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1. Preface 
 

Two worlds. The research on very small structures restarted 40 years ago caused by a steady 

development of new or already existing characterization methods. Expressed in scientific periods of 

time, it is more probably a young branch of science. Nevertheless, nanotechnology combines two 

worlds of “history”. Today, the new “Nano”-Science has only just begun to understand how such 

systems behave, but they are empirically used for several thousand years. From Bronze Age (more 

than 3000 years ago) [1] the Roman period (1600 years ago), the modern Egyptian history (1000 years 

ago) [2], the middle age (more than 500 years ago) and finally up (more than ever) to the present time. 

The nanotechnology has already arrived in our everyday life with things such as sun cream, toothpaste 

and the well-known lotus effect on textiles and coatings. 

However for science, the nanotechnology is of much greater significance because, nanoparticles are 

not only a continuous connection within time; rather they connect two widely different physical 

“worlds”. “The single isolated nanoparticle is certainly the ideal subject to study the transition 

between the molecular state and the bulk solid or liquid state.”[3]. Especially, this transition between 

the worlds is the subject of modern research, because it promises interesting and spectacular 

phenomena as well as a unique insight into the “heart” of matter.  

To grant such an insight into the nature of (nano) materials, it requires not only the knowledge for 

preparation of nano-technological products, but rather the continuous development of nano-

technological characterization methods is a major contribution and nanoparticles also form a link 

between production and analysis.  

This work is focused on the optical properties of metallic nanoparticles and thin films on glass. There, 

starting with the production and modification of nanoparticles by a self-organized process, on the 

characterization and simulation right through to the application as a sensor system. The main subject 

of this work, the optical properties is caused by the plasmon resonance. That means a collective 

electron oscillation in a metallic material respectively a metal particle excited by an external electric 

field. The mathematical explanation of the resulting optical properties was already done more than 100 

years ago by Gustav Mie, although without the exact knowledge of the existence of an electron 

oscillation. Nevertheless, Mie’s contribution allows up to the present time (or even at the present 

time), predictions about the optical behavior of metallic nanoparticles. A very important prediction is 

in fact (in addition to the effect of particle size) the sensitivity to a variation in the optical properties of 

the surrounding medium. Especially metallic particles of the type prepared in this work are applicable 

as a sensitive element on the basis of this knowledge. 
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The peculiarity of optical properties of small metal nanoparticles is that they are often easy to measure. 

But on the other hand, the behavior of such “plasmonic” effects is fairly hard to describe and to 

predict. A large number of papers on plasmonic properties of gold or (and) silver nanoparticles have 

been published. This is due to the fact that the plasmonic effects of these metals (also copper) can be 

found in the visible range of light. However, the number of publications is significantly lower away 

from these “model” systems. 

Two different metallic systems were particularly investigated. The first is focus on gold nanoparticles; 

they are compared to the existing research and specifically described with respect to tailoring of the 

optical properties. The second system describes the preparation of stabilizing-agent free palladium 

nanoparticles for hydrogen sensing based on the change of the plasmon resonance properties. In all 

systems, this work is dedicated to the presentation of problems and their solutions that may (or will) 

result in affecting the formation and analysis of metallic nanoparticles. 
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2. Introduction 

 

In the following, a method is described which enables the preparation of nano particle containing 

layers on glass substrates. For this purpose, a thin sputtered metal layer is thermally treated at 

temperatures usually below those of the respective melting points. This results in dewetting of the 

layer and in the formation of nano particles with sizes in the 20 to 200 nm range.  

The application of metal particles, especially on glass surfaces, has disclosed some unresolved issues. 

Glass surfaces are well suited to generate optically active metal nanoparticles. The use of glass allows 

a simple access to the optical properties of metallic nanoparticles. Glass can be thermally stable up to 

1100 °C which enables a thermal preparation procedure as well as investigations up to or even above 

the melting point of some metals, e.g. gold. Large area coating systems offer the possibility to produce 

supported particles in an industrial scale. Hence the question arises how far a particle layer can be 

tailored, protected and applied in technological settings. Here the optical and the dewetting behavior 

within a metallic and dielectric layer stack must be considered. The optical properties in dependence 

on environmental circumstances e.g. atmosphere and embedding medium have to be determined. 

Furthermore, a shift in the absorption maximum which depends on the refractive index of the 

surrounding medium may also be utilized to draw conclusions on the nanoparticle systems. 

Additionally, the dewetting of non-inert metals showing phase transitions during annealing has yet to 

be analyzed in detail as well as an influence of the annealing temperature and heating/cooling rates 

applied during dewetting. 

 

2.1 Preparation  

 

The preparation of nanoparticles can be achieved by numerous methods and is described by an almost 

unmanageable amount of publications. For this reason it is nearly impossible to give a complete 

overview on the existing techniques what is ultimately due to the enormous research activity in this 

field. A suitable classification of manufacturing methods is available by differentiation to chemical 

and physical approaches [4,5].  

Chemical methods are frequently used to prepare metallic nanoparticles for example from a solution 

[6–10]. The most common method was presented as early as in 1951 by Turkevich et al. [11] and is 

known as salt reduction methods. However, if the particles are mobile e.g. in a solution, they need to 

be stabilized, in order to avoid agglomeration and coalescence of the particles [4,5,12,13]. Most of the 
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stabilization procedures are realized by chemical modifications of the particle surface. Schmid et al. 

[4] described the possibilities to embed the nanoparticles into a substrate as well as in micelles. They 

reported on the electrostatic repulsion, the steric hindrance and embedding in nano capsules. 

Electrostatic stabilization is realized by ions at the metal surface which results in repulsion forces (due 

to their electric charges) between the particles [6,14].  

Sterically stabilized nanoparticles are surrounded by a barrier of e.g. polymers or surfactants. Thus the 

a direct contact between the particles is prevented. In addition, the particles are held in such a distance 

that they are not exposed to mutual attraction forces [6,15–17]. Capek identified also the possibility to 

combine both type of stabilizing mechanisms using cationic polyelectrolytes [18]. Another strategy to 

prevent aggregation is the subsequent incorporation of the particles in a matrix for example by a sol 

gel process [19,20] or their preparation inside a matrix [21–23]. 

With respect to chemical preparation methods it can be concluded, the (wet) chemical route is most 

suitable way, to achieve particles highly controllable in size, shape, composition as well as 

functionalization [24,25]. In this regard, Bönnemann and Richards summarizes: “The use of metal 

vapor techniques is, however, limited because the operation of the apparatus is demanding and it is 

difficult to obtain narrow particle size distributions.” Furthermore, they conclude: “The chemical 

reduction of transition metal salts in the presence of stabilizing agents … become one of the most 

common and power-full synthetic methods in this field.” [26] However, this interpretation is not 

generally valid. 

Thus, additional chemicals at the particle surface such as polymers or charged ions are undesirable for 

some applications. Hence the optical properties of the metallic particles depend on the direct 

surrounding media as well as on the possible access of reaction educts, such as hydrogen in contact to 

palladium. Additionally, the optical properties of some metals e.g. palladium (where the plasmon 

resonance is to be expected in the UV-range [27]) may be covered by the cut off wavelength of the 

stabilizing chemistry as described in Ref. [3,12,28,29]. In order to obtain stable and manageable 

nanoparticles, they should be deposited and fixed on a substrate. However, the generation of a layer 

composed by metallic nanoparticles e.g. on glasses, is not always simple. It possibly requires a 

previous modification of the glass surface. Shipway et al. present in an overview article a suitable and 

commonly used pretreatment procedure to achieve a particle monolayer prepared from a solution [30].  

In order to achieve particles without additional chemicals, the surface can be used even as a support. If 

it is possible to form particles directly on the surface, the surface can even serve as a stabilizer. 

Physical preparation methods are also commonly used and suitable to provide particles, by 

nucleation on surfaces or inside a vapor. Physical preparation methods include (among others), 
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sputtering [31–37], thermal and electron beam evaporation [38,38–43] as well as laser ablation [44–

48].  

It further provides the possibility to produce particles in the vapor by a subsequent deposition onto a 

surface [49]. Special experimental conditions also enable the particle formation directly at the surface 

[50–53]. In this thesis a route for the nanoparticle preparation is chosen which only shows formal 

similarities to the vapor deposition techniques described above. It uses a sputter deposition 

technique during which by contrast to the procedure described above, a metal layer is prepared. 

During subsequent thermal annealing, dewetting occurs which leads to the formation of metallic 

nanoparticles on the surface. The particles are in a well-defined distance and also in a certain 

orientation correlation to each other. The formation of such structures will be explained in the 

following sections.  

At first, sputter deposition is well known in thin film technologies as well as for coating of glass 

surfaces. Argon ions, provided by a glow discharge, are accelerated to the cathode (target) and their 

kinetic energy leads to the ejection of target atoms [54]. Due to the impulse, the ejected atoms move 

away from the cathode towards the substrate, are deposited on the surface and form a film. The atoms 

are relative fast, but the velocity is rapidly decreased by collisions with other gas atoms. Hence the 

process pressure and the target to substrate distance are critical to the resulting layer properties. The 

used DC sputtering system is applicable for sputtering of metals and semiconductors. A conductive 

anode is required, but the substrate need not necessarily be conductive [55]. Further literature, which 

deals with the exact process of sputtering can e.g. be found in [56,57] and especially in [58]. As 

already mentioned, in addition to the distance, the gas pressure as well as the temperature is decisive 

for the resulting structures. Thronton proposed a structure model which describes the effect of argon 

pressure and substrate temperature [59,60]. This model is based on the final mobility of the deposited 

atoms on the substrate surface in dependence on the direction of incidence and incoming atoms per 

time as well as the thermal energy (in comparison to the bulk melting point of the deposited material). 

Additionally, Thronton described the mechanism which leads to a crystallographic orientation inside a 

sputtered metallic layer [61,62]. This orientation may also result in the formation of oriented particles 

during subsequent dewetting as shown in article 3.1. However the preferred orientation of a 111 

direction perpendicular to surface is also found if other physical deposition methods are applied [63]. 

As already mentioned, it is thus possible to form nanoparticles already during sputtering [64]. By 

contrast, the particles prepared in the experiments concerning this thesis are based on a dewetting 

process. Hence, closed layers will be formed at the surface first. According to the structural zone 

model of Thornton [59], the layer deposited with the experimental parameters used in this work, 

provides the structural properties of zone 1. Zone 1 structures are indicated by voids between columns 
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and hence the point of origin is not a perfectly dense layer [39,58]. Hence, the articles 3.1, 3.2, 3.3 as 

well as 3.5 and 3.7 illustrate the described appearance of the freshly sputtered layers on glass. 

If thin metal layers are exposed to elevated temperatures [65,66], laser [67–69], ion [70,71] or electron 

beam radiation [72] they tend to form particles by a rupture process, called dewetting. From a 

mechanical point of view, it corresponds to the formation of water droplets on a sheet of glass, as it is 

drawn out from a water vessel. Generally, dewetting is a result of the energy minimization in the 

system substrate/layer/atmosphere [73]. The effect and the theoretical fundamentals are described 

extensively for thin liquid films and polymers on various substrates [74–77]. 

Bischof et al. identified the fundamental mechanism, which describes the dewetting of a metastable 

film [78]. First the nucleation of holes occurs and then, spinodal dewetting takes place caused by 

thermally activated surface waves. Michalak et al. expanded the definition of the nucleation of holes to 

thermal grooving (at grain boundaries), heterogeneous nucleation caused by defects or impurities and 

the thermal nucleation of holes caused by temperature fluctuations [79]. Furthermore, he proposed the 

basic classification according to nucleation-dominated mechanisms and thermodynamic system 

instabilities (spinodal dewetting). In this respect, liquid polymer films, heated up to the glass transition 

temperature [80] as well as liquid crystal and metal films [81], exhibit a spinodal dewetting behavior. 

The film disrupts spontaneously due to periodic film thickness fluctuations and a subsequent 

formation of a characteristic wavelength of the surface modulation [75,82]. On the other hand, the 

nucleation of holes which is reported to be not related to spinodal dewetting is found in [41]. However 

this clear and unique separability and their conclusion on a sole function of the dewetting mode is 

doubt by several authors [78,83]. Bischof et al. consider in his regard: “Often the basics of dewetting 

have been studied on liquid films because heterogeneous influences, i.e., from grain boundaries or 

stresses, associated with solid films are not as prominent or must not be considered.” [78]. 

