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Abstract

This dissertation deals with the problem of a quantitative theory of con-
firmation. The latter can be sketched as follows: You are given a theoryT , an
evidenceE, and a background knowledgeB. The question is how much doesE
confirmT relative toB. A solution consists in the definition of a functionC such
thatC (T,E,B) measures the degree to whichE confirmsT relative toB.

In chapter 1 I make precise what is meant by a theory, an evidence, and a
background knowledge. Next comes a chapter onformal conditions of adequacy
for any formal theory (not only of confirmation): A formal theory has to be non-
arbitrary, comprehensible, and computable in the limit. Chapter 2 closes with a
critical remark on Bayesian confirmation theory.

In chapter 3 I list a set ofmaterialconditions of adequacy for any quantita-
tive theory of confirmation: A measure of confirmation has to be sensitive to (and
only to) theconfirmational virtues.

These give rise to two strategies of solving the problem under consideration:
The first is to argue that there is one distinguished property of theories in relation
to evidences and background knowledges that takes into account all (and only)
the confirmational virtues. The candidate here is coherence with respect to the
evidence, which is discussed in chapter 4 on foundationalist coherentism. This
approach is found to be unsuccessful.

The second strategy is first to define for every confirmational virtueV a
function fV such thatfV (T,E,B) measures the extent to whichV is exhibited
by theoryT , evidenceE, and background knowledgeB; and then to define the
measure of confirmationC as a function of (some of) the functionsfV .

In chapter 5 it is argued that this strategy is successful. In a nutshell, it
is observed that there are two conflicting concepts of confirmation, viz. loveli-
ness and likeliness. I reason that it suffices to consider these twoprimary con-
firmational virtues. The two main approaches to confirmation are Hypothetico
Deductivism and probabilistic theories of confirmation: The former is based on
loveliness, whereas the focus of the latter is on likeliness. The idea is simple:
Combine these two aspects, keep their merits, get rid of their drawbacks.

Chapter 6 is on evidential diversity, more generally: the goodness of the
evidence. A goodness measure is defined which together with the loveliness-
likeliness measure gives rise to the refined measure of confirmationC∗. C∗ can



answer the question why scientists (should) gather evidence, and it provides a
solution to the ravens paradox.
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Chapter 1

Introduction

1.1 The Problem of a Quantitative Theory of Con-
firmation

The following monograph deals with the problem of a quantitative theory of con-
firmation of theoryT by evidenceE relative to background knowledgeB. The
latter may be sketched as follows:

You are given a theoryT , an evidenceE, and a background knowledgeB,
and you want to know how muchE confirmsT relative toB.

A solution to this problem consists in the definition of a (set of) function(s)
C such thatC (T,E,B) measures the degree to whichT is confirmed byE rela-
tive toB, for every theoryT , every evidenceE, and every background knowledge
B.1

In order for this characterisation to be precise, one first has to make clear
what is meant by a theoryT , an evidenceE, and a background knowledgeB.

1If C is a set of functions, then this has to hold for every functionc ∈ C. Corresponding to
the problem of a quantitative theory of confirmation there is the problem of a qualitative theory of
confirmation a solution to which consists in the definition a (set of) function(s)C such that

C (T,E,B) =
{

1, if E confirmsT relative toB,
0 otherwise,

for every theoryT , every evidenceE, and every background knowledgeB. In a similar way one
may characterise the problem of a comparative theory of confirmation. I will only be concerned
with the problem of a quantitative theory of confirmation a solution to which automatically is a
solution to the problems of a comparative and of a qualitative theory of confirmation.

1



2 CHAPTER 1. INTRODUCTION

Before doing so let me stress thatT , E, andB are all one is given. In partic-
ular, it is not assumed that one is equipped with some degree of belief functionp
(defined over some language containingT , E, andB) that could be used in deter-
mining the degree of confirmationC (T, E,B). C (T, E,B) has to besqueezed
out of the logical structure ofT , E, andB alone!

Squeezingis one of the most important features distinguishing the present
approach from probabilistic theories of confirmation (not only Bayesian ones in
the sense of Gillies 1998). In addition toT , E, andB, they all assume the ex-
istence of some probability functionp defined over some language containingT ,
E, andB, which is then used to determineC (T,E,B). Squeezing does not even
hold of alogical probability functionp, if the values of latter depend not only on
T , E, andB, but on thewholelanguage containing them.

In contrast to this, the values of the measure of confirmationC defined later
on are the same forany language containingT , E, andB, provided the language
is rich enough in order to express those features ofT , E, andB that determine
C (T, E,B). This is the case for any predicate language with the identity sign, but
for no propositional language. The latter are simply too poor in order to express
the relevant information.

This phenomenon is not new, but is familiar from Quine’sOn What There Is
(1948). His slogan “To be is to be the value of a (bound) variable”2 does not make
sense within the framework of propositional logic. That identity is also needed is
known from another slogan – “No entity without identity” (cf. Quine 1958).

I note this, because the mentioned feature may be taken as an argument
against the adequacy ofC: After all, the propositional calculusPC is contained
in PL1 = in the sense that every statement which is logically true in the sense of
PC is logically true in the sense ofPL1 =; and ifC cannot deal with the simple
case, how should it be able to deal adequately with the more general case.

1.2 Theory

In general, there are two positions concerning the question of what a theory is.
The semantic position defines a theoryT as the set of all modelsM =

〈Dom, ϕ〉 such thatAT is true inM, whereAT is some axiomatization (for-
mulation) ofT . Dom = 〈D1, . . . , Dr〉 is thedomain, where eachDi, 1 ≤ i ≤ r,
is a set of entities of some sort, andϕ is aninterpretation function.

2As noted by Prof. Paul Weingartner, one may want to add: first-order variable.
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If AT is a set of statements or wffs of the languageLPL1= of first-order
predicate logic with identity (including function symbols),PL1 =, then for every
set Di there are denumerably manyi-variables ‘vi

1’, ‘ vi
2’, . . . and correspond-

ing i-constants ‘ci
1’, ‘ ci

2’, . . .. ϕ assigns eachi-constant ‘ci
j ’ of LPL1= an en-

tity ϕ ( ‘ci
j ’ ) ∈ Di, eachn-ary (k1, . . . , kn-) predicate ‘P ’ = ‘ P

(
xk1 , . . . , xkn

)
’,

1 ≤ kl ≤ r, of LPL1= a subsetϕ ( ‘P ’ ) ⊆ Dk1 × . . . × Dkn, and eachn-ary
(k1, . . . , kn, kn+1-) function symbol ‘fk+1

j ’ = ‘ fkn+1

j

(
xk1 , . . . , xkn

)
’, 1 ≤ kn+1 ≤

r, of LPL1= a functionϕ ( ‘fkn+1

j ’ ),

ϕ ( ‘fkn+1

j ’ ) : Dk1 × . . .×Dkn → Dkn+1 .

According to the syntactic position a theoryT is a set of statementsAT that for-
mulates or axiomatizesT .

Personally I think that the semantic conception is more in accordance with
our intuitive understanding of a theory, but for the purposes of a theory of confir-
mation the question of how a theoryT has to be interpreted does not arise, if one
takes it to be asine qua nonthat an adequate measure of confirmationC is to be
closed under equivalence transformations ofT in the sense that

C (AT , E, B) = C (A′
T , E, B) , if AT a` A′

T ,

for any two axiomatizationsAT andA′
T of any theoryT , every evidenceE, and

every background knowledgeB. For then it must not matter how a theoryT –
syntactically construed as a set of statements – is formulated.3 If, however, one
takes the position that the way a theoryT is formulated may matter, and that the
valuesC (AT , E, B) of C for a given axiomatizationAT of T , a given evidence
E, and a given background knowledgeB may differ for different formulationsAT

of T , one is forced to consider a theoryT as a set of statementsAT .
Since none of these two positions should be ruled out right from the start, I

will take a theoryT to be a set of statements or wffs. If the measure of confirma-
tion C turns out to be closed under equivalence transformations ofT in the above

3Though one can, of course, make a functionf (. . . , T, . . .) invariant under equivalence trans-
formations ofT by recourse to some uniquely determined formulationAT of T , and by defining

f (. . . , T, . . .) = f (. . . , AT , . . .) ,

or by taking, say, the maximum function, and by defining

f (. . . , T, . . .) = max {f (. . . , T ′, . . .) : T ′ a` T, T ′ ⊆ LPL1=} .
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sense, then both the semantic and the syntactic interpretation are allowed for –
and because of the adequacy ofPL1 = (with respect to its standard semantics)
one can still interpret the set of statementsT semantically as the set of models
mod (T ). If, however, it turns out thatC (AT , E, B) – in order to be an adequate
measure of confirmation – is to be sensitive to the wayT is formulated byAT ,
thenT must be interpreted syntactically as a set of statementsAT . So considering
T as a set of statements does not rule out any of the above mentioned positions
concerning the definition of theories, and thus does not put any restrictions on the
behaviour of an adequate measure of confirmationC.

In speaking of theories I always meanscientifictheories. I do not attempt to
define these, but restrict myself to giving a necessary condition. Before doing so
let us have again a look at the structure the models of a theory have according to
the semantic position4.

These consist of sequences of the form

〈D1, . . . , Dr, R1, . . . , Rs〉 ,

where theDi, 1 ≤ i ≤ r, are sets of entities which settle the ontology of theory,
and theRj, 1 ≤ j ≤ s, are relations among the objects in the setsDi. The
latter have been summarized asDom = 〈D1, . . . , Dr〉, and the relationsRj have
been subsumed under the interpretation functionϕ, because I am considering sets
of statementsAT formulating theoriesT , and my interest is in the syntactical
pendant of the setsDi the domainDom consists of.

Consider a theory of, say, physics. Here the domainDom will consist of
four sets: A set of material objectsD, a set of space pointsS (usually<3), a set
of time pointsT (usually<), and a set of numbersR (usually<). The relations
Rj among the objects in the setsD, S, T , andR need not concern us here.

The question of interest is: Which are the entities the theory is properly talk-
ing about? I think the natural answer is that it are the material objects inD about
which the theory of physics is making claims. The space points inS, the time

4Though what I call the semantic position is usually calledstructuralism, I prefer the former
term, because all I am concerned with here is the ontological skeleton of a theory, but not the many
other questions normally associated with structuralism, as, for instance,T -theoreticity, the focus
on constraints, links, and admissible blurs, or the distinction between the models, the potential
models, and the partial potential models of a theory. For an introduction to the basic ideas of
structuralism cf. Moulines (1996) or Balzer/Moulines (2000). For a critical discussion ofT -
theoreticity cf. Schurz (1990); a summary of recent developments including a defense against
Schurz’s criticism can be found in Balzer (1996). Another critical discussion of the structuralist
position concerning theoretical terms is contained in Zoglauer (1993).
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points inT , and the numbers inR are not the things physicists are investigating.
No physicist will entertain an experiment in order to test a mathematical equation.

This gives rise to a distinction between the setsDi containing the objects
of proper investigation, those things about which claims are made by the theory
– for the physical theory these are the material objects – and the remaining sets
Di′ – in physics, the sets of mathematical entities representing the space and time
points, and the set of real numbers constituting the range of the functions among
the relationsRj. Let us call the formerdomains of proper investigation.

Admittedly, there may cases where this classification of the setsDi the do-
mainDom consists of is difficult to draw. The term I have chosen may also be
misleading, for if one is concerned with historical claims such as Cesar won all
wars he entertained or Cleopatra seduced all men she wanted to, then the domain
of proper investigation consists of wars in the former case and of people (Cleopa-
tra possibly could have wanted to seduce) in the latter –excluding Cleopatra her-
self! – though Cesar and Cleopatra may justifiedly be called the objects of proper
investigation here.

Furthermore, one may question the epistemic significance of this distinc-
tion, and consider it a mere formal manipulation only making things more com-
plicated. Nevertheless I propose that in considering a theory one should single out
some set(s) of proper investigation. The reason for doing so will become more
clear when the idea underlying the present proposal is presented. Roughly speak-
ing, the latter consists in considering how many objects of the domains of proper
investigation of the theory in question the evidence reports about, and how many
of them confirm the theory.

As mentioned before, the syntactic pendant of the sets of entitiesDi are the
i-variables ‘vi

1’, . . . and thei-constants ‘ci
1’, . . .. Since I am dealing with sets

of statementsAT formulating the theoriesT under consideration, the assumption
concerning scientific theories is expressed in terms of these.

Assumption 1.1 (Finite Axiomatizability Without Constants) If T is a scien-
tific theory with domainDomT = 〈D1, . . . , Dr〉, andDk1 , . . . , Dkn as its domains
of proper investigation,1 ≤ kl ≤ r, for everyl, 1 ≤ l ≤ r, then there is at least
one finite axiomatizationAT of T without occurrences ofkl-constants, but with at
least one essential occurrence of akl-variable, for everyl, 1 ≤ l ≤ r.

Any suchAT is called awff-ication of T .

If, for a given theoryT , the domains of proper investigation cannot be specified
in advance, then one may take recourse to the following definition.
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Definition 1.1 (Domain of Proper Investigation) Let T be a scientific theory,
and letDi be a set of entities with correspondingi-variables andi-constants in
LPL1=.

Di is a domain of proper investigation ofT iff there is at least one finite
axiomatizationAT of T with at least one essential occurrence of ani-variable,
and without occurrences ofi-constants.

Definition 1.2 (Finite Axiomatization) Let T be a theory, and letAT be a set of
wffs, AT ⊆ LPL1=

5. AT is a(n) (finite) axiomatization ofT iff ( AT is finite, and)

1. AT a` T , if T is a set of wffs, and

2. T = mod (AT ), if T is a set of models.

Definition 1.3 (Essential Occurrence of a Variable)Leth be a wff6, and let ‘xi
j ’,

j ≥ 1, be ani-variable. h containsat least one essential occurrence of ani-
variable iff it holds for every wffh′:

If h a` h′, thenh′ contains at least one occurrence of ani-variable.

The clause thatAT contains at least one essential occurrence of ani-variable
should avoid that every set of entitiesDi which is redundant or not among the
setsD1, . . . , Dr the domainDomT consists of is a domain of proper investigation
of T .

Please note that in the example of before, the set of space pointsS and the
set of time pointsT may come out as domains of proper investigation according to
the above definition. This is as it should be, for confirmation is domain-relative,
and with a suitable evidence one may perhaps confirm a theory of physics by
investigating various space points.7

Theorem 1.1 (Domains of Proper Investigation)LetT be a scientific theory with
domainDomT = 〈D1, . . . , Dr〉 andDk1 , . . . , Dkn as its domains of proper inves-
tigation,1 ≤ kl ≤ r, for everyl, 1 ≤ l ≤ n.

Then there is at least one finite axiomatizationAT of T with at least one
essential occurrence of akl-variable, and without occurrences ofkl-constants, for
everykl, 1 ≤ l ≤ n.

5Here and in the following the languageLPL1= of first-order predicate logic with identity
(including function symbols),PL1 =, is identified with the set of its well-formed formulas.

6If not specified otherwise, a wff is always meant to be a wff of the languageLPL1= of first-
order predicate logic with identity (including function symbols),PL1 =.

7Confirmation or, more generally, assessment by means of the set of space pointsS may be
appropriate for the hypothesis that the gravitational force is acting everywhere.
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Assumption 1.1 is plausible with regard to the following two positions.

First, theories have to be finitely axiomatizable in order to be such that they
can be put forth by some scientist and can be contemplated by us – and only
theories of this kind are of interest in the sciences.

Second, scientific theories consist of lawlike statements, and these do not,
among others, speak about particular entities of their domains of proper investi-
gation, but express general regularities or patterns.

Please note that this assumption allows for that a theory contains constants
for particular entities as e.g. constants of nature. For example, a theory of physics
may well contain occurrences of constants for space points, time points, or (real)
numbers, as is the case, for instance, with Galilei’s law which contains occur-
rences of the gravitational constant ‘g’.8 In the same way a hypothesis about
some particular historical person or event may contain occurrences of a constant
denoting the person or event in question.9

Let me stress that I do not claim that every statement without occurrences of
constant terms is lawlike. All I claim is that containing no (essential) occurrences
of kl-constants,1 ≤ l ≤ n, is a necessary condition for a statement to be lawlike
in the sense of some theoryT , whereDk1 , . . . , Dkn are the domains of proper
investigation ofT .10

In the following a theoryT will be identified with one of its by the above as-
sumption existing finite axiomatizationsAT without occurrences ofkl-constants,
whereDk1 , . . . , Dkn are the domains of proper investigation ofT . The set of all
wff-icationsAT of any theoryT is denoted by ‘T ’. Although assumption 1.1 is
only a necessarycondition for scientific theories, finite sets of statements with-
out occurrences ofi-constants, but with at least one essential occurrence of an
i-variable,1 ≤ i ≤ n, are often called theories with domains of proper investiga-
tion D1, . . . , Dn.

8Here and on many other places I have profited very much from the discussions with my
supervisor Prof. Dr. Gerhard Schurz. Though his influence on this dissertation is enormous, he is,
of course, not responsible for any of the views expressed here.

9We do not claim that there are – or are not – laws of history. Their existence or non-existence
has no impact on the questions discussed here.

10For more on the nature of a law of nature cf. thelocus classicusArmstrong (1983). More
recent monographs are Harré (1993) and Carroll (1994).
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1.3 Evidence

I take the evidenceE by which a given theoryT is to be assessed relative to some
background knowledgeB to report our (uncontrolled) observations and the results
of our (controlled) experiments. Because of the fact that

we are damnedqua humansto be able to examine only finitely many
entities, and to describe these in only finitely many statements of finite
length

the followingpreliminaryassumption is plausible.

Preliminary Assumption 1.1 (Strong Finitism in the Evidence) If E is an ev-
idence, thenE is a finite set of wffs offinite length talking aboutfinitely many
entities.

A consequence of this is that quantifiers can be eliminated, for these are only
necessary in order to speak about infinitely many entities.

With regard to the preceding section it seems appropriate to distinguish dif-
ferent “kinds” of evidences. Roughly speaking, these different kinds are deter-
mined by the sorts of entities an evidence reports about, i.e. the domains these
entities are taken from. For instance, an evidence gathered by a physicist will re-
port data about material objects, whereas an evidence gathered by an ornithologist
will report data about the much narrower class of birds, and an evidence gathered
by a psychologist may report data about such entities as neuroses. Finally, a his-
torian’s evidence perhaps reports about the wars Cesar entertained or the people
Cleopatra wanted to seduce – though data about these entities cannot, of course,
be directly observed but only inferred.

Yet an evidence may contain a statement to the effect that for all time points
t after some given point of timet0, some special evente, say the soccer champi-
onships in Japan and South Corea are over,∀t (t ≥ t0 → O (e, t)). Such a state-
ment contains (essential) occurrences of quantifiers and time variables, and so
possibly speaks about infinitely many time points. Strong Finitism in the Evi-
dence does not allow for such statements to occur in an evidence.

It thus seems reasonable to relativize the above preliminary assumption to
the setsDi of entities data about which are reported by the evidence. I will there-
fore speak of anevidence from the sets of entitiesD1, . . . , Dk, k ≥ 1, or of data
about the entities inD1, . . . , Dk.
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Assumption 1.2 (Finitism in the Evidence) If E is an evidence fromD1, . . . , Dk, k ≥
1, thenE is a finite set of wffs of finite length speaking about finitely many entities
in
⋃

1≤i≤k Di.

As noted before, this has the consequence that (quantifiers binding) variables
which range over the sets of entitiesD1, . . . , Dk can be eliminated. In order to
avoid triviality it is furthermore assumed thatE speaks about at least one entity
(in the sense of containing at least one essential occurrence of ani-constant) from
every setDi, 1 ≤ i ≤ k – otherwise every finite set of statements of finite length
is an evidence for every set of entities except those which the variables occurring
in E range over.

As stated above, the evidenceE by which a given theoryT is assessed rel-
ative to some background knowledgeB is supposed to report our (uncontrolled)
observations and the results of our (controlled) experiments. It may be that the
language we use in describing these observations is not rich enough in order to
express all the nuances of our observations – indeed, this is quite plausibly the
case. Therefore I have to make an assumption possibly restricting the applica-
bility of the present account: It is supposed that parts of our observations can be
described in the languageLPL1= of standard standard first-order predicate logic
with identity (including function symbols),PL1 =, and that these parts are large
enough to contain all relevant aspects of our observations for the assessment of
a given theoryT relative to some background knowledgeB. If they do not, this
is, of course, a limitation; but note: this is a general problem and no specific one
besetting only the approach presented here.

Assumption 1.3 (Expressability) The languageLPL1= of standard first-order pred-
icate logic with identity (including function symbols),PL1 =, is rich enough in
order to express all aspects of our observations that are relevant for the assessment
of a given theoryT relative to some background knowledgeB.

Assumptions 1.2 and 1.3 give rise to the following definition of an evidence from
the sets of entitiesD1, . . . , Dk.

Definition 1.4 (Evidence fromD1, . . . , Dk) Let E be a set of wffs ofLPL1=, let
D1, . . . , Dk, k ≥ 1, be sets of entities, let ‘xi

j ’ be the correspondingi-variables
ranging overDi, and let ‘ci

j ’ be the correspondingi-constants denoting entities of
Di, j ≥ 1, 1 ≤ i ≤ k.

E is anevidence fromD1, . . . , Dk iff E is a finite set of wffs (of finite length)
ofLPL1= such that it holds for everyi, 1 ≤ i ≤ k: E contains at least one essential
occurrence of ani-constant, but no occurrence of ani-variable.
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If E is an evidence fromD1, . . . , Dk, D1, . . . , Dk are the (evidential) do-
mains ofE.

The set of all evidences fromD1, . . . , Dk is denoted by ‘E (D1, . . . , Dk)’.
The set of all evidences from any sets of entitiesD1, . . . , Dk is denoted by ‘E ’.

In the following the reference to the evidential domainsD1, . . . , Dk of an evidence
E is often suppressed. Note that the assumptionk ≥ 1 yields that an evidenceE
is contingent.

A difficulty is illustrated by the following example: Consider the statement
‘a is a white raven’,Ra ∧Wa, and the ravens-hypothesis ‘All ravens are black’,
∀x (Rx → Bx), and suppose thatRa∧Wa is all the evidenceE reports, i.e.E =
{Ra,Wa}. Without recourse to some background knowledgeB telling us that
nothing white is black we cannot infer that – relative toE – the ravens-hypothesis
is shown to be false. This illustrates that confirmation has to be construed as a
ternary relation between a theoryT , an evidenceE, and a background knowledge
B.

However, the notion of a background knowledgeB is no precise one, at least
if introduced by taking recourse to its “obvious” meaning. Care has to be taken
what to put into the background knowledgeB. Intuitively, B is conceived of as
containing those and only those statements which are taken for granted and whose
truth is out of question. A special sort of these statements are the definitions and
meaning postulates and, more generally, those statements traditionally termed an-
alytic. Yet, if Quine11 is right, there is no sharp distinction between these analytic
statements on the one hand and the remaining synthetic ones on the other. So it
is neither clear what exactly the background knowledgeB consists of, nor where
the distinction between background knowledgeB and theoryT is to be drawn.
Not only meaning, but also the assessment of theoryT by evidenceE relative to
background knowledgeB is holistic.

Nevertheless, it seems that in practice one can draw a distinction between
the theoryT – or the hypothesish – that is to be assessed, and the background
knowledgeB that is taken for granted in this assessment.T is the set of those
statements or propositions that are put to test and whose domains of proper in-
vestigationE is evidence from, whereasB is the set of those statements that are
assumed to be true in this assessment ofT by E.

Given this, there are at least two strategies for solving the problem just men-
tioned: Either to demand of the scientist to beexplicit in the sense that she reports
not only what she is or takes to be observing, but also everything she assumes to

11Cf. Quine (1951) and (1961).
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be (logically) implied by her observations and her background knowledgeB, in
particular her knowledge of the language she is using – call this theexplicitness
approach; or else to expand the evidenceE to a setEB containing all statements
of E, and all those statements in the background knowledgeB which are related
to these, where it is defined as follows:

Definition 1.5 (Related Wffs) Let h1 andh2 be two wffs. h1 is related toh2 iff
PRess (h1) ∩ PRess (h2) 6= ∅ or Cess (h1) ∩ Cess (h2) 6= ∅.

Leth be any wff.The set of essential predicates ofh, PRess (h), is the set of
all those predicates ‘P ’ without which no wffh′ with h′ a` h can be formulated,
i.e.

PRess (h) =
⋂

h′a`h

PR (h′) , for everyh′ ∈ LPL1=.

The set of essential constant terms ofh, Cess (h), is the set of all those constant
terms ‘c’ without which no wffh′ with h′ a` h can be formulated, i.e.

Cess (h) =
⋂

h′a`h

C (h) , for everyh′ ∈ LPL1=.

Let us call this therelatedness approach.12

In the above example, the explicitness approach demands of the scientist to
report not only thata is a white raven, but also thata is not black, if her back-
ground knowledgeB contains the information that nothing white is black. The
relatedness approach, on the other hand, demands to expand (proper) evidence
E = {Ra,Wa} to evidenceEB = {Ra,Ba, ∀x (Wx → ¬Bx)}.

I prefer the relatedness approach to the explicitness approach, because the
former is more sensitive to the fact that we are notlogically omniscientin the
sense that we know or believe all logical consequences of the statements (propo-
sitions) we know or believe, respectively. Furthermore, the relatedness approach
enables to distinguish between those statements which are taken to report our (un-
controlled) observations and the results of our (controlled) experiments – call the
setE of these statements theproperevidence – and those statements which (log-
ically) follow from the proper evidenceE in combination with our background
knowledgeB.

Finally, since I am considering a ternary relation of confirmation (of the-
ory T by evidenceE relative to background knowledgeB), one can, after all,

12Note that logically determined statements do not have any essential predicates or essential
constant terms.
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forget about the expansion ofE to EB, for all the information contained in the
background knowledgeB will be available in the assessment ofT by E.

Assumptions 1.2 and 1.3 put restrictions on the syntactical form of an evi-
denceE. Besides these syntactical considerations there is another semantic and
also pragmatic feature of an evidenceE. Remember that the aim is a quantitative
theory of confirmation telling one, for every theoryT , every evidenceE, and ev-
ery background knowledgeB, how muchE confirmsT relative toB. Suppose
for the moment that we already have some adequate measure of confirmationC.
What the valueC (E, T,B) for given T , E, andB tells us is how muchT is
confirmed byE relative toB. The assessment ofT is therefore not absolute, but
relative toE andB. C (T, E,B) does not tell us how muchT is confirmed ab-
solutely, but how muchT is confirmed relative toB and the assumption thatE is
true and contains all the data we can rely on in the assessment ofT .

Furthermore, if – as I do – one wants such a measure of confirmationC
to implicitely provide a rule of acceptance for rational theory choice13, then the
valueC (T, E,B) of C for givenT , E, andB is of interest only ifE is assumed
to be true or accepted – otherwise this implicitely provided rule of acceptance for
rational theory choice will misguide those adopting it.14

In my opinion this feature of the evidenceE to be epistemically distin-
guished– in the sense that the assessment of a given theoryT is not only relative
to a background knowledgeB, but also relative toE – fits well with the role our
observations (respectively the statements describing or propositions representing
them) play in our establishing a representation of the world. In contrast to our
other assumptions about the world, they are assigned an epistemically special sta-
tus: If inconsistencies (or incoherencies) arise in our representation of the world,
and if we want to resolve them, then the statements describing what to take to
have observedusuallyare the last we will drop. This finds its expression in

Assumption 1.4 (Epistemic Mark of Distinction) If E is an evidence fromD1, . . . , Dk,
thenE is assumedto betrue in the actual world, i.e.

A ∈ mod (E) , for every evidenceE ∈ E .

13For instance, such a rule may tell one to accept that theoryTi in a given finite set of alternative
theories{T1, . . . , Tn} such thatC (Ti, E, B) ≥ C (Tj , E, B), for everyj, 1 ≤ j ≤ n. If there
are several such theoriesTi, then the rule may select one of them, or it may postpone the decision
until new evidence comes in which settles the question.

14This does, of course, not mean that such a function is of interest, only if the evidenceE is
assumed to be true or accepted; nor does it mean thatE is indeed true, or has to be true in order
for such a function to make sense.
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Note that this assumption does not put any restrictions on what to count as evi-
dence. It simply expresses a feature of the epistemic status of an evidenceE – a
feature exhibited by us in relation toE; namely how we as epistemic subjects treat
the statements inE in establishing and changing our representation of the world.
In particular, this assumption does not mean that an evidenceE actually contains
only true statements. It is a commonplace that we are fallible, also in what we take
to observe, and this assumption is not at all intended to call this commonplace into
question.

Furthermore, in order for it to make sense we have to assume15 that the ac-
tual world can be represented by some set-theoretical structureA = 〈DomA, ϕA〉
(with the evidential domains ofE among the sets of entities in the sequence
DomA); for the standard Tarskian notion of truth in – which is adopted here –
is defined between (sets of) statements and modelsM = 〈Dom, ϕ〉, and the ac-
tual world can hardly be argued to be an ordered pair consisting of a sequence
Dom of sets of entitiesD1, . . . , Dr and an interpretation functionϕ.

It follows from assumption 1.4 that every evidenceE is a description of the
actual world.

Definition 1.6 (Description of a Model) Let D be a set of wffs, and letM =
〈Dom, ϕ〉 be a model.D is adescriptionofM (in LPL1=) iff M |= D, and there
is at least one modelM′ = 〈Dom′, ϕ′〉 such thatM′ 6|= D.

So in order for a set of statementsD to be a description of some modelM (in
LPL1=), D need not be complete in the sense that

if M |= h, then D ` h, for every wffh ∈ LPL1=;

it suffices (thatD is not logically valid – otherwiseD does not tell us anything
aboutM – and) thatD is correct in the sense that

if D ` h, then M |= h, for every wffh ∈ LPL1=.

Observation 1.1 (E Is a Description ofA) Let A = 〈DomA, ϕA〉 be a model
representing the actual world. Then it holds for every evidenceE from any sets
of entitiesD1, . . . , Dk: E is a description ofA.

In the following it will be assumed that there is exactly one intended modelME =
〈DomE, ϕE〉 for every evidenceE from any sets of entitiesD1, . . . , Dk. So the

15Apart from the supposition that the actual world exists.
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interpretation of the constanti-terms16, the predicates, and the function symbols
occurring in an evidenceE is always fixed, and it makes sense to speak ofthe
individual ti denoted by the constanti-term ‘ti’. (It is the entityαi ∈ Di with
ϕE (‘ ti’) = αi, whereDomE = 〈D1, . . . , Dr〉 , r ≥ k.17) The reference to the
intended modelME of evidenceE will be suppressed henceforth, but it is to be
kept in mind that the talk of the individualti denoted by the constanti-term ‘ti’
occurring inE is meaningful.

1.4 Background Knowledge

As already indicated, the questions what to count as background knowledgeB,
and where to draw the distinction between the theoryT that is to be assessed (by
some evidenceE relative toB) on the one hand and the background knowledge
B on the other, are difficult to answer. As in the case of theory, I will therefore
only give a necessary condition for a background knowledge.

The intuitive understanding of a background knowledgeB, which I assume
to be construed as a set of statements expressing this alleged knowledge, is that
it consists of that (and only that) information which we take for granted and as-
sume to be true when we are concerned with the truth or some other epistemically
distinguished property of other (sets of) statements; in particular, when we are
concerned with the assessment of theoriesT by evidencesE. Among others,B
contains our linguistic knowlegde, and a formulation of the mathematical appara-
tus we use. This is a pragmatic feature of the background knowledgeB in relation
to us as epistemic subjects, which does not put any syntactical restrictions on what
to count as a background knowledgeB. The latter I will now turn to.

The only condition a set of statementsB has to satisfy in order to be a
background knowledge is that it is finitely axiomatizable. The reason for this is
that

the information (implicitely) assumed in the assessment of a given
theoryT by an evidenceE has to be such that it can be made explicit,
for otherwise it cannot be taken into into account by the measure of
confirmationC.

16For a definition of constanti-terms see section 1.5.
17For ease of readability the evidential domainsD1, . . . , Dk of an evidenceE are assumed to

be the firstk sets of entities in the sequence ofr sets of entities constituting the domainDomE of
the intendend modelME of E.
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Assumption 1.5 (Finite Axiomatizability of Background Knowledge) If B is a
background knowledge, then there is at least one finite axiomatizatonAB of B.

In the following a background knowledgeB will be identified with one of its –
by the above assumption existing – finite axiomatizationsAB. The set of all finite
axiomatizationsAB of any background knowledgeB is denoted by ‘B’. Although
assumption 1.5 is only anecessarycondition for a background knowledge, finite
sets of statements are often called background knowledges.

Let us now fix the basic terminology for the remainder of this monograph.

1.5 Terminology

For the following definition cf. Schurz (1998).

Definition 1.7 (Irreducible Representation) Let A andB be sets of wffs.B is
an irreducible representation ofA iff B is a non-redundant set of relevant ele-
ments ofA such thatA a` B. The set of all irreducible representations ofA is
denoted by ‘I (A)’.

Let h be a wff.h is arelevant elementof A iff h is an element, andA `crel

h. The set of relevant elements ofh is denoted by ‘RE (h)’; the set of relevant
elements ofA is denoted by ‘RE (A)’.

h follows conclusion relevantlyfrom A, or h is a relevant consequence of
A, A `crel h, iff (i) A ` h, and (ii) there are no (marked) occurrences ofn ≥ 1
predicates ‘P1’, . . ., ‘Pn’ in h that can be replacedsalva validitateof A ` h by
anyn predicates ‘P ∗

1 ’, . . ., ‘P ∗
n ’ of the same arity18, i.e. such thatA ` h∗, where

h∗ is the result of replacing these marked occurrences of ‘Pi’ in h by ‘P ∗
i ’, for

everyi, 1 ≤ i ≤ n.
h is anelementiff h is an elementary normal form, and each quantifier scope

in h is a conjunction of elementary wffs.
h is elementaryiff there is non ≥ 1 such thath a` h1 ∧ . . . ∧ hn, and each

hi, 1 ≤ i ≤ n, is shorter thanh, where ‘→’ is eliminated and brackets are not
counted.

Definition 1.8 (Redundancy) Let A be a set of wffs.A is (formulated) redun-
dant(ly) iff there is at least one wffh ∈ A such thatA \ {h} ` h. Any such wff
h ∈ A with A \ {h} ` h is called aredundant part ofA.

A is (formulated) non-redundant(ly) iff A is not (formulated) redundant(ly).

18Equivalently, byn newpredicates ‘P ∗
1 ’, . . ., ‘P ∗

n ’ of the same arity.
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For the following definition cf. Gemes (1994c) and Gemes (1997a).

Definition 1.9 (Content Part) Let A andB be wffs of the languageLPC of the
classical propositional calculus.B is acontent part ofA iff

1. A andB are contingent, andA ` B, and

2. for some wffC ∈ LPC : C a` B, and there is no wffD ∈ LPC such that
D ` C, C 6` D, andPV (D) ⊆ PV (C),

where, for any wffA ∈ LPC , PV (A) is the set of all propositional variables
occurring inA.

Let A andB be wffs of the languageLPC′ of the classical propositional
calculus enriched by countably infinite individual constants ‘a1’, . . ., ‘an’, . . . and
by finitely many predicates ‘P1’, . . ., ‘Pm’ of varying arity. B is acontent part of
A iff

1. A andB are contingent, andA ` B, and

2. for some wffC ∈ LPC′: C a` B, and there is no wffD ∈ LPC′ such that
D ` C, C 6` D, andAT (D) ⊆ AT (C),

where, for any wffA ∈ LPC′, AT (A) is the set of all atomic wffs or propositional
variables occurring inA.

Let A andB be wffs of the languageLPL1 of first-order predicate logic
without identity (excluding function symbols),PL1. B is acontent part ofA iff it
holds for every non-empty set of individual constantsIC with IC (A)∪IC (B) ⊆
IC:

1. DevIC (B) andDevIC (A) are contingent, andDevIC (A) ` DevIC (B),
and

2. for some wffC ∈ LPC′: C a` DevIC (B), and there is no wffD ∈ LPC′

such thatD ` C, C 6` D, andAT (D) ⊆ AT (C).

For the following definition cf. Gemes (1993).

Definition 1.10 (Natural Axiomatization) LetL beLPC ,LPC′, orLPL1, and let
T andT ′ be sets of wffs ofL. T ′ is anatural axiomatization ofT iff

1. T ′ is finite, andT a` T ′,
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2. h is a content part of
∧

h′∈T ′, for every wffh ∈ T ′,

3. there is no content partch of some wffh ∈ T ′ such thatT ′ \ {h} ` ch, and

4. there is no setT ′′ of wffs of L satisfying (1)-(3) and such that|T ′′| > |T ′|.

The set of all natural axiomatizations ofT is denoted by ‘NA (T )’.

Definition 1.11 (Development)LetT be a set of wffs, and letC = {‘ci
1 ’, . . . , ‘ci

n’ }
be a finite set of constanti-terms. Thedevelopment ofT for C, DevC (T ), is the
developmentDevC (

∧
h∈T h) of the conjunction

∧
h∈T h of all wffs h ∈ T for C.

Leth be a wff. Thedevelopment ofh for C, DevC (h), is recursively defined
as follows:

1. If h is atomic, i.e. ifh is of the form ‘P (t1, . . . , tn)’, thenDevC (h) = h.

2. If h = ¬h1, thenDevC (h) = ¬DevC (h1).

3. If h = h1 ∧ h2, thenDevC (h) = DevC (h1) ∧DevC (h2).

4. If h = h1 ∨ h2, thenDevC (h) = DevC (h1) ∨DevC (h2).

5. If h = h1 → h2, thenDevC (h) = DevC (h1) → DevC (h2).

6. If h = ∀xiA [xi], thenDevC (h) =
∧

1≤j≤n A
[
ci
j/x

i
]
.

7. If h = ∀xkA
[
xk
]
, k 6= i, thenDevC (h) = ∀xkDev

(
A
[
xk
])

.

8. If h = ∃xiA [xi], thenDevC (h) =
∨

1≤j≤n A
[
ci
j/x

i
]
.

9. If h = ∀xkA
[
xk
]
, k 6= i, thenDevC (h) = ∃xkDev

(
A
[
xk
])

.

Here, ‘A
[
ci
j/x

i
]
’ is the result of uniformly substituting the constanti-term ‘ci

j ’
for all free occurrences of thei-variable ‘xi’ in A.

Definition 1.12 (Constanti-Term)

1. Everyi-constant ‘ci
j,’ j ≥ 1, is a constanti-term, for everyi.

2. If ‘f i’ is ann-aryk1, . . . , kn, i-function symbol, ‘tk1 ’ is a constantk1-term,
. . ., ‘tkn ’ is a constantn-term, then ‘f i

(
tk1 , . . . , tkn

)
’ is a constanti-term.
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3. Nothing else is a constanti-term.

‘ t’ is a constant term iff there is ani such that ‘t’ is a constanti-term.

Definition 1.13 (Description of an Individual) LetE be an evidence fromD1, . . . , Dk,
let ‘t’ be a constant term occurring inE, and let ‘ti’, 1 ≤ i ≤ k, be a constant
i-term occurring inE, whenceti is an individual ofDi.

The set of all constanti-terms ‘ti’ occurring in E is denoted by ‘Ci (E)’.
The set of all constant terms ‘t’ occurring inE is denoted by ‘C (E)’. The set of
all constanti-terms ‘ti’ essentially occurring inE is denoted by ‘Ci,ess (E)’. The
set of all constant terms ‘t’ essentially occurring inE is denoted by ‘Cess (E)’.

Let B be a set of wffs. The set of all constanti-terms ‘til ’ in Cess (E) for
which there is no constanti-term ‘tij ’ in Cess (E) such thatj < l and

B ∪ E ` tij = til

is called theB-representative ofC (E). It is denoted by ‘CB−repr (E)’. If B is
empty, I will speak of the representative ofC (E), Crepr (E).

The description of ‘ t’ respectivelyt in E, DE (t), is defined as the set of
relevant elementsA of E with ‘ t’ ∈ C (A), i.e.

DE (t) = {A ∈ RE (E) : ‘ t’ ∈ C (A)} .

The set of entitiesti ∈ Di which are mentioned inE is denoted by ‘Ii (E)’, i.e.

Ii (E) =
{
αi : ϕE (‘ ti’) = αi, αi ∈ Di, for some ‘ti’ ∈ Ci (E)

}
,

whereDomE = 〈D1, . . . , Dr〉 , r ≥ k.
The set of entitiest which are mentioned inE is denoted by ‘I (E)’, i.e.

I (E) = {α : ϕE (‘ t’) = α, α ∈ Di, for somei, 1 ≤ i ≤ r,

and some ‘t’ ∈ C (E)} ,

whereME = 〈DomE, ϕE〉 is the intended model ofE.

Definition 1.14 (Unconditional Probability) A functionp (·), p (·) : LPC → <,
LPC being the language of the classical propositional calculusPC, is a(n) (un-
conditional) probability iff it holds for any wffsA, B ∈ LPC :

1. p (A) ≥ 0,
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2. if ` A, thenp (A) = 1, and

3. if A ` ¬B, thenp (A ∨B) = p (A) + p (B).

Definition 1.15 (Strict Unconditional Probability) A functionp (·), p (·) : LPC →
<, is astrict (unconditional) probability iffp (·) is a(n) (unconditional) probability,
and

p (A) = 1, only if ` A, for every wffA ∈ LPC .

Definition 1.16 (Conditional Probability) Let p (·), p (·) : LPC → <, be a(n)
(unconditional) probability. The partial functionp (· | ·), p (· | ·) : LPC ×LPC →
<, with

p (B | A) =
p (B ∧ A)

p (A)
,

for any wffsA, B ∈ LPC with p (A) > 0, is theconditional probability based on
p (·).

If p (·) is a strict (unconditional) probability, then the conditional probability
p (· | ·) based onp (·) is called thestrict conditional probability based onp (·).

Theorem 1.2 (Strict Probabilities) Let p (·), p (·) : LPC → <, be a strict (un-
conditional) probability, and letp (· | ·) be the conditional probability based on
p (·). Then it holds for any wffsA, B ∈ LPC with p (A) > 0:

p (B | A) = 1, only if A ` B.
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Chapter 2

The Problem of a Quantitative
Theory of Confirmation

2.1 Criteria for a Solution

In my opinion, any solution to the problem of a quantitative theory of confirma-
tion has to satisfy two sets of criteria: The first one is a set of high-level, meta-, or
formal conditions of adequacy any formal theory has to satisfy. These criteria de-
mand of a formal theory to beformally handyin the sense that it be non-arbitrary,
comprehensible, and computable in the limit. They will be the topic of this chap-
ter.

The second set of criteria is a set of low-level, object-, or material condi-
tions of adequacy any quantitative theory of confirmation (whether or not it is
intended to implicitely provide a rule of acceptance for rational theory choice)
has to satisfy in my opinion. What these criteria amount to is that a quantitative
theory of confirmation bematerially adequatein the sense that all what matters
in determining whether and to what degree a given evidenceE confirms a given
theoryT relative to some background knowledgeB are the so calledconfirma-
tional virtues(of theoryT in relation to evidenceE and background knowledge
B). These confirmational virtues are dealt with in the next chapter.

The challenge is the definition of a (set of) function(s)C (·, ·, ·) ,

C (·, ·, ·) : T × E × B → <,

such thatC (T,E,B) is a measure of confirmation of theoryT by evidenceE
relative to background knowledgeB which is formally handy and materially ade-
quate.

21
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2.2 High-Level, Meta-, or Formal Conditions of Ad-
equacy

As mentioned I think that any formal theory, in particular, any quantitative theory
of confirmation intended to implicitely provide a rule of acceptance for rational
theory choice has to be formally handy in the sense that it be non-arbitrary, com-
prehensible, and computable in the limit. In this section these notions will be
defined and applied, and I will try to motivate them.

Definition 2.1 (Arbitrariness) A (conceptCF defined by a) setF of functionsf ,
f : D → R, is arbitrary iff there are at least two functionsf1, f2 ∈ F and at least
two argumentsx, y ∈ D such that

f1 (x) < f1 (y) and f2 (y) < f2 (x) ,

where< is a strict order (i.e. an asymmetric and transitive relation) onR.1

A (conceptCF defined by a) set of functionsF is non-arbitrary iff ( CF

respectively)F is not arbitrary.
If (the definiensof a conceptCF defined by) a setF consists of a single

functionf , f is called non-arbitrary.
A theoryT is arbitrary iff at least one of its central conceptsCF is defined

by an arbitrary set of functionsF .
A theory T is non-arbitrary iff at least one of its central conceptsCF is

defined by a set of functionsF , and none of its central conceptsCF is defined by
an arbitrary set of functionsF .2

In order for this definition to be comprehensible one has to make precise which
concepts of a given theory are its central ones. For the cases dealt with here the
matter is clear – or so I think – whence the notion of a central concept of a theory
will not be defined. I will simply list which concepts of which theories I take be
central ones.

Assumption 2.1 (Central Concepts)

1If F is a set ofn-ary functionsf , f : D → R, n ≥ 1, then the argumentsx, y ∈ D are
n-tupels (andD is a set ofn-tupels).

2Please note that a theory need not be non-arbitrary, if is not arbitrary. This is only the case,
if the theory isformal in the sense that at least one of its central concepts is defined by a set of
functions.
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1. The concept of (degree of) confirmation of theoryT by evidenceE rela-
tive to background knowledgeB is a central concept of any (quantitative)
theory of confirmation of theoryT by evidenceE relative to background
knowledgeB.

2. The concept of (explanatory) coherence is a central concept of any theory
of (explanatory) coherence.

3. The concept of probability is a central concept of any theory of probability,
independently of whether probability is interpreted as logical probability,
as (inter)subjective degree of belief, as objective chance or propensity, or as
(limiting) relative frequency.3

Why should a formal theory, say, of (explanatory) coherence be non-arbitrary?
Consider a typical situation at court, where two versions of the same event are
presented – one by the accusing party, and another by the accused party. Suppose
the judge who has to decide between these two versions reasons along coherentist
lines. What she will do is to try to find out whether the version of the accusing
party or that of the accused one is more coherent with the data, which are the
materials admitted for proof.

Now assume the theory of (explanatory) coherence the judge is adopting is
arbitrary for the case in question. This means that there are at least two coherence
functions satisfying all constraints of this theory of (explanatory) coherence such
that according to the first function the version of the accusing party is more coher-
ent with the data, whereas according to the second function it is the version of the
accused party which is more coherent with the data. So the theory of (explanatory)
coherence is of no help for the judge.

Put differently, the arbitrary theory of (explanatory) coherence allows the
judge to justify any decision, for instance, to acquit the accused party simply
because the latter is supporter of the judge’s favourite football team.

Application 2.1 (Arbitrariness)

1. Every set of Bayesian relevance measures4 is arbitray; in particular, this

3For a clearly written discussion of all these views cf. Gillies (2000).
4A functionmp (·, · | ·) is arelevance measureiff it holds for any wffsH,E, K ∈ LPC :

mp (H,E | K)

 > 0, if p (H | E ∧K) > p (H | K) ,
< 0, if p (H | E ∧K) < p (H | K) ,
= 0, if p (H | E ∧K) = p (H | K) ,
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holds ofd, r, l, s, andc.5

2. The setP of all (unconditional) probabilities, and the setPcond of all condi-
tional probabilities are arbitrary.

3. The uncountable setF of functionsfa (·), fa (·) : <+
0 → <, with

fa (x) = xa, x ∈ <+
0 = {x : x ∈ <, x ≥ 0} ,

a ∈ <+ = {x : x ∈ <, x > 0} ,

is not arbitrary.

wherep = p (· | ·) is some conditional probability. The set of relevance measuresm is defined as
follows:

m = {mp : p is a conditional probability} .

Cf. Fitelson (2001). Fitelson’s main thesis – ‘the central fact’, Fitelson (2001), p. 6 – is that,
for a given conditional probabilityp, the five Bayesian relevance measuresd, r, l, s, andc are not
ordinally equivalent, which means something slightly weaker than being arbitrary; namely that for
any two sets of relevance measuresm,m′ ∈ {d, r, l, s, c} there are conditional probabilitiesp and
wffs H,E, K,H ′, E′,K ′ ∈ LPC such that

mp (H,E | K) ≥ mp (H ′, E′ | K ′) and m′
p (H,E | K) < m′

p (H ′, E′ | K ′) .

My point is not that, for a given conditional probabilityp, the set of relevance measures
{dp, rp, lp, sp, cp} is arbitrary, but that every set of relevance measures is arbitrary. This means
that for every set of relevance measuresm there are conditional probabilitiesp1 andp2, and wffs
H,E, K,H ′, E′,K ′ ∈ LPC such that

mp1 (H,E | K) > mp1 (H ′, E′ | K ′) and mp2 (H,E | K) < mp2 (H ′, E′ | K ′) .

5The appendix to chapter 2 contains a proof of this arbitrariness claim.d, r, l, s, andc are
defined as follows – cf. Fitelson (2001). Letp (·) be an (unconditional) pobability, letp (· | ·) be
the conditional probability based onp (·), and letT , E, andB be single statements or propositions
of LPC .

dp (T,E | B) := p (T | E ∧B)− p (T | B) , cf. Earman (1992).

rp (T,E | B) := log
[
p (T | E ∧B)

p (T | B)

]
, cf. Horwich (1982) and Milne (1996).

lp (T,E | B) := log
[

p (E | T ∧B)
p (E | ¬T ∧B)

]
, cf. Good (1983).

sp (T,E | B) := p (T | E ∧B)− p (T | ¬E ∧B) , cf. Christensen (1999).

c (T,E | B) := p (T ∧ E ∧B) · p (B)− p (T ∧B) · p (E ∧B) , Carnap (1962).
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4. No set of only one single function is arbitrary; in particular, the singletons
containingfuzzy-negation¬fuzzy as the fuzzy-logical interpretation of nega-
tion, and multiplication orfuzzy-conjunction∧fuzzy as the fuzzy-logical in-
terpretation of conjunction are not arbitrary6, where

¬fuzzy : [0, 1] → [0, 1] , ¬fuzzy (x) = 1− x,
∧fuzzy : [0, 1] → [0, 1] , ∧fuzzy (x, y) = x · y.

Let us turn to the second formal condition of adequacy which demands of a theory
to be comprehensible.

Definition 2.2 (Comprehensibility) A theoryT iscomprehensibleiff all its prim-
itive concepts are comprehensible.

What this definition should capture is that a theory explicating one concept of
interest – e.g. the concept of (explanatory) coherence – by means of another
concept which is in need of explication itself – e.g. the concept of explanation
– is no good theory, because the concept of interest is not explicated, but merely
circumscribed in terms of another concept which is equally or even more unclear.

Though there may be an intuitive understanding of ‘comprehensible’, the
question is which (primitive) concepts of a given theory are comprehensible. It
may be argued that all concepts corresponding to observational terms are compre-
hensible – given that one has been able to clearly distinguish observational form
theoretical terms – but already here doubts may be raised. I will therefore not
argue for the comprehensibility of some distinguished set of concepts, but will
restrict myself to the following pragmatically justified assumption.

Assumption 2.2 (Comprehensible Concepts)

• The primitive concepts ofPL1 = andZF , i.e.

¬,∧,∨,→, =,∀,∃, x1
1, x

1
2, . . . , x

i
1, x

i
2, . . . ∈, and {}

are comprehensible.

• The concept of explanation is not comprehensible.

6That fuzzy-negation andfuzzy-conjunction are not arbitrary will be of importance in chapter
4.
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The justification of this assumption is pragmatic since it consists in the fact that
no formal theory – i.e. no theory at least one of whose central concepts is defined
by a set of functions – can do without the primitive notions of logic (PL1 =)
and set-theory (ZF ).7 In particular, this holds for every quantitative theory of
confirmation aiming at the definition of an adequate measure of confirmation.

Application 2.2 (Comprehensibility)

• PL1 = andZF are comprehensible.

• No theory of (explanatory) coherence presupposing as primitive the concept
of explanation is comprehensible.

Before defining the third formal condition of adequacy, remember the definiton of
computability8: Roughly speaking, a functionf , f : D → R, is computable just
in case there is an algorithm (a Turing machine) which yields for every argument
x ∈ D after finitely many steps the valuef (x) ∈ R of f for x. That is, there is
an algorithm which – when presented with inputx – computes in finitely many
steps the outputf (x), and then gives a sign that this is the value off for x. Such
adivisionalgorithm may be characterised as an assessment method which

outputs the correct answer and thenhalts, thereby signaling that the
answer is correct9;

it

is logically guaranteed to converge to the correct answer withcer-
tainty10.

As stressed by Kelly (1996), a method – though not logically guaranteed to con-
verge to the correct answer with certainty –

may be logically guaranteed to stabilize to the truth without ever giv-
ing a sign that it has found the truth.11

7Apart from this, some concepts have to be assumed as primitive, for one cannot express any-
thing without presupposing any concept at all.

8For the following cf. Kelly (1996).
9Kelly (1996), p. 4.

10Kelly (1996), p. 4.
11Kelly (1996), p. 4.
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This weaker sense of convergence12 to the correct answer gives rise to a weaker
notion of computability: computability in the limit.

Definition 2.3 (Computability in the Limit 13) A function f , f : D → R, is
computableiff there is an algorithmM such that it holds for everyx ∈ D: If M
is presented withx as input, thenM outputsf (x) after finitely many steps, and
then halts; i.e. there is ann ∈ ω such that the output ofM atn for x is f (x), and
M halts atn.

A functionf , f : D → R, iscomputable in the limitiff there is an algorithm
M such that it holds for everyx ∈ D: The output stream ofM for x stabilizes to
f (x).

Let M be an algorithm. The output stream ofM for x stabilizes tor iff
there is ann ∈ ω such that it holds for everym ≥ n, m ∈ ω: The output ofM at
m for x is r.

A set of functionsF is computable in the limitiff all functions f ∈ F are
computable in the limit.

A theory iscomputable in the limitiff at least one of its central conceptsCF

is defined by a set of functionsF , and none of its central conceptsCF is defined
by a set of functionsF which is not computable in the limit.

In short, the difference between a computable function and one which is only
computable in the limit is that for the former there exists a method which outputs
the correct answer after some finite time and additionally gives a sign that it has
arrived at the correct answer, whereas for the latter there is a method which –
though it also outputs the correct answer after some finite time – does not give a
sign that it has arrived at the correct answer, but continues to output this correct
answer forever. The method tells you the correct answer, but does not tell you that
it is correct.

Two questions arise: First, why should a theory be computable in the limit?
Second, why do I not demand that it be computable? The answers are that (1) a
theory is useless for practical purposes if it is not computable in the limit, but that
(2) demanding of it to be computable is demanding too much.

12Kelly (1996) introduces still further notions of convergence all of which give rise to corre-
sponding notions of verification, refutation, and decision. I have adapted – and thereby changed –
his definitions for the purposes I am concerned with here.

13The following definitions are rather informal. I have tried to define computability in the
limit without introducing the notions of a Turing machine, a Turing-computable function, and
several related concepts. For precise definitions of these notions and more about enumerability,
decidability, and computability the reader is referred to Hermes (1961). An English introduction
cited by Kelly (1996) is Cutland (1986).
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Why should a formal theory be computable in the limit? Suppose you are
concerned with the problem of determining how “good” a theoryT is (relative
to a given evidenceE and some background knowledgeB), where a theoryT
is good (relative toE andB), if it is true, can explain (together withB) many
of the data inE, is simple, and so on. Suppose further that you can assume
that there is exactly one “best” theoryT (for given E andB). Finally, assume
you are presented the following formal theory of the problem of “good” theories
consisting in the measurem (T,E,B) of the “goodness” of theoryT (in relation
to evidenceE and background knowledgeB):

m (T, E,B) =

{
1, if T is the “best” theory (relative toE andB),
0 otherwise.

Obviously, this measures is adequate in the sense that it always picks out the right
theory. However, it is equally obvious that this measure is useless for practical
purposes. The reason for this is thatm is neither computable nor computable in
the limit: In order to determine the valuem takes on for givenT , E, andB, one
has to know whether an obviously not comprehensible concept applies, which, in
this case, even coincides with the central concept to be explicated.

One may ask why I do not demand of a formal theory to be computable. In
my opinion, this amounts to demanding too much, since it would rule out, among
others, all theories that explicate a notion of interest by means of logical relations
exhibited by various (sets of) statements. Doing so is not only common, but also
reasonable practice in the philosophy of science. Much can be clarified, if one can
determine whether a notion of interest applies (to a suitable argument), if all one
has to assume are the logical relations between various (sets of) statements.

However, this practice does not satisfy the criterion of computability. In
order to make this claim precise, note that a relationR on a setS is decidable just
in case the characteristic functionχR of R is computable.14

So decidability of relations (sets) is just computability of their characteristic
functions. AsPL1 = is not decidable, the characteristic functionχ` of theorem-
hood inPL1 = is not computable, whereas the characteristic function of theorem-
hood in the classical propositional calculusPC is computable. As a consequence,
if PL1 = is the underlying logic, then no function the values of whose arguments

14If there is an algorithm that tells one for everys ∈ S whether or nots ∈ R, then this algorithm
tells one whetherχR (s) = 1 or χR (s) = 0; for the former holds just in cases ∈ R, and the latter
holds just in cases 6∈ R. On the other hand, ifχR (s) is computable, then there is an algorithm
that outputs for everys ∈ S after finitely many steps the valueχR (s) of χR for s, and thereby
tells one whether or nots ∈ R.
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depend on logical relations between various (sets of) statements is computable.
If, however,PC is the underlying logic, then every function whose values depend
only on logical relations between various (sets of) statements is computable.

