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Abstract

This dissertation deals with the problem of a quantitative theory of con-
firmation. The latter can be sketched as follows: You are given a thEpan
evidenceF, and a background knowledde& The question is how much doés
confirmT relative toB. A solution consists in the definition of a functighsuch
thatC (T, E, B) measures the degree to whighconfirmsT relative toB.

In chapter 1 | make precise what is meant by a theory, an evidence, and a
background knowledge. Next comes a chaptefasmal conditions of adequacy
for any formal theory (not only of confirmation): A formal theory has to be non-
arbitrary, comprehensible, and computable in the limit. Chapter 2 closes with a
critical remark on Bayesian confirmation theory.

In chapter 3 1 list a set ahaterialconditions of adequacy for any quantita-
tive theory of confirmation: A measure of confirmation has to be sensitive to (and
only to) theconfirmational virtues

These give rise to two strategies of solving the problem under consideration:
The first is to argue that there is one distinguished property of theories in relation
to evidences and background knowledges that takes into account all (and only)
the confirmational virtues. The candidate here is coherence with respect to the
evidence, which is discussed in chapter 4 on foundationalist coherentism. This
approach is found to be unsuccessful.

The second strategy is first to define for every confirmational vitfua
function fy such thatfy (7', E, B) measures the extent to whidhis exhibited
by theoryT', evidenceF, and background knowledgg; and then to define the
measure of confirmatio€’ as a function of (some of) the functioifs.

In chapter 5 it is argued that this strategy is successful. In a nutshell, it
is observed that there are two conflicting concepts of confirmation, viz. loveli-
ness and likeliness. | reason that it suffices to consider thes@riwary con-
firmational virtues. The two main approaches to confirmation are Hypothetico
Deductivism and probabilistic theories of confirmation: The former is based on
loveliness, whereas the focus of the latter is on likeliness. The idea is simple:
Combine these two aspects, keep their merits, get rid of their drawbacks.

Chapter 6 is on evidential diversity, more generally: the goodness of the
evidence. A goodness measure is defined which together with the loveliness-
likeliness measure gives rise to the refined measure of confirm@tio™ can



answer the question why scientists (should) gather evidence, and it provides a
solution to the ravens paradox.
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Chapter 1

Introduction

1.1 The Problem of a Quantitative Theory of Con-
firmation

The following monograph deals with the problem of a quantitative theory of con-
firmation of theoryT” by evidenceF relative to background knowledge. The
latter may be sketched as follows:

You are given a theory’, an evidence”, and a background knowledde,
and you want to know how much confirmsT relative toB.

A solution to this problem consists in the definition of a (set of) function(s)
C'such thatC (T, E, B) measures the degree to whittis confirmed byF rela-
tive to B, for every theoryl', every evidencé’, and every background knowledge
B.l

In order for this characterisation to be precise, one first has to make clear
what is meant by a theor¥/, an evidence”, and a background knowledds

Lif C is a set of functions, then this has to hold for every function C. Corresponding to
the problem of a quantitative theory of confirmation there is the problem of a qualitative theory of
confirmation a solution to which consists in the definition a (set of) functiafi(siich that

C(T.B.B) { 1, if E confirmsT relative to53,

0 otherwise
for every theoryI’, every evidencd, and every background knowledd@® In a similar way one
may characterise the problem of a comparative theory of confirmation. | will only be concerned
with the problem of a quantitative theory of confirmation a solution to which automatically is a
solution to the problems of a comparative and of a qualitative theory of confirmation.

1



2 CHAPTER 1. INTRODUCTION

Before doing so let me stress thatE, andB are all one is given. In partic-
ular, it is not assumed that one is equipped with some degree of belief fupction
(defined over some language containing”, andB) that could be used in deter-
mining the degree of confirmatiofi (7, E, B). C (T, E, B) has to besqueezed
outof the logical structure of’, £, andB alone!

Squeezings one of the most important features distinguishing the present
approach from probabilistic theories of confirmation (not only Bayesian ones in
the sense of Gillies 1998). In addition 1g F, and B, they all assume the ex-
istence of some probability functigndefined over some language containihg
E, andB, which is then used to determidg(7, E, B). Squeezing does not even
hold of alogical probability functionp, if the values of latter depend not only on
T, E, andB, but on thewholelanguage containing them.

In contrast to this, the values of the measure of confirmatiaiefined later
on are the same fanylanguage containing’, £, and B, provided the language
is rich enough in order to express those feature®,0f/, and B that determine
C (T, E, B). Thisis the case for any predicate language with the identity sign, but
for no propositional language. The latter are simply too poor in order to express
the relevant information.

This phenomenon is not new, but is familiar from Quin@is What There Is
(1948). His slogan “To be is to be the value of a (bound) variglide&s not make
sense within the framework of propositional logic. That identity is also needed is
known from another slogan — “No entity without identity” (cf. Quine 1958).

| note this, because the mentioned feature may be taken as an argument
against the adequacy 6f. After all, the propositional calculusC' is contained
in PL1 = in the sense that every statement which is logically true in the sense of
PC' is logically true in the sense d? L1 =; and if C' cannot deal with the simple
case, how should it be able to deal adequately with the more general case.

1.2 Theory

In general, there are two positions concerning the question of what a theory is.
The semantic position defines a thedfryas the set of all modela1 =

(Dom, ) such thatAr is true in M, where A is some axiomatization (for-

mulation) of . Dom = (Dy,..., D,) is thedomain where eactD;, 1 < i < r,

Is a set of entities of some sort, apds aninterpretation function

2As noted by Prof. Paul Weingartner, one may want to add: first-order variable.
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If A7 is a set of statements or wffs of the language;,— of first-order
predicate logic with identity (including function symbol$)/.1 =, then for every
set D; there are denumerably marvariables ', ‘vi’, ... and correspond-
ing i-constants &, ‘c4’, .... ¢ assigns eack-constant é;.’ of Lpr1— an en-
tity o (‘¢}’) € D;, eachn-ary (,...,k,-) predicate P’ = * P (:c"’l, . ,xk)

1 <k <r,of Lpr1— asubsetp(‘P") C Dy, x ... x Dy, and eachu-ary
(K1, . ., kn, kny1-) function symbol 7+ =« fin+1 (xkl, . ,xk) 1< kpit <

J

r, of Lpr1— a functiony (‘ff"*“ ),

go(‘fl-“”“’):Dkl><...><Dkn—>Dk

] n+1°

According to the syntactic position a thedfyis a set of statement4; that for-
mulates or axiomatiz€es.

Personally | think that the semantic conception is more in accordance with
our intuitive understanding of a theory, but for the purposes of a theory of confir-
mation the question of how a thedfyhas to be interpreted does not arise, if one
takes it to be &ine qua northat an adequate measure of confirmatiors to be
closed under equivalence transformationg’oh the sense that

C(ATaEaB):O(A/TanB)7 if AT _“_A/Ta

for any two axiomatizations!; and A’. of any theoryT’, every evidencd”, and
every background knowledgg. For then it must not matter how a thedfy—
syntactically construed as a set of statements — is formutat§chowever, one
takes the position that the way a thedrys formulated may matter, and that the
valuesC (Ar, E, B) of C for a given axiomatizationd; of 7', a given evidence
E, and a given background knowled@emay differ for different formulations!
of T', one is forced to consider a thedfyas a set of statements;.

Since none of these two positions should be ruled out right from the start, |
will take a theoryl" to be a set of statements or wifs. If the measure of confirma-
tion C turns out to be closed under equivalence transformatiofisinfthe above

3Though one can, of course, make a functfon. ., 7T, ...) invariant under equivalence trans-
formations of" by recourse to some uniquely determined formulatignof 7', and by defining

fC..T,..)=f(..,Ar,...),
or by taking, say, the maximum function, and by defining

f(...,T,...):max{f(...7T',...) ZT/ =+ T,T/Q,CPLl:}.
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sense, then both the semantic and the syntactic interpretation are allowed for —
and because of the adequacyrof1 = (with respect to its standard semantics)
one can still interpret the set of statemeifitsemantically as the set of models
mod (T'). If, however, it turns out that’ (Ar, E, B) —in order to be an adequate
measure of confirmation — is to be sensitive to the Waig formulated byA-,
thenT must be interpreted syntactically as a set of stateméptsSo considering
T as a set of statements does not rule out any of the above mentioned positions
concerning the definition of theories, and thus does not put any restrictions on the
behaviour of an adequate measure of confirmation

In speaking of theories | always mescientifictheories. | do not attempt to
define these, but restrict myself to giving a necessary condition. Before doing so
let us have again a look at the structure the models of a theory have according to
the semantic positidn

These consist of sequences of the form

<D17"'7DT7R17"'7RS>7

where theD;,1 < i < r, are sets of entities which settle the ontology of theory,
and theR;,1 < j < s, are relations among the objects in the sBts The
latter have been summarized @sm = (D;, ..., D,), and the relation®; have
been subsumed under the interpretation functipbecause | am considering sets
of statementsd, formulating theoriesl’, and my interest is in the syntactical
pendant of the set®,; the domainDom consists of.

Consider a theory of, say, physics. Here the domiaimn will consist of
four sets: A set of material objecf3, a set of space points (usually$?), a set
of time pointsT' (usually®R), and a set of number8 (usually¥t). The relations
R; among the objects in the sets S, T', and R need not concern us here.

The question of interest is: Which are the entities the theory is properly talk-
ing about? | think the natural answer is that it are the material objedisahout
which the theory of physics is making claims. The space points, ithe time

4Though what | call the semantic position is usually catéaicturalism | prefer the former
term, because all | am concerned with here is the ontological skeleton of a theory, but not the many
other questions normally associated with structuralism, as, for inst@httegoreticity, the focus
on constraints, links, and admissible blurs, or the distinction between the models, the potential
models, and the partial potential models of a theory. For an introduction to the basic ideas of
structuralism cf. Moulines (1996) or Balzer/Moulines (2000). For a critical discussidf of
theoreticity cf. Schurz (1990); a summary of recent developments including a defense against
Schurz’s criticism can be found in Balzer (1996). Another critical discussion of the structuralist
position concerning theoretical terms is contained in Zoglauer (1993).
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points in7T', and the numbers ik are not the things physicists are investigating.
No physicist will entertain an experiment in order to test a mathematical equation.