Furthermore, the applied films are not ideally smooth, and contain irregularities. As already 

mentioned, this can very well be recognized in the case of thin layers sputtered at room temperature. 

Layers attributed to the zone 1 morphology in the Thronton model, contain irregularly shaped areas, 

divided by voids [59]. 

After the initial nucleation state, the holes grow and the former layer material accumulates at the hole 

perimeter which leads to an elevated rim around the them. This behavior was found for polymers [74–

77,81] and metal layers [38,67–69]. A rim of material is comparable with a nano wire. Such a thin an 

elongated structure tends to disintegrate into particles by the Rayleigh instability [74,84,85]. A 

combination of both mechanisms is described in [75,76,86,87] and gives a detailed illustration of the 

hole growth process during which simultaneously particles are formed. If a rim disintegrates into 

particles, exactly at this point, a new hole starts to grow and a new rim is formed. However, if the rims 
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are not destroyed by Rayleigh instabilities, a network of material threads (webs) is formed. An 

ongoing energy input will disintegrate these webs subsequently, so that the original arrangement of the 

network is properly maintained [74–76]. This phenomenon is not limited to liquid or polymer films 

[67–69]. 

After the film rupture is finished, the formed separated islands shows an irregular shape. This is well 

recognized in [41]. From now, the mechanisms of further energy minimizations are changed and 

will occur in morphological transformations of the particle by means of surface or volume diffusion as 

well as particle migration.  

The irregular structure of the particles disappears and obtains a smooth shape. This does not mean that 

the particles are round. There are particles with energetically unfavorable shape e.g. elongated or 

branched structures. The same process which destabilized the rims of the holes is responsible for the 

breakdown of the elongated particles. The Rayleigh instability leads to more and smaller uniformly 

shaped particles [84,85,88]. Such a process is indicated by constrictions of the particles, such as 

observed in Ref. [65,79].  

At the same time, the interfacial energy can further decrease by a ripening process as well as particles 

merge to larger ones. The driving force is again the tendency to reduce the surface to volume ratio. In 

this regard, the particle should increased in size and decreased in number [89] which however requires 

a material transport between the particles. In principle, this leads to a coarsening of the particle 

arrangement and in this regard, two different mechanisms are discussed [89,90]. First the transport is 

carried out by diffusion. The smaller particles shrink, while the large particles further grow while the 

particles are not in contact. This effect is called Ostwald ripening [39,90–92]. Datye et al. 

demonstrated also the influence on the particle size distribution. The effective number of particles is 

decreased. Hence, the particle becomes so small that they vanish [3]. The arising question is now, 

whether the diffusion takes place in the glassy phase, on the surface or, however, in the gas phase. In 

the year 2002 Bowker designate the mechanism of mass transport, as the surface diffusion and not 

through the gas phase, for a particle supported by a surface [89].  

The second possible type of mass transport is the movement of the whole particle itself, followed by a 

merging of the particles [88,89,93–95]. The driving force is the same, i.e. the minimization of the 

surface energy. Coalescence occurs usually in high density particle system [90]. The movement seems 

to be affected by size of the particles and the distance in between. Datey et al. analyzed the sintering 

behavior of metallic Pd and Pt in detail [96]. They found a narrow log normal size distribution shifted 

towards larger particle sizes. They conclude the occurrence of diffusion controlled particle transport 

for Pd caused by a high vapor pressure. For Pt, they found, strongly depend on the atmosphere, the 

particle migration process (reducing conditions) and on the other hand Ostwald ripening controlled 



 Introduction 
 

 

 8 

growth mechanisms during annealing in air occur. In contrast to the oxidation affected ripening 

mechanisms in air, Geissler et al. determined the mass transport of small Ni particles on oxidized Si 

wafers, by particle migration. Furthermore, they observed a strict dependence on the hydrogen partial 

pressure. Thus, the magnitude and type of mass transport is depending on atmosphere, substrate, 

temperature and particle size. Hence, the accurate determination of the relevant contribution and a 

comparison of the results with each other are complicated. 

Further annealing will finally transfer the particles into the equilibrium shape. However, this is not a 

sphere. Therefore, faceting represents a further minimization of the particle energy and the equilibrium 

shape of small single crystals is based on Wulff construction (Figure 1). This fact is also indicated by 

the large number of papers (including article 3.1 and 3.8) reporting on facetted metal nanoparticles 

[6,39–41,97–99]. Here, the surface energies of the individual facet surfaces plays an important role. 

The size and specific surface energy of each facet determine the minimum energy of small (single 

crystalline) mostly particles [100]. The most studies were performed with small particles with sizes of 

few to some ten nano meters. However, the work of Heyraud and Metois proved the validity at 

different temperatures for particle sizes of some microns [101]. Marks noted in this regard, that the 

Wulff construction provides the expected equilibrium shape and is indeed (theoretically) size 

independent, but the influence of edges and corners becomes more prominent with smaller particle 

sizes. Based on thermodynamically calculations, Barnard and Curtiss found that an effect of edged and 

corners significantly occurs below 3 nm in diameter [102,103].  

The applicability of the Wulff construction is limited to free floating particles inside a matrix. The 

theory is in principle not valid for particles deposited on surfaces. Winterbottom described and 

completed the Wulff construction to the effect of flat homogeneous (rigid) substrates. He 

introduced a component for the free energy of adhesion to modify the free energy at the surface in 

contact with the substrate [100,104] (Figure 2). Marks and Ajayan [105] extended the theory to non-

rigid surfaces, but also showed the possibility of transformed morphology [100]. Another 

crystallographic phenomenon is twinning. Twining is well known in small metal single crystals (see 

article 3.1 and 3.8) and also corresponds to Wulff shape. Marks proposed a modified Wulff 

construction for twinned particles [106–108]. Thus, he showed that a twinned particle also represents 

an energetically favorable equilibrium shape. 
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Figure 1 Wulff – construction, to determine the 

equilibrium shape of small single crystal [109] 

 
Figure 2 Modified Wulff – construction for 

supported nanoparticles [110] 
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2.2 Optical properties of small metal nanoparticles 

 

As already mentioned, the optical properties of small particles are directly affected by the size. In 

comparison with the (visible) wavelength of the light, the dimension of a bulk material can be 

assumed to be infinite. Hence classical conceptions of optics are applicable. However, small particles 

are in size below the range of the light wavelengths, the size is not to be assumed as infinite and size 

depend optical behaviors can occur. These interpretations are so far independent of the nature of the 

particle material. However in contrast to dielectric materials, the (in a first approximation) free 

conductive electrons in metals interact with an electromagnetic wave and specify the optical properties 

of small metal nanoparticles (Drude metal). 

The insights described below, are published in a very detailed manner in [3,111–114]. In order to 

describe and illustrate the special behavior of small metal structures, it should introduce first a simple 

electrostatic interaction model for spherical particles called quasistatic approximation or quasistatic 

regime [114]. The simplification of this system is restriction to the size of spherical particle is much 

smaller than the wave length of the incident light (for visible light ~ d = 50 nm [112]). Thus it can be 

assumed that the applied electric field is (spatially relative to the particles) constant and the interaction 

is dominated by electrostatic rules instead of electrodynamics. If an electric field is applied to the 

particle, the conductive electron cloud is displaced by force in dependence of the field direction 

(Figure 3). The displacement is done in relation to the remaining ion cores of the metal lattice. The 

electrons accumulate at the surface in the opposite direction of the electromagnetic field and induce a 

negative charge at the surface. At the opposite a positive charge is performed by the remaining metal 

ions (Figure 4). In this manner, a dipole is created and the metal sphere is polarized. The polarizability 

of a metal sphere is given in eq. 1 and the influence of the surrounding medium �� becomes obvious. 

Further, the polarizability is maximum if the denominator in eq. 1 becomes small and thus a 

resonance condition can be specified and is given in eq. 1a and 1b. Metals show a complex dielectric 

function and the dielectric constant ε in eq. 1 have to be replaced with �(�) = ��(�) + �	(�) (where 

denotes ��(�) = real part, �	(�) = the imaginary part) and the resonance condition therefore is given 

by eq. 1c.  

If the direction of the incident field is changed according to the nature of wave, the polarity of the 

resulting dipole reverses. Thus, the induce movement of the electrons relative to nuclei leads to 

oscillatory system. However, the resulting restoring forces caused by electron-ion Coulomb attraction, 

as well as the rejection of the inflowing electrons by the induced negative pole (a new dipole is 

induced by accumulated electrons itself [112]). Hence, the oscillating system comes into a destructive 

resonant sate, if the electron cannot longer follow the stimulating wave. Kelly et al. designate four 

factors influencing the frequency: the density of electrons, the effective electron mass, and the shape 
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and size of the charge distribution [113]. The latter is depending on the type and size of the particle 

geometry, thus different or more than one Eigenfrequency can occur [114]. Such a destructive 

resonance exhibits a narrow-band light absorption, with the shape of a resonance curve [115]. Garcia 

compares the nanoparticle as a result of damping factors with a linear oscillator inside an alternating 

external force field [112]. He concludes that the amplitude and the phase are depending on the force 

and the oscillator properties. The frequency is identical with that of the external force, but the 

amplitude is strongly increased at the resonance frequency. Furthermore, he described the increased 

absorbance in the optical spectra with the increased energy requirement (due the resonance) of the 

dipole and as a result of the energy conservation, the required energy is derived from the external field.  

  

 

Figure 3 Illustration of small metal particle by 

light irradiation induced electron movement 

(plasmon oscillation) 

 

Figure 4 Resulting polarization of the metal 

particle by accumulation of electrons (negative 

pole) and the remaining lattice of ionic cores 

(positive pole) 

 

This enhanced interpretation is described in the dipolar approximation, [112] or simplified Mie theory 

[114] (certain simplifications can transform the Mie theory in this approximation) and is given in 

eq. 2. In contrast to the electrostatic description, the solution of the equation results in an extinction 

cross section (area as a unit) and corresponds to the interaction strength of particle and light. The cross 

section area may be larger than the real geometric size, caused by the induce field and its interaction 

with the external irradiation field [111]. However, the maximum of the cross section is also only 

dependent on the relation between the real part of the complex dielectric function and the surrounding 

media. This results from the resonance condition in eq. 2a. 

In the following, an overview of quasistatic models (electrostatic) and the simplified electrodynamic 

Mie theory in the quasistatic regime taken from [114] is given:  
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 = 4��
�� � − ��� + 2�� (1) 

  |� + 2��| = ������� (1a) 

  � = −2��	 (1b) 

  ��(�) = −2�� (1c) 

  ���� = 9�� ��� 	�  
 �	(�)!��(�) + 2��"	+�	(�)	 (2) 

  ��(�) = −2�� (2a) 

 

Where 
 is the polarizability of a small sphere, �
 the vacuum permeability, � radius of a sphere, � 

dielectric constant of a material, ��	dielectric constant of the surrounding matrix, ���� extinction cross 

section, �  angular frequency, �  light speed in vacuum,  
volume of a sphere, ��(�) real part and �	(�) the imaginary part of the sphere materials complex dielectric function.  

Such a simplified model provides general statements about the behavior nanoparticle systems: First, 

the basic dependence of the plasmon resonance to the particle material. The real part dielectric 

function defines the position of the plasmon resonance, governed the resonance condition given in 

equations 2a. Additionally, the slope of the dielectric function exactly at the resonance generates the 

width of the plasmon resonance. Thus, metals can also exhibit multiple or warped resonances, caused 

by a discontinuous profile of ��(�) exactly at the corresponding wavelength. From the equations 1c 

and 2a, the resonance condition leads to an independence of the imaginary part �	(�) of the dielectric 

function. This may lead to incorrect positions and resonance strengths. Strictly spoken, a simple 

resonance condition based on the conductive electrons and thus the plasma frequency, is only valid for 

alkali metals (Drude metals) [114] Noble metals such as Ag, Au or even Cu cannot be regarded as 

Drude metal. They exhibit interband transition from 5 d to the hybridized 6 sp for example of gold.  