Suppose you have achieved to explicate a notion of interest by means of
logical relations between various sets of statements, and you have even achieved
to define a function measuring the extent to which this notion is exhibited by given
suitable arguments. If you have achieved this whenPC is the underlying logic,
then your function is computable. Now suppose you try to extend your results to
PL1 =, and you succeed to do so after hard work. Again, the notion of interest is
explicated by means of logical relations between various sets of statements. Yet
in this case, the function measuring the extent by which the notion of interest is
exhibited by suitable arguments is not computable, forPL1 = is not decidable.
Clearly, it is inappropriate to disallow this function simply because of the fact that
it is not computable.

As an example consider the second axiom of the probability calculus:

p (A) = 1, if ` A.

SupposePL1 = is the underlying logic. For a given statementA ∈ LPL1=, one
has to determine whether̀A in order to know whether one has to assignA the
value 1. But as̀ is not decidable, this cannot be done.

One might suggest that a theory need not be computable, but that it be com-
putable under the assumption that the underlying logic is decidable. Call this kind
of computabilitynear computability.

It is easily seen that also near computability is too restrictive. For instance,
define as follows: A set of statementsT says something about the individualt iff
there is a statementA such thatt is mentioned inA andA logically follows from
T . The corresponding characteristic functionf ,

f (T, t) =

{
1, if there is a wffA ∈ LPL1= such that ‘t’ ∈ C (A) andT ` A,
0 otherwise,

is not computable even if it is assumed that the underlying logic is decidable.
(There are infinitely many statementsA that have to checked on their containing
an occurrence of ‘t’ and on their logically following fromT .)

Nevertheless, the above definition and the corresponding function should
not be disallowed simply for theformal reason that it is not nearly computable –
though there may, of course, be other reasons for doing so. This would be very
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restrictive, and many concepts and corresponding characteristic functions would
be ruled out thereby.

As shown by Kelly (1996) there are functions which are not even com-
putable in the limit15:

[W]ithout extra background knowledge, the hypothesis that matter is
infinitely divisible is not decidable in the limit.16

The functionfinf , finf : LPL1= → <, is therefore not even nearly computable in
the limit, where, for every statementA ∈ LPL1=,

finf (A) =

{
1, if matter is infinitely divisible,
0 otherwise.

Application 2.3 (Near Computability)

1. The characteristic function of theoremhood inPC, χ`,PC , χ`,PC : LPC →
{0, 1}, is not computable, but computable in the limit, where, for every wff
A ∈ LPC ,

χ` (A) =

{
1, if ` A,
0 otherwise.

2. The characteristic function of theoremhood inPL1 =, χ`, χ` : LPL1= →
{0, 1}, is not computable, but computable in the limit, where, for every wff
A ∈ LPL1=,

χ` (A) =

{
1, if ` A,
0 otherwise.

3. If p (·), p (·) : LPC → <, is a(n) (unconditional) probability, and the values

p

 ∧
pi∈D⊆PV

±pi


15Cf. Kelly (1996), p. 53f. What Kelly shows there is that the hypothesis that matter is infinitely

divisible is refutable in the limit, but neither decidable in the limit nor verifiable in the limit.
Decidability, verifiability, and refutability (in the limit) are defined for (sets of) hypotheses relative
to the set of possible worlds, which he identifies with infinite data streams.

The example of the infinite divisibility of matter is construed in such a way that if particlep is
divisible, then it will be divided after finitely many trials, but not necessarily after the first one. The
latter is important, for otherwise a failure to dividep would show thatp is not divisible, whence
the hypothesis that matter is infinitely divisible were refutable with certainty, which it is not under
the more realistic assumption – cf. Kelly (1996), p. 51.

16Kelly (1996), p. 53.
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are not all given in advance (which amounts to cheating), thenp (·) is not
computable in the limit, wherePV is the set of all propositional variables
of LPC .

The same holds for every conditional probability.

4. No set of Bayesian relevance measures in the sense of Fitelson (2001) is
computable in the limit.

2.3 Why a Quantitative Theory of Confirmation Is
to Be Formally Handy

As already indicated, I think that a quantitative theory of confirmation of theoryT
by evidenceE relative to background knowledgeB should implicitely provide a
rule of acceptance for rational theory choice. The typical problem situation of the
latter consists in the question which theoryTi of a finite set of alternative theories
{T1, . . . , Tn} it is rational to accept with regard to a given evidenceE (and some
background knowledgeB) belonging to the domain of application of each theory
Tl, 1 ≤ l ≤ n, where two theoriesT andT ′ arealternativerelative toB just in
caseB ∪ T ∪ T ′ ` ⊥. A rule of acceptance for rational theory choice implicitely
provided by any quantitative theory of confirmation defining some measure of
confirmationC is the following:

(R) Let E be an evidence, letB be a background knowledge, and let
{T1, . . . , Tn} be a finite set of alternative theories, whereE belongs
to the domain of application of each theoryTl, 1 ≤ l ≤ n.

If there is exactly one theoryTi, 1 ≤ i ≤ n, amongT1, . . . , Tn such
thatC (Ti, E, B) ≥ C (Tj, E, B) for everyj, 1 ≤ j ≤ n, then accept
Ti.

If not, continue gathering evidence.17

Suppose that a quantitative theory of confirmation defining the central concept of
confirmation of theoryT by evidenceE relative to background knowledgeB by a
set of functionsC is not formally handy. Then it is arbitrary, not comprehensible,
or not computable in the limit.

17If one wants such a rule to choose one single theory also in case there are several such theories
Ti, then one may arbitrarily choose the first one.
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If it is arbitrary, then there are problem situations of the above kind and
measures of confirmationC andC ′ in C such that according toC some theory
T should be accepted with regard to a given evidenceE and a given background
knowledgeB, whereas according toC ′ someother theoryT ′ should be accepted
with regard to the same evidenceE and the same background knowledgeB, where
T andT ′ are alternative (relative toB), and evidenceE belongs to the domain of
application of bothT andT ′. As the quantitative theory of confirmation under
consideration does not provide any criterion for choosing between the two mea-
sures of confirmationC andC ′, it does not decide between the two theoriesT and
T ′, whence, after all,(R) turns out to be no rule of acceptance (for rational theory
choice) for the case in question.

If the quantitative theory of confirmation is not comprehensible, then the
valueC (T,E,B) of the measure of confirmationC for givenT , E, andB will
depend on determining whether some primitive concept which is not comprehen-
sible applies toT , E, andB. However, this determination is arbitrary to the extent
to which the primitive concept in question is not comprehensible, whence(R) is
of no help again.18

Finally, if the quantitative theory of confirmation is not computable in the
limit, then there is no method which stabilizes to the correct valueC (T, E,B) of
C for all theoriesT , evidencesE, and background knowledgeesB. Once more
(R) is no guide in deciding which theoryT to accept with regard toE andB, since
for all methodsM there are theoriesT , evidencesE, and background knowledges
B such thatM does not stabilize toC (T,E,B), i.e. M will continue to output
false values forever.19

2.4 Down With Bayesianism?

The foregoing examples – showing that all Bayesian theories of confirmation are
arbitrary (and, under realistic circumstances, not computable in the limit) – seem
to urge the conclusion: Down with Bayesianism.

In the second subsection of this section I will briefly turn to the constructive

18One can see here – and in the example of the research project on “good” theories – that the
three formal conditions of adequacy are intimately related in that violating the second (non-formal)
criterion of comprehensibility often yields violations of the first criterion of non-arbitrariness and
the third criterion of computability in the limit, both of which are criteria for formal theories.

19For all methodsM there areT , E, andB such that for every point of timen there is a point
of timem ≥ n such that the output ofM atm onT , E, andB differs fromC (T,E,B)).
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part of my criticism – arguing that this conclusion is rush, and sketchily describ-
ing in very general terms three possible ways out. Before doing so an example is
considered that should illustrate to what – in my opinion: unacceptable – conse-
quences the subjective interpretation of probability as degree of belief leads when
it is to provide the basis for a quantitative theory of confirmation.

I think the main problem of Bayesianism is its arbitrariness. Indeed, one
may be inclined to call Bayesianism the paradigm20 of arbitrariness. The reason
for this lies in the fact that the three (four) axioms of the probability calculus
are far too inclusive in the sense that any assignment of values in[0, 1] to the
propositional variables (atomic statements) is coherent with these axioms.

The subjective interpretation is very popular. I think this is – at least partly
– due to the fact that in modeling various problems the subjective interpretation
allows one to assume particular suitable values for the probabilities occurring in
the model. These then yield the expected result. The justification for these values
is very easy: After all, probabilities are just degrees of belief.

Though this liberality enables Bayesianism to explain lots of phenomena –
not only in the philosophy of science, but also in economics, politics, and, more
generally, the social sciences – it allows, so to speak, to explain too much: There
follow things that should not. What I would like to illustrate here is that there are
cases where, when taken seriously, the subjective interpretation leads to unaccept-
able consequences.

The rejection of the subjective interpretation of probability as degree of be-
lief concerns the problem of a quantitative theory of confirmation. The reason
for this is that I take confirmation to be a relation between theories, evidences,
and background knowledges that holds (to a given extent) independently of any-
one’s subjective degrees of belief. Whether and to what degree some theoryT is
confirmed by an evidenceE relative to a background knowledgeB is not even
dependent on the existence of someone’s having certain beliefs – whether or not
these are given as numerical degrees and, if so, whether or not they obey the prob-
ability calculus. I take confirmation to beobjectivein this sense.

This does not amount to a rejection of the subjective interpretation of prob-
ability as a whole. I do not attempt to argue against the position

that the unconditional (and derivatively the conditional) probability
axioms are a type ofconsistencyconstraint on partial beliefs21,

where
20In the sense of Kuhn (1996).
21Howson (1997c), p. 518.
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[c]onsistency (also known as coherence) means that your evaluations
of fair odds are consistent in the sense that they do not depend on
the form in which the relevant gambles are presented, and hence are
invulnerable to a Dutch Book; consistency is thus an extensional se-
mantic criterion, like truth22.

In Howson’s opinion

[t]he existence of a well-defined semantics and syntax, with a sound-
ness and completeness theorem, supports the claim that in the Bayesian
theory we have a genuinelogic of consistent belief.23

Just as deductive logic is concerned with the question whether the truth of some
set of statements necessitates the truth of another statement, the logic of partial
belief is concerned with the question whether certain degrees of belief in some
statements necessitate a certain degree of belief in another statement; and just as
deductive logic is not concerned with the matter-of-fact question whether a given
statement is true in some world, the logic of partial belief is not concerned with
the matter-of-fact question which degree of belief a given statement is assigned
by someone.

Deductive logic, in other words, provides the conditions regulating
what might be called coherent truth-value assignments. This objec-
tivism is nicely paralleled in the interpretation of the probability ax-
ioms as the conditions regulating the assignment of coherent betting
quotients.24

I do not object to considering the probability calculus as a logic of partial belief.
But the relativisation to partial beliefs is an important one. I disagree with taking
the probability calculus as

a genuinelyinductivelogic25,

if an inductive logic is a solution to the problem of a quantitative theory of confir-
mation.

It is unacceptable to me that the degree of confirmation depends on or is even
determined by someone’s subjective degrees of belief, as it is according to any

22Howson (1997b), pp. S185-S186.
23Howson (1997c), p. 521.
24Howson (1997c), pp. 521-522.
25Howson (1997a), p. 278.
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Bayesian theory of confirmation, where these degrees of belief can be arbitrarily
chosen (except for coherence with the probability caculus).

To continue Howson’s analogy with deductive logic: Just as the logical con-
sequence relation holds independently of the truth values of the statements, the
relation of confirmation (to some degree) holds independently of the subjective
degrees of belief someone assigns to the statements.

Howson compares coherence with truth, both of which are extensional se-
mantic criteria. In deductive logic, an argument or inference from a set of state-
mentsS = {P1, . . . , Pn} to a statementC may be characterised as deductively
valid just in case it holds for all coherent truth value assignmentsϕ toP1, . . . , Pn, C:

If ϕ (P1) = . . . = ϕ (Pn) = 1, thenϕ (C) = 1,

i.e.
ϕ (C ∧ P1 ∧ . . . ∧ Pn) ≥ ϕ (P1 ∧ . . . ∧ Pn) · 1.

The analogon of this in inductive logic is to characterise an argument fromS to
C as inductively valid to degreer, v (C, S) = r, just in case (i) it holds for all
coherent probability assignmentsp:

p (C | P1 ∧ . . . ∧ Pn) ≥ r,

i.e.
p (C ∧ P1 ∧ . . . ∧ Pn) ≥ p (P1 ∧ . . . ∧ Pn) · r,

and (ii) there is nos > r such that (i) holds fors. Here, a probability assignment
is coherent just in case it satisfies the probability axioms – just as a truth value
assignment is coherent iff it is a standard evaluation function.

The degree of probabilistic confirmation ofT by E, c (T,E), may be then
be defined either asv (T,E), in which case one would adopt a measure of confir-
mation asfirmness; or else one may define it as, for instance, the greatest number
r ∈ < such that it holds for all coherent probability assignmentsp:

p (T | E)− p (T ) ≥ r,

i.e.
p (T ∧ E)− p (T ) · p (E) ≥ p (E) · r, 26

which would be a measure of confirmation asincrease in firmness.

26Note thatc (T,E), if defined in this way, need not coincide with the difference between the
degree of inductive validity of the inference fromE to T , and the degree of inductive validity of
the inference from> to T .
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In this case the relation of confirmation to degreer holds independently
of the probabilities assigned to the statements, just as the logical consequence
relation holds independently of the truth values assigned to the statements.

2.4.1 The Less Reliable the Source of Information, the Higher
the Degree of Bayesian Confirmation

Bayesians argue that they can take into account the fact that we are not always
sure about our observations or, more generally, that the sources we take our data
from are not always reliable.

Let p1 (E) be my subjective degree of belief in (the atomic statement or
proposition)E in case (I think) the source of information forE is not fully reliable,
say, my subjective degree of belief in ‘This chair in my room is red’ when looking
at my chair at timet1 at night when the light is off. Letp2 (E) be my subjective
degree of belief inE in case (I think) the source of information forE is very
reliable, say, my subjective degree of belief in ‘This chair in my room is red’ when
looking at my chair at timet2 at night when the light is on and I have checked that
I am awake. As the source of information is less reliable in the first case than in
the second,p1 (E) < p2 (E), where it is assumed thatp1 (E) > 0.

Consider the hypothesisT = ‘All furniture in my room is red’, whereT
is taken to logically implyE (strictly speaking, it does not). According to one
Bayesian theory of confirmation27, the degree of confirmation ofT by E28 at time
t1, where the source of information is (thought to be) unreliable, is

dp1 (T,E) = p1 (T | E)− p1 (T ) =
p1 (T )

p1 (E)
− p1 (T ) T ` E.

At time t2, where the source of information is (thought to be) reliable, the degree
of confirmation is

dp2 (T,E) = p2 (T | E)− p2 (T ) =
p2 (T )

p2 (E)
− p2 (T ) T ` E.

There are two possibilities: Eitherp1 (T ) = p2 (T ) or p1 (T ) 6= p2 (T ).
In the first caseT is the more confirmed byE, the less reliable the source

of information forE, because

dp1 (T, E) > dp2 (T, E) iff p2 (E) > p1 (E) .

27The distance measuredp is considered by Earman (1992). Although – as shown by Fitelson
(2001) – not all relevance measures are ordinally equivalent, I am only consideringdp.

28The relativisation to the background knowledge is dropped.
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Assumingp1 (T ) = p2 (T ) may be appropriate, ift1 andt2 are two possible sce-
narios: I consider hypothesisT , and because of knowing thatT logically implies
E I start to investigate whetherE is true. In scenariot1, the light is off and I have
a low degree of belief inE. As a consequence, I get a low degree of confirmation.
In scenariot2, the light is on and I have a high degree of belief inE. Therefore I
get a high degree of confirmation.

One may object that this is not very plausible, for a change in my subjective
degree of belief inE will give rise to a change in my subjective degree of belief
in T . This may be appropriate, ift1 andt2 are construed as two successive points
of time.

Therefore consider the second case. In my view, the only Bayesian answer
to the question whetherp1 (T ) is smaller or greater thanp2 (T ) is that the latter is
given by Jeffrey conditionalisation (JC) onE, which yields strict conditionalisa-
tion in the limiting case ofp2 (E) = 1:29

p2 (T ) = p1 (T | E) · p2 (E) + p1 (T | ¬E) · p2 (¬E) = p1 (T ) · p2 (E)

p1 (E)
T ` E.

As in the first case it follows thatT is the more confirmed byE, the less reliable
the source of information forE, because

dp1 (T, E) > dp2 (T, E) iff p2 (E) > p1 (E) .30

One31 might reply that this is just a more general version of the problem of old
evidence raised by Glymour (1980a): IfE is old evidence so thatp (E) = 1, then
the degree of confirmation of any theoryT by E is 0. For if p (E) = 1, then
p (T | E) = p (T ), whence

dp (T, E) = p (T | E)− p (T ) = 0.

This is a problem for Bayesian confirmation theory, because there are many his-
torical cases where old evidence provided confirmation to a theory.

29It is assumed that in going fromt1 to t2 the only change is inE. Cf. Jeffrey (1967), esp.
chapter 11.

30The same holds ifp1 (T ) is obtained by Jeffrey conditionalisation as

p1 (T ) = p2 (T | E) · p1 (E) + p2 (T | ¬E) · p1 (¬E) = p2 (T ) · p1 (E)
p2 (E)

T ` E.

31Luc Bovens in personal correspondence.
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In general, there are two solutions to the problem of old evidence.32 The one
is to condition on the entailment relation that holds betweenT andE; the other is
to take recourse to counterfactual degrees of belief. I will argue that the first does
not give a solution to the example of above, and that (a charitable reformulation
of) the second gives no satisfying solution, but illustrates to what – in my opinion:
unacceptable – consequences the subjective interpretation of probability as degree
of belief leads if it is to provide the basis of a quantitative theory of confirmation.

2.4.1.1 Conditioning on the Entailment Relation

The first strategy is taken by Garber (1983)33. He distinguishes between a histori-
cal and an ahistorical problem of old evidence: The former

concerns the scientist in the midst of his investigations who appears to
be using a piece of old evidence to increase his confidence in a given
theory.34

The second problem is that although

[w]hen we are first learning a scientific theory, we are often in roughly
the same epistemic position that the scientist was in when he first put
the theory to test; the evidence that served to increasehis degrees of
belief will increaseoursas well. But having absorbed the theory, our
epistemic position changes. [...] Once we have learned the theories,
the evidence has done its work on our beliefs, so to speak. But nev-
ertheless, even though the old evidence no longer serves to increase
our degrees of belief in the theories in question, there is still a sense
in which the evidence in question remains good evidence, and there is
still a sense in which it is proper to say that the old evidence confirms
the theories in question.35

According to Garber36, the ahistorical problem of old evidence may be solved by
some version of the counterfactual strategy. His concern is the historical problem
of old evidence. To him

32For a discussion of the problem of old evidence cf. Curd/Cover (1998), chap. 5. For the
following cf. Earman (1992), chap. 5.

33A similar account is that of Jeffrey (1983).
34Garber (1983), p. 102.
35Garber (1983), pp. 102-103.
36Garber (1983), p. 103.



2.4. DOWN WITH BAYESIANISM? 39

it seems clear that in the cases at hand, whatincreasesS’s confidence
in T is not E itself, but thediscoveryof some generally logical or
mathematical relationship betweenT andE.37

Garber considers a languageL consisting in the truth-functional closure of a
countably infinite collection of atomic statements, to which he adds atomic state-
ments of the form ‘A `G B’, where ‘̀ G’ stands for some relation of entailment
that need not be further specified. The resulting language is denoted by ‘L∗’. He
then shows38 that there is at least one probability functionp on L∗ that satisfies
the following condition:

(G) p ((A `G B) ∧ A) = p ((A `G B) ∧ A ∧B) ,

and which is such that
0 < p (A `G B) < 1,

if ‘ A `G B’ is an atomic statement ofL∗, andA and¬B are not both tautologies
of L. So,

on [his] construction, it isnot trivially the case thatp (T | T `G E) =
p (T ) whenp (E) = 1, and the discovery thatT `G E can raise S’s
confidence inT .39

This approach does not solve the more general problem for two reasons. First, one
may construe the example in such a way that just because of knowing thatT logi-
cally impliesE I start to investigate whetherE is true. In this casep (T `G E) =
1. Second, by substituting ‘T `G E’ for ‘ E’ in the example one gets the same
problem:T is more confirmed byT `G E at t1 than att2 just in case the source
of information forT `G E at t1 is less reliable than att2. For instance, att1 my
friend, a student of logic, tells me thatT entailsE, whereas atT it is her professor
who tells me that this is the case, and also shows me how to deduceE from T .

37Garber (1983), p. 104. I have changed the notation.
38Garber (1983), p. 116.
39Garber (1983), p. 123. I have changed the notation. More precisely, Garber shows that

[f]or L and L∗ constructed as above, for any atomic sentence ofL∗ of the form
‘A `G B’ where B is not a truth-functional contradiction inL and whereA does
not truth-functionally entail¬B in L andB does not truth-functionally entailA in
L, for anyr, s in (0, 1), there exists an infinite number of probability functions on
L∗ that satisfy(G) and are such thatp (B) = 1, p (A `G B) = r, p (A) = s, and
p (A | A `G B) > p (A).

Garber (1983), pp. 120-121. I have changed the notation.
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2.4.1.2 The Counterfactual Strategy

Howson/Urbach (1993) write:

the support ofT by E is gauged according to the effect which one
believes a knowledge ofE would now haveon one’s degree of belief
in T , on the (counter-factual) supposition that one does not yet know
E.40

I take this to be a standard version of the counterfactual solution to the problem of
old evidence.

Let us first see how the counterfactual strategy can solve the problem of old
evidence. LetE be an evidential statement or proposition which is old in the sense
that p (E | B) = 1, let T be a theory, letB be the background knowledge, and
supposeB − E (read: B without/minusE) is the (up to equivalence) uniquely
determined weakest statement with

(B − E) ∧ E a` B.

According to one reading of the above quotation, the degree of confirmation ofT
by E relative toB is given by

p (T | B)− p (T | B − E) ,

which is positive if and only if

p (E | T ∧ (B − E)) > p (E | B − E) ,

providedp (T | B − E) > 0 andp (B) > 0. This result seems to be correct:T is
confirmed byE relative toB just in caseE is likelier givenT and the restricted
background knowledgeB − E – that without (the information bearing on)E –
than withoutT being given.

Before continuing, note that althoughp (E | B − E) = 1, if p (E) = 1, the
problem of old evidence can indeed be solved in this way, for the assumption that
E is old evidence has to be expressed asp (E | B) = 1, from which it does not
follow thatp (E) = 1 or p (E | B − E) = 1.

More precisely, the probabilities here have to satisfy the following condi-
tions: (1)p (E | B) = 1, because that constitutes the problem of old evidence;
and (2)p (E | B − E) < 1, for otherwise the problem of old evidence cannot be

40Howson/Urbach (1993), pp. 404-405. I have changed the notation.
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solved. If one additionally assumes (3)p (B − E) = 1, because this is taken to
follow from the meaning of a backgroundknowledge, then one gets

p (E | B − E) = p (E) .

Before applying the counterfactual strategy to the example of above, one has to
generalize from the strict (i.e.p (E | B) = 1) to the Jeffrey case, wherep (E | B)
need not be 1. Remember that

p (T | B) = p (T | (B − E) ∧ E)·p (E | B)+p (T | (B − E) ∧ ¬E)·p (¬E | B) ,

if p (E | B) = 1, i.e. if the assumption constituting the problem of old evidence
is given. Therefore it seems reasonable to consider

hup (T, E,B) := p (T | (B − E) ∧ E) · p (E | B) +

+p (T | (B − E) ∧ ¬E) · p (¬E | B)− p (T | B − E)

as the degree to whichE confirmsT relative toB. This suggestion is strenghtened
by noting that given some provisos,hup (T,E,B) is positive if and only if41

p (E | T ∧ (B − E)) > p (E | B − E) and p (E | B) > p (E | B − E)

or

p (E | T ∧ (B − E)) < p (E | B − E) and p (E | B) < p (E | B − E) ,

which is the appropriate generalisation of the equivalence of before.
However, the problem is that in the Jeffrey case one does not knowE,

whence conditioning onB −E – “the (counter-factual) supposition that one does
not yet knowE” – is of no help. What is needed is the degree of belief inT ,
on the counterfactual supposition that one does not yet belief inE with degree
p (E | B). I will consider two ways of arriving at this (counterfactual) degree
of belief: A genuinely counterfactual one, and one sticking to actual degrees of
belief.

2.4.1.2.1 Counterfactuals Degrees of BeliefLet ‘B o E’ denote the informa-
tion that is left, when all information that bears onE is dropped fromB – thereby
neglecting the question what to do in case the degree of belief inE, p (E | B), is

41The provisos and the calculations for the following claims are to be found in the appendix to
chapter 2. The following equivalence is shown to hold by calculation 1.
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not only due to information that can be expressed in terms of statements or propo-
sitions.42 SupposeB o E is well defined and such that it is the logically strongest
consequence ofB with p (E) = p (E | B o E).

I take this independence to follow from the supposition thatB o E is what
remains when all information bearing onE is dropped fromB. Note that the
independence follows fromp (B o E) = 1, which is not assumed here, but may
be assumed with regard to the meaning of a backgroundknowledge– though, of
course, one must not assumep (B) = 1 or p (E | B o E) = p (E | B); otherwise
one cannot the solve our problem.

Suppose therefore thatp (T | B o E) is my degree of belief inT , on the
counterfactual supposition that I do not yet belief inE with degreep (E | B).
Consider theE and T of the example, whereT ` E. What is the degree of
confirmation ofT by E relative toB at timet2?

According to the above quotation, the calculation has to be based on my
subjective degree of belief function at timet2, p2, because Howson/Urbach write

... wouldnowhave...43

So replacing ‘B − E’ by ‘ B o E’ in the definition ofhup (T, E,B) yields44 that
the degree of confirmation ofT by E at timet2 is given by

hup2 (T, E,B2) = p2 (T | (B2 o E) ∧ E) · p2 (E | B2) +

+p2 (T | (B2 o E) ∧ ¬E) · p2 (¬E | B2)− p2 (T | B2 o E) ,

which is positive if and only if

p2 (E | T ∧ (B2 o E)) > p2 (E | B2 o E) and p2 (E | B2) > p2 (E | B2 o E)

or

p2 (E | T ∧ (B2 o E)) < p2 (E | B2 o E) and p2 (E | B2) < p2 (E | B2 o E) ,

whereB2 is the background knowledge at timet2.
For our example, whereT is assumed to logically implyE, this means that

at time t2, T is confirmed byE relative toB2 just in case my actual degree of

42The latter is necessary in order to solve the puzzle, for in the example my degree of belief in
E changes exogenously in going fromt1 to t2.

43The bold letters are due to me, but the italics are from the original.
44Cf. calculation 1, which does not use(B − E) ∧ E a` B, whence the equivalence of before

holds also with ‘B oE’ instead of ‘B −E’. The provisos stated there with ‘B oE’ substituted for
‘B − E’ are assumed to hold here.
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belief in E at t2, p2 (E | B2), is greater than my degree of belief inE on the
counterfactual supposition that I do not yet belief inE with degreep2 (E | B2),
p2 (E | B2 o E). This seems to be reasonable.

Let us now compare the degree of confirmation ofT byE at timet2 with that
at t1. The only change in going fromt1 to t2 is in E. Therefore it seems justified
to assume thatB1 o E a` B2 o E, althoughB1, my background knowledge att1,
will differ from my background knowledge att2, B2 (for the sake of argument, it
is currently assumed that the change in my degree of belief inE in going fromt1
to t2 is not exogenous, but is due to some statement inB2, which is not inB1).

In order to solve our problem it has to be assumed thatp1 (B1) < 1 and
p2 (B2) < 1, though it may be the case thatp1 (B1 o E) = 1 andp2 (B2 o E) = 1.
Otherwise

p1 (E | B1 o E) = p1 (E) = p1 (E | B1) , and so hup1 (T,E,B1) = 0;

or

p2 (E | B2 o E) = p2 (E) = p2 (E | B2) , and so hup2 (T,E,B2) = 0,

provided0 < pi (E | Bi o E) < 1.
Jeffrey conditionalisation then yields that

p2 (T | (B2 o E) ∧ ±E) = p1 (T | (B1 o E) ∧ ±E) .45

What aboutp2 (T | B2 o E), my degree of belief inT at t2 on the counterfactual
supposition that I do not yet belief inE with degreep2 (E | B2)? Should this also
be the result of conditioning onE? A little bit calculation yields that

p2 (T | B2 o E) =
p1 (T | B1 o E)

p1 (E) · (1− p1 (E))
·

· [p1 (E | T ∧ (B1 o E)) · (p2 (E | B2)− p1 (E)) +

+p1 (E) · (1− p2 (E | B2)] ,

which is equal to

p2 (T | B2 o E) = p1 (T | B1 o E) · p2 (E | B2)

p1 (E | B1 o E)
,

45Cf. calculation 2 and the provisos stated there. This holds also for counterfactual Jeffrey con-
ditionalisation, which results from Jeffrey conditionalisation by substituting ‘p2 (±E | B2 o E)’
for ‘p2 (±E | B2)’.
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if T ` E.46 This means that my degree of belief inT at t2 on the counterfactual
supposition that I do not yet belief inE with degreep2 (E | B2) is greater than
my degree of belief inT at t1 on the counterfactual supposition that I do not yet
belief inE with degreep1 (E | B1) just in case

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2) > p1 (E | B1 o E)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2) < p1 (E | B1 o E) ,

provided0 < p1 (E) < 1 andp1 (T | B1 o E) > 0, whereB1 o E a` B2 o E and
p1 (E) = p1 (E | B1 o E).

However, these assumptions yield the following oddity.47

Observation 2.1 (Oddity) Suppose

B1 o E a` B2 o E and p1 (E | B1 o E) = p1 (E) .

If p2 (T | B2 o E) is the result of Jeffrey conditioning onE, then

hup1 (T,E,B1) > hup2 (T,E,B2)

iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p1 (E | B1) > p1 (E | B1 o E)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p1 (E | B1) < p1 (E | B1 o E) .

In caseT ` E, this means that

hup1 (T, E,B1) > hup2 (T, E,B2) iff p1 (E | B1) > p1 (E | B1 o E) .

It seems to be rather clear that this oddity arises from obtainingp2 (T | B2 o E)
by Jeffrey conditionalisation onE. This is not allowed, becausep2 (T | B2 o E)
should express my degree of belief inT at t2 on the counterfactual supposition
that I do not yet believe inE with degreep2 (E | B2).

p2 (T | B2) should not be obtained by Jeffrey conditionalisation onE, but
by counterfactualJeffrey conditionalisation onE, which is justJC but with my
degree of belief inE at t2 on the counterfactual supposition that I do not yet belief

46Cf. calculation 3.
47Cf. calculation 4, which also gives the provisos under which the following holds.
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in E with degreep2 (E | B2), p2 (E | B2 o E), instead of my actual degree of belief
in E at t2, p2 (E | B2), i.e.

p2 (T | B2 o E) = p1 (T | (B2 o E) ∧ E) · p2 (E | B2 o E) +

+p1 (T | (B2 o E) ∧ ¬E) · p2 (¬E | B2 o E) ,

which reduces to

p1 (T | B1 o E) · p2 (E | B2 o E)

p1 (E | B1 o E)
,

if T ` E, providedp1 ((B1 o E) ∧ E) > 0.
This means that my degree of belief inT at t2 on the counterfactual suppo-

sition that I do not yet belief inE with degreep2 (E | B2), p2 (T | B2 o E), equals
my degree of belief inT at t1 on the counterfactual supposition that I do not yet
belief inE with degreep1 (E | B1), p1 (T | B1 o E), just in case48

p1 (E | T ∧ (B1 o E)) = p1 (E | B1 o E) or p1 (E | B1 o E) = p2 (E | B2 o E) .

In caseT ` E this means that, given0 < p1 (E | B1 o E) < 1,

p2 (E | B2 o E) = p1 (E | B1 o E)

is necessary and sufficient for

p2 (T | B2 o E) = p1 (T | B1 o E) .

Assuming the latter seems to be natural, for, after all,pi (E | Bi o E) is my degree
of belief inE at ti on the counterfactual supposition that I do not yet believe inE
with degreepi (E | Bi), and the only change in going fromt1 to t2 is in E.

And indeed – as shown by the theorem below – with these assumptions
one gets the desired result thatT is more confirmed byE, which is assumed to be
positively relevant forT , att2 than att1 if and only if the source of information for
E is more reliable att2 than att1. More generally (T is not assumed to logically
imply E):

Theorem 2.1 (NecSuff)Given

B1 o E a` B2 o E, p1 (E | B1 o E) = p1 (E) , and p1 (T | B1 o E) > 0,

48Providedp1 (T | B1 o E) > 0. Cf. the proof of theorem 2.1.
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the equality

p1 (T | B1 o E) = p2 (T | B2 o E)

is necessary and sufficient for the equivalence

hup2 (T, E,B2) > hup1 (T, E,B1)

iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2) > p1 (E | B1)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2) < p1 (E | B1) ,

provided
p2 (B2) > 0, p2 ((B2 o E) ∧ E) > 0,
p2 ((B2 o E) ∧ ¬E) > 0, and 1 > p1 (E) > 0.

With counterfactual Jeffrey condition this means that

p1 (E | T ∧ (B1 o E)) = p1 (E | B1 o E) or p1 (E | B1 o E) = p2 (E | B2 o E)

is necessary and sufficient for this equivalence.

The result obtained seems to be the intuitively correct answer. Yet, is it in accor-
dance with what Howson/Urbach say on the problem of old evidence? According
to them, the source of the latter lies

in relativising all the probabilities to thetotality of current knowledge.
They should, of course, have been relativised to current knowledge
minusE. The reason for the restriction is, of course, thatyour current
assessment of the support ofT by E measures the extent to which,
in your opinion, the addition ofE to your current stock of knowledge
would cause a change in your degree of belief inT .49

As noted,B−E cannot be taken in the Jeffrey case where I do not knowE, for in
this caseE is not part ofB, whenceB = B−E. Howson/Urbach say that I have to
measure the extent to which, in my opinion, the addition ofE to my current stock
of knowledge (minusE) would cause a change in my degree of belief inT . But

49Howson/Urbach (1993), p. 404. I have changed the notation.
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to consider that change in caseE is not part ofB, i.e. p (T | B ∧ E)− p (T | B),
whereB 6` E, takes us back to where we have started off, for

p1 (T | B ∧ E)− p1 (T | B) > p2 (T | B ∧ E)− p2 (T | B)

iff

p2 (T | B) > p1 (T | B) JC

iff

p1 (E | T ∧B) > p1 (E | B) and p2 (E | B) > p1 (E | B)

or

p1 (E | T ∧B) < p1 (E | B) and p2 (E | B) < p1 (E | B) ,

provided0 < p1 (E) < 1 andp1 (T | B) > 0.50

So, what is wrong with the Howson/Urbach-prescription? In my opinion
the trouble is caused by their relativisation to mycurrent stock of knowledge.
The latter may contain information highly relevant forE, although it does not
containE itself. In this case I may already be quite sure ofE and assign it a

50For a Bayesian, it is also no help to consider

p1 (T | (B1 o E) ∧ E)− p1 (T | B1 o E) ≥ p2 (T | (B2 o E) ∧ E)− p2 (T | B2 o E) ,

since (counterfactual) Jeffrey conditionalisation yields

p2 (T | (B2 o E) ∧ E) = p1 (T | (B1 o E) ∧ E) ,

andp2 (T | B2 o E) is definitely not smaller thanp1 (T | B1 o E). If p2 (T | B2 o E) is obtained
by counterfactual Jeffrey conditionalisation, then

p2 (T | B2 o E) > p1 (T | B1 o E)
iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2 o E) > p1 (E | B1 o E)
or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2 o E) < p1 (E | B1 o E) ,

and

p2 (T | B2 o E) = p1 (T | B1 o E)
iff

p1 (E | T ∧ (B1 o E)) = p1 (E | B1 o E) or p2 (E | B2 o E) = p1 (E | B1 o E) .

Cf. calculation 3 and the provisos stated there.
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veryhigh degree of belief. As a consequence, the extent to which, in my opinion,
the additon ofE to my currentstock of knowledge would cause a change in my
degree of belief inT is usually only very small. In the limiting case, whereE is
known (in the sense of being assigned a degree of belief of1), there is no increase
at all. Here Howson/Urbach tell one to dropE; yet in caseE is not known, but
only believed (in the sense thatp (E) < 1), E cannot be dropped. So their solution
to the problem of old evidence is no genuine solution, because it is no solution to
the more general problem.

I think a Bayesian has to make two corrections. First she should consider

the extent to which, in her opinion, the addition ofE to some part of
her stock of knowledge which contains no information bearing onE,
e.g.B o E, would cause a change in her degree of belief inT .

Second, she should additionally take into account her actual degree of belief inE
(cf. the preceding footnote).

The result I arrived at with the above prescription seemed to be correct ac-
cording to Bayesian intuitions:T (which logically impliesE) is more confirmed
by E at t2 than att1 if and only if the source of information forE is more reli-
able att2 than att1, where it is assumed thatp1 (T | B1 o E) = p2 (T | B2 o E),
which I derived with counterfactual Jeffrey conditionalisation and by assuming
p1 (E | B1 o E) = p2 (E | B2).

But what are these degrees of belief on counterfactual suppositions; and how
are they related to my actual degrees of belief? After all, Bayesian confirmation
theory aims at determining the degree of confirmation by means of someone’s ac-
tual degrees of belief. Finding the strongest consequence (or subset)B o E of B
with p (E | B o E) = p (E) is not only a difficult task; it may even be an impossi-
ble one, for there may be severalB oE which are probabilistically independent of
E (in the sense ofp), but which cannot be compared with respect to their logical
strength.

It also remains questionable what to do in case my degree of belief inE
changes exogenously in going fromt1 to t2, for hereB1 a` B2.

Furthermore, in order to obtain the desired result it was – and had to be
– assumed thatp1 (T | B1 o E) = p2 (T | B2 o E). Given counterfactual Jeffrey
conditionalisation, this reduces to assumingp1 (E | B1 o E) = p2 (E | B2 o E),
providedE is positively relevant forT (underp1). With the independence as-
sumption given by the intended meaning ofB o E, it follows that

p1 (E) = p1 (E | B1 o E) = p2 (E | B2 o E) = p2 (E) .
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This has to hold not only fort1 andt2, a particularE, and a particularT , but for
all time pointsti andtj, for everypiece of evidenceE, and foreverytheoryT .

That is, it has to hold for every theoryT , every evidenceE, and all points
of time ti andtj: pi (T | Bi o E) = pj (T | Bj o E), and, given the independence
assumption and counterfactual Jeffrey conditionalisation,

pi (E) = pi (E | Bi o E) = pj (E | Bj o E) = pj (E) .

This means that in order to avoid our problem, and to get confirmation right,
the counterfactual degrees of belief inT andE have to be stable over time. In
particular,p0 (T | B0 o E) = pi (T | Bi o E), and

p0 (E) = p0 (E | B0 o E) = pi (E | Bi o E) = pi (E) ,

for every theoryT , every evidenceE, and every point of timeti.
So the degree of confirmation ofT by E at timeti is given by

hupi
(T, E,Bi) := pi (T | (Bi o E) ∧ E) · pi (E | Bi) +

+pi (T | (Bi o E) ∧ ¬E) · pi (¬E | Bi)− p0 (T | B0 o E) ,

wherep0 (T ) = p0 (T | B0 o E), if, as seems to be justified in view of the meaning
of a backgroundknowledge, p0 (B0 o E) = 1, or, more generally,pi (Bi o E) = 1.

Here,Bi is the background knowledge at timeti, Bi o E is what remains
of Bi if all information bearing onE is dropped fromBi, andt0 is the first point
of time in the beginning when I first built up my probability space and made my
absolutely first guess in terms ofp0.

Since Jeffrey conditionalisation andBi o E a` Bj o E – both of which are
justified by assuming that the only change in going fromti to tj is in E – yield
thatpi (T | Bi o E) = pj (T | Bj o E), it follows that

hupi
(T, E,Bi) = p0 (T | (B0 o E) ∧ E) · pi (E | Bi) +

+p0 (T | (B0 o E) ∧ ¬E) · pi (¬E | Bi)− p0 (T | B0 o E) .

In other words, the degree of confirmation ofT by E crucially depends on my
absolutely first guess in terms ofp0!

Before trying to relatep0 (T | (B0 o E) ∧ E) andp0 (T | B0 o E) to my ac-
tual degrees of belief51, and discussing the consequences of all this, let us see

51It seems reasonable to set

p0 (T | B0 o E) = p0 (T ) and p0 (T | (B0 o E) ∧ E) = p0 (T | E) ,
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whether these difficulties can be overcome by keeping more in touch with reality,
and by sticking to the Bayesian aim of determining the degree of confirmation in
terms of someone’sactualdegrees of belief. In particular, this seems to be a good
advice with regard to the fact that we still do not have a solution for the case where
my degree of belief inE changes exogenously in going fromt1 andt2.

2.4.1.2.2 Actual Degrees of Belief In the preceding paragraph I tried to use
the counterfactual approach to the problem of old evidence to solve the more
general puzzle presented at the beginning of this section. The problems with it
are (1) how to obtain the counterfactual degrees of belief from the actual ones, (2)
what to do with exogenous belief changes, and (3) that the degree of confirmation
at any timeti crucially depends on my first guess in terms ofp0 – that (3) is
the most serious of these problems is argued for later on. In this paragraph I
will therefore try to determine my degree of belief inT on the counterfactual
supposition that I do not yet believe inE to some degree by keeping more in
touch with reality in the sense of using only actual degrees of belief.

Remember: In case of known evidenceE Howson/Urbach tell one to con-
sider “the extent to which, in your opinion, the addition ofE to your current stock
of knowledge would cause a change in your degree of belief inT .” In caseE
is not known but only believed, it may therefore be appropriate to consider the
extent to which, in my opinion, coming to believeE with degreep (E) would
cause a change in my degree of belief inT , where background knowledgeB is
suppressed.

In terms of actual degrees of belief, this extent, which should yield the de-
gree of confirmation ofT by E at t2, may be measured in one of the following
two ways: Either by the difference between my (actual) degree of belief inT at t1
(where I do not yet believe inE with degreep2 (E)) conditional on the evidence
E, and my degree of belief inT at t1 beforeI came to believe inE with degree
p2 (E), i.e.

ap2 (T,E) = p1 (T | E)− p1 (T ) ,

which is positive if and only if

p1 (E | T ) > p1 (E) ,

both of which are consequences, if – as is natural for a (restricted) background knowledge –B0 oE
is assigned a degree of belief of 1. This is even more so, if it is assumed thatin the beginning there
is nobackground knowledge at all, so thatB0 oE a` B0 a` >. Let me stress that whether or not
this is the case does not affect the discussion here.
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providedp1 (T ) > 0 and p1 (E) > 0, where it is assumed that my degree of
belief in E changes exogenously in going fromt1 to t2 so that the background
knowledge, which is suppressed, is the same att1 and att2.52

Or else, the degree of confirmation is measured by the difference between
my actual degree of belief inT at t2, and my degree of belief inT at t1 beforeI
came to believe inE with degreep2 (E), i.e.

bp2 (T, E) = p2 (T )− p1 (T ) ,

which is positive just in case

p1 (E | T ) > p1 (E) and p2 (E) > p1 (E)

or

p1 (E | T ) < p1 (E) and p2 (E) < p1 (E) ,

providedp1 (T ) > 0 and1 > p1 (E) > 0, where Jeffrey conditionalisation has
been used.

This means thatT is confirmed byE at time t2 either iff T is positively
relavant forE in the sense ofp1; or iff in addition to this, my degree of belief in
E increased in passing fromt1 to t2.

For a Bayesian, at least the second option seems to be reasonable – or so I
think. Note that in order to get the degree of confirmation for the example, where
T logically impliesE, it must be assumed that I am logically omniscient in the
first sense that all logical truths are transparant to me.53

So far, so good. Now consider the degree of confirmation ofT by E at time
t1. Here, I have to consider my subjective degree of belief functionp0 at timet0,
wheret0 is the point of time just beforet1. In order to arrive at

p0 (T | E)− p0 (T ) and p1 (T )− p0 (T ) ,

I have to assume that I am logically omniscient in the second sense that I am
aware of all statements or propositions in my probability space (otherwise it is not
guaranteed thatp0 (E) , . . . are defined).

52Note that I cannot consider

p1 (T | E) · p1 (E) + p1 (T | ¬E) · p1 (¬E)− p1 (T ) ,

because this is always 0.
53Cf. Earman (1992), p. 122.
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Suppose again that the only change in my degree of belief in passing from
t0 to t1 is in E, wherep0 (E) is my subjective degree of belief in ‘This chair in my
room is red’ at timet0 at night when I wake up because of some noice, but before I
am looking at my chair at timet1 when the light is off. The source of information
for E at t0 is less reliable than that att1, because att0 I am not even looking at my
chair, whencep0 (E) < p1 (E), wherep0 (E) is assumed to be positive.

Calculating the degree of confirmation yields that in both casesT is more
confirmed byE at t1 than att2. More generally, it holds that

ap1 (T,E) > ap2 (T,E)

iff

p0 (E | T ) > p0 (E) and p1 (E) > p0 (E)

or

p0 (E | T ) < p0 (E) and p1 (E) < p0 (E) ,

and

bp1 (T, E) > bp2 (T,E)

iff

p0 (E | T ) > p0 (E) and p1 (E)− p0 (E) > p2 (E)− p1 (E)

or

p0 (E | T ) < p0 (E) and p1 (E)− p0 (E) < p2 (E)− p1 (E) ,

providedp0 (T ) > 0 and1 > p0 (E) > 0.
What went wrong? I think it is obvious that att2 I must not consider my

subjective degree of belief inT at t1, p1 (T ), but my subjective degree of belief in
T at timet0, p0 (T ), and that therefore the degree of confirmation ofT by E at t2
is given by

a′p2
(T,E) = p0 (T | E)− p0 (T )

or
b′p2

(T, E) = p2 (T )− p0 (T ) ,

where the latter is positive if and only if

p0 (E | T ) > p0 (E) and p2 (E) > p0 (E)

or

p0 (E | T ) < p0 (E) and p2 (E) < p0 (E) ,
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providedp0 (T ) > 0 and1 > p0 (E) > 0. In this case the desired result follows
indeed for the second measure, since

b′p2
(T,E) > b′p1

(T, E)

iff

p2 (T )− p0 (T ) > p1 (T )− p0 (T )

iff

p1 (E | T ) > p1 (T ) and p2 (E) > p1 (E)

or

p1 (E | T ) < p1 (T ) and p2 (E) < p1 (E) ,

providedp1 (T ) > 0 and1 > p1 (E) > 0. In the first case, the degree of confir-
mation ofT by E at t1 does not differ from that att2.

As before, this has to hold not only fort1 andt2, but for any time pointsti
andtj, for every piece of evidenceE, and every theoryT . So is

cpi
(T,E) := pi (T )− p0 (T )

= pi (T | E) · pi (E) + pi (T | ¬E) · pi (¬E)− p0 (T )

= p0 (T | E) · pi (E) + p0 (T | ¬E) · pi (¬E)− p0 (T )

the solution to the puzzle54; the one which gives the degree of confirmation ofT
by E at time ti without recourse to counterfactual degrees of belief, and which
can also deal with exogenous belief changes? Note thatcpi

is very similar tohupi
;

indeed, they coincide if

p0 (T | B0 o E) = p0 (T ) and p0 (T | (B o E) ∧ E) = p0 (T | E) ,

both of which are consequences of settingp0 (B0 o E) = 1, which, as already
mentioned several times, seems to be natural for a background knowledge, even
more so, if it is restricted.

I think cp – or its counterfactual relativehup – are the best response a
Bayesian can give to the puzzle under consideration. Yet, they do not provide
an adequate measure of confirmation in terms of degrees of belief, but show what
is at the heart of confirmation theory. As there may be times beforet0, one has

54The last equality holds, because the only change is inE. The important point – namely that
the degree of confirmation at any timeti crucially depends on my first guess in terms ofp0 – is
also true without this assumption.
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to consider the earliest time whenE first appeared in the probability space. This
amounts to consider the point of time in my history, sayt∗, when I built up my
probability space and made my absolutely first assignmentp∗.

In order forpj (T ) to be defined, wheretj is any point of time aftert∗, one
first has to assume thatpi (E) > 0, for everyi < j, for otherwise one cannot
condition onE. In particular, this holds ofp∗ (E).

If T logically impliesE as in the example, then the degree of confirmation
of T by E at any timeti is uniquely determined by my actual degree of belief in
E at ti, pi (E), and my first guesses inE andT , p∗ (E) andp∗ (T ). That is, my
absolutely first assignmentp∗ uniquely determines the degree of confirmation of
T by E at any timeti in caseE is known and logically implied byT !

Why the exclamation mark? The reason is that this shows that the idea
behind any Bayesian theory of confirmation – namely to determine the degree
of confirmation by means of someone’s degrees of belief – fails. For what is
this absolutely first assignmentp∗? Any arbitrary assignment of values in[0, 1]
to the atomic statements – among which I take to be at leastE – is consis-
tent/coherent with the axioms of the probability calculus, whence any possible
value forcp (T, E) can be obtained as degree of confirmation ofT by E – at least,
if T ` E.55 For letr be any possible value forcpi

(T,E), i.e. let

r ∈ [pi (T )− pi (T | E) , pi (T )) .56

Then the functionp∗,

p∗ (E) :=
pi (T | E) · pi (E)− r

pi (T | E)
=

pi (T )− r

pi (T | E)
,

55For reasons of time the following can only be conjectured at the moment:

Conjecture 2.1 (Anything Goes) For any Boolean algebra of propositionsM, for any probabil-
ity function pi,M defined onM, for any two propositionsT andE of M, and for any possible
valuer for cpi,M (T,E) there exists a probability functionp∗M onM such that (i)pi,M results
from p∗M by i times Jeffrey conditioning onE, and (ii)

cpi,M (T,E) = pi,M (T )− p∗M (T ) = r.

As I got to know only shortly before finishing this dissertation, there is a similar point in Albert
(2001), which I can only refer to.

56r cannot be smaller thanpi (T )− pi (T | E), becauseT ` E, whence

p∗ (T ) ≤ p∗ (T | E) = pi (T | E) .
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p∗ (· | ±E) := pi (· | ±E) ,

p∗ (·) := pi (· | E) · p∗ (E) + pi (· | ¬E) · p∗ (¬E) ,

is a probability function (defined on the same language aspi) which yields that the
degree of confirmation ofT by E at timeti equalsr, and wherepi results fromp∗

by Jeffrey conditioning onE.57

It seems that we are back at the problem of assigning prior probabilities:
According to Earman (1992), there are three answers to this problem.

The first is that the assignment of priors is not a critical matter, be-
cause as the evidence accumulates, the differences in priors “wash
out.” [...] it is fair to say that the formal results apply only to the
long run and leave unanswered the challenge as it applies to the short
and medium runs. [...] The second response is to provide rules to
fix the supposedly reasonable initial degrees of belief. [...] We saw
that, although ingenious, Bayes’s attempt is problematic. Other rules
for fixing priors suffer from similar difficulties. And generally, none
of the rules cooked up so far are capable of coping with the wealth
of information that typically bears on the assignment of priors. [...]
The third response is that while it may be hopeless to state and jus-
tify precise rules for assigning numerically exact priors, still there are
plausibility considerations that can be used to guide the assignments.
[...] This response [...] opens the Bayesians to a new challenge[.]
[...] That is, Bayesians must hold that the appeal to plausibility argu-
ments does not commit them to the existence of a logically prior sort

57It suffices to show that0 ≤ p∗ (E) ≤ 1, and thatcpi (T,E) = r. The former holds, because
r < pi (T ) andpi (T | E) · pi (E)− pi (T | E) ≤ r; the latter holds, because

cpi (T,E) = pi (T )− p∗ (T )
= pi (T | E) · pi (E)− p∗ (T ) T ` E

= p∗ (T | E) · pi (E)− p∗ (T ) JC

=
p∗ (T ) · pi (E)

p∗ (E)
− p∗ (T ) T ` E

=
(pi (T )− r) · pi (E) · pi (T | E)

pi (T )− r
− (pi (T )− r)

p∗ (T ) = pi (T | E) · p∗ (E) = pi (T )− r

= r.
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of reasoning: plausibility assessment. Plausibility arguments serve
to marshall the relevant considerations in a perspiciuous form, yet
the assessment of these considerations comes with the assignment of
priors. But, of course, this escape succeeds only by reactivating the
original challenge. The upshot seems to be that some form of the
washout solution had better work not just for the long run but also for
the short and medium runs as well.58

I take the standard Bayesian answer to be that differences in the priors do not
matter, because they are “washed out” in the long run.

The point of the above example is that the limiting theorems of convergence
to certainty and merger of opinion are of no help, and would not even be of help, if
they worked for the medium and short runs: It shows that differences in the priors
do matter. For in caseT logically impliesE my first guess inE, p∗ (E), can be
used to obtain any possible value forcp (T, E) as degree of confirmation ofT by
E (in the sense ofcp) – providedE is among the atomic statements.

I do not see how this difficulty can be overcome – and how one can inter-
subjectify (objectify) Bayesian confirmation theory – without recourse to some
objective (logical) prior probability functionp∗.

However – and that is the pinpointing upshot of all this – the difficulty of
determining such an objectively reasonable or logical probability functionp∗ was
just the reason for turning to the subjective interpretation.

2.4.2 Steps Towards a Constructive Probabilism

As mentioned, I think the main problem of Bayesianism is its arbitrariness, which
is caused by the fact that the three (four) axioms of the probability calculus are
far too inclusive in the sense that any assignment of values in[0, 1] to the atomic
statements of the underlying language is consistent with these axioms – and the
subjective interpretation of probability as degree of belief does not put any restric-
tions on these assignments.

This suggests the following way out: To add new axioms to the three (four)
axioms of the probability calculus so that the set of all (unconditional) probabil-
ities is narrowed down more and more. A first step along these lines is Abner
Shimony’s strengthening of the second axiom to

p (A) = 1 iff ` A, for every wffA ∈ LPC , 59

58Earman (1992), p. 57-59.
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which narrows down the set of all (unconditional) probabilitiesP to the set of all
strict (unconditional) probabilitiesPstrict.

For a given problem, e.g. the problem of a quantitative theory of confirma-
tion, the aim is to restrictP in such a way that theorder induced by the proba-
bilistic measure of confirmationCp among all theoriesT , evidencesE, and back-
ground knowledgesB, is the same for every (unconditional) probabilityp. For
then it does not matter which (unconditional) probabilityp the measure of con-
firmationCp is based on in order to determine whetherT1 is more confirmed by
E1 relative toB1 thanT2 by E2 relative toB2, for any theoriesT1, T2, evidences
E1, E2, and background knowledgesB1, B2.

Of course, thevaluesCp (T,E,B) of Cp for givenT , E, andB will vary
with the (unconditional) probabilityp. But there will be no theoriesT1, T2, evi-
dencesE1, E2, background knowledgesB1, B2, and (unconditional) probabilities
p, p′ such that

Cp (T1, E1, B1) > Cp (T2, E2, B2) and Cp′ (T1, E1, B1) < Cp′ (T2, E2, B2) ;

and this is enough in order for the probabilistic measure of confirmation

C = {Cp (·, ·, ·) : p is a(n) (unconditional) probability}

to implicitely provide a rule of acceptance for rational theory choice.
Another, perhaps more promising strategy may be sketched as follows: In

general, a Bayesian approach to some problem is a probabilistic modeling of the
problem under consideration. If the model thus established is dependent on par-
ticular values of the (unconditional) probabilitiesp used in it, and if it varies with
varyingp – as is the case for any Bayesian relevance measure – then, other things
being equal, this model will be arbitrary.

59Cf. Shimony (1955). Shimony considers conditional probabilities as primitive, but the re-
formulation in terms of (unconditional) probabilities roughly amounts to the same, since a(n)
(unconditional) probabilityp (·) can be defined in terms of a conditional probabilityp (· | ·) as

p (A) := p (A | >) , for every wffA ∈ LPC ,

and – if (unconditional) probabilities are defined in this – it can be shown thatp (·) is a strict
(unconditional) probability, ifp (· | ·) is a strict conditional probability in the sense that

p (B | A) = 1 iff A ` B, for any wffsA,B ∈ LPC with A 6` ⊥.
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If, however, the problem in question can be modeled not by functionsfp

depending on particular values of the (unconditional) probabilitiesp, but by a set
of (un)equations between the functionsfp, then the model is not exposed to the
argument of arbitrariness, if – as is to be expected – this set of (un)equations
determines a non-arbitrary setF of functionsfp. Probabilistic modeling along
these lines is illustrated by Bovens/Olsson (2000), whereas the ordinal measure of
coherence defined in Hartmann/Bovens (2000) is arbitrary60.

A third approach towards solving the problem of arbitrariness for Bayesian-
ism is to define (for as many statements as possible) a set of uniquely determined
– in some61 sense: logical – (conditional or unconditional) probabilities. In the
limiting (and most desirable, but hardly imaginable) case, this set consists of a
single probabilityp∗ which is defined for all (sets of) statements (ofLPL1=).

60For a proof see the appendix to chapter 4.
61That of Keynes and (the early) Carnap.



Chapter 3

The Two Approaches

3.1 Preliminaries

The problem of a (quantitative) theory of confirmation has been – and still is – a
“hot topic” in the philosophy of science for over a half century, starting with such
classics as Carl Gustav Hempel’sStudies in the Logic of Confirmation(1945)1,
Rudolf Carnap’s work on inductive logic and probability2, and various contribu-
tions by Nelson Goodman, Olaf Helmer, Janina Hosiasson-Lindenbaum, John G.
Kemeny, R. Sherman Lehman, Paul Oppenheim, Abner Shimony, and others.3

Despite these efforts there is still no generally accepted definition of (degree of)
confirmation.

