S′=− J

2
S′ S′+1


(7.14)

The S′ = 1
2 state shows a twofold degeneracy, but lies on the top of the energy spectrum

due to the positive sign of J . It is therefore very unlikely to exhibit any properties of

a Qubit. The origin of the ferromagnetic interaction within 45 still remains unclear
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and thus, BS-DFT calculations were performed to unravel the nature of the magntic

behavior.

7.3.2. Broken-Symmetry DFT Calculations

Due to the lack of a crystal structure for all Cr(III) complexes, the coordinates were gen-

erated by the manipulation of the crystal structure of 44. The structure was then fully

optimized using GGA-DFT (RI-BP86, def2-TZVP). Only the complex cation with the un-

substituted ligand TAGH was investigated since the structural differences found in the

solid state are most likely governed by the peripheral substituents. VThe differences of

the crystal packing caused by these packing effects cannot be accounted for in the op-

timization procedure of a single molecule. The single point energies of 45 calculated

using the B3LYP functional and a def2-TZVP basis set are listed in Table 7.10). Both the

results for the ferromagnetic state and for the broken-symmetry state were checked for

the right spin state of the Cr(III) ions utilizing the Mulliken population analysis.

Assuming the weak interaction limit with the corresponding expression from

Eq. (2.43), the formula shown in Eq. (7.15) for the exchange interaction parameter in

45 was deduced. Employing the DFT energies of the high-spin and broken-symmetry

states listed in Table 7.10, a value of J = +3.8cm-1 is obtained. Considering that no

crystal structure of the complexes were available and an optimized structure had to be

used, this is in very good agreement with the experimental results.

J = EBS −EHS

12
(7.15)

To explain the origin of the ferromagnetic ground state of 45, the spin densities of the

high-spin state and the broken-symmetry state depicted in Fig. 7.16 were inspected.

The spin density is mainly located in a cube-shaped space around the Cr(III) ions. This

is the expected spatial distribution of electron density for a t2g
3 configuration, where

the dx y , dxz , and dy z orbitals are singly occupied. Due to the imine nitrogens of the TAG

Table 7.10.: Single point energies of HS and BS state of 45.

State Energy [a.u.] rel. Energy [cm-1]


Ŝ2


HS (S = 9/2) -7401.1072755083 0.0 24.84
BS (S = 3/2) -7401.1070668901 45.8 6.84

118



7.3. Ferromagnetic Trinuclear Chromium(III) Complexes

Figure 7.16.: Plots of spin density of the high-spin state (left) and the
broken-symmetry state (right) of 45. Isosurfaces were drawn
at 0.003e/Å3 with α-spin depicted by orange surfaces and β-
spin depicted by blue surfaces.

Figure 7.17.: Plots of the spin density for the high-spin state (left) and the
broken-symmetry state (right) of 44. Isosurfaces were drawn
at 0.005e/Å3 with α-spin depicted by orange surfaces and β-
spin depicted by blue surfaces.
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ligand being primarilyσ-donors, non-zero spin density is found at the ligand backbone

only to a small degree. The t2g symmetry of the singly occupied orbitals at the Cr(III)

ions and the lack of the TAG ligands π-donor properties cause a small overlap between

the ligand MOs and the d-orbitals. The empty eg-orbitals are of suitable symmetry, but

are found at significantly higher energy. For comparision, also the spin densities for

the high-spin and broken-symmetry states of 44 are depicted in Fig. 7.17. There, the

dx2−y2 -orbital is singly occupied, and thus, antiferromagnetic exchange is effectively

mediated by the TAG backbone via superexchange. Other late transition metals show

a similar sign of to exchange interaction as Cu(II) when coordinated with this ligand

system. If the TAG ligand is defined as the x y-plane of the Cr(III) in 45, the dxz- and

dy z-orbital show a pronounced mixing with the px- and py -orbital of the chloro lig-

and, explaining the ring-like spin distribution in Fig. 7.16 in the apical position. The

dx y -orbital shows significant overlap of π-character with the p-orbital of the pheno-

late oxygen.

Corrensponding Orbitals

For a better understanding of the orbital interactions, that lead to ferromagnetic in-

teraction, the diamagnetically substituted structure Cr2Zn was investigated with the

corresponding orbital transformation. [87] The coupling constant calculated directly

with Eq. (2.43) from the energy difference of the HS and BS state reproduces the value

given above within the computational errors (J =+4.1cm-1). The non-orthogonal cor-

responding orbitals are depicted in Fig. 7.18 together with the spatial overlap integrals

S = φα|φβ. The magnitude of the overlap of the magnetic orbitals is rather small with

S < 0.05 for all SOMO pairs. Values reported in the literature suggest significantly larger

overlap necessary for antiferromagnetic exchange interaction. [91] In general, the visu-

alization of the corresponding orbitals confirm the conclusions obtained from the spin

density distributions.
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S = 0.044

S = 0.017

S = 0.005

Figure 7.18.: Corresponding Orbitals obtained from the BS determinant of
Cr2Zn. α-spin-orbitals are depicted blue, β-spin-orbitals red,
darker (lighter) lobes resemble positive (negative) sign of the
wf (isosurface value 0.03e/Å3). On the right, values for the spa-
tial overlap integrals are given.
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CHAPTER

EIGHT

CONCLUSION

In this work, several aspects of molecular magnetism were investigated. Synthetic

works led to dinuclear complexes of transition metal ions, which, in the case of Co(II)

exhibited slow magnetic relaxation properties. Multiconfigurational calculations on

Co(II) complexes with different structural motifs gave insight into the ZFS in tetra-

hedral environments as well as into potentially high-performing SMMs due to linear

coordination. The magnetic properties of lanthanide(III) complexes with the TAG lig-

and system were calculated with the CASSCF/RASSI methodology, and simulations of

the susceptibilities were used for the interpretation of hydrogen-bond mediated inter-

actions. A few open questions concerning exchange coupled systems were addressed

with BS-DFT calculations.

Carbazole-Based Dinuclear Metallamacrocycles

The Schiff-base ligands 4 and 5 involving a substituted carbazole moiety were em-

ployed to prepare the five transition metal complexes 6-10 with the general constitu-

tion [M2(L)2]. The metal ions are coordinated in a strongly distorted (Cu(II)) or almost

ideally tetrahedral (Co(II), Zn(II)) [N2O2] environment. For the Cu(II) complexes 6 and

7, measurements of the magnetic properties yielded weak antiferromagnetic exchange

interactions of −2.3 and −2.4cm-1, respectively, which was also confirmed by BS-DFT.

EPR measurements revealed axiality of the g -tensor with a small rhombic distortion for

6, and considerable hyperfine splitting for 7. The Co(II) complexes 8 and 9 exhibited

a rather large ZFS of D = −37 and −38cm-1, respectively, as determined by fits of the

magnetization data. Furthermore, slow magnetic relaxation behavior was observed for

both complexes, with 8 even showing an out-of-phase signal at zero applied field.

123



8. Conclusion

Electronic Structure of Tetrahedral Cobalt(II) SMMs

Eight tetrahedral and four square-planar Co(II) complexes with [N2O2] donor sets were

calculated with the CASSCF/CASPT2/RASSI-SO protocol. It was shown, that the cor-

rect prediction of the ground state multiplicity demanded the inclusion of dynamical

correlation effects via CASPT2. Calculated spin-orbit energies are overestimated com-

pared to measured relaxation barrier heights by 20-25%. In general, a larger distortion

angle δ goes along with larger ZFS parameters and Ueff values, respectively. To further

evaluate the connection between the distortion and spin-orbit interactions, calcula-

tions on a model complex with respect to the distortion angle δ were performed. The

transition between quartet and doublet ground state was predicted for 20◦ < δ < 25◦.

Distortion angles below 60° cause significant mixing of the two lowest quartet states,

which is accompanied by larger axial ZFS, but also increasing rhombicity.

Linear Cobalt(II) Complexes

Co(II) ions in a linear coordination environment were subject to multiconfigurational

calculations. The small molecule CoCl2 (D∞h symmetry) was briefly investigated to

get a general picture of the energy spectrum of linear Co(II) compounds. In contrast to

earlier reports, sophisticated ab initio methods predicted a 4Φg ground state. This gives

rise to a large overall angular momentum ofΩ= 9
2 for the lowest SO state. The expected

spin reversal barrier heights for the reported linear Co(II) complexes were found to be

above 500 K for all complexes except one. Based on these results, dynamic susceptibil-

ity measurements are very likely to reveal SMM behavior with Ueff magnitudes not yet

reported for Co(II) complexes.