Hence, it is necessary to use the measured dielectric functions. Especially the imaginary part �	(�), 
which contains stands for effects such as the contribution of the interband transitions in noble metals 

are required. The second dependency is given by the effect of the surrounding media. Here, the 

polarizability of a spherical particle is defined by the combination of the particle material and 

embedding media. However, in both equations, the size of the particle has not any influence on the 

position of the resonance band. Together with the limitations of the resonance conditions, the model is 
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too simple (neglect of the imaginary part of the dielectric function), and does not take into account the 

effect of size and size distribution. A more accurate model had to be used. One possibility is the usage 

of the complete Mie theory, the exact electrodynamic calculation, which includes both parts of the 

dielectric function.  

In the early 20th century, Gustav Mie developed a mathematical approach to explain the ruby color of 

suspensions containing gold nanoparticles, the “Mie theory” [116]. He solved the Maxwell equation 

of a spherical particle inside a homogenous medium by using spherical coordinates for the boundary 

conditions. The boundary condition corresponds to a sharp transition between the matrix material and 

the dielectric complex function of the nanoparticle. He performed a multipole expansion by taking into 

consideration an electric and a magnetic field [111,114]. Mie summed up the contribution of each 

multipole component (dipole, quadrupole, octupole …)[112]. He also took into account the electrical 

and magnetic mode respectively. The latter is based on eddy currents, consequently no magnetic 

material properties but rather electrical [114,117]. Thus Mie obtained extinction and scattering cross-

sections in dependence of the wavelength, the type of material the particles are composed of 

(including the imaginary part), the type of the embedding matrix as well as size. In this regard, the 

model is taking into account the most important parameters and hence is a good approximation.  

���� = 2�#$	 %(2� + 1)�'(() + *))∞

)+�  (3) 

  �,-. = 2�#$	 %(2� + 1)(|()|	 + |*)|	)∞

)+�  (4) 

  ���� = �,-. +	�./, (5) 

  0��� =	������	 (6) 

 

Where ����	 the extinction cross section, �,-.	 the scattering cross section, �./,	 the absorption cross 

section, #  wave vector, �  order of partial waves (not the refractive index), ()  and *)  scattering 

coefficients as well as 0��� the extinction efficiency. Calculations using the Mie theory also result in 

cross sections. However two cross sections are obtained. These are an extinction cross section eq. 3 

and scattering cross section eq. 4. The sum of these two is the absorption cross (see eq. 5). The 

dependence on particle size and surrounding medium is introduced into Mie theory by the scattering 

coefficients ()	 and *)	. These include Riccati-Bessel, Riccati-Neumann and Riccati-Hankel functions. 

Furthermore, the particle size, the refractive index of the matrix and of the sphere are input parameters. 
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Thus, two different cross sections are calculated. It also shows that the extinction spectrum consists of 

two spectra caused by different interaction mechanisms. In comparison to the electrostatic regime, the 

cross section area may also be larger than the real geometric size. Hence an efficiency 0��� can be 

defined eq. 6  

 

The explanation of a “sloshing” electron gas was developed 60 years later by Kreibig and Zacharias 

[118]. Mie did not have knowledge on the underlying principles. A combination of the analytical Mie 

theory and collective plasma oscillation is evident in the following statements: Kelly et al. [113] 

concludes that the dipole is a radiating dipole, which is followed by the Maxwell equation. The 

radiative dipole contributes to the extinction and the Rayleigh scattering of the sphere. Thus he 

confirmed the statements of Mie, who proposed two different interaction cross sections (the third cross 

section, “absorption” is calculated from extinction and scattering). Furthermore, Aussenegg and 

Ditlbacher [115] refer to an energy transfer by scattering into the far field and thus visible with the eye 

(see article 3.1). This corresponds to a loss of energy caused by radiation damping. The notation 

follows Quintin [3] but similar expressions are published in [111,114] or [119]. 

Generally, it should be noted that the applicability of the Mie theory is limited. Today, the use of a 

sharp discontinuity as boundary conditions is discussed critical. Hence, the dielectric function of a 

material cannot readily apply for nanoparticles because at the border of a nanoparticle a continuous 

transition of the dielectric function occurs. Furthermore, the dielectric function depend on the size of 

the particle [114,117]. Additionally Mie theory does not consider multiple excitations by coupling of 

individual particles. In analogy, the transfer of electrons between the matrix and the particle cannot is 

not include in the Mie theory [120]. The Mie theory is primarily limited by the exclusive validity on 

spheres.  

The following will be presented briefly, a third option, which is suitable to avoid the shape limitations 

of the Mie theory, the discrete dipole approximation (DDA). Hereby, the particle in interaction with 

light is represented by finite cloud of dipoles. Each dipole has a polarizability given by the particle 

dielectric function. Furthermore, the dipoles are arranged in a cubic grid spaced by a lattice parameter 

and the shape of the particle is defined by the coordinates of each dipole. An applied electric field 

induces a dipole moment and the resulting field is in interaction with another dipole (all other dipoles) 

[3]. In this way, wave propagation is possibly corresponding to a dispersion relation of the bulk 

material [119]. 
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4 Discussion 

4.1 Particle preparation 

 

The wording “dewetting” is sometimes misleading. The dewetting phenomenon describes basically 

the rupture of thin films on solid substrates Spinodal dewetting and heterogeneous hole nucleation 

represents merely the first step in a sequence of different mechanisms and deals with the first 

occurrence of fractures inside the layer. The growth of holes, with the formation of rims, networks (by 

contact of growing holes) and particles, etc. will take place regardless the origin of the initial holes. 

However the initial condition of the subsequent layer disruption, such as frequencies of the formed 

holes and time of occurrence, are different. Thus the resulting particle layers are theoretically different.  

Furthermore, the structure of deposited metal layers corresponding to the zone 1 in the Thornton 

model are presented and discussed in [58,59,62]. The layer is not free of irregularities like voids and 

holes. The discontinuous layer morphology acts as a starting point (heterogeneity) for the 

heterogeneous hole nucleation. This line of argument does not exclude the spinodal dewetting as a 

thermodynamically driven process. Rather, it is a superposition of two dewetting (hole nucleation) 

mechanisms. Hence the layers are thin enough to disrupt by thermal induced surface waves.  

Comparable to the spinodal dewetting, the heterogeneous nucleation of holes shows layer thickness-

dependent characteristics. According to Lanxner et al. existing or formed holes need a minimum size 

to enable their growth, otherwise they heal and disappear. Tesler et al. shows the initial states of 

dewetting, depending on the initial layer thickness [41]. Layers with a thickness of 15 nm, shows the 

closing of holes in an early stage of dewetting. Such a modification of the initial hole density may lead 

to larger particles. Hence the frequency of the initial holes decreases, while in thin layers, even the 

smallest cracks can grow and can initiate a higher frequency of growing holes. As a consequence, a 

high hole density leads to a higher number of smaller particles. Krishna et al. shows this impressively 

on the example of silver [68]. 

Thermal treatment of thin sputtered layers leads to small metal particles. In article 3.1, detailed studies 

are presented which concerned the instability of thin layers, the dewetting phenomena as well as the 

resulting optical properties. In general, if the layer thickness is increased, the particle size after the 

dewetting is also increased. However, the temperature range, dewetting occurs is not narrow. As 

expected, the particle forming procedure shows a transition range. If the required energy is too low 

and / or the time is too short, the shape becomes irregular (randomly shaped). With longer annealing 

time such irregular forms are rounded. Elongated particles are separated by the Rayleigh instability 
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into smaller particles. This can clearly be seen from the constrictions in Figure 1 in article 3.1 (16 nm, 

1 h, 400 °C). Further aging effects can be detected and discussed. Using a longer annealing time and 

an 8 nm thick initial layer, the particles diameter increases (see Table 1, article 3.1). These results 

from Ostwald ripening, and / or coalescence thereby larger particles grow at the expense of smaller 

particles. Datye et al. describes a similar evolution of size distribution in case of Pd and Pt particles on 

alumina also in dependence of the applied atmosphere [96]. 

Additional morphological changes are also seen at 21 nm thick layers annealed at 400 °C for 1 to 24 h 

(see Fig. 1 article 3.1). The particles show a faceted shape. This is typical for small single crystals 

[100,103,110,121]. Their occurrence after a long annealing period, suggests that there is a further state 

of energy minimization. The origin of the facets and their behavior at higher temperatures as well as a 

detailed EBSD analysis is discussed in more detail in article 3.8. 

The particle layers prepared according to article 3.1 are not stable against any physical contact such as 

touching or scratching. Hence, it was attempted to cover the gold particles with a protecting layer. 

With respect to the application as anti-adhesive layer for a hot embossing process, an SiO2 layer 

prepared by a pyrolytic CCVD (combustion chemical vapor deposition) was applied. However, the 

dewetting behavior during the thermal annealing described in article 3.2, changes totally if the system 

is covered by an SiO2 layer. A thin gold layer with a thickness of 12 nm dewet at much higher 

temperatures in comparison to the uncovered gold film. As reported in the literature and also discussed 

in article 3.2, the minimization of the surface energy during dewetting occurs by surface diffusion. 

However, since this diffusion pathway is blocked, the material transport is realized by volume 

diffusion. This results in a higher activation energy and consequently a higher annealing temperature 

is required. Two different sandwiched layer systems were studied and presented in the micrographs 

shown as Fig. 2 and Fig. 3 in article 3.2. A gold layer directly sputtered onto the soda lime glass 

substrate and subsequently covered with silica is shown as well as a gold layer embedded in two silica 

layers (silica-gold-silica). The glass transition temperature (Tg) of the soda lime silicate glass substrate 

is 525 °C. The dewetting temperature is adjusted in order to enable dewetting of the gold through the 

interface between glass and SiO2 layer. Karakouz et al. reported for a borosilicate glass (Tg = 557 °C) 

a sinking of the gold particles into the surface already at 600 °C [40]. In general, annealing at 550 °C 

for 20 minutes results in irregularly shaped layer fragments since the dewetting procedure is not 

finished yet. By contrast, an annealing procedure at 600 °C for 20 min leads to well separated and 

nearly round particles. However, the resulting particle sizes between the two layer systems are quite 

different. The mobility of the gold atoms is more hindered between the silica layers which should have 

a very high Tg (1220 °C, [122]). The mobility of the gold atoms is smaller, and therefore smaller 

structures will be formed. This behavior also affects the optical properties in a clear manner and 
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provides the basis to realize integrated optical (hot embossed) microfluidic sensors discussed in more 

detailed in article 3.7.  

A further possibility to affect the formation of particles by an additional metal layer is presented in 

article 3.3. In contrast to an SiO2 cover layer, not only the formation is affected, but also the 

composition of the resulting particles. Thin gold and silver layers were sputtered sequentially onto 

soda lime glass substrates. During annealing at 400 °C for 1 h nanoparticles are formed. Using 

different thickness ratios of gold and silver, the composition of the resulting particles may be affected, 

which leads to a modification in their dielectric function and hence their optical properties. An 

alloying could be detected under specific conditions but silver tends to oxidation, and an alloying can 

also be suppressed, if silver is in contact with air. The results illustrated in article 3.3 are mainly 

focused on optical properties of the resulting particle layers and will be discussed later.  

The previously discussed metals gold and silver feature a model character. First as already mentioned, 

in optical point of view, they have plasmon resonance frequencies in the visible range of light. Thus, 

the requirements for the optical measurement technology and particularly the substrate are less than 

for metals with resonances in the UV range. Certainly these metals (and also copper) play a significant 

role for decorative applications. Furthermore, the stability against air is advantageous with respect to 

the application as a sensor. Another advantage, at least for gold, is that the oxidation resistance enables 

the analysis of dewetting processes at elevated temperatures without the influence of chemical 

reactions which would distort the results. Nevertheless, in some applications, a chemical reactivity is 

preferred. Here, especially, the catalytically active metals palladium, platinum and rhodium are to be 

mentioned. Up to now, a scientific approach of the dewetting process (in the nano meter scale) as well 

as the optical characteristics is scarcely available. In this thesis, further investigations on palladium 

were subjected, as it is known to interact at room temperature with hydrogen. Moreover, even studies 

on platinum are commenced, although in a much lesser extent and reported in article 3.8. 