This gives rise to a distinction between the sBtscontaining the objects
of proper investigation, those things about which claims are made by the theory
— for the physical theory these are the material objects — and the remaining sets
D; —in physics, the sets of mathematical entities representing the space and time
points, and the set of real numbers constituting the range of the functions among
the relationsz;. Let us call the formedomains of proper investigation

Admittedly, there may cases where this classification of the/3gthe do-
main Dom consists of is difficult to draw. The term | have chosen may also be
misleading, for if one is concerned with historical claims such as Cesar won all
wars he entertained or Cleopatra seduced all men she wanted to, then the domain
of proper investigation consists of wars in the former case and of people (Cleopa-
tra possibly could have wanted to seduce) in the latexchkiding Cleopatra her-
self! —though Cesar and Cleopatra may justifiedly be called the objects of proper
investigation here.

Furthermore, one may question the epistemic significance of this distinc-
tion, and consider it a mere formal manipulation only making things more com-
plicated. Nevertheless | propose that in considering a theory one should single out
some set(s) of proper investigation. The reason for doing so will become more
clear when the idea underlying the present proposal is presented. Roughly speak-
ing, the latter consists in considering how many objects of the domains of proper
investigation of the theory in question the evidence reports about, and how many
of them confirm the theory.

As mentioned before, the syntactic pendant of the sets of enfitiese the
i-variables vi’, ... and thei-constants¢;’, .... Since | am dealing with sets
of statementsi formulating the theorieg” under consideration, the assumption
concerning scientific theories is expressed in terms of these.

Assumption 1.1 (Finite Axiomatizability Without Constants) If 7' is a scien-
tific theory with domainDom = (Ds, ..., D,),andDy,, ..., Dy, asits domains
of proper investigation] < k; < r, for everyl,1 < [ < r, then there is at least
one finite axiomatizatioml; of 7" without occurrences df;-constants, but with at
least one essential occurrence dfavariable, for every,1 <1 <r.

Any suchAr is called awff-ication of 7.

If, for a given theoryT’, the domains of proper investigation cannot be specified
in advance, then one may take recourse to the following definition.
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Definition 1.1 (Domain of Proper Investigation) Let 7" be a scientific theory,
and letD; be a set of entities with correspondiinyariables and-constants in
Lpri=.

D; is adomain of proper investigation df’ iff there is at least one finite
axiomatizationA; of 7" with at least one essential occurrence ofiamriable,
and without occurrences efconstants.

Definition 1.2 (Finite Axiomatization) Let7 be a theory, and leti; be a set of
wifs, Ar C Lpr2°. Aris a(n) (inite) axiomatization ofl iff ( Ay is finite, and)

1. A =T, if T is a set of wffs, and
2. T =mod (Ar), if T is a set of models.

Definition 1.3 (Essential Occurrence of a Variable)Let h be a wff, and let x;
j > 1, be ani-variable. h containsat least one essential occurrence of an
variableiff it holds for every wff n':

If h - K/, thenh’ contains at least one occurrence ofiarariable.

The clause thatd; contains at least one essential occurrence of-aariable
should avoid that every set of entitiés which is redundant or not among the
setsD;, ..., D, the domainDom consists of is a domain of proper investigation
of T.

Please note that in the example of before, the set of space poantd the
set of time pointd” may come out as domains of proper investigation according to
the above definition. This is as it should be, for confirmation is domain-relative,
and with a suitable evidence one may perhaps confirm a theory of physics by
investigating various space poirits.

Theorem 1.1 (Domains of Proper Investigation)LetT" be a scientific theory with
domainDomy = (Dy,...,D,) andDy,, ..., Dy, as its domains of proper inves-
tigation,1 < k; < r, foreveryl,1 <[ < n.

Then there is at least one finite axiomatizatidpn of 7" with at least one
essential occurrence ofkigvariable, and without occurrences/igfconstants, for
everyk;, 1 <[l <n.

SHere and in the following the languag&r;,— of first-order predicate logic with identity
(including function symbols)PL1 =, is identified with the set of its well-formed formulas.

6f not specified otherwise, a wif is always meant to be a wff of the langulgie — of first-
order predicate logic with identity (including function symbolB),.1 =.

"Confirmation or, more generally, assessment by means of the set of spaceSoiaisbe
appropriate for the hypothesis that the gravitational force is acting everywhere.
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Assumption 1.1 is plausible with regard to the following two positions.

First, theories have to be finitely axiomatizable in order to be such that they
can be put forth by some scientist and can be contemplated by us — and only
theories of this kind are of interest in the sciences.

Second, scientific theories consist of lawlike statements, and these do not,
among others, speak about particular entities of their domains of proper investi-
gation, but express general regularities or patterns.

Please note that this assumption allows for that a theory contains constants
for particular entities as e.g. constants of nature. For example, a theory of physics
may well contain occurrences of constants for space points, time points, or (real)
numbers, as is the case, for instance, with Galilei’s law which contains occur-
rences of the gravitational constant.® In the same way a hypothesis about
some particular historical person or event may contain occurrences of a constant
denoting the person or event in questfon.

Let me stress that | do not claim that every statement without occurrences of
constant terms is lawlike. All | claim is that containing no (essential) occurrences
of k;-constants] < [ < n, is a necessary condition for a statement to be lawlike
in the sense of some theoty, where Dy, ..., Dy, are the domains of proper
investigation off".1°

In the following a theoryl” will be identified with one of its by the above as-
sumption existing finite axiomatizations, without occurrences of;-constants,
whereDy,, ..., Dy, are the domains of proper investigationlof The set of all
wff-ications A of any theoryT" is denoted by7"’. Although assumption 1.1 is
only anecessaryondition for scientific theories, finite sets of statements with-
out occurrences of-constants, but with at least one essential occurrence of an
i-variable,1 < i < n, are often called theories with domains of proper investiga-
tion Dy,...,D,.

8Here and on many other places | have profited very much from the discussions with my
supervisor Prof. Dr. Gerhard Schurz. Though his influence on this dissertation is enormous, he is,
of course, not responsible for any of the views expressed here.

9We do not claim that there are — or are not — laws of history. Their existence or non-existence
has no impact on the questions discussed here.

°For more on the nature of a law of nature cf. tbeus classicu#Armstrong (1983). More
recent monographs are Harré (1993) and Carroll (1994).
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1.3 Evidence

| take the evidencé& by which a given theor{ is to be assessed relative to some
background knowledgg to report our (uncontrolled) observations and the results
of our (controlled) experiments. Because of the fact that

we are damnedua humango be able to examine only finitely many
entities, and to describe these in only finitely many statements of finite
length

the following preliminaryassumption is plausible.

Preliminary Assumption 1.1 (Strong Finitism in the Evidence) If E is an ev-
idence, thent is afinite set of wifs offinite length talking aboufinitely many
entities.

A consequence of this is that quantifiers can be eliminated, for these are only
necessary in order to speak about infinitely many entities.

With regard to the preceding section it seems appropriate to distinguish dif-
ferent “kinds” of evidences. Roughly speaking, these different kinds are deter-
mined by the sorts of entities an evidence reports about, i.e. the domains these
entities are taken from. For instance, an evidence gathered by a physicist will re-
port data about material objects, whereas an evidence gathered by an ornithologist
will report data about the much narrower class of birds, and an evidence gathered
by a psychologist may report data about such entities as neuroses. Finally, a his-
torian’s evidence perhaps reports about the wars Cesar entertained or the people
Cleopatra wanted to seduce — though data about these entities cannot, of course,
be directly observed but only inferred.

Yet an evidence may contain a statement to the effect that for all time points
t after some given point of timg, some special evenrt say the soccer champi-
onships in Japan and South Corea are oveft > t, — O (e, t)). Such a state-
ment contains (essential) occurrences of quantifiers and time variables, and so
possibly speaks about infinitely many time points. Strong Finitism in the Evi-
dence does not allow for such statements to occur in an evidence.

It thus seems reasonable to relativize the above preliminary assumption to
the setsD; of entities data about which are reported by the evidence. | will there-
fore speak of arvidence from the sets of entities, ..., D, k > 1, or of data
about the entities itD+, . . ., Dy.
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Assumption 1.2 (Finitism in the Evidence)If E is an evidence fromv,, ..., Dy, k >
1, thenFE is afinite set of wffs of finite length speaking about finitely many entities

in Ur<i<k Di-

As noted before, this has the consequence that (quantifiers binding) variables
which range over the sets of entitiey, ..., D, can be eliminated. In order to
avoid triviality it is furthermore assumed that speaks about at least one entity

(in the sense of containing at least one essential occurrence afcarstant) from
every setD;, 1 < i < k — otherwise every finite set of statements of finite length

is an evidence for every set of entities except those which the variables occurring
in £/ range over.

As stated above, the evidengeby which a given theory’ is assessed rel-
ative to some background knowledgeis supposed to report our (uncontrolled)
observations and the results of our (controlled) experiments. It may be that the
language we use in describing these observations is not rich enough in order to
express all the nuances of our observations — indeed, this is quite plausibly the
case. Therefore | have to make an assumption possibly restricting the applica-
bility of the present account: It is supposed that parts of our observations can be
described in the languagér;,- of standard standard first-order predicate logic
with identity (including function symbols)P? L1 =, and that these parts are large
enough to contain all relevant aspects of our observations for the assessment of
a given theoryl relative to some background knowledge If they do not, this
is, of course, a limitation; but note: this is a general problem and no specific one
besetting only the approach presented here.

Assumption 1.3 (Expressability) The languag€ »;,— of standard first-order pred-
icate logic with identity (including function symbolsk,L.1 =, is rich enough in

order to express all aspects of our observations that are relevant for the assessment
of a given theory! relative to some background knowledge

Assumptions 1.2 and 1.3 give rise to the following definition of an evidence from
the sets of entitie®, ..., D;.