Multiconfigurational Calculations on Lanthanide(III) SMMs

TAG ligands were shown to form complexes with lanthanide(III) ions in the works

of Daus, [185] Schuch, [54] and Möller. [55] Five Dy(III) and one Er(III) complexes have

been investigated with the CASSCF/RASSI-SO methodology concerning their spin-

orbit states. For the Dy(III) complexes, a well separated
M J =±15

2


KD was found to

be the ground state, which exhibits only small transversal elements of the g -tensor.

A clear correlation between structural parameters and spin reversal barriers was not

found. Intra-dimer interactions were treated considering the exact dipole-dipole inter-

actions as well as arbitrary magnitudes of the exchange interactions, neatly explaining
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the χM T data, that would otherwise be inaccessible for interpretation. The absence of

slow magnetic relaxation at zero applied dc field for the Er(III) complex may be caused

by the mixing of the different
M J


states belonging to the 4I15/2 ground term, as shown

by decomposition of the SO wave functions.

Broken-Symmetry DFT Calculations on Oligonuclear
Transition Metal Complexes

Cu4O4 Cubanes Eight complexes with a Cu4O4 cubane substructure employing

sugar-derived ligand systems were investigated with the BS-DFT method. The two

classes of 4+2 and 2+4 cubanes show different magnetic behavior due to their bridg-

ing motifs between Cu(II) ions. The antiferromagnetic exchange interaction in the 4+2

class cubanes between all nearest neighbors found by experiment is confirmed by the

calculations. Furthermore, it was found, that the magnitude of J may vary with respect

to the parameters ∡(Cu−O−Cu) and ∡(Cux y −Cux y ). The susceptibility data for the

calculated values was simulated with satisfying agreement with the experiment. 2+4

class cubanes exhibit preferably ferromagnetic exchange between Cu(II) ions close to

each other, which was confirmed by BS-DFT. For complex 41, however, one ferromag-

netic and one antiferromagnetic J was found. This is in accordance to transition angle

of ∡(Cu−O−Cu) = 97.5◦ suggested by Crawford. [177]

Hexanuclear Copper(II) Metallacoronate The S6-symmetric hexanuclear Cu(II)

metallacrown 42 was prepared earlier by Zharkuskaya. So far, the interpretation of the

magnetic data gave unrealistic values for intra- and intermolecular exchange interac-

tions. A reinvestigation of the experimental χM data showed, that, if intermolecular

interactions are included, only the interaction between nearest neighbors has to be

considered in order to describe the magnetic behavior. Intermediate antiferromag-

netic exchange of J1 = −44cm-1 and a λ = −33cm−3mol were found. Two approaches

have been used to calculate the exchange interaction parameters with the BS-DFT:

calculating N + 1 spin states to extract N interactions, and the substitution of para-

magnetic Cu(II) ions with diamagnetic Zn(II). Both approaches confirmed antiferro-

magnetic exchange between neighboring Cu(II) ions, while the other interactions were

also found to be close to zero. The superexchange pathway is mainly mediated by the

shared µ2-oxo bridge in the x y-plane of neighboring Cu(II) ions. The magnitude of

the exchange interaction is increased to a small extent by H3O+ guest ions due to the
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8. Conclusion

hydrogen bonds, that cause an increase of spin density at the bridging oxygen atom.

Ferromagnetic Exchange in Chromium(III) Trimers The TAG ligand system

forms trinuclear complexes with many transition metals in the oxidation states +2 and

+3. Cr(III) complexes, in contrast to most other known complexes, exhibited small fer-

romagnetic exchange interactions. This behavior was confirmed by BS-DFT calcula-

tions on an optimized model complex, since no crystal structure data was available. An

exchange interaction of J = 3.8cm-1 was in good agreement with experimental values.

Due to the symmetry of the singly occupied t2g orbitals, an efficient superexchange

pathway over the TAG ligand backbone is denied, and, hence, only a very small over-

lap of the magnetic orbitals is achieved. Corresponding orbital transformation yielded

spatial overlap integrals below 0.02 of the SOMOs, which further confirms the findings.
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CHAPTER

NINE

ZUSAMMENFASSUNG

Im Laufe dieser Arbeit wurden diverse Aspekte des molekularen Magnetismus un-

tersucht. Im synthetischen Teil wurden dinukleare Komplexe von Übergangsmetal-

len dargestellt, die im Falle der Cobalt(II)komplexe langsame magnetische Relaxa-

tion aufwiesen. Quantenchemische Rechnungen mit Multikonfigurationsmethoden

an Cobalt(II)komplexen mit unterschiedlichen Strukturmotiven ermöglichten neue

Erkenntnisse zur Nullfeldaufspaltung in tetraedrischen Koordinationsumgebungen

sowie zu möglichem SMM-Verhalten von linearen Komplexen mit sehr hohen Re-

laxationsbarrieren. Das magnetische Verhalten von Lanthanoid(III)komplexen mit

triaminoguanidin-basierten Liganden wurde mit der CASSCF/RASSI-SO Methodik be-

rechnet. Die Simulation der Suszeptibilität lieferte Einblicke in die Wechselwirkungen

innerhalb der wasserstoffverbrückten Dimere. Bisher noch nicht geklärte Fragen zu di-

versen austauschgekoppelten Systemen mit Übergangsmetallen wurden mit Broken-

Symmetry-DFT-Rechnungen untersucht.

Carbazol-Basierte Dinukleare Metallamakrozyklen

Die Schiffbase-Liganden 4 und 5 mit Carbazolgrundgerüst wurden zur Synthese der

fünf Übergangsmetallkomplexe 6-10 mit der allgemeinen Struktur [M2(L)2] einge-

setzt. Die Metallionen befanden sich ein einer stark verzerrten (Cu(II)) oder na-

hezu ideal tetraedrischen (Co(II), Zn(II)) [N2O2]-Koordinationsumgebung. Magneti-

sche Messungen an den Kupfer(II)komplexen 6 and 7 lieferten schwache antiferro-

magnetische Wechselwirkungen von −2.3 und −2.4cm-1 innerhalb der Dimere. Mit

BS-DFT-Rechnungen konnte dies bestätigt werden. EPR-Messungen an den Kup-

127



9. Zusammenfassung

fer(II)komplexen zeigten axiale g -Tensoren mit kleiner rhombischer Verzerrung für 6

und deutlicher Hyperfeinstruktur für 7. Die Cobalt(II)komplexe 8 und 9 wiesen einen

relativ großen Nullfeldaufspaltungsparameter von D <−35cm-1 auf, wie Anpassungen

der Magnetisierungsdaten ergaben.

Elektronische Struktur von Tetraedrischen
Cobalt(II)komplexen

Acht tetraedrische und vier quadratisch-planare Cobalt(II)komplexe mit [N2O2] Do-

norsätzen wurden mit dem CASSCF/CASPT2/RASSI-SO-Protokoll berechnet. Es wur-

de gezeigt, dass die korrekte Vorhersage der Grundzustandsmultiplizität die Einbezie-

hung von dynamischen Korrelationseffekten via CASPT2 erfordert. Die berechneten

Spin-Bahn-Energien überschätzen die gemessenen Relaxationsbarrieren um 20-25%.

Tendenziell verursacht ein größerer Verzerrungswinkel δ eine größere Nullfeldaufspal-

tung und damit einhergehend größer Spinumkehrbarrieren Ueff. Um den Zusammen-

hang zwischen Verzerrung und Spin-Bahn-Wechselwirkungen zu erforschen, wurden

Rechnungen an einem Modellkomplex in Abhängigkeit zum Winkel δ durchgeführt.

Ein Übergang von einem Quartet- zu einem Dublettgrundzustand wird im Bereich

20◦ < δ< 25◦ vorausgesagt. Für Verzerrungswinkel unter 60° zeigt sich signifikantes Mi-

schen der zwei niedrigsten Quartetzustände, das von steigender Nullfeldaufspaltung,

aber auch erhöhter Rhombizität begleitet wurde.