 

In contrast to gold, the preparation of palladium nanoparticles by dewetting is more complex. 

Concerning its chemical properties, palladium is comparable to silver and thus not inert. Hence, as 

already shown for silver, a chemical reaction with the surrounding atmosphere during the preparation 

is not completely ruled out. The reactivity of the palladium is not a disadvantage; on the contrary it 

will (especially in the nano-particulate appearance) be required in some applications. In article 3.4, a 

new method to obtain palladium nanoparticles by a dewetting procedure at atmospheric conditions 

was introduced. Michalak et al. also showed recently the dewetting behavior of thin palladium layers 

under ultra-high vacuum conditions on a sputtered SiN surface of an oxidized Si waver [79]. In 

contrast to the previous articles, fused silica glass instead of soda lime silicate glass was used. This 
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was done taking into account the very high band gap energy of SiO2 and the associated high optical 

transmission in the UV range. On the other hand, fused silica possesses excellent thermal properties 

such as high thermal shock resistance which allows very high cooling rates. A thin palladium layer 

with a thickness of 5 nm was deposited onto a fused silica surface. A subsequent treatment at 900 °C 

for 1 h (in air) results in a thermally induced formation of round particles with a diameter up to 

200 nm. However, the size distribution diagram shows a significant accumulation in the size range 

from 15 to 30 nm. Around the largest particles, no smaller particles can be found. This indicates 

ageing effects such as Ostwald ripening and Kelvin instabilities, Rayleigh instabilities as well as the 

movement of whole particles, results in coalescent structures. Additionally, the same experiments 

were also performed on larger fused silica substrates in order to demonstrate the optical properties of 

palladium nanoparticle layers under different atmospheres. If the palladium nanoparticles are located 

in a hydrogen atmosphere, the optical properties are changed very significantly by the incorporation of 

hydrogen into the palladium lattice (see the explanations in chapter 4.2). In these experiments, it 

became also apparent, that probably an oxidation to PdO takes place. By varying the cooling rate, it 

was observed that there is a clear evidence of the formation of palladium oxide and it was concluded 

that the oxidation takes place during subsequent cooling. This means that the dewetting at 900 °C 

takes place in the metallic state, because palladium oxide is not stable in air above 819 °C [123,124]. 

This assumption was verified by a detailed optical examination in articles 3.5 and 3.6 as well as a 

crystallographic EBSD analysis in article 3.8. 

In order to understand the (optical) oxidation behavior of palladium, oxidation and reduction 

experiments were carried out on palladium layers with a thickness of 12 nm in article 3.5. The 

oxidation of palladium occurs between 258 and 819 °C. Therefore, the thermal annealing was carried 

out at 720 °C in order to obtain an oxide layer. From Fig.1 in article 3.5, it is seen, that no dewetting 

has occurred. Hence, the temperature of 720 °C is not high enough for a dewetting procedure. With 

respect to the oxide phase, however, it is beneficial for the study of optical conditions, since they are 

more prominent. Although no dewetting occurred, the palladium oxide layer as well as the reduced (by 

hydrogen) metallic layer shows a significantly changed morphology. This can be explained by the 

increase in volume during the oxidation. The layer compensates the stress by upraising and in 

consequence the roughness is notably increased. But surprisingly, this process is not reversible. 

Because a reduction with hydrogen gas no longer results in a smooth layer. The roughness remains 

unchanged. Furthermore, this preparations behavior has been used specifically in article 3.6 in order 

to develop a highly optically active hydrogen sensing layer.  
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In article 3.6, layers prepared by the procedures in article 3.4 and 3.5 were investigated in detail, with 

the aid of a specially developed optical sensor head. This sensor type is used to determine time 

conditions during the hydrogen absorption and desorption. Freshly sputtered palladium layers with 

thickness of 12, 14 and 18 nm were deposited onto fused silica. These simple and commonly used 

hydrogen-sensitive layers, serves as a reference setup for further experiments within the sensor head. 

The layers were treated at 700 °C for 1 h in air in order to obtain oxidized layers, according to 

article 3.5. This was used to study the reduction behavior as well as the optical response of a 

roughened layer (after reduction to metallic palladium), compared to a freshly sputtered palladium 

layer. In order to investigate the optical properties of nanoparticles in contact with hydrogen, a 

palladium layer with a thickness of 5 nm was prepared and subsequently annealed at 900 °C for 1 h in 

air. This procedure has been carried out according to article 3.4. 

The particle formation within and below an SiO2 layer as presented in article 3.2 is further described 

in article 3.7. A plasmon based microfluidic sensor made of glass is presented. For this purpose, a 

microfluidic structure, based on the layer system (SiO2 / Au / SiO2) was hot embossed into the soda 

lime glass surface. Here, during the embossing procedure, i.e. at high temperature, also dewetting of 

the gold layers into nanoparticles occurred. An additional heat treatment was necessary because a back 

side glass sheet had to be bonded onto the structured glass. The second final SiO2 layer was necessary 

in order to prevent the sticking of the mold during the hot embossing process. In order to better show 

the effect of this top layer, another simple cuvette was prepared without the hot embossing step. It 

became clear that the double treatment and especially the forming process have a significant influence 

on the layer structures, and thus the optical properties of the sensor system. 

In comparison to article 3.1, in which a detailed description of the resulting morphology of the 

nanoparticles at temperatures up to 400 °C was presented, article 3.8 deals with the dewetting 

temperatures > 1300 °C especially for gold and palladium.  

For gold, it should be noted that the particles are stable at high temperatures under the applied 

parameters. Even if the bulk melting point is exceeded (for 1 h), the particles were not completely 

destroyed, however, the texture is lost in this step. In addition to crystallographic changes, which will 

be discussed in a later section of this discussion, also significant changes in the resulting shape of the 

nanoparticles occur. The facets which were described as a result of energy minimization disappear 

with increasing temperature. This trend of rounding is statistically illustrated by image analysis. Here, 

the largest (feret) diameter of a single particle was compared with its (feret) smallest diameter. The 

increase of the coefficient to unity means an approximation to the circular shape.  

The layers were annealed in air, and thus the layers oxidize to PdO. Therefore, in contrast to gold, the 

dewetting mechanism becomes more complex. SEM micrographs (see Fig. 9) show after dewetting at 
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876 °C residual thin layers between larger particles. However, such structures should be completely 

dewetted before such large regular particles occur during the course of a normal particle size 

evolution. An increase in the dewetting temperature to 965 °C leads to the disappearance of the 

residue and the formation of small particles instead. It can be concluded, that this small particles origin 

from the residual thin layer and are responsible for the bimodal size distribution shown in Fig. 10. At a 

temperature of 965 °C, the particles are susceptible to aging effects as discussed in article 3.1. Oswald 

ripening and coalescence leads to a significant shift in the mean particle size.  

The oxidation of the layer is maybe responsible for a disturbed dewetting behavior. Thus dewetting 

performed at 767 °C shows a corrupted layer interpenetrated with star shaped cracks. Mizsei et al. 

found that thin palladium layers, annealed in air at 600 °C are not dewetted but oxidize and 

accumulations of material are formed [125]. It can be assumed that these structures may already exist 

in the oxidized layer and later form the large particles. In a further study he shows comparable 

granular structure after purging with hydrogen as shown in article 3.5. However, in these experiments, 

the temperature was not high enough to dewet the palladium layer. In contrast, Michalak et al. 

examined the dewetting behavior of palladium layers under ultra-high vacuum conditions could prove 

a spinodal dewetting behavior [79]. However, the resulting size distribution is not bimodal as it is also 

found in article 3.4 and 3.8. Furthermore, the bimodal size distribution itself is not an effect of 

coalescence or Ostwald ripening of particles. This is a hint at another dewetting mechanism which 

differs significantly from a spinodal dewetting mode. 

The oxidization influences the dewetting process, but also affects the particle properties during the 

cooling down to the room temperature. If the temperature range were PdO is thermodynamic stable is 

crossed too slowly, a significant deformation of the particles is observed. The shape becomes rugged 

with sharp edges. This is caused by the same volume expansion, which also destroys the closed 

palladium layers as reported in the article 3.5 and 3.8.  

The preparation of platinum nanoparticles by dewetting of sputtered layers was also studied. This 

topic is only mentioned in this work in order to demonstrate the feasibility. In addition, it is suspected 

that platinum nanoparticles can affect the crystallization of glasses used as substrate due to their high 

melting point and high dewetting temperatures. Thermal treatment of a thin sputtered platinum layer at 

965 °C leads to the formation of nanoparticles with sizes mainly in the range from 50 to 20 nm, but 

with a significant occurrence of unusually large particles with sizes in the range from 300 to 500 nm. 

The largest particles are faceted, similar to the gold particles in article 3.1 and 3.8 and to the 

palladium particles in article 3.8. Surprisingly, also single crystal platinum whiskers were found 

which protrude from the glass surface. The particle size distribution shows a log normal size 

distribution and indicates Ostwald ripening as the predominant mechanism [90].  
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In the following, reference [126] describes a suitable procedure to analyze surface supported particles 

by TEM techniques. As already mentioned, the field of nano technology not only deals with the 

preparation and application of nano structures, also the further development of new analytical methods 

plays a key role in this research area. The discussions of all articles presented in this work have clearly 

shown that the surface is certainly essential for the production of nanoparticles by a dewetting 

procedure. Unfortunately, on top of a glass sheet, the particles are inaccessible for a high resolution 

TEM analysis. Dissolution of the substrate and a subsequent deposition of the particles on a TEM 

support destroyed the orientation and distance relationship to the former surface and to the particles to 

each other. Thus, a fixation of the particles in an additionally applied chemical resistant matrix is 

necessary. Subsequently, the glass carrier substrate is dissolved in a mixture of hydrofluoric acid and 

nitric acid. Because the particles and the carbon layer are resistant against the applied acids, the carbon 

film which contains the particles can now be placed on a TEM chopper grid. This described previously 

method corresponds to the standard replica technique for the preparation of surface imprints suitable 

for TEM analyses. However, this simple and fast sample preparation technique allows the detachment 

of all particles from a glass substrate surface. The inherent nature is now accessible by a TEM 

analysis. The preparations parameters of the particles are shown in this article and correspond to the 

specifications in article 3.8. The dewetting was performed at 965 °C in air. 

 

4.2 Optical characterization 

Light as an electromagnetic alternating field, interacts with the electrons gas of the metallic particles 

and excites this to oscillate. Damping the restore speed of the electrons (according to the polarization 

change of the field) is not infinitely fast. The system comes in a resonance state, in mutual dependence 

of material, particle size and wavelength of the incident light. This resonant state consumes energy, 

resulting in an increased absorbance at a certain wavelength, in the optical spectrum. The typical 

resonance wavelengths for gold are in the range of 520 nm to IR range [113]. 

The fundamental optical properties of gold nanoparticles are described in article 3.1. The optical 

spectra of annealed layers with a different thickness are demonstrated. As described at the beginning 

of this discussion, an increasing layer thickness leads to an increasing particle size and the optical 

properties are mainly affected by this particle size. In this specific example, the particle size is 

increased from 36 to 167 nm and thereby the plasmon resonance peak (absorbance maximum) shifts 

from 545 to 630 nm. However, it should be noted that with increasing size the particle shape is also 

changed and this leads to an additional shift of the resonance to longer wavelengths. A shift of the 

absorbance maximum is also accompanied by a peak broadening which is also due to an increasing 

scattering power with increasing particle size. From a theoretical point of view, the absorbance of 
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small metal particles consists of absorption and scattering components. Gustav Mie accurately 

described this behavior in the theory named after him.  