Definition 1.4 (Evidence fromD,, ..., D,) Let E be a set of wffs oLy, let
D1,..., Dy k > 1, be sets of entities, Ietc;l’ be the correspondingvariables
ranging overD;, and let ¢}’ be the correspondingconstants denoting entities of
D;,j>1,1<i<k.

E'is anevidence fronD;, . .., D, iff E is afinite set of wifs (of finite length)
of Lpr1— such thatit holds for every 1 < i < k: E contains at least one essential
occurrence of ai-constant, but no occurrence of amariable.
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If £ is an evidence fronDy, ..., Dy, D1,..., D, are the évidentia) do-
mains of .

The set of all evidences fro,, ..., Dy is denoted by& (Dy, ..., Dy)’.
The set of all evidences from any sets of entiti@s. . ., Dy is denoted by&’.

In the following the reference to the evidential domains. . ., D, of an evidence
E is often suppressed. Note that the assumption 1 yields that an evidencg
IS contingent.

A difficulty is illustrated by the following example: Consider the statement
‘ais a white raven’,Ra A Wa, and the ravens-hypothesis ‘All ravens are black’,

Va (Rx — Bx), and suppose thdta A Wa is all the evidencé’ reports, i.e F =
{Ra,Wa}. Without recourse to some background knowled§yéelling us that
nothing white is black we cannot infer that — relativefie- the ravens-hypothesis

is shown to be false. This illustrates that confirmation has to be construed as a
ternary relation between a thedfy an evidencd”, and a background knowledge

B.

However, the notion of a background knowledgés no precise one, at least
if introduced by taking recourse to its “obvious” meaning. Care has to be taken
what to put into the background knowled@e Intuitively, B is conceived of as
containing those and only those statements which are taken for granted and whose
truth is out of question. A special sort of these statements are the definitions and
meaning postulates and, more generally, those statements traditionally termed an-
alytic. Yet, if Quiné! is right, there is no sharp distinction between these analytic
statements on the one hand and the remaining synthetic ones on the other. So it
is neither clear what exactly the background knowlegeonsists of, nor where
the distinction between background knowledgeand theoryT" is to be drawn.

Not only meaning, but also the assessment of th@bby evidenceF relative to
background knowledg® is holistic.

Nevertheless, it seems that in practice one can draw a distinction between
the theoryT” — or the hypothesié — that is to be assessed, and the background
knowledgeB that is taken for granted in this assessmeéiitis the set of those
statements or propositions that are put to test and whose domains of proper in-
vestigationE is evidence from, whereas is the set of those statements that are
assumed to be true in this assessmefit by F.

Given this, there are at least two strategies for solving the problem just men-
tioned: Either to demand of the scientist todlicitin the sense that she reports
not only what she is or takes to be observing, but also everything she assumes to

11Cf. Quine (1951) and (1961).
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be (logically) implied by her observations and her background knowlétiga
particular her knowledge of the language she is using — call thisxpkcitness
approach or else to expand the evidenékto a setE'z containing all statements
of F/, and all those statements in the background knowldglgéhich are related
to these, where it is defined as follows:

Definition 1.5 (Related Wffs) Let h; andh, be two wffs. i, is related toh, iff
PRess (hl) N PRess (h2> 7& @ or Cess (hl) M Oess (hQ) 7é @

Let 4 be any wif. The set of essential predicatesiofPR. (h), is the set of
all those predicates” without which no wff 4’ with 2" 4+ h can be formulated,
i.e.

PR. (h)= () PR(I), foreveryh’ € Lppi-.
h'h
The set of essential constant termsiofC.; (h), is the set of all those constant
terms ¢’ without which no wff 2’ with ' 4+ h can be formulated, i.e.

Cess (h) = [} C(h), foreveryh' € Lpr—.

WAkh

Let us call this theelatedness approacht

In the above example, the explicitness approach demands of the scientist to
report not only that: is a white raven, but also thatis not black, if her back-
ground knowledgeB contains the information that nothing white is black. The
relatedness approach, on the other hand, demands to expand (proper) evidence
E = {Ra,Wa} to evidenceE'z = {Ra, Ba, Vo (Wz — —Bzx)}.

| prefer the relatedness approach to the explicitness approach, because the
former is more sensitive to the fact that we are logfically omniscientin the
sense that we know or believe all logical consequences of the statements (propo-
sitions) we know or believe, respectively. Furthermore, the relatedness approach
enables to distinguish between those statements which are taken to report our (un-
controlled) observations and the results of our (controlled) experiments — call the
setE of these statements tipgoper evidence — and those statements which (log-
ically) follow from the proper evidenc& in combination with our background
knowledgeB.

Finally, since | am considering a ternary relation of confirmation (of the-
ory T by evidenceF relative to background knowledgg), one can, after all,

2Note that logically determined statements do not have any essential predicates or essential
constant terms.
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forget about the expansion &f to E, for all the information contained in the
background knowledg® will be available in the assessmentioby E.

Assumptions 1.2 and 1.3 put restrictions on the syntactical form of an evi-
denceFE. Besides these syntactical considerations there is another semantic and
also pragmatic feature of an evidenee Remember that the aim is a quantitative
theory of confirmation telling one, for every thedfy every evidence’, and ev-
ery background knowledg®8, how muchE confirmsT relative to B. Suppose
for the moment that we already have some adequate measure of confiriation
What the valueC' (E, T, B) for givenT', E, and B tells us is how much" is
confirmed byFE relative toB. The assessment @fis therefore not absolute, but
relative to£ and B. C (T, E, B) does not tell us how much is confirmed ab-
solutely, but how mucH is confirmed relative td and the assumption that is
true and contains all the data we can rely on in the assessmént of

Furthermore, if — as | do — one wants such a measure of confirmétion
to implicitely provide a rule of acceptance for rational theory chiicéhen the
valueC (T, E, B) of C for givenT’, E, andB is of interest only if£ is assumed
to be true or accepted — otherwise this implicitely provided rule of acceptance for
rational theory choice will misguide those adoptingf‘it.

In my opinion this feature of the evidende to be epistemically distin-
guished- in the sense that the assessment of a given thiEaynot only relative
to a background knowledgB, but also relative ta — fits well with the role our
observations (respectively the statements describing or propositions representing
them) play in our establishing a representation of the world. In contrast to our
other assumptions about the world, they are assigned an epistemically special sta-
tus: If inconsistencies (or incoherencies) arise in our representation of the world,
and if we want to resolve them, then the statements describing what to take to
have observedsuallyare the last we will drop. This finds its expression in

Assumption 1.4 (Epistemic Mark of Distinction) If E'is an evidence fromb, ..., Dy,
thenE is assumedo betrue in the actual worldi.e.

A € mod(FE), foreveryevidencd € £.

BFor instance, such a rule may tell one to accept that thEgirya given finite set of alternative
theories{T,...,T,} such thatC (T;, E, B) > C (1T}, E, B), for everyj,1 < j < n. If there
are several such theori&s, then the rule may select one of them, or it may postpone the decision
until new evidence comes in which settles the question.

14This does, of course, not mean that such a function is of interest, only if the evidieisce
assumed to be true or accepted; nor does it meanithatindeed true, or has to be true in order
for such a function to make sense.
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Note that this assumption does not put any restrictions on what to count as evi-
dence. It simply expresses a feature of the epistemic status of an evillenee
feature exhibited by us in relation f6; namely how we as epistemic subjects treat
the statements i&' in establishing and changing our representation of the world.
In particular, this assumption does not mean that an evidenaetually contains
only true statements. Itis a commonplace that we are fallible, also in what we take
to observe, and this assumption is not at all intended to call this commonplace into
question.

Furthermore, in order for it to make sense we have to asSuima the ac-
tual world can be represented by some set-theoretical strudteré Dom 4, p.4)
(with the evidential domains off among the sets of entities in the sequence
Dom y); for the standard Tarskian notion of truth in — which is adopted here —
is defined between (sets of) statements and moti€ls: (Dom, ), and the ac-
tual world can hardly be argued to be an ordered pair consisting of a sequence
Dom of sets of entitied),, . .., D, and an interpretation functiop.

It follows from assumption 1.4 that every eviden€es a description of the
actual world.

Definition 1.6 (Description of a Model) Let D be a set of wifs, and leM =
(Dom, ) be a modelD is adescriptionof M (in Lp1;,-) iff M = D, and there
is at least one modeWt’ = (Dom/, ¢’) such thatM’ [~ D.

So in order for a set of statemenfisto be a description of some mod&i (in
Lpr1—), D need not be complete in the sense that

if MEh, then Dt h, foreverywffh € Lpri—;

it suffices (thatD is not logically valid — otherwise) does not tell us anything
aboutM — and) thatD is correct in the sense that

if DFh, then M Eh, foreverywffh e Lpri-.

Observation 1.1 ' Is a Description of A) Let A = (Doma, ) be a model
representing the actual world. Then it holds for every evidefideom any sets
of entitiesDy, ..., D,: E is a description of4.

In the following it will be assumed that there is exactly one intended mbdgl=
(Dompg, pg) for every evidence” from any sets of entitie®;, ..., D;. So the

SApart from the supposition that the actual world exists.
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interpretation of the constantterms?®, the predicates, and the function symbols
occurring in an evidencé is always fixed, and it makes sense to speakhef
individual t* denoted by the constantterm ‘¢*’. (It is the entitya’ € D; with

op (‘") = of, whereDomg = (Dy,...,D,),r > k1) The reference to the
intended mode/M g of evidenceFE will be suppressed henceforth, but it is to be
kept in mind that the talk of the individual denoted by the constanterm ‘t*’
occurring inE is meaningful.

1.4 Background Knowledge

As already indicated, the questions what to count as background knowi&dge
and where to draw the distinction between the thébithat is to be assessed (by
some evidencé relative toB) on the one hand and the background knowledge
B on the other, are difficult to answer. As in the case of theory, | will therefore
only give a necessary condition for a background knowledge.