Lineare Cobalt(II)komplexe

Cobalt(II)ionen in einer linearen Koordinationsumgebung wurden mit Multikonfi-

gurationsmethoden untersucht. Die Elektronenstruktur des Moleküls CoCl2 (D2h-

Symmetry) wurde berechnet, um einen Überblick über die Zustandsstruktur in linea-

ren Cobalt(II)verbindungen zu gewinnen. Anders als in einigen früheren Arbeiten wur-

de mit leistungsfähigen ab initio Methoden ein 4Φg Grundzustand gefunden. Dies gibt

Grund zu der Annahme, dass der Spin-Bahn-Grundzustand einen sehr großen Ge-

samtdrehimpuls von Ω = 9
2 aufweist. Es wurden Relaxationsbarrieren von mehr als

500 K für alle bis auf einen zweifach koordinierten Cobalt(II)komplex berechnet. Auf-

grund dieser Ergebnisse werden bei dynamischen Suszeptibilitätsmessungen an die-

sen Komplexen sehr hohe Werte für Ueff erwartet, die in dieser Größe noch nicht bei

Cobalt(II) beobachtet wurden.
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Multikonfigurationsrechnungen an Lanthanoid(III)-SMMs

Triaminoguanidin-basierte Liganden können zur Synthese von Lanthano-

id(III)komplexen eingesetzt, wie in den Arbeiten von Daus, [185] Schuch, [54] und Möl-

ler [55] nachgewiesen wurde. Fünf Dysprosium(III)- und ein Erbium(III)komplex waren

Gegenstand von CASSCF/RASSI-SO-Rechnungen. Die Dysprosium(III)komplexe

wiesen ein energetisch isoliertes
M J =±15

2


Kramer-Dublett im Grundzustand auf,

dass nur kleine Transversalelemente des g -Tensors zeigte. Zwischen den strukturellen

Parametern und der Höhe der Relaxationsbarriere konnte kein klarer Zusammenhang

nachgewiesen werden. Wechselwirkungen innerhalb der Dimere, einschließlich der

Dipol-Dipol-Wechselwirkung als auch Austauschwechselwirkung festgelegter Größe,

wurden mit Hilfe von Simulation der Suszeptibilitätsdaten untersucht. Damit konnte

das Verhalten bei statischen SQUID-Messungen erklärt werden, das normalerweise

einer Interpretation unzugänglich ist. Die Abwesenheit von langsamer magneti-

scher Relaxation ohne angelegtes externes Feld beim Erbium(III)komplex wird sehr

wahrscheinlich durch das Mischen mehrerer
M J


-Zustände des 4I15/2-Grundterms

verursacht, wie in der Zerlegung der Spin-Bahn-Wellenfunktion gezeigt wurde.

Broken-Symmetry-DFT-Rechnungen an Oligonuklearen
Übergangsmetallkomplexen

Cu4O4-Cubane Acht Komplexe mit Cu4O4-Substruktur und zuckerhaltigen Ligan-

den wurden mit der BS-DFT Methode untersucht. Die zwei Unterklassen von 4+2-

sowie 2+4-Cubanen zeigen unterschiedliches magnetisches Verhalten aufgrund ih-

rer Verbrückungsmotive zwischen den Kupfer(II)ionen. Die antiferromagnetische Aus-

tauschwechselwirkung zwischen benachbarten Kupfer(II)ionen in den 4+2-Cubanen

konnte durch die Rechnungen bestätigt werden. Desweiteren wurde gezeigt, dass die

Größe von J von den Strukturparametern ∡(Cu−O−Cu) und ∡(Cux y −Cux y ) abhängt.

Die Suszeptibilitätsdaten wurden mit den berechneten Kopplungskonstanten simu-

liert und zeigten zufriedenstellende Übereinstimmung mit dem Experiment. Die 2+4-

Cubane zeigten vornehmlich ferromagnetischen Austausch zwischen nahe liegenden

Kupfer(II)ionen. Nur für Komplex 41 wurde eine ferromagnetische und eine antiferro-

magnetische Wechselwirkung berechnet. Dies stimmt überein mit einem Übergangs-

winkel von ∡(Cu−O−Cu) = 97.5◦, der von Crawford postuliert wurde. [177]
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9. Zusammenfassung

Hexanukleares Kupfer(II)metallacoronat Der S6-symmetrische hexanukleare

Kupfer(II)metallakronenether 42 wurde in früheren Arbeiten von Zharkuskaya syn-

thetisiert. Vorhergehende Untersuchungen der magnetischen Eigenschaften ergaben

allerdings unrealistische Werte für die intra- und intermolekularen Austauschwechsel-

wirkungen. Eine erneute Interpretation der χM -Messungen ergab, dass nur der Aus-

tausch zwischen direkt benachbarten Kupfer(II)ionen beachtet werden muss, sofern

auch intermolekulare Wechselwirkung berücksichtigt werden. Es wurde ein antiferro-

magnetisches Verhalten mit J1 = −44cm-1 innerhalb des Cu6-Ringes sowie ein inter-

molekularer Austausch von λ=−33cm−3mol ermittelt. Zwei verschiedene Ansätze zur

Berechnung der Austauschparameter wurden verwendet: Berechnen der Energien von

N +1 Spinzuständen, um N Kopplungskonstanten zu erhalten, als auch das Ersetzen

von allen außer zwei Kupfer(II)ionen mit diamagnetischem Zink(II). Beide Methoden

bestätigten Antiferromagnetismus als dominierende Wechselwirkung. Zwischen über-

nächsten Nachbarn und gegenüberliegenden Ionen wurde keine Kooperativität gefun-

den. Der Superaustausch verläuft über eine µ2-Oxo-Verbrückung, die die x y-Ebenen

benachbarter Kupfer(II)ionen verknüpft. Die Größe der Wechselwirkung wird zu ei-

nem Teil durch die H3O+-Gastionen über Wasserstoffbrücken verstärkt, da diese eine

Erhöhung der Spindichte an den verbrückenden Sauerstoffatomen verursachen.

Ferromagnetischer Austausch in Chrom(III)trimeren Die TAG-Liganden bil-

den mit zahlreichen Übergangsmetallen in den Oxidationsstufen +2 und +3 trinu-

kleare Komplexe. Im Gegensatz zum Großteil der bekannten Komplexe zeigen die

Chrom(III)komplexe ferromagnetisches Verhalten. Mit BS-DFT-Rechnungen konnte

das Vorzeichen der Wechselwirkung unter Verwendung einer optimierten Modell-

struktur bestätigt werden, da keine Kristallstrukturdaten erhalten werden konnten. Mit

J = 3.8cm-1 lag die Kopplungskonstante im Rahmen der rechnerischen Genauigkeit

nah bei der experimentellen Größe. Aufgrund der Symmetrie der einfach besetzten

t2g-Orbitale des Chrom(III) kann über das TAG-Gerüst der Superaustausch nicht effek-

tiv vermittelt werden, was zu einem sehr kleinen Überlapp der magnetischen Orbitale

führt. Die Corresponding Orbital Transformation lieferte Überlappintegrale von weni-

ger als 0.02, was auch auf Ferromagnetismus hindeutet.
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CHAPTER

TEN

PHYSICAL MEASUREMENTS

10.1. Instruments

1H and 13C NMR spectra were recorded on a Bruker Avance 200 and 400 spectrom-

eter. IR spectra for samples prepared as KBr pellets were measured on a Bruker

IFS55/Equinox spectrometer with a Raman unit FRA 106/S. IR spectra of pure samples

were measured with an additional Specac Golden Gate ATR unit. Thermogravimetric

analysis (TGA) for powdered samples was performed on a NETZSCH STA409PC Luxx

apparatus under constant flow of air ranging from room temperature up to 1000 °C

with a heating rate of 1 °C/min. Mass spectra were measured on a Bruker MAT SSQ

710 spectrometer for FAB ionization and on a MAT 95XL Finnigan spectrometer for

electrospray ionization. Elemental analysis (C, H, and N) was performed with a LECO

CHNS/932 analyzer and a VARIO EL III analyzer. EPR spectra were recorded on a

Bruker ESP300E using X-Band (9 GHz). Magnetic susceptibilities and magnetization

data were measured on powdered samples prepared from crystalline complexes in

gelatin capsules using a Quantum-Design MPMS-5 SQUID magnetometer equipped

with an 5 T magnet in the temperature range from 300 to 2 K. The measured data were

corrected for diamagnetism of the capsule and the intrinsic diamagnetism of the sam-

ple, estimated by measurements on a similar ligand system.