Therefore, an additionally simple but powerful method which deals with these phenomena is also 

described. The samples are scanned with a flatbed scanner, to capture the color appearance at different 

backgrounds and optical setups. If the light source is located behind the layer (on transparent 

substrate), the light passes through the layer. The wavelengths, (back) scattered and absorbed by the 

nanoparticles are missing and the layer will appear as colored. This setup corresponds to the 

conditions within an optical spectrometer in transmission arrangement. However, the perception of 

color of a nanoparticle layer is also affected by the optical properties of the background. If the light 

source is located e.g. behind the observer and if the background (behind the sample) is colored frosted 

black, it follows that only the back scattered light from the layer is visible to the observer (or the 

flatbed scanner). However, if the background is white, the light transmitted through the nanoparticle 

layer is reflected, and passes again the nanoparticle layer on the way back to the eye (sensor). In this 

case, it superimposes with the back scattered light from the layer which results in a distorted 

(superimposed) color perception. Accordingly, the color perception of the eye is not fully comparable 

with the results of a spectrometer. Although calculations allow the determination of the color from an 

optical spectrum, the optical setup is also crucial for the color impression of the human eye. The 

presentation and interpretation of these effects succeeds with the aid of optical spectra and Figure 3 

and 4 in article 3.1 illustrate this approach in a significant way. In the first row of Fig. 4, it is 

demonstrated what the eye sees and the second row (d – q) corresponds to the optical transmission 

spectra, while the third row illustrates the (diffuse) back scattered light. The change of color in the 

second row corresponds to a shift of the plasmonic resonance to larger wavelengths. Such a shift 

results to an increase in transmission in a wavelength range of around 500 nm and also with an 

increased absorbance at 630 nm. This leads to a higher proportion of blue and a lower red proportion, 

i.e. the appearance of the layer becomes increasingly blue.  

A further effect, which has been predicted by the Mie theory, is the appearance and displacement of 

the scattering maximum with increasing particle sizes and is also responsible for the peak broadening 

discussed above. The third row in Fig. 4 (r-u) shows the diffuse reflectance of the particles realized by 

a black background. For the smallest particles, where no scattering phenomena occur, the scanned 

images remain black. With increasing particle sizes, a diffuse orange layer appears which corresponds 

to scattering of light by interaction with the oscillating electron gas. It should be noted that with this 

method, no specular reflection is measured as the optical arrangement of the flatbed scanner is not 

designed for. Wherefore the closed untreated layers appear also in black.  

The article 3.2 presents the optical properties of gold nanoparticles covered or embedded in an SiO2 

matrix. If nanoparticles coated with a matrix of higher refractive index, their plasmon resonance shifts 
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toward longer wavelengths [3,113,127] (for more details describing these facts see article 3.7 and also 

3.3). Since the dewetting occurs in this example inside or within an SiO2 layer, the structures and the 

optical properties differ significantly from those dewetted on top of a surface. The most noticeable 

result of this article is the decolorizing of the sample if it is covered with an SiO2 layer before 

dewetting. Figure 4 shows that the plasmon resonance of the gold particles in the visible range is 

suppressed. Nevertheless, the typical gold inter band absorption in the region below 500 nm is still 

observed. This suggests that still metallic gold must be present. Furthermore, the range between 600 

and 1000 nm shows a consistently low (at least for a transparent and clear sample) transmission of 

only 60 or even 50 % at lower dewetting temperatures. The optical spectrum of the covered particles 

corresponds to a thin layer below the percolation threshold [128] and the characteristic spectra of 

particles and layers are superimposed. Similar structures and their corresponding optical spectra can 

also be observed in an incompletely dewetted gold layer by time resolved optical spectroscopy [41]. 

However, even after the dewetting system gold/SiO2 is completed, no plasmon resonance is observed 

in the absorption spectrum. The particles with a size up to 750 nm are too large for a strong plasmon 

resonance in the visible range. Possibly, these large particles are no longer approximately semi 

spherical, but have the shape of discs. However, such an assertion cannot be derived from the recorded 

SEM images. 

However, the effect of discoloration can be prevented by an additional SiO2 layer below the gold / 

SiO2 system. Then, the resulting gold particles are finally embedded in SiO2. It has been argued that 

the increased roughness of the additional first silica layer affects the dewetting and promotes the 

formation of smaller particles. This is clearly seen in Figs. 2 e and f. Smaller particles exhibit (in 

agreement with the previous argumentation) a noticeable plasmonic resonance in the visible 

wavelength range which is also observed in the optical spectra shown in Fig. 4. In analogy to the gold 

silica system, no clear plasmon resonance is observed at wavelengths up to 1000 nm visible when the 

dewetting is not yet complete, as it is also seen in [41,129]. 

The knowledge about this behavior is crucial taking into account the design of sensors in article 3.7, 

which are covered with an SiO2 layer to prevent sticking during hot embossing. A sensor system, as 

described above is not possible without a significant plasmon resonance and thus without an additional 

silica layer.  

The effect of an additional metal layer is described in article 3.3. In contrast to the dielectric SiO2 

layer, an additional layer formed by another type of metal has, with a suitable choice of the respective 

metals, the ability to form alloys. In this work, a system consisting of gold and silver was studied 

which in this sense exhibits a perfect miscibility. 
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Using a simple mixture of these metals, the plasmon resonance is observed at significantly smaller 

wavelengths than in the case of pure gold particles. The minimum plasmon resonance of very small 

gold nanoparticles is located at 510 to 520 nm [3,114,130,131]. An increase in the particle size, in the 

refractive index of the matrix (or substrate), or if the shape differs significantly from a sphere, leads to 

a shift of the absorbance maximum to higher wavelengths [3]. For silver, the characteristic 

transmission minima is located at around 360 to 420 nm [3]. Since the plasmon resonance is defined 

by the dielectric function of each metal, a mixture performs the tunable optical properties as a function 

of ratio of the respective metal concentrations. In article 3.3, the concentration of each metal was 

adjusted by the thickness ratio of the initial layers.  

With increasing thickness of initial gold layer, the plasmon resonance peak shifts from 488 to 520 nm 

after the annealing (shown in Fig. 5). This can be explained by an increasing amount of gold in the 

dielectric function of the resulting nanoparticles. However, the dewetting results also in larger 

particles, since the initial layer thickness also increases. As already mentioned in article 3.1, larger 

particles leads to an additional shift to longer wavelengths. 

If the layer system is deposited in the opposite stacking order, i.e. a gold layer with a constant 

thickness is followed by a silver layer with varied thickness, then the resulting plasmon resonance is 

also shifted to higher wavelengths. At a first glance, this behavior is surprising; it can, however, be 

explained taking into account, that silver is oxidized under the applied conditions. Hence, it is due to 

the oxidation of silver. The effect of alloying is suppressed (or extinguished) by the formation of a 

matrix around the particles which has a high concentration of silver and hence, a high refractive index. 

A comparable behavior is shown in article 3.7, an increase in the refractive index of the surrounding 

medium leads to an increase in resonance wavelength. 

This behavior can be suppressed in a certain extent by changing the stacking order. An increased silver 

layer is covered with a gold layer of a constant thickness. Hence, silver is protected against the 

atmosphere for a longer period of time. This leads to a shift in the plasmon resonance to smaller 

wavelengths with increasing particle size. An uncovered gold film dewets and forms particles with a 

resonance wavelength at 527 nm. An additional silver layer with a thickness of 7 nm after dewetting 

leads to a plasmon resonance at 509 nm, i.e. at a smaller wavelength than for pure gold. This means 

that the long-wavelength shift which should be observed in the case of larger particles is completely 

compensated and exceeded by the short-wavelength shift caused by the formation of an alloy. 

A further important result, taking into account the absence of the plasmon resonance of pure silver, at 

a temperature above of 400 °C. In Figure 4 in article 3.3, a characteristic absorbance peak is not seen 

in the case of 7 nm thick silver layer according to dewetting. Nanoparticles in general do not show a 
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Plasmon resonance if they lose their metallic properties, i.e. if no longer a free electron gas exists 

which is necessary for the resonant interaction with a light wave.  

In article 3.4, the optical properties of palladium nanoparticles prepared by the dewetting method are 

shown. Dewetting of closed layers to form palladium nanoparticles has the advantage that no chemical 

substances affect the optical spectrum especially the UV cut off wavelength [12].  

Langhammer et al. described the fundamental optical properties of small palladium nano disks 

[132,133,133] and their application for plasmon resonance based hydrogen sensing [134,135]. As the 

particles have distorted aspect ratio, the plasmon resonance is shifted into the vis-IR wavelength range. 

The applied particles were prepared by a hole mask lithography [136].  

Since the plasmon resonance depends basically on the intrinsic electronic structure of metals, 

discontinuities in the dielectric function are directly transferred to the optical properties. The dielectric 

function of palladium indicates a characteristic shoulder in the range from 200 to 300 nm, which is 

also observed in the optical spectrum in the form of a significant change in the slope. Simulations, 

which will be more precisely discussed, confirm this fact and prove the direct relationship of dielectric 

function and resulting optical spectrum. Hydrogen incorporation into the palladium lattice 

significantly affects the electrical structure of the host metal, which can also be seen in a clear change 

in the optical spectrum of the particles in a pure hydrogen atmosphere.  

In contrast to gold, the dewetting behavior of palladium is more complex caused by an oxidation 

process. Palladium reacts (in air) to PdO at a temperature above 258 °C which decomposes to metallic 

Pd above 819 °C. In order to prevent an oxidation during the formation of the particles, a process 

temperature of 900 °C was used for dewetting (see article 3.4). After the annealing program is 

completed, the sample was cooled down to room temperature.  Below 819 °C, the oxidation to PdO is 

thermodynamically possible, however, below 258 °C it does not occur for thermodynamically reasons. 

In order to prove the presence of metallic palladium during dewetting, the cooling rate was increased. 

This led to a decrease in the amount of oxide formed during the cooling procedure. However, in 

article 3.6 it is shown, that a complete suppression is not possible under the conditions applied by this 

method because the reaction kinetics is too fast. However, PdO at room temperature is not stable 

against the attack of hydrogen. This enables the preparation of metallic palladium nanoparticles from 

PdO particles. The optical properties are irreversibly changed by the first interaction with hydrogen, A 

further contact to hydrogen results only in a reversible change in the optical spectra, caused by the 

formation of PdH, (see above). This indicates that a chemical reduction of PdO to Pd has expired. 

Hence, below 258 °C no (significant) PdO is formed and the reaction becomes irreversible at RT.  

To get a better insight into the optical and structural behavior of palladium during the oxidation 

process, palladium layers with a thickness of 12 nm were annealed below the PdO decomposition as 
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well as below the dewetting temperature. A palladium layer with a thickness of 12 nm still shows 

optical transparency and an optical transmission analysis as well as an application according to 

article 3.6 is even possible. The optical results are basically presented in article 3.5, Figs. 2 and 3. 

After the oxidation, the optical spectrum is changed dramatically caused by the transformation from a 

metal to a semiconductor (PdO) which results in different effective mechanisms of interacting with 

light. The optical band gap of the resulting palladium oxide shows a steady transition over a wide 

wavelength range, which may possibly be due to impurities. Below wavelengths of 500 nm, further 

optical effects occur upon oxidation and may correspond to the interband transitions or charge transfer 

bands. Additionally a similar observation in the same wavelength range was also discussed in article 

3.4 after heat treatment which results in the (therein still suspected) oxidation of palladium 

nanoparticles. However, a continuous layer is much better suited to describe the optical properties of 

palladium than the oxidized nanoparticles. The exact origin of the optical band is not yet clarified. 

In article 3.5, a further important fact is exposed. The optical properties of a continuous palladium 

layer after reduction with hydrogen is not identical to that prior to the oxidation. This is attributed to 

changes in the surface morphology presented in chapter 4.1. The layer has changed permanently and it 

cannot be explained only by the interaction (incorporation) of hydrogen and palladium. As explained 

below, the effect of the interaction of hydrogen with an oxidized layer as well as with palladium 

nanoparticles is discussed in more detail.  
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4.3 Sensor application 

 

In some sections of this work it has been discussed that nanoparticles can change the optical properties 

in dependence of their composition and that of the surrounding matrix. Furthermore, it has been 

shown, that the metallic particle in a certain way response to the environment and hence, it should also 

be suitable as a sensor. The next section introduces two basic types of optical sensors which not only 

enable the detection of substances, but also allows a deep insight into the nature of the nanoparticles 

and matter in general. 