In my opinion one reason for this is that there are at least two conflicting
concepts of confirmation4: On the one hand there is thelikelinessconcept of con-
firmation expressing our acknowledging theoriesT that are true orlikely (proba-
ble, truthlike) relative to evidenceE and background knowledgeB. On the other
hand there is theloveliness5 concept of confirmation expressing our acknowledg-
ing theoriesT that are informative and which imply (predict, explain, account for)
together with the background knowledgeB many of the data in the evidenceE.

1Cf. also Hempel (1943) and (1965).
2Cf. Carnap (1945), (1946), (1950), (1952) and Carnap/Stegmüller (1959).
3Cf. Goodman (1946), Helmer/Oppenheim (1945), Hosiasson-Lindenbaum (1940), Kemeny

(1953) and (1955), Lehman (1955), Shimony (1955). If one understands the problem of a theory
of confirmation in a broad sense so that it includes the issue(s) of induction (and probability), it
can be traced back even to the ancients.

4Cf. Smokler (1968).
5The term is borrowed from Lipton (1993); cf. p. 114ff.

59
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Proponents of the likeliness concept of confirmation are all Bayesian and,
more generally, all probabilistic theories of confirmation. Their measures of con-
firmation Cp either measure the probability of theoryT given evidenceE (and
background knowledgeB); or else they measure the boost in the probability of
(subjective degree of belief in)T (given B) which is caused by the addition of
E to B, i.e. the difference betweenp (T | B ∧ E) andp (T | B). In the former
case, the focus is on confirmaton asfirmness; in the latter it is on confirmation as
increase in firmness.6

All what matters for the likely-ist is whetherT is probable or more probable
givenB andE than withoutE being given; questions as the informativeness ofT
(andB for E), its simplicity, and its coherence with respect to, henceforth w.r.t.,
E are neglected (except if they bear onT ’s boost in probability by the extension of
B by E). This exclusive focus on truth (probability) will be referred to astheory
enmityof theory hostility.

Among the approaches based on the loveliness concept of confirmation
one can cite the various versions of Hypothetico-Deductivism (HD)7; but also
Bootstrap-Theory8 may be argued to be a case in point. According to (HD)9, evi-
denceE confirms theoryT (relative to background knowledgeB) if(f) E is logi-
cally implied byT (andB) in some suitable (relevant) way – the way depending
on the version of (HD) under consideration.

6Gillies’ (1998) distinction betweenconfirmationon the one hand andsupporton the other
amounts to the same.

7For a discussion of (HD) and its (alleged) hopelessness see Glymour (1980c). An (unsuccess-
ful – cf. Glymour 1980c) attempt to rescue (HD) can be found in Merrill (1979). Approaches to
(HD) which replacethe underlying (classical) logic by analternativelogic are provided by Waters
(1987) and Sylvan/Nola (1991). Along similar lines Grimes (1990) tries to solve the problems
of (HD), most notably thetacking by conjunctionproblem, by considering the relation ofnarrow
consequenceinstead of the classical logical consequence relation.

Far more promising are the accounts by Gerhard Schurz and Kenneth Gemes, which do not
replace, butrestrict the classical consequence relation. Schurz demands of a (classically) valid
inferenceA ` B to be in additionrelevant; Gemes demands thatB be not only a (classical)
consequence ofA, but that it be acontent partof A. Cf. Schurz (1991a), (1991b), (1998),
Schurz/Weingartner (1987), and Weingartner/Schurz (1986) for his (their) theory of relevance, and
Schurz (1994) for an application to (HD); cf. Gemes (1994c) and (1997a) for his “New Theory of
Content”, and Gemes (1990), (1993), (1994a), (1998), and (1999) for a discussion of (HD).

8Cf. especially Glymour (1980a), but also Glymour (1975), (1977), (1980b), and (1983). For
discussions see Christensen (1990), Culler (1995), Edidin (1983), and Mitchell (1995).

9In contrast to probabilistic theories of confirmation, (HD) does not attempt do define aquanti-
tative(or comparative) concept of confirmation, but confines itself to the definition of aqualitative
one.
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A third class of theories of confirmation are the accounts of (explanatory)
coherence, which may be argued to take into account both the likeliness and the
loveliness concept of confirmation.

Loveliness and likeliness are calledprimary confirmational virtues. (The
term ‘virtue’ should make clear that I consider confirmation theory to be anor-
mativetheory of theory assessment – just as logic is a normative theory of truth-
preserving reasoning.) They are conflicting in the following sense: Other things
being equal, a theoryT implies (together with background knowledgeB) the
more data of the evidenceE, the logically stronger it is, whereasT is the likelier
relative toE andB, the logically weaker it is.

Apart from the two primary confirmational virtues of loveliness and likeli-
ness, there are the derived confirmational virtues ofsimplicityandnatural formu-
lation: The theories we aim at should besimple, and – if they are interpreted as
sets of statements, and the measure of confirmationC need not be closed under
equivalence transformations ofT – they should beformulated naturally.

A further property often cited as being of relevance for the assessment of
theory by evidence is the (explanatory) coherenceof T , B, andE, or the (ex-
planatory) coherence ofT andB w.r.t. E.

In addition, evidenceE is argued to be preferable, if it is “big” and varied
or diversein the sense that it reports about “different classes of facts”. Size and
variety together determine the “goodness” of the evidence which is the topic of
chapter 6. There I argue that the variety of evidenceE depends on the theory
T and the background knowledgeB under consideration. A non-arbitrary and
comprehensible functionG (·, ·, ·) is defined which is computabe in the limit, and
such thatG (T,E,B) measures the goodness ofE in relation toT and B by
measuring (i) how many classes of factsE consists of, (ii) how much these differ
from each other, and (iii) how “big” they are. A class of facts is construed as a set
of individuals, because I take the latter to be ontologically basic.

In this chapter I will try to make precise what I mean by the confirmational
virtues. The next chapters deal with attempts to solve the problem of a quantitative
theory of confirmation by defining a measure of confirmationC which is formally
handy and materially adequate, i.e. non-arbitrary, comprehensible, computable in
the limit, and sensitive to all (and only) the confirmational virtues.

Prima facie, there are two possible approaches for a solution to the problem
of a quantitative theory of confirmation. The one is (1) to argue that there is one
single property of theoryT in relation to evidenceE and background knowledge
B which takes into account all (and only the) confirmational virtues ofT in re-
lation to E andB; (2) to define a functionCoh (·, ·, ·) such thatCoh (T, E,B)
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measures the degree to whichT,E, andB exhibit this property – and thereby
the confirmational virtues; and (3) to identify the measure of confirmationC with
the functionCoh. As indicated, the candidate here is the coherence of theoryT
and background knowledgeB w.r.t. evidenceE, measured by the formally handy
functionCoh presented in the next chapter.

The second approach is (1) to define, for each confirmational virtueV , a
functionfV (·, ·, ·) such thatfV (T,E,B) measures the degree to whichV is ex-
hibited byT , E, andB, for every theoryT , every evidenceE, and every back-
ground knowledgeB; and (2) to define the measure of confirmationC as a func-
tion of (some of) these functionsfV .

It will turn out that it suffices to consider the two primary confirmational
virtues of loveliness and likeliness (and the goodness of the evidence). So in
a sense, the idea here is to preserve and combine those elements of HD on the
one hand and Bayesian confirmation theory on the other which are worth being
preserved, and, at the same time, to get rid of their respective drawbacks.

It remains to be argued for one of these two approaches. In principle, there
is a simple criterion that would do the job, namely the answer to the question
whether the measure of confirmationC is to be closed under equivalence trans-
formations ofT , i.e. whether it should matter howT – construed as a set of
statements – is formulated. Though this invariance does not hold of the coherence
measureCoh, it can be made to hold ofCoh by referring to some canonical for-
mulation ofT . So the answer to the question of how a theoryT is to be defined
– as a set of models, or as a set of statements – does not automatically give an
answer to the question which approach to take.

Nevertheless, the quantitative theory of confirmation resulting from the first
approach, which identifies degree of confirmation with degree of coherence w.r.t.
the evidence, can hardly be argued to be materially adequate in the sense that co-
herence w.r.t. the evidence is sensitive to all (and only) the confirmational virtues.
This is definitely not the case for the definitions of these virtues given in the next
sections.

In contrast to this, the result of the second approach, which defines the mea-
sure of confirmationC as a function of (some of) the functionsfV (measuring
the confirmational virtuesV ), can be shown to be sensitive to all (and only) the
(primary) confirmational virtues (of loveliness and likeliness). I will therefore
conclude that the second approach is a more promising way towards a solution to
the problem of a quantitative theory of confirmation.

In the last chapter, the measure of confirmationC is combined with the mea-
sure of the “goodness” of evidenceG to yield the refined measure of confirmation
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C∗ (·, ·, ·). C∗ additionally takes into account how much evidenceE is worth for
the assessment of theoryT .

3.2 The Confirmational Virtues

The measure of confirmationC should be materially adequate in the sense that
it is sensitive to all (and only) the confirmational virtues. Two questions arise:
Which are these confirmational virtues, and what does it mean to besensitiveto
the confirmational virtues?

First, there are the conflicting primary confirmational virtues ofloveliness
andlikeliness. Loveliness expresses our acknowledging theoriesT that are infor-
mative or lovely in the sense that they imply (together with background knowledge
B) many of the data in evidenceE. Likeliness expresses our acknowledging the-
oriesT that are likely in the sense thatE – when combined withB – speaks in
favour ofT .

Then there are thesecondaryor derivedconfirmational virtues ofsimplicity
andnatural formulation, where demanding the latter makes sense only ifT , E,
andB are construed as sets of statements, and the measure of confirmationC need
not be closed under equivalence transformations ofT .

Apart from these confirmational virtues, there is the (explanatory) coherence
of T andB w.r.t. E, which seems to combine the former. Intuitively,T , B, and
E cohere not only, ifT is likely relative toE andB; they cohere also, ifT and
B imply (account for) many of the data inE. Furthermore, our pretheoretical
understanding of coherence tells us that this concept is implicitely sensitive to the
simplicity of T , and perhaps also to the wayT is formulated. In sum, coherence
w.r.t. the evidence seems to take into account both the primary and the derived
confirmational virtues, which gives rise to the hypothesis that the problem of a
quantitative theory of confirmation is subsidiary to the problem of a quantitative
theory of coherence w.r.t. the evidence. Therefore, coherence w.r.t. the evidence
is not calleda confirmational virtue, for if this talk is proper one should better
speak oftheconfirmation virtue.

A final property of importance is the “goodness” (size plus variety) of the
evidenceE, which, at first sight, seems to differ from the confirmational virtues
in that it is a property ofE which is independent of theoryT and background
knowledgeB. That this is not the case, but that variety and goodness of evidence
differ from the confirmational virtues in another respect, will be argued for in the
last chapter.
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3.3 The Primary Confirmational Virtues

In the foregoing sections I have appealed to an intuitive understanding of the love-
liness or power a theoryT in relation to an evidenceE and a background knowl-
edgeB. I think that any adequate measureLO (T,E,B) of the loveliness ofT
andB for E should besearching powerin the following sense:

Definition 3.1 (Searching Power)Let E be an evidence. A functionf (·, E, ·),
f (·, E, ·) : T × E × B → <, is searching power formod (E) iff it holds for
any theoriesT andT ′, and every background knowledgeB: If T ∪ B 6` ⊥ and
T ′ ∪B 6` ⊥, then

1. f (T,E,B) ≥ 0,

2. if T ∪B ` E, thenf (T,E,B) = 1, and

3. if T ′ ` T , thenf (T ′, E, B) ≥ f (T,E,B).

A functionf (·, ·, ·), f (·, ·, ·) : T × E ×B → <, is apower searcheriff f (·, E, ·)
is searching power formod (E), for every evidenceE.

The notion of searching power can, of course, be generalised to any sets of state-
mentsT , E, andB respectively functionsf with domains℘ (LPL1=). However,
it will turn out that the restriction to theoriesT , evidencesE, and background
knowledgesB is necessary in order for several theorems to hold.

The first and second condition set lower and upper bounds, respectively, for
the values a power searcher can take on, where the second condition in addition
tells one that the power ofT for E relative toB is maximal, ifT andB guarantee
(in the sense of logical implication) thatE is true. The third condition is a con-
dition of monotonicity saying that the power ofT ′ for E relative toB is greater
than or equal to the power ofT for E relative toB, if T is logically implied by
T ′. That is, power or loveliness increases with logical strength.

A consequence of the third condition is that every power searcherLO is
closed under equivalence transformations ofT . More precisely:

If T ∪B 6` ⊥ andT ′ a` T , thenf (T, E,B) = f (T ′, E, B) ,

for any theoriesT, T ′, every evidenceE, every background knowledgeB, and
every power searcherLO (·, E, ·) for mod (E).

The intuitive understanding of likeliness I have appealed to in the last sec-
tion is made precise by demanding of any measureLI (T, E,B) of the likeliness
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of theoryT relative to evidenceE and background knowledgeB to beindicating
truth in the following sense:

Definition 3.2 (Indicating Truth) Let E be an evidence. A functionf (·, E, ·),
f (·, E, ·) : T × E × B → <, is indicating truth inmod (E) iff it holds for any
theoriesT andT ′, and every background knowledgeB: If E ∪B 6` ⊥, then

1. f (T, E,B) ≥ 0,

2. if E ∪B ` T , thenf (T,E,B) = 1, and

3. if T ′ ` T , thenf (T ′, E, B) ≤ f (T, E,B).

A function f (·, ·, ·), f (·, ·, ·) : T × E × B → <, is atruth indicator iff f (·, E, ·)
is indicating truth inmod (E), for every evidenceE.

This definition can, of course, also be generalised to any sets of statements. As
mentioned before, the restriction to theoriesT , evidencesE, and background
knowledgesB is necessary in order for several theorems to hold. In particular,
this is the case for the truth indicativeness of the likeliness functionLI presented
in chapter 5.

The first and second conditions set again lower and upper bounds, respec-
tively, for the values a truth indicator can take on, where the second condition in
addition tells one that the likeliness ofT relative toE andB is maximal, ifE
andB guarantee the truth ofT . As in the previous case, the third condition is a
condition of monotonicity saying that the likeliness ofT relative toE andB is
greater than or equal to the likeliness ofT ′ relative toE andB, if T ′ logically
impliesT . In other words, likeliness decreases with logical strength.10

A consequence of the third condition is that every truth indicatorLI is
closed under equivalence transformations ofT .

There are many power searchers and truth indicators.

Theorem 3.1 (Power Searcher and Truth Indicator) LetT , E, andB range over
wffs of Lprop (instead of theories, evidences, and background knowlegdes, respec-
tively, which are sets of wffs ofLPL1=) in the definitions of searching power and

10One might want to add the condition that likeliness increases with the logical strength of the
background knowledgeB, i.e.

if B′ ` B, then LI (T,E,B′) ≥ LI (T,E,B) .

In my opinion this is inadequate, because new background information may even lead to the refu-
tation of a theory. A similar remark applies to the definition of searching power.
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indicating truth. Then it holds for every contingent wffE and every strict (uncon-
ditional) probabilityp (·):

1. p (· | E ∧ ·) is indicating truth inmod (E).

2. i (·, E, ·) := 1− p (· ∧ · | ¬E) is searching power formod (E).

3. i′ (·, E, ·) := 1 − p (· | ¬E ∧ ·) is searching power formod (E), if it is
defined, i.e. if¬E ∧B 6` ⊥.

What is needed are not only two functionsLO andLI which are searching power
and indicating truth, respectively. In addition these functions have to be formally
handy, i.e. non-arbitrary, comprehensible, and computable in the limit. Arbitrari-
ness will be avoided by defining two single functions; comprehensibility will be
achieved by purely syntactical definitions in the terms ofPL1 = andZF ; and
computability in the limit will be a consequence of these definitions.

Let me stress that the measure of confirmationC should not be both search-
ing power and indicating truth, for such functions are constant.

Theorem 3.2 (Truth Indicating Power Searchers Are Constant)Let E be an
evidence, and letf (·, E, ·), f (·, E, ·) : T × E × B → <, be searching power
for mod (E).

If f (·, E, B) is indicating truth inmod (E), then it holds for every theoryT
and every background knowledgeB with E ∪B 6` ⊥: f (T, E,B) = 1.

The measure of confirmationC should besensitiveto loveliness and likeliness; it
should balance between these two conflicting concepts of confirmation.

If the likeliness ofT relative toE andB equals the likeliness ofT ′ relative
to E ′ andB′, then the degree of confirmationC (T, E,B) of T by E relative to
B should be greater than the degree of confirmationC (T ′, E ′, B′) of T ′ by E ′

relative toB′ just in case the loveliness or power ofT andB for E is greater than
the loveliness or power ofT ′ andB′ for E ′. Similarly, if the loveliness or power in
the first case is equal to the loveliness or power in the second case, then the degree
of confirmation should be greater in the first case if and only if the likeliness is.
Furthermore, confirmation should be minimal just in case loveliness or likeliness
is minimal; and it should be maximal if and only if both are maximal. This is
expressed in the following definition.

Definition 3.3 (Sensitivity to Loveliness and Likeliness)LetLO (·, ·, ·),LO (·, ·, ·) :
T ×E×B → <, be a power searcher, and letLI (·, ·, ·),LI (·, ·, ·) : T ×E×B →
<, be a truth indicator.
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A function f (·, ·, ·), f (·, ·, ·) : T × E × B → <, is sensitive to loveliness
and likeliness in the sense ofLO and LI iff it holds for any theoriesT and
T ′, any evidencesE andE ′, and any background knowledgesB andB′, where
X = 〈T,E,B〉 andX ′ = 〈T ′, E ′, B′〉:

1. If LI (X) = LI (X ′) 6= 0, thenf (X) ≥ f (X ′) iff LO (X) ≥ LO (X ′),

2. if LO (X) = LO (X ′) 6= 0, thenf (X) ≥ f (X ′) iff LI (X) ≥ LI (X ′),11

3. f (X) = 0 iff LO (X) = 0 orLI (X) = 0, and

4. f (X) = 1 iff LO (X) = 1 andLI (X) = 1.

It is straightforward that sensitivity to loveliness and likeliness in the sense of
some power searcherLO and some truth indicatorLI is sufficient for invariance
under equivalence transformations ofT .

3.4 The Derived Confirmational Virtues

Let us turn to thesecondaryor derived confirmational virtuesof simplicity and
natural formulation. I will not define when a theoryT is simple (w.r.t. to some ev-
idenceE and some background knowledgeB), or when it is formulated naturally,
but will restrict myself to giving necessary conditions. As it stands, the necessary
condition for being formulated naturally is a consequence of that for being simple
(w.r.t. some evidenceE and some background knowledgeB).

Though I think that the concept of simplicity applies to theoriesT in rela-
tion to evidencesE, background knowledgesB, and power searchersLO, this
four-place concept of simplicity can also be construed as a one-place concept ap-
plying to theories. Intuitively, if a theoryT is simple w.r.t. some evidenceE,
some background knowledgeB, and some power searcherLO, thenT contains
no statementh that is superfluous forE andB w.r.t. LO in the sense that the
power ofT withouth andB for E equals the power ofT andB for E; that is,T
must not contain a statementh such that

LO (T \ {h} , E, B) = LO (T,E,B) .

11Note that conditions (1) and (2) are equivalent with ‘>’ instead of ‘≥’.
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Necessary Condition 3.1 (LO-Simplicity) LetE be an evidence, letB be a back-
ground knowledge, and letLO be a power searcher.

If a theoryT isLO-simple w.r.t.E andB, then there is no wffh ∈ T such
that

LO (T \ {h} , E, B) = LO (T,E,B) .

Any such wffh is called aLO-superfluous part ofT for E andB.

This four-place concept of simplicity gives rise to a one-place concept of simplic-
ity per se. The necessary condition for the latter is the following.

Necessary Condition 3.2 (Simplicity)If a theory T is simple, then there is at
least one power searcherLO for which there is no wffh ∈ T such that it holds
for every evidenceE, and every background knowledgeB:

LO (T \ {h} , E, B) = LO (T, E,B) .12

Any such wffh is called aLO-superfluous part ofT ; i.e. h is aLO-superfluous
part of T iff it holds for every evidenceE, and every background knowledgeB:
h is aLO-superfluous part ofT for E andB.

h is asuperfluous part ofT iff there is at least one power searcherLO such
thath is aLO-superfluous part ofT .

Let us now briefly turn to the derived confirmational virtue of being formulated
naturally. It is rather doubtless that a theoryT which is formulated naturally
should or does not contain any redundant part that is already logically implied by
the rest ofT .

Necessary Condition 3.3 (Natural Formulation) If a theoryT is formulated nat-
urally, thenT is formulated non-redundantly.

Clearly, every simple theoryT is formulated non-redundantly.

12Demanding of a simple theoryT to be such that there is at least one power searcherLO for
which there is no statementh ∈ T such that it holds for at least one evidenceE, and at least one
background knowledgeB:

LO (T \ {h} , E, B) = LO (T,E,B) ,

would yield that no theoryT is simple. The reason is that for every theoryT , every wffh ∈ T ,
every power searcherLO, and every evidenceE with E ∪ T 6` ⊥ there is at least one background
knowledgeB – e.g.B = E∪T orB = E – such that:LO (T \ {h} , E, B) = LO (T,E,B) = 1.



3.4. THE DERIVED CONFIRMATIONAL VIRTUES 69

Observation 3.1 (Non-Redundancy)If there is an evidenceE, a power searcher
LO, and a background knowledgeB such thatT is LO-simple w.r.t. E andB,
thenT is formulated non-redundantly.

A measure of confirmationC should be sensitive to simplicity considera-
tions13, and it should not be impressable by redundancies. Before presenting these
notions let me make a point concerning their definition: In the section on theories
in chapter 1 I pointed out that a theoryT is taken to be a set of statements in order
to allow for both the semantic and the syntactic definition of theories, and in order
to put no restrictions on the behaviour of an adequate measure of confirmationC.

Now I am concerned with putting restrictions on the behaviour of an ade-
quate measure of confirmation. The question is whether these may be so strong as
to rule out the semantic interpretation of theories; i.e. whether they may be such
that a measure of confirmation satisfying them cannot be closed under equivalence
transformations ofT . It turns out that if the following definitions are formulated
with ‘≥’ (and not ‘>’), then this does not follow. However, if these definitions
are fomulated with ‘>’ instead of ‘≥’, it follows that no function satisfying any of
these conditions can be closed under equivalence transformations ofT . Therefore
the following definitions are formulated with ‘≥’ instead of ‘>’.

Definition 3.4 (Sensitivity to Simplicity Considerations i.w.s.)A functionf (·, ·, ·),
f (·, ·, ·) : T × E × B → <, is sensitve to simplicity considerations in the weak
senseiff there is at least one power searcherLO such that it holds for every theory
T , every evidenceE, every background knowledgeB, and every wffh ∈ T :

If h is aLO-superfluous part ofT , thenf (T \ {h} , E, B) ≥ f (T,E,B);

i.e. which is such that it holds for every theoryT , and every wffh ∈ T :

If LO (T \ {h} , E, B) = f (T,E,B), for every evidenceE, and ev-
ery background knowledgeB, thenf (T \ {h} , E, B) ≥ f (T, E,B),
for every evidenceE, and every background knowledgeB.

Definition 3.5 (Sensitivity to Simplicity Considerations i.s.s.)A functionf (·, ·, ·),
f (·, ·, ·) : T × E × B → <, is sensitive to simplicity considerations in the strong
senseiff there is at least one power searcherLO such that it holds for every theory
T , every evidenceE, every background knowledgeB, and every wffh ∈ T :

13The measure of confirmation presented in the chapter on loveliness and likeliness is sensitive
to simplicity considerations in the very strong sense.
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If h is aLO-superfluous part ofT for E andB, thenf (T \ {h} , E, B) ≥
f (T, E,B);

i.e. which is such that it holds for every theoryT , every evidenceE, every back-
ground knowledgeB, and every wffh ∈ T :

If LO (T \ {h} , E, B) = LO (T, E,B), thenf (T \ {h} , E, B) ≥
f (T, E,B).

A generalisation of the last definition (in the sense that sensitivity to simplicity
considerations i.s.s. is a consequence of sensitivity to simplicity considerations
i.v.s.s.) is the following.

Definition 3.6 (Sensitivity to Simplicity Considerations i.v.s.s.)A functionf (·, ·, ·),
f (·, ·, ·) : T × E × B → <, is sensitive to simplicity considerations in the very
strong senseiff there is at least one power searcherLO such that it holds for any
theoriesT andT ′, every evidenceE, and every background knowledgeB:

If T ′ ` T andLO (T,E,B) = LO (T ′, E, B), thenf (T, E,B) ≥
f (T ′, E, B).

Definition 3.7 (Unimpressability by Redundancies)A functionf (·, ·, ·), f (·, ·, ·) :
T ×E×B → <, cannot be impressed by redundanciesiff it holds for every theory
T , every evidenceE, every background knowledgeB, and every wffh ∈ T :

If h is a redundant part ofT , thenf (T \ {h} , E, B) ≥ f (T, E,B).14

Before turning to coherence w.r.t. the evidence respectively the first approach
to a solution of the problem of a quantitative theory of confirmation in the next
chapter, let me note some relations between sensitivity to loveliness and likeliness
(in the sense of some power searcherLO and some truth indicatorLI), sensitivity
to simplicity considerations (in some sense), and invariance under equivalence
transformations.

Theorem 3.3 (SensSimplCons and Unimpressability)Let f (·, ·, ·), f (·, ·, ·) :
T × E × B → <, be a function.

1. If f is sensitive to simplicity considerations in the very strong sense, thenf
is sensitive to simplicity considerations in the strong sense.

14Note that no function which is closed under equivalence transformations ofT can be im-
pressed by redundancies.
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2. If f is sensitive to simplicity considerations in the strong sense, thenf is
sensitive to simplicity considerations in the weak sense.

3. If f is sensitive to simplicity considerations in the weak sense, thenf cannot
be impressed by redundancies.

The last theorem holds also in case ‘≥’ is relaced by ‘>’ in the definitions of
sensitivity to simplicity considerations in any sense and unimpressability by re-
dundancies. As no function which is closed under equivalence transformations of
T satisfiesstrict unimpressability by redundancies, i.e. unimpressability with ‘>’
instead of ‘≥’, no such function can bestrictly sensitive to simplicity considera-
tions in any sense.

It is obvious that sensitivity to simplicity considerations in the very strong
sense implies invariance under equivalence transformations ofT . This does not
hold of sensitivity to simplicity considerations in the strong sense.

Theorem 3.4 (SensSimplCons i.s.s. Does Not Imply InvEquTrans)Letf (·, ·, ·),
f (·, ·, ·) : T × E × B → <, be a function. Iff is sensitive to simplicity consider-
ations in the strong sense, thenf need not be closed under equivalence transfor-
mations ofT in the sense that

f (T, E,B) = f (T ′, E, B) , if T a` T ′,

for any theoriesT andT ′, every evidenceE, and every background knowledgeB.

Theorem 3.5 (InvEquTrans Implies SensSimplCons i.w.s.)If f is closed un-
der equivalence transformations ofT , thenf is sensitive to simplicity consid-
erations in the weak sense.

Theorem 3.6 (InvEquTrans Does Not Imply SensSimplCons i.s.s.)If f is closed
under equivalence transformations ofT , thenf need not be sensitive to simplicity
considerations in the strong sense.

A consequence of these theorems is that if there is a property which implies sensi-
tivity to simplicity considerations in the very strong sense, then a function having
this property is sensitive to all derived confirmational virtues; i.e. such a func-
tion is sensitive to simplicity considerations in any sense, (it is invariant under
equivalence transformations ofT , and) it cannot be impressed by redundancies.

The following theorem states that sensitivity to loveliness and likeliness in
the sense of some power searcherLO and some truth indicatorLI is such a
property, whence every function which is sensitive to the primary confirmational
virtues is automatically sensitive to all derived confirmational virtues.
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Theorem 3.7 (SensLoveLike Implies SensSimplCons i.v.s.s.)Letf (·, ·, ·), f (·, ·, ·) :
T × E ×B → <, be a function. Iff is sensitive to loveliness and likeliness in the
sense of some power searcherLO and some truth indicatorLI, thenf is sensitive
to simplicity considerations in the very strong sense.



Chapter 4

Coherence with Respect to the
Evidence

4.1 Coherence as Truth-Indicator

Coherence plays a prominent role in the philosophy of science – in the theory of
confirmation – and, more generally, in epistemology – in the theory of justification
– as indicator of truth.

There is an enduring discussion1 whether the coherence of a set of statemets
or propositionsS is indicative of the truth of (the statements or propositions in)
S, or as it is often put: whether coherence istruth conducive. I think the answer
to this question is straightforward: Either one adopts a coherence theory of truth
according to which a statements is true just in cases is an element of at least one
coherentset of statementsC (and a set of statementsS is true if and only if all
statements inS are elements of at least one such setC). Then the coherence ofS
is not only indicative of the truth of the statements inS; it is guaranteeingtheir
truth.

Or else one adopts a correspondence theory of truth according to which truth
is a binary relation between a statements on the one hand and a world or model
M on the other. Then the coherence of a set of statementsS cannot be indicative
of the truth ofS in some world or modelM, if the coherence ofS is independent
of M.2 More formally:

1Cf. Akiba (2000), Barker (1994), Cross (1999), Klein/Warfield (1994) and (1996), Merricks
(1995), Millgram (2000), Olsson (2001) and (2002), and Shogenji (1999), (2001a), and (2001b).

2The claim that coherence is truth indicative may also be read as the claim that coherence is
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Necessary Condition 4.1 (Coherence as Truth Indicator)LetM = 〈Dom, ϕ〉
be a model, and supposeCoh (·,M), Coh (·,M) : D×M→ <, D ⊆ ℘ (LPL1=),
is a function such thatCoh (S,M) measures the coherence ofS w.r.t.M, for ev-
ery set of wffsS ∈ D.

If Coh (·,M) is indicative of truth inM, then it does not hold for every set
of wffs S ∈ D, and every modelM′: Coh (S,M) = Coh (S,M′).3

Obviously, this condition is not satisfied by any functionCoh (·), Coh (·) : D →
<, D ⊆ ℘ (LPL1=), which is independent of the world whose truth in one is
interested in.4

I adopt a theory of truth along the lines of Tarski5, whence coherence – if
construed in the usual way as a one-place concept applying to sets of statements
or propositions – is not indicative of truth (in any model). The reason being that
the coherence of a set of statementsS is independent of the model whose truth in
one is interested in.

If this one-place property of coherenceper seis not indicative of truth in
some model, because it is independent of every model, then the concept of coher-
ence has to be relativised to the model whose truth in one is interested in. Let me

indicative of truth in the actual world. The reason may be seen in a principle of the coherence of
the world – in a way similar to the justification of induction (as a valid inference for the actual
world) by reference to a principle of the uniformity of nature. Before accepting such a principle of
the coherence of the world I would rather accept the claim of the truth conduciveness of coherence
itself.

3The restriction to a subsetD of ℘ (LPL1=) should avoid that this condition does not make
sense, if there is no complete or total coherence measurem (·,M), wherem (·,M) is complete
or total iff m (S,M) is defined foreveryset of wffs S ⊆ LPL1=. The existence of such a
complete coherence measure may be questioned, but nothing really substantial hinges on this for
the necessary condition for coherence as truth indicator.

Note that it is not even unplausible that there is no connectedordinal coherence measure
� (·, ·,M), where� (S, S′,M) says thatS is as coherent w.r.t.M as or more coherent w.r.t.
M than S′. � (·, ·,M) is connectediff it holds for any two sets of wffsS, S′ ⊆ LPL1=:
〈S, S′,M〉 ∈� (·, ·,M) or 〈S′, S,M〉 ∈� (·, ·,M). Cf. Hartmann/Bovens (2000).

4Note that the necessary condition for coherence as truth indicator allows for cases, where
Coh (S,M1) = Coh (S,M2), for someset of statementsS, S ∈ D, andsomemodelsM1,M2.
There may even be some set of statementsS such that this holds for any modelsM,M′.

5It does not matter whether it is adequate to call Tarski’s theory of truth a correspondence
theory of truth. Although Tarski himself does so, the adequacy of this may be questioned on
the grounds that the actual world is no model consisting of a domainDom and an interpretation
functionϕ, and that a correspondence theory of truth seeks a correspondence with the actual world.
However, this does no harm, if the actual world can be adequately represented by some modelA
of the mentioned form.
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stress that I do not claim that coherence is indicative of truth in some modelM,
if it is relativised toM; all I claim is thatif coherence is to be indicative of truth
in the modelM, then it has to be relativised toM.

Which is the world whose truth in we are interested in? The answer to
this question may depend on the set of statementsS under consideration, but in
general we are interested in truth in theactual world. So for most cases it will
be appropriate to relativise the coherence ofS to the actual world – or a model
A = 〈A, ϕA〉 adequately representing the actual world as a set-theoretical struc-
ture consisting of a domainA and an interpretation functionϕA. Thus the question
is not whether coherenceper seis truth indicative – it is not – but whether coher-
ence w.r.t. to the actual world respectively a modelA adequately representing the
latter is indicative of truth in the actual world respectively inA.

AssumeA = 〈A, ϕA〉 is a model adequately representing the actual world,
which will be identified withA in the following. How can such a relativisation of
the coherence ofS to the actual worldA look like? After all, our pretheoretical
and intuitive understanding of coherence tells us that this concept applies to sets
of statements (or propositions). Furthermore, under the assumption that the actual
world exists at all, we hardly have access to it – and, for sure, the aim is a theory
of coherence that not only explicates the notion of coherence (w.r.t. some model),
but that also enables one to determine whether (and to what degree) a given set of
statementsS is coherent w.r.t. the actual world. In order to achieve this one needs
a (true) description of the actual world which allows for this determination.

However, there seems to be no fully reliable method – no algorithm – that
tells one, for a given set of statementsD, whetherD is a description of the actual
worldA. So what to do? Well, simplyassumeof some set of statementsDA that
it is a description ofA. Then one can determine whether a set of statementsS
is coherent w.r.t. the actual worldA, if one can determine whetherS is coherent
w.r.t. DA.

Of course, the reliability of the determination of the degree of coherence
w.r.t. the actual worldA by means of the degree of coherence w.r.t. one of its
descriptionsDA depends on the detailedness or accuracy ofDA. The latter is
maximal, only ifDA is complete in the sense that it holds for every statementh:
If A |= h, thenDA ` h, which is not neccessary in order for a set of statements
DM to be a description of some modelM.

The chosen set of statementsDA should be such that assuming of it to be a
description ofA is as weak an assumption as possible. In my opinion there is one
special candidate that is epistemically distinguished in just this respect: the setE
of those statements that we take to express what we take to be the case because
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of perceiving it; in other words: theevidenceE which is available at some given
point of time. In the following it isassumedthat an evidenceE is true in the actual
world A; i.e. I will make assumption 1.4, which is restated here as assumption
4.1.

Assumption 4.1 (Epistemic Mark of Distinction) If E is an evidence fromD1, . . . , Dk,
thenE is assumedto betrue in the actual world, i.e.

A ∈ mod (E) , for every evidenceE ∈ E .

Let me stress that this assumption should only enable me to make sense of the
claim that coherence (w.r.t. the actual worldA) is indicative of truth (inA). I
do not claim that an evidenceE is true in the actual worldA, nor do I claim
that coherence is indicative of truth in the actual worldA, if it is relativised to an
evidenceE. On the contrary, it will turn out that coherence w.r.t. evidenceE is
not even indicative of truth inmod (E), and thus (under the above assumption that
A ∈ mod (E)) not indicative of truth inA – given that the measure of coherence
w.r.t. the evidence defined below properly models our pretheoretical and intuitive
concept of coherence (w.r.t. the evidence).

This is one reason for preferring the second approach of a solution to the
problem a quantitative theory of confirmation: the definition of the measure of
confirmationC by means of a function of the functionsLO andLI measuring the
primary confirmational virtues of loveliness and likeliness. Another reason for not
adopting the first approach, which argues that coherence w.r.t. the evidence isthe
confirmation value, and takes account of all (and only) the primary and derived
confirmational virtues, is the following: Coherence w.r.t. the evidenceE – in its
formalisationCoh (·, E, ·) of below – is neither indicating truth inmod (E), nor
is it sensitive to loveliness and likeliness in the sense of any power searcherLO
and any truth indicatorLI.

Before continuing remember the definition of a descriptionDM of some
modelM, and the fact that every evidenceE is a description every modelA
adequately representing the actual world.

As already indicated, one has to assume that there is at least one model
A = 〈A, ϕA〉 which adequately represents the actual world in order for Tarski’s
theory of truth to be able to define a notion of truth in the actual world – the
reason being that the actual world can hardly be argued to be an ordered pair
M = 〈Dom, ϕ〉 consisting of a domainDom and an interpretation functionϕ.

Assumption 4.2 (Existence of a Model of the Actual World)There is at least one
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model of the actual world forLPL1=, i.e. there is at least one modelA = 〈A, ϕA〉
such that it holds for every wffh ∈ LPL1=:

h is true in the actual world if and only ifA |= h,

where the concept of being true in the actual world is a primitive concept which
is assumed to be meaningful.

So in order to construe coherence w.r.t. the actual world as coherence w.r.t. the ev-
idence, one has to assume as primitive a meaningful concept of truth in the actual
world, and the existence of at least one modelA = 〈A, ϕA〉 of the actual world for
LPL1=. Otherwise the claim that coherence w.r.t. evidenceE is indicative of truth
in the actual world cannot be based on the claim thatCoh (·, E, ·) is indicating
truth inmod (E).

As mentioned, the indication of truth in the actual world by means of co-
herence w.r.t. the actual world is not fully reliable, if the evidence is no complete
description of the actual world, which, in general, it is not. A measure of the
reliability of the indication of truth in the actual world by means of a function
f (·, . . . , ·, E) which is indicating truth inmod (E), for some evidenceE, may be
seen in the measure of the “goodness” of evidenceE, G (·, E, ·), presented in the
last chapter.6

4.2 Arbitrary Theories of (Explanatory) Coherence

4.2.1 Introductory Remarks

Against promoting an own account of the coherence of a set of statementsT w.r.t.
an evidenceE (and a background knowledgeB) it may be objected that there
have already been proposed several theories of (explanatory) coherence. Why
not adopt one of these? The answer to this is twofold: First, I am aiming at a
formal theory of coherence that enables me tomeasurethe coherence of a set of
statementsT w.r.t. an evidenceE (and a background knowledgeB) or, at least,
to comparetriples〈T, E,B〉 and〈T ′, E ′, B′〉 with regard to their coherence w.r.t.
the evidence; i.e. the aim is the definition of aquantitative, at leastcomparative
concept of coherence w.r.t. the evidence. Second, the theory of coherence w.r.t.
the evidence should be formally handy, in particular non-arbitrary.

6As the measure of coherence w.r.t. the evidenceE, Coh (·, E, ·), defined below is not indi-
cating truth inmod (E), for any evidenceE, the measureG (·, E, ·) is of no help for a coherentist
adoptingCoh (·, E, ·).
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To demand of a theory to be non-arbitrary makes sense, only if this theory
is formal in the sense that it defines a quantitative or comparative concept of (ex-
planatory) coherence by means of some (set of) function(s). Apart from the fact
that non-formal theories cannot fulfill thisdesideratum, there is still another rea-
son that justifies an own approach as concerns the non-formal coherence theories
of BonJour (1985), Lehrer (1990), and Bartelborth (1996).

As to the formal theories of (explanatory) coherence, I rely on the formal
condition of adequacy that any such formal theory be non-arbitrary, comprehensi-
ble, and computable in the limit. The most popular of these theories is the theory
of explanatory coherenceTEC of Thagard (1989) respectively its formalisation
ECHO. Apart fromTEC, there are the fuzzy measure of explanatory coherence
of Schoch (2000), and the probabilistic theory of the coherence of an informa-
tion set of Hartmann/Bovens (2000). As a matter of fact, these three theories are
arbitrary.

Since the account of Schoch (2000) is, according to his own words, a for-
malisation of the theory of coherence of Bartelborth (1996), and as I consider the
notion of coherence of Bartelborth (1996) as an improvement of the notions of
coherence of both BonJour (1985) and Lehrer (1990)7, I take the introduction of
Coh to be independently justified as concerns these three theories of (explanatory)
coherence.

The following two subsections deal with the theory of explanatory coher-
enceTEC of Thagard (1989) (and its formal modelECHO), and the fuzzy mea-
sure for explanatory coherence of Schoch (2000). This should make familiar with
the concept of explanatory coherence, which is similar to the concept of coher-
ence w.r.t. the evidence. Despite this similarity, the functionCoh is definitely not
a measure of explanatory coherence.8

In the last section I have argued that the coherence of a set of statementsS
has to be relativised to the modelM whose truth in one is interested in; otherwise

7I do not have the place to argue for this here. Let me only note that the conception of the
coherence of a system of beliefsS of Lehrer (1990) is not very elaborated in that hardly anything
else is demanded ofS except that it must not contain alternative or concurring beliefs. Though
BonJour (1985) adds some conditions – in particular, he demands thatS must not consist of
several unrelated subsystems – it is not precisely determined when these conditions are fulfilled.
For a discussion cf. Bartelborth (1996), who argues that his coherence theory of justification is not
exposed to objections that may be raised against the accounts of BonJour and Lehrer.

8In particular, the concept of accounting for, which the notion of coherence w.r.t. the evidence
is based on, is not at all intended to be an explication or even definition of the concept of ex-
planation. For more on this see the section on foundationalist coherentism, and the section on
accounting for in the chapter on loveliness and likeliness.
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the coherence ofS cannot be indicative of the truth ofS in M. I have indicated
to do this by relativising the coherence ofS to an evidenceE. Although the
accounts of Thagard (1989) and Schoch (2000) do not explicitely relativise the
coherence ofS to an evidenceE or some other epistemically distinguished set of
statements9, there is a similar element in their accounts: Those statements in the
set of statementsS, whose explanatory coherence is to be assessed,

that describe the results of observation

are epistemically distinguished in that they

have a degree of acceptability on their own.10

In contrast to this, the probabilistic theory of the coherence of an information set
of Hartmann/Bovens (2000) does not have such an epistemically distinguished
element which would enable their account to explicate a concept of coherence
which is indicative of truth in some model. Furthermore, their account is based on
a somewhat different concept of coherence than that of coherence w.r.t. the evi-
dence11, which differs also from the concept of explanatory coherence. Therefore
their theory will not be discussed. Let me only note the following.

Theorem 4.1 (� Is Arbitrary) The ordinal measure of coherence� of Hartmann/Bovens
(2000) is arbitrary.

Finally, it is to be noted that, for reasons of space and time, the related topic of
(explanatory) unification is not dealt with.12 This shortcoming is in particular
serious for the account of Schurz/Lambert (1994) and Schurz (1999) according to
which

coherence minus circularity= unification13,

which is in accordance with the claim that coherence has to be relativised to the
evidence.

9Like Hartmann/Bovens (2000), Thagard (1989) and Schoch (2000) consider propositions in-
stead of statements.

10Thagard (1989), p. 437. In case of Schoch this finds its expression in the principle of data
evidence which says that the singleton{E} containing the propositionE is coherent, if there is
positive evidence forE (if there is negative evidence forE, then there is positive evidence for
¬E). Cf. Schoch (2000), p. 298.

11This is – at least partly – due to the fact that their concept of coherence is one of coherence
per se.

12Cf. Friedman (1974), (1979), and (1990), Kitcher (1981) and (1990), Morrison (1990),
Schurz/Lambert (1994), and Schurz (1999). For a recent comment on Schurz (1999) cf. We-
ber/van Dyck (2002).

13Schurz/Lambert (1994), p. 72. Cf. also Schurz (1999), p. 98.
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4.2.2 The Theory of Explanatory Coherence of Thagard (1989)

The theory of explanatory coherenceTEC of Thagard (1989), which is applied
to case studies from the history of the sciences in Eliasmith/Thagard (1997) and
Nowak/Thagard (1992)14, is the most popular non-Bayesian theory of (explana-
tory) coherence.TEC is modeled by the computer programECHO (Explanatory
Coherence by Harmany Optimization), which generates connectionist networks.
The various exhibitory and inhibitory links between the units – standing for hy-
potheses – in such a network are assigned numbers representing the strength of the
links. A link between two unitsi andj is excitatory, if the two hypotheses rep-
resented byi andj cohere; it is inhibitory, if they incohere, which is something
stronger than not to cohere:

The term ‘incohere’ is used to mean more than just that two proposi-
tions do not cohere: to incohere is to resist holding together.15

The arbitrariness ofECHO can already be seen here: There are no restrictions
on the numbers which are assigned to the links between two unitsi andj – rep-
resenting the strength of the (in)coherence relation between the two hypotheses
represented byi andj.

TEC consists of the following series of principles:

Principle 1. Symmetry.
(a) If P andQ cohere, thenQ andP cohere.
(b) If P andQ incohere, thenQ andP incohere.
Principle 2. Explanation.
If P1, . . . , Pm explainQ, then:
(a) For eachPi in P1, . . . , Pm, Pi andQ cohere.
(b) For eachPi andPj in P1, . . . , Pm, Pi andPj cohere.
(c) In (a) and (b), the degree of coherence is inversely proportional to
the number of propositionsP1, . . . , Pm.
Principle 3. Analogy.
(a) If P1 explainsQ1, P2 explainsQ2, P1 is analogous toP2, andQ1

is analogous toQ2, thenP1 andP2 cohere, andQ1 andQ2 cohere.

14Cf. also Eliasmith/Thagard (2001), Holyoak/Thagard (1997), O’Laughlin/Thagard (2000),
Thagard (1997), (1999), and (2000), Thagard/Kunda (1998), Thagard/Millgram (1995), Tha-
gard/Shelley (1997) and (2001), and Thagard/Verbeurgt (1998), all of which can be found on
http://cogsci.uwaterloo.ca/Articles/Pages/Coherence.html. In addition, the latter contains articles
that are forthcoming or in progress.

15Cf. Nowak/Thagard (1992), p. 274.
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(b) If P1 explainsQ1, P2 explainsQ2, Q1 is analogous toQ2, butP1

is disanalogous toP2, thenP1 andP2 incohere.
Principle 4. Data Priority.
Propositions that describe the results of observation have a degree of
acceptability on their own.
Principle 5. Contradiction.
If P contradictsQ, thenP andQ incohere.
Principle 6. Acceptability.
(a) The acceptability of a propositionP in a systemS depends on its
coherence with the proposition[s] inS.
(b) If many results of relevant experimental observations are unex-
plained, then the acceptability of a propositionP that explains only a
few of them is reduced.
Principle 7. System Coherence.
The global explanatory coherence of a systemS of propositions is a
function of the pairwise local coherence of those propositions.16

An additional principle is introduced in Nowak/Thagard (1992):

Principle C. Competition.
If P and Q both explain evidenceE, and if P and Q are not ex-
planatorily connected, thenP andQ incohere. HereP andQ are
explanatorily connected if any of the following conditions holds:
(a)P is part of the explanation ofQ.
(b) Q is part of the explanation ofP .
(c) P andQ are together part of the explanation of some proposition
R.
(d) P andQ are both explained by some higher-level propositionR.17

The global coherence of a systemS of propositions is thus traced back to the local
coherence between pairs of propositions. This is just the critic of Schoch (2000):

[Thagard’s] measure of coherence is shown to be incapable of deal-
ing adequately with explanatorily relations between more than two
sentences.18

16Thagard (1989), pp. 436-437.
17Nowak/Thagard (1992), p. 277.
18Schoch (2000), p. 292; cf. also Schoch (2000), pp. 295-296.
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Thagard presupposes – as does Schoch (2000) – as primitive the notion of ex-
planation (and that of analogy). This is problematic, not because explanatorily
relations have no impact on the coherence of a set of statementsS – on the con-
trary – but because the notion of explanation is itself in need of explication; in
particular, the concept of explanation is not comprehensible. One may be of a
different opinion – as is, for instance, Thagard, who even praises his theory for
not depending on a particular notion of explanation:

Our account of theory acceptance and our input toECHO [...] do not
presuppose any special theory of explanation. [...] Explanation, how-
ever, has many aspects and construing theory choice in terms of ex-
planatory coherence is compatible with various ways of understand-
ing causality and explanation.19

But what, if coherence is itself an indispensable ingredient of explanation, so that
any adequate definition of explanation presupposes the concept of coherence?20

Furthermore, the central principle 2 of explanation makes the question-
able assumption (as does the principle 6 of acceptance) that propositions can be
counted. Though this point will be discussed later on once more, let me note that
without any restrictions on the way a given set of propositionsS has to be rep-
resented (or formulated, ifS is a set of statements), there seems to be no way of
uniquely determining how many propositionsS consists of.21

A consequence of principle 2 is that, if several propositionsP1, . . . , Pn to-
gether explain a propositionQ, and each propositionPi is necessary for this ex-
planation ofQ, then the relation of coherence holds betweenQ and any single
propositionPi, though, intuitively,Q coheres only with the set (conjunction) of all

19Eliasmith/Thagard (1997), p. 11.
20This is not even bizarre. For instance, one may define as follows, where sets of statements

are considered instead of (sets of) propositions:T explainsE (relative toB) just in caseT andE
cohere (relative toB), where such an explanation is the better, the greater the degree of coherence.

In this manner one may define an inference fromE (andB) to Ti as abductively valid or as
an inference to the best explanation just in caseCoh (Ti, E, B) ≥ Coh (Tj , E, B), for every
j, 1 ≤ j ≤ n, whereT1, . . . , Tn are the finitely many available alternative theories (whose domain
of applicationE belongs to), andB is the background knowledge. If one prefers a quantitative
concept of abductive validity, then one may adoptCoh (Ti, E, B) or

min {Coh (Ti, E, B)− Coh (Tj , E, B) : 1 ≤ j ≤ n}

as the degree of abductive validity of the inference fromE (andB) to Ti.
21An elegant way of representing knowledge by relevant elements – and thereby solving this

problem – can be found in Schurz/Lambert (1994), p. 88ff.
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propositionsP1, . . . , Pn. For instance, if∀x (Fx → Gx) andFa together explain
Ga, it follows from principle 2 thatGa coheres with∀x (Fx → Gx), and thatGa
coheres withFa, though, intuitively,Ga coheres only with{∀x (Fx → Gx) , Fa}.
That is, we would say that the set{∀x (Fx → Gx) , Fa,Ga} is coherent, but nei-
ther would we say that the set{∀x (Fx → Gx) , Ga} is coherent, nor would we
say that the set{Fa,Ga} is coherent.

Eventually, in order to escape the reproach of arbitrariness, Thagard (1989)
would have to presuppose as primitive aquantitativenotion of explanation –
something which, to the best of my knowledge, no theory of explanation discussed
in the literature even aims at.

Apart from all this, Thagard’sTEC andECHO are not adopted for the fol-
lowing reasons: First, bothTEC andECHO are not comprehensible.22 Though
this gives no ground for rejecting them, if one considers the goal of a theory of
explanatory coherence the explication of the concept of explanatory coherence in
terms of the concept of explanation, the following theorem is a case in point even
if the concept of explanation is assumed to be comprehensible.

Theorem 4.2 (ECHO Is Arbitrary) The computer programECHO, which mod-
els the theory of explanatory coherenceTEC of Thagard (1989), is arbitrary.23

4.2.3 The Fuzzy Measure for Explanatory Coherence of Schoch
(2000)

Let me now turn to the fuzzy measure for explanatory coherence of Schoch (2000)24,
which may be considered as a formalisation of the theory of coherence of Bartel-
borth (1996). Schoch himself notes that

[his] approach satisfies all these requirements except the last without
further restrictions,25

22ThatTEC is not comprehensible follows from assumption 2.2 (Comprehensible Concepts),
and the fact thatTEC presupposes as primitive, apart from the concept of analogy, the concept
of explanation. ThatECHO is not comprehensible follows from the same assumption, and the
fact thatECHO presupposes as primitive a quantitative concept of explanation. The latter finds
its expression in the weightswij representing the strength of the explanatory relation between the
propositions represented by the unitsi andj. Cf. the proof of the next theorem in the appendix to
this chapter.

23ThatTEC is not arbitrary has its reason in the fact that it does not define explanatory coher-
ence by a (set of) function(s) to which the concept of arbitrariness could apply.

24Cf. also Schoch (2001).
25Schoch (2000), p. 302.
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where he refers to the principles of systematic coherence and of incoherence,
which form the theory of coherence within the coherence theory of justification of
Bartelborth (1996).26

The basic structure of Schoch’s fuzzy measure is the same as that of Tha-
gard’s theory. It consists of (1) a set of propositionsE ; (2) a setR of rules of the
form ‘P explainsQ’, P ⊆ E , Q ∈ E , ‘P is contradictory’, or ‘E is a fact’,E ∈ E ;
(3) a closed intervalI ⊆ < representing truth values (I = [0, 1] in case of Schoch,
andI = [−1, 1] in case of Thagard); (4) a set of real-valued variablesx1, . . . , xn

with domainI (for Schochxi is the fuzzy truth value of thei-th proposition inE ;
for Thagardxi = ai (t) is the degree of acceptance of thei-th proposition inE at
some given point of timet); (5) a first-degree polynomial27; and (6) an algorithm
translating the rules inR to the weightsar1,...,rn respectivelywij.

Schoch considers his account as a generalisation of Thagard’sTEC, which

[...] does not adequately represent explanatory relations between more
than two propositions.28

Schoch’s measure is defined for pairs of sets of constituents, where a constituent
is a subsetP of a set of signed propositionsE over a set of propositionsPR,
E = PR∪{¬P : P ∈ PR}, such that there is no propositionP ∈ E with P ∈ P
and¬P ∈ P. So the measure is defined for pairs of sets of sets of propositions
not containing both a proposition and its negation.

The coherence valueV〈C,I〉 of the pair of setsC andI of coherent respec-

tively incoherent constituents is recursively defined as follows:

VPi
(x1, . . . , xn) = xi,

26Cf. Bartelborth (1996), p. 193. The requirement not satisfied by Schoch’s account is that

the degree of (systematical) coherence of a belief system [...] decreases with the
number of unconnected subsystems.

Schoch (2000), p. 302.
27

V (x1, . . . , xn) =
∑

0≤r1,...,rn≤1

ar1,...,rn
· xr1

1 · · ·xrn
n

in case of Schoch. In Thagard’s model it is

H (E , t) = VT (a1 (t) , . . . , an (t)) =
∑

0≤i≤n

∑
0≤j≤n

wij · ai (t) · aj (t) .

Cf. the appendix to this chapter, which includes a presentation of the basic structure ofECHO.
28Schoch (2000), p. 291.
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V¬Pi
(x1, . . . , xn) = 1− xi,

VP (x1, . . . , xn) = cP ·
∏

P∈P
VP ,

V〈C,I〉 (x1, . . . , xn) =
∑
P∈C

VP −
∑
P∈I

VP .

The constantscP , called the weight factor of coherence, can be con-
sidered as the strength of explanation or competition respectively.29

The functionV〈C,I〉 satisfies the following principles:

(1) Principle of Explanation.
If P = {P1, . . . , Pm} explainsQ and bothP ∪ {Q} andP ∪ {¬Q}
are constituents, thenP ∪{Q} coheres andP ∪{¬Q} incoheres with
the same weight factorcP .
(2) Principle of Competition.
If P is contradictory or competing andP is a constituent, thenP in-
coheres.
(3) Principle of Data Evidence.
If there is positive evidence forE, then{E} is coherent. If there is
negative evidence forE, then there is positive evidence for¬E.
(4) Principle of Fuzzy Confirmation.
The measure of coherence only depends on the coherent and inco-
herent constituents. IfP coheres (P ∈ C), the degree of coherence
is proportional to the fuzzy truth value of the conjunction of its el-
ements. IfP incoheres(P ∈ I), the degree of coherence is pro-
portional to the negative fuzzy truth value of the conjunction of its
elements.
(5) Principle of Language Independence.
Let P be a proposition which does not occur in any rule inR. Then
the rule systemR′ obtained fromR by replacing each rule of the form
‘Q explainsR’ by the two rules ‘Q ∪ {P} explainsR’, ‘Q ∪ {¬P}
explainsR’ and each rule of the form ‘Q incoheres’ by ‘Q∪ {P} in-
coheres’, ‘Q∪{¬P} incoheres’ induces the same order of coherence
overE ∪ {P} irrespective of the value ofP .30

29Schoch (2000), p. 299.
30Cf. Schoch (2000), pp. 297-299.
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Besides that it will not always be clear whether a set of propositions is compet-
ing31, Schoch’s fuzzy theory of explanatory coherence32 is not comprehensible.33

However, let me stress that it would be unfair if I took this as a point against
Schoch’s account: He explicitely34 distinguishes between a micro- and a macro-
level on which theories of explanation can be formulated, where

[...] the macro-level view takes the concept of explanation as an un-
defined primitive. It either inquires into the general properties of ex-
planations, or uses explanatory relations in certain contextual frame-
works.35

The general question Schoch is

interested in is the problem of choice between concurrent hypothe-
ses36,

whence he takes on the macro-level view.
Apart from the above mentioned minor points, I consider Schoch’s theory

as a refinement of Thagard’sTEC. In particular, Schoch is aware of the fact that
the weight factorscP have to be specified (in order to avoid arbitrariness).

We introduce the [...] concept of an irreducible ‘proper’ explanation
and define the weight factors only for them. [Footnote:] This must

31Schoch (2000), p. 298, mentions as example – which he ascribes to Thagard – two competing
theories of dinosaur extinction, which could be caused by meteorite impact or a drop in sea-level;
though

these events are not mutually exclusive, scientists are interested in establishing the
best explanation and therefore regard the two theories as competing.

I agree; but according to principles (2a) and (4b) of Bartelborth (1996) p. 193, the existence of
several explanations of one and the same event may also lead to an increase in the coherence of
a system of propositions – and Schoch does not give a criterion deciding whether the fact that a
propositionR is explained by two distinct sets of propositionsP andQ leads to an increase in
the coherence of some set of propositionsT containingP, Q, andR, or whether this yieldsT
competing. A more modest principle ofcontradictionmay be easier to handle.