The intuitive understanding of a background knowledjeavhich | assume
to be construed as a set of statements expressing this alleged knowledge, is that
it consists of that (and only that) information which we take for granted and as-
sume to be true when we are concerned with the truth or some other epistemically
distinguished property of other (sets of) statements; in particular, when we are
concerned with the assessment of theofidsy evidencesw. Among others3
contains our linguistic knowlegde, and a formulation of the mathematical appara-
tus we use. This is a pragmatic feature of the background knowlBdgeelation
to us as epistemic subjects, which does not put any syntactical restrictions on what
to count as a background knowledge The latter | will now turn to.

The only condition a set of statemenfs has to satisfy in order to be a
background knowledge is that it is finitely axiomatizable. The reason for this is
that

the information (implicitely) assumed in the assessment of a given
theoryT by an evidencé’ has to be such that it can be made explicit,
for otherwise it cannot be taken into into account by the measure of
confirmationC.

18For a definition of constaritterms see section 1.5.

7For ease of readability the evidential domaids, . . ., D;, of an evidence? are assumed to
be the first: sets of entities in the sequencerdets of entities constituting the domdilvm g of
the intendend modeW ; of E.
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Assumption 1.5 (Finite Axiomatizability of Background Knowledge) If Bisa
background knowledge, then there is at least one finite axiomatizai@f B.

In the following a background knowledge will be identified with one of its —
by the above assumption existing — finite axiomatizatidps The set of all finite
axiomatizationsiz of any background knowledgg is denoted byB’. Although
assumption 1.5 is only mecessargondition for a background knowledge, finite
sets of statements are often called background knowledges.

Let us now fix the basic terminology for the remainder of this monograph.

1.5 Terminology

For the following definition cf. Schurz (1998).

Definition 1.7 (Irreducible Representation) Let A and B be sets of wffs.B is
anirreducible representation oA iff B is a non-redundant set of relevant ele-
ments ofA such thatd 4+ B. The set of all irreducible representationsAfs
denoted byl (A)'.

Let h be a wff. i is arelevant elemenof A iff / is an element, and +,;
h. The set of relevant elements bfis denoted by RE (h)’; the set of relevant
elements ofd is denoted by RE (A)’.

h follows conclusion relevantlfrom A, or & is arelevant consequence of
A, A kg h,iff (i) AF h, and (ii) there are no (marked) occurrences.of 1
predicates P, ..., ‘B, in h that can be replaceshlva validitateof A - h by
anyn predicates P;’, ..., ‘P*’ of the same arit}?, i.e. such thatd - h*, where
h* is the result of replacing these marked occurrences’gfih h by ‘P, for
every:,1 <1 < n.

h is anelementff % is an elementary normal form, and each quantifier scope
in A is a conjunction of elementary wifs.

h is elementaryff there is non > 1 such that. 4~ h; A ... A h,,, and each
h;,1 < i < n, is shorter tharh, where —’ is eliminated and brackets are not
counted.

Definition 1.8 (Redundancy) Let A be a set of wifs. A is (formulated redun-
dant(ly) iff there is at least one wff. € A such thatd \ {h} F h. Any such wff
h € Awith A\ {h} F his called aredundant part ofA.

A'is (formulated non-redundartty) iff A is not (formulated) redundant(ly).

18Equivalently, byn newpredicates Py, ..., ‘ P;’ of the same arity.
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For the following definition cf. Gemes (1994c) and Gemes (1997a).

Definition 1.9 (Content Part) Let A and B be wffs of the languagé€ ¢ of the
classical propositional calculug is acontent part ofA iff

1. AandB are contingent, and - B, and

2. for some WffC' € Lpc: C -+ B, and there is no wiD € Lp- such that
DFC,Ct D,andPV (D) C PV (C),

where, for any wifA € Lpc, PV (A) is the set of all propositional variables
occurring inA.
Let A and B be wffs of the languag& - of the classical propositional

calculus enriched by countably infinite individual constants ‘.. ., ‘a,,’, ... and
by finitely many predicates”,’, ..., ‘P,,’ of varying arity. B is acontent part of
A iff

1. AandB are contingent, and - B, and

2. for some WffC' € Lpc: C 4+ B, and there is no wiD € Lp- such that
DFC,Cl D,andAT (D) C AT (C),

where, for any wffA € Lpcr, AT (A) is the set of all atomic wifs or propositional
variables occurring im.

Let A and B be wffs of the languag& ;, of first-order predicate logic
without identity (excluding function symbols),L1. B is acontent part ofA iff it
holds for every non-empty set of individual constafidswith /C (A)UIC (B) C
I1C:

1. Devic (B) and Dev;c (A) are contingent, an@ev;- (A) + Devic (B),
and

2. for some wWffC' € Lpcr: C' 4+ Dev;e (B), and there is no wiD € Lpc
suchthatD - C, C t# D,andAT (D) C AT (C).

For the following definition cf. Gemes (1993).

Definition 1.10 (Natural Axiomatization) Let L beLpc, Lpcr, Of Lprq, and let
T and7” be sets of wffs ofZ. 7" is anatural axiomatization off” iff

1. T is finite, andl” - 1",
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2. his a content part of\,,;, for every wffh € 77,
3. there is no content patt of some wffh € 7" such thatl” \ {h} + ¢, and
4. there is no set” of wffs of £ satisfying (1)-(3) and such thgt”| > |T7].

The set of all natural axiomatizations Bfis denoted byNA (77)".

Definition 1.11 (Development)Let T be a set of wffs, and let' = {‘c}’, ..., ‘¢’

n

be a finite set of constamterms. Thedevelopment of” for C, Deve (T), is the
developmenDeuve (A,er h) Of the conjunctiom\, . h of all wifs h € T for C.

Let . be awff. Thedevelopment ok for C, Devc (h), is recursively defined
as follows:

. If h is atomic, i.e. ifh is of the form ‘P (¢4, ..., t,)’, then Deve (h) = h.

. If h = =hy, thenDeve (h) = =Deve (hy).

1

2

3. If h = hy A hy, thenDeve (h) = Deve (hy) A Deve (ha).

4. If h = hy V hy, thenDeve (h) = Deve (hy) V Deve (ha).

5. If h = hy — ho, thenDeve (h) = Deve (hy) — Deve (hs).
6. If h = Va'A[2'], thenDeve (h) = Ai<jcn A [cz/xl}

7. 1t h =Va* A [2¥]  k # i, thenDev (h) = Va* Dev (A [2*]).
8. If h = 32" A[2'], thenDevc (h) = Vi<jcn A {cﬁ/xz}

9. If h=VzrA {xk}, k # i, thenDevc (h) = 3% Dev (A [mkD

Here, ‘A [c;/x’} is the result of uniformly substituting the constarterm ‘c’’
for all free occurrences of thevariable %" in A.

Definition 1.12 (Constant:i-Term)
1. Everyi-constanté}’ j > 1, is a constani-term, for everyi.

2. If ' f”isann-aryk,, ..., k,,i-function symbol, t*'’ is a constank, -term,
..., ‘t*" is a constant:-term, then f? (t’ﬂ, . ,t’“n)' iS a constang-term.
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3. Nothing else is a constaiiterm.

‘t'is a constant term iff there is ansuch that?’ is a constané-term.

Definition 1.13 (Description of an Individual) Let £ be an evidence from, ..., Dy,
let ‘¢’ be a constant term occurring i, and let ¥, 1 < i < k, be a constant
i-term occurring inE, whencet! is an individual ofD;.

The set of all constantterms %" occurring in E is denoted by C; (E)'.
The set of all constant terms occurring in £ is denoted by (E)’. The set of
all constant-terms %"’ essentially occurring irf is denoted by, .. (F)'. The
set of all constant termg’‘essentially occurring irE is denoted byC., (E)’.

Let B be a set of wifs. The set of all constarterms i’ in C.,, (F) for
which there is no constagterm t; in Cess (E) such thatj < [ and

BUEHRT, =t

is called theB-representative of” (E). It is denoted by Cz_,.,. (E). If B is
empty, | will speak of the representative@f( E), C,.,, (E).

The description of‘t’ respectivelyt in E, Dg (t), is defined as the set of
relevant elementd of £ with ‘¢’ € C'(A), i.e.

Dp(t)y={A€e RE(E):'t' e C(A)}.
The set of entitieg’ € D; which are mentioned i is denoted by [, (E)’, i.e.
I (E) = {o/ cop (‘7)) =o', o’ € D;, forsome t” € C; (E)},

whereDomp = (D1, ..., D,),r > k.
The set of entitieg which are mentioned i is denoted by (E)’, i.e.

I(E) = {a:¢e('t)=a,ac D,;, forsomei,1 <i<r,
and somet” € C (£)},

whereM g = (Domg, ¢g) is the intended model of .

Definition 1.14 (Unconditional Probability) A functionp(-),p(-) : Lpc — R,
Lpc being the language of the classical propositional calcias is a(n) (n-
conditiona) probability iff it holds for any wifs A, B € Lpc:

1. p(A) =0,
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2. if- A, thenp (A) = 1, and
3. ifAF-B,thenp(AV B) =p(A) +p(B).

Definition 1.15 (Strict Unconditional Probability) A functionp(:),p (-) : Lpc —
R, is astrict (unconditional) probability iffp (-) is a(n) (unconditional) probability,
and

p(A)=1, onlyif A, foreverywffA e Lpc.