Cyclic voltammetric measurements were conducted in 3-electrode technique using

a Reference 600 potentiostat (Gamry Instruments, Warminster, USA). The instrument

was controlled by the DigiElch 7 software available from the same company. This

program provides not only routines for the digital simulation of electrochemical ex-
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10. Physical Measurements

periments but also those for performing the measurements in a consistent way mak-

ing use of the Gamry Electrochemical ToolkitTM library. The CVs were measured in

dichlormethane (containing 0.25M tetra-n-butylammonium- hexafluorophosphate)

under a blanket of solvent-saturated argon. The ohmic resistance which had to be

compensated for was determined by measuring the impedance of the system at po-

tentials where the faradaic current was negligibly small. Background correction was

accomplished by subtracting the current curves of the blank electrolyte (containing the

same concentration of supporting electrolyte) from the experimental CVs. The work-

ing electrode was a 1.6 mm (Figure 1) or 3 mm (Figure 2) carbon disk electrode (ALS

Japan). As reference electrode served a Ag/AgCl electrode in acetonitrile containing

0.25M tetra-n-butylammonium chloride. The potentials reported refer to the ferroce-

nium/ferrocene couple which was measured at the end of a series of experiments.

10.2. Crystal Structure Determination

Single crystals were selected from the mother liquor under a polarizing microscope

and fixed on fine glass fibers. Crystallographic data was collected on a Nonius Kap-

paCCD diffractometer employing graphite-monochromated Mo-Kα radiation (λ =
71.073pm). Summaries of the crystallographic and structure refinement data are given

in Appendix B. The data was corrected for Lorentz and polarization effects, but not

for absorption effects. Structures were solved by direct methods with SHELXS-97 and

refined by full-matrix least-squares techniques against F 2
0 using SHELXL-97. [186] Non-

hydrogen atoms were refined anisotropically, while hydrogen atoms were calculated

and treated as riding atoms with fixed thermal parameters. To model heavily disor-

dered solvent molecules in the structures of 7, 8, and 9, the SQUEEZE/BYPASS proce-

dure was employed. [114] Therein, disordered solvent molecules are only described as

solvent containing voids, whose electron density is not used for refining the position of

distinct atoms. Potential solvent containing areas are assigned automatically from the

areas of the structure, that are outside of the van-der-Waals sphere of atoms belonging

to the ordered part of the structure. Among these areas, only those able to contain at

least one solvent molecule defined by the radius r are considered. The contribution

of the solvent molecules is then subtracted from the observed data. The resulting file

with the intensity of the reflexes is then used for the subsequent refinement procedure.

Structure representations were done with the program OLEX2. [187]
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CHAPTER

ELEVEN

COMPUTATIONAL DETAILS

11.1. Broken-Symmetry Calculations

DFT calculations were performed using the TURBOMOLE 6.5 program package. [188] For

all atoms the triple-ζ basis set def2-TZPV proposed by Ahlrichs et al. [189] was used. If

not stated otherwise, hydrogen atoms were optimized prior to single point calculations

and were carried out using the B88 exchange functional [78] and the correlation func-

tionals VWN(V) [77] and P86 [80]. The geometry optimizations were accelerated further

by employing the resolution of identity approximation. Single Point energies for esti-

mating the exchange coupling constants were calculated using Becke´s three parame-

ter functional B3LYP. [190] Tight convergence criteria were applied ($scfconv = 8).

11.2. Multiconfigurational Calculations

Crystal structures with optimized hydrogen atoms (RI-BP86, def2-SVP) were used. For

the optimization, paramagnetic lanthanide(III) ions were replaced by the diamagnetic

La(III) ion to achieve convergence of the SCF steps.

CASSCF, [67] CASPT2 [191] and RASSI-SO [104] calculations were carried out using MOL-

CAS 7.8. [105] ANO-RCC type basis sets [192–194] were used for all atoms (contractions:

Ln ions –8s7p5d4f2g1h,Co–6s5p4d2f1g, coordinating O and N –4s3p2d1f, peripheral N

and C–3s2p, H–2s). To save time and disk space, the Choleski decomposition was used.

Calculations on Cobalt(II) involved a (7,10) active space with a double d-set of or-

bitals. 10 quartet states and 40 doublet states were calculated within the CASSCF pro-
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11. Computational Details

cedure to account for all states arising from a d7 configuration. CASPT2 calculations

were done on all quartet states and on the 12 lowest doublet states. Otherwise, in-

truder states were regularly encountered. RASSI-SO calculations were performed on

the CASPT2 wave functions for the states calculated.

For lanthanide complexes, a CAS(n, 7) was chosen, with n being the number of f-

electrons for the lanthanide(III) ion. The CASSCF calculations were performed includ-

ing on a number of states depending of the specific lanthanide(III) ion. CASPT2 calcu-

lations were omitted for lanthanide(III) complexes. The RASSI procedure included all

calculated states of all multiplicities.

Calculations of the magnetic properties for mononuclear complexes were done us-

ing the SINGLE_ANISO [96] module. Magnetic properties of the hydrogen-bridged

Dy(III) dimers were calculated with the POLY_ANISO [98] module.
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CHAPTER

TWELVE

SYNTHESIS

12.1. Materials

Raney nickel was stored under water and was washed with ethanol and ethyl acetate

prior to usage. All solvents and reagents were used as received without further purifi-

cation.

12.2. Preparation

1,3,6,8-Tetra-tert-butyl-9H-cabazole (1)

This compound was synthesised according to a reported procedure. [111]

Sum formula: C28H41N, 391.63 g/mol.

Yield: 72%, colorless crystals, mp. 191°C.

1H-NMR (400 MHz, CDCl3, ppm): δ = 8.17 (s, 1H, NH), 7.97 (s, 2H, CH), 7.43 (d, 2H,

CH, 4 J = 1.6 Hz), 1.62 (s, 18H, HtBu), 1.49 (s, 18H, HtBu).

13C-NMR (100 MHz, CDCl3, ppm): δ = 142.0, 135.2, 131.6, 123.8, 120.1, 113.9, 34.8,

34.7, 32.1, 30.4.
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12. Synthesis

1,8-Di-tert-butyl-3,6-dinitro-9H-carbazole (2)

Copper(II) nitrate trihydrate (1.74 g, 7.2 mmol) was solved in a mixture of glacial acetic

acid (5 ml) und acetic acid anhydride (15 ml) at 55 °C. Then 1 (2.34 g, 6.0 mmol) was

added to the solution as well as additional acetic acid (5 ml) and acetic acid anhydride

(25 ml). This mixture was stirred for 15 minutes at 70 °C. After the solution was allowed

to cool to room temperature, it was poured into water (200 ml), yielding a yellow pre-

cipitate. The solid was filtered off, washed with water and heated with ethanol (150 ml).

After the suspension cooled down to room temperature, the product was filtered off

and washed several times with ethanol to give a pale yellow solid.

Sum formula: C30H23N3O4, 369.41 g/mol.

Yield: 69%, colorless crystals, mp. 292°C.

1H-NMR (400 MHz, CDCl3, ppm): δ= 8.93–9.02 (m, 3H, CH, NH), 8.40 (d, 2H, CH), 1.68

(s, 18H, HtBu).

13C-NMR (100 MHz, CDCl3, ppm): δ = 142.3, 140.9, 134.1, 123.6, 119.7, 115.5, 34.9,

30.3.

MS (DEI): 369 [M+], 354, 339, 326, 308, 293, 247, 204, 170.

IR (ATR, cm-1): ν̃ = 3508 w (NH), 2965 w (CH3, ν̃as), 1587 w, 1521 m, 1487 m, 1396 w,

1370 w, 1324 s, 1304 m, 1261 w, 1221 w, 1185 w, 1125 w, 1068 w, 924 w, 897 m, 881 w, 828

w, 746 s, 664 w, 588 w, 552 w, 461 m, 409 m.

Elemental analysis for C30H23N3O4 (369.41 g/mol): calculated (%) = C 65.03, H 6.28, N

11.37; found (%) = C 65.28, H 6.14, N 11.39.

3,6-Diamino-1,8-di-tert-butyl-9H-carbazole (3)

2 (3.7 g, 10.0 mmol) was suspended in ethyl acetate (50 ml). A spatula of Raney nickel

was added to the suspension. This mixture was heated to 80 °C in an autoclave with a

hydrogen atmosphere (60 bar). After 8 hours the solution was allowed to cool to room

temperature and the excess of hydrogen was released. The Raney nickel was filtered

off and the solvent was removed from the filtrate by destillation in vacuo. The product

3 was obtained as a colorless powder. It was used without further purification.
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12.2. Preparation

General Synthesis of the Ligands

To a methanolic solution (10 ml) of 3 (1.33 g, 4.3 mmol), the desired derivative of sali-

cylic aldehyde (9.2 mmol) was added. The solution turned instantly yellow and after 10

to 30 minutes, a yellow solid precipitated. The reaction mixture was refluxed for an ad-

ditional hour. After allowing the reaction mixture to cool down, the solid was collected

by filtration and washed with a few ml of methanol.