In article 3.6, the optical properties of palladium nanoparticles and continuous layers in contact with 

hydrogen are shown in an application related consideration. The retooling of a spectrometer was too 

complex and therefore a simple and uncomplicated sensor system which allows time resolved 

measurements with a suitable sampling rate was developed. The optical setup of the sensor head is 

equal to a transmission spectrometer. Two windows coated with the target layer are illuminated by a 

red LED, the light is transmitted through the windows, the layers as well as the chamber. At the 

opposite side, the light is collected by a photodiode. In contact with hydrogen, the optical properties of 

the coating will be changed according to articles 3.4 and 3.5. The optical analyses given in these 

articles, allow to calculate difference spectra, which provide information about the maximum optical 

change in the spectrum during and after the contact to hydrogen. It can be concluded: a red LED with 

the outlined emission spectrum is very suitable as light source for the sensor using palladium coatings. 

In a home-built system the comparability to other setups is not given sometimes. Hence, the results of 

this work are discussed in relation to a standard procedure, which consists of untreated freshly 

sputtered palladium layers of respective thickness.  

As expected, the optical transparency at wavelengths which can be generated by LED changes in 

dependence of the atmosphere applied. If the layers have been oxidized, at the first contact to 

hydrogen, an irreversible reaction of PdO to PdH takes place which results in an immense decrease in 

the transparency. With respect to the layers, the change in the transmission is three times as large as 

that attributed to the conversion from Pd to PdH. The reaction of Pd to PdO is that of a metal to a 

semiconductor and hence is attributed to a fundamental change of the light absorption mechanism. If, 

however, particles are used for the measurement, a similar but much smaller (16 times in comparison 

to the continuously oxidized layers) effect occurs. In this regard, it is also interesting that the particles 

used for the measurement are rapidly cool to prevent the oxidation by air as described in article 3.4. 

Therefore it becomes clear that a complete suppression of the oxidation, with the parameters of this 

cooling method and without replacing air as atmosphere, is not possible. 
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The reversible effect present in all studied types of coatings corresponds to the formation of palladium 

hydride. However, all types of coatings also show different optical responses during the contact with 

hydrogen. The freshly sputtered and oxidized layer differ (beside the signal height) by the desorption 

behavior. The reduced and roughened layers, shows a three step desorption behavior. However, there 

are several different lines of argumentation. First, the three steps correspond to the 3 different stages 

within the Pd-H system. However, the reason why the freshly sputtered layers show only one stage is 

not yet understood. Possible explanations are the resolution of the measurement is too small, and only 

the strongest change is visible, or 2 phases (the beta phase and therefore the alpha-beta steady state 

phase) within the phase diagram are suppressed.  

The particles basically show the same behavior (except signal height) as the previously oxidized 

layers, but the signal has the opposite sign. This is also explained by different absorption mechanisms, 

but here between two different types of interaction of light with a metal. Firstly, the absorption in a 

layer, and on the other hand manipulation of a plasmon resonance of small metal nanoparticles. The 

direction which turns the signal also results from the difference spectra in Fig. 2, in article 3.6 

 

Another type of sensor is present in article 3.7 and deals with a change in the dielectric constant of the 

surrounding medium. The basics of optics and preparation are described in the articles 3.1, 3.2 and 3.3 

as well as in refs. [137,138]. 

Gold layers were prepared and subsequently covered by an SiO2 layer in order to prevent sticking 

during the hot embossing process. During hot embossing, the particles are formed below or within the 

silica layer. To investigate the effect of an additionally SiO2 layer on the sensor properties, cuvettes 

with and without a silica top layer were prepared and filled with different liquids as well as with air as 

standard. To illustrate the effect of hot forming, these measurements are compared with an integrated 

microfluid glass chip. A soda lime glass substrate was coated with an SiO2/Au/SiO2 layer system and 

subsequently hot embossed directly into the coated substrate. As discussed in article 3.2, a layer 

system without silica as the base layer, is not suitable due to discoloration effects.  

As expected by numerical calculation and taking into account the relevant literature [3,3,113,119,139], 

an increase in refractive index of the used liquids, leads to an increase in the plasmon resonance 

wavelength, illustrated in Fig. 6 (a) in article 3.7. The plasmon resonance of an uncovered cuvette 

shifts from 544 nm (corresponds to air) by 13 nm if xylene is used. A shift of the same magnitude is 

obtained if the particles are located below a covering SiO2 layer. Only the absolute plasmon resonance 

position has shifted towards higher wavelengths. 
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In contrast, the hot embossing process results in a considerable decrease in the optical sensitivity. This 

is discussed, by a densification of porous structures by the embossing step. This should also be 

mentioned that the measurement setup has changed. The spot size is reduced to 7 mm however, some 

areas of the chips are also transmitted, which are not in contact to the analyte and thus do not show a 

change in the plasmon resonance position. Superimpositions of sensitive and insensitive areas may 

result in a distortion of the measured signal. Due to this uncertainty, no simulations were performed 

for the determination of particle size and coverage. 

In a similar way as the sensor based on palladium for the detection of hydrogen, this sensor is suitable 

for scientific use. The ability to measure the same particle layer in contact with various matrices, 

allows the estimation of properties, which cannot be derived from static spectra. This fact is discussed 

in more detail in the following chapter of the discussion, which deals with the simulation. 

 

4.4 Theoretical consideration (Simulation) 

 

To describe or to predict the optical properties of metal nanoparticles and their modification by a 

couple of parameters, the Mie theory is used. The mathematical algorithm of the software used 

(BHMIE) was written by Craig F. Bohren and Donald R. Huffman [111]. The graphical 

implementation (Mie Plot) was realized by Philip Laven and based on the BHMIE code [140]. 

Regarding the use of the Mie theory, some restrictions have to be applied. The Mie theory, as an 

analytical solution, is only valid for metal spheres inside a homogeneous medium. However, the 

nanoparticles described in this work are located in an interface exactly between substrate and 

atmosphere or liquid and frequently a deviation from the spherical shape occurs (more specifically, the 

deviation from the circular shape in the projection demonstrated in the articles 3.1, 3.2, 3.3, 3.4 and 

3.8). This inevitably leads to deviations in the predictions. If a theoretical system no longer applies, 

then it is possible to adapt it by correction factors. However, this type of adaptation does not always 

fix the problem itself. In this thesis such factors were used, but it must be noted that the resonance is 

affected by many parameters, and a single correction includes all influential factors. It also follows 

that a correction factor is always tailored only to an individual system and is hardly or not transferable 

at all. Basic statements on the behavior of nanoparticles are still possible and provide an excellent 

insight into the functional principle of particle based nano optics. It should also be mentioned in 

passing, that at least some limitations (especially the particle shape) of the system can be described by 

using numerical methods. In initial experiments, the program DDSCAT of Drain and Flatau [141,142] 

shows promising results. It is based on the discrete dipole approximation, but requires complicated 

shaping operations and needs significant more computing power. 
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The resonance wavelength of small metal nanoparticles is simultaneously influenced by the particle 

size (distribution), shape, covering degree as well as by the surrounding media. Even if only size and 

environmental conditions (geometry, refractive index, etc.) are unknown, it is not possible to 

determine these values based on a single spectrum. This results from the fact that all of these effects 

lead to a shift of the peak to longer wavelengths. However, if the magnitude of a resonance shifts and 

the respective refractive index are known, statements about the underlying system are possible by 

using the Mie theory. An example is already mentioned in article 3.7 and chapter 4.3.  

The plasmon resonance wavelength of gold nanoparticles is affected by the dielectric constant and 

hence the refractive index of the surrounding liquids. The absolute position of the wavelength is 

basically due to the particle size. Calculation (at a given particle size) performed with the Mie theory 

pointed out that the slop of the resonance shift versus the change in the refractive index of the liquid, is 

much too high (see scattered lines in Fig. 7 article 3.7). This means that the real system responds 

much weaker to the presence of a liquid with an associated refractive index, as predicted by Mie 

theory. The idea is that a particle is not in a complete contact with the surrounding liquid. Introducing 

an effective medium (consisting of the components of the dielectric matrix) to describe the 

environment at the interface will solve the problem and allows the description of a mathematical 

system based on the Mie theory. A suitable choice of this linear weighting variable, accompanied by 

an appropriate adjustment to the resonance wavelength by the particle size, leads to a model that can 

describe the real situation in theory very well. For the calculations, a constant dielectric value of fused 

silica was assumed since within this wavelength range no significant changes in the refractive index 

are to be expected. This does not apply to the UV range.  

Regardless of the selected simulation model (e.g. applied weighted and unweighted dielectric 

environment, Fig. 7, article 3.7), nearly the same plasmon resonance is obtained for the refractive 

index of xylene (n=1.492). Hence, the refractive indices of SiO2 (fused silica) and xylene are very 

close to each other, thus a comparable dielectric environment is assumed by the simulations. 

 

However, the real implication of the weighting variable, whether it is predominantly due to an 

incomplete coverage of a particle surface or the plasmon resonance is affected through an SiO2 closed 

layer (as seen in [136,139]) cannot be clarified by this way. To the chip itself, no simulations were 

carried out, since the measurement data can also contain insensitive areas, which may distort the 

measurement, and thus the results of the simulation.  

In article 3.4 simulations were carried out with the aid of Mie theory in order to identify the 

absorbance peaks as plasmon resonances and furthermore to explain the change in optical spectra by 

the incorporation of hydrogen. Hence, an identification and evaluation by literature data was not 
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possible. For this purpose, the usual assumptions for the Mie theory, a sphere in a homogeneous 

medium, was adopted. The measured material dielectric functions of palladium, palladium hydride as 

well as fused silica found in the literature were used to perform the calculations. As already 

mentioned, a weighted dielectric material as surrounding matrix was used, to adapt the conditions of 

particles located inside an interface. Since optical induced resonances are expected in the UV range, a 

wavelength dependent dielectric function must be used in order to describe the SiO2 substrate. In 

comparison to article 3.7, the particle size distribution is known, and thus the effect of the surrounding 

matrix and the geometry can be adapted. However, a separation of the effect of the matrix and the 

geometry is still not possible. On the other hand, in article 3.4, different ways of adaptation have been 

identified. Nevertheless, a theoretical description of the performed measurement taking into account 

the effect of the geometry is still not possible. Taking into account the above described limitations of 

the Mie theory, the real system is too complicated. 

Important insights are still possible. The shape of the graph provides information on the origin of the 

optical properties of dewetted palladium layers. The shoulder in the absorption spectrum at 

wavelengths between 200 and 350 nm is also found in the dielectric function of metallic palladium. 

The optical spectrum is consequently caused by the electronic structure, and there is an interaction 

between the electrons and the light. Thus may be argued that there is a plasmon resonance. 

Furthermore, using the dielectric function of palladium hydride instead of palladium for the 

calculations leads to a notable change in the simulated absorption spectrum. The same effect can also 

be observed when the particles are brought in contact with hydrogen. It can be concluded, that the 

optical spectrum is caused by the formation of palladium hydride.  
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4.5 Crystallographic, morphological and analytic 

  

Using methods such as a wet chemical route or the preparation of particles from the gas phase and 

subsequent deposition on a surface can hardy result in an orientation of the particles. By contrast, if a 

support is used e.g. a substrate and thus two degrees of freedom (rotation) are blocked. Additionally an 

energetically preferred orientation is already a result of the sputtering process. The subsequent 

dewetting leads to separated particles and all formed particles might have approximately the same 

orientation with respect to the substrate. The resulting “layer” of oriented particles may hence possess 

a texture. This texture statistically describes the distribution of crystallographic orientations.  

In article 3.1 the preparation of gold nanoparticles is described. It was found that the dewetting of a 

sputtered layer which already has a certain orientation leads to the formation of irregularly shaped 

particles in the first stages of dewetting. However, if annealing time and the temperature is increased, 

the particle shape becomes more regular and mainly facetted. The faceting is attributed to the 

crystalline nature of the particles and corresponds to a minimum energy state as described above. The 

shape follows from the Wulff construction [100,103,143,144] as well as the modified Wulff 

construction for supported particles [104,121]. The XRD patterns obtained from a 21 nm freshly 

sputtered and annealed gold layer proved its crystallinity. Mainly, the 111 peak of metallic gold is 

observed in a freshly sputtered layer. A great number of papers confirmed the orientation of sputtered 

or evaporated gold layers [60,62,63,145]. After a subsequent annealing solely the 111 and 222 peaks 

were observed. Thus, it can be concluded, that the particle layer is textured caused by a preferable 

orientation of the particles with respect to the surface of the substrate. EBSD measurements obtained 

from the same sample confirmed this result. An orientation with the (111) crystal plane parallel to the 

substrate is preferred. With respect to the argument of the blocked rotation degrees of freedom, a 

continuous ring observed at an angle of 70.5 deg in the (111) pole figure indicates a random rotation 

around the [111]-direction. These results are confirmed by [38]. Similar orientations (partially 

different measurement methods) are found in numerous references [39,41,145,146,146]. Additionally, 

Marks [100] and Metois et al. [147] described “kinetic shapes” which occur, during the evaporation at 

low substrate temperatures. Due to sticking dominated growth processes, a (001) face exhibits a higher 

“sticking probability” as well as a higher free surface and thus will grow faster than a (111) face. 