Definition 1.16 (Conditional Probability) Letp(-), p(:) : Lpc — R, be a(n)
(unconditional) probability. The partial function(- | -),p(- | ) : Lpc X Lpc —
R, with
p(BAA)

p(A)
for any wifs A, B € Lpc with p (A) > 0, is theconditional probability based on
p ()

If p (-) is a strict (unconditional) probability, then the conditional probability

p(-|-) based om (-) is called thestrict conditional probability based gn(-).

p(B|A)=

Theorem 1.2 (Strict Probabilities) Letp (-), p(:) : Lpc — R, be a strict (un-
conditional) probability, and lep (- | -) be the conditional probability based on
p(+). Then it holds for any wffsA, B € Lpc with p (A) > 0:

p(B|A)=1, onlyif AF B.
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Chapter 2

The Problem of a Quantitative
Theory of Confirmation

2.1 Criteria for a Solution

In my opinion, any solution to the problem of a quantitative theory of confirma-
tion has to satisfy two sets of criteria: The first one is a set of high-level, meta-, or
formal conditions of adequacy any formal theory has to satisfy. These criteria de-
mand of a formal theory to bermally handyin the sense that it be non-arbitrary,
comprehensible, and computable in the limit. They will be the topic of this chap-
ter.

The second set of criteria is a set of low-level, object-, or material condi-
tions of adequacy any quantitative theory of confirmation (whether or not it is
intended to implicitely provide a rule of acceptance for rational theory choice)
has to satisfy in my opinion. What these criteria amount to is that a quantitative
theory of confirmation benaterially adequaten the sense that all what matters
in determining whether and to what degree a given evidéncenfirms a given
theoryT relative to some background knowledeare the so calledonfirma-
tional virtues(of theoryT in relation to evidencds and background knowledge
B). These confirmational virtues are dealt with in the next chapter.

The challenge is the definition of a (set of) function(s)-, -, -) ,

C(,):TxEXB—-NR,

such thatC' (T, E, B) is a measure of confirmation of theofyby evidenceE
relative to background knowledde which is formally handy and materially ade-
quate.

21
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2.2 High-Level, Meta-, or Formal Conditions of Ad-
equacy

As mentioned | think that any formal theory, in particular, any quantitative theory
of confirmation intended to implicitely provide a rule of acceptance for rational
theory choice has to be formally handy in the sense that it be non-arbitrary, com-
prehensible, and computable in the limit. In this section these notions will be
defined and applied, and I will try to motivate them.

Definition 2.1 (Arbitrariness) A (conceptCr defined by a) sef’ of functionsf,
f: D — R,isarbitrary iff there are at least two functions, f, € F' and at least
two arguments;, y € D such that

file) < fi(y) and fa(y) < fol(w),

where< is a strict order (i.e. an asymmetric and transitive relationj:dn

A (conceptCr defined by a) set of functiong' is non-arbitrary iff (Cr
respectively)f’ is not arbitrary.

If (the definiensof a conceptCr defined by) a sef’ consists of a single
function f, f is called non-arbitrary.

A theoryT is arbitrary iff at least one of its central concepts is defined
by an arbitrary set of functions.

A theory T' is non-arbitrary iff at least one of its central concepfs is
defined by a set of functions, and none of its central conceydis is defined by
an arbitrary set of functions'.?

In order for this definition to be comprehensible one has to make precise which
concepts of a given theory are its central ones. For the cases dealt with here the
matter is clear — or so | think — whence the notion of a central concept of a theory
will not be defined. I will simply list which concepts of which theories | take be
central ones.

Assumption 2.1 (Central Concepts)

Lif F is a set ofn-ary functionsf, f : D — R, n > 1, then the arguments,y € D are
n-tupels (andD is a set ofn-tupels).

2Please note that a theory need not be non-arbitrary, if is not arbitrary. This is only the case,
if the theory isformal in the sense that at least one of its central concepts is defined by a set of
functions.
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1. The concept of (degree of) confirmation of the@hby evidencek rela-
tive to background knowledgB is a central concept of any (quantitative)
theory of confirmation of theor{” by evidenceF relative to background
knowledgeB.

2. The concept of (explanatory) coherence is a central concept of any theory
of (explanatory) coherence.

3. The concept of probability is a central concept of any theory of probability,
independently of whether probability is interpreted as logical probability,
as (inter)subjective degree of belief, as objective chance or propensity, or as
(limiting) relative frequency.

Why should a formal theory, say, of (explanatory) coherence be non-arbitrary?
Consider a typical situation at court, where two versions of the same event are
presented — one by the accusing party, and another by the accused party. Suppose
the judge who has to decide between these two versions reasons along coherentist
lines. What she will do is to try to find out whether the version of the accusing
party or that of the accused one is more coherent with the data, which are the
materials admitted for proof.

Now assume the theory of (explanatory) coherence the judge is adopting is
arbitrary for the case in question. This means that there are at least two coherence
functions satisfying all constraints of this theory of (explanatory) coherence such
that according to the first function the version of the accusing party is more coher-
ent with the data, whereas according to the second function it is the version of the
accused party which is more coherent with the data. So the theory of (explanatory)
coherence is of no help for the judge.

Put differently, the arbitrary theory of (explanatory) coherence allows the
judge to justify any decision, for instance, to acquit the accused party simply
because the latter is supporter of the judge’s favourite football team.

Application 2.1 (Arbitrariness)

1. Every set of Bayesian relevance meastiesarbitray; in particular, this

3For a clearly written discussion of all these views cf. Gillies (2000).
4A functionm, (-, - | ) is arelevance measui it holds for any wifs H, E, K € Lpc:

>0, if p(H|EAK)>p(H|K),
my (H,E|K){ <0, i p(H|ENK)<p(H|K),
=0, if p(H|EAK)=p(H|K),
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holds ofd, r, [, s, andc.®

2. The setP of all (unconditional) probabilities, and the g@t,,, of all condi-
tional probabilities are arbitrary.

3. The uncountable sét of functionsf, (-), f. (-) : Re — R, with

fal@)=2% 2eRf={z:2eR,2>0},
aeRt={x:xeR x>0},

is not arbitrary.

wherep = p (- | -) is some conditional probability. The set of relevance measurisdefined as
follows:

m = {m,, : pis a conditional probability.
Cf. Fitelson (2001). Fitelson's main thesis thé central fact’, Fitelson (2001), p. 6 — is that,
for a given conditional probability, the five Bayesian relevance measuies [, s, andc are not
ordinally equivalent, which means something slightly weaker than being arbitrary; namely that for

any two sets of relevance measuresn’ € {d,r,l, s, c} there are conditional probabilitigsand
wffs H, E, K, H', E', K’ € Lp¢ such that

my, (H,E | K)>m,(H,E'"| K') and m,(H,E|K)<m,(H E|K').

My point is not that, for a given conditional probability, the set of relevance measures
{dp, rp, 1, $p, ¢, } IS arbitrary, but that every set of relevance measures is arbitrary. This means
that for every set of relevance measurneshere are conditional probabilities andp., and wifs

H E K,H,E',K' € Lpc such that

my, (H,E | K) >m,, (H,E'| K'Y and m,, (H,E|K)<m,, (H,E'|K').

5The appendix to chapter 2 contains a proof of this arbitrariness cldim./, s, andc are
defined as follows — cf. Fitelson (2001). Lgt-) be an (unconditional) pobability, let(- | -) be
the conditional probability based @r{(-), and letT’, E, andB be single statements or propositions
of Lpc.

d,(T,E|B):=p(T|EANB)—p(T|B), cf Earman (1992)

p(T'| ENB)

p(T|B)
p(E|TAB)
p(E[-T A B)

sp(T,E|B):=p(T|EANB)—p(T|-EAB), cf. Christensen (1999)
¢c(TLE|B)=p(TNEAB)-p(B)—p(TAB)-p(EAB), Carnap(1962)

rp (T, E | B) :=log { } ,  cf. Horwich (1982) and Milne (1996)

I, (T,E | B) :=log { } . cf. Good (1983)
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4. No set of only one single function is arbitrary; in particular, the singletons
containingfuzzynegation-y,.., as the fuzzy-logical interpretation of nega-
tion, and multiplication ofuzzyconjunctionAy,.., as the fuzzy-logical in-
terpretation of conjunction are not arbitréryhere

- [07 1} )y fuzzy (-T) =1-uz,
) ]H[Ovl}u /\fuzzy(-r,y):m'y.

Let us turn to the second formal condition of adequacy which demands of a theory
to be comprehensible.

Definition 2.2 (Comprehensibility) AtheoryT iscomprehensibléf all its prim-
itive concepts are comprehensible.

What this definition should capture is that a theory explicating one concept of
interest — e.g. the concept of (explanatory) coherence — by means of another
concept which is in need of explication itself — e.g. the concept of explanation
—is no good theory, because the concept of interest is not explicated, but merely
circumscribed in terms of another concept which is equally or even more unclear.

Though there may be an intuitive understanding of ‘comprehensible’, the
guestion is which (primitive) concepts of a given theory are comprehensible. It
may be argued that all concepts corresponding to observational terms are compre-
hensible — given that one has been able to clearly distinguish observational form
theoretical terms — but already here doubts may be raised. | will therefore not
argue for the comprehensibility of some distinguished set of concepts, but will
restrict myself to the following pragmatically justified assumption.

Assumption 2.2 (Comprehensible Concepts)
e The primitive concepts oPL1 = andZF, i.e.
- AV, =, =V, 3,212, 2t ab €, and {}
are comprehensible.

e The concept of explanation is not comprehensible.

5That fuzzynegation anduzzyconjunction are not arbitrary will be of importance in chapter
4.
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The justification of this assumption is pragmatic since it consists in the fact that
no formal theory —i.e. no theory at least one of whose central concepts is defined
by a set of functions — can do without the primitive notions of logitd.{ =)

and set-theory{F).” In particular, this holds for every quantitative theory of
confirmation aiming at the definition of an adequate measure of confirmation.

Application 2.2 (Comprehensibility)
e PL1 =andZF are comprehensible.

¢ No theory of (explanatory) coherence presupposing as primitive the concept
of explanation is comprehensible.

Before defining the third formal condition of adequacy, remember the definiton of
computability: Roughly speaking, a functiof, f : D — R, is computable just

in case there is an algorithm (a Turing machine) which yields for every argument
x € D after finitely many steps the valyée(x) € R of f for . That is, there is

an algorithm which — when presented with input computes in finitely many
steps the outpuf (z), and then gives a sign that this is the valugfdbr x. Such
adivisionalgorithm may be characterised as an assessment method which

outputs the correct answer and theadts thereby signaling that the
answer is correét

is logically guaranteed to converge to the correct answer weth
tainty.