H2LH (4)

Salicyl aldehyde (1.0 ml, 9.2 mmol) was added.

Sum formula: C34H35N3O2, 517.66 g/mol.

Yield: 89%, yellow crystals, mp. 259°C.
1H-NMR (400 MHz, CDCl3, ppm): δ = 8.83 (s, 1H, CH), 8.45 (s, 1H, NH), 7.96 (s, 2H,

CH), 7.35-7.55 (m, 6H, CH, Himin), 7.05-7.12 (m, 2H, CH), 6.94-7.03 (m, 2H, CH), 1.67

(s, 18H, HtBu).
13C-NMR (100 MHz, CDCl3, ppm): δ = 161.1, 160.4, 141.3, 136.5, 133.8, 132.6, 131.9,

124.6, 119.6, 118.4, 117.2, 109.3 (CH), 34.7 (C(CH3)3), 30.4 (CH3).

MS (FAB): 518 [M+], 502, 468, 475, 460, 446, 424, 413, 398, 382, 367, 339, 325, 307, 289,

259, 242, 230, 204.

IR (KBr, cm-1): ν̃ = 3523 m (NH), 3447 wb (OH), 3055 w (CHar), 2963 s, 2933 w, 2906

w, 2870 w (all CH3), 1617 s, 1572 m, 1498 m, 1458 m, 1420 m, 1396 m, 1369 m, 1320 w,

1294 m, 1279 m, 1234 w, 1196 w, 1177 w, 1152 m, 1115 m, 1034 w, 974 w, 955 w, 944 w,

905 w, 883 w, 876 w, 853 w, 768 m, 752 s, 738 w, 626 w, 585 w.

Elemental analysis for H2LH [C34H35N3O2] (517.66 g/mol): calculated (%) = C 78.89, H

6.81, N 8.12; found (%) = C 78.50, H 6.97, N 8.08.

H2LtBu (5)

3,5-Di-tert-butyl salicyl aldehyde (2.15 g, 9.2 mmol) was added.

Sum formula: C50H67N3O2, 742.09 g/mol.

Yield: 78%, yellow needles, mp. 322 (dec.)°C.
1H-NMR (400 MHz, CDCl3, ppm): δ= 14.12 (s, 2H, OH), 8.83 (s, 2H, Himin), 8.39 (s, 1H,

NH), 7.93 (d, 2H, CH, 4 J = 1.4 Hz), 7.45 (d, 2H, CH, 4 J = 2.2 Hz), 7.41 (d, 2H, CH, 4 J =
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1.6 Hz), 7.29 (d, 2H, CH, 4 J = 2.2 Hz), 1.64 (s, 18H, HtBu), 1.51 (s, 18H, HtBu), 1.36 (s, 18H,

HtBu)).
13C-NMR (50 MHz, CDCl3, ppm): δ = 161.4, 158.1, 141.3, 140.4, 136.8, 133.6, 127.4,

126.6, 124.6, 118.7, 118.5, 109.0, 35.1, 34.2, 31.5, 30.4, 29.5.

MS (FAB): 742 [M+], 726, 686, 670, 630, 612, 552, 536, 525, 494, 438, 407, 379, 332, 321,

307, 289, 244, 218.

IR (ATR, cm-1): ν̃ = 3529 w (NH), 2954 s, 2905 m, 2869 m (all CH3), 1614 m, 1573 m,

1471 s, 1392 m, 1361 w, 1249 m, 1170 s, 944 w, 879 m, 853 m, 773 w, 733 w, 660 w, 634 w,

506 w, 440 w, 417 w.

Elemental analysis for H2LtBu [C50H67N3O2] (742.09 g/mol): calculated (%) = C 80.93,

H 9.10, N 5.66; found (%) = C 80.77, H 9.21, N 5.58.

General Synthesis of the Complexes

A solution of the ligand (0.25 mmol) in chloroform (3 ml) in a test tube was overlayed

with a solvent mixture (methanol/chloroform 1:1, 4 ml). A solution of the metal acetate

(0.25 mmol) in methanol (3 ml) was added as the third layer. The test tube was sealed

with a glass stopper and after one week single crystals of the complex were filtered of

and washed with methanol/chloroform 1:1.

[Cu2(LH)2] (6)

Cu(OAc)2 ·H2O (50 mg, 0.25 mol) and ligand H2LH (129 mg, 0.25 mol) were used.

Sum formula: C68H66Cu2N6O4, 1158.38 g/mol.

Yield: 54%, brown crystals, mp. > 300 (dec.)°C.

MS (Micro-ESI): 1157 [M+], 413.

IR (KBr, cm-1): ν̃ = 3522 m (NH), 3073 w, 3054 w, 3019 m (all CHar), 2962 w, 2907 w,

2869 w (all CH3), 1619 s, 1603 s, 1533 m , 1492 w, 1465 w, 1438 m, 1420 w, 1407 w, 1395

w, 1367 w, 1344 m, 1320 m, 1295 w, 1234 w, 1177 m, 1148 m, 1123 w, 1030 w, 945 w, 912

w, 877 w, 862 w, 751 m, 737 m.

Elemental analysis for [Cu2(LH)2] [C68H66Cu2N6O4] (1158.38 g/mol): calculated (%) =
C 70.51, H 5.74, N 7.25; found (%) = C 70.28, H 5.73, N 7.04.

X-Ray Structure: fo4112.
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12.2. Preparation

[Cu2(LtBu)2] (7)

Cu(OAc)2 ·H2O (50 mg, 0.25 mol) and ligand H2LtBu (183 mg, 0.25 mol) were used.

Sum formula: C100H130Cu2N6O4, 1607.23 g/mol.

Yield: 40%, brown crystals, mp. > 300 (dec.)°C.

MS (Micro-ESI): 1605 [M+], 742, 615, 587, 559, 413, 301, 273, 255.

IR (KBr, cm-1): ν̃ = 3528 w (NH), 2959 s, 2907 w, 2870 w (all CH3), 1615 s, 1596 s, 1525

m, 1492 w, 1428 m, 1385 w, 1362 w, 1325 w, 1296 w, 1254 w, 1166 s, 1132 w, 879, w, 856

w, 835 w, 789 w, 745 w, 535 w, 520 w.

Elemental analysis for [Cu2(LtBu)2] [C100H130Cu2N6O4] (1607.23 g/mol): calculated

(%) = C 74.73, H 8.15, N 5.23; found (%) = C 74.64, H 8.28, N 5.15.

X-Ray Structure: fo4111.

[Co2(LH)2] (8)

Co(OAc)2 ·4 H2O (63 mg, 0.25 mol) and ligand H2LH (129 mg, 0.25 mol) were used.

Sum formula: C68H66Co2N6O4, 1148 g/mol.

Yield: 60%, red crystals, mp. > 300 (dec.)°C.

MS (ESI): 1149 [M+], 1171 [M + Na+], 518.

IR (ATR, cm-1): ν̃= 3526 w (NH), 2960 w , 2871 w (all CH3), 1593 s, 1532 s, 1438 s, 1298

s, 1147 s, 853 m, 754 vs, 574 m, 520 m, 477 m, 440 m.

Elemental analysis for [Co2(LH)2]·4CHCl3·MeOH [C73H74Co2N6O5Cl12]

(1658.7 g/mol): calculated (%) = C 52.86, H 4.50, N 5.06; found (%) = C 52.84, H

4.25, N 5.03.

X-Ray Structure: fo4385.

[Co2(LtBu)2] (9)

Cu(OAc)2 ·H2O (63 mg, 0.25 mol) and ligand H2LtBu (183 mg, 0.25 mol) were used.

Sum formula: C100H130Co2N6O4, 1598.0 g/mol.

Yield: 57%, red crystals, mp. > 300 (dec.)°C.

MS (ESI): 1598 [M+], 1620 [M + Na+], 1541, 742.