32I take the fuzzy theory of explanatory coherence of Schoch (2000) to be given by the five
principles mentioned above.

33This follows from assumption 2.2 (Comprehensible Concepts), and the fact that the fuzzy
theory of explanatory coherence of Schoch (2000) presupposes as primitive, apart from the concept
of competition, the concept of explanation.

34Cf. Schoch (2000), p. 291.
35Schoch (2000), p. 291.
36Schoch (2000), p. 291.
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also be done in order to avoid ambiguities in the weight factors, oth-
erwise redundant parts of the explanations will effectively enlarge the
weight factor if they are added.

The concept of a proper explanation is defined for rules: The rule ‘P explains
Q’ in the rule systemR is a proper explanationif and only if it holds for every
rule ‘S explainsQ’ with S ⊆ P thatS = P. The weight factorcP for the set of
propositionsP is then defined ascP = 2NR(P ), whereNR (P ) is the number of
propositions which are properly explained byP in the rule systemR.37

By doing so Schoch seems to escape the reproach of arbitrariness, for the
functionV (x1, . . . , xn) is uniquely determined for given values of the variables
x1, . . . , xn, if the weight factorscP of all coherentand incoherent constituents
P ⊆ E are fixed.

However, despite the fact that in order for the concept of a proper explana-
tion to be meaningful one has to assume that the data and the hypotheses can be
partitioned into distinct atomic propositions so that counting propositions makes
sense; and apart from the strange consequence that the weight factors of the con-
stituents{E} containing the dataE are all equal to2NR(∅), and thus increase
exponentially with the numberNR (∅) of data inR38; there is no corresponding
function which uniquely determines the weight factorscQ of the incoherent con-
stituentsQ ∈ I , whence the weight factors are uniquely determined only for rule
systemsRwithout competing constituents, and the fuzzy measure for explanatory
coherence turns out to be arbitrary, after all – and this it does in two respects.

Obviously, the functionV (x1, . . . , xn) takes on different values for different
values of the variablesx1, . . . , xn.

The problem is to find a truth value assignment which maximizes
explanatory coherence39,

so that the setE of signed propositions can be partitioned into two disjoint sets
of accepted and rejected propositions. It turns out that there are examples of rule
systemsR such that the sets of accepted and rejected propositions, into which

37PresumablyS is supposed to be non-empty. Otherwise the weight factorcP of any constituent
P 6= ∅ explaining at least one datumE is equal to 1, because

[d]ata evidence is handled as a special instance of the explanation rule with an
empty explanans.

Schoch (2000), p. 298.
38Cf. the preceding footnote.
39Schoch (2000), p. 292.
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the underlying setE of signed propositions is partitioned byR, differ with the
weights assigned to some single incoherent constituentQ ∈ I .

This problem may be solved by fixing the weight factors for the incoherent
constituents. The more important point is that there are examples of rule systems
R1,R2 on a common set of signed propositionsE (over some set of propositions
PR) such that (i) the explanatory coherence of rule systemR1 is strictly greater
than the explanatory coherence of the rule systemR2, if the truth value assignment
ϕ1 which maximizes the explanatory coherence ofR1 is adopted; (ii) the explana-
tory coherence of rule systemR2 is strictly greater than the explanatory coherence
of the rule systemR1, if the truth value assignmentϕ2 which maximizes the ex-
planatory coherence ofR2 is adopted; and (iii) the explanatory coherence of both
the rule systemR1 and the rule systemR2 is 0, if any other truth value assignment
ϕ is adopted, where the truth values are restricted to 0 and 1.40 If, however, one
considers the combined rule systemR = R1 ∪ R2, then the explanatory coher-
ence ofR is 0 for every truth value assignmentϕ (includingϕ1 andϕ2). This is
shown in the proof of the next theorem.

Theorem 4.3 (Fuzzy MeasureV Is Arbitrary) The fuzzy measureV for explana-
tory coherence of Schoch (2000) is arbitrary.

Let me note that the arbitrariness ofV (x1, . . . , xn) is not caused by its being
stated in the framework of fuzzy-logic.41

As already noted at the beginning of this chapter, coherence plays an im-
portant role as indicator of truth. What is characteristic of the problem situations
where coherence enters is that one is given a set of statementsS whose truth val-
ues are not known, and one wants to know whether believing or accepting (the
statements in)S is justified. The coherence ofS is then taken to provide the justi-
fication for believingS or acceptingS as true (in some world or modelM) – the
reason being that coherence is indicative of truth (inM)42.

If, however, the truth values (inM) of all statements inS are known in
advance, then there is no need of an indicator of truth (inM) which justifies
believingS or acceptingS as true (inM), and coherence can be dispensed with.

In short, coherence is of interest43, only if the truth values – fuzzy or not –
in someM of the statements inS are not all known in advance, and if coherence

40This can be done because of lemma 1.1 of Schoch (2000). Cf. Schoch (2000), p. 293.
41Cf. application 2.1 (Arbitrariness).
42Which it is only if it is not wholly independent of the modelM.
43Namely as justifier for believingS or acceptingS as true (inM) via being indicative of truth

(in M).
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is adopted as truth indicator; otherwise – and under the assumption that the aim
is to accept true statements, and to reject false ones – it is clear, or so I think, that
one accepts the true and rejects the false ones.44 So if one has to adopt in advance
a truth value assignment to the statements in the sets of statementsS1 andS2 in
order to determine which of these two sets is more coherent, this presupposes too
much: The whole idea of coherence as truth indicator is leadad absurdum, if
the truth values of those statements whose truth (in some modelM) should be
indicated have to be assumed.

Before concluding let me note that I do not claim that no truth value (in
some modelM) of any statement in a setS of such can be assumed to be given.
On the contrary, in order for coherence to be indicative of truth inM this is even
necessarily so (as argued above). However, supposing that the truth values (inM)
of all statements inS are given, trivially yields a truth-guaranteer (forM), i.e. an
algorithm for truth inM.

The challenge is to define a functionCoh (·) which determines the degree
of coherenceCoh (S) of any set of statementsS, and which does not presuppose
the truth values of all statements inS, where the assumption of being true (inM)
or, more generally, of being epistemically distinguished (w.r.t.M), should be as
light as possible.

This will be done below by partitioningS into two disjoint subsetsT and
E, where the latter has to be an evidence.45 This has the consequence that the
measure of coherence is defined only for sets of statements with an evidence as
a subset. However, as my interest is in the role of coherence in the context of
assessing theories by evidences (relative to background knowledges), this is no
serious restriction. Anyway, it will turn out that coherence w.r.t. evidenceE, if
modeled by the functionCoh(·, E, ·) of below, is neither indicative of truth in any
modelM ∈ mod (E); nor sensitive to loveliness and likeliness in the sense of
any power searcherLO and any truth indicatorLI; nor closed under equivalence
transformations ofT .

44Lemma 1.1 of Schoch (2000) states that one can restrict oneself to the classical truth values
‘true’ and ‘false’, if these are taken to be represented by the fuzzy truth values 1 and 0, respec-
tively. This means that if the functionV (x1, . . . , xn) has a global maximum for a distribution
of values for then real-valued variablesx1, . . . , xn which are not all in the set{0, 1}, then there
is always another distribution of values overx1, . . . , xn such that all these values are in the set
{0, 1}, and such that this “classical” distribution yields the same coherence judgement (accord-
ing to V (x1, . . . , xn)), i.e. such thatV (x1, . . . , xn) takes on the same global maximum for the
“classical” distribution as it does for the first distribution.

45Besides this, the concept of coherence (w.r.t. the evidence) is relativised to a background
knowledgeB.
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4.3 Foundationalist Coherentism

In this section I will present an own proposal for a measure of coherence. Before
doing so, let me note why no probabilistic account is given.

4.3.1 Why No Probabilistic Measure of Coherence?

Intuitively, a set of statementsH is coherent, if the statements inH hang together
or fit each other. A probabilistic characterisation of this is the following: A (finite)
set of statementsH = {h1, . . . , hn} is coherent, if every statementhi in H is likely
to be true, given that the remaining statementshj in H are true.

Consider a story: If the statements the story is composed of hang together
or fit each other, and if each of them is likely to be true, given that the rest of them
is – and if there is evidence for at least some of these statements – then, so the
coherentist line of argument, one will be inclined to believe the story. If, however,
the statements of the story do not hang together, or if not all of them are likely to
be true, given that the remaining ones are true46 – or if there is no evidence for any
of them – then, according to the coherentist, one will not be inclined to believe
the story.

How can this notion of coherence be made precise? The preceding para-
graph suggests a probabilistic modeling that runs as follows: For a given condi-
tional probabilityp (· | ·), the probabilistic degree of coherence of a finite set of
statementsH = {h1, . . . , hn}, ProbCohp (H), is given as

ProbCohp (H) =
∑

1≤i≤n

p

hi |
∧

1≤j 6=i≤n

hj

 .

A measure with range[0, 1] could then be defined as

ProbCoh′p (H) =
ProbCohp (H)

n
.

Apart from the question whether coherence has anything to do with subjective
degrees of belief (and, again, how propositions are counted), this – and any sim-
ilarly defined – probabilistic measure of coherence is exposed to the reproach of
arbitrariness.

46In particular, if there are some statements which are unlikely to be true or likely to be false,
given that the remaining ones are true.
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Bayesians47 often argue that the prior distribution to the statements in a
given languageL does not really matter much, for the limit theorems of con-
vergence to certainty and merger of opinion yield that the differences in the prior
probabilities are “washed out”48 in the long run. I disagree. In my opinion, the
Bayesian faces the following dilemma:

(1) Either she admits that the distribution of the prior probabilities is not
justified; and that one can explain nearly everything by choosing the “right” prior
distribution – where, in principle, nothing is really explained, because this distri-
bution is not justified.

(2) Or else she tries to justify the prior distribution by recourse to the limit
theorems; and argues that different prior distributions do not matter, because the
differences in the conditional probabilities based on them go to zero in the long
run, i.e. if the number of statements which the conditional probabilities are con-
ditional on goes to infinity.49 But then the Bayesian has to assume the (fourth)
axiom of countable additivity. The latter is problematic, because it forces one
to play favourites in the sense that one has to assign different degrees of belief
to the statements of a countably infinite set of mutually exclusive statements50.
Furthermore, countable additivity yields the dogmatism of Bayesianism: Every
agent that is rational in the sense of Bayesianism, i.e. coherent (consistent with
the axioms of the probability calculus), has to be sure (in the sense of having a
subjective degree of belief of 1) that every statement – of whatever complexity and
quantifier structure – is equivalent to a verifutable statement; where a statement
is verifutablejust in case it is a truth-functional combination of verifiable and/or
refutable statements.51

Moreover, the limit theorems do not really help much, for they do not tell
one anything about the convergence rate.52 Consider convergence to certainty.
What this theorem says is that for every statementh, every subjective degree of
belief functionp (·), nearly53 every possible worldw, and every real numberε > 0

47In the tradition of Horwich (1982), Earman (1992), Howson/Urbach (1993). Cf. also Skyrms
(2000).

48Cf. Earman (1992), p. 141.
49That there are cases where such a justification is of no help, even if the limit theorems would

work for the short and medium runs, is argued for in the last section of chapter 2.
50Otherwise the disjunction of all these mutually exclusive statements would be assigned a

degree of belief greater than 1.
51Cf. Earman (1992), p. 192.
52For the following cf. Earman (1992), p. 144ff; cf. also Gaifman/Snir (1982).
53All possible worldsw except those whose probability measurePr (w) is 0. The probability

measurePr (·), which is defined on the set of all possible worlds, is uniquely determined by the
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there is at least one (time-) pointm such that it holds for every (later time-) point
n > m: the difference between the subjective degree of belief inh, given evidence∧

1≤i≤n ei (w) of world w at time n, p
(
h | ∧1≤i≤m ei (w)

)
, and the truth value

ϕ (h,w) of h in w is at mostε, i.e.

∀h ∈ L∀p (·)∀w∀ε > 0∃m∀n > m :

Pr (w) > 0 →

∣∣∣∣∣∣p
h |

∧
1≤i≤n

ei (w)

− ϕ (h,w)

∣∣∣∣∣∣ < ε,

wherep (· | ·) is the conditional probability based on the (unconditional) proba-
bility p (·), and it is assumed that for any two distinct possible worldsw1 andw2

there is at least one statementei in the set of statementsE = {e1, . . . , en, . . .}
such thatei is true inw1, but false inw2, i.e. ϕ (ei, w1) = 1 andϕ (ei, w2) = 0.
What convergence to certainty does not say is when this (time-) pointn is reached,
whence one never knows that one believes in a true statement, if one believes in a
true statement – under the assumption that the actual world is at all among nearly
all possible worlds.

Something similar holds of merger of opinion, except that it is additionally
assumed that the merging subjective degree of belief or (unconditional) probabil-
ity functionsp (·) andp′ (·) areequally dogmatic. This means that the probability
measuresPr (·) andPr′ (·), which are uniquely determined byp (·) andp′ (·),
respectively, assign the measure0 to the same possible worldsw, so that the set
of nearly all possible worlds is the same forp andp′ respectivelyPr andPr′.

Eventually (and as already noted), Bayesianism istheory enemyor theory
hostile in the sense that all what matters for the assessment of a hypothesis or
theoryT by some evidenceE relative to some background knowledgeB is the
probability ofT givenE andB, or the boost in the probability ofT that is caused
by the addition ofE to B, i.e. the difference (in whichever manner it is measured)
of p (T | E ∧B) andp (T | B). That is, the focus of Bayesianism is exclusively
on the likeliness concept of confirmation. Other aspects54, in particular those

(unconditional) probabilityp (·), which is defined on the underlying formal languageL. It thus
depends on the (unconditional) probabilityp (·) (and the languageL), which possible worldsw
are among nearly all possible worlds.

54Bayesian arguments to the effect that relevance measures as the distance measure

dp (T,E | B) = p (T | E ∧B)− p (T | B)

are sensitive to the variety ofE depend on the right choice of the prior probability ofE. These
arguments run as follows (background knowledgeB is suppressed): The prior probabilityp (E) of
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corresponding to the loveliness concept of confirmation are neglected, except if
they bear on (the boost in) the probability ofT that results by addingE to B.

4.3.2 No Evidence Without Relevance

At the beginning of this chapter it has been argued that in order for coherence
to be indicative of truth in the actual (or some other) world, coherence has to be
relativised to this world. This has been done by relativising the coherence of a set
of statementsT to an evidenceE, which is assumed to be true in the actual world.
In a certain sense, this isfoundationalist coherentism.

As an evidence is in general no complete description of the actual world,
coherence w.r.t. the evidence is, properly speaking, not indicative of truth in the
actual world – if it is truth indicative at all – but indicative of truth inmod(E).
The idea behind the concept of coherence w.r.t. the evidence can be sketched as
follows:

Idea 1 (Informal Characterisation of Coherence w.r.t.E) Two statementsh1 and
h2 cohere with the world or the data, if their conjuntionh1 ∧ h2 says something
about the world or the data which is not already said by one ofh1, h2 alone.

Two statementsh1 andh2 cohere the more with the world or the data, the
more their conjuntionh1∧h2 says about the world or the data which is not already
said by one ofh1, h2 alone.

This relation of coherence is symmetric in the sense thath2 andh1 cohere with
the world or the data, ifh1 andh2 do. It is stipulated that two statements logically
contradicting each other do not cohere with the world; their degree of coherence
w.r.t. the data is minimal. Furthermore, the evidential statements describing data
about the world have a special status: They are epistemically distinguished in the
sense of assumption 1.4 respectively 4.1. A more difficult question is whether it
makes sense to call a single statement coherent with the data.

evidenceE is the smaller, the greater the variety or diversity ofE. As the conditional probability
p (T | E) of T givenE is the greater, the smallerp (E), it follows that, other things being equal,
the degree of confirmation ofT by E is the greater, the greater the variety ofE – the other things
beingp (T ) andp (E | T ).

This is clearly seen in caseT logically impliesE, for herep (T | E) = p(T )
p(E) , which is the

greater, the smallerp (E), providedp (T ) is held constant.
As already noted, by choosing the “right” prior distribution one can explain nearly everything;

for instance, thatT is more confirmed byE, if the weather is nice than if it is not, for on sunny
days one is inclined to assign high priors toT and low priors toE, whereas on rainy days it is the
other way round.
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The idea of coherence w.r.t. the evidence as informally characterised above
is similar to the concept of relevance of Sperber/Wilson (1995) according to which

[a]n assumption is relevant in a context if and only if it has some
contextual effect in that context.55

Here,

[...] the various types of possible contextual effects [include]: contex-
tual implications, strengthenings, and contradictions resulting in the
erasure of premises from the context.56

The important concept of a contextual implication is defined as follows:

A set of assumptionsP contextually impliesan assumptionQ in the
contextC if and only if (i) the Union ofP andC non-trivially implies
Q, (ii) P does not non-trivially implyQ, and (iii) C does not non-
trivially imply Q.57

Without restrictions, the idea of above results in triviality in the sense that any two
statementsh1 andh2 (none of which logically implies the other) cohere, because
there is always something the conjunctionh1 ∧ h2 says which is not already said
by one ofh1, h2 alone – namely the conjunctionh1 ∧ h2. In order to avoid this,
Sperber/Wilson (1995) restrict the consequences of the unionP∪C – in our case:
the consequences of the conjunctionh1 ∧ h2 – to non-trivial logical implications
involving only elimination rules:

A set of assumptionsP logically and non-trivially impliesan assump-
tion Q if and only if, whenP is the set of initial theses in a derivation
involving only elimination rules,Q belongs to the set of final theses.

Another possibility58 is to restrict the consequences of the conjunctionh1 ∧ h2

to relevant (consequence-) elements in the sense of Schurz (1998) respectively
Schurz/Weingartner (1987), and to consider

RE (h1 ∧ h2) \ (RE (h1) ∪RE (h2)) .

55Sperber/Wilson (1995), p. 122.
56Sperber/Wilson (1995), p. 115.
57Sperber/Wilson (1995), p. 107-108.
58Note that restricting the consequences ofh1∧h2 to content parts in the sense of Gemes (1994c)

and (1997a) is not sufficient, forh1 ∧ h2 is a content part ofh1 ∧ h2, for any two statementsh1

andh2. For more on the notion of a content part see below.



4.3. FOUNDATIONALIST COHERENTISM 95

A third way of solving the problem that any two statementsh1 andh2 none of
which logically implies the other cohere is not to let it arise at all: This is the case
if, for a given statementh, to say something about the world or the data means to
account for some entityt mentioned in some evidenceE.59

Definition 4.1 (Account) Let T , B, andS be (not necessarily finite) sets of wffs,
let E be an evidence, and let ‘t’ be a constant term occurring inE. T accounts
for t respectively ‘t’ in E relative toB iff there is a finite and non-redundant60

D ⊆ DE (t) and a wffA ∈ D such that

T ∪B ∪ (D \ {A}) ` A.

The set of all constant terms ‘t’ accounted for byT in E relative toB is calledthe
account ofT in E relative toB; it is denoted by ‘A (T, E,B)’.

The set of all constanti-terms ‘til ’ in A (T, E,B)∩Cess (E) for which there
is noj < l such that

1. T accounts fortij in E relative toB, and

2. S ∪ E ` tij = til,

is called theS-representative ofA (T, E,B). It is denoted by ‘AS−repr (T, E,B)’.61

If T consists of a single wffh, ‘A (h,E,B)’ and ‘AS−repr (h,E,B)’ are
written instead of ‘A ({h} , E, B)’ and ‘AS−repr ({h} , E, B)’, respectively.

In order for the problem of above to arise it would have to hold that for any state-
mentsh1, h2 (not logically implying each other), every evidenceE, and every
background knowledgeB there is at least one constant term ‘t’ ∈ C (E) such that
h1 ∧ h2 acounts for ‘t’ in E relative toB, buth1 does not, andh2 does not either.
Clearly, this is not the case – it suffices to give an example of two statementsh1, h2

(not logically implying each other), an evidenceE, and a background knowledge
B such that it holds for every constant term ‘t’ ∈ C (E): If h1 ∧ h2 accounts for
‘ t’ in E relative toB, then so does one ofh1, h2 alone.62 In this sense there is no
evidence without conclusion-relevance.

59Insofar as the notion of accounting for is defined in terms of relevant elements, this way is
subsidiary to the second one of restricting the consequences to relevant elements.

60Non-redundancy should avoid triviality. Ast = t is a relevant element ofE, for any ‘t’ and
anyE, there is always a finite (but redundant) set of relevant elements ofE – namelyD = {t = t}
– and a wffA ∈ D (namelyt = t) such thatT ∪B ∪ (D \ {A}) ` A.

61The representative should avoid that an entityt with more than one name is counted more
than once.

62h1 = ∀xFx, h2 = ∀xGx, E = {Fa, Gb}, andB = ∅ do the job.
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In the following the distinction between the constant terms and the entities
denoted by them is handled loosely, if no confusion can arise. Before turning to
the measure of coherence w.r.t. the evidence, let me introduce a notion which will
provide useful below: Power.

Definition 4.2 (Power) Let T andB be (not necessarily finite) sets of wffs, and
let E be an evidence. Thepower ofT for E relative toB, P (T,E,B), is given
by the following equation:

P (T, E,B) =
|AB−repr (T,E,B)|
|CB−repr (E)|

.63

If T consists of a single wffh, ‘P (h,E,B)’ is written instead of ‘P ({h} , E, B)’.

The power functionP is discussed to a greater extent in the chapter on loveliness
and likeliness. For the moment it suffices to note thatP is a power searcher which
is formally handy for finite sets of statementsT andB.

4.3.3 The Measure of Coherence w.r.t. the Evidence

The informal characterisation of coherence w.r.t. the evidence is generalized by
the surplus of a set of statementsT w.r.t. an evidenceE and a set of statementsB.

Definition 4.3 (Surplus) Let T , B, andV be (not necessarily finite) sets of wffs,
and letE be an evidence. Thesurplus ofT in E relative toB, S (T,E,B), is the
set of constant terms ‘t’ which are accounted for byT in E relative toB, but by
none of its proper subsetsT ′, i.e.

S (T, E,B) = A (T,E,B) \
⋃

T ′⊂T

A (T ′, E, B) .

The set of constanti-terms ‘til ’ in S (T, E,B) ∩ Cess (E) for which there is no
j < l such that

‘ tij ’ ∈ S (T, E,B) and E ∪ V ` tij = til

is called theV -representative ofS (T,E,B). It is denoted by ‘SV−repr (T, E,B)’.
If T consists of a single wffh, ‘S (h,E,B)’ and ‘SV−repr (h,E,B)’ are

written instead of ‘S ({h} , E, B)’ and ‘SV−repr ({h} , E, B)’, respectively.

63CB−repr (E) is always non-empty.
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Some immediate consequences of this definition are the following.

Theorem 4.4 (Surplus) Let T andB be (not necessarily finite) sets of wffs, and
let E be an evidence.

1. S (T, E,B) = ∅, if T is infinite,

2. S (∅, E, B) = A (∅, E, B) = A (B, E, B) = A (T, E,B), if B ` T ,

3. S (B, E, B) = ∅, if B 6= ∅,

4. S (T,E,B) = ∅, if T 6= ∅ andB ` T , and

5. S (hT , E, B) = A (hT , E, B) = A (T,E,B), for every single wffhT with
hT a` T , if A (∅, E, B) = ∅.

The measure of coherence w.r.t. the evidence is defined as follows.

Definition 4.4 (Coherence w.r.t. the Evidence)Let T be a finite set of wffs, let
E be an evidence, and letB be a (not necessarily finite) set of wffs. Thedegree of
coherence ofT w.r.t. E relative toB, Coh (T,E,B), is defined as follows:

If T 6= ∅ andT ∪B ∪ E 6` ⊥, then

Coh (T,E,B) =
∑

∅6=T ′⊆T

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T | − 1)

; 64

otherwise,Coh (T, E,B) = 0.
Let T = {h1, . . . , hn, . . .} be a countably infinite set of wffs, and letTi :=

{h1, . . . , hi} for some enumarationh1, . . . , hn, . . . of the wffs inT . Thedegree of
coherence ofT w.r.t. E relative toB, Coh (T,E,B), is defined as follows:

If limi→∞ Coh (Ti, E, B) exists, and is the same for every enumeration
h1, . . . , hn, . . . of the wffs inT , then

Coh (T,E,B) = lim
i→∞

Coh (Ti, E, B) ;

otherwiseCoh (T, E,B) = 0.
If T consists of a single wffh, ‘Coh (h,E,B)’ is written instead of ‘Coh ({h} , E, B)’.

64CB−repr (E) is always non-empty.
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The notion of the surplus and consequently also the measure of coherence w.r.t.
evidenceCoh are implicitely sensitive to aspects of premise-relevance: If a con-
stant term ‘t’ is in the surplus of someT w.r.t. some evidenceE relative to some
B, then every statementh ∈ T is necessary in order forT to account for ‘t’ in E
relative toB.

Theorem 4.5 (Coh Is Formally Handy) Coh (·, ·, ·),

Coh (·, ·, ·) : ℘fin (LPL1=)× E × ℘fin (LPL1=) → <,

is non-arbitrary, comprehensible, and computable in the limit, where℘fin (LPL1=)
is the set of all finite sets of wffs ofLPL1=.

This holds in particular, ifT is a theory andB is a background knowledge. Let us
turn to some examples.

4.3.4 Examples

In the followingT is a finite set of statements andB is empty. ‘Coh (T, E)’ stands
for ‘Coh (T,E, ∅ ) ’; similarly for ‘P (T,E)’.

(1) The first example illustrates that coherence coincides with power if single
hypothesesh are considered. Let

E = {Fa1, Ga1, . . . , Fan, Gan} and T = {∀x (Fx → Gx)} .

Then
Coh (T, E) =

n

n · (21 − 1)
= 1 =

n

n
= P (T, E) .

(2) The second example is one where a unified theoryTG is more coherent w.r.t.
evidenceE than the unionTH of two theoriesTH1 andTH2. Let

E = {Fa1, Ga1, H1a1, Fa2, Ga2, H2a2} ,

TH1 = {∀x (Fx → H1x)} ,

TH2 = {∀x (Fx → H2x)} ,

TH = TH1 ∪ TH2 = {∀x (Fx → H1x) ,∀x (Fx → H2x)} ,

TG = {∀x (Fx → Gx)} .
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Then

Coh (TH1 , E) = Coh (TH2 , E) =
1

2 · (21 − 1)
= 1/2,

and

Coh(TH , E) =
1 + 1 + 0

2 · (22 − 1)
= 1/3 < 1 =

2

2 · (21 − 1)
= Coh (TG, E) .

(3) The third and fourth example show thatCoh (T,E) is not closed under equiv-
alence transformations ofT . Let

E = {Fa,Ga} ,

T1 = {∀x (Fx → Gx) ,∀x (Gx → Fx) ,∀x (Fx → Hx) ,∀x (Hx → Fx)} ,

T2 = {∀x (Fx → Gx) ,∀x (Gx → Fx) ,∀x (Fx → Hx) ,∀x (Hx → Gx)} ,

T3 = {∀x (Fx → Gx) ,∀x (Gx → Hx) ,∀x (Hx → Fx)} ,

T4 = {∀x (Fx → Hx) ,∀x (Hx → Gx) ,∀x (Gx → Fx)} ,

T5 = {∀x (Fx ↔ Gx) ,∀x (Gx ↔ Hx)} ,

T6 = {∀x (Fx ↔ Hx) ,∀x (Hx ↔ Gx)} .

Ti a` Tj, for everyi andj, 1 ≤ i, j ≤ 6, but

Coh (T1, E) =
2

1 · (24 − 1)
= 2/15 < 3/15 =

3

1 · (24 − 1)
= Coh (T2, E)

< 2/7 =
2

1 · (23 − 1)
= Coh (T3, E)

= 2/7 =
2

1 · (23 − 1)
= Coh (T4, E)

< 1/3 =
1

1 · (22 − 1)
= Coh (T5, E)

= 1/3 =
1

1 · (22 − 1)
= Coh (T6, E) .

(4) Let

E = {Fa,Ga, Ra} ,

T1 = {∀x (Fx → Gx) ,∀x (Gx → Hx) ,∀x (Hx → Fx) ,∀x (Rx → Hx)} ,

T2 = {∀x (Fx ↔ Gx) ,∀x (Gx ↔ Hx) ,∀x (Rx → Hx)} ,

T3 = {∀x (Fx ↔ Hx) ,∀x (Hx ↔ Gx) ,∀x (Rx → Hx)} .
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Ti a` Tj, for everyi andj, 1 ≤ i, j ≤ 3, but

Coh (T1, E) =
1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0

1 · (24 − 1)

= 3/15

< 2/7 =
1 + 0 + 0 + 0 + 0 + 1 + 0

1 · (23 − 1)
= Coh (T2, E)

< 3/7 =
0 + 0 + 0 + 1 + 1 + 1 + 0

1 · (23 − 1)
= Coh (T3, E) .

(5) The fifth example shows that coherence decreases with the number of state-
ments inT that areP-superfluous forE and∅. Let

E = {Fa1, . . . , Fan} and T = {∀xFx,∀xG1x, . . . ,∀xGmx} .

Then
Coh (T,E) =

n

n · (2m+1 − 1)
→ 0, if m →∞.

(6) The sixth example shows that theoriesT which are, in an intuitive sense, “in-
ternally” coherent may have a higher degree of coherence w.r.t. an evidenceE
than theories consisting of isolated subtheories,if this “internal” coherence ofT
yields that more entities (constant terms) are accounted for byT , or that some of
them are accounted for in different ways. Let

E = {Ha1, . . . , Han} ,

T1 = {∀xFx,∀xGx, ∀xHx} ,

T2 = {∀xFx,∀xGx, ∀x (Fx ∨Gx → Hx)} .

AlthoughT1 a` T2,

Coh (T1, E) =
0 + 0 + n + 0 + 0 + 0 + 0

n · (23 − 1)

= 1/7

< 2/7

=
0 + 0 + 0 + 0 + n + n + 0

n · (23 − 1)
= Coh (T2, E) .

(7) The seventh example shows that theoriesT which are in the above intuitive
sense “internally” coherent need not have a higher degree of coherence w.r.t. an



4.3. FOUNDATIONALIST COHERENTISM 101

evidenceE than theories consisting of isolated subtheories. They may even have
a lower degree of coherence w.r.t. an evidenceE, if this “internal” coherence of
T doesnotyield that more entities (constant terms) are accounted for byT , or that
some of them are accounted for in different ways. Let

E = {Ha1, . . . , Hal} ,

T1 = {∀xF1x, . . . ,∀xFmx, ∀xHx, ∀x (F1x → G1x) , . . .

. . . ,∀x (Fmx → Gmx) ,∀x (Hx → Gm+1x) ,

∀x (Gm+1x → Gm+2x) , . . . ,∀x (Gn−1x → Gnx)} ,

T2 = {∀xF1x, . . . ,∀xFmx, ∀x (F1x ∨ . . . ∨ Fmx → Hx) ,

∀xG1x, . . . ,∀xGnx} ,

wherel ≥ 1 and1 < m < n. AlthoughT1 a` T2,

Coh (T1, E) =
l

l · (2m+n+1 − 1)

<
l ·m

l · (2m+n+1 − 1)
= Coh (T2, E) .

(8) As mentioned, the necessary condition 4.1 (Coherence as Truth Indicator)
allows for the existence of sets of statementsT and modelsM1 andM2 with

Coh (T,M1) = Coh (T,M2) .

ForCoh (·, ·), this is illustrated by the last example. Let

E1 = {Pa, Qa, Fb1, . . . , F bn} ,

E2 = {Pa, Qa, Gc1, . . . , Gcn} ,

T = {∀x (Px → Qx)} .

Then

Coh (T,E1) =
1

(n + 1) · (21 − 1)
= Coh (T,E2) .

4.3.5 Properties ofCoh

As is obvious from the examples of the last subsection, the values ofCoh depend
heavily on the formulation ofT . In particular,Coh is not closed under equivalence
transformations ofT .
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Theorem 4.6 (No InvEquTrans ofT for Coh) For every evidenceE, and every
set of wffsB there are theoriesT andT ′ such that

T a` T ′ and Coh (T,E,B) 6= Coh (T ′, E, B) ,

provided there is at least one theoryT with Coh (T, E,B) 6= 0.

Theorem 4.7 (Coherence Versus Power)Let T be a finite set of wffs, letE be
an evidence, and letB be a set of wffs. IfT ∪B∪E 6` ⊥ andAB−repr (∅, E, B) =
∅, then

Coh (T, E,B) ≤ Coh

∧
h∈T

, E, B

 = P (T,E,B) ,

whereP is closed under equivalence transformations ofT andB.

Remember,P is not only closed under equivalence transformations ofT andB; it
is also searching power and formally handy for finite sets of statementsT andB.

What do the above theorems tell us? There are at least the following four
interpretations.

1. The definition of coherence (w.r.t. the evidence) respectively its measure
Coh is not adequate – e.g. because the relation of accounting for is mono-
tone w.r.t.T andB.65

2. The concept of coherence (w.r.t. the evidence) can be dispensed with. The
concept of power (for the evidence) is sufficient and has the advantage that
its measureP is closed under equivalence transformations ofT , whence
theoriesT may be defined as sets of modelsmod (T ) without restricting
oneself to some “canonical” formulation ofT .

3. It does not make sense to call a single statement – as the conjunction
∧

h∈T h
– coherent w.r.t. an evidenceE, because the concept of coherence (w.r.t. an
evidence) makes only sense, if several statements (propositions) are consid-
ered.

4. The set of statementsT whose coherence w.r.t. some evidenceE is to be
assessed, has to be formulated in some special, perhaps uniquely determined
way.

65That is, ifT accounts for ‘t’ in E relativeB, then so does everyT ′ logically implyingT ; and
T does so relative to everyB′ logically implying B. This is not the case forE, becausè crel is
not monotone.
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Obviously, (3) and (4) are intimately related. If one considers these four alterna-
tives as the only serious interpretations of the above theorems; if one adoptsCoh
as measure of coherence w.r.t. the evidence; and if one does not already give up
the concept of coherence at this point of the discussion, then (3) and (4) are the
only possible alternatives.

How, then, has the set of statementsT be formulated? Intuitively,T should
be formulated naturally in the sense of being split up into its smallest (content)
parts. There are at least two approaches to this end: The first is based on Schurz’
notion of a relevant (consequence-) element.66

1. The formulation ofT has to be anirreducible representation ofT , i.e. a
non-redundant setI of relevant elements ofT such thatI a` T .

The second is based on Gemes’ notion of a content part.67

2. The formulation ofT has to be anatural axiomatization ofT , i.e. a finite
set of wffsA such that

2.1 A a` T ,

2.2 every wffh ∈ A is a content part of (the conjunction of all wffs in)A,

2.3 there is no content partch of some wffh ∈ A such thatA \ {h} ` ch,
and

2.4 there is no finite set of wffsA′ satisfying (2.1)-(2.3) with|A′| > |A|.68

However, ifCoh has to be closed under equivalence transformations ofT , then
neither (1) nor (2) is viable, for there are theoriesT1 andT2, evidencesE, and
background knowledgesB such that bothT1 andT2 are irreducible representations
and natural axiomatizations ofT1, and such thatCoh (T1, E, B) 6= Coh (T2, E, B)
– this is shown byT1 andT2 of example (3) of the preceding subsection.69

66Cf. Schurz (1991a), (1998), and Schurz/Weingartner (1987).
67Cf. Gemes (1993), (1994c), and (1997a).
68The fourth clause is added by Gemes in a footnote – cf. Gemes (1993), p. 483. Without it the

concept of a natural axiomatization is of no help here, for the conjunction
∧

h∈A h of all wffs of a
finite set of wffsA satisfying clauses (2.1)-(2.3) for a given set of wffsT also satisfies (2.1)-(2.3)
for T .

69If ‘↔’ is not eliminated, and the notion of content part is formulated as follows:

For any wffsA andB: B is a content part ofA iff (i) A andB are contingent, (ii)
A ` B, and (iii) there is no wffC such thatA ` C, C ` B, B 6` C, andC is
formulated in the vocabulary ofB,
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Nevertheless, suppose these cases are only very rare, so that for the most
partCoh (T ′, E, B) is the same for all irreducible representations or natural ax-
iomatizationsT ′ of T . Then the measure of coherence w.r.t. the evidenceCoh can
be made invariant under equivalence transformations ofT by defining it in one of
the following two ways:

Cohirr (T,E,B) = max {Coh (T ′, E, B) : T ′ ∈ I (T )} ,
Cohna (T,E,B) = max {Coh (T ′, E, B) : T ′ ∈ NA (T )} .

One could, of course, take some other function instead of the maximum func-
tion. Note that it would not be of help to consider all sets of statementsT ′

with T ′ a` T , for then one would nearly always – wheneverT is a theory and
AB−repr (∅, E, B) = ∅ – consider the singleton{∧h′∈T ′ h

′} containing the con-
junction of all statements of some finite axiomatizationT ′ of T . Though this does
not hold of the minimum function, a similar problem arises in this case, for one
would have to deal with the set of all statements logically following fromT .

A question not yet answered is whether for every set of statementsT of
LPL1= there is at least one irreducible representation or natural axiomatization
of T . For the propositional calculus, the answer is affirmative for irreducible
representations: In Schurz/Weingartner (1987) it is shown that for every statement
A of LPC there is a statementA′ such thatA a` A′ andA′ `crel A′.70

Suppose, however, all these problems can be dealt with in a satisfying way.
Is coherence w.r.t. the evidence under these assumptions indicating truth in the
actual world? The answer is no, for it is not even indicating truth inmod (E): For
a given evidenceE, there are always theoriesTE and background knowledgesBE

such that
E ∪BE ` TE and Coh (TE, E, BE) = 0

– which violates the second clause of the definition of indicating truth inmod (E).
Still, one may argue that although the feature of interest usually ascribed to

coherence is that of being truth indicative, this is not what coherence should do in
case of the assessment of theory by evidence relative to background knowledge.

then onlyT5 and T6, but neitherT1 nor T2 of example (3) are natural axiomatizations ofT1.
However, for this notion – which is the one Gemes (in personal correspondence) favours –T2 and
T3 of example (4) are sufficient to show thatCoh is not closed under equivalence transformations
of T , even ifT has to be a natural axiomatization of itself (based on the notion of content part just
stated).T1 of this example is an irreducible representation, but no natural axiomatization of itself
(in second sense of this footnote).

70Cf. Schurz/Weingartner (1987), p. 58.
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Here the job of coherence w.r.t. the evidence is not to indicate truth inmod (E),
for some evidenceE, but to be sensitive to loveliness and likeliness in the sense
of some power searcherLO and some truth indicatorLI. However, this does
not either hold ofCoh – even if it is assumed that there is exactly one canonical
formulationFT for every set of statementsT .

Theorem 4.8 (No SensLoveLike ofCoh) For every power searcherLO, every
truth indicatorLI, and every evidenceE there is a theoryTE and a background
knowledgeBE such that it holds for any sets of wffsT andB, and every evidence
E ′: If T a` TE, E ′ a` E, andB a` BE, then

1. T ∪B ` E ′, and thusLO (T, E ′, B) = 1,

2. E ′ ∪B ` T , and thusLI (T,E ′, B) = 1, and

3. Coh (T, E ′, B) = 0.

I conclude that ifCoh captures to some extent the concept of coherence (w.r.t.
the evidence), then the latter has to be given up as indicator of truth in the actual
world, provided the second clause of the definition of indicating truth inmod (E)
is adopted as minimal requirement for any truth indictorf : If evidenceE together
with background knowledgeB guarantees (in the sense of logical implication)
the truth of some theoryT , then the degree to whichf indicates the truth ofT in
mod (E) relative toB is maximal.

I conclude further thatCoh is no adequate measure of confirmation, because
it is not sensitive to loveliness and likeliness in the sense of any power searcher
LO and any truth indicatorLI – even if it is assumed that there is exactly one
canonical formulationFT for every set of statementsT .

In the next chapter I will therefore pursue the second approach to a solution
of the problem of a quantitative theory of confirmation: First, to define for ev-
ery (primary) confirmational virtueV a functionfV (·, ·, ·) such thatfV (T,E,B)
measures the degree to which (primary) confirmational virtueV is exhibited by
T, E, andB, for every theoryT , every evidenceE, and every background knowl-
edgeB; and then to define the measure of confirmationC as a function of (some
of) these functionsfV .
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Chapter 5

Loveliness and Likeliness

5.1 Recapitulation

This chapter contains the definition of a power searcherP (·, ·, ·), P (·, ·, ·) : T ×
E × B → <, and a truth indicatorLI (·, ·, ·), LI (·, ·, ·) : T × E × B → <, which
together determine the measure of confirmationC (·, ·, ·).

We know from theorem 3.1 that there are lots of power searchers and truth
indicators. As has been noted there, what is needed are a power searcher and
a truth indicator which are formally handy, i.e. non-arbitrary, comprehensible,
and computable in the limit. Arbitrariness will be avoided by defining two single
functions (without parameters that can be chosen arbitrarily); comprehensibility
will be achieved by purely syntactical definitions in the terms ofPL1 = andZF ;
computability in the limit will be a consequence of these definitions.

Before defining these functions remember that non-arbitrariness, compre-
hensibility, and computability in the limit areformal conditions of adequacy for
any formal theory, in particular, any quantitative theory of confirmation intended
to implicitely provide a rule of acceptance for rational theory choice. Sensitivity
to (and only to) the confirmational virtues is amaterial condition of adequacy
for any quantitative theory of confirmation. The second approach to a solution
of the problem of a quantitative theory of confirmation defines the measure of
confirmationC as a function of (some of) the functionsfV (·, ·, ·) measuring the
confirmational virtuesV . The formal conditions of adequacy for these functions
are inherited from those forC. The material conditions of adequacy are those of
chapter 3: The functionfLO which measures loveliness has to be a power searcher;
the functionfLI which measures likeliness has to be a truth indicator.

107



108 CHAPTER 5. LOVELINESS AND LIKELINESS

There will not be any functions for the derived confirmational virtues. These
enter only when the resulting measure of confirmationC is considered.C has
to be sensitive to the primary and derived confirmational virtues, i.e. sensitive
to loveliness and likeliness in the sense of some power searcherLO and some
truth indicatorLI – sensitivity to simplicity considerations and unimpressability
by redundancies (and invariance under equivalence transformations ofT ) being
consequences of this.

In the next chapterC is combined with a functionG (·, ·, ·), whereG (T, E,B)
measures the “goodness” of evidenceE in relation to theoryT and background
knowledgeB. The reason for this is thatC does not and is not intended to take
into account that evidence which is varied or diverse is better than evidence which
is uniform or homogenous; and thatE is the better, the more information it con-
tains. C (T,E,B) only tells you how muchT is confirmed byE relative toB,
if E is all the evidence available. The refined measure of confirmationC∗ (·, ·, ·)
which is the result of combiningC andG can be shown to be sensitive to diversity
considerations in the sense ofC andG.1 Before continuing, let me note thatG is
independent ofC, and may be combined with any measure of confirmation – or
coherence (w.r.t. the evidence).

5.2 A Power Searcher and a Truth Indicator

The basic ideas behind the definitions of the functionsP andLI are due to Carl
Gustav Hempel, and can be found in hisStudies in the Logic of Confirmation
(1945) under the headings of the prediction criterion and the satisfaction criterion,
respectively.

It is crucial that these functions are only defined, if the evidential domains
and the domains of proper investigation overlap. Any domain which is among
both is called aconfirmational domain(of T andE). Though the definitions are
stated in semantic terms, they are purely syntactic, because the domains are only
distinguished by means of the different sorts of variables and constants occurring
in T , E, andB.

The evidential domains and the domains of proper investigation overlap
whenever there is an essential occurrence of ani-variable, but no occurrence of a
constanti-term inT , and no occurrence of ani-variable, but a constanti-term es-
sentially occurring inE, for some sorti of variables and constants. The domains

1For a definition of the concept of sensitivity to diversity considerations in the sense of some
functionsCLO,LI andG see chapter 6.
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of T , E, andB are also only distinguished by the sorts of variables and con-
stants occurring inT , E, andB. Strictly speaking, these “domains” aredomain
variablestaking domains as their values.

So referring to the domains ofT , E, andB, D1, . . . , Dn, is just another
way of referring ton different sorts of variables and constants occurring inT , E,
andB. The functionsP andLI therefore have three argument places; the confir-
mational domains are uniquely determined byT andE. Technically, the valueP
takes on for givenT , E, andB, is avectorwhose length equals the number of con-
firmational domains ofT andE, and is of the form:〈P (T, E,B; D1) , . . . ,P (T, E,B; Dc)〉,
whereD1, . . . , Dc are the confirmational domains ofT andE. The claim thatP
is a power searcher means that conditions (1)-(3) in the definition of searching
power formod (E) are satisfied byP (T,E,B; Di) for everyconfirmational do-
mainDi of T andE, for all T , E, andB. Similar remarks apply toLI and its
being a truth indicator.

The functionP is already familiar from the chapter on coherence w.r.t. the
evidence.

Definition 5.1 (Confirmational Domain) LetT be a theory with domains of proper
investigationDT

1 , . . . , DT
m, let E be an evidence fromDE

1 , . . . , DE
n , and letDi be

a domain (with correspondingi-variables and constanti-terms).
Di is a confirmational domain ofT and E iff Di is among both the evi-

dential domains ofE, DE
1 , . . . , DE

n , and the domains of proper investigation of
T , DT

1 , . . . , DT
m; i.e. iff T contains an essential occurrence of ani-variable, but

no occurrence of a constanti-term, andE contains an essential occurrence of a
constanti-term, but no occurrence of ani-variable.

Definition 5.2 (Power) Let T be a theory, letE be an evidence, letB be a back-
ground knowledge, and letDi be a confirmational domain ofT andE (with cor-
respondingi-variables and constanti-terms).

Thepower ofT for E relative toB in Di, P (T, E,B; Di), is given by the
following equation:

P (T,E,B; Di) =
|AB−repr (T,E,B) ∩ Ci|
|CB−repr (E) ∩ Ci|

,

whereCi is the set of constanti-terms.2

2CB−repr (E)∩Ci 6= ∅, becauseDi is a confirmational domain ofT andE, and hence among
the evidential domains ofE.
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The functionLI has not been dealt with so far.

Definition 5.3 (Likeliness) Let T be a theory, letE be an evidence, letB be a
background knowledge, and letDi be a confirmational domain ofT andE (with
correspondingi-variables and constanti-terms).

The likeliness ofT w.r.t. E andB in Di, LI (T, E,B; Di), is given by the
following equation:

LI (T, E,B; Di) =
maxLI (T, E,B; Di)

|CB−repr (E) ∩ Ci|
, 3

providedE ∪B 6` ⊥, where

max
LI

(T,E,B; Di) := max {|C ∩ CB−repr (E)| : C ⊆ CE,B,i,

E ` DevCE,B,i
(B) → DevC (T )

}
,

CE,B,i := C (E ∪B) ∩ Ci = Ci (E ∪B), Ci (X) is the set of constanti-terms
occurring inX, andCi is the set of constanti-terms.

Concerning likeliness in domainDi, it is important to note that only thei-variables
in T are replaced by the constanti-terms ofC in the development ofT for C,
DevC (T ); thek-variables,k 6= i, occurring inT and the quantifiers binding them
remain unchanged (cf. definition 1.11).

The following theorems yield thatP andLI satisfy the formal and material
conditions of adequacy.

Theorem 5.1 (P Is a Formally Handy Power Searcher)P (·, ·, ·),P (·, ·, ·) : T ×
E×B → <, is a power searcher which is non-arbitrary, comprehensible, and com-
putable in the limit, provided for everyE ∈ E and every ‘t’ ∈ Cess (E) there is a
contingent4 A ∈ RE (E) with ‘ t’ ∈ C (A).

More precisely,P is formally handy, and for any theoriesT andT ′, every
evidenceE, every background knowledgeB, and every confirmational domain
Di of T andE, and ofT ′ andE:

1. P (T, E,B; Di) ≥ 0,

2. if T ∪B ` E, thenP (T,E,B; Di) = 1, and

3Cf. the preceding footnote.
4Contingency should rule outt = t, which is a relevant consequence of anyE.
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3. if T ′ ` T , thenP (T ′, E, B; Di) ≥ P (T, E,B; Di),

provided for everyE ∈ E and every ‘t’ ∈ Cess (E) there is a contingentA ∈
RE (E) with ‘ t’ ∈ C (A).

Theorem 5.2 (LI Is a Formally Handy Truth Indicator) LI (·, ·, ·),LI (·, ·, ·) :
T × E × B → <, is a truth indicator which is non-arbitrary, comprehensible, and
computable in the limit.

More precisely,LI is formally handy, and for any theoriesT andT ′, every
evidenceE, every background knowledgeB, and every confirmational domain
Di of T andE, and ofT ′ andE: If E ∪B 6` ⊥, then

1. LI (T,E,B; Di) ≥ 0,

2. if E ∪B ` T , thenLI (T, E,B; Di) = 1, and

3. if T ′ ` T , thenLI (T ′, E, B; Di) ≤ LI (T, E,B; Di).

If the proviso in theorem 5.1 does not hold for some constant term ‘t’ ∈ CB−repr (E),
for someE andB, thenno T can account for ‘t’ in E relative toB. The proviso
is satisfied, if (1)RE (E) ` E; or if (2) E is minimally observationalin the sense
that for every ‘t’ essentially occurring inE (and thus for every ‘t’ ∈ CB−repr (E))
there is at least one contingent statementA containing only one predicate occur-
rence such that ‘t’ ∈ C (A) andE ` A. (Any such statementA is a relevant
element of any evidenceE logically implying A. There is just one predicate
occurrence that can be replaced, whence substituting a logically determined pred-
icate for it would yieldE inconsistent.)

The term ‘minimally observational’ arises from the following consideration:
One may define an evidence to beobservationaljust in case it consists only of
(possibly negated) atomic statements, because – so it may be argued – we do not
observe (negative or) disjunctive properties, but only whether some entity has a
property (whether some entities stand in some relation); disjunctive (and negative)
properties are not observed, butinferred.

Any (possibly negated) atomic statement has only one predicate occurrence,
and thus is of the required form. But other statements – e.g. PopperianBasissätze
of the form ‘At space-time pointk there arex1, . . . , xn such thatA [x1, . . . , xn]’5

– do not have the form of (possibly negated) atomic statements; nor do they imply

5Cf. Popper (1994), p. 66ff.
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such statements. However, they usually entail a statement with just one predicate
occurrence.

The proviso is superfluous, ifCB−repr (E) is restricted to those constant
terms ‘t’ for which there is at least one contingent relevant elementA of E with
‘ t’ ∈ C (A). The reason for not doing so is that I conjecture that the proviso is
satisfied anyway – for lack of mathematical skill I just cannot prove it.

5.3 The Measure of Confirmation

This section contains the definition of the degree of confirmationC (T,E,B) of
theoryT by evidenceE relative to background knowledgeB, which is the re-
sult of pursuing the second approach to a solution of the problem of a quantita-
tive theory of confirmation.C is defined as the product of the functionsP and
LI measuring the primary confirmational virtues of loveliness and likeliness, re-
spectively. An immediate consequence of this definition is thatC is sensitive to
loveliness and likeliness in the sense ofP andLI. The formal handiness ofC is
straightforward, becauseP andLI are both non-arbitrary, comprehensible, and
computable in the limit, and the multiplication function· preserves these proper-
ties, as it is itself a single and thus non-arbitrary computable function that can be
defined in the terms ofPL1 = andZF . Sensitivity to simplicity considerations
i.v.s.s., unimpressability by redundancies, and invariance under equivalence trans-
formations ofT result fromC being sensitive to loveliness and likeliness in the
sense ofP andLI.

As in the case of power and likeliness, confirmation ofT by E relative toB
is only defined for the confirmational domains ofT andE. Strictly speaking, the
valueC (T, E,B) of C for T , E, andB is a vector〈C (T, E,B; Di) , . . . , C (T, E,B; Dc)〉,
whose lengthc equals the number of confirmational domains ofT andE, D1, . . . , Dc.

Definition 5.4 (Degree of Confirmation) Let T be a theory, letE be an evi-
dence, letB be a background knowledge, and letDi be a confirmational domain
of T andE.

Thedegree of confirmation ofT byE relative toB in Di, C (T,E,B; Di),
is given by the following equation:

C (T, E,B; Di) = P (T, E,B; Di) · LI (T,E,B; Di) ,

provided bothP (T,E,B; Di) andLI (T,E,B; Di) are defined.
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The claim thatC is sensitive to loveliness and likeliness in the sense ofP and
LI means thatC (T, E,B; Di) satisfies the four conditions in the definition of
sensitivity to loveliness and likeliness, foreveryconfirmational domainDi.

Main Theorem 1 (C Is Formally Handy and Materially Adequate) C (·, ·, ·), C (·, ·, ·) :
T × E × B → <, is non-arbitrary, comprehensible, computable in the limit, and
sensitive to loveliness and likeliness in the sense ofP andLI, provided for every
E ∈ E and every ‘t’ ∈ Cess (E) there is anA ∈ RE (E) with ‘ t’ ∈ C (A).

More precisely,C is formally handy, and for any theoriesT andT ′, any
evidencesE andE ′, any background knowledgesB andB′, every confirmational
domainD of T andE, and every confirmational domainD′ of T ′ andE ′, where
X = 〈T,E,B; D〉 andX ′ = 〈T ′, E ′, B′; D′〉:

1. If LI (X) = LI (X ′) 6= 0, thenC (X) ≥ C (X ′) iff P (X) ≥ P (X ′),

2. if P (X) = P (X ′) 6= 0, thenC (X) ≥ C (X ′) iff LI (X) ≥ LI (X ′),

3. C (X) = 0 iff P (X) = 0 orLI (X) = 0, and

4. C (X) = 1 iff P (X) = 1 andLI (X) = 1,

providedP (X), P (X ′), LI (X), andLI (X ′) are defined, and for everyE ∈ E
and every ‘t’ ∈ Cess (E) there is anA ∈ RE (E) with ‘ t’ ∈ C (A).6

As a corollary we get thatC is sensitive to simplicity considerations i.v.s.s.; it
cannot be impressed by redundancies; and it is closed under equivalence transfor-
mations ofT .

Observation 5.1 (Derived ConfVirtues and InvEquTransf) For any theoriesT
andT ′, every evidenceE, every background knowledgeB, every confirmational
domainDi of T andE, and ofT ′ andE, and every wffh ∈ T :

1. If T ′ ` T andP (T,E,B; Di) = P (T ′, E, B; Di), thenC (T,E,B; Di) ≥
C (T ′, E, B; Di),

2. if h is a redundant part ofT , thenC (T \ {h} , E, B; Di) ≥ C (T, E,B; Di),
and

3. if T a` T ′, thenC (T, E,B; Di) = C (T ′, E, B; Di),

providedC (T, E,B; Di) andC (T ′, E, B; Di) are defined, and for everyE ∈ E
and every ‘t’ ∈ Cess (E) there is anA ∈ RE (E) with ‘ t’ ∈ C (A).

6Proof omitted.
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5.4 On Accounting

The adequacy of the definition ofP, and therefore that ofC, depend on the notion
of accounting for, which is a generalisation of an idea due to C. G. Hempel7, and
is defined between sets of statementsT andB on the one hand and constant terms
‘ t’ occurring in some evidenceE on the other. Which concept is this definition
intended to capture?

Most importantly, it isnotsupposed to grasp the notion of explanation – this
being the reason why I have avoided to speak of theexplanatorypower (ofT for
E relative toB).

Note first that only constant terms ‘t’ occurring in some evidenceE can
be accounted for by a some set of statementsT relative to another such setB,
whereas in case of explanation, if it is defined for pairs of sets of statementsT1

andT2, T2 need not be an evidence. Also laws of nature, at least empirical gen-
eralisations or observational law hypotheses of the form∀x (A [x] → C [x]), ‘x’
being a vector of individual variables, and ‘A [x]’ and ‘C [x]’ being conjunctions
or disjunctions of observational predicates, can be explained by beingsubsumed
under more general laws. This is not the case for the relation of accounting for.

Furthermore, in contrast to the relation of explanation, the relation of ac-
counting for is monotone with respect toT andB: If T accounts for ‘t’ in E
relative toB, then so does everyT ′ logically implying T ; and if T accounts for
‘ t’ in E relative toB, thenT does so relative to everyB′ logically implying B.
This holds in particular, ifT ′ or B′ is inconsistent (though one may, of course,
exclude this in the definition of accounting for). All this need not be the case for
explanation.

Enough has been said to show that accounting for and explanation are two
different things. Which concept, then, is to be captured? The definition of ac-
counting for is the formal characterisation of the relation that holds between (i)
an individualt and the properties we observet to have (respectively a set of state-
ments describing this), (ii) a theoryT , in particular, a set of empirical general-
isations or observational law hypotheses, whose intended domain of application
t belongs to, and (iii) a set of statementsB expressing the available background
knowledge, if there are propertiest is expected to have with regard toT andB
on the basis of the remaining properties already observed ont. In other words, if
T together withB could havepredictedsome oft’s properties on the basis of its
remaining ones. More precisely, if a statement describing part of what has been

7Cf. the prediction criterion in Hempel (1945).
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observed oft is logically implied byT andB together with statements describing
the rest of what has been observed oft.

5.5 An Objection

An objection that may be raised against this approach is that the degree of con-
firmation is – in contrast to Bayesian theories of confirmation8 and the various
versions of (HD)9 – not defined between any (sets of) statement(s)T , E, andB,
but only forTs satisfying assumption 1.1 (Finite Axiomatizability Without Con-
stants), evidencesE, and finite sets of statementsB.

My response is that it is, of course, always better to do with as few and
as weak assumptions as possible (cf. the remark after the proof of theorem 5.2),
but thatC (T,E,B) is intended to measure how much ascientific theoryT is
confirmed by an (observational)evidenceE relative to abackground knowledge
B – and for these the restrictions onT , E, andB are appropriate, or so I have
argued.