Marks concluded, that a slower growing (111) and (011) faces, will dominate the kinetic shape of 

small particles. He also reported a possible suppression of the fast growing (001) direction.  
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The results discussed in article 3.1 are obtained by thermal annealing at a temperature of 400 °C. At 

higher temperatures, an interaction with the substrate, a change in morphology as well as in the 

orientation cannot be ruled out. Hence, the knowledge about the crystallographic shape and orientation 

at elevated temperatures is very important to the application in catalytic growth processes e.g. Au-

catalyzed vapor-liquid-solid growth [146,148–157].  

Similar to the XRD results in article 3.1, the XRD patterns obtained for the layers subsequent 

annealed at 600 °C in article 3.2 also show mainly the 111 peak of metallic gold. The preferred 111 

orientation is not affected by the changed dewetting mechanism. EBSD analysis, however, shows an 

111 pole figure superimposed by another texture. Hence the data points were filter by the confidence 

index and image quality. A confidence index of 0.1 corresponds to the probability of a correct solution 

(indexing) of 95%, on a face centered cubic crystal system with 6 activated Kikuchi bands [158]. For a 

confidence index higher 0.2 and an image quality of more than 20%, strong 111 orientation ([111]-

direction perpendicular to the surface)) is indicated. However, if only the acquired patterns with an 

image quality factor lower than 20 % are used for a statistical analysis, the calculated 111 pole figure 

totally changed. The middle 111 spot has disappeared, and an true unspecific texture arises. Possibly 

the smallest particles below an SiO2 layer (and obtained patterns with the lowest image), exhibit 

another orientation but the underlying mechanisms is not clarified. 

Also the morphology of the particles is further examined at elevated temperatures as well as at high 

temperatures. In the case of palladium and silver, thermal induced oxidation and reduction as previous 

discussed in the articles 3.3, 3.4, 3.5 and 3.6 are also of great interest. 

In article 3.8, the dewetting temperature for gold was applied at temperatures in the range from 426 to 

1102 °C. After tempering at 426 °C, an 111 texture was also found by EBSD and confirmed the results 

of article 3.1. At higher temperatures, additionally 101 and 100 textures are formed. The 111 texture 

scarcely occurs in a sample dewetted at 965 °C and then rapidly cooled. From this, it can be concluded 

that the orientation is different if the sample is dewetted at higher temperatures. This texture can be 

preserved, if cooling is fast enough. By contrast, if a slow cooling process is applied, the particles tilt 

back and after cooling again an 111 texture is observed. If the melting point of gold (1064 °C) [159] is 

exceeded, the orientation becomes random and the texture is lost. This indicates that the oriented 

nature of the particles, caused by manufacturing, is retained up to the melting point. Only a complete 

destruction of the crystallinity also destroys the orientation.  

Statistical analyses of the particles by image processing was used to describe morphological changes 

with increasing the dewetting temperature. Important parameters are the particles size and feret ratio 

distribution. Again, the results from article 3.1 could be confirmed. The particles become faceted by 

dewetting at 426 °C for 3 h. The particle shape is still irregular, which is reflected also in the aspect 
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ratio. With increasing dewetting temperature, the particle shape becomes more round and the faceting 

is less pronounced indicated by a significant increase in the feret ratio. Similar results were obtained 

by Hwang and Noh [160]. They also describe the rounding of the gold particles on a crystalline 

sapphire substrate. Due to that, only amorphous substrates were used in the present experiments, an 

influence of the substrate crystal structure can be neglected. Nevertheless, studies of Sadan and Kaplan 

show that the morphology is restored after solid-state equilibration of the particles slightly below the 

melting point [97,110]. Furthermore, it can be concluded that the equilibrium shape of the 

nanoparticles is temperature dependent. Barnard et al. [103] used a thermodynamic model to 

determine the shape of a 12 nm gold particle at elevated temperatures. He observed a dramatic 

decrease in the {111} surface area at temperatures above 800 °C. The morphology is of the particle is 

transferred from “truncated octahedron to a more cuboctahedral morphology”. Thus the area ratio of 

the individual facets is changes. Hence, it would be conceivable that such a mechanism may influence 

the orientation of individual particles as discussed above. At the moment, it is not clear, whether a 

correlation between the change in morphology and the change in orientation exists.  

Furthermore, an interaction of the gold particles with the substrate may not be excluded. SEM 

micrographs in article 3.8 (Figure 3) show that significant substrate modifications in the form of holes 

or small depressions have occurred. However, the additionally structures are not in a local relationship 

to the large gold particles. The dewetting temperature of 1102 °C was higher than the melting point of 

the gold and the liquid particles (drops) may migrate over the surface and merge. As they wander 

around, former contact points to the substrate are visible. This would mean that the interaction with the 

substrate took place already before the particles were melted. One option would be that the interaction 

takes place with a permeated surface in contact with the substrate. A well-known phenomena occurs in 

small metal particles, associated with a shape transformation such as rounding or roughening [100, 

143,144,161]. It is denoted as “premelting” or “surface melting”. A second option is that the 

nanoparticles serve as nucleation agents for surface crystallization. The beginning of the surfaces 

crystallization of SiO2 is associated with the formation of depressions, which according to [162] may 

even be larger than the observed impressions.  

However, similar modifications are found at crystallized SiO2 surfaces after annealing at 1256 °C in 

the presence of palladium nanoparticles on the surface. The resulting crystalline appearance of the 

surface corresponds to the structure presented in [162]. However additional dark spots occur in which 

palladium cannot be detected by EDX. The size of the dark spots is comparable in size to the 

palladium nanoparticles annealed at temperatures of 876 or 965 °C. 

The exact nature of the surface modification if there are impressions or the first appearance of surface 

crystallization has not yet been examined.  
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Palladium particles were also described in article 3.8. In contrast to gold, the temperature range in 

which dewetting may occur is much smaller. Also multiple orientations (001 and 111) were detected 

after dewetting at 876 and 965 °C. As already mentioned several times, palladium is oxidized by the 

atmosphere at higher temperatures and hence shows a phase transition. For this reason, in article 3.4, 

it is proposed to suppress the oxidation by rapid cooling. This has been proved on grounds of the 

optical properties. However, as noted in article 3.6, the applied cooling rate was not fast enough and 

supposedly some PdO was already formed. To get a better insight, the EBSD investigations were 

performed on rapidly cooled (take out from the furnace) as well as on slowly cooled samples. For the 

latter, the sample remains in the furnace during cooling to RT) with and without subsequent hydrogen 

purging. If the samples were slowly cooled and not purged with hydrogen, the EBSD scan led to a 

great number (16,471) of 285,566 (5.76 %) of patterns are attributed to PdO. However, no discernible 

texture is obtained in this case. If the sample was previously purged with hydrogen (30 min) only 

0.03 % of the patterns (140 of 542,538 patterns) are attributable to PdO. Nevertheless, (in spite of a 

larger scan), a large number of patterns attributed to metallic palladium is not found. Only 1,796 of 

542,538 patterns are reliable indexed to cubic palladium. These are only 0.33 % of all possible data 

points. Due to this small amount of statistically reliable points, reliable conclusions can hardly be 

made.  

If the PdO layer is reduced by pure hydrogen at room temperature, a high reaction rate as well as the 

substantial difference in the density of oxide and metal leads to a highly disturbed crystal lattice where 

an examination using EBSD is no longer possible. 

This assumption is supported by the significant change in the morphology of the particles depending 

on their cooling rate as demonstrated in Fig. 8 in article 3.8. Su et al. proposed a nucleation 

mechanism on the surface of PdO particles in a methane-helium mixture. However, on the basis of 

catalytic measurements, they concluded a core-shell structure for the whole particle after contact with 

hydrogen [163]. 

A similar effect of difficult EBSD-pattern acquisition is observed using a rapidly cooled sample. 

However after fast cooling, only 414 of 190,992 data points are reliable. These are 0.22 % of all points 

but nevertheless, it should be mentioned that a texture calculation reveals a 111 texture, which is 

statistically not convincing. Furthermore 0.11 % of the patterns (217) can be attributed to PdO. 

Subsequent purging with hydrogen for 15 minutes shows a completely different behavior during 

EBSD analysis. Hence, in the same sample section (compare with top of Fig. 7), 34,422 of 200,928 

patterns (17.13% of all data points) are attributable to the palladium. And now 001 and 111 textures 

are established. A similar number of patterns (260) as without hydrogen purging is attributed to PdO, 

that corresponds to 0.13 % of all possible data points. 
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During fast cooling, a thin PdO shell is formed and evaluable EBSD patterns cannot be acquired 

because the respective patterns are superimposed by each other. If the PdO shell is reduced, a large 

number of patterns can be acquired and be indexed as cubic palladium. It should be mentioned again, 

the chemical reduction of a slow cooled (completely oxidized) PdO to Pd leads to a very low number 

of index able patterns. 

To ensure the electric conductivity of the surfaces, all samples were coated with a thin carbon layer 

prior to the electron microscopic analyses. An attempt has been made to treat a carbon coated sample 

with hydrogen. Surprisingly, this thin carbon layer does not prevent the reduction to metallic 

palladium initiated by hydrogen and also subsequent investigation with EBSD is still possible. 

However, even the required hydrogen purge time is probably not comparable to the treatment time 

obtained in article 3.6. Hence, the hydrogen diffusion rate through the carbon layer is decreased, and 

also the reaction product water has to leave the sample surface. Certainly, it allows studying the 

reduction behavior for discrete time steps using the same sample. 

Additionally, platinum nanoparticles are prepared be dewetting. Also in this sample a preferable 

orientation is shown. A preferred [101] and [111] orientation perpendicular to the surface is observed.

  

5. Conclusion 
 

It could be shown that an optical sensor system based on functionalized glass surfaces may provide a 

large variety of applications. 

Thin layers of gold, silver, palladium and platinum were dewetted to small nanoparticles at elevated 

temperatures. It could be shown that these particles have optical properties which can be attributed to 

plasmon resonances. The plasmon resonance of gold particles can be tailored towards smaller 

wavelengths by incorporating silver atoms, provided by an additional sputtered silver layer. An 

increase in the resonance wavelength is obtained by the prior oxidation of the silver. 

The optical properties of gold (and all other nanoparticles) are affected by the surrounding medium. 

An increase in the refractive index leads to an increase in the resonance wavelength. In addition, it was 

shown that an embedding in an SiO2 layer, prepared by a combustion chemical vapour deposition 

process (CCVD) reduces but does not suppress the sensing properties. Applying the SiO2 layer allows 

the hot embossing of fluidic structures in the layer system and the substrate in addition to the fixation 

of the particles. 
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Palladium nanoparticles can also be prepared by thermal dewetting of thin sputtered layers. The 

dewetting behavior is changed by the thermal oxidation and subsequent reduction at higher 

temperatures and a bimodal size distribution is observed. Palladium nanoparticles respond to the 

presence of hydrogen by changing the position and shape of the plasmon resonance. The most 

significant change is obtained in the wavelength range of 550 to 700 nm and is therefore easily detect. 

Annealing Pd-films at 700 °C, leads to the formation of an oxidized layer. A subsequent reduction 

with hydrogen results in a roughened surface morphology with improved hydrogen sensing properties. 

Most particles layers prepared by dewetting exhibit a strong 111 texture, i.e. the [111] direction 

preferably occurs perpendicular to the substrate. Additional textures appear at elevated temperatures. 