IR (ATR, cm-1): ν̃= 3526 v (NH), 2957 s, 2904 m, 2869 m (all CH3), 1585 s, 1525 s, 1490

w, 1421 s, 1383 m, 1320 w, 1296 w, 1253 m, 1163 vs, 1133 w, 883 w, 853 w, 837 w, 787 w,
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12. Synthesis

751 vs, 550 m, 521 m, 482 w, 440 w.

Elemental analysis for [Co2(LtBu)2] [C100H130Co2N6O4] (1598.0 g/mol): calculated (%)

= C 75.16, H 8.20, N 5.26; found (%) = C 74.69, H 8.19, N 5.35.

X-Ray Structure: fo4384.

[Zn2(LH)2] (10)

Zn(OAc)2 ·2 H2O (55 mg, 0.25 mol) and ligand H2LH (129 mg, 0.25 mol) were used.

Sum formula: C68H66Zn2N6O4, 1162.07 g/mol.

Yield: 38%, yellow crystals, mp. > 300 (dec.)°C.

MS (Micro-ESI): 1159 [M+], 587, 518, 414.

IR (ATR, cm-1): ν̃= 3522 w (NH), 3435 wb (OH), 3051 w, 3018 w (all CHar), 2961 m, 2907

w, 2871 w (all CH3), 1618 s, 1603 vs, 1533 s, 1493 m, 1464 s, 1443 s, 1419 m, 1386 w, 1368

w, 1346 m, 1320 m, 1295 w, 1248 w, 1235 w, 1174 m, 1148 s, 1124 w, 1031 w, 983 w, 962

w, 946 w, 914 w, 881, w, 854 m, 755 s, 740 m, 663 w, 607 w, 568 w, 520 w, 476 w, 432 w.

Elemental analysis for [Zn2(LH)2]·1.5CHCl3 [C69.5H67.5Zn2N6O4Cl4.5] (1341.14 g/mol):

calculated (%) = C 62.24, H 5.07, N 6.26; found (%) = C 61.87, H 5.24, N 5.99.

X-Ray Structure: fo4113.
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A

STRUCTURAL DETAILS

A.1. Carbazole-Based Complexes
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A. Structural Details

Figure A.1.: Packing diagram of [Cu2(LH)2] ·5 CHCl3 (6), viewing along [100]
direction of the crystal lattice. Although this view seemingly
shows π-π stacking between the salicylidene moieties, the
molecules are translated by 1a = 1096.47pm. Hydrogen atoms
were omitted for the sake of clarity.
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A.1. Carbazole-Based Complexes

Figure A.2.: Packing diagram of [Cu2(LtBu)2]·2.75 CHCl3 (7), viewing along
[100] direction of the crystal lattice. Although this view seem-
ingly shows π-π stacking between the salicylidene moieties, the
molecules are translated by 1a = 1230.77pm. Hydrogen atoms
were omitted for the sake of clarity.
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A. Structural Details

Figure A.3.: Packing diagram of [Co2(LH)2]·2.67 CHCl3 (8), viewing along
[001] direction of the crystal lattice. Hydrogen atoms were omit-
ted for the sake of clarity.

Figure A.4.: Packing diagram of [Co2(LtBu)2]·4.75 CHCl3 (9), viewing along
[100] direction of the crystal lattice. Although this view seem-
ingly shows π-π stacking between the salicylidene moieties, the
molecules are translated by 1a = 1230.77pm. Hydrogen atoms
were omitted for the sake of clarity.
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A.1. Carbazole-Based Complexes

Figure A.5.: Packing diagram of [Zn2(LH)2] ·4 CHCl3 ·2 MeOH (10), viewing
along [001] direction of the crystal lattice. Hydrogen atoms were
omitted for the sake of clarity.
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B

CRYSTALLOGRAPHIC DETAILS
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B. Crystallographic Details

Table B.1.: Crystallographic data and structure refinement parameters for
compound [Cu2(LH)2] ·5 CHCl3 (6). Internal structure code:
fo4112.

Formula C73H71Cl15Cu2N6O4

Formular weight [g/mol] 1755.18

Crystal size [mm3] 0.6x0.6x0.3

Crystal system monoclinic

Space group P21/c

Lattice parameters

a [pm] 1096.470(10)

b [pm] 1922.12(3)

c [pm] 1932.45(3)

α [°] 90

β [°] 105.2680(10)

γ [°] 90

Cell volume V [106 pm3] 3928.98(10)

Z 2

∆calc [g cm-3] 1.484

µ(Mo Kα) [mm-1] 1.103

θ data collection range [°] 2.718 ≤ θ ≤ 27.514

Reflection measured 24604

unique reflections / Rint 8937/0.0201

Goodness-of-fit on F 2 1.053

R indices (all data) R1 = 0.0529, wR2 = 0.1187

final R indices (F > ((2σ(F ))2)2) R1 = 0.0439, wR2 = 0.1104

R = (|F0|− |Fc |)/
 |F0|, wR = (


w(F 2

0 −F 2
c )2/


w(F 2

0 )2)1/2
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Table B.2.: Crystallographic data and structure refinement parameters for
compound [Cu2(LtBu)2]·2.75CHCl3 (7). Internal structure code:
fo4111.

Formula C104H134Cl12Cu2N6O4

Formular weight [g/mol] 2084.64

Crystal size [mm3] 0.6x0.6x0.5

Crystal system monoclinic

Space group P21/n

Lattice parameters

a [pm] 1230.77(5)

b [pm] 1780.55(7)

c [pm] 2596.54(9)

α [°] 90

β [°] 92.768(2)

γ [°] 90

Cell volume V [106 pm3] 5683.5(4)

Z 2

∆calc [g cm-3] 1.218

µ(Mo Kα) [mm-1] 0.705

θ data collection range [°] 1.570 ≤ θ ≤ 27.510

Reflection measured 21272

unique reflections / Rint 11176/0.0254

Goodness-of-fit on F 2 1.091

R indices (all data) R1 = 0.0929, wR2 = 0.2473

final R indices (F > (2σ(F ))2) R1 = 0.0807, wR2 = 0.2364

R = (|F0|− |Fc |)/
 |F0|, wR = (


w(F 2

0 −F 2
c )2/


w(F 2

0 )2)1/2
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B. Crystallographic Details

Table B.3.: Crystallographic data and structure refinement parameters for
compound [Co2(LH)2]·2.67CHCl3 (8). Internal structure code:
fo4385.

Formula C68H66Co2N6O4

Formular weight [g/mol] 1149.12

Crystal size [mm3] 0.5x0.6x0.5

Crystal system monoclinic

Space group C 2/c

Lattice parameters

a [pm] 1589.24(3)

b [pm] 2305.17(4)

c [pm] 1802.97(3)

α [°] 90

β [°] 91.7510(10)

γ [°] 90

Cell volume V [106 pm3] 6602.0(2)

Z 4

∆calc [g cm-3] 1.156

µ(Mo Kα) [mm-1] 0.551

θ data collection range [°] 1.901 ≤ θ ≤ 27.501

Reflection measured 22594

unique reflections / Rint 7573/0.0403

Goodness-of-fit on F 2 1.105

R indices (all data) R1 = 0.0631, wR2 = 0.1634

final R indices (F > (2σ(F ))2) R1 = 0.0502, wR2 = 0.1542

R = (|F0|− |Fc |)/
 |F0|, wR = (


w(F 2

0 −F 2
c )2/


w(F 2

0 )2)1/2
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Table B.4.: Crystallographic data and structure refinement parameters for
compound [Co2(LtBu)2]·4.75CHCl3 (9). Internal structure code:
fo4384.

Formula C102H132Cl6Co2N6O4

Formular weight [g/mol] 1836.70

Crystal size [mm3] 0.6x0.5x0.5

Crystal system monoclinic

Space group P21/c

Lattice parameters

a [pm] 1025.04(1)

b [pm] 2179.82(2)

c [pm] 2508.82(3)

α [°] 90

β [°] 100.616(1)

γ [°] 90

Cell volume V [106 pm3] 5509.77(10)

Z 2

∆calc [g cm-3] 1.107

µ(Mo Kα) [mm-1] 0.493

θ data collection range [°] 1.868 ≤ θ ≤ 27.482

Reflection measured 39088

unique reflections / Rint 12621/0.0362

Goodness-of-fit on F 2 1.085

R indices (all data) R1 = 0.0653, wR2 = 0.1504

final R indices (F > (2σ(F ))2) R1 = 0.0541, wR2 = 0.1443

R = (|F0|− |Fc |)/
 |F0|, wR = (


w(F 2

0 −F 2
c )2/


w(F 2

0 )2)1/2
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B. Crystallographic Details

Table B.5.: Crystallographic data and structure refinement parameters for
compound [Zn2(LH)2] ·4 CHCl3 ·2 MeOH (10). Internal structure
code: fo4113.