As stressed by Kelly (1996), a method — though not logically guaranteed to con-
verge to the correct answer with certainty —

may be logically guaranteed to stabilize to the truth without ever giv-
ing a sign that it has found the truth.

"Apart from this, some concepts have to be assumed as primitive, for one cannot express any-
thing without presupposing any concept at all.

8For the following cf. Kelly (1996).

%Kelly (1996), p. 4.

0Kelly (1996), p. 4.

HKelly (1996), p. 4.
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This weaker sense of convergefc® the correct answer gives rise to a weaker
notion of computability: computability in the limit.

Definition 2.3 (Computability in the Limit *3) A function f, f : D — R, is
computableff there is an algorithm\/ such that it holds for every € D: If M
is presented witlr as input, thenV/ outputsf (x) after finitely many steps, and
then halts; i.e. there is anc w such that the output of/ atn for = is f (x), and
M halts atn.

Afunction f, f : D — R, iscomputable in the limiiff there is an algorithm
M such that it holds for every € D: The output stream a¥/ for = stabilizes to
f ().

Let M be an algorithm. The output stream bf for = stabilizes tor iff
there is am € w such that it holds for everyy > n, m € w: The output ofM at
m for xisr.

A set of functionsF’ is computable in the limiiff all functions f € F are
computable in the limit.

A theory iscomputable in the limiiff at least one of its central concefls
is defined by a set of functions, and none of its central concepis is defined
by a set of functiong’ which is not computable in the limit.

In short, the difference between a computable function and one which is only
computable in the limit is that for the former there exists a method which outputs
the correct answer after some finite time and additionally gives a sign that it has
arrived at the correct answer, whereas for the latter there is a method which —
though it also outputs the correct answer after some finite time — does not give a
sign that it has arrived at the correct answer, but continues to output this correct
answer forever. The method tells you the correct answer, but does not tell you that
it is correct.

Two questions arise: First, why should a theory be computable in the limit?
Second, why do | not demand that it be computable? The answers are that (1) a
theory is useless for practical purposes if it is not computable in the limit, but that
(2) demanding of it to be computable is demanding too much.

2Kelly (1996) introduces still further notions of convergence all of which give rise to corre-
sponding notions of verification, refutation, and decision. | have adapted — and thereby changed —
his definitions for the purposes | am concerned with here.

3The following definitions are rather informal. | have tried to define computability in the
limit without introducing the notions of a Turing machine, a Turing-computable function, and
several related concepts. For precise definitions of these notions and more about enumerability,
decidability, and computability the reader is referred to Hermes (1961). An English introduction
cited by Kelly (1996) is Cutland (1986).



28 CHAPTER 2. A QUANTITATIVE THEORY OF CONFIRMATION

Why should a formal theory be computable in the limit? Suppose you are
concerned with the problem of determining how “good” a thebris (relative
to a given evidencds and some background knowled@d, where a theoryl”
Is good (relative toF and B), if it is true, can explain (together witF) many
of the data inE, is simple, and so on. Suppose further that you can assume
that there is exactly one “best” theoty (for given £ and B). Finally, assume
you are presented the following formal theory of the problem of “good” theories
consisting in the measure (7', E, B) of the “goodness” of theory¥’ (in relation
to evidenceF and background knowledge):

1, if Tis the “best” theory (relative t&’ and B),

m(T, E, B) = { 0 otherwise

Obviously, this measures is adequate in the sense that it always picks out the right
theory. However, it is equally obvious that this measure is useless for practical
purposes. The reason for this is thatis neither computable nor computable in

the limit: In order to determine the value takes on for givelY’, £/, and B, one

has to know whether an obviously not comprehensible concept applies, which, in
this case, even coincides with the central concept to be explicated.

One may ask why | do not demand of a formal theory to be computable. In
my opinion, this amounts to demanding too much, since it would rule out, among
others, all theories that explicate a notion of interest by means of logical relations
exhibited by various (sets of) statements. Doing so is hot only common, but also
reasonable practice in the philosophy of science. Much can be clarified, if one can
determine whether a notion of interest applies (to a suitable argument), if all one
has to assume are the logical relations between various (sets of) statements.

However, this practice does not satisfy the criterion of computability. In
order to make this claim precise, note that a relafioon a setS is decidable just
in case the characteristic functiqr of R is computablé?

So decidability of relations (sets) is just computability of their characteristic
functions. AsPL1 = is not decidable, the characteristic functignof theorem-
hood inPL1 = is not computable, whereas the characteristic function of theorem-
hood in the classical propositional calculbdé’ is computable. As a consequence,
if PL1 = is the underlying logic, then no function the values of whose arguments

f there is an algorithm that tells one for every: S whether or not € R, then this algorithm
tells one whethex i (s) = 1 or xr (s) = 0; for the former holds just in casec R, and the latter
holds just in case ¢ R. On the other hand, itz (s) is computable, then there is an algorithm
that outputs for every € S after finitely many steps the valugz (s) of xr for s, and thereby
tells one whether or not€ R.
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depend on logical relations between various (sets of) statements is computable.
If, however,PC'is the underlying logic, then every function whose values depend
only on logical relations between various (sets of) statements is computable.
Suppose you have achieved to explicate a notion of interest by means of
logical relations between various sets of statements, and you have even achieved
to define a function measuring the extent to which this notion is exhibited by given
suitable arguments. If you have achieved this wii&n is the underlying logic,
then your function is computable. Now suppose you try to extend your results to
PL1 =, and you succeed to do so after hard work. Again, the notion of interest is
explicated by means of logical relations between various sets of statements. Yet
in this case, the function measuring the extent by which the notion of interest is
exhibited by suitable arguments is not computable,A@rl = is not decidable.
Clearly, it is inappropriate to disallow this function simply because of the fact that
it is not computable.
As an example consider the second axiom of the probability calculus:

p(A) =1, if FA

SupposeP L1 = is the underlying logic. For a given statemehte Lp;,—, one
has to determine whether A in order to know whether one has to assigrhe
value 1. But a$- is not decidable, this cannot be done.

One might suggest that a theory need not be computable, but that it be com-
putable under the assumption that the underlying logic is decidable. Call this kind
of computabilitynear computability

It is easily seen that also near computability is too restrictive. For instance,
define as follows: A set of statemenfssays something about the individuarff
there is a statement such that is mentioned inA and A logically follows from
T'. The corresponding characteristic functipn

1, ifthereisawffA € Lpy ;- suchthatt’ € C (A) andT + A,
FT1) = 0 otherwise

is not computable even if it is assumed that the underlying logic is decidable.
(There are infinitely many statememsthat have to checked on their containing
an occurrence oft* and on their logically following fromil".)

Nevertheless, the above definition and the corresponding function should
not be disallowed simply for thiormal reason that it is not nearly computable —
though there may, of course, be other reasons for doing so. This would be very



30 CHAPTER 2. A QUANTITATIVE THEORY OF CONFIRMATION

restrictive, and many concepts and corresponding characteristic functions would
be ruled out thereby.

As shown by Kelly (1996) there are functions which are not even com-
putable in the limit®:

[W]ithout extra background knowledge, the hypothesis that matter is
infinitely divisible is not decidable in the limi€

The functionf,.;, finy : Lrri= — R, is therefore not even nearly computable in
the limit, where, for every statemedte Lp;—,

Fins (A) = 1, if matter is infinitely divisible
mfA ) 0 otherwise

Application 2.3 (Near Computability)

1. The characteristic function of theoremhoodit', x- pc, X+.rc : Lpc —
{0, 1}, is not computable, but computable in the limit, where, for every wif

A€ Lpc,
1 it FA
X (A) = { 0 otherwise

2. The characteristic function of theoremhoodiih1l =, y, x+ : Lpri= —
{0, 1}, is not computable, but computable in the limit, where, for every wif

A€ Lpri-,
it A
X (A) = { 0 otherwise

3. Ifp(-),p(-) : Lpc — R, is a(n) (unconditional) probability, and the values

p( /\ ipi)
p, €EDCPV

15Cf. Kelly (1996), p. 53f. What Kelly shows there is that the hypothesis that matter is infinitely
divisible is refutable in the limit, but neither decidable in the limit nor verifiable in the limit.
Decidability, verifiability, and refutability (in the limit) are defined for (sets of) hypotheses relative
to the set of possible worlds, which he identifies with infinite data streams.

The example of the infinite divisibility of matter is construed in such a way that if papide
divisible, then it will be divided after finitely many trials, but not necessarily after the first one. The
latter is important, for otherwise a failure to divigevould show thap is not divisible, whence
the hypothesis that matter is infinitely divisible were refutable with certainty, which it is not under
the more realistic assumption — cf. Kelly (1996), p. 51.

16Kelly (1996), p. 53.
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are not all given in advance (which amounts to cheating), fhenis not
computable in the limit, wher@V’ is the set of all propositional variables
of ,Cpc.

The same holds for every conditional probability.

4. No set of Bayesian relevance measures in the sense of Fitelson (2001) is
computable in the limit.

2.3 Why a Quantitative Theory of Confirmation Is
to Be Formally Handy

As already indicated, | think that a quantitative theory of confirmation of th&ory

by evidencel relative to background knowleddge should implicitely provide a

rule of acceptance for rational theory choice. The typical problem situation of the
latter consists in the question which the@tyof a finite set of alternative theories
{T1,...,T,} itis rational to accept with regard to a given eviderd¢éand some
background knowledg®) belonging to the domain of application of each theory
T;, 1 <[ < n, where two theorie§” and7” arealternativerelative toB just in
caseBUT UT'F L. Arule of acceptance for rational theory choice implicitely
provided by any guantitative theory of confirmation defining some measure of
confirmationC' is the following:

(R) Let E be an evidence, I be a background knowledge, and let
{T1,...,T,} be a finite set of alternative theories, whéféelongs
to the domain of application of each thediy 1 <[ < n.