There may be some relation of “making plausible with regard to” that is
defined between any three (sets of) statements. However, this concept is different
from the concept of confirmation which is the topic discussed here: Confirmation
of theoryT by an evidenceE relative to background knowledgeB is more than
E merely making it plausible with regard toB thatT (is true). If E confirmsT
relative toB, thenE also makes it plausible with regard toB thatT (is true); but
there are many cases whereE makes it plausible with regard toB thatT is true,
which are no cases of confirmation: That Peter is happy may make it plausible –
with regard to the information that Peter and Mary love each other – that Mary
is happy, too; and that there are demons not liking George may make it plausible

8Cf., however, Gillies (1998), p. 150ff., who argues that Bayesian confirmation theory has
to be restricted to singular statements (!) – apart from the further condition of the fixity of the
theoretical framework. For the latter cf. Gillies (2001).

9In case of (HD) the conditions specifying the suitable wayE has to follow logically fromT
andB in order forE to confirmT relative toB may restrict the class of statements for which the
qualitative concept of (HD)-confirmation is defined.

The concept of confirmaton of Glymour’s Bootstrap-Theory is not defined for any statementsT
andE, because here evidenceE has to be, roughly speaking, a particular instance of theoryT .

Of course, if one wants to define the concept of confirmation between any three sets of state-
mentsT , E, andB, then the restrictions may be circumvented by setting the degree of confirmation
to 0, if T does not satisfy assumption 1.1,E is no evidence, orB is not finite. Obviously, this
amounts to cheating.
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(with regard to some suitable information about demons) that George is hindered
in daily life; but in neither case would we say that some evidence confirms a
scientific theory relative to some background knowledge.

5.6 Properties ofC

C is sensitive to loveliness and likeliness in the sense ofP andLI, and thus to
the derived confirmational virtues. What is this good for?

If you have got a body of evidenceE, a theoryT , and some background
knowledgeB, and you are to assessT relative toE andB in the sense of con-
firmation combining the likeliness and the loveliness concept, then – other things
being equal10 – if you makeT logically stronger, for instance, by adding new hy-
potheses,T will not become likelier relative toE andB, and may become less
likely, but T may get more power forE relative toB, and its power will not
decrease.

On the other hand, if you makeT logically weaker, say, by deleting some of
the hypotheses inT , thenT will – other things being equal11 – not get more power
for E relative toB, and may become less powerful, butT may become likelier
relative toE andB, and its likeliness will not decrease. This is the contribution
of the third conditions in the definitions of searching power and indicating truth,
respectively, to the definition of being sensitive to loveliness and likeliness.

However, whether or not the power and the likeliness ofT relative toE and
B are increased by makingT logically stronger respectively weaker, depends on
the way this is done. It depends on the added or deleted hypotheses whether a
change in logical content results in an increase or a decrease of one of the primary
confirmational virtues.

What is the point of changing the logical content ofT (by adding and/or
deleting hypotheses)? By adding new hypotheses we hope to makeT more pow-
erful for E relative toB, but thereby not to make it less likely; by deleting hy-
potheses we aim at an increase in the likeliness ofT relative toE andB, which
should not also result in a decrease of its power.

Furthermore, the power ofT for E relative toB should be increased, only
if the addition of new hypotheses makesT not only logically stronger, but enables
it to account for data that have not been accounted for so far by; thereby the cost
in likeliness should be as small as possible. In the same way the likeliness of

10I.e. if evidenceE and background knowledgeB are held constant.
11The other things beingE, B, and the remaining hypotheses inT .
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T relative toE andB should be increased, only if the deletion of hypotheses
results inT becoming more likely relative toE andB, which is the case, if those
hypotheses are dropped which are not related to or unlikely relative toE andB;
also here, the cost in power should be as small as possible.

What the measure of confirmationC is expected to do with regard to this is
that it balancesbetween the two primary confirmational virtues: The job ofC is
to take into account both of these aspects, and to weigh between them in such a
way that there results anequilibriumbetween loveliness and likeliness.

This balance is optimal, ifT can account for all the data inE relativeB, and
is also maximally likely relative toE andB. In particular, if the theoryT to be
assessed coincides with the evidenceE in the sense thatT is just a reformulation
of E as a set of statements satisfying assumption 1.1, then the balance between
these two aspects is optimal, whenceC (T, E,B) should be maximal in this case.
This is exactly what the following theorem states.

Observation 5.2 (Maximal Confirmation for T a` E) Let T be a theory, and
let E be an evidence. Then it holds for every background knowledgeB, and every
confirmational domainDi of T andE:

If T a` E or E ∪B a` T or T ∪B a` E, thenC (T, E,B; Di) = 1,

providedC (T, E,B; Di) is defined.

Now this result may seem to be quite odd, for after all, what it tells us is that no
theoryT can be better confirmed than some odd reformulation of the evidence.
Moreover, in case of the rule of acceptance for rational theory choice(R), the
above theorem tells us for every typical problem situation with a finite set of al-
ternative theories{T1, . . . , Tn}, andE belonging to the domain of application of
eachTi that we should accept some reformulationTE of E.

So, does our measure of confirmationC force us to draw the conclusion
that we can do without all the theories proposed in the history of the sciences by
various ingenious scientists, and that we better stick to a theory-like formulation of
all data gathered so far? It would, if there were no reasons for restricting the class
of sets of statementsT that may be considered as serious candidates for scientific
theories to those which are finitely axiomatizable without constanti-terms, where
Di is among the domains of proper investigation ofT .

Given this restriction, the consequences of the preceding observation need
not be drawn.
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Observation 5.3 (There Is NoT with T a` E) Let E be an evidence. Then it
holds for every theoryT for which there is at least one confirmational domain of
T andE:

T 6` E or E 6` T.

(By assumption, there is at least one confirmational domainDi of T andE. This
Di is among the evidential domains ofE, whence there is a constanti-termessen-
tially occurring inE; butDi is also among the domains of proper investigation of
T , whenceT contains no occurrence of a constanti-term.)

This does, of course, not mean that no theoryT can be maximally con-
firmed by some evidenceE relative to some background knowledgeB. Let
E = {Fa1, . . . , Fan} , n ≥ 1, B = ∅, andT = {∀xFx}. Then

C (T, E,B) = P (T, E,B) · LI (T,E,B) = 1 · 1 = 1.

5.7 A Shortcoming?

The last example does not only show that there are theoriesT , evidencesE, and
background knowledgesB such thatC (T, E,B) = 1. It also illustrates that the
degree of confirmation is determined by theproportionof those constant terms ‘t’
which – in case ofP – are in the account ofT in E relative toB to all constant
terms ‘t’ ∈ CB−repr (E); and similarly forLI. The size of the evidenceE in the
sense of the cardinality ofCB−repr (E) and its variety or diversity do not matter
for power, likeliness, and confirmation.

Is this a point against the approach presented here? I think it is not. The
measure of confirmationC does not – andis not intended to– measure the overall
support there is for a given theory.C (T,E,B) tells us how muchT is confirmed
giventhatE is all the evidence available andB is thewholebackground knowl-
edge. Whether there is a lot of overall support forT does not only depend on its
degree of confirmation byE relative toB; it additionally depends on whetherE
is goodevidence.

What follows? Do we have to rely on some principle oftotal evidencetelling
us that in assessing a given theoryT we always have to consider the total available
evidenceE, and the total available background knowledgeB – at least if we
expect the measure of confirmationC to implicitely provide a rule of acceptance
for rational theory choice?

I do not think so. IfC is not to provide a rule of acceptance for rational the-
ory choice, then allC (T, E,B) is expected to tell us is how muchT is confirmed
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by E relative toB – and this it does. If, however,C is to provide such a rule
of acceptance for rational theory choice, then there are two possibilities: Either
the problem situations this rule is to handle are of the type described in chapter
2, in which caseC does its job, for these problem situations are relative to some
evidenceE (and some background knowledgeB). Or else the problem situations
this rule is to handle are not relative to someE (andB), but ask which theory
to accept independently of the evidence under consideration (and the background
knowledge taken for granted).

If, among others, the theory to be chosen should be true in the actual world
– and I take this to be one of the features we aim at – then every such problem
situation has to be understood as asking which theory to accept with regard to a
complete description of the actual world (or at least the total available evidence).
For, after all, (sorry, I am repeating myself), truth is a binary relation between
a (set of) statement(s) on the one hand and a world or model on the other, and
thus cannot be taken into account without recourse to the world or model whose
truth in one is interested in. However, establishing this link is just the purpose of
the evidence, and the reason why it is assumed to be true in the actual world. So
every problem situation of the latter kind is relative to a complete description of
the actual world, whence the second type of problem situation is only a special
kind of the first one.

There is a peculiarity of demanding to consider a complete description of the
actual world or the total available evidence. The idea behind a rule of accpetance
for rational theory choice is to be a guide in deciding which theory to accept with
regard to a given evidence and a given background knowledge. If the answer to
this question demands of us to collect all the data there are, or even to consider a
complete description of the actual world, then we will never be in the position to
apply this rule, for we will never have collected all the data there are – nor will we
ever possess a complete description of the actual world. So if a rule of acceptance
for rational theory choice is to be meaningfully combined with a principle of total
evidence, then all this principle can demand of us is to consider all the evidence
that ispractically available (at a given point of time). The question is whether
there is not a better strategy for dealing with all this.

I think there is: In assessing a given theoryT relative to some evidenceE
and some background knowledgeB, one has to consider not only the degree of
confirmation ofT by E relative toB, but must also take into account the “good-
ness” of the evidenceE. What the latter consists of, and how it can be measured,
is the topic of the last chapter.
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Chapter 6

Variety and Goodness of the
Evidence

6.1 Introductory Remarks

As already mentioned the measure of confirmationC does not tell us anything
about the overall degree of confirmation of a theory, which additionally depends
on the “goodness” of the evidence. Similarly, the reliability of the rule(R) of
acceptance for rational theory choice of chapter 2 depends not only on the degree
of confirmation, but also on the goodness of the evidence, which I take to consist
in its size and its variety or diversity.

In this chapter a functionG (·, ·, ·) is defined on the set of all evidencesE ,
the set of all theoriesT , and the set of all background knowledgesB, and it is
argued that, for a given evidenceE, G (T, E,B) measures the goodness ofE
relative to theoryT and background knowledgeB in the sense of the formers
size and variety (diversity). I will reason that the refined measure of confirmation
C∗, which is based onC andG, gives an answer to the question why scientists
(should) gather evidence, and that it resolves the ravens paradox. The chapter
ends with some comments on the reliability of truth indicators.

Intuitively, an evidence is the better, the more data it reports about, the more
different classes of facts it consists of, the greater these classes of facts are, the
more detailed or accurate they are described, and the more they differ from each
other. The concept of evidential diversity or variety of evidence thus clearly de-
pends on the notion of a class of facts, in particular, on when two classes of facts
count as different ones, on when they (are big and) described in detail, and on
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when two classes of facts differ more from each other than two other ones. A
class of facts is construed as a set of individuals mentioned in some evidenceE –
respectively a set of constant terms occurring inE – because I take individuals to
be ontologically fundamental.

Whether two classes of facts count as different ones depends on the hypoth-
esis or theory one is concerned with. Therefore determining the goodness of an
evidenceE – by determining the number, size, accuracy, and difference of the
classes of factsE consists of – involves considering the theory in question. The
background knowledgeB has to say something, too, whence the measure of the
goodness of evidenceG is construed as a function with three argument places.
For convenience, a fourth argument place is added for the confirmational domains
the individuals in the various classes of facts are taken from; but again, strictly
speaking the value ofG for givenT , E, andB is a vector whose length equals the
number of confirmational domains ofT andE.

Let us consider why the notion of a class of facts has to be relativised to
the hypothesis or theory under consideration. Relative to a theory that claims to
account for the colour of people’s hair a black haired man and a black haired
woman belong to the same class of facts, whereas a black haired woman and a
red haired woman belong to two different classes of facts. On the other hand,
relative to a theory about the sexual behaviour of humans the black haired man
and the black haired woman belong to two different classes of facts, whereas the
black haired woman and the red haired woman belong to the same class of facts
– the reason being that the colour of humans’ hair is irrelevant for their sexual
behaviour, but relevant for the colour of their hair, whereas the sex of humans is
irrelevant for the colour of their hair, but relevant for their sexual behaviour.

Furthermore, enlarging the data may yield that two individuals which belong
to the same class of facts relative to a given theory in the old evidence belong to
two different classes of facts relative to the same theory in the enlarged evidence,
because the new data may be relevant for this theory. For instance, by taking into
account the age of humans the black haired and the red haired woman of before,
which belong to the same class of facts relative to the theory about the sexual
behaviour in the old evidence, will no longer belong to the same class of facts
relative to this theory, because their age, which is assumed to be very different, is
relevant for and will make a difference in their sexual behaviour.
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6.2 (Maximal) Classes of Facts

A class of facts is construed as a set of individuals mentioned in some evidence
E. The information we have about these individuals, and on which we can rely
in classifying them, is contained inE and the background knowledgeB. Since I
want to classify single individuals, and not wholen-tupels, I have to consider one-
place predicates instead ofn-ary ones. Finally, as is familiar by now, individuals
enter the scencevia their names, the constant terms inCB−repr (E).

Let us first consider ann-ary predicate ‘P (x1, . . . , xn)’, where all variables
‘xi’ are of the same sort. Such a predicate gives rise to2n−1·n one-place predicates

Q1x1 . . . Qi−1xi−1Qi+1xi+1 . . . QnxnP (x1, . . . , xi−1, x, xi+1, . . . , xn) ,

1 ≤ i ≤ n, whereQj is an existential quantifier∃ or a univeral quantifier∀,
1 ≤ j 6= i ≤ n. By rearranging these quantifiers (changing their order) one gets
2n−1 · (n− 1)! · n = 2n−1 · n! one place predicates from ann-ary predicate (some
of them denote the same property, because the order of the quantifiers does not
always matter).

Binding argument places with quantifiers is not the only way to get one-
place predicates fromn-ary ones. In combination with a set of constant terms ‘c1’,
. . ., ‘cm’ of the appropriate sort, ‘P (x1, . . . , xn)’ gives rise tomn−1 · n predicates

P
(
ck1 , . . . , cki−1

, x, cki+1
, . . . , ckn

)
,

1 ≤ i ≤ n, 1 ≤ kj ≤ m, for everyj, 1 ≤ j 6= i ≤ n. Together these two methods
yield ∑

0≤r≤n−1

(
r

n− 1

)
·mr · 2n−1−r

one-place predicates

Q1x1 . . . Qi−1xi−1Qi+1xi+1 . . . QnxnP (t1, . . . , ti−1, xi, ti+1, . . . , tn) ,

1 ≤ i ≤ n, out of onen-ary predicate, whereQj is either∃ or ∀, and ‘tj ’ =
‘xj ’ or ‘ tj ’ ∈ {‘c1’ , . . . , ‘cm’}, 1 ≤ j 6= i ≤ n, whence some (namelyr) of the
quantifiers occur vacuously. By rearranging then − 1 − r quantifiers occurring
non-vacuously one thus gets

∑
0≤r≤n−1

(
r

n− 1

)
·mr · 2n−1−r · (n− 1− r)!



124 CHAPTER 6. VARIETY AND GOODNESS OF THE EVIDENCE

one-place predicates out of one singlen-ary predicate.
A setPR of p ni-ary predicates then gives rise to

∑
1≤i≤p

∑
0≤r≤ni−1

(
r

ni − 1

)
·mr · 2ni−1−r · (ni − r − 1)!

one-place predicates, whereni is the arity of thei-th predicate inPR, 1 ≤ i ≤ p.
Things get more complicated, when one considers different sorts. I will not

show how to get one-placei-predicates ‘Pxi’ out of n-ary k1, . . . , kn-predicates
‘P
(
xk1 , . . . , xkn

)
’ and various sets of constanti-terms. I hope the above is suffi-

cient to show that thiscanbe done, and that the result is afinite set of one-place
i-predicates.

I have argued that whether two individuals belong to the same class of facts
depends on the theory under consideration. This appears in the definition of a
class of facts by taking as the set of predicatesPR the set of predicatesPRess (T )
essentially occurring in theoryT which is to be assessed byE relative toB.1

The restriction to the predicatesessentiallyoccurring inT is necessary, be-
cause otherwise the set of predicatesPR can be chosen arbitrarily (by adding
hypotheses which are logically valid and contain occurrences of the predicates
one wants to have added).

Theratio behind takingPRess (T ) is that if two individualst andt′ (should)
belong to two different classes of facts as far as some theoryT is concerned, then
this must be due to some property oft that t′ does not have. If every property
that can be expressed in terms of the predicates essentially occurring inT is either
possessed by botht andt′ or by none of them, then all properties distinguishing
betweent andt′ are irrelevant forT , whencet andt′ cannot belong to two different
classes of facts as far asT is concerned. So the predicates essentially occurring in
T settle the relevant conceptual space for the classification of the individuals the
evidence is talking about.

In the example of before, the predicates ‘male’ and ‘female’ are among
the predicates essentially occurring in the theory about the sexual behaviour of
humans, whereas the predicates ‘black haired’ and ‘red haired’ do not belong to
the essential vocabulary of this theory. Therefore the black haired man and the
black haired woman can be distinguished by means of the conceptual framework
of this theory, but not by the conceptual framework of the hair colour theory.

All we can rely on in determining the size and the variety – thegoodness– of
evidenceE, is contained inE or the background knowledgeB. In particular, the

1SoPR is empty, ifT is logically determined.
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information that there is a propertyP theoryT is talking about which is possessed
by individual t, but not by individualt′, must be obtained fromE andB. In the
definition of a class of facts, this finds its expression in considering whetherE
andB logically imply Pt, where ‘Px’ ∈ PR1, ‘t’ ∈ CB−repr (E), andPR1 is
the set of one-place predicates the set of predicatesPRess (T ) gives rise to in
combination with the constant terms inCB−repr (E).

Based on these considerations we can now define the notion of a (maximal)
class of facts.

Definition 6.1 ((Maximal) Class of Facts)Let T be a theory, letE be an evi-
dence, letB be a background knowledge, and letDi be a confirmational domain
of T andE (soCB−repr (E) ∩ Ci is not empty). Let

PR = PRess (T ) =
⋂

T ′a`T

PR (T ′) ,

and let ‘P1’ = ‘ P n1
1

(
xk1 , . . . , xkn1

)
’, . . ., ‘Pp’ = ‘ P np

p

(
xk1 , . . . , xknp

)
’ be an enu-

meration of the predicates inPR, wherep = |PR|. LetPRi
1 be the set of all one-

placei-predicates which result from any of the following one-placei-predicates
by rearranging the quantifiers:

Q1x
k1 . . . Ql−1x

kl−1Ql+1x
kl+1 . . . Qnqx

knq Pq

(
tk1 , . . . , tkl−1 , xkl , tkl+1 , . . . , tknq

)
,

1 ≤ l ≤ nq, where ‘tkj ’ = ‘ xkj ’ or ‘ tkj ’ ∈ CB−repr (E) ∩ Ckj
(Ckj

is the set of
constantkj-terms),1 ≤ j 6= l ≤ n, ‘Pq’ ∈ PR, 1 ≤ q ≤ p, and ‘xkl = xi’
(otherwise one does not geti-predicates).

Let PRi
1 be partitioned intoN := 2|PRi

1| setsCi
1, . . . , C

i
N of negated or

unnegated one-placei-predicates such that it holds for every suchCi
j, 1 ≤ j ≤ N ,

and every one-placei-predicate ‘P ’ ∈ PRi
1:

‘P ’ ∈ Ci
j iff ‘ ¬P ’ 6∈ Ci

j.

For each of theseN setsCi
j, let Ci

jk
be thek-th subset ofCi

j in some enumeration
Ci

j1
, . . . , Ci

jN
of its N subsets. Let ‘t’ ∈ CB−repr (E) ∩ Ci.

‘ t’ respectivelyt belongs toCi
jk

iff it holds for every negated or unnegated
one-placei-predicate ‘±P ’ ∈ Ci

jk
, E ∪B ` ±Pt.

‘ t’ respectivelyt belongsmaximallyto Ci
jk

iff

1. ‘t’ belongs toCi
jk

, and



126 CHAPTER 6. VARIETY AND GOODNESS OF THE EVIDENCE

2. there is noCi
l , 1 ≤ l ≤ N , for which there is at least oneCi

lp ⊆ Ci
l ,

1 ≤ p ≤ N , satisfying (1) and such thatCi
jk
⊂ Ci

lp .2

The (maximal) class of i-facts induced byCi
jk

relative toT , E, andB, CF i
jk

, is
given as follows:

CF i
jk

=
{
‘ t’ ∈ CB−repr (E) ∩ Ci : ‘ t’ belongs (maximally) toCi

jk

}
.

The set of all (maximal) classes ofi-factsCF i
jk

induced byCi
jk

relative toT , E,
andB, for anyj andk, 1 ≤ j, k ≤ N , is the set of (maximal) classes ofi-factsT ,
E, andB give rise to.

Let CF i
jk

be the (maximal) class ofi-facts induced byCi
jk

relative toT ,
E, andB, for some set of negated or unnegated one-placei-predicatesCi

jk
, 1 ≤

j, k ≤ N .
CF i

jk
is anon-empty(maximal) class ofi-facts relative toT , E, andB iff

CF i
jk
6= ∅. OtherwiseCF i

jk
is anempty(maximal) class ofi-facts relative toT ,

E, andB.

2It is important to demand that there be no such proper superset ofCi
jk

. Demanding that there
be noCi

lp
with Ci

lp
` Ci

jk
andCi

jk
6` Clp has the consequence that there may be constanti-terms

‘ t’ belonging maximally to more than one set of negated or unnegated one-placei-predicates.
For the definition given, maximal classes ofi-facts are disjoint. For suppose there is a constant

i-term ‘t’ ∈ CB−repr (E) ∩ Ci that belongs maximally to at least two different sets of negated or
unnegated one-placei-predicatesC1 andC2. Then

E ∪B ` ±Pt, for every ‘±P ’ ∈ C1 ∪ C2,

and there is noC ′
1 ⊃ C1 or C ′

2 ⊃ C2 such that the above holds of ‘t’ and C ′
1 respectivelyC ′

2.
As C1 6= C2 there is at least one negated or unnegated one-placei-predicate ‘±P ∗’ with ‘±P ∗’
∈ C1 and ‘±P ∗’ 6∈ C2 (or the other way round). By the above,E ∪B ` ±P ∗t. But then there is
a proper supersetC∗

2 of C2 – namelyC2 ∪ {±P ∗} – such that

E ∪B ` ±Pt, for every ‘±P ’ ∈ C∗
2

– a contradiction.
With ` instead of⊆ this need not be the case, because ‘P ∗’ may be of the form∃x∃yP (x, y, a),

and bothC1 andC2 may contain ‘∃y∃xP (x, y, a)’.
Here the logical consequence relation` between such setsCi

jk
andCi

lp
of negated or unnegated

one-placei-predicates holds iff this relation holds between the sets
{
±Pt : ‘±P ’ ∈ Ci

jk

}
and{

±Pt : ‘±P ’ ∈ Ci
lp

}
, where ‘t’ is a constanti-term.
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6.3 Proper Classes of Facts

Consider the maximal classes of facts

CF = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft ∧Gt} = {a1, . . . , am} , 3

CF1 = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft ∧Gt ∧Q1t} = {b1} ,

. . . ,

CFk = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft ∧Gt ∧Qkt} = {bk} , k ≥ 1,

which are induced by the sets of negated or unnegated predicates

C = {‘Fx’, ‘ Gx’} , C1 = {‘Fx’, ‘ Gx’, ‘ Q1x’} , . . . , Ck = {‘Fx’, ‘ Gx’, ‘ Qkx’} ,

respectively, relative to

T = {∀x (Fx → Gx) ,∀x (P1x → Q1x) , . . . ,∀x (Pkx → Qkx)} ,

E = {Fa1, Ga1, . . . , Fam, Gam, F b1, Gb1, Q1b1, . . . , F bk, Gbk, Qkbk} , and

B = ∅,

because it holds for every ‘t’ ∈ CF :

E ∪B ` Ft, E ∪B ` Gt, and E ∪B 6` Qjt, for everyj, 1 ≤ j ≤ k;

because it holds for every ‘bi’ ∈ CFi, 1 ≤ i ≤ k:

E ∪B ` Fbi, E ∪B ` Gbi, E ∪B ` Qibi, and
E ∪B 6` Qjbi, for everyj, 1 ≤ j 6= i ≤ k;

and because

PR1 = PR = PRess (T ) = {‘Fx’, ‘ Gx’, ‘ P1x’, ‘ Q1x’, . . ., ‘Pkx’, ‘ Qkx’} .

T accounts for (every individual respectively constant term of) the maximal class
of factsCF in E relative toB; andT accounts for (every individual of) every
maximal class of factsCFi in E relative toB, 1 ≤ i ≤ k. However, the informa-
tion about the individulasbi which goes beyond that of their having the properties
F andG is not necessary in order forT to account forbi in E relative toB. It
suffices to know thatbi has propertiesF andG. Let

E ′ = {Fa1, Ga1, . . . , Fam, Gam, F b1, Gb1, . . . , F bk, Gbk} .

3The quotation marks are dropped.
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The only maximal class of factsE ′ gives rise to in combination withT andB is

CF ′ = {‘ t’ ∈ CB−repr (E ′) : E ′ ∪B ` Ft ∧Gt}
= {‘a1’ , . . . , ‘am’ , ‘b1’ , . . . , ‘bk’} = CB−repr (E ′) ,

which is the maximal class of facts induced by the set of negated or unnegated
predicates

C ′ = {‘Fx’, ‘ Gx’} ⊆ PR1 = PR = PRess (T )

relative toT , E ′, andB. As before,T accounts for (every individual of) the
maximal class of factsCF ′ in E ′ relative toB.

In both examples,T can account for all individuals mentioned in the evi-
dence. The only difference between the evidencesE andE ′ is that the redundant4

information of individualbi having propertyQi is missing inE ′. Now suppose
one claims thatT is better confirmed byE than byE ′ (each time relative toB),
because evidenceE is varied, whereas evidenceE ′ is not. The question is: Does
this strike us as counterintuitive? If it doesnot, then the concept of a maximal
class of facts as defined in the preceding section is sufficient.

If, however, it does, then it seems that in determining the variety of evidence
E relative to theoryT and background knowledgeB we have to rely only on that
information about the individualst in the class of factsCF which is necessary in
order forT to account fort in E relative toB. This is exactly what the notion of
a proper class of facts is intended to capture.

Definition 6.2 (Proper Class of Facts)Let T be a theory, letE be an evidence,
let B be a background knowledge, and letDi be a confirmational domain ofT
and E. Let CF i

1, . . . , CF i
n be the classes ofi-facts T , E, andB give rise to,

and letCi
1, . . . , C

i
n be the corresponding sets of negated or unnegated one-place

i-predicates which induceCF i
1, . . . , CF i

n, respectively, relative toT,E, andB.
T accounts forCF i

j in E relative toB, 1 ≤ j ≤ n, iff there is a non-
redundantC ⊆ Ci

j and a (contingent) negated or unnegated one-placei-predicate
‘±P ∗’ ∈ C such that

T ∪B ∪ {±Pt : ‘±P ’ ∈ C \ {‘P ∗’}} ` ±P ∗t,

where such a setC of negated or unnegated one-placei-predicates is non-redundant
iff the set{±Pt : ‘±P ’ ∈ C} is non-redundant, and ‘t’ is a constanti-term.

Let CF i
j be a class ofi-facts relative toT , E, andB. CFi is aproperclass

of i-facts relative toT , E, andB iff
4This information is redundant for the question whetherT accounts forbi in E relative toB,

but, of course, not in general.
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1. T accounts forCF i
j in E relative toB, and

2. there is noCi
k ⊂ Ci

j, 1 ≤ k ≤ n, such thatT accounts forCF i
k in E relative

to B.

In speaking of a (proper or maximal) class ofi-facts I will always mean anon-
empty(proper or maximal) class ofi-facts.

6.4 The Measure of the Goodness of the Evidence

I take the goodness measure to be defined in terms of proper classes ofi-facts.
Nevertheless, if one considers the preceding example as one of two evidences
E andE ′ with the same diversity relative to the theoryT and the background
knowledgeB of the example, the definition may be based on maximal classes of
i-facts.

Definition 6.3 (Goodness of Evidence)Let T be a theory, letE be an evidence,
let B be a background knowledge, and letDi be a confirmational domain ofT
andE. Let CF i

1, . . . , CF i
n be the non-empty proper (or maximal) classes ofi-

factsT , E, andB give rise to, and letCi
1, . . . , C

i
n be the corresponding sets of

negated or unnegated one-placei-predicates which induce the non-empty proper
(or maximal) classes of factsCF i

1, . . . , CF i
n, respectively, relative toT , E, andB.

Thegoodness ofE relative toT andB in Di, G (T, E,B; Di), is given by
the following equation:

G (T,E,B; Di) = 1− 1

log (g (T, E,B; Di) + 1) + 1
,

where

g (T, E,B; Di) =
∑

1≤j 6=k≤n

∣∣∣Ci
j 4 Ci

k

∣∣∣ ·
·

1− 1

log
(∣∣∣CF i

j

∣∣∣+ 1
)

+ log (|CF i
k|+ 1) + 1

 .

G is not called a measure of evidential diversity, because it additionally takes into
account thesizeof the evidence.

BothG andg increase with
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1. the numbern of non-empty proper (or maximal) classes ofi-facts CF i
j ,

1 ≤ j ≤ n;

2. the size of the proper (or maximal) classes ofi-factsCF i
j , i.e. the number∣∣∣CF i

j

∣∣∣ of constanti-terms inCF i
j ;

3. the detailedness or accuracy of the descriptions of the non-empty proper (or
maximal) classes ofi-factsCF i

j , which I take to be proportional to
∣∣∣Ci

j

∣∣∣; and

4. the degree to which the non-empty proper (or maximal) classes ofi-facts
CF i

j and CF i
k differ from each other – the latter being proportional to∣∣∣Ci

j 4 Ci
k

∣∣∣, 1 ≤ j 6= k ≤ n.

The formal conditions of adequacy forG are familiar by now.

Theorem 6.1 (G Is Formally Handy) G (·, ·, ·), G (·, ·, ·) : T × E × B → <, is
non-arbitrary, comprehensible, computable in the limit, and closed under equiva-
lence transformations ofT .

6.5 The Refined Measure of Confirmation

The measure of confirmationC is not sensitive to the size or the diversity of
evidenceE (relative to someT andB), both of which are taken into account by the
goodness measureG. A measure of confirmation which is additionally sensitive
to diversity considerations in this sense, is the refined measure of confirmation
C∗.

Definition 6.4 (Refined Degree of Confirmation)Let T be a theory, letE be an
evidence, letB be a background knowledge, and letDi be a confirmational do-
main ofT andE.

Therefined degree of confirmation ofT byE relative toB in Di, C∗ (T,E,B; Di),
is given by the following equation:

C∗ (T, E,B; Di) = C (T, E,B; Di) ·G (T, E,B; Di) ,

providedC (T, E,B; Di) andG (T,E,B; Di) are defined.

It is straightforward thatC∗ is formally handy and closed under equivalence trans-
formations ofT .
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Observation 6.1 (Formal Handiness and InvEquTransf ofC∗) C∗ (·, ·, ·), C∗ (·, ·, ·) :
T × E × B → <, is non-arbitrary, comprehensible, computable in the limit, and
closed under equivalence transformations ofT .

Definition 6.5 (Sensitivity to Diversity Considerations) LetLO be a power searcher,
letLI be a truth indicator, and letCLO,LI be sensitive to loveliness and likeliness.

A function f (·, ·, ·), f (·, ·, ·) : T × E × B → <, is sensitive to diversity
considerations in the sense ofCLO,LI and G iff it holds for any theoriesT and
T ′, any evidencesE andE ′, and any background knowledgesB andB′, where
X = 〈T,E,B〉 andX ′ = 〈T ′, E ′, B′〉:

1. If CLO,LI (X) = CLO,LI (X ′) 6= 0, then f (X) ≥ f (X ′) iff G (X) ≥
G (X ′),

2. if G (X) = G (X ′) 6= 0, thenf (X) ≥ f (X ′) iff CLO,LI (X) ≥ CLO,LI (X ′),

3. f (X) = 0 iff CLO,LI (X) = 0 or G (X) = 0, and

4. f (X) = 1 iff CLO,LI (X) = 1 andG (X) = 1.

C∗ is sensitive to diversity considerations in the sense ofC = CP,LI andG, which
means that the above holds foreveryconfirmational domainD of T andE, and
everyconfirmational domainD′ of T ′ andE ′.

Observation 6.2 (SensDivCons ofC∗) For any theoriesT andT ′, any evidences
E andE ′, any background knowledgesB andB′, every confirmational domain
D of T andE, and every confirmational domainD′ of T ′ andE ′, whereX =
〈T, E,B; D〉 andX ′ = 〈T ′, E ′, B′; D′〉:

1. If C (X) = C (X ′) 6= 0, thenC∗ (X) ≥ C∗ (X ′) iff G (X) ≥ G (X ′),

2. if G (X) = G (X ′) 6= 0, thenC∗ (X) ≥ C∗ (X ′) iff C (X) ≥ C (X ′),

3. C∗ (X) = 0 iff C (X) = 0 or G (X) = 0, and

4. C∗ (X) = 1 iff C (X) = 1 andG (X) = 1,

providedC (X) andC (X ′) are defined.
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6.6 Why Scientists Gather Evidence

This section deals with the question – posed by Maher (1990) – why scientists
(should) gather evidence. Interestingly, it is of importance thatG is based on
properclasses ofi-facts.

One answer to this question is that scientists (should) gather evidence, be-
cause the “bigger” the evidence, the “better” it is, and, as a consequence, the more
reliable the inferences based on it. In particular, the determination of the degree
of confirmation of some theoryT by E relative to background knowledgeB says
the more about the overall degree of confirmation ofT , the better the evidenceE.

This goodness of the evidenceE (in relation to theoryT and background
knowledgeB) is exactly whatG is intended to measure. Furthermore, the refined
measure of confirmationC∗ differs fromC just in the respect thatC∗ additionally
takes into account the goodness of the evidence.

So if it can be shown that, other things being equal5, the refined degree of
confirmationC∗ (T, E,B) of T by E relative toB is the greater, the bigger the
evidenceE, thenC∗ can explain why scientists (should) gather evidence.

Apart from this it may be argued that it is a material condition of adequacy
anyway that a measure of the goodness of the evidenceG (·, ·, ·) increases withE
getting bigger, i.e. thatG (T, E,B) is the greater, the biggerE, for all theoriesT ,
evidencesE, and background knowledgesB.

What does it mean for an evidenceE1 to be bigger than some evidenceE2?
There are at least the following two answers:

1. EvidenceE1 is bigger than or equally big as evidenceE2 iff E1 ` E2.

2. EvidenceE1 is bigger than or equally big as evidenceE2 iff E2 ⊆ E1.

I will stick to (1), because it is the more general claim (so the claims below
hold also for 2). By the definition ofC∗, it suffices to show thatG satisfies
the mentioned material condition of adequacy in order to show thatC∗ (T, E,B)
is the greater, the bigger the evidenceE, provided the degree of confirmation
C (T, E,B) is held constant.

The goodness measureG satisfies this material condition of adequacy, if it
is based on proper classes ofi-facts, but not, if it is based on maximal classes of
i-facts.

5If C (T,E,B) is held constant.
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Definition 6.6 (To Support Gathering Evidence) A functionf (·, ·, ·), f (·, ·, ·) :
T × E × B → <, supports gathering evidenceiff it holds for every theoryT , any
evidencesE andE ′, and every background knowledgeB:

If E ′ ` E, then f (T,E ′, B) ≥ f (T,E,B) .

Theorem 6.2 (G Supports Gathering Evidence)G (·, ·, ·), G (·, ·, ·) : T × E ×
B → <, supports gathering evidence, if its definition is based on proper classes of
i-facts, and ifCB−repr (E) ⊆ CB−repr (E ′).

More precisely, for every theoryT , any evidencesE andE ′, every back-
ground knowledgeB, and every confirmational domainDi of T andE:

If E ′ ` E and CB−repr (E) ⊆ CB−repr (E ′) ,
then G (T, E ′, B; Di) ≥ G (T, E,B; Di) .

This additional condition is superfluous, ifCB−repr (E) is restricted to those con-
stant terms for which the evidenceE and the background knowledgeB entail that
they are different, i.e. ifE ∪ B ` t1 6= t2, for ‘ti1’, ‘ ti2’ ∈ CB−repr (E). The
latter seems to be in accordance with our intuitive understanding and implicitely
assumed of theB-representative ofC (E) as the set of those constant terms which
represent the individuals the evidence is talking about.

For instance, ifE = {Fa1, . . . , Fan}, n � 1, is enriched toE ′ = {Fa1, . . . , Fan, a1 = a2, . . . , an−1 = an},
then what we learn in going fromE to E ′ is that, after all, we know of just one
single entitity that it is anF . The proviso can also be dropped if it is stipulated
that in describing the data she is observing, the scientist uses a new name, only if
she is investigating a new entity.

Definition 6.7 (Liking Supporters of Gathering Evidence) LetLO be a power
searcher, letLI be a truth indicator, and letCLO,LI be sensitive to loveliness and
likeliness in the sense ofLO andLI.

A functionf (·, ·, ·), f (·, ·, ·) : T ×E×B → <, likes supporters of gathering
evidence in the sense ofCLO,LI iff it holds for every theoryT , any evidencesE
andE ′, and every background knowledgeB:

If E ′ ` E andCLO,LI (T,E,B) = CLO,LI (T, E ′, B), thenf (T,E ′, B) ≥
f (T,E,B).

C∗ likes supporters of gathering evidence in the sense ofC = CP,LI , which means
that the above holds foreveryconfirmational domainDi of T andE, and ofT and
E ′.
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Observation 6.3 (C∗ Likes Supporters of Gathering Evidence) For every the-
ory T , any evidencesE andE ′, every background knowledgeB, and every con-
firmational domainDi of T andE, and ofT ′ andE:

If E ′ ` E, C (T,E,B,Di) = C (T, E ′, B; Di), andCB−repr (E) ⊆
CB−repr (E ′), thenC∗ (T, E ′, B; Di) ≥ C∗ (T,E,B; Di),

providedC (T,E,B; Di) andC (T,E ′, B; Di) are defined, and the definition of
G is based on proper classes ofi-facts.

6.7 The Ravens Paradox

The famous ravens paradox, to which attention has been drawn by Hempel (1945),
can be stated as follows: TheNicod Criterion(NC) says that conjunctive instances
A [a/x]∧C [a/x] of universal hypotheses of the form∀x (A [x] → C [x]) confirm
the latter (‘x’ is a vector of individual variables, and ‘a’ is a vector of constant
terms of the same length). For instance, according to the Nicod Criterion the
statement ‘a is a black raven’,Ra∧Ba, confirms the ravens hypothesis ‘All ravens
are black’,∀x (Rx → Bx).

With the following intuitively plausible condition of adequacy, theEquiva-
lence Condition(EC),

(EC) If a (set of) wff(s)E confirms a (set of) wff(s)T , and if a (set
of) wff(s) T ′ is logically equivalent toT , thenE confirmsT ′.

one arrives at the allegedly paradoxical result that the statement ‘a is neither black
nor a raven’,¬Ba ∧ ¬Ra, confirms the ravens hypothesis.6

Furthermore, if the Nicod criterion (NC) is replaced by theInstance Confir-
mation Condition(ICC),

(ICC) A universal hypothesis∀xA [x] is confirmed by any of its sub-
stitution instancesA [a].

and if one adopts theReversed Consequence Condition(RCC),

6(NC) yields that ‘a is neither black nor a raven’,¬Ba ∧ ¬Ra, confirms ‘All non-black
things are non-ravens’,∀x (¬Bx → ¬Rx), which is logically equivalent to ‘All ravens are black’,
∀x (Rx → Bx). By (EC), ‘a is neither black nor a raven’,¬Ba ∧ ¬Ra, confirms ‘All ravens are
black’,∀x (Rx → Bx).
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(RCC) If a (set of) wff(s)E confirms a (set of) wff(s)T , and if a (set
of) wff(s) E ′ logically impliesE and does not disconfirmT , thenE ′

confirmsT .

then it follows that the statement ‘a is no raven’,¬Ra, and the statement ‘a is
black’, Ba, each confirm the ravens hypothesis.7

Can the account presented here resolve this “paradox”? First, let me note
that we do not observe that something, saya, is a non-black non-raven. What
we observe is thata is, for instance, a white swan. If the evidence contains the
statement ‘a is a white swan’ so thatE = {Sa, Wa}, it follows that the likeliness
of the ravens hypothesis forE relative to an appropriate background knowledge
B (containing the information that no swan is a raven, and that nothing white is
black) is maximal, because

Sa, Wa ` Dev{‘a’} (B) → Dev{‘a’} (T ) ,

i.e.
Sa, Wa ` (Sa → ¬Ra) ∧ (Wa → ¬Ba) → (Ra → Ba) .

But the power ofT = {∀x (Rx → Bx)} for E relative toB = {∀x (Sx → ¬Rx) ,
∀x (Wx → ¬Bx)} is minimal, sinceT does not account fora in E relative toB,
because

∀x (Rx → Bx) ,∀x (Sx → ¬Rx) ,∀x (Wx → ¬Bx) , Sa 6` Wa,

and

∀x (Rx → Bx) ,∀x (Sx → ¬Rx) ,∀x (Wx → ¬Bx) , Wa 6` Sa.

However,T accounts fora in E relative toB, if E = {¬Ra,Wa} or E =
{¬Ra,¬Ba}, for

∀x (Rx → Bx) ,∀x (Wx → ¬Bx) , Wa ` ¬Ra,

and
∀x (Rx → Bx) ,¬Ba ` ¬Ra,

7By (ICC), ‘All ravens are black’,∀x (Rx → Bx), is confirmed by ‘Ifa is a raven, thena is
black’,Ra → Ba. The latter is logically implied by ‘a is no raven’,¬Ra, and by ‘a is black’,Ba,
both of which are assumed to be not disconfirming ‘All ravens are black’,∀x (Rx → Bx).
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whence here both loveliness and likeliness are maximal. Nevertheless, even this
can be handled by the refined measure of confirmationC∗.

Before turning to this let me state what I think is “paradoxical” about the
ravens paradox: It isnot that a statement reporting that something is neither black
nor a raven does not confirm the ravens hypothesis, but that the degree to which
the ravens hypothesis is confirmed by such a statement issmallerthan the degree
to which it is confirmed by a statement reporting that something is a black raven.
In other words, if the evidenceE says, among others, thata is a black raven
and thatb is neither black nor a raven,{Ra,Ba,¬Rb,¬Bb} ⊆ E, then both
E1 = {Ra,Wa} andE2 = {¬Rb,¬B} confirm the ravens hypothesis, butE1 is
confirming it more thanE2.

The reason for this is that there are by far more non-black non-ravens than
there are black ravens, whence the addition ofE1 to the available evidenceE
yields a greater boost in the degree of confirmation of the ravens hypothesis than
does the addition ofE2, provided this information – that there are by far more non-
black non-ravens than there are black ravens – is part of the available evidenceE;
for only with the latter is it the case that the ravens hypothesis is more confirmed
by E1 than byE2. This is exactly what the refined measure of confirmationC∗

yields.
First, the theory in question isT = {∀x (Rx → Bx)}; second, the back-

ground knowledgeB∗ contains, among others, the information that nothing white
is black, that no swan is a raven, that nothing green is black, that no avocado is a
raven, and so on; i.e.

B = {∀x (Wx → ¬Bx) ,∀x (Sx → ¬Rx) ,

∀x (Gx → ¬Bx) ,∀x (Ax → ¬Rx)} ⊆ B∗;

third, the available evidenceE∗ contains data to the effect that there are by far
more non-black non-ravens – as white swans, green avocados, and so on – than
there are black ravens:

E = {Ra1, Ba1, . . . , Rap, Bap, Sb1, Wb1, . . . , Sbq, Wbq,

Ac1, Gc1, . . . , Acr, Gcr} ⊆ E∗, q + r � p.8

Now suppose the degree ofC-confirmation the ravens-hypothesis receives from
‘b is a white swan’,Sb∧Wb, or from ‘c is neither black nor a raven’,¬Rc∧¬Bc,

8Instead of considering white swans and green avocados one can also consider non-black non-
ravens¬Rb1,¬Bb1, . . . ,¬Rbq,¬Rbq, whereq � p. I have chosen this way of dealing with the
ravens paradox, because it is more realistic (we usually do not observe non-black non-ravens, but
infer that the green avocados we had for dinner are – or were – non-black non-ravens).
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is the same as the one it receives from ‘a is a black raven’,Ra ∧ Ba – each time
relative to the same appropriate background knowledge. In other words,

C (T,E ∪ {Sb,Wb} , B) = C (T, E ∪ {Ra,Ba} , B) .9

Still,
C∗ (T,E ∪ {Ra,Ba} , B) > C∗ (T, E ∪ {Sb,Wb} , B) ,

for E ∪ {Ra,Ba} is better evidence relative toT andB thanE ∪ {Sb,Wb}, i.e.

G (T, E ∪ {Ra,Ba} , B) > G (T, E ∪ {Sb,Wba} , B) .

This holds independently of basingG on proper classes of facts or on maximal
classes of facts.

The set of predicatesPR = PRess (T ) is {‘Rx’, ‘ Bx’}, which is the same
as the set of one-place predicatesPR1 generated byPR andCB−repr (E). The
(non-empty and consistent) sets of negated or unnegated one-place predicates are

C1 = {‘Rx’} , C2 = {‘Bx’} , C3 = {‘¬Rx’} , C4 = {‘¬Bx’} ,
C5 = {‘Rx’, ‘ Bx’} , C6 = {‘Rx’, ‘¬Bx’} ,
C7 = {‘¬Rx’, ‘ Bx’} , and C8 = {‘¬Rx’, ‘¬Bx’} ,

which induce the following two non-empty maximal classes of facts relative toT ,
E, andB:

CF5 = {‘ t’ ∈ CB−repr (E) : E ∪B ` Rt ∧Bt} = {a1, . . . , ap} , and
CF8 = {‘ t’ ∈ CB−repr (E) : E ∪B ` ¬Rt ∧ ¬Bt} = {b1, . . . , bq, c1, . . . , cr} .

The maximal classes of factsCF6 andCF7 are empty, because it holds for every
‘ t’ ∈ CB−repr (E):

E ∪B 6` ¬Rt ∧Bt and E ∪B 6` Rt ∧ ¬Bt.

Finally, the proper classes of factsT , E, andB give rise to are the non-empty
maximal classes of facts, forCF5 andCF8 are both accounted for byT in E
relative toB, and there is no set of negated or unnegated predicatesC ⊂ C5 or
C ⊂ C8 such thatT accounts for the class of factsCF induced byC relative to
T , E, andB.

That evidenceE contains data to the effect that there are by far more non-
black non-ravens than there are black ravens means that it mentions by far more

9The case ofE ∪ {¬Rc,¬Bc} is dealt with in the same way.
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white swans or green avocados and so on (or just non-black non-ravens) than black
ravens. That is, the class of factsCF8 consists of much more individuals than the
class of factsCF5. This finds its expression in the numbersp, q, andr, which are
such that

|CF8| = q + r � p = |CF5| .

So we get the following:10

g (T,E,B) = |C1 4 C4| ·
[
1− 1

log (|CF1|+ 1) + log (|CF4|+ 1) + 1

]

= 4 ·
[
1− 1

log (p + 1) + log (q + r + 1) + 1

]
.

Although the ravens hypothesis is assumed to be equallyC-confirmed byE ∪
{Ra,Ba} and byE ∪ {Sb,Wb} (relative to the appropriate background knowl-
edge), it still holds thatE ∪ {Ra,Ba} provides moreC∗-confirmation thanE ∪
{Sb,Wb}. For

C∗ (T,E ∪ {Ra,Ba} , B) > C∗ (T,E ∪ {Sb,Wb} , B)

iff

g (T,E ∪ {Ra,Ba} , B) > g (T, E ∪ {Sb,Wb} , B) ,

which holds just in case

4 ·
[
1− 1

log (1 + p + 1) + log (q + r + 1) + 1

]
>

> 4 ·
[
1− 1

log (p + 1) + log (1 + q + r + 1) + 1

]
.

The latter is the case if and only if

q + r > p,

i.e. if and only if there are more non-black non-ravens than black ravens. (Note,
this means also that the ravens hypothesis islessconfirmed by a black raven than
by a non-black non-raven, if there arefewer non-black non-ravens than black
ravens – which is as it should be.)

10The confirmational domainD of T andE is suppressed, whereD is the domain (variable)
corresponding to the variable ‘x’ and the individual constants ‘ai’, ‘ bj ’, and ‘ck ’.



6.8. RELIABLE INQUIRY 139

6.8 Reliable Inquiry

The topic of the last section is the reliability of measuresfP (·, ·, ·) as indicators
of truth11, whereP is some property of theoriesT in relation to evidencesE and
background knowledgesB.

Let P be any such property that is assumed to be indicating truth in some
modelM∗ = 〈Dom∗, ϕ∗〉, and supposefP (·, ·, ·), fP (·, ·, ·) : T × E × B → <,
is a function such thatfP (T, E,B) measures the degree to which propertyP
is exhibited byT , E, andB, for all theoriesT , evidencesE, and background
knowledgesB.

As argued in chapter 4,P respectively its measurefP cannot be indicative of
truth inM∗, if its applying toT , E, andB is independent of the modelM∗ whose
truth in one is interested in. AlthoughP is a property of theoriesT in relation to
evidencesE and background knowledgesB – and not a relation between theories
and models –P may be indicating truth inM∗ by means of the assumption that
M∗ ∈ mod (E) (orM∗ ∈ mod (E) ∩mod (B)).

Suppose this is the case. ThenfP (·, E, ·) indicates truth in all modelsM∈
mod (E). As the model of interestM∗ is only one among them, the reliability
of P respectivelyfP (·, E, ·) as indicator of truth inM∗ depends on how many
models there are inmod (E). Therefore the valuefP (T,E,B) is not the only
parameter that must be considered in determining the degree to which truth ofT
in M∗ is indicated.

An example illustrating this forLI, P, andC is one from chapter 5.12 Let
E = {Fa1, . . . , Fan} , n ≥ 1, B = ∅, andT = {∀xFx}. Then

C (T,E,B) = P (T,E,B) = LI (T,E,B) = 1.13

In case ofLI, the reliability of the indication of truth inM∗ ∈ mod (E) depends
on the number of individuals mentioned inE.

But the size of the evidenceE (in the sense of|CB−repr (E)|) is not the only
property of importance for the reliability ofLI (T,E,B) as indicator of truth of
T in M∗ relative toB. Let

E = {F1a1, G1a1, . . . Gna1, . . . , F1am, G1am, . . . , Gnam} ,

11More generally, as indicators of some epistemically distinguished property of (sets of) state-
ments in relation to models.

12In case ofP the epistemically distinguished property of theoriesT in relation to modelsM is
not truth ofT in M, but power ofT for M; in case ofC it is the concatenation of power for and
truth inM.

13Once more, the confirmational domain is suppressed.
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E ′ = {F1a1, . . . , Fna1, G1a1, . . . , Gna1, . . . ,

. . . , F1am, . . . , Fnam, G1am, . . . , Gnam} ,

B = ∅, and

T = {∀x (F1x → G1x) , . . . ,∀x (Fnx → Gnx)} .

Then

P (T, E,B) = P (T,E ′, B) = LI (T, E,B) = LI (T, E ′, B) = 1.

Although the number of individuals mentioned inE equals the number of individ-
uals mentioned inE ′, the indication of truth ofT in M∗ ∈ mod (E) ∩mod (E ′)
relative toB by means ofLI (T,E ′, B) is more reliable than that by means of
LI (T,E,B).

The reason for this may be seen in the fact that the set of all possible worlds
or models in whichE ′ is true is a subset of the set of all models in whichE is
true. Put differently, the more models evidenceE excludes as candidates for the
model of interestM∗, the more reliable the indication of truth ofT inM∗ relative
to B by means offP (T,E,B), providedfP (T, E,B) is held constant. As a
consequence, the indication of truth inM∗ by means offP (·, E, ·) is maximally
reliable, ifmod (E) = {M∗}.

If evidenceE is considered as a test of theoryT relative to background
knowledgeB, andT is taken to be the more severely tested byE relative to
B, the less models there are in whichE (andT ) are true, then the above may
be put as follows: The indication of truth ofT in M∗ relative toB by means of
fP (T,E ′, B) is more reliable than by means offP (T, E,B), becauseE ′ provides
a more severe test ofT relative toB thanE. The degree of severity of the test
provided by some evidenceE for some theoryT relative to some background
knowledgeB could then be defined as a function of some measure functionm (·)
defined on the powerset of the set of all models.14

14For reasons discussed below (arbitrariness), I do not pursue the question of how the severity
of a test can be measured in this way. Let me just refer to Mayo (1996), p. 180, where it is argued
that

[p]assing a testT (with [result] e) counts as a good test of or as good evidence for
[hypothesis]H just to the extentH fits e andT is asevere testof H,

and the criterion for severe tests is that

[t]here is a high probability that test procedureT would not yield such a passing
result, ifH is false[,]
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Under the assumption that evidenceE is true in the model of interestM∗,
one may argue thatE excludes the more modelsM as candidates forM∗, the
moreE is similar to a (correct and) complete descriptionDM∗ of M∗, or the
moremod (E) is similar toM∗. Given this, an alternative of this position says
that the indication of truth inM∗ by means offP (·, E, ·) is the more reliable, the
greater the similarity ofE to a (correct and) complete descriptionDM∗ of M∗

(the greater the similarity ofmod (E) toM∗).15

However, one may also be of the opinion that the indication of truth ofT in
M∗ by means offP (T, E ′, B) is more reliable than that by means offP (T, E,B),
because evidenceE ′ is (not smaller and) more varied than evidenceE, i.e. because
E ′ is better thanE.

The question is whether these two positions – namely (1) exclusion of many
models as candidates forM∗ by E, and (2) goodness (size plus diversity) ofE –
coincide.

Suppose the first position is right. In order to get a measure for the reliability
of fP (·, E, ·) as indicator of truth inM∗, one has to measure how many models
M there are excluded byE as candidates forM∗, or – in terms of verisimilitude
and under the assumption thatM∗ ∈ mod (E) – how similarE is to a (correct
and) complete description ofM∗.

By assumption, every evidenceE is true inM∗, whence every (correct and)
complete descriptionDM∗ is an extension ofE in the sense thatDM∗ logically
impliesE. But then it either holds that (i) the reliability offP (·, E, ·) as indicator
of truth inM∗ coincides with the logical content ofE, because the wayE is made
logically stronger respectively logically weaker does not matter; or else (ii) one is
in need of some (correct and) complete descriptionDM∗ of M∗ so that one can
determine the similarity ofE to DM∗.

In the first case the question is how such a measure could look like. To take
some measure functionm (·) defined on the powerset of the set of all models, and
to define the reliability offP (·, E, ·) as indicator of truth inM∗ ∈ mod (E) as
a function ofm (·) is problematic. There are uncountably many measuresm (·),
but no criterion for choosing the right one, whence defining such a functionnon-
arbitrarily seems to be impossible.

where such a passing result is

one that accords at least as well withH ase does.

15For the topic of verisimilitude, truthlikeness, or likeness to truth cf. Kuipers (1987), Niiniluoto
(1987), and Oddie (1986); for a survey article see Niiniluoto (1998).
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So one has to be more modest, and be satisfied with a comparative concept
of reliability. The indication of truth inM∗ by means offP (·, E ′, ·) can then
be defined to be more reliable than that by means offP (·, E, ·), if evidenceE ′

logically implies evidenceE. However, a consequence of this is that hardly any
two functionsfP (·, E, ·) andfP (·, E ′, ·) can be compared with respect to their
reliability as truth indicators. Furthermore, theorem 6.2 tells us that every such
ordinal measure is inferior to the goodness measureG, providedCB−repr (E) ⊆
CB−repr (E ′).

In the second case the problem is that we do not have a (correct and) com-
plete descriptionDM∗ of M∗ – at least, ifM∗ is some model of the actual world
– whence we will never be in the position to determine the reliability offP (·, E, ·)
as indicator of truth inM∗ ∈ mod (E). Moreover, if we had such a (correct and)
complete descriptionDM∗ ofM∗ (in LPL1=), then every indicator of truth inM∗

would be superfluous, for in this case we would know how the truth, the whole
truth, and nothing but the truth inM∗ looks like.

I conclude that even if the similarity ofE to DM∗, for some (correct and)
complete descriptionDM∗ of M∗ is the reason for the reliability offP (·, E, ·) as
indicator of truth inM∗, this line of argument is not worth being pursued, because
we simply do not have a (correct and) complete descriptionDM∗ of the model of
interestM∗ – and if we did, we would not be in need of an indicator of truth in
M∗.

Furthermore, the only practically applicable approach to reliability of truth
indicators based on the exclusion-of-many-models-claim – namely to identify it
with the logical content ofE – is not only not promising, but is also inferior to the
goodness measureG.

Thus the second approach – reliability offP (T,E,B) as indicator of truth
of T in M∗ ∈ mod (E) relative toB is goodness ofE relative toT andB – is
superior to the first one, because it does not presuppose a (correct and) complete
descriptionDM∗ of M∗ (respectively the model of interestM∗ itself), and be-
cause it takes into account theratio behind the first approach in the sense thatG
supports gathering evidence.



Chapter 7

In Conclusion

Concerning the combination of likeliness and loveliness, let me remark that the
epistemically distinguished properties (of theories in relation to worlds or models)
behind them are truth for the former, and power for the latter. For long, truth
has been consideredthe epistemically distinguished property. This monograph
should, among others, show that this exclusive focus on truth is not warranted.
Having true theories is nice, but it is not all we want our theories to be – the
theories we aim at should also be informative.