Formula C74H78Cl12N6O6Zn2

Formular weight [g/mol] 1703.56

Crystal size [mm3] 0.6x0.6x0.4

Crystal system triclinic

Space group P 1̄

Lattice parameters

a [pm] 1231.55(5)

b [pm] 1297.66(3)

c [pm] 1338.58(5)

α [°] 77.092(2)

β [°] 72.586(2)

γ [°] 73.880(2)

Cell volume V [106 pm3] 1937.83(12)

Z 1

∆calc [g cm-3] 1.460

µ(Mo Kα) [mm-1] 1.087

θ data collection range [°] 3.846 ≤ θ ≤ 27.533

Reflection measured 11407

unique reflections / Rint 8542/0.0194

Goodness-of-fit on F 2 1.105

R indices (all data) R1 = 0.0537, wR2 = 0.0969

final R indices (F > (2σ(F ))2) R1 = 0.0438, wR2 = 0.0892

R = (|F0|− |Fc |)/
 |F0|, wR = (


w(F 2

0 −F 2
c )2/


w(F 2

0 )2)1/2
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APPENDIX

C

CONTINUOUS SHAPE MEASURES

The Continuous Symmetry Measure (CSM) [195] and Continuous Shape Measure

(CShM) [196] were introduced to quantify the degree of distortion of a set of atoms from

a certain idealized structure, i.e. an ideal polyhedron. The shape measure S of the coor-

dination sphere ABN−1 (the polyhedron Q) relative to the ideal polyhedron P requires

the N vectors −→q i . Then, P is rotated, translated, and scaled in such a way, that mini-

mizes the function in Eq. (C.1), yielding the shape measure SQ (P ). −→q i is the position

vector of the center of Q.

SQ (P ) = min

N
i=1

−→q i −−→p i
2N

i=1

−→q i −−→q 0
2

×100 (C.1)

Due to the regularly encountered ambiguity of this procedure (similarities to different

polyhedra P are almost equal), minimal distortion pathways between such ideal poly-

hedra were defined, [197] yielding the deviation from the minimal distortion pathway

and the “position” (angular fraction ΦP1→P2 [%] ) on this transition. The calculations

were performed with the program SHAPE. [198]
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C. Continuous Shape Measures

C.1. Similarities for Co(II) Complexes

(a) SP-4 (b) T-4 (c) SS-4

Figure C.1.: Ideal coordination polyhedra used for computing similarities of
fourfold coordinated Co(II) complexes.

Complex SSP4 ST4 SSS4 ΦSP4→T4

8 23.356 1.921 6.275 82.0

9 24.211 1.978 7.006 83.6

11 15.454 4.927 5.510 65.6

12 25.855 1.824 7.717 86.7

13 25.504 1.882 7.608 86.0

14 18.972 3.030 5.229 73.2

15 19.206 3.202 5.127 73.7

16 20.588 2.743 5.739 76.5

Table C.1.: Calculated CShM similarities for Co(II) complexes with [N2O2]
coordination environment.
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C.2. Similarities for Dy(III) Complexes

C.2. Similarities for Dy(III) Complexes

(a) SAPR-8 (b) TDD-8 (c) BTPR-8

Figure C.2.: Ideal coordination polyhedra used for computing similarities of
eightfold coordinated Dy(III) complexes.

Table C.2.: CShMs of the coordination sphere of the Dy(III) ions of the in-
vestigated complexes for selected ideal shapes.

Complex SSAPR-8 STDD-8 SBTPR-8

28 3.20 0.72 1.63
29 3.51 1.00 1.83
30 3.31 0.80 2.15
31 2.32 2.42 4.10
32 3.15 2.83 2.99
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APPENDIX

D

ADDITIONAL DETAILS FOR QUANTUMMECHANICAL

CALCULATIONS

D.1. CASSCF and CASPT2 Calculations on

Tetrahedral Cobalt(II) SMMs
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D. Additional Details for Quantummechanical Calculations

Table D.1.: CASSCF energies [cm-1] of the ten quartet and the 30 lowest dou-
blet states for the tetrahedral Co(II) complexes investigated in
Chapter 4.

8 9 11 12 13 14 15 16
q

u
ar

te
ts

ta
te

s
0 0 0 0 0 0 0 0

2095 2050 1682 2135 2160 2000 1645 1707
5723 5791 4228 6581 6500 4839 4690 5136
5940 6315 5836 6586 6661 6141 6048 5840
7839 7635 8955 7676 7735 9287 8388 7959
8910 8858 9493 8691 8729 9723 8880 8640

10784 10965 9923 10145 9976 10454 9799 9944
21480 21207 22519 22064 22261 22111 22013 21760
23292 23541 22601 23757 23666 22848 22636 22759
25639 25933 27260 24984 24891 27244 25527 25064

d
o

u
b

le
ts

ta
te

s

16823 16984 14779 17462 17394 15522 15998 16421
17990 17535 16656 17942 18095 17742 18208 18669
19524 19654 16925 19702 19678 17977 18362 18985
19641 19804 19051 19992 19937 19257 19301 19061
20212 20244 19623 20340 20332 19432 19527 19772
20545 20635 20738 20724 20720 20606 20551 20441
21971 21965 21725 21926 21925 22021 21664 21671
23415 23357 22910 23713 23721 23333 23173 23243
24465 24409 23775 24716 24799 24344 24131 24277
24721 24777 24576 25077 25094 24542 24514 24443
25772 25613 25298 25681 25688 25838 25711 25884
26077 25907 25994 25743 25725 26284 26287 25975
26633 26754 26984 26880 26840 27872 26980 26755
27855 27829 28390 27269 27228 28035 27467 27296
28673 28839 28774 29184 29197 28931 28661 28526
30012 30050 29736 30148 30100 29776 29575 29705
30246 30213 29985 30289 30317 30481 29867 29950
30376 30250 30263 30584 30646 30914 30235 30257
30690 30829 31417 30898 30841 31089 30869 30575
31363 31291 32558 31146 31169 32128 31613 31238
31490 31525 32633 31209 31231 32683 31997 31364
32685 32837 32830 33047 33077 32761 32204 32209
33087 33210 33102 33167 33195 33164 32862 32878
33482 33502 34210 33451 33417 34220 33332 33101
34712 34751 34836 34786 34742 35429 34658 34505
35584 35574 36190 35801 35794 35995 35288 35085
35608 35818 36223 35953 35981 36310 35642 35369
36693 36813 36855 36885 36896 37143 36156 36051
44013 44014 44612 44097 44125 44325 44098 43896
44314 44296 44680 44270 44273 44670 44318 44184

· · · · · · · · · · · · · · · · · · · · · · · ·
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D.1. CASSCF and CASPT2 Calculations on Tetrahedral Cobalt(II) SMMs

Table D.2.: CASPT2 energies [cm-1] of the ten quartet and the twelve lowest
doublet states for the tetrahedral Co(II) complexes investigated
in Chapter 4.

8 9 11 12 13 14 15 16

q
u

ar
te

ts
ta

te
s

0 0 0 0 0 0 0 0
2263 2272 1904 2366 2401 2219 1750 1828
6196 6004 5046 6862 6914 5582 5314 5817
6430 7161 5882 7444 7351 6176 6151 5872
8411 8110 7998 7580 7680 9921 8805 8519
9347 9368 9373 9156 9194 10181 9441 8872

11654 11939 11415 10778 10510 11016 10271 10450
19001 18697 19874 19772 20088 19791 19518 19219
20263 20565 20964 20730 20621 19928 20295 19868
23439 23928 25715 22661 22386 25248 22837 22373

d
o

u
b

le
ts

ta
te

s

13686 13814 18464 14210 17612 12252 12908 13355
14762 14421 21087 14628 18218 14767 15553 14553
15929 16363 21571 16518 19967 15527 15699 14997
16714 16792 22914 16920 20342 15644 15838 16105
17317 17362 23167 17438 20855 16564 16822 17012
17752 17780 24991 17944 21410 17704 17735 17628
19126 19170 26160 19062 22557 19282 18967 18918
20277 20206 26983 20445 23909 20299 20133 20096
21229 20848 28811 20750 24293 22088 21973 21341
21927 21258 29453 21426 25149 22187 22068 22141
22818 22725 30061 23316 26746 23131 23240 22993
23341 23373 30303 23338 26927 23447 23311 23159
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D. Additional Details for Quantummechanical Calculations

Table D.3.: CASSCF energies [cm-1] of the ten quartet and the 30 lowest dou-
blet states for the square-planar Co(II) complexes investigated in
Chapter 4.