If there is exactly one theory;, 1 < i < n, amongI},...,T, such
thatC (T}, E, B) > C (T}, E, B) for everyj,1 < j < n, then accept

If not, continue gathering evidenéé.

Suppose that a quantitative theory of confirmation defining the central concept of
confirmation of theory” by evidenceX relative to background knowleddeby a

set of functiong’ is not formally handy. Then it is arbitrary, not comprehensible,
or not computable in the limit.

171f one wants such a rule to choose one single theory also in case there are several such theories
T;, then one may arbitrarily choose the first one.
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If it is arbitrary, then there are problem situations of the above kind and
measures of confirmatioff and C’ in C such that according t6' some theory
T should be accepted with regard to a given evideliand a given background
knowledgeB, whereas according 16’ someothertheory7” should be accepted
with regard to the same evidengeand the same background knowledgjevhere
T and7” are alternative (relative t8), and evidencéd” belongs to the domain of
application of bothI” and7”. As the quantitative theory of confirmation under
consideration does not provide any criterion for choosing between the two mea-
sures of confirmatiod’ andC”’, it does not decide between the two theofiesnd
T', whence, after alljR) turns out to be no rule of acceptance (for rational theory
choice) for the case in question.

If the quantitative theory of confirmation is not comprehensible, then the
valueC (T, E, B) of the measure of confirmatiodi for givenT', E, and B will
depend on determining whether some primitive concept which is not comprehen-
sible appliestd’, £, andB. However, this determination is arbitrary to the extent
to which the primitive concept in question is not comprehensible, wheRgeés
of no help agairt®

Finally, if the quantitative theory of confirmation is not computable in the
limit, then there is no method which stabilizes to the correct valyé, £, B) of
C for all theoriesT’, evidencedr, and background knowledgeés Once more
(R) is no guide in deciding which theoflyto accept with regard t&' and B, since
for all methods\/ there are theori€s, evidenced”, and background knowledges
B such that)M does not stabilize t6' (T, £, B), i.e. M will continue to output
false values foreve?’

2.4 Down With Bayesianism?

The foregoing examples — showing that all Bayesian theories of confirmation are
arbitrary (and, under realistic circumstances, not computable in the limit) — seem
to urge the conclusion: Down with Bayesianism.

In the second subsection of this section I will briefly turn to the constructive

80ne can see here — and in the example of the research project on “good” theories — that the
three formal conditions of adequacy are intimately related in that violating the second (non-formal)
criterion of comprehensibility often yields violations of the first criterion of non-arbitrariness and
the third criterion of computability in the limit, both of which are criteria for formal theories.

9For all methods\/ there arel’, E, and B such that for every point of time there is a point
of timem > n such that the output df/ atm onT', E, andB differs fromC (T, E, B)).
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part of my criticism — arguing that this conclusion is rush, and sketchily describ-
ing in very general terms three possible ways out. Before doing so an example is
considered that should illustrate to what — in my opinion: unacceptable — conse-
guences the subjective interpretation of probability as degree of belief leads when
it is to provide the basis for a quantitative theory of confirmation.

| think the main problem of Bayesianism is its arbitrariness. Indeed, one
may be inclined to call Bayesianism the paradi§of arbitrariness. The reason
for this lies in the fact that the three (four) axioms of the probability calculus
are far too inclusive in the sense that any assignment of valu@s ihto the
propositional variables (atomic statements) is coherent with these axioms.

The subjective interpretation is very popular. | think this is — at least partly
— due to the fact that in modeling various problems the subjective interpretation
allows one to assume particular suitable values for the probabilities occurring in
the model. These then yield the expected result. The justification for these values
is very easy: After all, probabilities are just degrees of belief.

Though this liberality enables Bayesianism to explain lots of phenomena —
not only in the philosophy of science, but also in economics, politics, and, more
generally, the social sciences — it allows, so to speak, to explain too much: There
follow things that should not. What | would like to illustrate here is that there are
cases where, when taken seriously, the subjective interpretation leads to unaccept-
able consequences.

The rejection of the subjective interpretation of probability as degree of be-
lief concerns the problem of a quantitative theory of confirmation. The reason
for this is that | take confirmation to be a relation between theories, evidences,
and background knowledges that holds (to a given extent) independently of any-
one’s subjective degrees of belief. Whether and to what degree some heory
confirmed by an evidencg relative to a background knowledde is not even
dependent on the existence of someone’s having certain beliefs — whether or not
these are given as numerical degrees and, if so, whether or not they obey the prob-
ability calculus. | take confirmation to lmbjectivein this sense.

This does not amount to a rejection of the subjective interpretation of prob-
ability as a whole. | do not attempt to argue against the position

that the unconditional (and derivatively the conditional) probability
axioms are a type afonsistencygonstraint on partial beliet§
where

20In the sense of Kuhn (1996).
2Howson (1997c), p. 518.
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[c]onsistency (also known as coherence) means that your evaluations
of fair odds are consistent in the sense that they do not depend on
the form in which the relevant gambles are presented, and hence are
invulnerable to a Dutch Book; consistency is thus an extensional se-

mantic criterion, like trutf?.

In Howson’s opinion

[tlhe existence of a well-defined semantics and syntax, with a sound-
ness and completeness theorem, supports the claim that in the Bayesian
theory we have a genuinegic of consistent belief?

Just as deductive logic is concerned with the question whether the truth of some
set of statements necessitates the truth of another statement, the logic of partial
belief is concerned with the question whether certain degrees of belief in some
statements necessitate a certain degree of belief in another statement; and just as
deductive logic is not concerned with the matter-of-fact question whether a given
statement is true in some world, the logic of partial belief is not concerned with
the matter-of-fact question which degree of belief a given statement is assigned
by someone.

Deductive logic, in other words, provides the conditions regulating
what might be called coherent truth-value assignments. This objec-
tivism is nicely paralleled in the interpretation of the probability ax-
ioms as the conditions regulating the assignment of coherent betting
quotients®

| do not object to considering the probability calculus as a logic of partial belief.
But the relativisation to partial beliefs is an important one. | disagree with taking
the probability calculus as

a genuinelyinductivelogic?®,

if an inductive logic is a solution to the problem of a quantitative theory of confir-
mation.

Itis unacceptable to me that the degree of confirmation depends on or is even
determined by someone’s subjective degrees of belief, as it is according to any

22Howson (1997b), pp. S185-S186.
23Howson (1997c¢), p. 521.
24Howson (1997c), pp. 521-522.
2’Howson (1997a), p. 278.
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Bayesian theory of confirmation, where these degrees of belief can be arbitrarily
chosen (except for coherence with the probability caculus).

To continue Howson’s analogy with deductive logic: Just as the logical con-
sequence relation holds independently of the truth values of the statements, the
relation of confirmation (to some degree) holds independently of the subjective
degrees of belief someone assigns to the statements.

Howson compares coherence with truth, both of which are extensional se-
mantic criteria. In deductive logic, an argument or inference from a set of state-

mentsS = {P,,..., P,} to a statemen€ may be characterised as deductively
valid justin case it holds for all coherent truth value assignmemsP; , ..., P,,, C:

If o (P)=...=¢(P,) =1, thenp (C) =1,
i.e.

C(CANPLN...ANP) > @o(PLN...ANP,)-1.

The analogon of this in inductive logic is to characterise an argument $fém
C' as inductively valid to degree, v (C,S) = r, just in case (i) it holds for all
coherent probability assignments

p(ClPIN...NP,) >,

ie.
p(CANPLAN...ANP)>p(PLN...ANP,) -,

and (ii) there is na > r such that (i) holds fos. Here, a probability assignment
is coherent just in case it satisfies the probability axioms — just as a truth value
assignment is coherent iff it is a standard evaluation function.

The degree of probabilistic confirmation 6fby E, ¢ (T, E), may be then
be defined either as(T', £'), in which case one would adopt a measure of confir-
mation adirmnessor else one may define it as, for instance, the greatest number
r € J such that it holds for all coherent probability assignments

p(T|E)=p(T)=r,

i.e.
p(TANE)—p(T)-p(E)>p(E)-r?®

which would be a measure of confirmationiasrease in firmness

ZNote thatc (T, E), if defined in this way, need not coincide with the difference between the
degree of inductive validity of the inference frofto 7', and the degree of inductive validity of
the inference fronT to T'.
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In this case the relation of confirmation to degre&olds independently
of the probabilities assigned to the statements, just as the logical consequence
relation holds independently of the truth values assigned to the statements.

2.4.1 The Less Reliable the Source of Information, the Higher
the Degree of Bayesian Confirmation

Bayesians argue that they can take into account the fact that we are not always
sure about our observations or, more generally, that the sources we take our data
from are not always reliable.

Let p; (F) be my subjective degree of belief in (the atomic statement or
proposition)E in case (I think) the source of information féris not fully reliable,
say, my subjective degree of belief in ‘This chair in my room is red’ when looking
at my chair at timeg; at night when the light is off. Lep, (£) be my subjective
degree of belief inZ in case (I think) the source of information f@f is very
reliable, say, my subjective degree of belief in ‘This chair in my room is red’ when
looking at my chair at time, at night when the light is on and | have checked that
| am awake. As the source of information is less reliable in the first case than in
the secondy, (E) < ps (E), where it is assumed that (E£) > 0.

Consider the hypothesis = ‘All furniture in my room is red’, wherel’
is taken to logically implyE (strictly speaking, it does not). According to one
Bayesian theory of confirmatiéf) the degree of confirmation @f by £22 at time
t1, where the source of information is (thought to be) unreliable, is

_ b1 (T)
p1(E)

At time t,, where the source of information is (thought to be) reliable, the degree
of confirmation is

dy, (T.E) = p1 (T | E) = py (T) ~p(T) THE.

p2 (T)
p2 (E)
There are two possibilities: Eithex (7') = py () or py (T') # po (T).