Finally, some prospects: As mentioned in chapter 3, confirmation has been
a hot topic in the philosophy of science for more than a half century; but despite
great efforts, there is still no generally accepted definition of (degree of) confir-
mation. This may be surprising. However, another observation strikes me as even
more surprising: To the best of my knowledge, no-one has ever dealt with – let
alone answered – the question what confirmation is good for, why we should stick
to theories that are well confirmed. There are many theories of confirmation, but
– as far as I know – there is no argument to the effect that confirmation is worth
being pursued. Until now, there is no justification of confirmation!

One obvious reply is that confirmation by evidence from the actual world is
indicative of truth in the actual world. However, if I am right, this is not the only
feature we are after. Confirmation should not only lead to true theories (those are
easy to obtain); it should lead to theories that are both true and informative.

A future project I am working on is therefore to investigate whether (prob-
abilistic and non-probabilistic) theories of confirmation can be justified. In my
opinion, the framework best suited for dealing with this question is formal learn-
ing theory (cf. Kelly 1996): Roughly speaking, the idea is to consider the long-run
behaviour of a method (of discovery or assessment) that obeys the methodological
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recommendations of a given theory of confirmation. The question is whether and
in which sense such a method isreliable (for which class of hypotheses does the
method converge to the correct answer; and in which sense of convergence does it
do so?). For the approach presented here, the questions concern the performance
of a lovely learner, a likely learner, and a learner which is sensitive to loveliness
and likeliness.1

1I am grateful to Vincent F. Hendricks for his suggestions concerning this justification of con-
firmation.



Appendix A

Proofs for Chapter 1

A.1 Proof of Theorem 1.1

Theorem A.1 (Domains of Proper Investigation)Let T be a scientific theory
with domainDomT = 〈D1, . . . , Dr〉 andDk1 , . . . , Dkn as its domains of proper
investigation,1 ≤ kl ≤ r, for everyl, 1 ≤ l ≤ n.

Then there is at least one finite axiomatizationAT of T with at least one
occurrence of akl-variable, and without occurrences ofkl-constants, for every
l, 1 ≤ l ≤ n.

Proof.
Let T be a theory with domainDomT = 〈D1, . . . , Dr〉 andDk1 , . . . , Dkn as its
domains of proper investigation,1 ≤ kl ≤ r, for everyl, 1 ≤ l ≤ n. This means
that for everyDkl

there is at least one finite axiomatizationAkl
of T with at least

one essential occurrence of akl-variable, and without occurrences ofkl-constants.
Obviously, theAkl

are not logically determined, for otherwise they cannot
contain essential occurrences of a variable.

ConsiderAk1. From the interpolation-theorem (and the compactness of
PL1 =) it follows that there is at least one finite set of wffsI1 such that

Ak1 ` I1 ` Ak2 , C (I1) ⊆ C (Ak1) ∩ C (Ak2) .

As Ak2 ` Ak1, it follows thatAk1 a` I1 a` Ak2, which means thatI1 is a finite
axiomatization ofT with at least one essential occurrence of ak1-variable, with
at least one essential occurrence of ak2-variable, and without occurrences ofk1-
or k2-constants. In particular, this means thatI1 ` Ak3 .

145
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A second application of the interpolation theorem (in combination with the
compactness ofPL1 =) yields the existence of a finite set of wffsI2 with

I1 ` I2 ` Ak3 , C (I2) ⊆ C (I1) ∩ C (Ak3) ⊆ C (Ak1) ∩ C (Ak2) ∩ C (Ak3) ,

which is a finite axiomatization ofT with at least one essential occurrence of a
k1-variable, with at least one essential occurrence of ak2-variable, with at least
one essential occurrence of ak3-variable, and without occurrences ofk1-, k2-, or
k3-constants, becauseAk3 ` I1.

By continuing in this manner one arrives (aftern− 1 steps) at a finite set of
wffs In−1 with

In−2 ` In−1 ` Akn , C (In−1) ⊆ C (In−2) ∩ C (Akn) ⊆
⋂

1≤l≤n

C (Akl
) ,

which is a finite axiomatization ofT with at least one essential occurrence of akl-
variable, and without occurrences ofkl-constants, for everyl, 1 ≤ l ≤ n, because
Akn ` In−2. 2

A.2 Proof of Theorem 1.2

Theorem A.2 (Strict Probabilities) Let p (·), p (·) : Lprop → <, be a strict (un-
conditional) probability, and letp (· | ·) be the conditional probability based on
p (·). Then it holds for any wffsA, B ∈ Lprop with p (A) > 0:

p (B | A) = 1, only if A ` B.

Proof.
Let p (·), p (·) : Lprop → <, be a strict (unconditional) probability, and letp (· | ·)
be the conditional probability based onp (·). Let A, B ∈ Lprop with p (A) > 0,
and supposep (B | A) = 1, i.e. p (B ∧ A) = p (A), which holds iff

p (B ∧ A) + p (¬A) = 1

iff

p ((B ∧ A) ∨ ¬A) = 1 A ∧B ` ¬¬A

only if

` (B ∧ A) ∨ ¬A p (·) is strict

iff

A ` B.

2



Appendix B

Proofs for Chapter 2

B.1 Proof of (Non-) Arbitrariness Claim

Application B.1 (Arbitrariness)

1. Every set of Bayesian relevance measures is arbitray; in particular,
this holds ofd, r, l, s, andc.
3. The uncountable setF of functionsfa (·), fa (·) : <+

0 → <, with

fa (x) = xa, x ∈ <+
0 = {x : x ∈ <, x ≥ 0} ,

a ∈ <+ = {x : x ∈ <, x > 0} ,

is not arbitrary.

Proof.
1. It suffices to construct two probability spaces with four events, where the back-
ground knowledgeK is set to>, H is some hypothesis, andE is some evidence.
Let

p1 (H ∧ E) = 0.5, p1 (¬H ∧ E) = 0.25, p1 (H ∧ ¬E) = p1 (¬H ∧ ¬E) = 0.125,

and let

p2 (H ∧ E) = 0.25, p2 (¬H ∧ E) = 0.5, p2 (H ∧ ¬E) = p2 (¬H ∧ ¬E) = 0.125.

p1 (H | E) =
16

24
>

15

24
= p1 (H) and p1 (¬H | E) =

8

24
<

9

24
= p1 (¬H) ,
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whence it holds for every set of relevance measuresm:

mp1 (H, E) > 0 > mp1 (¬H, E) .

p2 (H | E) =
8

24
<

9

24
= p2 (H) and p2 (¬H | E) =

16

24
>

15

24
= p2 (¬H) ,

whence it holds for every set of relevance measuresm:

mp2 (H, E) < 0 < mp2 (¬H, E) .

3. There are nox, y ∈ <+
0 anda, b ∈ <+ such that

fa (x) < fa (y) and fb (y) < fb (x) ,

since it holds for anyx, y ∈ <+
0 and everya ∈ <+:

x < y iff xa < ya.

2

B.2 Calculations

B.2.1 Calculation 1

hup (T,E,B) > 0

iff

p (E | T ∧ (B − E)) > p (E | B − E) and p (E | B) > p (E | B − E)

or

p (E | T ∧ (B − E)) < p (E | B − E) and p (E | B) < p (E | B − E) ,

providedp (T ∧ (B − E)) > 0, 1 > p (E | B − E) > 0, andp (B) > 0.

Calculation:

hup (T, E,B) = p (T | (B − E) ∧ E) · p (E | B) +

+p (T | (B − E) ∧ ¬E) · p (¬E | B)− p (T | B − E)
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is positive, i.e.> 0, iff

p (T ∧ (B − E) ∧ E) · p (E | B)

p ((B − E) ∧ E)
+

+
p (T ∧ (B − E) ∧ ¬E) · p (¬E | B)

p ((B − E) ∧ ¬E)
>

p (T ∧ (B − E))

p (B − E)

iff

p (E | T ∧ (B − E)) · p (E | B)

p (E | B − E)
+

+p (¬E | T ∧ (B − E)) · p (¬E | B)

p (¬E | B − E)
> 1

iff

p (E | T ∧ (B − E)) ·
·p (E | B) · (1− p (E | B − E)) +

+ (1− p (E | T ∧ (B − E))) ·
· (1− p (E | B)) · p (E | B − E) > p (E | B − E) ·

· (1− p (E | B − E))

iff

p (E | T ∧ (B − E)) ·
· (p (E | B)− p (E | B − E)) > p (E | B − E) ·

· (p (E | B)− p (E | B − E))

iff

p (E | T ∧ (B − E)) > p (E | B − E) and p (E | B) > p (E | B − E)

or

p (E | T ∧ (B − E)) < p (E | B − E) and p (E | B) < p (E | B − E) .

Note that this result holds also in case ‘p (B − E)’ is replaced by ‘p (B o E)’.

B.2.2 Calculation 2

p2 (T | (B2 o E) ∧ E) = p1 (T | (B1 o E) ∧ E) ,

providedB1 o E a` B2 o E, p2 (E | B2) > 0, p2 ((B2 o E) ∧ E) > 0, and
p1 ((B1 o E) ∧ E) > 0.
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Calculation:

p2 (T | (B2 o E) ∧ E) =
p2 (T ∧ (B2 o E) ∧ E)

p2 ((B2 o E) ∧ E)

=
p1 (T ∧ (B1 o E) ∧ E | E) · p2 (E | B2) +

p1 ((B1 o E) ∧ E | E) · p2 (E | B2) +

+p1 (T ∧ (B1 o E) ∧ E | ¬E) · p2 (¬E | B2)

+p1 ((B1 o E) ∧ E | ¬E) · p2 (¬E)

JC, and B1 o E a` B2 o E 1

=
p1 (T ∧ (B1 o E) ∧ E | E) · p2 (E | B2)

p1 ((B1 o E) ∧ E | E) · p2 (E | B2)

= p1 (T | (B1 o E) ∧ E) ,

where Jeffrey conditionalisation is replaced by strict conditionalisation, ifp1 (E) =
1, and sop2 (E) = p2 (E | B2) = 1.

In the same way one shows that

p2 (T | (B2 o E) ∧ ¬E) = p1 (T | (B1 o E) ∧ ¬E) ,

providedB1 o E a` B2 o E, p2 (¬E | B2) > 0, p2 ((B2 o E) ∧ ¬E) > 0, and
p1 ((B1 o E) ∧ ¬E) > 0, where Jeffrey conditionalisation is replaced by strict
conditionalisation, ifp1 (¬E) = 1, and sop2 (¬E) = p2 (¬E | B2) = 1.

Note that this result holds also for counterfactual Jeffrey conditionalisation,
i.e. if ‘p2 (±E | B2)’ is replaced by ‘p2 (±E | B2 o E)’.

B.2.3 Calculation 3

p2 (T | B2 o E) =
p1 (T | B1 o E)

p1 (E) · (1− p1 (E))
·

· [p1 (E | T ∧ (B1 o E)) · (p2 (E | B2)− p1 (E)) +

+p1 (E) · (1− p2 (E | B2)] ,

providedB1 oE a` B2 oE, p1 (E | B1 o E) = p1 (E), p2 (B2) > 0, p2 (B2 o E) >
0, p1 (B1 o E) > 0, and1 > p1 (E) > 0.

1The reader should be so kind to read this as one single fraction over two lines.
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Calculation:
If p1 (T ∧ (B1 o E)) > 0, then

p2 (T | B2 o E) =
p2 (T ∧ (B2 o E))

p2 (B2 o E)

=
p1 (T ∧ (B1 o E) | E) · p2 (E | B2) +

p1 (B1 o E | E) · p2 (E | B2) +

+p1 (T ∧ (B1 o E) | ¬E) · p2 (¬E | B2)

+p1 (B1 o E | ¬E) · p2 (¬E | B2)

JC, and B1 o E a` B2 o E 2

=
p1 (T ∧ (B1 o E))

p1 (B1 o E)
·

·
(

p1 (E | T ∧ (B1 o E)) · p1 (¬E) · p2 (E | B2) +

p1 (E | B1 o E) · p1 (¬E) · p2 (E | B2) +

+p1 (¬E | T ∧ (B1 o E)) · p1 (E) · p2 (¬E | B2)

+p1 (¬E | B1 o E) · p1 (E) · p2 (¬E | B2)

)

=
p1 (T | B1 o E)

p1 (E) · (1− p1 (E))
·

· [p1 (E | T ∧ (B1 o E)) · p1 (¬E) · p2 (E | B2) +

+p1 (¬E | T ∧ (B1 o E)) · p1 (E) · p2 (¬E | B2)]

p1 (E | B1 o E) = p1 (E)

=
p1 (T | B1 o E)

p1 (E) · (1− p1 (E))
·

· [p1 (E | T ∧ (B1 o E)) · (p2 (E | B2)− p1 (E)) +

+p1 (E) · (1− p2 (E | B2)]

which is equal to

p1 (T | B1 o E) · p2 (E | B2)

p1 (E)
,

if T ` E. In casep1 (T ∧ (B1 o E)) = 0, p2 (T | B2 o E) = 0.
If counterfactual Jeffrey conditionalisation is used and ‘p2 (E | B2)’ is re-

2The reader should be so kind to read this and the following as one single fraction over two
lines.
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placed by ‘p2 (E | B2 o E)’, calculation 3 yields that

p2 (T | B2 o E) =
p1 (T | B1 o E)

p1 (E) · (1− p1 (E))
·

[p1 (E | T ∧ (B1 o E)) · (p2 (E | B2 o E)− p1 (E)) +

p1 (E) · (1− p2 (E | B2 o E))] ,

which is greater thanp1 (T | B1 o E) just in case

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2 o E) > p1 (E | B1 o E)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2 o E) < p1 (E | B1 o E) ;

andp2 (T | B2 o E) = p1 (T | B1 o E) iff

p1 (E | T ∧ (B1 o E)) = p1 (E | B1 o E) or p2 (E | B2 o E) = p1 (E | B1 o E) .

B.2.4 Calculation 4

Suppose
B1 o E a` B2 o E and p1 (E | B1 o E) = p1 (E) .

If p2 (T | B2 o E) is the result of Jeffrey conditioning onE, then

hup1 (T,E,B1) > hup2 (T,E,B2)

iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p1 (E | B1) > p1 (E | B1 o E)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p1 (E | B1) < p1 (E | B1 o E) ,

provided

p2 (B2) > 0, p2 ((B2 o E) ∧ E) > 0, p2 ((B2 o E) ∧ ¬E) > 0,
p1 (B1 o E) > 0, 1 > p1 (E) > 0, and p1 (T | B1 o E) > 0.

Calculation:
Let

x :=
p1 (E | T ∧ (B1 o E)) · (p2 (E | B2)− p1 (E)) + p1 (E) · (1− p2 (E | B2))

p1 (E) · (1− p1 (E))
.
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Then

p1 (T | (B1 o E) ∧ E) · p1 (E | B1) +

+p1 (T | (B1 o E) ∧ ¬E) ·
·p1 (¬E | B1)− p1 (T | B1 o E) > p2 (T | (B2 o E) ∧ E) · p2 (E | B2) +

+p2 (T | (B2 o E) ∧ ¬E) ·
·p2 (¬E | B2)− p2 (T | B2 o E)

iff

p1 (T | (B1 o E) ∧ E) · p1 (E | B1) +

+p1 (T | (B1 o E) ∧ ¬E) ·
·p1 (¬E | B1)− p1 (T | B1 o E) > p1 (T | (B1 o E) ∧ E) · p2 (E | B2) +

+p1 (T | (B1 o E) ∧ ¬E) ·
·p2 (¬E | B2)− p1 (T | B1 o E) · x
B1 o E a` B2 o E,

calculations 2 and 3

iff

p1 (T | (B1 o E) ∧ ¬E) ·
· (p1 (¬E | B1)− p2 (¬E | B2)) +

+p1 (T | B1 o E) · (x− 1) > p1 (T | (B1 o E) ∧ E) ·
· (p2 (E | B2)− p1 (E | B1)) .

The latter holds just in case

x− 1 > (p2 (E | B2)− p1 (E | B1)) ·

·
(

p1 (E | T ∧ (B1 o E))

p1 (E | B1 o E)
−

−p1 (¬E | T ∧ (B1 o E))

p1 (¬E | B1 o E)

)
iff

p1 (E | T ∧ (B1 o E)) ·
1·

· (p2 (E | B2)− p1 (E)) +

·p1 (E) ·
+p1 (E) · (1− p2 (E | B2))

· (1− p1 (E))
−
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−p1 (E) · (1− p1 (E))

p1 (E) · (1− p1 (E))
> (p2 (E | B2)− p1 (E | B1)) ·

·p1 (E | T ∧ (B1 o E))− p1 (E)

p1 (E) · (1− p1 (E))

p1 (E | B1 o E) = p1 (E) 3

iff

(p1 (E | T ∧ (B1 o E))− p1 (E)) ·
· (p2 (E | B2)− p1 (E)) > (p2 (E | B2)− p1 (E | B1)) ·

· (p1 (E | T ∧ (B1 o E))− p1 (E)) ,

which holds if and only if

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p1 (E | B1) > p1 (E | B1 o E)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p1 (E | B1) < p1 (E | B1 o E) .

B.3 Proof of Theorem 2.1

Theorem B.1 (NecSuff)Given

B1 o E a` B2 o E, p1 (E | B1 o E) = p1 (E) , and p1 (T | B1 o E) > 0,

the equality
p1 (T | B1 o E) = p2 (T | B2 o E)

is necessary and sufficient for the equivalence

hup2 (T, E,B2) > hup1 (T, E,B1)

iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2) > p1 (E | B1)

or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2) < p1 (E | B1) ,

provided
p2 (B2) > 0, p2 ((B2 o E) ∧ E) > 0,
p2 ((B2 o E) ∧ ¬E) > 0, and 1 > p1 (E) > 0.

3The reader should be so kind to read this as one single fraction over three lines.
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With counterfactual Jeffrey condition this means that

p1 (E | T ∧ (B1 o E)) = p1 (E | B1 o E) or p1 (E | B1 o E) = p2 (E | B2 o E)

is necessary and sufficient for this equivalence.

Proof.
It is easily seen that the equation

p1 (T | B1 o E) = p2 (T | B2 o E)

is sufficient for the above equivalence. That it is also necessary is seen as follows.
Suppose the equivalence holds. Now

p2 (T | (B2 o E) ∧ E) · p2 (E | B2) +

+p2 (T | (B2 o E) ∧ ¬E) ·
·p2 (¬E | B2)− p2 (T | B2 o E) > p1 (T | (B1 o E) ∧ E) · p1 (E | B1) +

+p1 (T | (B1 o E) ∧ ¬E) ·
·p1 (E | B)− p1 (T | B1 o E)

iff

p1 (T | (B1 o E) ∧ E) ·
· (p2 (E | B2)− p1 (E | B1)) +

+p1 (T | (B1 o E) ∧ ¬E) ·
· (p2 (¬E | B2)− p1 (¬E | B1)) > p2 (T | B2 o E)−

−p1 (T | B1 o E)

calculation 2

iff
p1 (E | T ∧ (B1 o E))

p1 (E | B1 o E)
·

· (p2 (E | B2)− p1 (E | B1)) >
p1 (¬E | T ∧ (B1 o E))

p1 (¬E | B1 o E)
·

· (p2 (E | B2)− p1 (E | B1)) +

+
p2 (T | B2 o E)

p1 (T | B1 o E)
− 1,

which, by assumption, holds just in case

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) and p2 (E | B2) > p1 (E | B1)
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or

p1 (E | T ∧ (B1 o E)) < p1 (E | B1 o E) and p2 (E | B2) < p1 (E | B1) .

Since

p1 (E | T ∧ (B1 o E))

p1 (E | B1 o E)
>

p1 (¬E | T ∧ (B1 o E))

p1 (¬E | B1 o E)

iff

p1 (E | T ∧ (B1 o E)) > p1 (E | B1 o E) ,

the following has to hold:

p1 (T | B1 o E) = p2 (T | B2 o E) .

Finally, counterfactual Jeffrey conditionalisation yields that

p2 (T | B2 o E) = p1 (T | B1 o E)

iff

p1 (E | T ∧ (B1 o E)) ·
· (p2 (E | B2 o E)− p1 (E)) +

·p1 (E) · (1− p2 (E | B2 o E)) = p1 (E) · (1− p1 (E))

calculation 3

iff

p1 (E | T ∧ (B1 o E)) ·
· (p2 (E | B2 o E)− p1 (E)) = p1 (E) · (p2 (E | B2 o E)− p1 (E))

iff

p1 (E | T ∧ (B1 o E) = p1 (E | B1 o E) or p1 (E | B1 o E) = p2 (E | B2 o E) .

2
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Proofs for Chapter 3

C.1 Proof of Theorem 3.1

Theorem C.1 (Power Searcher and Truth Indicator) Let T , E, and B range
over wffs ofLprop (instead of theories, evidences, and background knowlegdes, re-
spectively, which are sets of wffs ofLPL1=) in the definitions of searching power
and indicating truth. Then it holds for every contingent wffE and every strict
(unconditional) probabilityp (·):

1. p (· | E ∧ ·) is indicating truth inmod (E).

2. i (·, E, ·) := 1− p (· ∧ · | ¬E) is searching power formod (E).

3. i′ (·, E, ·) := 1 − p (· | ¬E ∧ ·) is searching power formod (E), if it is
defined, i.e. if¬E ∧B 6` ⊥.

Proof.
Let T , T ′, E, andB be four wffs ofLprop, E being contingent, and letp (· | ·) be
the conditional probability based on some strict (unconditional) probabilityp (·).
So0 < p (E) , p (¬E) < 1. SupposeE ∧B 6` ⊥, whencep (E ∧B) > 0.
(1.1)

p (T | E ∧B) =
p (T ∧ E ∧B)

p (E ∧B)
≥ 0.

(1.2) If E ∧B ` T , then

p (T | E ∧B) =
p (T ∧ E ∧B)

p (E ∧B)
=

p (E ∧B)

p (E ∧B)
= 1.

157
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(1.3) If T ′ ` T , then

p (T ′ | E ∧B) =
p (T ′ ∧ E ∧B)

p (E ∧B)
≤ p (T ∧ E ∧B)

p (E ∧B)
= p (T | E ∧B) .

(2.1)
i (T,E,B) = 1− p (T ∧B | ¬E) ≥ 1− 1 = 0.

(2.2) If T ∧B ` E, thenp (T ∧B ∧ ¬E) = 0, whence

i (T, E,B) = 1− p (T ∧B | ¬E) = 1− p (T ∧B ∧ ¬E)

p (¬E)
= 1− 0 = 1.

(2.3) If T ′ ` T , thenp (T ′ ∧B | ¬E) ≤ p (T ∧B | ¬E), whence

i (T ′, E, B) = 1− p (T ′ ∧B | ¬E) ≥ 1− p (T ∧B | ¬E) = i (T,E,B) .

(3) is shown in a similar way. 2

C.2 Proof of Theorem 3.2

Theorem C.2 (Truth Indicating Power Searchers Are Constant)Let E be an
evidence, and letf (·, E, ·), f (·, E, ·) : T × E × B → <, be searching power for
mod (E).

If f (·, E, B) is indicating truth inmod (E), then it holds for every theoryT
and every background knowledgeB with E ∪B 6` ⊥: f (T, E,B) = 1.

Proof.
Let E be an evidence fromD1, . . . , Dk, and letf (·, E, ·), f (·, E, ·) : T × E ×
B → <, be searching power formod (E). Supposef (·, E, ·) is indicating truth in
mod (E), and letB be a background knowledge withE ∪B 6` ⊥.

E is contingent, for otherwise it cannot contain an essential occurrence of
ani-constant. LetTE be defined as follows:

TE :=
{
∃x1 . . . ∃xkA

[
x1/a1, . . . , xk/ak

]
: A ∈ E

}
,

where

∃x1 . . . ∃xkA
[
x1/a1, . . . , xk/ak

]
:=

= ∃x1
1 . . . ∃x1

l1
. . . ∃xk

1 . . . ∃xk
lk
A
[
x1

1/a
1
1, . . . , x

1
l1
/a1

l1
, . . . , xk

1/a
k
1, . . . , x

k
lk
/ak

lk

]
,



C.3. PROOF OF THEOREM 3.3 159

andai
1, . . . , a

i
li

are alli-constants essentially occurring inE, for everyi, 1 ≤ i ≤
k. TE is a theory withD1, . . . , Dk as its domains of proper investigation, and such
that

TE ∪B 6` ⊥, and E ∪B ` TE,

whencef (TE, E, B) = 1.
Let T be any theory withT ∪ TE ∪ B 6` ⊥. As T ∪ TE ` TE; asf (·, E, ·)

is indicating truth inmod (E); and asf (·, E, ·) is searching power formod (E),

f (T ∪ TE, E, B) ≤ f (TE, E, B) = 1, and
f (T ∪ TE, E, B) ≥ f (TE, E, B) = 1,

i.e. f (T ∪ TE, E, B) = 1. In the same way it follows fromT ∪ TE ` T that

f (T, E,B) ≥ f (T ∪ TE, E, B) = 1, and
f (T, E,B) ≤ f (T ∪ TE, E, B) = 1,

i.e. f (T, E,B) = 1. 2

C.3 Proof of Theorem 3.3

Theorem C.3 (SensSimplCons and Unimpressability)Let f (·, ·, ·), f (·, ·, ·) :
T × E × B → <, be a function.

1. If f is sensitive to simplicity considerations in the very strong sense, thenf
is sensitive to simplicity considerations in the strong sense.

2. If f is sensitive to simplicity considerations in the strong sense, thenf is
sensitive to simplicity considerations in the weak sense.

3. If f is sensitive to simplicity considerations in the weak sense, thenf cannot
be impressed by redundancies.

Proof.
(1) Let f (·, ·, ·), f (·, ·, ·) : T × E × B → <, be a function that is sensitive
to simplicity considerations in the very strong sense. Then there is at least one
power searcherLO such that it holds for any theoriesT andT ′, every evidence
E, and every background knowledgeB:

If T ′ ` T andLO (T,E,B) = LO (T ′, E, B), thenf (T, E,B) ≥
f (T ′, E, B).
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Let T be a theory, letE be an evidence, letB be a background knowledge, and
supposeh ∈ T is aLO-superfluous part ofT for E andB, i.e.

LO (T \ {h} , E, B) = LO (T,E,B) .

As T ` T \ {h}, and asf is sensitive to simplicity considerations in the very
strong sense,

f (T \ {h} , E, B) ≥ f (T, E,B) .

So there is at least one power searcherLO such that it holds for every theoryT ,
every evidenceE, and every background knowledgeB:

If h is aLO-superfluous part ofT for E andB, thenf (T \ {h} , E, B) ≥
f (T,E,B),

which just means thatf is sensitive to simplicity considerations in the strong
sense.

(2) Let f (·, ·, ·), f (·, ·, ·) : T × E × B → <, be a function that is sensitive to
simplicity considerations in the strong sense. Then there is at least one power
searcherLO such that it holds for every theoryT , every evidenceE, every back-
ground knowledgeB, and every wffh ∈ T :

If h is aLO-superfluous part ofT for E andB, thenf (T \ {h} , E, B) ≥
f (T,E,B),

i.e. which is such that it holds for every theoryT , every evidenceE, every back-
ground knowledgeB, and every wffh ∈ T :

If LO (T \ {h} , E, B) = LO (T,E,B), thenf (T \ {h} , E, B) ≥
f (T,E,B).

Let T be a theory, and supposeh ∈ T is aLO-superfluous part ofT . Then it
holds for every evidenceE, and every background knowledgeB:

LO (T \ {h} , E, B) = LO (T, E,B) .

From the above it follows for every evidenceE, and every background knowledge
B:

f (T \ {h} , E, B) ≥ f (T, E,B) .

So there is at least one power searcherLO such that it holds for every theoryT ,
and every wffh ∈ T :
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If LO (T \ {h} , E, B) = LO (T, E,B), for every evidenceE, and
every background knowledgeB, thenf (T \ {h} , E, B) ≥ f (T,E,B),
for every evidenceE, and every background knowledgeB,

which just means thatf is sensitive to simplicity considerations in the weak sense.

(3) Let f (·, ·, ·), f (·, ·, ·) : T × E × B → <, be a function that is sensitive to
simplicity considerations in the weak sense. Then there is at least one power
searcherLO such that it holds for every theoryT , every background knowledge
B, and every wffh ∈ T :

If h is aLO-superfluous part ofT , thenf (T \ {h} , E, B) ≥ f (T, E,B),

i.e. which is such that it holds for every theoryT , and every wffh ∈ T :

If LO (T \ {h} , E, B) = LO (T,E,B), for every evidenceE, and
every background knowledgeB, thenf (T \ {h} , E, B) ≥ f (T,E,B),
for every evidenceE, and every background knowledgeB.

Let T be a theory, and leth ∈ T be a redundant part ofT . ThenT \ {h} a` T ,
whence

LO (T \ {h} , E, B) = LO (T,E,B) ,

for every evidenceE, and every background knowledgeB, becauseLO is closed
under equivalence transformations ofT . As f is sensitive to simplicity consider-
ations i.w.s.,

f (T \ {h} , E, B) ≥ f (T, E,B) ,

for every evidenceE, and every background knowledgeB, which just means that
f is sensitive to redundancy considerations.

Please note that if ‘≥’ is replaced by ‘>’ in the definitions of sensitivity
to simplicity considerations in any sense and unimpressability by redundancies,
then theorem 3.5 still holds. The proof is obtained by substituting ‘>’ for all
occurrences of ‘≥’ in this proof. 2

C.4 Proof of Theorem 3.4

Theorem C.4 (SensSimplCons i.s.s. Does Not Imply InvEquTrans)Letf (·, ·, ·),
f (·, ·, ·) : T × E × B → <, be a function. Iff is sensitive to simplicity consider-
ations in the strong sense, thenf need not be closed under equivalence transfor-
mations ofT in the sense that

f (T,E,B) = f (T ′, E, B) , if T a` T ′,
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for any theoriesT andT ′, every evidenceE, and every background knowledgeB.

Proof.
It suffices to give an example of a functionf (·, ·, ·), f (·, ·, ·) : T × E × B → <,
which is sensitive to simplicity considerations in the strong sense, but not closed
under equivalence transformations ofT in the sense that

f (T, E,B) = f (T ′, E, B) , if T a` T ′,

for any theoriesT andT ′, every evidenceE, and every background knowledgeB.
The following one is a case in point:

f (T,E,B) := LO (T,E,B) · |T |+ 2

|T |+ 1
,

for every theoryT , every evidenceE, and every background knowledgeB, where
LO is a power searcher (theorem 3.1 guarantuees that there are such).

Obviously f is not closed under equivalence transformations. Thatf is
sensitive to simplicity considerations i.s.s. is seen as follows. LetT be a theory,
let E be an evidence, letB be a background knowledge, and supposeh ∈ T is a
LO-superfluous part ofT for E andB. Then

LO (T \ {h} , E, B) = LO (T,E,B) ,

whence

f (T \ {h} , E, B) = LO (T \ {h} , E, B) · |T \ {h}|+ 2

|T \ {h}|+ 1

> LO (T, E,B) · |T |+ 2

|T |+ 1

= f (T, E,B) ,

which just means thatf is (even strictly) sensitive to simplicity considerations in
the strong sense. 2

C.5 Proof of Theorem 3.5

Theorem C.5 (InvEquTrans Implies SensSimplCons i.w.s.)If f is closed un-
der equivalence transformations ofT , thenf is sensitive to simplicity considera-
tions in the weak sense.
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Proof.
Let f (·, ·, ·), f (·, ·, ·) : T × E × B → <, be a function which is closed under
equivalence transformations ofT . Thatf is sensitive to simplicity considerations
in the weak sense means that there is at least one power searcherLO such that it
holds for every theoryT , and every wffh ∈ T :

If LO (T \ {h} , E, B) = LO (T, E,B), for every evidenceE, and
every background knowledgeB, thenf (T \ {h} , E, B) ≥ f (T,E,B),
for every evidenceE, and every background knowledgeB.

Let such a functionLO be defined as follows:

LO (T,E,B) =

{
1, if T ∪B ` E,
0 otherwise, i.e. if T ∪B 6` E,

for every theoryT , every evidenceE, and every background knowledgeB.
ThatLO is a power searcher is seen as follows. LetT andT ′ be theories,

let E be an evidence, and letB andB′ be background knowledges. Obviously,
LO (T, E,B) ≥ 0, andLO (T,E,B) = 1, if T ∪B ` E.

If T ′ ∪B′ ` T ∪B andT ∪B 6` E, then

LO (T ′, E, B′) ≥ LO (T, E,B) = 0,

and ifT ′ ∪B′ ` T ∪B andT ∪B ` E, then

LO (T ′, E, B′) = LO (T,E,B) = 1.

Let me now show for every theoryT , every functionf (·, ·, ·), f (·, ·, ·) : T × E ×
B → <, which is closed under equivalence transformations ofT , and every wff
h ∈ T :

If LO (T \ {h} , E, B) = LO (T,E,B), for every evidenceE, and
every background knowledgeB, thenf (T \ {h} , E, B) ≥ f (T, E,B),
for every evidenceE, and every background knowledgeB.

Let T be a theory, letf be a function which is closed under equivalence transfor-
mations ofT , and leth be a wff ofT . SupposeLO (T \ {h} , E, B) = LO (T,E,B),
for every evidenceE, and every background knowledgeB.

One has to show thatf (T \ {h} , E, B) ≥ f (T,E,B), for every evidence
E, and every background knowledgeB.



164 APPENDIX C. PROOFS FOR CHAPTER 3

It suffices to show thatT\{h} ` T , for thenf (T \ {h} , E, B) = f (T, E,B),
for every evidenceE, and every background knowledgeB, becausef is closed
under equivalence transformations ofT . Suppose thatT \ {h} 6` T .

Let ‘P ’ be ann-ary predicate which does not occur in (any wff of)T , and
let ‘a1’, . . ., ‘an’ be n individual constants not occurring in (any wff of)T . Then

T ` P (a1, . . . , an) , only if T ` ⊥.

As T \ {h} 6` h, T \ {h} 6` ⊥, whence

T \ {h} 6` P (a1, . . . , an) .

It follows that

LO (T \ {h} , {P (a1, . . . , an)} , {h → P (a1, . . . , an)}) = 0, and
LO (T, {P (a1, . . . , an)} , {h → P (a1, . . . , an)}) = 1,

whence there is an evidenceE and a background knowledgeB such that

LO (T \ {h} , E, B) 6= LO (T,E,B) .

– a contradiction. So there is at least one power searcherLO such that it holds
for every theoryT , every functionf (·, ·, ·), f (·, ·, ·) : T × E × B → <, which is
closed under equivalence transformations ofT , and every wffh ∈ T : If

LO (T \ {h} , E, B) = LO (T, E,B), for every evidenceE, and ev-
ery background knowledgeB,

thenT \ {h} a` T , and thus

f (T \ {h} , E, B) = f (T,E,B), for every evidenceE, and every
background knowledgeB,

which means (even something stronger than) thatf is sensitive to simplicity con-
siderations in the weak sense, iff is closed under equivalence transformations of
T . 2

C.6 Proof of Theorem 3.6

Theorem C.6 (InvEquTrans Does Not Imply SensSimplCons i.s.s.)If f is closed
under equivalence transformations ofT , thenf need not be sensitive to simplicity
considerations in the strong sense.
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Proof.
It suffices to give an example of a functionf (·, ·, ·), f (·, ·, ·) : T × E × B → <,
which is closed under equivalence transformations ofT , and which is not sensitive
to simplicity considerations in the strong sense. Thatf is not sensitive to simplic-
ity considerations in the strong sense means that there is no power searcherLO
such that it holds for every theoryT , every evidenceE, every background knowl-
edgeB, and every wffh ∈ T :

If LO (T \ {h} , E, B) = LO (T, E,B), thenf (T \ {h} , E, B) ≥
f (T, E,B).

In other words, one has to show that there is at least one functionf (·, ·, ·), f (·, ·, ·) :
T ×E×B → <, which is closed under equivalence transformations ofT , and such
that for every power searcherLO there are theoriesT , evidencesE, background
knowledgesB, and wffsh ∈ T with:

LO (T \ {h} , E, B) = LO (T, E,B) , and
f (T \ {h} , E, B) < f (T,E,B) .

A consequence of the latter is thatT \ {h} 6` T , becausef is closed under equiv-
alence transformations ofT .

The following one is a case in point:

f (T,E,B) =

{
1, if T ` B ∪ E,
0 otherwise, i.e. if T 6` B ∪ E,

for every theoryT , every evidenceE, and every background knowledgeB.
Obviously,f is closed under equivalence transformations ofT . LetLO be a

power searcher, letE = {Ga1, . . . , Gan}, for somen ≥ 1, letT = {∀x (Fx → Gx) ,∀xFx},
let B = {∀x (Fx → Gx)}, and leth = ∀x (Fx → Gx). AsT \ {h} 6` E ∪B and
T ` E ∪B,

f (T \ {h} , E, B) = 0 < 1 = f (T, E,B) .

Furthermore,T \ {h} ∪B ` E andT ∪B ` E, whence

LO (T \ {h} , E, B) = LO (T,E,B) = 1.

So there is at least one functionf (·, ·, ·), f (·, ·, ·) : T × E × B → <, which is
closed under equivalence transformations ofT , and for which there are theories
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T , evidencesE, background knowledgesB, and wffsh ∈ T such that it holds for
every power searcherLO:

LO (T \ {h} , E, B) = LO (T, E,B) , and
f (T \ {h} , E, B) < f (T,E,B) ,

which means (even something stronger than) thatf is closed under equivalence
transformations ofT , but not sensitive to simplicity considerations in the strong
sense. 2

C.7 Proof of Theorem 3.7

Theorem C.7 (SensLoveLike Implies SensSimplCons i.v.s.s.)Letf (·, ·, ·), f (·, ·, ·) :
T × E ×B → <, be a function. Iff is sensitive to loveliness and likeliness in the
sense of some power searcherLO and some truth indicatorLI, thenf is sensitive
to simplicity considerations in the very strong sense.

Proof.
Let f (·, ·, ·), f (·, ·, ·) : T × E × B → <, be a function which is sensitive to
loveliness and likeliness in the sense of some power searcherLO∗ and some truth
indicatorLI∗. Then it holds for any theoriesT andT ′, any evidencesE and
E ′, and any background knowledgesB andB′, whereX = T,E,B andX ′ =
T ′, E ′, B′:

1. If LI∗ (X) = LI∗ (X ′) 6= 0, thenf (X) ≥ f (X ′) iff LO∗ (X) ≥ LO∗ (X ′),

2. if LO∗ (X) = LO∗ (X ′) 6= 0, thenf (X) ≥ f (X ′) iff LI∗ (X) ≥ LI∗ (X ′),

3. f (X) = 0 iff LI∗ (X) = 0 orLO∗ (X) = 0, and

4. f (X) = 1 iff LI∗ (X) = 1 andLO∗ (X ′) = 1.

It has to be shown that there is at least one power searcherLO such that it holds
for any theoriesT andT ′, every evidenceE, and every background knowledgeB:

If T ′ ` T andLO (T,E,B) = LO (T ′, E, B), thenf (T, E,B) ≥
f (T ′, E, B).
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I show thatLO∗ is such a function.
LetT andT ′ be theories, letE be an evidence, letB be a background knowl-

edge, and supposeT ′ ` T . ThenLI∗ (T,E,B) ≥ LI∗ (T ′, E, B). Suppose

LO∗ (T,E,B) = LO∗ (T ′, E, B) 6= 0.

As f is sensitive to loveliness and likeliness in the sense ofLO∗ andLI∗, it
follows that

f (T,E,B) ≥ f (T ′, E, B) iff LI∗ (T, E,B) ≥ LI∗ (T ′, E ′, B′) ,

whencef (T,E,B) ≥ f (T ′, E, B).
Suppose

LO∗ (T,E,B) = LO∗ (T ′, E, B) = 0.

As f is sensitive to loveliness and likeliness in the sense ofLO∗ andLI∗, it
follows that

f (T, E,B) = f (T ′, E, B) = 0,

whence againf (T,E,B) ≥ f (T ′, E, B).
So there is at least one power searcherLO such that it holds for any theories

T andT ′, every evidenceE, and every background knowledgeB:

If T ′ ` T andLO (T, E,B) = LO (T ′, E, B), thenf (T,E,B) ≥
f (T ′, E, B),

which just means thatf is sensitive to simplicity considerations in the very strong
sense. 2
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Appendix D

Proofs for Chapter 4

D.1 Proof of Theorem 4.1

Theorem D.1 (� Is Arbitrary)) The ordinal measure of coherence� of Hart-
mann/Bovens (2000) is arbitrary.

Proof.
The ordinal measure of coherence� of Hartmann/Bovens (2000) is defined as
follows:

For any two information setsS, S′:
S is more coherent than or equally coherent asS′, S � S′, iff fx (S, S′) ≥
0, for all values ofx ∈ (0, 1).

An information set S is a set of finitely many propositionsR1, . . ., Rn. The func-
tion fx is defined for pairs of information setsS, S′ in the following way:

fx (S, S′) = cx (S)− cx (S′) .

cx measures the impact of the coherence of an information setS = {R1, . . . , Rn}
on the degree of confidence inS,

P ∗ (R1, . . . , Rn) = P (R1, . . . , Rn | Repr1, . . . , Reprn) ,

and is defined as follows:

cx (S) = cx (R1, . . . , Rn)

= P ∗ (R1, . . . , Rn) /P ∗max (R1, . . . , Rn)

=
a0 + (1− a0) · xn∑n

i=0 ai · xi
.

169
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Repri is the proposition that after consultation with the proper source, there is a
report to the effect thatRi is the case, andP is a joint probability for the propo-
sitional variablesR1, . . . , Rn, Repr1, . . ., Reprn. The information sources are
assumed to be independent in the sense that the variableRepri is probabilis-
tically independent (underP ) of the variablesR1, Repr1, . . ., Ri−1, Repri−1,
Ri+1, Repri+1, . . . Rn, Reprn givenRi, for everyi, 1 ≤ i ≤ n. The propositional
variableRi can take on the two valuesRi andRi, i.e. not-Ri, and the propositional
variableRepri can take on the two valuesRepri andRepri; the latter saying that
after consultation with the proper source, there is no report to the effect thatRi

is the case. Note that for the ordinal measure of coherence� it suffices thatP is
defined overR1, . . . , Rn.

Furthermore,ai is the sum of the joint probabilities of all combinations of
the variablesR1, . . . , Rn that havei negative values andn− i positive values, i.e.

ai =
∑

neg(±R1,...,±Rn)=i

P (±R1, . . . ,±Rn) ,

where
neg (±R1, . . . ,±Rn) :=

∣∣∣{Rj : 1 ≤ j ≤ n
}∣∣∣ ,

and±Rj is eitherRj or Rj, for everyj, 1 ≤ j ≤ n, whence in particular

a0 = P (R1, . . . , Rn) .

The variable
x = q/p = P

(
Repri | Ri

)
/P (Repri | Ri) ,

is assumed to be equal for everyi, 1 ≤ i ≤ n, and expresses the reliability of the
information sourcei which reports by means ofRepri thatRi is the case.

Finally, for a given probability distributionP , the probability distribution
Pmax is defined as

Pmax (Ri) = P

(
n⋂

i=0

Ri

)
= P (R1, . . . , Rn) ,

and
Pmax (Ri | Rj) = 1, for everyi andj, 1 ≤ i, j ≤ n.

In order to prove that the ordinal measure of coherence� of Hartmann/Bovens
(2000) is arbitrary, I have to rely on the strict ordinal measure of coherence�
which is induced by� on the set of all information sets, and which is defined as
follows:
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For any two information setsS, S′:
S is more coherent thanS′, S � S′, iff S � S ′ andS ′ 6� S,

i.e.

For any two information setsS, S′:
S is more coherent thanS′, S � S′, iff fx (S, S′) ≥ 0, for all values of
x ∈ (0, 1), andfx (S′, S) < 0, for at least one value ofx ∈ (0, 1).

When provingS � S′, for some information setsS andS′, it will be shown that

fx (S, S′) > 0, for all values ofx ∈ (0, 1) ,

which is something stronger thanS � S′.
It suffices to give an example of two information setsS = {R1 , . . ., Rm}

andS′ = {R′
1 , . . ., R′

n}, two probability distributionsP1 andP2 overR1, . . ., Rm,
and two probability distributionsP ′

1 andP ′
2 over R′

1, . . ., R′
m such thatS′ � S

according toP1 and P ′
1, andS � S′ according toP2 and P ′

2. The following
example does the job. Let

S = {R1, R2} , S′ = {R′
1, R

′
2} ,

P1 (R1, R2) = P1

(
R1, R2

)
= P1

(
R1, R2

)
= P1

(
R1, R2

)
= 0.25,

P ′
1 (R′

1, R
′
2) = 0.125, P ′

1

(
R′

1, R
′
2

)
= P ′

1

(
R′

1, R
′
2

)
= 0.25, and

P ′
1

(
R′

1, R
′
2

)
= 0.375.

Then

a10 = P1 (R1, R2) = 0.25,

a11 = P1

(
R1, R2

)
+ P1

(
R1, R2

)
= 0.25 + 0.25 = 0.5,

a12 = P1

(
R1, R2

)
= 0.25,

a′10
= P ′

1 (R1, R2) = 0.125,

a′11
= P ′

1

(
R1, R2

)
+ P ′

1

(
R1, R2

)
= 0.25 + 0.25 = 0.5, and

a′12
= P ′

1

(
R1, R2

)
= 0.375.

It follows that

f1x (S, S′) = c1x (S)− c1x (S′)

=
a10 + (1− a10) · x2∑2

i=0 a1i
· xi

−
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−
a′10

+
(
1− a′10

)
· x2∑2

i=0 a′1i
· xi

=
0.25 + (1− 0.25) · x2

0.25 · x0 + 0.5 · x1 + 0.25 · x2

− 0.125 + (1− 0.125) · x2

0.125 · x0 + 0.5 · x1 + 0.375 · x2
,

whence

f1x (S, S′) > 0

iff
0.25 + 0.75 · x2

0.25 + 0.5 · x + 0.25 · x2
>

0.125 + 0.875 · x2

0.125 + 0.5 · x + 0.375 · x2

iff

0.25 · 0.125 + 0.25 · 0.5 · x+

+ (0.25 · 0.375 + 0.75 · 0.125) · x2+

+0.75 · 0.5 · x3 + 0.75 · 0.375 · x4 > 0.125 · 0.25 + 0.125 · 0.5 · x +

+ (0.125 · 0.25 + 0.875 · 0.25) · x2 +

+0.875 · 0.5 · x3 + 0.875 · 0.25 · x4

iff

2/32 · x− 2/32 · x2 > 2/32 · x3 − 2/32 · x4

iff

x · (1− x) > x3 · (1− x),

which holds for all values ofx ∈ (0, 1). ThusS �1 S′. Let

P2 (R1, R2) = P2

(
R1, R2

)
= P2

(
R1, R2

)
= P2

(
R1, R2

)
= 0.25,

P ′
2 (R′

1, R
′
2) = 0.375, P ′

2

(
R′

1, R
′
2

)
= P ′

2

(
R′

1, R
′
2

)
= 0.25, and

P ′
2

(
R′

1, R
′
2

)
= 0.125.

Then

a20 = P2 (R1, R2) = 0.25,

a21 = P2

(
R1, R2

)
+ P2

(
R1, R2

)
= 0.25 + 0.25 = 0.5,

a22 = P2

(
R1, R2

)
= 0.25,

a′20
= P ′

2 (R1, R2) = 0.375,

a′21
= P ′

2

(
R1, R2

)
+ P ′

2

(
R1, R2

)
= 0.25 + 0.25 = 0.5, and

a′22
= P ′

2

(
R1, R2

)
= 0.125.
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It follows that

f2x (S′, S) = c2x (S′)− c2x (S)

=
a′20

+
(
1− a′20

)
· x2∑2

i=0 a′2i
· xi

−

−a20 + (1− a20) · x2∑2
i=0 a2i

· xi

=
0.375 + (1− 0.375) · x2

0.375 · x0 + 0.5 · x1 + 0.125 · x2
−

− 0.25 + (1− 0.25) · x2

0.25 · x0 + 0.5 · x1 + 0.25 · x2
,

whence

f2x (S′, S) > 0

iff
0.375 + 0.625 · x2

0.375 + 0.5 · x + 0.125 · x2
>

0.25 + 0.75 · x2

0.25 + 0.5 · x + 0.25 · x2

iff

0.375 · 0.25 + 0.375 · 0.5 · x+

+ (0.375 · 0.25 + 0.625 · 0.25) · x2+

+0.625 · 0.5 · x3 + 0.625 · 0.25 · x4 > 0.25 · 0.375 + 0.25 · 0.5 · x +

+ (0.25 · 0.125 + 0.75 · 0.375) · x2 +

+0.75 · 0.5 · x3 + 0.75 · 0.125 · x4

iff

2/32 · x− 2/32 · x2 > 2/32 · x3 − 2/32 · x4

iff

x · (1− x) > x3 · (1− x),

which holds for all values ofx ∈ (0, 1). ThusS′ �2 S.

Put together, these two results yield thatS �1 S′ andS′ �2 S, which just
means that the strict ordinal measure of coherence�, which is induced by�, is
arbitrary. 2
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D.2 Proof of Theorem 4.2

Theorem D.2 (ECHO Is Arbitrary) The computer programECHO, which mod-
els the theory of explanatory coherenceTEC of Thagard (1989), is arbitrary.

Proof.
The definition of the measureH (S, t) of the global coherence of a systemS of n
propositions at timet runs as follows:

H (S, t) =
∑

0≤i≤n

∑
0≤j≤n

wij · ai (t) · aj (t) .

wij is the weight of the excitatory or inhibitory link from uniti to unit j, ai (t) is
the activation of uniti at timet, andn is the number of propositions in the system
S which are represented by the units1, . . . , n.

An excitatory link between two unitsi andj represents a coherence relation
between the two propositions the unitsi andj stand for, whereas an inhibitory
link represents an incoherence relation. The activationai (t) of unit i at time t
expresses the degree of acceptance of the proposition represented by uniti at time
t.

An input in form of (values for the) activationsai (0) of the unitsi of some
system of propositionsS at time0 is used to set up a network which includes
– besides the units1, . . . , n – a special unit0 with activationa0 (t) = 1, for
every timet. Then the network is run in cycles that synchronously update all the
units so that the activation streams from the special unit0 over units representing
data (evidences) to units representing hypotheses which are explanatorily linked
to these data.

The activationai (·), ai (·) : N → [−1, 1], of any unit i is a continuous
function of all unitsj linked to it. The contribution of each such unitj depends
on the weightwij of the link from i to j. These weightswij – expressing the
strength of the (in)coherence relation between the propositionsPk andQ, which
are represented by the unitsi andj, respectively – have to obey the equation

weight (Pk, Q) =
default weight

(number of cohypotheses ofPk)
simplicity impact,

whereQ is explained byP1, . . . , Pk, . . . , Pm, 1 ≤ k ≤ m.
Despite this, thewij can be chosen in an arbitrary way, for both the default

weight and the simplicity impact can be freely chosen. The number of cohy-
potheses of propositionPk is the numberm − 1 of propositions that occur in the
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explanation ofQ by P1, . . . , Pk, . . . , Pm apart fromPk. The activationai (·) of
unit i is updated by the following equation:

ai (t + 1) =


ai (t) · (1− θ) + neti (t + 1) · (max−ai (t)) ,

if neti (t + 1) > 0,
ai (t) · (1− θ) + neti (t + 1) · (ai (t)−min) ,

if neti (t + 1) ≤ 0.

θ is a decay parameter decrementing each uniti at every cycle,min = −1 is the
minimum activation,max = 1 is the maximum activation, andneti (t + 1) is the
net input to uniti at timet + 1, which is given as

neti (t + 1) =
∑

0≤j≤n

wij · aj (t) ,

wheren is again the number of propositions (respectively units without the special
unit 0) in the system of propositionsS. By repeating updating cycles some units
get activated, whereas others get deactivated.

In order to prove the above claim it suffices to give an example of two sets
of propositionsS1 andS2, and two measuresH (·, ·) andH ′ (·, ·) of the global
coherence of a system of propositions for which there is a timet′ such that it
holds for every timet ≥ t′:

H (S1, t) > H (S2, t) and H ′ (S1, t) < H ′ (S2, t) .

Let S1 = {E1, P2, P3}, where evidenceE1 is supposed to be explained by each of
the two hypothesesP2 andP3. E1 is represented by1, P2 by 2, andP3 by 3; the
special unit with activation1 is represented by0. Let

w10 = w01 = 1, w12 = w21 = 1 = w13 = w31, θ = 0.

Thus the strength of the explanatory relation betweenP2 andE1 is assumed to
be equal to the strength of the explanatory relation betweenP3 andE1; and both
are supposed to be equal to the degree of acceptance whichE1 hasquabeing an
evidence.

a1 (1) = a1 (0) · (1− θ)+net1 (1) · (max−a1 (0)) = 0 · (1− 0)+1 · (1− 0) = 1,

for

net1 (1) = w10 · a0 (0) + w12 · a2 (0) + w13 · a3 (0) = 1 · 1 + 1 · 0 + 1 · 0 = 1 > 0.
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a2 (1) = a2 (0)·(1− θ)+net2 (1)·(a2 (0)−min) = 0·(1− 0)+0·(0− (−1)) = 0,

for
net2 (1) = w21 · a1 (0) = 1 · 0 = 0 ≤ 0.

a3 (1) = a3 (0)·(1− θ)+net3 (1)·(a3 (0)−min) = 0·(1− 0)+0·(0− (−1)) = 0,

for
net3 (1) = w31 · a1 (0) = 1 · 0 = 0 ≤ 0.

a1 (2) = a1 (1) · (1− θ)+net1 (2) · (max−a1 (1)) = 1 · (1− 0)+1 · (1− 1) = 1,

for

net1 (2) = w10 · a0 (1) + w12 · a2 (1) + w13 · a3 (1) = 1 · 1 + 1 · 0 + 1 · 0 = 1 > 0.

a2 (2) = a2 (1) · (1− θ)+net2 (2) · (max−a2 (1)) = 0 · (1− 0)+1 · (1− 0) = 1,

for
net2 (2) = w21 · a1 (1) = 1 · 1 = 1 > 0.

a3 (2) = a3 (1) · (1− θ)+net3 (2) · (max−a3 (1)) = 0 · (1− 0)+1 · (1− 0) = 1,

for
net3 (2) = w31 · a1 (1) = 1 · 1 = 1 > 0.

So

H1 (S1, 2) =
∑

0≤i≤3

∑
0≤j≤3

wij · ai (2) · aj (2)

= w01 · a0 (2) · a1 (2) + w10 · a1 (2) · a0 (2) +

+w12 · a1 (2) · a2 (2) + w13 · a1 (2) · a3 (2) +

+w21 · a2 (2) · a1 (2) + w31 · a3 (2) · a1 (2)

= 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 +

+1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1
= 6.

It will be shown (by induction on timet) thatai (t) = 1, for everyi andt, 1 ≤ i ≤
3, t ≥ 2. Let t ≥ 2, and suppose the induction hypothesis holds.

a1 (t + 1) = a1 (t) · (1− θ) + net1 (t + 1) · (max−a1 (t))

net1 (t + 1) = 3 > 0

= 1 · (1− θ) + net1 (t + 1) · (max−1)

by induction hypothesis

= 1 · (1− 0) + 3 · 0 θ = 0, net1 (t + 1) = 3

= 1,
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for

net1 (t + 1) = w10 · a0 (t) + w12 · a2 (t) + w13 · a3 (t)

= w10 · 1 + w12 · 1 + w13 · 1 by induction hypothesis

= 1 · 1 + 1 · 1 + 1 · 1 = 3 > 0.

a2 (t + 1) = a2 (t) · (1− θ) + net2 (t + 1) · (max−a2 (t))

net2 (t + 1) = 1 > 0

= 1 · (1− θ) + net2 (t + 1) · (max−1)

by induction hypothesis

= 1 · (1− 0) + 0 · (1− 1) θ = 0, net2 (t + 1) = 1

= 1,

for

net2 (t + 1) = w21 · a1 (t)

= w21 · 1 by induction hypothesis

= 1 · 1 = 1 > 0.

a3 (t + 1) = a3 (t) · (1− θ) + net3 (t + 1) · (max−a3 (t))

net3 (t + 1) = 1 > 0

= 1 · (1− θ) + net3 (t + 1) · (max−1)

by induction hypothesis

= 1 · (1− 0) + 0 · (1− 1) θ = 0, net3 (t + 1) = 1

= 1,

for

net3 (t + 1) = w31 · a1 (t)

= w31 · 1 by induction hypothesis

= 1 · 1 = 1 > 0.

Thus for everyt ≥ 2:

H1 (S1, t) =
∑

0≤i≤3

∑
0≤j≤3

wij · ai (t) · aj (t)
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= w01 · a0 (t) · a1 (t) + w10 · a1 (t) · a0 (t) +

+w12 · a1 (t) · a2 (t) + w13 · a1 (t) · a3 (t) +

+w21 · a2 (t) · a1 (t) + w31 · a3 (t) · a1 (t)

= 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 +

+1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1
= 6.

Let S2 = {E1, E2}, E1 andE2 being evidences.E1 is represented by1, E2 by 2,
and the special unit with activation1 is represented by0. Let

w10 = w01 = w20 = w02 = 1, θ = 0.