17 19 18 20

q
u

ar
te

ts
ta

te
s

0 0 0 0
59 154 222 119

813 1158 810 1052
1906 2032 1812 1893
8493 8447 8830 8427

10300 10307 10056 10320
19026 19875 19123 20245
25290 27348 25233 27553
29454 28471 29253 28572
38406 38620 38421 38864

d
o

u
b

le
ts

ta
te

s

3574 2792 3654 2393
3736 3530 4071 3255
5801 4918 6059 4630

12971 12814 13209 12673
18550 18559 18519 18468
19009 19406 19120 19444
20213 20409 20277 20290
20355 21032 20546 21098
21518 21809 21573 21654
22382 22275 22504 22247
23160 22874 23137 22704
23450 23130 23351 22873
25825 25842 26206 25890
26338 26273 26627 26259
26616 26577 26860 26546
27689 27672 27546 27700
28041 27912 27921 27913
31820 31697 32217 31675
33815 33576 33661 33570
38135 38626 38107 38823
38301 39644 38303 39855
39261 40039 39374 40463
39692 40477 39591 40700
40555 41506 40457 41667
40631 42193 40659 42583
41014 42543 40954 42840
44228 43833 44023 43914
44440 44174 44224 44258
49245 50466 49320 50688
51701 51160 51649 51349

· · · · · · · · · · · ·
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D.1. CASSCF and CASPT2 Calculations on Tetrahedral Cobalt(II) SMMs

Table D.4.: CASPT2 energies [cm-1] of the ten quartet and the 12 lowest dou-
blet states for the square-planar Co(II) complexes investigated in
Chapter 4.

17 19 18 20

q
u

ar
te

ts
ta

te
s

591 1167 161 1491
752 1303 522 1572

1414 2574 953 2756
2821 3300 2347 3363
7424 7444 7439 7771
9817 10171 9127 10419

21828 23243 21558 23925
25931 28281 25526 28793
30637 30290 30012 30626
38063 38736 37743 39324

d
o

u
b

le
ts

ta
te

s

0 0 0 0
1176 521 909 434
3053 1961 2964 1972
8152 8246 7994 8354

15816 16303 15410 16564
16208 17356 15822 17768
17364 18742 16106 18846
17896 18911 17446 19350
18856 19428 18493 19718
19076 19760 18873 19971
20084 21213 20011 21358
21986 21968 21226 21746
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D. Additional Details for Quantummechanical Calculations

D.2. Linear Cobalt(II) Complexes
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D.2. Linear Cobalt(II) Complexes

Table D.5.: CASSCF energies [cm-1] of the ten quartet and the 30 lowest dou-
blet states for the linear Co(II) complexes investigated in Chap-
ter 5.

21 22 23 24 25 26 27
q

u
ar

te
ts

ta
te

s
0 0 0 0 0 0 0
2 102 86 368 628 110 409

1494 1765 3793 2934 3562 1778 2254
1496 2015 5604 4626 4492 2831 3412
1559 2162 6275 6416 5770 4628 5206
1817 2291 6903 6614 6778 5310 5551
2101 2741 7779 6813 7325 5431 5616

15386 15336 16985 16709 17080 15711 17149
18648 19343 22380 23110 23479 23012 21265
19277 20415 26419 24761 25196 24336 21782

d
o

u
b

le
ts

ta
te

s

17084 16890 15903 15432 16835 15504 16654
17099 17003 16880 15978 17656 15594 16951
17579 17270 17202 16247 18108 15991 17005
17627 17486 17585 17632 18596 17493 18096
18115 18260 17943 18204 18979 19057 18913
18149 18389 20219 20099 20186 19195 19676
18380 18407 20420 20180 20702 19337 19838
20268 20362 21040 20954 21804 20273 21625
20271 20767 21985 21435 22686 20852 21811
20921 20823 22597 22720 23215 21589 22148
21195 20849 23122 22952 23292 22595 22528
21250 21023 23863 23715 24347 22932 23545
22948 23019 24066 25106 24549 24812 25620
23018 23105 25884 26191 25961 24937 25767
23418 23336 27369 27265 27340 25295 26252
23755 23875 27547 27435 27567 25934 26407
24377 24679 27958 27463 27690 26155 26580
24418 24783 28029 27710 27980 26295 26641
24607 24847 28391 27757 28264 27125 26839
24689 24877 28761 28062 28432 27198 27253
25710 26436 29307 29375 29242 28807 27938
25738 26546 30281 30034 30040 28872 28717
25875 26597 30516 30229 30240 29093 29121
27113 27480 31073 30305 31317 29418 29740
27259 27926 32104 31187 31984 29926 29967
27674 28757 32343 32232 32088 31119 30698
27675 28942 34070 34007 34051 33496 31021
28072 28944 34106 34009 34135 33496 31038
39514 39734 41764 41662 42727 41722 41101
39700 39952 41912 42237 42956 42767 41332

· · · · · · · · · · · · · · · · · · · · ·
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D. Additional Details for Quantummechanical Calculations

Table D.6.: CASPT2 energies [cm-1] of the quartet and the 12 lowest doublet
states for the linear Co(II) complexes investigated in Chapter 5.

21 22 23 24 25 26 27

q
u

ar
te

ts
ta

te
s

0 0 0 0 0 0 0
121 88 413 71 896 32 197

1827 1356 3643 2367 3344 1023 2430
1855 2111 6812 5506 4870 3138 4105
2285 2684 7420 7124 6364 5051 6239
2823 2924 8386 7578 7975 5831 6884
2828 3285 9515 7983 8183 6174 6925

12303 12301 13830 13461 13784 12852 12872
16196 16578 19460 20139 20887 20824 18449
17183 18249 25600 23389 23427 22195 20089

d
o

u
b

le
ts

ta
te

s

13868 14410 12271 12088 13434 13232 12693
15179 15336 12685 14458 15183 14692 14401
15810 15612 14859 14941 15585 14907 15130
15903 15880 15346 15280 16174 14996 15219
16142 15991 16100 15470 16580 15096 15329
16498 16442 16517 16892 17353 16679 16511
16724 16604 17471 17093 18014 17167 16673
16950 17585 17630 17751 18386 17477 18379
18663 18270 18609 18376 19917 17752 19066
18962 18667 19641 19448 20205 18809 19755
18977 18838 19815 21264 20570 19476 20470
19340 18967 22023 21704 21084 20718 20755

Table D.7.: ZFS parameters of the CASPT2/RASSI-SO functions obtained
with the SINGLE_ANISO.

21 22 23 24 25 26 27

D -175 -192 -150 -180 -134 -202 -174
E 2 3 6 -3 17 4 6 E

D

 0.01 0.01 0.04 0.02 0.12 0.02 0.03
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D.3. DFT Energies for Calculations on 42

Table D.8.: Energies and spin expectation values


Ŝ2


of the high-spin state
and broken-symmetry state of the Zn-substituted structures of
Cu6/H3O+ .

EHS [a.u.] EBS [a.u.] ∆E [cm-1]


Ŝ2
HS

 
Ŝ2

BS


Zn

Zn

Zn

Zn

Cu

Cu

-13673.09396841 -13673.09424074 -59.1 2.00 0.99

Zn

Zn

Zn

Cu

Zn

Cu

-13673.09421864 -13673.09421573 0.6 2.00 1.00

Zn

Zn

Cu

Zn

Zn

Cu

-13673.09421766 -13673.09421755 0.0 2.00 1.00

Table D.9.: Energies and spin expectation values


Ŝ2


of the high-spin state
and broken-symmetry state of the Zn-substituted structures of
Cu6.

EHS [a.u.] EBS [a.u.] ∆E [cm-1]


Ŝ2
HS

 
Ŝ2

BS


Zn

Zn

Zn

Zn

Cu

Cu

-13519.33064621 -13519.33087665 -50.1 2.01 1.00

Zn

Zn

Zn

Cu

Zn

Cu

-13519.33068317 -13519.33067941 0.8 2.01 1.01

Zn

Zn

Cu

Zn

Zn

Cu

-13519.33071235 -13519.33071243 0.0 2.01 1.01
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