An almost absolute suppression of the 111 texture for gold is obtained after annealing at 965 °C and 

rapid cooled to room temperature. Thermal treatments above the melting point of gold destroy the 

texture. 
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6. Abstract 
 

In this work, nanoparticles where deposited on glass surfaces. For this purpose, a dewetting process 

was used. A closed sputtered metal layer breaks into to small particles by a heat treatment. This effect 

is based on the minimization of the interfacial energy in the system substrate/particle/atmosphere. The 

size distribution and shape of the particles may be adjusted by the initial layer thickness. If the 

temperatures are too low (350 and 400 °C) and the layers too thick (15 nm), the dewetting process also 

produces irregularly shaped particles, since the energy is not sufficient to transform the particles near 

their state of equilibrium. Based on these studies, ageing effects such as Ostwald ripening and an 

essential particle-forming mechanism, the Rayleigh-instability were identified. It has been found that 

the equilibrium shape for larger particles exhibits a clear faceting which is based on the underlying 

crystal system. In this case, it is assumed that the forming facets correspond to the crystal structure and 

represent a further stage of the energy minimization. However, the faceting disappears at elevated 

temperatures (> 800 °C) by the formation of additionally and more favored crystal faces. Using EBSD 

analyses, it could be shown that the gold nanoparticles are preferably oriented with the densely packed 

{111}-plane parallel to the amorphous substrate surface. This changes with increasing temperature and 

{100} as well as {110} planes parallel to surface will also appear. In addition, a correlation with the 

cooling rate could be expected. Only temperatures above the melting point will destroy the observed 

texture and the system is transformed in a random orientation. 

In order to control the optical properties of metal nanoparticles, several possibilities are offered and in 

this thesis three different approaches are explained in detail. The first is the adaptation of the particle 

size, followed by an adjustment of the particle composition, as well as the selectively modification of 

the surrounding media. An increase in the particle size leads to a red shift and to a broadening of the 

resonance peak. Adding of a metal as component for an alloy, leads to a lower plasmon resonance 

wavelength. Silver is the ideal material for this purpose because it has a very strong resonance in the 

visible range (at around 420 nm). Thin gold and silver layers were sequentially sputtered onto the 

glass surface. A subsequent temperature treatment leads to dewetting and alloying, thus particles with 

tailored resonance wavelengths are formed. However, the experiments were performed under ambient 

conditions, so that the silver tended to form an oxide phase. It was found that oxidation of silver 

suppresses the alloying and leads to an opposite optical effect because the particles are now inside a 

dielectric matrix with higher refractive index. This effect can be counteracted by a suitable choice of 

the stacking sequence (silver is always covered by gold) and the process temperature is not too high 

(< 400 °C). For the application as a sensor element, the incorporated material to manipulate the optical 

properties does not necessarily have to be a metal. A promising combination is palladium and 

hydrogen. Hydrogen incorporates into the palladium host lattice at room temperature with almost no 
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kinetic hindrance, and forms different phases. The amount of dissolved hydrogen in palladium is 

primarily a function of hydrogen partial pressure. However, the production of palladium nanoparticles 

concerning the dewetting of a thin layer is mostly unknown. Thus, such a system was characterized for 

the first time in this work. The possibility, to produce palladium nanoparticles without any chemical 

stabilizing agents, allows analyzing the optical properties in the UV-range. Then according to 

mathematical predictions, the plasmon resonance of palladium occurs at around 220 nm. A heat 

treatment of 5 nm thick palladium layer on a fused silica surface at 900 °C, leads to well separated 

particles with diameters in the range from 20 to 200 nm. Optical measurements under argon and 

hydrogen atmospheres show a clear effect of the presents of hydrogen on the dielectric function of 

palladium and thus the optical properties. This behavior could be mathematically described by using 

the Mie-theory using optical materials data of Pd and PdH. However, during the first purging cycle 

with hydrogen, an irreversible change of the optical spectra occurred. This is attributed to the presence 

of palladium oxide, formed during the cooling procedure between 775 °C down to 258 °C. For this 

reason, the formation and the chemical, morphological, crystallographic and optical properties of this 

oxide phase has been studied in more detail. It becomes also apparent that the sensor properties can be 

significantly improved with such a reduced Pd layer as well as with palladium nanoparticles. 

A further way to control the plasmon resonance of metallic nanoparticles is to modify the direct 

(dielectric) environment. Conversely, this behavior is also very useful for an application as a sensor 

system. For this reason, an optical sensor chip based on gold nanoparticles with microfluidic structures 

directly hot embossed into a soda lime glass substrate was designed to demonstrate the ease 

application of such technologies. It was shown that additional to the necessity of a coating which 

prevents sticking during the hot embossing procedure, the sensor properties can be used. Furthermore, 

a mathematical model was adapted to theoretically describe the effect of adjacent chemicals.  
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7. Zusammenfassung 
 

In dieser Arbeit wurden Nanopartikel auf Glasoberflächen hergestellt. Hierzu wurde ein 

Entnetzungsprozess genutzt. Eine geschlossene Metallschicht zerfällt unter thermischer Einwirkung zu 

kleinen Partikeln, basierend auf einer Minimierung der Grenzflächenenergie im System 

Substrat/Partikel/Atmosphäre. Die Größenverteilung sowie die Form der Partikel kann durch 

ursprüngliche die Schichtdicke eingestellt werden. Bei einem ungünstigen Verhältnis von relativ 

niedrigen Temperaturen (350 und 400 °C) und dicken Schichten (15 nm) erzeugt ein solcher 

Entnetzungsprozess auch unregelmäßig geformte Partikel, da die Energie nicht ausreicht, um die 

Partikel in ihren Gleichgewichtszustand zu überführen. Anhand dieser Untersuchungen, konnten 

Alterungseffekte, wie Ostwaldreifung und ein elementarer partikelbildender Mechanismus, die 

Rayleigh-Instabilität nachgewiesen werden. Es hat sich herausgestellt, dass die Gleichgewichtsgestalt 

für größere Partikel eine deutliche Facettierung aufweist, welche sich an dem zugrunde liegenden 

Kristallsystem orientiert. In diesem Fall geht man davon aus, dass die sich ausbildenden Facetten, 

denen der Kristallstruktur entsprechen und somit eine weitere Stufe die Energieminimierung 

darstellen. Allerdings zeigt sich dass diese Überlegung für höhere Temperaturen (> 800 °C) durch 

Auftreten weiterer energetisch begünstigter Kristallflächen keinen Bestand mehr hat und die deutliche 

Facettierung wieder verloren geht. Mittels weiterer EBSD Analysen konnte gezeigt werden, dass 

Goldnanopartikel bevorzugt mit ihrer dichtest gepackten {111}-Ebene parallel zur amorphen 

Substratoberfläche orientiert sind. Dieses erwartungsgemäße Bild ändert sich ebenfalls mit steigender 

Temperatur und es zeigen sich auch zunehmend {110}und {100} orientierte Ebenen parallel zur 

Oberfläche. Diesbezüglich konnte auch ein Zusammenhang mit der Abkühlrate der Probe festgestellt 

werden. Nur ein Überschreiten der Schmelztemperatur zerstört die beobachtete Textur und überführt 

das System in eine zufällige Orientierung. 

Zur Steuerung der optischen Eigenschaften bieten sich grundsätzlich mehrere Möglichkeiten der 

Manipulation an, was in dieser Arbeit anhand von drei verschiedenen Herangehensweisen erläutert 

wird. Zum einen die bereits beschriebene Einstellung der Größe sowie die Zusammensetzung oder 

auch die gezielte Veränderung der direkten umgebenden Matrix des Partikels. Da eine Vergrößerung 

der Partikel immer eine Rotverschiebung sowie eine Aufweitung des Peaks mit sich bringt, liegt die 

Überlegung nahe, ein Metall mit einer niedrigeren Plasmonenresonanzwellenlänge hinzu zu mischen, 

genauer gesagt zu legieren. Hierbei ist Silber die erste Wahl, da es eine sehr starke Resonanz im 

sichtbaren Bereich bei 420 nm besitzt. Dünne Gold und Silber Schichten wurden nacheinander auf die 

Glasoberfläche gesputtert. Eine anschließende Wärmebehandlung führt zum Entnetzen und Legieren 

des Systems und es bilden sich Partikel mit maßgeschneiderten Resonanzwellenlängen. Allerdings 

wurden die Versuche unter Umgebungsbedingungen durchgeführt, so dass das Silber zum Bilden einer 
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Oxidphase neigt. Eine Oxidation des Silbers unterdrückt die Legierungsbildung und bewirkt aus 

optischer Sicht den gegenteiligen Effekt, da sich die Goldpartikel nun in einer dielektrischen Matrix 

mit höherem Brechungsindex befinden. Diesem Effekt kann in gewisser Weise entgegen gewirkt 

werden, so dass das anhand der Stapelfolge Silber stets mit Gold bedeckt ist und die 

Prozesstemperatur nicht zu hoch (< 400 °C) gewählt wird. Zur Anwendung als Sensor, muss der 

eingebrachte Stoff zur Manipulation optischer Eigenschaften nicht zwangsläufig ein Metall sein. Eine 

vielversprechende Kombination ist Palladium und Wasserstoff. Wasserstoff löst sich bei 

Raumtemperatur freiwillig und kinetisch nahezu ohne Hemmung im Wirtsgitter des Palladiums unter 

Bildung verschiedener Phasen. Die Menge des im Palladium gelösten Wasserstoffs ist in erster Linie 

abhängig von dessen Partialdruck. Die Herstellung von Palladiumnanopartikeln durch Entnetzung 

einer dünnen Schicht ist allerdings weitestgehend unbekannt. Somit erfolgte in dieser Arbeit erstmals 

eine Charakterisierung eines solchen Systems. Die hier gebotene Möglichkeit des Verzichts auf 

chemische Stabilisationsmaßnahmen erlaubt auch eine Analyse der optischen Eigenschaften im UV-

Bereich, wo nach Berechnungen mit Hilfe der Mie Theorie auch die Plasmonenresonanzen von 

Palladium auftreten. Eine 5 nm dünne Palladiumschicht auf einer Kieselglasoberfläche entnetzt zu 

Partikeln mit einer Größe von 20 bis 200 nm Durchmesser. Untersuchung der optischen Eigenschaften 

dieser Partikelschichten unter Argon- und Wasserstoffatmosphäre offenbarten den Einfluss des 

eingebauten Wasserstoffs auf die dielektrische Funktion der Palladiumnanopartikel. Dieses Verhalten 

konnte unter Zuhilfenahme der Materialdaten von Pd und PdH mit Hilfe der Mie-Theorie 

mathematisch beschrieben werden. Jedoch zeigte sich während des ersten Spülzykluses mit 

Wasserstoff eine nicht reversible Änderung der optischen Eigenschaften. Dies ist auf die Anwesenheit 

von Palladiumoxid zurückzuführen, welches sich während des Abkühlens der Probe zwischen 775 und 

258 °C gebildet hat. Aus diesem Grund wurde die Bildung sowie die chemischen, morphologischen, 

kristallografischen und optischen Eigenschaften dieser Oxidphase genauer untersucht. Dabei stellt sich 

heraus, dass die sensorischen Eigenschaften mittels derartig reduzierten Pd-Schichten sowie 

Palladiumnanopartikelen, deutlich verbessert werden können.  

Einen weiteren Weg um die Plasmonenresonanz zu beeinflussen, ergibt sich aus der Änderung der 

direkten dielektrischen Eigenschaften der Umgebung. In umgekehrter Weise, lässt sich dieses 

Verhalten auch für sensorische Anwendungen nutzen. Aus diesem Grund wurde ein optischer 

Sensorchip entwickelt, basierend auf Goldnanopartikeln innerhalb einer Mikrofluidikstruktur, welche 

direkt in ein Kalk-Natron Glas geprägt wurde. Dies demonstriert auch die einfache Anwendung einer 

solchen Technologie. Es konnte auch gezeigt werden, dass trotz der Notwendigkeit einer SiO2 

Antihaftbeschichtung, die sensorischen Eigenschaften weiterhin vorhanden sind. Weiterhin wurde ein 

mathematisches Modell so angepasst, dass der Einfluss der veränderten Umgebung auch theoretisch 

erfasst werden kann. 
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