Thus the degree of acceptance whichE1 hasquabeing an evidence is supposed
to be equal to the degree of acceptance whichE2 hasquabeing an evidence.

a1 (1) = a1 (0) · (1− θ)+net1 (1) · (max−a1 (0)) = 0 · (1− 0)+1 · (1− 0) = 1,

for
net1 (1) = w10 · a0 (0) = 1 · 1 = 1 > 0.

a2 (1) = a2 (0) · (1− θ)+net2 (1) · (max−a2 (0)) = 0 · (1− 0)+1 · (1− 0) = 1,

for
net2 (1) = w20 · a0 (0) = 1 · 1 = 1 > 0.

a1 (2) = a1 (1) · (1− θ)+net1 (2) · (max−a1 (1)) = 1 · (1− 0)+1 · (1− 1) = 1,

for
net1 (2) = w10 · a0 (1) = 1 · 1 = 1 > 0.

a2 (2) = a2 (1) · (1− θ)+net2 (2) · (max−a2 (1)) = 1 · (1− 0)+1 · (1− 1) = 1,

for
net2 (2) = w20 · a0 (1) = 1 · 1 = 1 > 0.

So

H1 (S2, 2) =
∑

0≤i≤2

∑
0≤j≤2

wij · ai (2) · aj (2)

= w01 · a0 (2) · a1 (2) + w02 · a0 (2) · a2 (2) +

+w10 · a1 (2) · a0 (2) + w20 · a2 (2) · a0 (2)

= 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1
= 4.
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It will be shown (by induction on timet) thatai (t) = 1, for everyi andt, 1 ≤ i ≤
2, t ≥ 2. Let t ≥ 2, and suppose the induction hypothesis holds.

a1 (t + 1) = a1 (t) · (1− θ) + net1 (t + 1) · (max−a1 (t))

net1 (t + 1) = 1 > 0

= 1 · (1− θ) + net1 (1) · (max−1)

by induction hypothesis

= 1 · (1− 0) + 1 · (1− 1) θ = 0, net1 (t + 1) = 1

= 1,

for
net1 (t + 1) = w10 · a0 (t) = 1 · 1 = 1 > 0.

a2 (t + 1) = a2 (t) · (1− θ) + net2 (t + 1) · (max−a2 (t))

net2 (t + 1) = 1 > 0

= 1 · (1− θ) + net2 (t + 1) · (max−1)

by induction hypothesis

= 1 · (1− 0) + 1 · (1− 1) θ = 0, net2 (t + 1) = 1

= 1,

for
net2 (t + 1) = w20 · a0 (t) = 1 · 1 = 1 > 0.

So it holds for everyt ≥ 2:

H1 (S2, t) =
∑

0≤i≤2

∑
0≤j≤2

wij · ai (t) · aj (t)

= w01 · a0 (t) · a1 (t) + w02 · a0 (t) · a2 (t) +

+w10 · a1 (t) · a0 (t) + w20 · a2 (t) · a0 (t)

= 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 1
= 4.

It follows for everyt ≥ 2:

H1 (S1, t) = 6 > 4 = H1 (S2, t) .

Consider againS1 = {E1, P2, P3}, where evidenceE1 is supposed to be explained
by each ofP2 andP3. This time let

w′
10 = w′

01 = 1, w′
12 = w′

21 = 1/10 = w′
13 = w′

31, θ′ = 0.
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Thus the strength of the explanatory relation betweenP2 andE1 is again assumed
to be equal to the strength of the explanatory betweenP3 andE1; but this time
they are both supposed to be smaller than the degree of acceptance whichE1 has
quabeing an evidence.

a1 (1) = a1 (0) · (1− θ)+net′1 (1) · (max−a1 (0)) = 0 · (1− 0)+1 · (1− 0) = 1,

for

net′1 (1) = w′
10 · a0 (0) + w12′ · a2 (0) + w′

13 · a3 (0)

= 1 · 1 + (1/10) · 0 + (1/10) · 0 = 1 > 0.

a2 (1) = a2 (0)·(1− θ)+net′2 (1)·(a2 (0)−min) = 0·(1− 0)+0·(0− (−1)) = 0,

for
net′2 (1) = w′

21 · a1 (0) = (1/10) · 0 = 0 ≤ 0.

a3 (1) = a3 (0)·(1− θ)+net′3 (1)·(a3 (0)−min) = 0·(1− 0)+0·(0− (−1)) = 0,

for
net′3 (1) = w′

31 · a1 (0) = (1/10) · 0 = 0 ≤ 0.

a1 (2) = a1 (1) · (1− θ)+net′1 (2) · (max−a1 (1)) = 1 · (1− 0)+1 · (1− 1) = 1,

for

net′1 (2) = w′
10 · a0 (1) + w12′ · a2 (1) + w′

13 · a3 (1)

= 1 · 1 + (1/10) · 0 + (1/10) · 0 = 1 > 0.

a2 (2) = a2 (1) · (1− θ) + net′2 (2) · (max−a2 (1))

= 0 · (1− 0) + (1/10) · (1− 0) = 1/10,

for
net′2 (2) = w′

21 · a1 (1) = (1/10) · 1 = 1/10 > 0.

a3 (2) = a3 (1) · (1− θ) + net′3 (2) · (max−a3 (1))

= 0 · (1− 0) + (1/10) · (1− 0) = 1/10,

for
net′3 (2) = w′

31 · a1 (1) = (1/10) · 1 = 1/10 > 0.
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So

H ′ (S1, 2) =
∑

0≤i≤3

∑
0≤j≤3

w′
ij · ai (2) · aj (2)

= w′
01 · a0 (2) · a1 (2) + w′

10 · a1 (2) · a0 (2) +

+w′
12 · a1 (2) · a2 (2) + w′

13 · a1 (2) · a3 (2) +

+w′
21 · a2 (2) · a1 (2) + w′

31 · a3 (2) · a1 (2)

= 1 · 1 · 1 + 1 · 1 · 1 +

+ (1/10) · 1 · (1/10) + (1/10) · 1 · (1/10)

+ (1/10) · (1/10) · 1 + (1/10) · (1/10) · 1
= 2.04.

As before it holds (by induction on timet) thata1 (t) = 1, for everyt ≥ 2. From
this one gets for everyt ≥ 2:

H ′ (S1, t) =
∑

0≤i≤3

∑
0≤j≤3

w′
ij · ai (t) · aj (t)

= w′
01 · a0 (t) · a1 (t) + w′

10 · a1 (t) · a0 (t) +

w′
12 · a1 (t) · a2 (t) + w′

13 · a1 (t) · a3 (t) +

+w′
21 · a2 (t) · a1 (t) + w′

31 · a3 (t) · a1 (t)

= 1 · 1 · 1 + 1 · 1 · 1 +

+ (1/10) · 1 · a2 (t) + (1/10) · 1 · a3 (t) +

+ (1/10) · a2 (t) · 1 + (1/10) · a3 (t) · 1
= 1 + 1 + (2/10) · (a2 (t) + a3 (t))

< 4

iff

a2 (t) + a3 (t) < 10.

The latter holds for everyt ≥ 2, sinceai (t) ≤ 1, for everyi andt, 2 ≤ i ≤ 3, t ≥
2, because the range ofai (·) is the closed interval[−1, 1].

Consider againS2 = {E1, E2}, E1 andE2 being evidences. As before the
degree of acceptance whichE1 hasquabeing an evidence is supposed to be equal
to the degree of acceptance whichE2 hasquabeing an evidence. Again, let

w′
10 = w′

01 = w′
20 = w′

02 = 1, θ′ = 0.

As
w′

10 = w10, w′
01 = w01, w′

02 = w02, w′
20 = w20, θ′ = θ,
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it follows that
H ′ (S2, 2) = H (S2, 2) = 4,

and – by the same reasoning (induction) as above – that it holds for everyt ≥ 2:

H ′ (S2, t) = H (S2, t) = 4.

Thus
H ′ (S1, t) = 2.04 < 4 = H ′ (S2, t) , for everyt ≥ 2.

Put together these results yield that there is at least onet′ (anyt′ ≥ 2 does the job)
such that it holds for everyt ≥ t′:

H (S1, t) > H (S2, t) and H ′ (S1, t) < H ′ (S2, t) .

2

D.3 Proof of Theorem 4.3

Theorem D.3 (Fuzzy MeasureV Is Arbitrary) The fuzzy measureV for ex-
planatory coherence of Schoch (2000) is arbitrary.

Proof.
As mentioned in the chapter on coherence w.r.t. the evidence, the fuzzy measure
V (x1, . . . , xn) for explanatory coherence of Schoch (2000) is arbitrary in two re-
spects.

First Respect: On the one hand, the partition of the set of signed propositions
E , E = PR ∪ {¬P : P ∈ PR} into two disjoint sets of accepted and rejected
propositions – by optimizing the explanatory coherence of some rule systemR
on E – is dependent on the weight factors of incoherencecP of the incoherent
constituentsP ∈ I , whose choice is arbitrary.

In order to show this one has to find a rule systemR for which there are
at least two functionsV (x1, . . . , xn) andV ′ (x1 , . . ., xn) – differing from each
other at most in the weight factorscP of the incoherent constituentsP ∈ I – such
that the truth value assignmentϕ which maximizes the explanatory coherence of
R according toV (x1, . . . , xn) differs from the truth value assignmentϕ′ which
maximizes the explanatory coherence ofR according toV ′ (x1, . . . , xn). The
following example does the job.
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LetPR = {P1, P2, E1, E2} be the set of propositions over which the set of
signed propositionsE is defined, and let the rule systemR consist of the following
rules:

‘{P1} explainsE1’ , ‘{P2} explainsE2’ , ‘E1 is a fact’,
‘E2 is a fact’, and ‘{P1} ∪ {E2} is competing’.

The weight factorc{P1,E1} of the coherent constituent{P1, E1} is 2 = 21, since
NR ({P1}) = 1; similarly, the weight factorc{P2,E2} of the coherent constituent
{P2, E2} is 2 = 21, sinceNR ({P2}) = 1. The weight factorsc{E1} andc{E2}
of the coherent constituents{E1} and{E2}, respectively, are4 = 22, because
NR (∅) = 2.

For V (x1, . . . , x4), let the weight factorc{P1,E2} of the incoherent con-
stituent{P1, E2} be 1. The truth values of the propositions inPR are supposed
to be in{0, 1}. In the following the propositions inE will be identified with their
truth values.

VR (x1, . . . , x4) = c{P1,E1} · P1 · (2 · E1 − 1) +

+c{P2,E2} · P2 · (2 · E2 − 1) + c{E1} · (2 · E1 − 1) +

+c{E2} · (2 · E2 − 1)− c{P1,E2} · P1 · E2

= 2 · P1 · (2 · E1 − 1) + 2 · P2 · (2 · E2 − 1) +

+4 · (2 · E1 − 1) + 4 · (2 · E2 − 1)− 1 · P1 · E2,

which is maximal (= 11) iff 1 P1 = P2 = E1 = E2 = 1.
For V ′ (x1, . . . , x4), let the weight factorc′{P1,E2} of the incoherent con-

stituent{P1, E2} be 10.

V ′
R (x1, . . . , x4) = c{P1,E1} · P1 · (2 · E1 − 1) +

+c{P2,E2} · P2 · (2 · E2 − 1) + c{E1} · (2 · E1 − 1) +

+c{E2} · (2 · E2 − 1)− c′{P1,E2} · P1 · E2

= 2 · P1 · (2 · E1 − 1) + 2 · P2 · (2 · E2 − 1) +

+4 · (2 · E1 − 1) + 4 · (2 · E2 − 1)− 10 · P1 · E2,

which is maximal (= 10) iff 2 P1 = 0, andP2 = E1 = E2 = 1.

Second Respect: On the other hand, in comparing two rule systemsR1 andR2 on

1The ‘only if’ holds only if the truth values of the propositions inPR are restricted to{0, 1}.
2Cf. the preceding footnote.
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a common set of signed propositionsE (over some set of propositionsPR) with
respect to their explanatory coherence, the answer to the question which of the
two systemsR1 andR2 is more coherent depends (apart from the weight factors
cP) on the truth value assignment to the propositions inPR = {P1, . . . , Pn}, i.e.
on the values of the variablesx1, . . . , xn. The choice of the latter is again arbi-
trary, since there is no criterion telling one which truth value assignment to adopt
and to base one’s coherence judgement on.

It will be shown that there are rules systemsR1 andR2 on some common
set of signed propositionsE such that

VR1 (ϕ1) > VR2 (ϕ1), VR1 (ϕ2) < VR2 (ϕ2), and
VR1 (ϕ) = VR2 (ϕ) = 0, for any other assignmentϕ of truth values
in {0, 1} to the propositions inPR, ϕ 6= ϕ1, ϕ 6= ϕ2,

whereϕ1 is the (uniquely determined3) truth value assignment to the propositions
in PR which maximizes the explanatory coherence ofR1; ϕ2 is the (uniquely
determined4) truth value assignment to the propositions inPR which maximizes
the explanatory coherence ofR2; andϕ is any assignment of truth values in{0, 1}
to the propositions inPR, which means that the truth values are again restricted
to {0, 1}. This result holds despite the fact that the weight factorscP of the con-
stituentsP ∈ E occurring in the rules inR1 andR2 are assumed to be fixed.

Let PR = {P, E} be the set of propositions over which the set of signed
propositionsE is defined; let the rule systemR1 consist of the rule ‘{P} explains
E’; and let the rule systemR2 consist of the rule ‘{P} explains¬E’. In the rule
systemR1, the weight factorc{P,E} of the coherent constituent{P, E} is 2 = 21,
sinceNR1 ({P}) = 1. In the rule systemR2, the weight factorc{P,¬E} of the
coherent constituent{P,¬E} is 2 = 21, sinceNR2 ({P}) = 1.

VR1 (x1, x2) = c{P,E} · P · (2 · E − 1) = 2 · P · (2 · E − 1) ,

which is maximal (= 2) iff 5 P = E = 1, whenceϕ1(P ) = ϕ1(E) = 1.

VR2 (x1, x2) = c{P,¬E} · P · (2 · (1− E)− 1) = 2 · P · (2 · (1− E)− 1) ,

which is maximal (= 2) iff 6 P = 1 andE = 0, whenceϕ2 (P ) = 1 andϕ2 (E) =
0.

3Under the assumption that the truth values of the propositions inPR are restricted to{0, 1}.
4Cf. the preceding footnote.
5The ‘only if’ holds only if the truth values of the propositions inPR are restricted to{0, 1}.
6Cf. the preceding footnote.
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Forϕ1 one gets

VR1 (ϕ1) = VR1 (1, 1) = 2 · 1 · (2 · 1− 1)

= 2

> −2

= 2 · 1 · (2 · (1− 1)− 1) = VR2 (1, 1) = VR2 (ϕ1) ;

for ϕ2 one gets

VR1 (ϕ2) = VR1 (1, 0) = 2 · 1 · (2 · 0− 1)

= −2

< 2

= ·1 · (2 · (1− 0)− 1) = VR2 (1, 0) = VR2 (ϕ2) ;

and for any other truth value assignmentϕ, ϕ 6= ϕ1, ϕ 6= ϕ2, one gets

VR1 (ϕ) = VR1 (0, x) = 2 · 0 · (2 · x− 1)

= 0

= 2 · 0 · (2 · (1− x)− 1) = VR2 (0, x) = VR2 (ϕ)

for everyx ∈ {0, 1}, i.e. for everyϕ, ϕ 6= ϕ1, ϕ 6= ϕ2.
Finally, for the combined rule systemR = R1∪R2 one gets for every truth

value assignmentϕ (includingϕ1 andϕ2)

VR (ϕ) = VR (x, y) = 2 · x · (2 · y − 1) + 2 · x · (2 · (1− y)− 1) = 0

for all x, y ∈ {0, 1}, i.e. for everyϕ ∈ {〈x, y〉 : x, y ∈ {0, 1}} = {0, 1} × {0, 1}.
2

D.4 Proof of Theorem 4.4

Theorem D.4 (Surplus) Let T andB be (not necessarily finite) sets of wffs, and
let E be an evidence.

1. S (T, E,B) = ∅, if T is infinite,

2. S (∅, E, B) = A (∅, E, B) = A (B, E, B) = A (T,E,B), if B ` T ,

3. S (B, E, B) = ∅, if B 6= ∅,
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4. S (T,E,B) = ∅, if T 6= ∅ andB ` T , and

5. S (hT , E, B) = A (hT , E, B) = A (T,E,B), for every single wffhT with
hT a` T , if A (∅, E, B) = ∅.

Proof.
Let T, B be (not necessarily finite) sets of wffs, letE be an evidence, and let ‘t’
be a constant term occurring inE.
(1) SupposeT is infinite. If T accounts for ‘t’ in E relative toB, i.e.

T ∪B ∪ (D \ {A}) ` A,

for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D, then the
compactness ofPL1 = yields that there is a finite setTB ⊆ T ∪B such that

T ∪B ` TB `
∧

h∈D\{A}
h → A.

ConsiderTfin := T ∩ TB. Tfin is finite, becauseTB is finite. Furthermore,
TB ⊆ Tfin ∪B, for if h ∈ TB, then (i)h ∈ T or (ii) h ∈ B.
(i): If h ∈ T , thenh ∈ T ∩ TB = Tfin, whenceh ∈ Tfin ∪B.
(ii): If h ∈ B, thenh ∈ Tfin ∪B.
Therefore

Tfin ∪B ∪ (D \ {A}) ` A,

which means thatTfin accounts for ‘t’ in E relative toB. As Tfin is finite and
T is infinite, Tfin ⊂ T . So for every constant term ‘t’ accounted for byT in E
relative toB, there is a finite and thus proper subsetT ′ of T such thatT ′ accounts
for ‘ t’ in E relative toB. Hence

A (T,E,B) ⊆
⋃

T ′⊂T

A (T ′, E, B) ,

and thus
S (T,E,B) = A (T,E,B) \

⋃
T ′⊂T

A (T ′, E, B) = ∅.

(2) Suppose thatB ` T , and thatB accounts for ‘t’ in E relative toB. Then

B ∪B ∪ (D \ {A}) ` A,

for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D. This holds
just in case

∅ ∪B ∪ (D \ {A}) ` A,
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for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D, which holds
again just in case

T ∪B ∪ (D \ {A}) ` A,

for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D, sinceB ` T .
So

A (B, E, B) = A (∅, E, B) = A (T, E,B) ,

if B ` T . As

S (∅, E, B) = A (∅, E, B) \
⋃

T ′⊂∅
A (T ′, E, B) = A (∅, E, B) ,

it follows that

S (∅, E, B) = A (∅, E, B) = A (B, E, B) = A (T,E,B) .

(3) If B 6= ∅, thenA (B, E, B) = A (B′, E, B), for everyB′ with B′ ⊆ B, since
B ` B′ for every suchB′. So

A (B, E, B) =
⋃

B′⊂B

A (B′, E, B) ,

and thus
S (B, E, B) = A (B, E, B) \

⋃
B′⊂B

A (B′, E, B) = ∅.

(4) If T 6= ∅ andB ` T , thenB ` T ′ for everyT ′ with T ′ ⊆ T , whence

A (∅, E, B) = A (B, E, B) = A (T ′, E, B) ,

for everyT ′ with T ′ ⊆ T . So

A (T, E,B) =
⋃

T ′⊂T

A (T ′, E, B) ,

and therefore

S (T, E,B) = A (T, E,B) \
⋃

T ′⊂T

A (T ′, E, B) = ∅.

(5) LethT be a single wff such thathT a` T . Then

T ∪B ∪ (D \ {A}) ` A,
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for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D, iff

hT ∪B ∪ (D \ {A}) ` A,

for some finite and non-redundantD ⊆ (DE (t)) and someA ∈ D. SoA (T, E,B) =
A (hT , E, B). AssumeA (∅, E, B) = ∅. Then it holds for every single wffh:

S (h,E,B) = A (h,E,B) \
⋃

T ′⊂{h}
A (T ′, E, B)

= A (h,E,B) \ AE,B (∅)
= A (h,E,B) .

So
S (hT , E, B) = A (hT , E, B) = A (T, E,B) .

2

D.5 Proof of Theorem 4.5

Theorem D.5 (Coh Is Formally Handy) Coh (·, ·, ·),

Coh (·, ·, ·) : ℘fin (LPL1=)× E × ℘fin (LPL1=) → <,

is non-arbitrary, comprehensible, and computable in the limit, where℘fin (LPL1=)
is the set of all finite sets of wffs ofLPL1=.

Proof.
Coh is non-arbitray, because it is a single function without parameters that can be
freely chosen. It is comprehensible because its definition is stated in the terms of
PL1 = andZF .

Computability in the limit is more involved. LetT andB be finite sets of
wffs, and letE be an evidence. SupposeT ∪B∪E 6` ⊥. In order to determine the
correct valueCoh (T,E,B) of Coh for T , E, andB, one first has to determine the
account ofT ′′ in E relative toB, A (T ′′, E, B), for all the finitely many subsetsT ′′

of any of the finitely many non-empty subsetsT ′ of T . By means of the latter one
can determine the surplus ofT ′ in E relative toB, S (T ′, E, B), for all the finitely
many non-empty subsetsT ′ of T . Next one has to determine theB-representatives
SB−repr (T ′, E, B) (respectively their cardinality) of these surplusesS (T ′, E, B).
Together with the (cardinality of the)B-representative ofC (E), CB−repr (E), one
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can then determine the degree of coherence ofT w.r.t. E andB, Coh (T, E,B).
For the former, it is sufficient to determine the (cardinality of the)B-representative
of the account ofT ′ in E relative toB, AB−repr (T ′, E, B), for every (possibly
empty) subsetT ′ of T .

I will present a method that stabilizes to the correct value|CB−repr (E)| of
the cardinality of theB-representative ofC (E), and to the correct value|AB−repr (T ′, E, B)|
of the cardinality of theB-representative of the account ofT ′ in E relative toB,
for every subsetT ′ of T . This method can then be used to stabilize to the correct
valueCoh (T, E,B) of Coh for T , E, andB, providedT∪B∪E 6` ⊥. In addition
with a method stabilizing to1, if T ∪B ∪E 6` ⊥, and to0 otherwise, the method
conjecturing their product will thus stabilize to the correct valueCoh (T, E,B).

The method doing most of the work is calledα. α’s conjectures will then be
used by another methodα∗ which eventually starts to conjecture the correct value
Coh (T, E,B) and continues to do so forever.

Let ‘t1’, . . ., ‘tm’ be all constant terms occurring inE, and letT1, . . . , TN

be theN := 2|T | subsets ofT . One first has to answer them · N questionsQij:
DoesTj account for ‘ti’ in E relative toB, 1 ≤ i ≤ m, 1 ≤ j ≤ N?

For each such questionQij there will be a tableij α uses in conjecturing
whetherTj accounts for ‘ti’ in E relative toB. In addition to thesem ·N tables,
α considersm tables1, . . . ,m in conjecturing whether, for a given constant term
‘ ti’, there is a constant term ‘tp’ with (i) p < i, (ii) E ∪ B ` ti = tp, and (iii) ‘tp’
∈ C (E ′), for every finite set of wffsE ′ with E ′ a` E (i.e. ‘tp’ ∈ Cess (E)); or
whether there is a finite set of wffsE ′ with E ′ a` E and ‘ti’ 6∈ C (E ′) (i.e. ‘ti’
6∈ Cess (E)).7

Let us first consider the tablesij, 1 ≤ i ≤ m, 1 ≤ j ≤ N . For a given subset
Tj of T and a given constant term ‘ti’ occurring inE, the question is whether there
is a finite and non-redundant setD of relevant elements ofE and a wffA ∈ D
such that ‘ti’ ∈ C (A′) for every wffA′ ∈ D, and

Tj ∪B ∪ (D \ {A}) ` A.

More precisely, the question is whether there is a finite set of wffsD and a wffA
such that

1. A ∈ D,

7It is sufficient to consider finite sets of wffsE′, for if there is an infinite set of wffsE′ with
E′ a` E – i.e. E ` E′ andE′ ` E – and ‘ti’ 6∈ C (E′), then there is a finite setE′

fin ⊆ E′ such

thatE′
fin ` E – and, of course, alsoE ` E′

fin and ‘ti’ 6∈ C
(
E′

fin

)
.



190 APPENDIX D. PROOFS FOR CHAPTER 4

2. ‘ti’ ∈ C (A′), for every wffA′ ∈ D,

3. E `crel A′, for every wffA′ ∈ D,

4. Tj ∪B ∪ (D \ {A}) ` A,

5. D \ {A′} 6` A′, for every wffA′ ∈ D,

6. every wffA′ ∈ D is a normal form,

7. there is no wffA′ ∈ D for which there is ann ≥ 1 such thatA′ a`
A1 ∧ . . . ∧ An, and every wffAi, 1 ≤ i ≤ n, is shorter thanA′, where ‘→’
is eliminated and brackets are not counted, and

8. every quantifier scope of every wffA′ ∈ D is a conjunctionB1 ∧ . . .∧Bm,
m ≥ 1, such that it holds for every conjunctBk, 1 ≤ k ≤ m: there is no
n ≥ 1 such thatBk a` A1 ∧ . . . ∧ An, and every wffAi, 1 ≤ i ≤ n, is
shorter thanBk, where ‘→’ is eliminated and brackets are not counted.

Let A1, . . . , An, . . . be an enumeration of all the countably many wffs (of finite
length) ofLPL1=, and letD1, . . . , Dn, . . . be an enumeration of all the countably
many finite sets of wffs ofLPL1=. The following table shows that there are only
countably many pairs of wffsA and finite sets of wffsD.

A1 A2 A3 A4 A5 · · · An · · ·
D1 1 2 6 7 15 16
D2 3 5 8 14 17
D3 4 9 13 ·
D4 10 12 ·
D5 11 ·
·
·
·

Dn

·
·
·

Let DA1, . . . , DAn, . . . be an enumeration of all pairs of finite sets of wffsD and
wffs A.
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The above table shows also that for a given setS of countably many ele-
mentss there are only countably many sequences of such elements of length 2.
This result can be generalised (by induction) to sequences of any finite length.
For suppose the induction hypothesis holds, i.e. there are only countably many
sequencesPm = 〈s1, . . . , sm〉 of lengthm, wheresk ∈ S, 1 ≤ k ≤ m, for some
setS of countably many elements. LetPm

1 , . . . , Pm
n , . . . be an enumeration of

these countably many sequences of lengthm, and lets1, . . . , sn, . . . be an enu-
meration of the countably many elements ofS. EveryPm

i , i ≥ 1, is of the form
Pm

i = 〈si1, . . . , sim〉, wheresik ∈ S, for everyk, 1 ≤ k ≤ m. Each sequence
of elements ofS of lengthm + 1 is of the formPm+1

ij = 〈si1, . . . , sim, sj〉, for
somei, j ≥ 1. The above table (withPm

i instead ofAi, and withsj instead ofDj)
shows that there are only countably many such sequences of lengthm + 1.

Let P1, . . . , Pn, . . . be an enumeration of all finite sequences of wffs of
LPL1=. Each such finite sequence of wffsPi may be a proof of some wff from
some set of wffs. The reasoning of the preceding paragraph can be used once
more to obtain that there are only countably many finite sets of finite sequences
of wffs. Let Pr1, . . . , P rn, . . . be an enumeration of all the countably many finite
sets of finite sequences of wffs.

A final application of the mentioned reasoning shows that there are only
countably many pairsPrC of finite sets of finite sequences of wffsPr and wffsC.
Let PrC1, . . . , P rCn, . . . be an enumeration of these pairs (the wffs are denoted
by ‘C ’ instead of ‘A’ in order to avoid confusion).

For a given pairDAl of a finite set of wffsDl and a wffAl,8 the question is
whether

1. Al ∈ Dl,

2. ‘ti’ ∈ C (A′), for every wffA′ ∈ Dl,

3. E `crel A′, for every wffA′ ∈ Dl,

4. Tj ∪B ∪ (Dl \ {Al}) ` Al,

5. Dl \ {A′} 6` A′, for every wffA′ ∈ Dl,

6. every wffA′ ∈ Dl is a normal form,

8The indexl is inherited fromDAl.
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7. there is no wffA′ ∈ Dl for which there is ann ≥ 1 such thatA′ a`
A1 ∧ . . . ∧ An, and every wffAi, 1 ≤ i ≤ n, is shorter thanA′, where ‘→’
is eliminated and brackets are not counted, and

8. every quantifier scope of every wffA′ ∈ Dl is a conjunctionB1 ∧ . . .∧Bm,
m ≥ 1, such that it holds for every conjunctBk, 1 ≤ k ≤ m: there is no
n ≥ 1 such thatBk a` A1 ∧ . . . ∧ An, and every wffAi, 1 ≤ i ≤ n, is
shorter thanBk, where ‘→’ is eliminated and brackets are not counted.

In answering this question one first has to find out whether (1)Al ∈ Dl; (2) ‘ti’
∈ C (A′), for every wffA′ ∈ Dl; whether there is a pairPrCm of a finite set of
finite sequences of wffsPrm and a wffCm

9 such that (3a) for every wffA′ ∈ Dl

there is aP ∈ Prm which is a proof ofA′ from E; and (4) there is aP ∈ Prm

which is a proof ofAl from Tj ∪B ∪ (Dl \ {Al}).10

Tj ∪ B ∪ Dl is finite, and a proof of some wffC from some set of wffs
S is a finite sequence of wffs〈A1, . . . , An〉 such thatAn = C, and for every
i, 1 ≤ i ≤ n: (i) Ai is an axiom, (ii)Ai is in S, or (iii) Ai is the result of applying
a derivation rule to some wffsAk, 1 ≤ k < i. So questions (1), (2), (3a), and (4)
can be answered in finitely many steps for a given pairPrCm.

If the answer to at least one of these questions is negative for a givenDAl

– called ablock– and a givenPrCm, α writes a “no” in them-th column of the
0-line of block l of tableij. Otherwise it writes a “yes” in them-th column of
the 0-line of blockl of tableij (see below). So a “yes” in them-th column of the
0-line of blockl of tableij means thatPrCm shows that conditions (1), (2), (3a),
and (4) hold ofT , ‘ti’, E, B, Dl andAl.

In a second stepα checks for every wffA′ ∈ Dl whether there are (marked)
occurrences of predicatesR1, . . . , Rn in A′ such that the following holds of the
wff A′∗ which is the result of replacing these marked occurrences inA′ by new or
starred predicatesR∗

1, . . . , R
∗
n, respectively: There is at least one finite sequence

of wffs P ∈ Prm which is a proof ofA′∗ from E.
Note that for every wffA′ ∈ Dl there are only finitely many such wffsA′∗:

namely2n′ − 1, wheren′ is the number of occurrences of predicates inA′. In
order forA′ to be a relevant consequence ofE, it has to hold for all these2n′ − 1
wffs A′∗: E 6` A′∗.11

9The indexm is inherited fromPrCm.
10If there is a finite setPrm and a wff Cm satisfying (3a), and if there is a finite setPrn

satisfying (4), then there is a finite setPrk(e.g.Prm ∪Prn) and a wffCm satisfying (3a) and (4).
11So
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If there is at least one such wffA′∗ for which there is aP ∈ Prm which is a
proof of A′∗ from E, α writes atentative“yes” at the topof them-th column of
the line corresponding toA′ in block l of tableij. Otherwise it writes atentative
“no” at the topof them-th column of the line corresponding toA′ in block l of
tableij. Thus a tentative “yes” at the top means that there is a proof showing that
A′ is no relevant consequence ofE.

In a third stepα checks for every wffA′ ∈ Dl whether (a) there is a finite
sequence of wffsP ∈ Prm which is a proof ofA′ ↔ Cm from ∅; (b) Cm is of
the formA1 ∧ . . . ∧ An, for somen ≥ 1; and (c) every wffAi, 1 ≤ i ≤ n, is
shorter thanA′, where ‘→’ is eliminated and brackets are not counted.α writes a
tentative“yes” in the middleof them-th column of the line corresponding toA′ in
block l of tableij, if the answers to questions (a)-(c) are affirmative. Otherwise it
writes atentative“no” in the middleof them-th column of the line corresponding
to A′ in block l of tableij. So a tentative “yes” in the middle means that there is
a proof showing thatA′ is not elementary.

In a fourth stepα checks for everyA′ ∈ Dl whether there is at least one
quantifier scope inA′ which is a conjunctionB1 ∧ . . . ∧ Bm, m ≥ 1, such that it
holds for at least one conjunctBk, 1 ≤ k ≤ m: (i) there is at least oneP ∈ Prm

which is a proof ofBk ↔ Cm from ∅; (ii) Cm is of the formA1 ∧ . . . ∧ An, for
somen ≥ 1; and (iii) every wffAi, 1 ≤ i ≤ n, is shorter thanBk, where ‘→’ is
eliminated and brackets are not counted. If at least one quantifier scope inA′ is
such a conjunction,α writes atentative“yes” at the bottomof them-th column
of the line correspondingA′ in block l of tableij. Otherwise it writes atentative
“no” at the bottomof them-th column of the line correspondingA′ in block l of
tableij. So a tentative “yes” at the bottom means that there is a proof showing

A `crel,L B iff A `L B andA 6`L B∗
1 and. . . andA 6`L B∗

N ,

whereN := 2n − 1, n is the number of predicate occurrences inB, andB∗
i is thei-th result of

replacing (marked) predicate occurrences inB by new or starred ones,1 ≤ i ≤ N . This shows that
if the underlying logicL is decidable, then both̀crel,L and 6`crel,L are recursively enumerable
(r.e.), wherè crel,L is defined as̀ crel except that the consequence-relation ofPL1 =, `, is
replaced by the consequence relation ofL, `L.

A theorem due to Kit Fine shows that the other direction holds, too, for every r.e. logicL closed
under substitution and containing classical propositional logicPC – it says that every such logic
L is decidable, if̀ crel,L is r.e. Cf. Schurz (1991), p. 415.

Since`crel,L is decidable just in case both̀crel,L and 6`crel,L are r.e., it holds for every r.e.
logic L closed under substitution and containingPC:

L is decidable iff̀ crel,L is r.e. iff `crel,L is decidable.
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that at least one quantifier scope ofA′ is not a conjunction of elementary wffs.

In a fifth stepα checks everyA′ ∈ Dl on its being a normal form. IfA′ is a
normal form,α writes atentative“yes” at the leftof them-th column of the line
corresponding toA′ in block l of tableij. Otherwise it writes atentative“no” at
the leftof them-th column of the line corresponding toA′ in block l of tableij.
So a tentative “no” at the left means thatA′ is no normal form.

In sum: If there is a tentative “yes” at the top, in the middle,or at the bottom,
or a tentative “no” at the left of them-th column of the line corresponding toA′

in block l of tableij, thenPrCm shows thatA′ ∈ Dl is no relevant element ofE.
It remains to be determined whetherDl is non-redundant.

Therefore, in a sixth stepα checks for everyA′ ∈ Dl whether there is a
finite sequence of wffsP ∈ Prm which is a proof ofA′ from Dl \ {A′}. α writes
a tentative“yes” at the rightof them-th column of the line corresponding toA′ in
block l of tableij, if there is such aP ∈ Pr. Otherwise it writes atentative“no”
at the rightof them-th column of the line corresponding toA′ in block l of table
ij. So a tentative “yes” at the right means that there is a proof showing thatA′ is
a redundant part ofDl.

In concluding,α looks at them-th column of the line corresponding toA′

in block l of table ij: If there is a tentative “yes” at the top, in the middle, at
the bottom,or at the right,or a tentative “no” at the left, thenα cleansthem-th
column of the line corresponding toA′ in block l of tableij and writes adefinite
“yes”. Otherwise it cleans them-th column of this line and writes adefinite“no”.

A definite “yes” in them-th column of the line corresponding toA′ in block
l of tableij therefore means thatPrCm shows thatDl is not a non-redundant set
of relevant elements ofE.
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Tableij is of the following form, wheredl is the number of wffs inDl.

tableij PrC1 · · · PrCm · · ·
DA1 1 2 6 7 C 0-line of B
A′

11 3 5 8 · O line 1 corresponding toA′
11 in L

· 4 9 · L O
· 10 · U C
· 11 M K

A′
1d1

N line d1 corresponding toA′
1d1

in 1
·
· m
·

DAl ↓ 0-line of B
A′

l1 line 1 corresponding toA′
l1 in L

· O
· C
· K

A′
ldl

line dl corresponding toA′
ldl

in l
·
·
·

In the endα will have filled every blank with a “yes” or “no”. A blockl is called
positive in the limitjust in case there is a “yes” in at least one column of the 0-line
of block l, and there are only “no”s in every column of any line corresponding any
wff A′ ∈ Dl. A block l is callednegative in the limitiff there is a “no” in every
column of the 0-line of blockl, or there is a “yes” in at least one column of at least
one line corresponding to some wffA′ ∈ Dl.

A block l is calledpositive at stepn iff there is a “yes” in at least one column
of the 0-line of blockl which has already been investigated by stepn (i.e. at step
n, α has already written down a “yes” in the 0-line), and there are only “no”s in
every columnalready investigated by stepn of any line corresponding to any wff
A′ ∈ Dl (i.e. at stepn, α has not yet written down a “yes” in any such line). A
block l is callednegative at stepn just in case there is a “no” in every column of
the 0-line of blockl which has already been investigated by stepn (i.e. at stepn,
α has not yet written down a “yes” in the 0-line), or there is a “yes” in at least one
columnalready investigated by stepn of at least one line corresponding to some
wff A′ ∈ Dl (i.e. at stepn, α has already written down a “yes” in some such line).
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The question each tableij is designed to answer is whetherTj accounts for
‘ ti’ in E relative toB. This holds just in case there is at least one finite and non-
redundant setD of relevant elements ofE and at least one wffA ∈ D such that
‘ ti’ ∈ C (A′) for every wffA′ ∈ D, and

Tj ∪B ∪ (D \ {A}) ` A.

It is straightforward that this holds if and only if there is at least one blockl in
tableij which is positive in the limit.

At each stepn in tableij, α conjectures “yes” – i.e.Tj accounts for ‘ti’ in E
relative toB – just in case there is at least one blockl in tableij which is positive
at stepn. Otherwise it conjectures “no”.

There arem · N tablesij. In addition to these,α considersm tables
1, . . . ,m – one for each constant term ‘ti’ ∈ C (E). Tablei, 1 ≤ i ≤ m, has
countably many columns listing all the countably many finite sequences of wffs
P1, . . . , Pn, . . .. Then there arei−1 one-line blocks listing the constant terms ‘t1’,
. . ., ‘ti−1’; they are put at the beginning. Furthermore tablei has countable many
blocks listing all the countably many finite sets of wffsD1, . . . , Dn, . . .. Each
such block consists ofi lines (one for each ‘tk’, 1 ≤ k ≤ i). So tablei is of the
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following form:

tablei P1 · · · Pn · · ·
‘ t1’ 1 2 6 7
· 3 5 8 ·
· 4 9 ·
· 10 ·

‘ ti−1’ 11
D1, ‘ t1’

·
·
·

D1, ‘ ti’
·
·
·

Dn, ‘ t1’
·
·
·

Dn, ‘ ti’
·
·
·

For a given ‘tk’, 1 ≤ k ≤ i − 1 – called aone-line block– and a givenPm, α
checks whetherPm is a proof ofti = tk from E∪B. If the answer is yes,α writes
a “yes” in them-th column of one-line blockk of table i; otherwise it writes a
“no” there. So a “yes” in them-th column of one-line blockk ≤ i − 1 of tablei
means thatPm is a proof ofti = tk from E ∪ B. E ∪ B ` ti = tk holds just in
case there is at least one “yes” in one-line blockk of tablei.

For a givenDl – again called ablock – and a givenPm, α checks whether
(a)Pm is a proof of

∧
e∈E e ↔ ∧

d∈Dl
d from ∅, and whether (b.1) ‘t1’ occurs inDl,

. . ., (b.i) ‘ ti’ occurs inDl. If (a) is the case, but (b.p) is not,α writes a “yes” in the
m-th column of linep of block l+ i−1 of tablei; otherwise it writes a “no” there.
So a “yes” in them-th column of linep of block l + i− 1 of tablei means thatPm

is a proof of
∧

e∈E ↔ ∧
d∈Dl

d, where ‘tp’ 6∈ C (Dl). ‘tp’ 6∈ Cess (E) iff there is a
“yes” in at least one column of linep of at least one blockl+ i−1 (corresponding
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to Dl) of tablei.
At a given stepn, α conjectures “yes” – i.e. ‘ti’ 6∈ Cess (E), or E ∪ B `

ti = tp, for at least one ‘tp’ ∈ Cess (E), p < i – iff there is a “yes” in at least
one column of linei of at least one blockl + i − 1 of tablei which has already
been investigated by stepn (i.e. at stepn, α has already written down a “yes” in
line i of some such block);or if there is a “yes” in at least one columnalready
investigated by stepn of some one-line blockk ≤ i − 1 of tablei, and there are
only “no”s in every columnalready investigated by stepn of line k of any block
l + i− 1. Otherwise it conjectures “no”.

If ‘ ti’ 6∈ Cess (E), there is a “yes” in at least one column of linei of some
block l + i− 1 of tablei; soα will eventually start to conjecture “yes”, and it will
continue to do so forever. IfE∪B ` ti = tp, for some ‘tp’ ∈ Cess (E), p < i, then
there is a “yes” in at least one column of some one-line blockp ≤ i− 1, and there
is no “yes” in linep of any blockl + i− 1 of tablei; again,α will eventually start
to conjecture “yes”, and it will continue to do so forever. If ‘ti’ ∈ Cess (E) and
E ∪ B ` ti = tp, for no ‘tp’ ∈ Cess (E), p < i, then there are only “no”s in every
column of linei of any blockl + i− 1 of tablei; and for everyp, 1 ≤ p ≤ i− 1:
there are only “no”s in every column of one-line blockp, or there is a “yes” in at
least one column of linep of some blockl + i − 1 of tablei. Thereforeα will
never conjecture “yes”, or it will eventually start to conjecture “no”, and it will
continue to do so forever. Soα stabilizes to the correct answer for every constant
term ‘ti’ occurring inE.

Finally, α uses a table 0 in conjecturing whetherT ∪ B ∪ E 6` ⊥. Table 0
consists of a single line and countably many columns listing all finite sequences
of wffs P1, . . . , Pn, . . .. For a givenPm, α writes a “yes” in them-th column of
table 0, ifPm is a proof of⊥ from T ∪B∪E. Otherwise it writes a “no” there. At
stepn, α conjectures “yes” – i.e.T ∪B∪E is consistent – iff there are only “no”s
in every columnalready investigated by stepn (i.e. at stepn, α has not yet written
down a “yes”). Otherwise it conjectures “no” – i.e.T ∪ B ∪ E 6` ⊥. α stabilizes
to the correct answer for table 0: It conjectures thatT ∪B∪E is consistent except
it has found a proof of the opposite claim which makes it conjecture “no” forever.

In sum there arem · (N + 1) + 1 tablesij, i, and 0.α starts with step 1 of
table 1, and checks through all them·(N + 1)+1 first steps; after that it continues
with step 2 of table 1, and so on. Ifα starts to conjecture “yes” at some stepn of
some tableij, because there is a “yes” in at least one column already investigated
by stepn of the 0-line of some blockl of tableij, and because there are only “no”s
in any column already investigated by stepn of any line corresponding to any wff
A′ ∈ Dl, thenα sticks to blockl until it changes its mindbecause of a “yes” in
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some column of some line corresponding to some wffA′ ∈ Dl, in which case it
goes back to where it has started deviating from its usual path. In other words,
in such a caseα investigates only thedl lines corresponding to the wffsA′ ∈ Dl.
This guarantuees thatα conjectures infinitely many “no”s for tableij, if Tj does
not account for ‘ti’ in E relative toB.

At stepn, α conjecturesm − c (n) as value for|CB−repr (E)|, wherec (n)
is the number of tablesi among1, . . . ,m for whichα conjectures “yes” at stepn
– i.e. there is a ‘tp’ ∈ Cess (E) such thatp < i andE ∪ B ` ti = tp. Clearly
α stabilizes to the correct value|CB−repr (E)|. It remains to be shown thatα
stabilizes to the correct value|AB−repr (Tj, E, B)| for any subsetTj of T .

SupposeTj ⊆ T accounts for ‘ti’ in E relative toB. Then there is at least
one block in tableij which is positive in the limit. In other words, there is a
block l which contains a “yes” in at least one column, say them-th, of the 0-line
of block l of tableij, and which contains only “no”s in any column of any line
corresponding to any wffA′ ∈ Dl. When writing down this “yes” in them-th
column of the 0-line of blockl, α starts to conjecture thatTj accounts for ‘ti’ in
E relative toB, and it will continue to conjecture this forever, because there will
always be this “yes” in the 0-line, and there will never be a “no” in any column of
any line corresponding to any wffA′ ∈ Dl. As a consequence,α conjectures only
finitely many “no”s.

SupposeTj does not account for ‘ti’ in E relative toB. Then there is no
block l in tableij which is positive in the limit. So for every blockl: Either there
is no “yes” in any column of the 0-line of blockl, or there is a “yes” in at least
one column of at least one line corresponding to some wffA′ ∈ Dl. Let l be any
block of tableij. If there is no “yes” in any column of the 0-line of blockl, α can
never takel as reason to conjecture “yes”. If, however, there is a “yes” in at least
one column of at least one line corresponding to some wffA′ ∈ Dl, thenα cannot
takel as reason to conjecture thatTj accounts for ‘ti’ in E relative toB after it
has written down this “yes”.

So for every blockl there is a stepn such that it holds for all later stepsm ≥
n: α cannot take blockl as reason to conjecture “yes” at stepm. Unfortunately,
this doesnot mean that there is a stepn′ such that it holds for all later steps
m′ ≥ n′: At stepm′, no blockl can be taken as reason to conjecture “yes”. (If
this were the case, the proof would be finished here.) However,α conjectures
infinitely many “no”s.

α will therefore eventually conjecture correctly and forever thatTj accounts
for ‘ ti’ in E relative toB, if it does so. However, ifTj does not account for ‘ti’
in E relative toB, it may happen thatα does not stabilize to the correct answer
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“no”: Though it will not wrongly stabilize to “yes”, it need not stabilize at all, but
may continue to change its mind forever.

In order to overcome this difficulty the improved methodα∗ is introduced:
The input forα∗ is the output ofα. More precisely, whereTj is any subset ofT ,
1 ≤ j ≤ N , let

aj (‘ ti’ , n) =

{
1, if α conjectures “no” for tableij at stepn,
0 otherwise;

and

a (‘ ti’ , n) =

{
1, if α conjectures “yes” for tablei at stepn,
0 otherwise.

So
a (Tj, ‘ ti’ , n) :=

∑
1≤k≤n

min {1, aj (‘ ti’ , k) + a (‘ ti’ , k)}

is the number of steps up to stepn at whichα conjectures thatTj doesnotaccount
for ‘ ti’ in E relative toB, that ‘ti’ 6∈ Cess (E), or that there is a ‘tp’ ∈ Cess (E)
with p < i andE ∪B ` ti = tp. It is important to note that

lim
n→∞

a (Tj, ‘ ti’ , n) = ∞,

if Tj does not account for ‘ti’ in E relative toB, if ‘ ti’ 6∈ Cess (E), or if there is a
‘ tp’ ∈ Cess (E) with p < i andE ∪B ` ti = tp; and that

lim
n→∞

a (Tj, ‘ ti’ , n) < ω,

if Tj accounts for ‘ti’ in E relative toB, ‘ti’ ∈ Cess (E), and there is no ‘tp’
∈ Cess (E) with p < i andE ∪B ` ti = tp.

For if Tj does not account for ‘ti’ in E relative toB, thenα conjectures
infinitely many “no”s for tableij; and if ‘ti’ 6∈ Cess (E), or if there is a ‘tp’
∈ Cess (E) with p < i andE ∪ B ` ti = tp, thenα starts to conjecture “yes” for
tablei after some time, and continues to do so forever. If, however,Tj accounts
for ‘ ti’ in E relative toB, ‘ti’ ∈ Cess (E), and there is no ‘tp’ ∈ Cess (E) with
p < i andE ∪ B ` ti = tp, thenα conjectures only finitely many “no”s for table
ij, and only finitely many “yes”s for tablei, if it ever conjectures “yes” for table
i.

Let K be any of the finitely many subsets ofC (E), and define

K := C (E) \K, min (K, Tj, n) := min {a (Tj, ‘ ti’ , n) : ‘ ti’ ∈ K} ,
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and
max (K, Tj, n) := max {a (Tj, ‘ ti’ , n) : ‘ ti’ ∈ K} .

At stepn, α∗ considers

dn (K, Tj) := min
(
K, Tj, n

)
−max (K, Tj, n) ,

for everyK ⊆ C (E), and its conjecture at stepn is thatK∗
n (Tj) is the set of all

constant terms ‘ti’ ∈ Cess (E) which are accounted for byTj in E relative toB,
and for which there is no ‘tp’ ∈ Cess (E) with p < i andE ∪ B ` Ti = tp, where
K∗

n (Tj) is that subsetK∗ of C (E) such that

dn (K∗, Tj) > dn (K, Tj) ,

for everyK ⊆ C (E), K 6= K∗, if there is such aK∗ ⊆ C (E); otherwiseK∗
n (Tj)

is C (E).
It will be shown that there is a stepn such that it holds for all later steps

m ≥ n:
dm (AB−repr (Tj, E, B) , Tj) > dm (K,Tj) ,

for everyK ⊆ C (E), K 6= AB−repr (Tj, E, B); i.e. there is ann such that it
holds for allm ≥ n:

K∗
m (Tj) = AB−repr (Tj, E, B) .

Note first that
lim

n→∞
dn (AB−repr (Tj, E, B) , Tj) = ∞,

because
lim

n→∞
min

(
AB−repr (Tj, E, B), Tj, n

)
= ∞,

and
lim

n→∞
max (AB−repr (Tj, E, B) , Tj, n) < ω.

The reason is that
lim

n→∞
a (Tj, ‘ ti’ , n) = ∞,

for every ‘ti’ ∈ AB−repr (Tj, E, B), and

lim
n→∞

a (Tj, ‘ ti’ , n) < ω,

for every ‘ti’ ∈ AB−repr (Tj, E, B).
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Let K be any subset ofC (E), K 6= AB−repr (Tj, E, B) ⊆ C (E). Then

K ⊂ AB−repr (Tj, E, B) or AB−repr (Tj, E, B) ⊂ K.

In the first case there is at least one ‘ti’ ∈ C (E) with

‘ ti’ ∈ AB−repr (Tj, E, B) ∩K,

whence

lim
n→∞

min
(
K, Tj, n

)
< ω, and thus lim

n→∞
dn (K, Tj, n) < ω,

because
max (AB−repr (Tj, E, B) , Tj, n) ≥ max (K, Tj, n) ,

for everyn. In the second case there is at least one ‘ti’ ∈ C (E) with

‘ ti’ ∈ AB−repr (Tj, E, B) ∩K,

whence
lim

n→∞
max (K, Tj, n) = ∞,

where for everyn,

min
(
AB−repr (Tj, E, B), Tj, n

)
≥ min

(
K, Tj, n

)
.

So in both cases there is a stepn such that it holds for all later stepsm ≥ n:

dm (AB−repr (Tj, E, B) , Tj) > dm (K,Tj) ,

for everyK ⊆ C (E), K 6= AB−repr (Tj, E, B).
As a consequence,α∗ stabilizes to the correct value|AB−repr (Tj, E, B) | ,

for every subsetTj of T . At stepn, α∗ conjectures

s∗ (T ′, E, B, n) :=

∣∣∣∣∣∣K∗
n (T ′) \

⋃
T ′′⊂T ′

K∗
n (T ′′)

∣∣∣∣∣∣
as value for|SB−repr (T ′, E, B)|, ∅ 6= T ′ ⊆ T . By conjecturing

r∗ (T,E,B, n) :=
∑

∅6=T ′⊆T

s∗ (T ′, E, B, n)

(m− c (n)) · (2|T | − 1)
· xn

at stepn, α∗ stabilizes to the correct valueCoh (T,E,B) of Coh for T , E, and
B, where

xn =

{
1, if α∗ conjectures “yes” for table 0 at stepn,
0 otherwise.

2
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D.6 Proof of Theorem 4.6

Theorem D.6 (No InvEquTrans ofT for Coh) For every evidenceE, and every
set of wffsB there are theoriesT andT ′ such that

T a` T ′ and Coh (T,E,B) 6= Coh (T ′, E, B) ,

provided there is at least one theoryT with Coh (T,E,B) 6= 0.

Proof.
Let E be an evidence, and letB be a set of wffs. Suppose there is at least one
theoryT with Coh (T,E,B) 6= 0.

Let h := ∀xi (Fxi ∨ ¬Fxi), where ‘F ’ is some predicate not occurring in
T , E, or B, andT contains at least one essential occurrence of ani-variable. So
T ∪ {h} is a theory withT a` T ∪ {h}. Therefore

Coh (T,E,B) =
∑

∅6=T ′⊆T

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T | − 1)

=
∑

∅6=T ′⊆T

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T | − 1)

+

+
∑

∅6=T ′⊆T

|SB−repr (T ′ ∪ {h} , E, B)|
|CB−repr (E)| · (2|T | − 1)

=
∑

∅6=T ′⊆T∪{h}

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T | − 1)

>
∑

∅6=T ′⊆T∪{h}

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T∪{h}| − 1)

= Coh (T ∪ {h} , E, B) .

The proviso is non-trivial, since there are evidencesE and sets of wffsB such
that it holds for every theoryT : Coh (T, E,B) 6= 0, only if none of the evidential
domains ofE is among the domains of proper investigation ofT – even ifE∪B 6`
⊥ andAB−repr (∅, E, B) 6= CB−repr (E).

Let E = {Fa} and B = {¬∀xFx}. Then AB−repr (∅, E, B) = ∅ 6=
CB−repr (E) andE ∪B 6` ⊥.

SupposeT is a theory such that (i)Coh (T, E,B) 6= 0, and (ii) at least one
of the evidential domains ofE is a domain of proper investigation ofT . (i) yields
T ∪B ` Fa, i.e. T ` ¬∀xFx → Fa.



204 APPENDIX D. PROOFS FOR CHAPTER 4

Because of (ii), ‘a’ cannot occur inT , whenceT ` ∀y (¬∀xFx → Fy),
i.e. T ` ∀y (∀xFx ∨ Fy), and thusT ` ∀xFx. But thenT ∪ B ` ⊥, whence
Coh (T, E,B) = 0 – a contradiction. 2

D.7 Proof of Theorem 4.7

Theorem D.7 (Coherence Versus Power)Let T be a finite set of wffs, letE be
an evidence, and letB be a set of wffs. IfT ∪B∪E 6` ⊥ andAB−repr (∅, E, B) =
∅, then

Coh (T, E,B) ≤ Coh

∧
h∈T

, E, B

 = P (T, E,B) ,

whereP is closed under equivalence transformations ofT andB.

Proof.
ThatP is closed under equivalence transformations ofT andB is an immediate
consequence of its definition. LetT be a finite set of wffs, letE be an evidence,
and letB be a (not necessarily finite) set of wffs. SupposeT ∪ B ∪ E 6` ⊥ and
AB−repr (∅, E, B) = ∅. If T = ∅, then{∧h∈T h} = ∅, and thus

Coh (T, E,B) = Coh

∧
h∈T

h,E,B

 = 0 = P (T, E,B) ,

becauseCB−repr (E) 6= ∅ andAB−repr (T,E,B) = AB−repr (∅, E, B) = ∅.
SupposeT 6= ∅. AsT is finite, andAB−repr (∅, E, B) = ∅, it holds for every

T ′ ⊆ T ,

S (T ′, E, B) ⊆ A (T ′, E, B) ⊆ A (T,E,B) = S

∧
h∈T

h,E,B

 .

SinceA \ C ⊆ B \ C, if A ⊆ B, for any setsA, B, C, it holds for everyT ′ ⊆ T ,

|SB−repr (T ′, E, B)| ≤

∣∣∣∣∣∣SB−repr

∧
h∈T

h,E,B

∣∣∣∣∣∣ .
Let N := 2|T | − 1, and letT1, . . . , TN be all theN non-empty subsets ofT .

|SB−repr (T1, E, B)|+ . . . + |SB−repr (TN , E, B)|
|CB−repr (E)| · (2|T | − 1)

≤ N · |SB−repr (
∧

h∈T h,E,B)|
|CB−repr (E)| · (2|T | − 1)
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iff∑
∅6=T ′⊆T

|SB−repr (T ′, E, B)|
|CB−repr (E)| · (2|T | − 1)

≤ |SB−repr (
∧

h∈T h,E,B)|
|CB−repr (E)|

N = 2|T | − 1

iff

Coh (T,E,B) ≤ Coh

∧
h∈T

h,E,B

 .

As SB−repr (
∧

h∈T h,E,B) = AB−repr (T, E,B), it follows that

Coh (T,E,B) ≤ Coh

∧
h∈T

h,E,B

 = P (T,E,B) .

2

D.8 Proof of Theorem 4.8

Theorem D.8 (No SensLoveLike ofCoh) For every power searcherLO, every
truth indicatorLI, and every evidenceE there is a theoryTE and a background
knowledgeBE such that it holds for any sets of wffsT andB, and every evidence
E ′: If T a` TE, E ′ a` E, andB a` BE, then

1. T ∪B ` E ′, and thusLO (T,E ′, B) = 1,

2. E ′ ∪B ` T , and thusLI (T, E ′, B) = 1, and

3. Coh (T, E ′, B) = 0.

Proof.
LetLO be a power searcher, letLI be a truth indicator, and letE be an evidence.
TE andBE are defined as follows:TE = {∀xiFxi}, andBE = E ∪ TE, where
‘F ’ is some predicate not occurring inE. TE is a theory, andBE is a background
knowledge.

E is consistent, whenceE ∪ BE andTE ∪ BE are consistent, too. By the
definition ofBE, TE ∪BE ` E andE ∪BE ` TE.

Let E ′ be an evidence, and letT andB be sets of wffs. SupposeE ′ a` E,
T a` TE, andB a` BE. ThenT ∪ B ` E ′ andE ′ ∪ B ` T . As a consequence,
LO (T, E ′, B) = LI (T, E ′, B) = 1.
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Theorem 4.4 (Surplus) yields thatS (T,E ′, B) = ∅, if T 6= ∅ andB ` T ,
whence it holds for everyT ′, ∅ 6= T ′ ⊆ T :

SB−repr (T ′, E ′, B) ⊆ S (T ′, E ′, B) = ∅.

SupposeT is finite. AsCB−repr (E ′) is always non-empty,

Coh (T, E ′, B) =
∑

∅6=T ′⊆T

|SB−repr (T ′, E ′, B)|
|CB−repr (E ′)| · (2|T | − 1)

= 0.

SupposeT is a set of countably many wffs, andlimi→∞ Coh (Ti, E
′, B) exists,

and is the same for every enumerationh1, . . . , hn, . . . of the wffs in T , where
Ti := {h1, . . . , hi}. Let h1, . . . , hn, . . . be an enumeration of the wffs inT , and
considerTi = {h1, . . . , hi}, for any i ≥ 1. As B ` T , B ` T ′

i for everyT ′
i ,

∅ 6= T ′
i ⊆ Ti, whence

SB−repr (T ′
i , E

′, B) ⊆ S (T ′
i , E

′, B) = ∅.

As before, it follows thatCoh (Ti, E
′, B) = 0. Since this holds for everyi ≥

1, it follows that limi→∞ Coh (Ti, E
′, B) exists, and equals0. By assumption,

limi→∞ Coh (Ti, E
′, B) is the same for every enumerationh1, . . . , hn, . . . of the

wffs in T . SoCoh (T,E ′, B) = 0.
Finally, if T is a set of uncountably many wffs,Coh (T, E ′, B) is not de-

fined, and may be set equal to0.
Note that this holds in particular for the – by assumption existing – unique

canonical formulationFTE
of TE. 2
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Proofs for Chapter 5

E.1 Proof of Theorem 5.1

Theorem E.1 (P Is a Formally Handy Power Searcher)P (·, ·, ·),P (·, ·, ·) : T ×
E×B → <, is a power searcher which is non-arbitrary, comprehensible, and com-
putable in the limit, provided for everyE ∈ E and every ‘t’ ∈ Cess (E) there is a
contingent1 A ∈ RE (E) with ‘ t’ ∈ C (A).

More precisely,P is formally handy, and for any theoriesT andT ′, every
evidenceE, every background knowledgeB, and every confirmational domain
Di of T andE, and ofT ′ andE:

1. P (T, E,B; Di) ≥ 0,

2. if T ∪B ` E, thenP (T,E,B; Di) = 1, and

3. if T ′ ` T , thenP (T ′, E, B; Di) ≥ P (T, E,B; Di),

provided for everyE ∈ E and every ‘t’ ∈ Cess (E) there is a contingentA ∈
RE (E) with ‘ t’ ∈ C (A).

Proof.
ThatP is non-arbitrary, comprehensible, and computable in the limit is a con-
sequence of theorem 4.5 and the proof of theorem 5.2, where it is shown how
to stabilize to the correct answer to the question whetherDi is a confirmational
domain ofT andE.

1Contingency should rule outt = t, which is a relevant consequence of anyE.

207
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Let T and T ′ be theories, letE be an evidence, letB be a background
knowledge, and letDi be a confirmational domain ofT andE, and ofT ′ andE.
Clearly,

P (T,E,B; Di) =
|AB−repr (T,E,B) ∩ Ci|
|CB−repr (E) ∩ Ci|

≥ 0.

SupposeT ∪B ` E. By assumption, for every ‘t’ ∈ Cess (E) – and thus for every
‘ ti’ ∈ CB−repr (E)∩Ci – there is a contingentAt ∈ RE (E) with ‘ t’ ∈ C (At). So
for every ‘ti’ ∈ CB−repr (E)∩Ci there is a finite and non-redundantD ⊆ DE (ti)
– namelyD = {Ati} – and a wffA ∈ D (namelyAti) such that ‘ti’ ∈ C (A′), for
everyA′ ∈ D, and

T ∪B ∪ (D \ {A}) ` A.

As a consequence,AB−repr (T, E,B)∩Ci = CB−repr (E)∩Ci, and thusP (T, E,B; Di) =
1.

Finally, supposeT ′ ` T , and let ‘ti’ ∈ AB−repr (T, E,B) ∩ Ci. This means
that there is a finite and non-redundantD ⊆ DE (ti) and a wffA ∈ D such that
‘ ti’ ∈ C (A′), for everyA′ ∈ D, and

T ∪B ∪ (D \ {A}) ` A.

But then there is also a finite and non-redundantD ⊆ DE (ti) and a wffA ∈ D
such that ‘ti’ ∈ C (A′), for everyA′ ∈ D, and

T ′ ∪B ∪ (D \ {A}) ` A.

SoAB−repr (T,E,B) ∩ Ci ⊆ AB−repr (T ′, E, B) ∩ Ci, and therefore

P (T, E,B; Di) ≤ P (T ′, E, B; Di) .

2

E.2 Proof of Theorem 5.2

Theorem E.2 (LI Is a Formally Handy Truth Indicator) LI (·, ·, ·),LI (·, ·, ·) :
T × E × B → <, is a truth indicator which is non-arbitrary, comprehensible, and
computable in the limit.

More precisely,LI is formally handy, and for any theoriesT andT ′, every
evidenceE, every background knowledgeB, and every confirmational domain
Di of T andE, and ofT ′ andE: If E ∪B 6` ⊥, then
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1. LI (T,E,B; Di) ≥ 0,

2. if E ∪B ` T , thenLI (T, E,B; Di) = 1, and

3. if T ′ ` T , thenLI (T ′, E, B; Di) ≤ LI (T, E,B; Di).

Proof.
LI is non-arbitrary, because it is a single function without parameters that can be
freely chosen. It is comprehensible because its definition is stated in the terms of
PL1 = andZF .

For computability in the limit one has to show that there is a methodα
that stabilizes to the correct valueLI (T, E,B; Di) of LI for T , E, B, and
every confirmational domainDi of T and E, for all theoriesT , evidencesE,
and background knowledgesB. The proof of theorem 4.5 shows how to stabi-
lize to the correct value|CB−repr (E)| – and thus to|CB−repr (E) ∩ Ci (E)| =
|CB−repr (E) ∩ Ci| – for everyE andB. It also shows how to stabilize to 1, if
E ∪ B 6` ⊥, and to 0 otherwise. It remains to be shown how to stabilize to the
correct valuemaxLI (T, E,B; Di), i.e.

max
{
|C ∩ CB−repr (E)| : C ⊆ CE,B,i, E ` DevCE,B,i

(B) → DevC (T )
}

,

CE,B,i = C (E ∪B)∩Ci = Ci (E ∪B), for all T , E, B, and every confirmational
domainDi of T andE.

Let T be a theory, letE be an evidence, and letB be a background knowl-
edge. One first has to determine the confirmational domains ofT andE. Let Di

be any domain such thatT contains an occurrence of ani-variable, but no occur-
rence of a constanti-term, andE contains an occurrence of a constanti-term, but
no occurrence of ani-variable; let ‘ti1’, . . ., ‘tim’ be the constanti-terms occurring
in E; let ‘tim+1’, . . ., ‘tip’ be the constanti-terms occurring inB but not inE; and
let K1, . . . , KN be the2p subsets ofCi (E ∪B).

The question is whetherT contains anessentialoccurrence of ani-variable,
and whether there is at least one constanti-termessentiallyoccurring inE. (We
already know that there are no occurrences of constanti-terms inT , and no oc-
currences ofi-variables inE.) In order to answer this question methodα uses
m + 1 tablesT andT ′

1, . . . , T
′
m all of which consist of countably many columns

listing all finite sequence of wffsP1, . . . , Pn, . . . and countable many lines listing
all finite sets of wffsD1, . . . , Dn, . . ..

For a givenPm and a givenCl, α checks whether (i)Pm is a proof of∧
h∈T h ↔ ∧

d∈Dl
d from ∅, and (ii) Dl contains an occurrence of ani-variable.



210 APPENDIX E. PROOFS FOR CHAPTER 5

If (i) is the case, but (ii) is not,α writes a “no” in them-th column of linel of
tableT ; otherwise it writes a “yes” there.T contains an essential occurrence of an
i-variable just in case there are only “yes”s in every column of every line of table
T .

Furthermore,α checks whether (i)Pm is a proof of
∧

e∈E e ↔ ∧
d∈Dl

d from
∅, and (ii)Dl contains an occurrence oftik, 1 ≤ k ≤ m. If (i) is the case, but (ii)
is not,α writes a “no” in them-th column of linel of tableT ′

k; otherwise it writes
a “yes” there.E contains an essential occurrence of ‘tik’ iff there are only “yes”s
in every column of every line of tableT ′

k.

At stepn, α conjectures “yes” – i.e.Di is a confirmational domain ofT and
E – iff there are only “yes”s in every column of every linealready investigated by
stepn of tableT , and there are only “yes”s in every column of every linealready
investigated by stepn of at least onetable amongT ′

1, . . . , T
′
m (i.e. at stepn, α

has not yet written down a “no” in any column of any line of tableT , nor has it
written down a “no” in any column of any line ofsometable amongT ′

1, . . . , T
′
m).

α stabilizes to the correct answer: IfDi is a confirmational domain ofT
andE, then there are only “yes”s in every column of every line of tableT and
of at least one further table amongT ′

1, . . . , T
′
m, whenceα will always conjecture

correctly “yes”. If Di is no confirmational domain ofT andE, then there is a
“no” in at least one column of at least one line of tableT , or there is a “no” in at
least one column of at least one line ofall tablesT ′

1, . . . , T
′
m. In the first case,α

conjectures correctly and forever thatDi is no confirmational domain ofT andE
after it has written down this “no” in tableT ; in the second case,α conjectures
correctly and forever thatDi is no confirmational domain ofT andE after it has
written down these “no”s in all tablesT ′

1, . . . , T
′
m.

In additionα usesN = 2p tablesTj, 1 ≤ j ≤ N – one for eachKj ⊆
Ci (E ∪B) – in conjecturing the correct valuemaxLI (T, E,B; Di).

TableTj consists of one single line and countably many columns listing all
finite sequences of wffsP1, . . . , Pn, . . .. For a givenPm, α checks whetherPm is
a proof ofDevCE,B,i

(B) → DevCj
(T ) from E. If the answer is affirmative,α

writes a “yes” in them-th column of tableTj; otherwise it writes a “no” there. At
stepn, α conjectures “yes” – i.e.E logically impliesDevCE,B,i

(B) → DevCj
(T )

– iff there is a “yes” in at least one columnalready investigated by stepn (i.e. at
stepn, α has already written down a “yes” in some column of tableTj); otherwise
it conjectures “no”. α stabilizes to the correct answer:E ` DevCE,B,i

(B) →
DevCj

(T ) holds iff there is a proof ofDevCE,B,i
(B) → DevCj

(T ) fromE, which
holds just in case there is a “yes” in at least one column of tableTj.
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Furthermore,α considersm tables1, . . . ,m – one for each constanti-term
‘ tik’ ∈ Ci (E) – in conjecturing whether ‘tik’ ∈ CB−repr (E). α just copies what the
α of the proof of theorem 4.5 does. Therefore it stabilizes to the correct answer to
the question whether (i) ‘tik’ ∈ Cess (E), and whether (ii) there is a ‘tip’ ∈ Cess (E)
with p < k andE ∪B ` tik = tip.

Finally, α uses a table 0 in conjecturing whetherE ∪ B 6` ⊥. Again,α just
copies what theα of the proof of theorem 4.5 does, and thus stabilizes to 1, if
E ∪B 6` ⊥, and to 0 otherwise.

As in the proof of theorem 4.5, another methodα∗ observes the output of
α. At stepn, α∗ conjectures thatLI (T, E,B; Di) is not defined, if, at stepn, α
conjectures “no” for tableT or it conjectures “no” for all tablesT ′

1, . . . , T
′
m – i.e.

Di is no confirmational domain ofT andE; or if α conjectures 0 for table 0 at
stepn – i.e.E ∪B ` ⊥.

If, however,α’s conjecture at stepn is thatDi is a confirmational domain
of T andE; and if, at stepn, α conjectures “yes” for tablesk1, . . . , ks

2 among
tables1, . . . ,m, s ≥ 1, 1 ≤ kr ≤ m, for everyr, 1 ≤ r ≤ s; and if, at stepn, α
conjectures thatE ∪ B 6` ⊥; thenα∗ conjectures at stepn thatLI (T,E,B; Di)
is defined, and that

LI (T,E,B; Di) =

∣∣∣K∗
n ∩

{
‘ tik1

’ , . . . , ‘ tiks
’
}∣∣∣

m− c∗n
,

where

1. c∗n = m− s is the number of tablesk among1, . . . ,m for whichα conjec-
tures “no” at stepn – i.e. ‘tik’ 6∈ CB−repr (E); and

2. K∗
n is that subsetKj of Ci (E ∪B) such that

(a) at stepn, α conjectures “yes” for tablej – i.e. E logically implies
DevCE,B,i

(B) → DevCj
(T );

(b)
∣∣∣Kj ∩

{
‘ tik1

’ , . . . , ‘ tiks
’
}∣∣∣ ≥ ∣∣∣Kl ∩

{
‘ tik1

’ , . . . , ‘ tiks
’
}∣∣∣, for everyl, 1 ≤

l ≤ N ; and

(c) there is noKq, q < j, satisfying (b) and (c).

If there is no suchKj, thenK∗
n = ∅.

2Indexn is suppressed for obvious reasons.
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α stabilizes to the correct answer for every tablek, 1 ≤ k ≤ m. So there
is a stepn1 such that at all later stepsn ≥ n1, α∗ conjectures correctly that{
‘ tik1

’ , . . . , ‘ tiks
’
}

= CB−repr (E). Furthermore,α stabilizes to the correct answer
for every tableTj, 1 ≤ j ≤ N , whence there is a stepn2 such that at all later steps
n ≥ n2, α∗ takes correctly into account all and only thoseKj ⊆ Ci (E ∪B) with
E ` DevCE,B,i

(B) → DevCj
(T ).

As α also stabilizes to the correct answer for the tables0, T, T ′
1, . . . , T

′
m,

there is a stepn∗ such that it holds for all later stepsn ≥ n∗: (1) At stepn, α∗

conjectures thatLI (T,E,B; Di) is defined, and that

LI (T,E,B; Di =
maxLI (T,E,B; Di)

|CB−repr (E) ∩ Ci|
,

where

max
LI

(T,E,B; Di) = max {|C ∩ CB−repr (E)| : C ⊆ CE,B,i,

E ` DevCE,B,i
(B) → DevC (T )

}
,

if Di is a confirmational domain ofT andE, andE ∪ B 6` ⊥. (2) At stepn, α∗

conjetures thatLI (T,E,B; Di) is not defined, ifDi is no confirmational domain
of T andE, or E ∪B ` ⊥. That much to computability in the limit.

As to truth indicativeness, letT andT ′ be theories, letE be an evidence,
and letB be a background knowledge. LetDi be a confirmational domain ofT
andE, and ofT ′ andE (with correspondingi-variables and constanti-terms),
and letD1, . . . , Dn be the domains ofT , E, andB (i.e. there occur variables and
constants ofn different sorts inT , E, andB). SupposeE ∪B 6` ⊥.

(A) Obviously,LI (T, E,B; Di) ≥ 0.

(B) SupposeE ∪B ` T . I show that

E ` DevCE,B,i
(B) → DevCE,B,i

(T ) ,

for then

LI (T, E,B; Di) =
|CB−repr (E) ∩ Ci (E ∪B)|

|CB−repr (E) ∩ Ci|
= 1.

Suppose
E 6` DevCE,B,i

(B) → DevCE,B,i
(T ) .
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Then there is at least one modelM = 〈Dom, ϕ〉, Dom = 〈D1, . . . , Dn〉, such
that

ϕ (E) = ϕ
(
DevCE,B,i

(B)
)

= 1 and ϕ
(
DevCE,B,i

(T )
)

= 0.

It is shown that, under this assumption, there is at least one modelM∗ = 〈Dom∗, ϕ∗〉,
Dom∗ = 〈D∗

1, . . . , D
∗
n〉, such that

ϕ∗ (E) = ϕ∗ (B) = 1 and ϕ∗ (T ) = 0

– in contradiction to the assumption thatE ∪B ` T .
Let D∗

k = Dk, 1 ≤ k 6= i ≤ n, and

D∗
i = {α : ϕ (‘ ti’) = α, for some constanti-term ‘ti’ ∈ Ci (E ∪B)} ,

and note that

Ci

(
DevCE,B,i

(B) → DevCE,B,i
(T )

)
= Ci (E ∪B) = CE,B,i.

LetC be the set of all constant terms occurring inE, DevCE,B,i
(B), orDevCE,B,i

(T ).
Let

ϕ∗ (‘a’) = ϕ (‘a’) ,

for every individual constant ‘a’ ∈ C,

ϕ∗
(
‘fkn+1 ’

)
= ϕ

(
‘fkn+1 ’

)
∩
〈
D∗

k1
, . . . , D∗

kn+1

〉
, D∗

kj
=

{
Dkj

, if kj 6= i,
D∗

i , if kj = i,

for every(n + 1)-ary kn+1-function symbol ‘fkn+1 ’ = ‘ fkn+1

(
xk1 , . . . , xkn

)
’ oc-

curring inE, DevCE,B,i
(B), or DevCE,B,i

(T ), and

ϕ∗ (‘P n’) = ϕ (‘P n’) ∩
〈
D∗

k1
, . . . , D∗

kn

〉
, D∗

kj
=

{
Dkj

, if kj 6= i,
D∗

i , if kj = i,

for everyn-ary (k1, . . . , kn-) predicate ‘P n’ = ‘ P n
(
xk1 , . . . , xkn

)
’ occurring inE,

DevCE,B,i
(B), or DevCE,B,i

(T ).
Note thatn-ary predicate ‘P n’ occurs in DevCE,B,i

(B) or DevCE,B,i
(T )

just in case ‘P n’ occurs inB respectivelyT ; and that(n + 1)-ary function sym-
bol ‘fkn+1 ’ occurs inDevCE,B,i

(B) or DevCE,B,i
(T ), if (but not only if3) ‘fkn+1 ’

occurs inB respectivelyT .

3If ‘ fkn+1 ’ is part of some constanti-term ‘ti’ ∈ Ci (E), but does not occur inB or T , then
‘fkn+1 ’ occurs inDevCE,B,i

(B) andDevCE,B,i
(T ).
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Let me first show thatϕ∗ (‘ t’) = ϕ (‘ t’), for every constant term ‘t’ ∈ C,
and, given this, thatϕ∗ (A) = ϕ (A), for every wff A in E, DevCE,B,i

(B), or
DevCE,B,i

(T ). It follows that

ϕ∗ (E) = ϕ (E) = 1 = ϕ∗
(
DevCE,B,i

(B)
)

= ϕ
(
DevCE,B,i

(B)
)
, and

ϕ∗
(
DevCE,B,i

(T )
)

= ϕ
(
DevCE,B,i

(T )
)

= 0.

Finally it is shown that

ϕ∗
(
DevCE,B,i

(B)
)

= ϕ∗ (B) = 1 and ϕ∗
(
DevCE,B,i

(T )
)

= ϕ∗ (T ) = 0,

which contradicts the assumption thatE ∪B ` T .
By definition, ϕ∗ (‘a’) = ϕ (‘a’), for every individual constant ‘a’ ∈ C.

Let ‘tk1 ’, . . ., ‘tkn ’ be n constantkj-terms,1 ≤ j ≤ n, let ‘fkn+1 ’ be ann-ary
kn+1-function symbol, and suppose ‘fkn+1

(
tk1 , . . . , tk1

)
’ ∈ C:

ϕ∗
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)

= ϕ∗
(
‘fkn+1 ’

) (
ϕ∗
(
‘ tk1 ’

)
, . . . , ϕ∗

(
‘ tkn ’

))
= ϕ∗

(
‘fkn+1 ’

) (
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

))
by induction hypothesis

= ϕ
(
‘fkn+1 ’

) (
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

))
ϕ
(
‘ tki ’

)
∈ D∗

ki
, for everyi, 1 ≤ i ≤ n, and

ϕ
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)
∈ D∗

kn+1
, because

‘fkn+1

(
tk1 , . . . , tkn

)
’ ∈ C

= ϕ
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)
.

Let A be a wff inE, DevCE,B,i
(B), or DevCE,B,i

(T ). A contains no occurrence
of an i-variablexi (or a corresponding quantifier), for these are eliminated in
DevCE,B,i

(B) andDevCE,B,i
(T ), and do not occur inE, becauseDi is an eviden-

tial domain ofE.
(1) If A is atomic, i.e. ifA is of the formP n

(
tk1 , . . . , tkn

)
, ‘tkj ’ ∈ C being a

constantkj-term, 1 ≤ j ≤ n, and ‘P n’ being ann-ary (k1, . . . , kn-) predicate,
then

ϕ∗
(
P n

(
tk1 , . . . , tkn

))
= 1 iff

〈
ϕ∗
(
‘ tk1 ’

)
, . . . , ϕ∗

(
‘ tkn ’

)〉
∈ ϕ∗ (‘P n’)

iff
〈
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

)〉
∈ ϕ∗ (‘P n’)
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by the above4

iff
〈
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

)〉
∈ ϕ (‘P n’)

ϕ∗ (‘P n’) = ϕ (‘P n’) ∩
〈
D∗

k1
, . . . , D∗

kn

〉
=

= ϕ (‘P n’) 5

iff ϕ
(
P n

(
tk1 , . . . , tkn

))
= 1.

(2) If A = ¬B, then

ϕ∗ (A) = 1 iff ϕ∗ (¬B) = 1

iff ϕ∗ (B) = 0

iff ϕ (B) = 0 by induction hypothesis

iff ϕ (¬B) = 1

iff ϕ (A) = 1.

(3) If A = B ∧ C, then

ϕ∗ (A) = 1 iff ϕ∗ (B ∧ C) = 1

iff ϕ∗ (B) = 1 andϕ∗ (C) = 1

iff ϕ (B) = 1 andϕ (C) = 1 by induction hypothesis

iff ϕ (B ∧ C) = 1

iff ϕ (A) = 1.

(4)-(5) Similarly forA = B ∨ C andA = B → C.
(6) If A = ∀xkB

[
xk
]
, k 6= i, then

ϕ∗ (A) = 1 iff ϕ∗
(
∀xkB

[
xk
])

= 1

iff ϕ∗′
(
B
[
xk
])

= 1, for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xk’

iff ϕ′
(
B
[
xk
])

= 1, for every interpretation functionϕ′

differing fromϕ at most in the value for ‘xk’

by induction hypothesis, and becauseD∗
k = Dk

iff ϕ
(
∀xkB

[
xk
])

= 1

iff ϕ (A) = 1.

4‘ tkj ’ ∈ C, for everyj, 1 ≤ j ≤ n, whenceϕ∗
(
‘ tkj ’

)
= ϕ

(
‘ tkj ’

)
, for everyj, 1 ≤ j ≤ n.

5ϕ
(
‘ tkj ’

)
∈ D∗

kj
, since ‘tkj ’ ∈ C, for everyj, 1 ≤ j ≤ n.
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(7) Similarly forA = ∃xkB
[
xk
]
, k 6= i.

Thus

ϕ∗ (E) = ϕ (E) = 1 = ϕ∗
(
DevCE,B,i

(B)
)

= ϕ
(
DevCE,B,i

(B)
)
, and

ϕ∗
(
DevCE,B,i

(T )
)

= ϕ
(
DevCE,B,i

(T )
)

= 0.

Let me now show by induction on the length of the conjunction
∧

h∈B h of all wffs
h ∈ B and the conjunction

∧
h∈T h of all wffs h ∈ T that

ϕ∗ (B) = ϕ∗
(
DevCE,B,i

(B)
)

and ϕ∗ (T ) = ϕ∗
(
DevCE,B,i

(T )
)
,

where ‘B’ is short for ‘
∧

h∈B h’, and ‘T ’ is short for ‘
∧

h∈T h’. Let ‘S’ be ‘T ’ or
‘B’.
(1) If S is atomic, i.e. ifS is of the formP n

(
tk1 , . . . , tkn

)
, ‘tkj ’ ∈ C being a

constantkj-term, 1 ≤ j ≤ n, and ‘P n’ being ann-ary (k1, . . . , kn-) predicate
occurring inE, DevCE,B,i

(B), or DevCE,B,i
(T ), then

ϕ∗ (S) = 1 iff ϕ∗
(
P n

(
tk1 , . . . , tkn

))
iff ϕ∗

(
DevCE,B,i

(
P n

(
tk1 , . . . , tkn

)))
= 1 definition of

the developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(2) If S = ¬A, then

ϕ∗ (S) = 1 iff ϕ∗ (¬A) = 1

iff ϕ∗ (A) = 0

iff ϕ∗
(
DevCE,B,i

(A)
)

= 0 by induction hypothesis

iff ϕ∗
(
¬DevCE,B,i

(A)
)

= 1

iff ϕ∗
(
DevCE,B,i

(¬A)
)

= 1 definition of the develop-

mentDevC (T ) of (a finite set of) wff(s)T for a

finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(3) If S = A ∧B, then

ϕ∗ (S) = 1 iff ϕ∗ (A ∧B) = 1
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iff ϕ∗ (A) = 1 andϕ∗ (B) = 1

iff ϕ∗
(
DevCE,B,i

(A)
)

= 1 andϕ∗
(
DevCE,B,i

(B)
)

= 1

by induction hypothesis

iff ϕ∗
(
DevCE,B,i

(A) ∧DevCE,B,i
(B)

)
= 1

iff ϕ∗
(
DevCE,B,i

(A ∧B)
)

= 1 definition of the develop-

mentDevC (T ) of (a finite set of) wff(s)T for a

finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(4)-(5) Similarly forS = A ∨B andS = A → B.
(6) If S = ∀xiA [xi], then

ϕ∗ (S) = 1 iff ϕ∗
(
∀xiA

[
xi
])

= 1

iff ϕ∗′
(
A
[
xi
])

= 1 for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xi’

iff ϕ∗

 ∧
‘ ti’ ∈ CE,B,i

A
[
ti/xi

] = 1 for everyα ∈ D∗
i there

is at least one ‘ti’ ∈ CE,B,i such thatϕ∗ (‘ ti’) = α

iff ϕ∗
(
DevCE,B,i

(
∀xiA

[
xi
]))

= 1 definition of the

developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(7) If S = ∃xiA [xi], then

ϕ∗ (S) = 1 iff ϕ∗
(
∃xiA

[
xi
])

= 1

iff ϕ∗′
(
A
[
xi
])

= 1 for at least one interpretation function

ϕ∗′ differing fromϕ∗ at most in the value for ‘xi’

iff ϕ∗

 ∨
‘ ti’ ∈ CE,B,i

A
[
ti/xi

] = 1 for everyα ∈ D∗
i there

is at least one ‘ti’ ∈ CE,B,i such thatϕ∗ (‘ ti’) = α



218 APPENDIX E. PROOFS FOR CHAPTER 5

iff ϕ∗
(
DevCE,B,i

(
∃xiA

[
xi
]))

= 1 definition of the

developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(8) If S = ∀xkA
[
xk
]
, k 6= i, then

ϕ∗ (S) = 1 iff ϕ∗
(
∀xkA

[
xk
])

= 1

iff ϕ∗′
(
A
[
xk
])

= 1 for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xk’

iff ϕ∗′
(
DevCE,B,i

(
A
[
xk
]))

= 1 for every interpretation

functionϕ∗′ differing fromϕ∗ at most in the value for ‘xk’

by induction hypothesis

iff ϕ∗
(
∀xkDevCE,B,i

(
A
[
xk
]))

= 1

iff ϕ∗
(
DevCE,B,i

(
∀xkA

[
xk
]))

= 1 definition of the

developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCE,B,i

(S)
)

= 1.

(9) Similarly forS = ∃xkA
[
xk
]
, k 6= i.

It follows that

ϕ∗ (B) = ϕ∗
(
DevCE,B,i

(B)
)

= 1 and ϕ∗ (T ) = ϕ∗
(
DevCE,B,i

(T )
)

= 0,

since
ϕ∗
(
DevCE,B,i

(B)
)

= ϕ
(
DevCE,B,i

(B)
)

= 1, and

ϕ∗
(
DevCE,B,i

(T )
)

= ϕ
(
DevCE,B,i

(T )
)

= 0.

So there is at least one modelM∗ = 〈Dom∗, ϕ∗〉, Dom∗ = 〈D∗
1, . . . , D

∗
n〉, such

that
ϕ∗ (E) = ϕ∗ (B) = 1 and ϕ∗ (T ) = 0

– in contradiction to the assumption thatE ∪B ` T .

(C) SupposeT ′ ` T , and letD1, . . . , Dn be the domains ofT andT ′ (i.e. there
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occur variables and constants ofn different sorts inT andT ′). It suffices to show
that

E ` DevCE,B,i
(B) → DevCT ′

(T ) ,

for everyCT ′ ⊆ Ci (E ∪B) with

E ` DevCE,B,i
(B) → DevCT ′

(T ′) .

For then
max
LI

(T, E,B; Di) ≥ max
LI

(T ′, E, B; Di) ,

and thus
LI (T, E,B; Di) ≥ LI (T ′, E, B; Di) .

Suppose
E ` DevCE,B,i

(B) → DevCT ′
(T ′) ,

but
E 6` DevCE,B,i

(B) → DevCT ′
(T ) ,

for someCT ′ ⊆ Ci (E ∪B). Then

DevCT ′
(T ′) 6` DevCT ′

(T ) .

So there is at least one modelM = 〈Dom, ϕ〉, Dom = 〈D1, . . . , Dn〉, such that

ϕ
(
DevCT ′

(T ′)
)

= 1 and ϕ
(
DevCT ′

(T )
)

= 0.

Once more it is shown that, under this assumption, there is at least one model
M∗ = 〈Dom∗, ϕ∗〉, Dom∗ = 〈D∗

1, . . . , D
∗
n〉, such that

ϕ∗ (T ′) = 1 and ϕ∗ (T ) = 0

– in contradiction to the assumption thatT ′ ` T .
Let D∗

k = Dk, 1 ≤ k 6= i ≤ n, and

D∗
i = {α : ϕ (‘ ti’) = α, for some constanti-term ‘ti’ ∈ CT ′} ,

and note that
Ci

(
DevCT ′

(T ′)
)
∪ Ci

(
DevCT ′

(T )
)

= CT ′ ,

becauseDi is among the domains of proper investigation of bothT andT ′.
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LetC be the set of all constant terms occurring inDevCT ′
(T ′) orDevCT ′

(T ).
Let

ϕ∗ (‘a’) = ϕ (‘a’) ,

for every individual constant ‘a’ ∈ C,

ϕ∗
(
‘fkn+1 ’

)
= ϕ

(
‘fkn+1 ’

)
∩
〈
D∗

k1
, . . . , D∗

kn+1

〉
, D∗

kj
=

{
Dkj

, if kj 6= i,
D∗

i , if kj = i,

for every(n + 1)-ary kn+1-function symbol ‘fkn+1 ’ = ‘ fkn+1

(
xk1 , . . . , xkn

)
’ oc-

curring inDevCT ′
(T ′) or DevCT ′

(T ), and

ϕ∗ (‘P n’) = ϕ (‘P n’) ∩
〈
D∗

k1
, . . . , D∗

kn

〉
, D∗

kj
=

{
Dkj

, if kj 6= i,
D∗

i , if kj = i,

for everyn-ary (k1, . . . , kn-) predicate ‘P n’ = ‘ P n
(
xk1 , . . . , xkn

)
’ occurring in

DevCT ′
(T ′) or DevCT ′

(T ).
As before,n-ary predicate ‘P n’ occurs inDevCT ′

(T ′) or DevCT ′
(T ) just

in case ‘P n’ occurs inT ′ respectivelyT ; and(n + 1)-ary function symbol ‘fkn+1 ’
occurs inDevCT ′

(T ′) or DevCT ′
(T ), if (but not only if) ‘fkn+1 ’ occurs in T ′

respectivelyT .
I first show thatϕ∗ (‘ t’) = ϕ (‘ t’), for every constant term ‘t’ ∈ C; given

this, I show thatϕ∗ (A) = ϕ (A), for every wffA in DevCT ′
(T ′) or DevCT ′

(T ).
It follows again that

ϕ∗
(
DevCT ′

(T ′)
)

= ϕ
(
DevCT ′

(T ′)
)

= 1, and

ϕ∗
(
DevCT ′

(T )
)

= ϕ
(
DevCT ′

(T )
)

= 0.

Finally, it is shown that

ϕ∗
(
DevCT ′

(T ′)
)

= ϕ∗ (T ′) = 1 and ϕ∗
(
DevCT ′

(T )
)

= ϕ∗ (T ) = 0,

which contradicts the assumption thatT ′ ` T .
By definition, ϕ∗ (‘a’) = ϕ (‘a’), for every individual constant ‘a’ ∈ C.

Let ‘tk1 ’, . . ., ‘tkn ’ be n constantkj-terms,1 ≤ j ≤ n, let ‘fkn+1 ’ be ann-ary
kn+1-function symbol, and suppose ‘fkn+1

(
tk1 , . . . , tk1

)
’ ∈ C:

ϕ∗
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)

= ϕ∗
(
‘fkn+1 ’

) (
ϕ∗
(
‘ tk1 ’

)
, . . . , ϕ∗

(
‘ tkn ’

))
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= ϕ∗
(
‘fkn+1 ’

) (
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

))
by induction hypothesis

= ϕ
(
‘fkn+1 ’

) (
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

))
ϕ
(
‘ tki ’

)
∈ D∗

ki
, for everyi, 1 ≤ i ≤ n, and

ϕ
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)
∈ D∗

kn+1
, because

‘fkn+1

(
tk1 , . . . , tkn

)
’ ∈ C

= ϕ
(
‘fkn+1

(
tk1 , . . . , tkn

)
’
)
.

Let A be a wff in DevCT ′
(T ′) or DevCT ′

(T ). A contains no occurrence of an
i-variablexi (or a corresponding quantifier), for these are eliminated.
(1) If A is atomic, i.e. ifA is of the formP n

(
tk1 , . . . , tkn

)
, ‘tkj ’ ∈ C being a

constantkj-term, 1 ≤ j ≤ n, and ‘P n’ being ann-ary (k1, . . . , kn-) predicate,
then

ϕ∗
(
P n

(
tk1 , . . . , tkn

))
= 1 iff

〈
ϕ∗
(
‘ tk1 ’

)
, . . . , ϕ∗

(
‘ tkn ’

)〉
∈ ϕ∗ (‘P n’)

iff
〈
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

)〉
∈ ϕ∗ (‘P n’)

by the above

iff
〈
ϕ
(
‘ tk1 ’

)
, . . . , ϕ

(
‘ tkn ’

)〉
∈ ϕ (‘P n’)

ϕ∗ (‘P n’) = ϕ (‘P n’) ∩
〈
D∗

k1
, . . . , D∗

kn

〉
=

= ϕ (‘P n’)

iff ϕ
(
P n

(
tk1 , . . . , tkn

))
= 1.

(2) If A = ¬B, then

ϕ∗ (A) = 1 iff ϕ∗ (¬B) = 1

iff ϕ∗ (B) = 0

iff ϕ (B) = 0 by induction hypothesis

iff ϕ (¬B) = 1

iff ϕ (A) = 1.

(3) If A = B ∧ C, then

ϕ∗ (A) = 1 iff ϕ∗ (B ∧ C) = 1
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iff ϕ∗ (B) = 1 andϕ∗ (C) = 1

iff ϕ (B) = 1 andϕ (C) = 1 by induction hypothesis

iff ϕ (B ∧ C) = 1

iff ϕ (A) = 1.

(4)-(5) Similarly forA = B ∨ C andA = B → C.
(6) If A = ∀xkB

[
xk
]
, k 6= i, then

ϕ∗ (A) = 1 iff ϕ∗
(
∀xkB

[
xk
])

= 1

iff ϕ∗′
(
B
[
xk
])

= 1, for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xk’

iff ϕ′
(
B
[
xk
])

= 1, for every interpretation functionϕ′

differing fromϕ at most in the value for ‘xk’

by induction hypothesis, and becauseD∗
k = Dk

iff ϕ
(
∀xkB

[
xk
])

= 1

iff ϕ (A) = 1.

(7) Similarly forA = ∃xkB
[
xk
]
, k 6= i.

Thus
ϕ∗
(
DevCT ′

(T ′)
)

= ϕ
(
DevCT ′

(T ′)
)

= 1, and

ϕ∗
(
DevCT ′

(T )
)

= ϕ
(
DevCT ′

(T )
)

= 0.

Let me now show by induction on the length of the conjunction
∧

h∈T ′ h of all wffs
h ∈ T ′ and the conjunction

∧
h∈T h of all wffs h ∈ T that

ϕ∗ (T ′) = ϕ∗
(
DevCT ′

(T ′)
)

and ϕ∗ (T ) = ϕ∗
(
DevCT ′

(T )
)
,

where ‘T ′’ is short for ‘
∧

h∈T ′ h’, and ‘T ’ is short for ‘
∧

h∈T h’. Let ‘S’ be ‘T ’ or
‘T ′’.
(1) If S is atomic, i.e. ifS is of the formP n

(
tk1 , . . . , tkn

)
, ‘tkj ’ ∈ C being a

constantkj-term, 1 ≤ j ≤ n, and ‘P n’ being ann-ary (k1, . . . , kn-) predicate
occurring inDevCT ′

(T ′) or DevCT ′
(T ), then

ϕ∗ (S) = 1 iff ϕ∗
(
P n

(
tk1 , . . . , tkn

))
iff ϕ∗

(
DevCT ′

(
P n

(
tk1 , . . . , tkn

)))
= 1 definition of



E.2. PROOF OF THEOREM 5.2 223

the developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCT ′

(S)
)

= 1.

(2) If S = ¬A, then

ϕ∗ (S) = 1 iff ϕ∗ (¬A) = 1

iff ϕ∗ (A) = 0

iff ϕ∗
(
DevCT ′

(A)
)

= 0 by induction hypothesis

iff ϕ∗
(
¬DevCT ′

(A)
)

= 1

iff ϕ∗
(
DevCT ′

(¬A)
)

= 1 definition of the develop-

mentDevC (T ) of (a finite set of) wff(s)T for a

finite set of constanti-termsC

iff ϕ∗
(
DevCT ′

(S)
)

= 1.

(3) If S = A ∧B, then

ϕ∗ (S) = 1 iff ϕ∗ (A ∧B) = 1

iff ϕ∗ (A) = 1 andϕ∗ (B) = 1

iff ϕ∗
(
DevCT ′

(A)
)

= 1 andϕ∗
(
DevCT ′

(B)
)

= 1

by induction hypothesis

iff ϕ∗
(
DevCT ′

(A) ∧DevCT ′
(B)

)
= 1

iff ϕ∗
(
DevCT ′

(A ∧B)
)

= 1 definition of the develop-

mentDevC (T ) of (a finite set of) wff(s)T for a

finite set of constanti-termsC

iff ϕ∗
(
DevCT ′

(S)
)

= 1.

(4)-(5) Similarly forS = A ∨B andS = A → B.
(6) If S = ∀xiA [xi], then

ϕ∗ (S) = 1 iff ϕ∗
(
∀xiA

[
xi
])

= 1

iff ϕ∗′
(
A
[
xi
])

= 1 for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xi’
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iff ϕ∗

 ∧
‘ ti’ ∈ CT ′

A
[
ti/xi

] = 1 for everyα ∈ D∗
i there

is at least one ‘ti’ ∈ CT ′ such thatϕ∗ (‘ ti’) = α

iff ϕ∗
(
DevCT ′

(
∀xiA

[
xi
]))

= 1 definition of the

developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCT ′

(S)
)

= 1.

(7) Similarly forS = ∃xiA [xi].
(8) If S = ∀xkA

[
xk
]
, k 6= i, then

ϕ∗ (S) = 1 iff ϕ∗
(
∀xkA

[
xk
])

= 1

iff ϕ∗′
(
A
[
xk
])

= 1 for every interpretation functionϕ∗′

differing fromϕ∗ at most in the value for ‘xk’

iff ϕ∗′
(
DevCT ′

(
A
[
xk
]))

= 1 for every interpretation

functionϕ∗′ differing fromϕ∗ at most in the value for ‘xk’

by induction hypothesis

iff ϕ∗′
(
∀xkDevCT ′

(
A
[
xk
]))

= 1

iff ϕ∗
(
DevCT ′

(
∀xkA

[
xk
]))

= 1 definition of the

developmentDevC (T ) of (a finite set of) wff(s)T

for a finite set of constanti-termsC

iff ϕ∗
(
DevCT ′

(S)
)

= 1.

(9) Similarly forS = ∃xkA
[
xk
]
, k 6= i.

It follows that

ϕ∗ (T ′) = ϕ∗
(
DevCT ′

(T ′)
)

= 1 and ϕ∗ (T ) = ϕ∗
(
DevCT ′

(T )
)

= 0,

since
ϕ∗
(
DevCT ′

(T ′)
)

= ϕ
(
DevCT ′

(T ′)
)

= 1, and

ϕ∗
(
DevCT ′

(T )
)

= ϕ
(
DevCT ′

(T )
)

= 0.

So there is at least one modelM∗ = 〈Dom∗, ϕ∗〉, Dom∗ = 〈D∗
1, . . . , D

∗
n〉, such

that
ϕ∗ (T ′) = 1 and ϕ∗ (T ) = 0
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– in contradiction to the assumption thatT ′ ` T . 2

TheoriesT and background knowledgesB have to be finite, for otherwise
DevC (T ) andDevC (B) are not defined, for any finite set of constant termsC.
The following example shows that – for the definition given (cf. the remark below)
– it is also necessary that theories do not contain occurrences of constanti-terms:
(1) LetE = {Fa, Gb}, B = ∅, T = {∀x (Fx ∧ Fb)}, andT ′ = {∀xFx}. Then

T ′ ` T, E ` Dev{‘a’} (B) → Dev{‘a’} (T ′) , and

E 6` Dev{‘a’} (B) → Dev{‘a’} (T ) ,

i.e.

∀xFx ` ∀x (Fx ∧ Fb) , Fa,Gb ` Fa, and Fa, Gb 6` Fa ∧ Fb,

whence
LI (T ′, E, B; D) = 1/2 > 0 = LI (T,E,B; D) ,

which violates the third condition in the definition of indicating truth, whereD is
the domain corresponding to the variable ‘x’ and the individual constants ‘a’ and
‘b’.

It is also necessary to consider the constanti-terms occurring in bothE and
B, as illustrated by the second example.
(2) LetE = {Fa}, B = {Gb}, andT = {∃xGx}. Then

E ∪B ` T, and E 6` Dev{‘a’} (B) → Dev{‘a’} (T ) ,

i.e.
Fa, Gb ` ∃xGx, and Fa 6` Gb → Ga,

whence
LI (T,E,B; D) = 0 < 1,

which violates the second condition of the definition of indicating truth.
Only recently – and too late in order to rewrite this dissertation – have I real-

ized that by consideringCi (E ∪B ∪ T ) in the definition ofmaxLI (T,E,B; Di)
one can drop the assumption that theoriesT do not talk about particular individ-
uals of their domains of proper investigation, i.e. one can drop the condition that
T contains no occurrences of constanti-terms, if Di is amongT ’s domains of
proper investigation. Though I still think that this restriction is appropriate, it is,
of course, always better to do without some assumptions or with weaker ones.
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Moreover, it is not even necessary to demand of an evidence with evidential
domainsD1, . . . , Dn to contain no occurrences ofi-variables (or corresponding
quantifiers),1 ≤ i ≤ n. Just consider

max
{
|C ∩ CB−repr (E)| : C ⊆ CT,E,B,i, DevCT,E,B,i

(E ∧B) ` DevC (T )
}

,

whereCT,E,B,i := Ci (T ∪ E ∪B).



Appendix F

Proofs for chapter 6

F.1 Proof of Theorem 6.1

Theorem F.1 (G Is Formally Handy) G (·, ·, ·), G (·, ·, ·) : T × E × B → <, is
non-arbitrary, comprehensible, computable in the limit, and closed under equiva-
lence transformations ofT .

Proof.
G is non-arbitrary and comprehensible, because it is a single function (without
parameters that can be chosen freely) which is defined in the terms ofPL1 = and
ZF .

G is computable in the limit, because all one has to determine for a given
theoryT , a given evidenceE, and a given background knowledgeB are (1) the
confirmational domains ofT andE; (2) the set of predicates essentially occur-
ring in T , PRess (T ); (3) whether the logical consequence relation holds between
various sets of statements; and (4) whether various sets of negated or unnegated
one-placei-predicates are subsets of other such sets – the functionslog, ·, and
÷ preserve computability in the limit, because they are computable. The proofs
of theorems 4.5 and 5.2 are sufficient to show how to construct a method that
stabilizes to the correct answer to all these questions.

G is closed under equivalence transformations ofT , for if T a` T ′, then (i)
PRess (T ) = PRess (T ′), and (ii)T accounts for a class of factsCF just in case
T ′ does. 2

227
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F.2 Proof of Theorem 6.2

Theorem F.2 (G Supports Gathering Evidence)G (·, ·, ·), G (·, ·, ·) : T × E ×
B → <, supports gathering evidence, if its definition is based on proper classes of
i-facts, and ifCB−repr (E) ⊆ CB−repr (E ′).

More precisely, for every theoryT , any evidencesE andE ′, every back-
ground knowledgeB, and every confirmational domainDi of T andE:

If E ′ ` E andCB−repr (E) ⊆ CB−repr (E ′), thenG (T, E ′, B; Di) ≥
G (T, E,B; Di).

Proof.
Let T be a theory, letE andE ′ be evidences, letB be a background knowledge,
and letDi be a confirmational domain ofT andE, and ofT andE ′. Suppose
E ′ ` E andCB−repr (E) ⊆ CB−repr (E ′).

Let CF i
1, . . . , CF i

m be the classes ofi-factsT , E, andB give rise to, and
let Ci

1, . . . , C
i
m be the corresponding sets of negated or unnegated one-placei-

predicates which induceCF i
1, . . . , CF i

m, respectively, relative toT , E, andB.
Ci

1, . . . , C
i
m are generated byPRi

1, which is generated byPRess (T ) andCB−repr (E).
By assumptionCB−repr (E) ⊆ CB−repr (E ′), whence the set of one-place

i-predicatesPRi
1 generated byPRess (T ) andCB−repr (E) is a subset of the set

of one-placei-predicatesPR′
1 generated byPRess (T ) andCB−repr (E ′).

Let CF i
1
′, . . . , CF i

n
′, n ≥ m, be the classes ofi-factsT , E ′, andB give rise

to, and letCi
1
′, . . . , Ci

n
′ be the corresponding sets of negated or unnegated one-

placei-predicates which induceCF i
1
′, . . . , CF i

n
′, respectively, relative toT , E ′,

andB (Ci
1
′, . . . , Ci

n
′ are generated byPR′

1).
As PR1 ⊆ PR′

1, it follows that for everyCi
j, 1 ≤ j ≤ m, there is aCi

j′
′,

1 ≤ j′ ≤ n, such thatCi
j = Ci

j′
′. SinceCB−repr (E) ⊆ CB−repr (E ′), this implies

that for every class ofi-factsCF i
j , 1 ≤ j ≤ m, there is a class ofi-factsCF i

j′
′,

1 ≤ j′ ≤ n, amongCF i
1
′, . . . , CF i

n
′ such thatCF i

j ⊆ CF i
j′
′ and Ci

j = Ci
j′
′

(though bothCF i
j andCF i

j′
′ may be empty).

SupposeCF i
j , 1 ≤ j ≤ m, is a proper class ofi-facts relative toT , E,

andB. This means thatT accounts forCF i
j in E relative toB, and that there is

no class ofi-factsCi
k ⊂ Ci

j, 1 ≤ k ≤ m, such thatT accounts forCF i
k in E

relative toB. ThatT accounts forCF i
j in E relative toB holds independently of

E, whenceT also accounts for the class ofi-factsCF i
j′
′ in E ′ relative toB.

It remains to be shown thatCF i
j′
′ is aproper class ofi-facts relative toT ,

E ′, andB. So it has to be shown that there is no class ofi-factsCi
l
′ ⊂ Ci

j′
′,
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1 ≤ l ≤ n, among the classes ofi-factsT , E ′, andB give rise to such thatT
accounts forCF i

l
′ in E ′ relative toB, whereCi

l
′ is the set of negated or unnegated

one-placei-predicates which inducesCF i
l
′ relative toT , E ′, andB.

Suppose there is a such a class ofi-factsCF i
l
′, 1 ≤ l ≤ n. As Ci

j′
′ = Ci

j,
and asCi

l
′ ⊂ Ci

j′
′, it follows thatCi

l
′ ⊂ Ci

j. But then there is a set of negated
or unnegated one-placei-predicatesCi

p, 1 ≤ p ≤ m, such thatCi
p = Ci

l
′ and

CF i
p ⊆ CF i

l
′, whereCF i

p is the class ofi-facts induced byCi
p relative toT , E,

andB.
SinceT accounts forCF i

l
′ in E ′ relative toB, andCi

l
′ = Ci

p, T accounts
for CF i

p in E relativeB. Therefore there is at least one class ofi-factsCi
p ⊂ Ci

j,
1 ≤ p ≤ m, such thatT accounts forCF i

p in E relative toB – in contradiction to
the assumption thatCF i

j is a proper class ofi-facts relative toT , E, andB.
So for every proper class ofi-facts CF i

j , 1 ≤ j ≤ m, among (the not
necessarily proper)CF i

1, . . . , CF i
m there is a proper class ofi-factsCF i

j′
′, 1 ≤

j′ ≤ n, among (the not necessarily proper)CF i
1
′, . . . , CF i

n
′ such thatCi

j = Ci
j′
′

andCF i
j ⊆ CF i

j′
′.

Let CF i
j andCF i

k be two proper classes ofi-facts relative toT , E, andB,
1 ≤ j, k ≤ m, and letCF i

j′
′ andCF i

k′
′, respectively, be the two corresponding

proper classes ofi-factsT , E ′, andB give rise to,1 ≤ j′, k′ ≤ n. ThenCF i
j ⊆

CF i
j′
′ andCF i

k ⊆ CF i
k′
′, andCi

j = Ci
j′
′ andCi

k = Ci
k′
′. Because of the latter,

CF i
j′
′ 6= CF i

k′
′, if CF i

j 6= CF i
k.

For if CF i
j 6= CF i

k, then there is at least one ‘t’ ∈ CB−repr (E) ∩ Ci such that
‘ t’ ∈ CF i

j and ‘t’ 6∈ CF i
k, or ‘t’ 6∈ CF i

j and ‘t’ ∈ CF i
k. Suppose without loss

of generality that ‘t’ ∈ CF i
j and ‘t’ 6∈ CF i

k. As CF i
j ⊆ CF i

j′
′, ‘t’ ∈ CF i

j′
′. But

then ‘t’ 6∈ CF i
k′
′; otherwise ‘t’ ∈ (CB−repr (E ′) \ CB−repr (E)) ∩ Ci, because ‘t’

6∈ CF i
k andCi

k = Ci
k′
′ – in contradiction to ‘t’ ∈ CF i

j ⊆ CB−repr (E) ∩ Ci.
This means that there is an injective (one-to-one) function from the set of all

proper classes ofi-factsT , E, andB give rise to into – but not necessarily onto
(i.e. the function need not be surjective) – the set of all proper classes ofi-factsT ,
E ′, andB give rise to. AsCB−repr (E) ⊆ CB−repr (E ′), there is also an injective
function from the set of all non-empty proper classes ofi-factsT , E, andB give
rise to into the set of all non-empty proper classes ofi-factsT , E ′, andB give rise
to.

Let CF i
1, . . . , CF i

p, p ≤ m, be the non-empty proper classes ofi-factsT ,
E, andB give rise to, and letCF i

1
′, . . . , CF i

p
′ be the corresponding non-empty

proper classes ofi-factsT , E ′, andB give rise to. SoCF i
1
′, . . . , CF i

p
′ are those
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non-empty proper classes ofi-facts among all non-empty proper classes ofi-facts
T , E ′, andB give rise to withCi

i = Ci
i
′ andCF i

j ⊆ CF i
j
′, for everyj, 1 ≤ j ≤ p.

Finally, letCF i
p+1

′, . . . , CF i
q
′, q ≥ p, be the remaining non-empty proper classes

of i-factsT , E ′, andB give rise to.
As Ci

j = Ci
j
′, for everyj, 1 ≤ j ≤ p,

∑
1≤j 6=k≤p

∣∣∣Ci
j 4 Ci

k

∣∣∣ = ∑
1≤j 6=k≤p

∣∣∣Ci
j
′4 Ci

k
′
∣∣∣ ,

and asCF i
j ⊆ CF i

j
′, for everyj, 1 ≤ j ≤ p,

∑
1≤j 6=k≤p

1− 1

log
(∣∣∣CF i

j

∣∣∣+ 1
)

+ log (|CF i
k|+ 1) + 1

 ≤

≤
∑

1≤j 6=k≤p

1− 1

log
(∣∣∣CF i

j
′
∣∣∣+ 1

)
+ log (|CF i

k
′|+ 1) + 1

 ,

whence

g (T, E,B; Di) =
∑

1≤j 6=k≤p

∣∣∣Ci
j 4 Ci

k

∣∣∣ ·
·

1− 1

log
(∣∣∣CF i

j

∣∣∣+ 1
)

+ log (|CF i
k|+ 1) + 1


≤

∑
1≤j 6=k≤p

∣∣∣Ci
j
′4 Ci

k
′
∣∣∣ ·

·

1− 1

log
(∣∣∣CF i

j
′
∣∣∣+ 1

)
+ log (|CF i

k
′|+ 1) + 1


≤

∑
1≤j 6=k≤q

∣∣∣Ci
j
′4 Ci

k
′
∣∣∣ ·

·

1− 1

log
(∣∣∣CF i

j
′
∣∣∣+ 1

)
+ log (|CF i

k
′|+ 1) + 1


= g (T, E ′, B; Di) .

The claim follows, becauseG is a monotone increasing function ofg. 2

G does not support gathering evidence, if its definition is based on maxi-
mal classes ofi-facts, as is shown by the following example (the basis oflog is
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assumed to be2). Let

E = {Fa, Fb,Gb, Fc1, Gc1, Hc1, . . . , F cn, Gcn, Hcn} ,

E ′ = {Fa, Fb,Gb, Hb, Fc1, Gc1, Hc1, . . . , F cn, Gcn, Hcn} = E ∪ {Hb} ,

T = {∀x (Fx ∧Gx → Hx)} , and

B = ∅.

There are the following three non-empty maximal classes of facts relative toT ,
E, andB:

CF1 = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft ∧Gt ∧Ht} = {c1, . . . , cn} , 1

CF2 = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft ∧Gt} = {b} , and
CF3 = {‘ t’ ∈ CB−repr (E) : E ∪B ` Ft} = {a} ,

which are induced by the sets of negated or unnegated one-place predicates

C1 = {‘Fx’, ‘ Gx’, ‘ Hx’} , C2 = {‘Fx’, ‘ Gx’} , and C3 = {‘Fx’} ,

respectively, relative toT , E, andB. T , E ′, andB, on the other hand, give rise to
the following two non-empty maximal classes of facts:

CF ′
1 = {‘ t’ ∈ CB−repr (E ′) : E ′ ∪B ` Ft ∧Gt ∧Ht} = {b, c1, . . . , cn}

= CF1 ∪ {b} , and

CF ′
3 = {‘ t’ ∈ CB−repr (E ′) : E ′ ∪B ` Ft} = {a} ,

which are induced by the sets of negated or unnegated one-place predicates

C ′
1 = {‘Fx’, ‘ Gx’, ‘ Hx’} = C1 and C ′

3 = {‘Fx’} = C3,

respectively, relative toT , E ′ andB. AlthoughE ⊆ E ′ (and thusE ′ ` E) and
CB−repr (E) ⊆ CB−repr (E ′), it holds for everyn ≥ 1:2

g (T,E,B) = |C1 4 C2| ·

·
[
1− 1

log (|CF1|+ 1) + log (|CF2|+ 1) + 1

]
+

+ |C1 4 C3| ·
1The quotation marks are suppressed.
2The reference to the confirmational domainD is dropped, whereD is the domain (variable)

corresponding to the variable ‘x’ and the individual constants ‘a’, ‘ b’, and ‘cm’.
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·
[
1− 1

log (|CF1|+ 1) + log (|CF3|+ 1) + 1

]
+

+ |C2 4 C3| ·

·
[
1− 1

log (|CF2|+ 1) + log (|CF3|+ 1) + 1

]

= 1 ·
[
1− 1

log (n + 1) + log (1 + 1) + 1

]
+

+2 ·
[
1− 1

log (n + 1) + log (1 + 1) + 1

]
+

+1 ·
[
1− 1

log (1 + 1) + log (1 + 1) + 1

]

> 2 ·
[
1− 1

log (n + 1 + 1) + log (1 + 1) + 1

]
= |C ′

1 4 C ′
3| ·

·
[
1− 1

log (|CF ′
1|+ 1) + log (|CF ′

3|+ 1) + 1

]
= g (T, E ′, B) .
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in: Schurz/Uršǐc (eds.): Beyond Classical Reasoning. Philosophical and
Computational Investigations in Deductive Reasoning and Relevance,
Conceptus-Studien 13, St. Augustin: Academia Verlag, 1998, pp. 9-56.

[121] Schurz, Gerhard: Explanation as Unification, in:Synthese120, 1999, pp.
95-114.

[122] Schurz, Gerhard/Dorn, Georg J. W. (eds.): Advances in Scientific Philos-
ophy. Essays in Honour of Paul Weingartner on the Occasion of the60th

Anniversary of his Birthday, Poznan Studies in the Philosophy of the Sci-
ences and the Humanities, vol. 24, Amsterdam/Atlanta: Rodopi, 1991.

[123] Schurz, Gerhard/Lambert, Karel: Outline of a Theory of Scientific Under-
standing, in:Synthese101, 1994, pp. 65-120.



BIBLIOGRAPHY 243
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