In the first casd’ is the more confirmed by, the less reliable the source
of information for £, because

dy, (T, E) > d,, (T, E) iff py(E)>p (F).

dpQ <T7E) = P2 (T | E) — P2 (T) =

—p(T) T+ E.

2The distance measurk is considered by Earman (1992). Although — as shown by Fitelson
(2001) — not all relevance measures are ordinally equivalent, | am only considering
28The relativisation to the background knowledge is dropped.
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Assumingp; (T') = p» (T') may be appropriate, ifi andt, are two possible sce-
narios: | consider hypothesis, and because of knowing th@tlogically implies

E | start to investigate whethéf is true. In scenario,, the light is off and | have

a low degree of belief i. As a consequence, | get a low degree of confirmation.
In scenaria,, the light is on and | have a high degree of beliefin Therefore |

get a high degree of confirmation.

One may object that this is not very plausible, for a change in my subjective
degree of belief inF will give rise to a change in my subjective degree of belief
in T'. This may be appropriate, if andt, are construed as two successive points
of time.

Therefore consider the second case. In my view, the only Bayesian answer
to the question whethex (T') is smaller or greater thamn (7') is that the latter is
given by Jeffrey conditionalisatior/(') on E, which yields strict conditionalisa-
tion in the limiting case of, (F) = 1:2°

THE.

p2(T)=pi (T | E) pa(E)+p1 (T | ~E)-p2 (=E) =ps (T)'p

As in the first case it follows thaf' is the more confirmed by, the less reliable
the source of information foF, because

dpl (T’ E) > dpz (T’ E) iff P2 (E) > p1 (E) '30

Onée! might reply that this is just a more general version of the problem of old
evidence raised by Glymour (1980a):Afis old evidence so that(E) = 1, then

the degree of confirmation of any thedfyby E is 0. For if p(E) = 1, then
p(T | E)=p(T), whence

dp (T, E) = p(T | E) = p(T) = 0.

This is a problem for Bayesian confirmation theory, because there are many his-
torical cases where old evidence provided confirmation to a theory.

2t is assumed that in going from to ¢, the only change is itE. Cf. Jeffrey (1967), esp.
chapter 11.
30The same holds if; (T') is obtained by Jeffrey conditionalisation as
(E)

pl(T>=p2(T|E>-p1(E)+p2<T\w%mbEbm(T)-% ThE.

3!Luc Bovens in personal correspondence.
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In general, there are two solutions to the problem of old evidéh@ee one
is to condition on the entailment relation that holds betwEemd F; the other is
to take recourse to counterfactual degrees of belief. | will argue that the first does
not give a solution to the example of above, and that (a charitable reformulation
of) the second gives no satisfying solution, but illustrates to what — in my opinion:
unacceptable — consequences the subjective interpretation of probability as degree
of belief leads if it is to provide the basis of a quantitative theory of confirmation.

2.4.1.1 Conditioning on the Entailment Relation

The first strategy is taken by Garber (1983He distinguishes between a histori-
cal and an ahistorical problem of old evidence: The former

concerns the scientist in the midst of his investigations who appears to
be using a piece of old evidence to increase his confidence in a given
theory*

The second problem is that although

[w]hen we are first learning a scientific theory, we are often in roughly
the same epistemic position that the scientist was in when he first put
the theory to test; the evidence that served to incrb&sgegrees of
belief will increaseoursas well. But having absorbed the theory, our
epistemic position changes. [...] Once we have learned the theories,
the evidence has done its work on our beliefs, so to speak. But nev-
ertheless, even though the old evidence no longer serves to increase
our degrees of belief in the theories in question, there is still a sense
in which the evidence in question remains good evidence, and there is
still a sense in which it is proper to say that the old evidence confirms
the theories in questioit.

According to Garbé¥, the ahistorical problem of old evidence may be solved by
some version of the counterfactual strategy. His concern is the historical problem
of old evidence. To him

32For a discussion of the problem of old evidence cf. Curd/Cover (1998), chap. 5. For the
following cf. Earman (1992), chap. 5.

33A similar account is that of Jeffrey (1983).

34Garber (1983), p. 102.

35Garber (1983), pp. 102-103.

36Garber (1983), p. 103.
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it seems clear that in the cases at hand, wiatasesS'’s confidence
in T is not F itself, but thediscoveryof some generally logical or
mathematical relationship betwe&nand £.37

Garber considers a languadeconsisting in the truth-functional closure of a
countably infinite collection of atomic statements, to which he adds atomic state-
ments of the form A . B’, where ' stands for some relation of entailment
that need not be further specified. The resulting language is denotdd’'byHe

then show# that there is at least one probability functipron L* that satisfies

the following condition:

(@) p((AFe B)ANA)=p((AFe B)NANB),

and which is such that
0<p(Akg B) <1,

if * A g B’ is an atomic statement di*, and A and—B are not both tautologies
of L. So,

on [his] construction, it isottrivially the case thap (T' | T F¢ E) =
p(T) whenp (E) = 1, and the discovery that -, E canraise S’s
confidence iri".3°

This approach does not solve the more general problem for two reasons. First, one
may construe the example in such a way that just because of knowirg kbgit

cally implies £ | start to investigate whethé¥ is true. In this case (7' ¢ E) =

1. Second, by substituting™ -5 E’ for * E’ in the example one gets the same
problem:T" is more confirmed by" . E att; than att, just in case the source

of information forT -4 E att; is less reliable than &@t. For instance, at; my

friend, a student of logic, tells me th&tentailsE, whereas at it is her professor

who tells me that this is the case, and also shows me how to dédiroen 7.

S’Garber (1983), p. 104. | have changed the notation.
38Garber (1983), p. 116.
39Garber (1983), p. 123. | have changed the notation. More precisely, Garber shows that

[flor L and L* constructed as above, for any atomic sentencéobf the form
‘A F¢ B’ where B is not a truth-functional contradiction i and whereA does
not truth-functionally entaibB in L and B does not truth-functionally entad in

L, for anyr,s in (0, 1), there exists an infinite number of probability functions on
L~ that satisfy(G) and are such that(B) = 1,p(At¢g B) = r,p(A) = s, and
p(A| Arg B) > p(A).

Garber (1983), pp. 120-121. | have changed the notation.
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2.4.1.2 The Counterfactual Strategy
Howson/Urbach (1993) write:

the support ofl’ by E' is gauged according to the effect which one
believes a knowledge df would now haven one’s degree of belief

in 7', on the (counter-factual) supposition that one does not yet know
E.40

| take this to be a standard version of the counterfactual solution to the problem of
old evidence.

Let us first see how the counterfactual strategy can solve the problem of old
evidence. LeF be an evidential statement or proposition which is old in the sense
thatp (F | B) = 1, letT be a theory, letB be the background knowledge, and
supposeB — E (read: B without/minusFE) is the (up to equivalence) uniquely
determined weakest statement with

(B— E)AE - B.

According to one reading of the above quotation, the degree of confirmatibn of
by E relative toB is given by

p(T'|B)—p(T|B-E),
which is positive if and only if
p(E|TA(B-E)>p(E|B-E),

providedp (T' | B — E) > 0 andp (B) > 0. This result seems to be corre@tis
confirmed byFE relative toB just in caseF is likelier givenT and the restricted
background knowledg® — F — that without (the information bearing o) —
than withoutT” being given.

Before continuing, note that althought £ | B — F) = 1, if p (F) = 1, the
problem of old evidence can indeed be solved in this way, for the assumption that
E is old evidence has to be expresseg @8 | B) = 1, from which it does not
follow thatp (E) =1orp(E | B—FE) = 1.

More precisely, the probabilities here have to satisfy the following condi-
tions: (1)p(E£ | B) = 1, because that constitutes the problem of old evidence;
and 2)p(E | B— FE) < 1, for otherwise the problem of old evidence cannot be

40Howson/Urbach (1993), pp. 404-405. | have changed the notation.
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solved. If one additionally assumes (3)B — E) = 1, because this is taken to
follow from the meaning of a backgroutahowledgethen one gets

p(E|B-E)=p(E).

Before applying the counterfactual strategy to the example of above, one has to
generalize from the strict (i.e.(E | B) = 1) to the Jeffrey case, whefg £ | B)
need not be 1. Remember that

p(T[B)=p(T|[(B-E)ANE)p(E|B)+p(T|(B—-E)A-E)p(-E|B),

if p(E | B) = 1, i.e. if the assumption constituting the problem of old evidence
is given. Therefore it seems reasonable to consider

hu,(T,E,B) = p(T|(B—E)ANE)-p(E|B)+
+p(T | (B—E)A=E)-p(~E|B)—p(T| B-E)

as the degree to whichi confirmsT relative toB. This suggestion is strenghtened
by noting that given some provisdsy, (T, F, B) is positive if and only if*

p(E|TAN(B—-E))>p(E|B-E) and p(E|B)>p(E|B-E)
or
p(E|TAN(B-E))<p(E|B-FE) and p(E|B)<p(E|B-E),

which is the appropriate generalisation of the equivalence of before.

However, the problem is that in the Jeffrey case one does not kriow
whence conditioning o® — F — “the (counter-factual) supposition that one does
not yet knowFE” — is of no help. What is needed is the degree of belief'in
on the counterfactual supposition that one does not yet beliéf with degree
p(E | B). 1 will consider two ways of arriving at this (counterfactual) degree
of belief: A genuinely counterfactual one, and one sticking to actual degrees of
belief.

2.4.1.2.1 Counterfactuals Degrees of BeliefLet ‘' B ! £’ denote the informa-
tion that is left, when all information that bears éns dropped fromB — thereby
neglecting the question what to do in case the degree of beligf in F | B), is

“1The provisos and the calculations for the following claims are to be found in the appendix to
chapter 2. The following equivalence is shown to hold by calculation 1.
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not only due to information that can be expressed in terms of statements or propo-
sitions#? SupposeB E is well defined and such that it is the logically strongest
consequence dB with p (E) =p(F | BL E).

| take this independence to follow from the supposition tRatE is what
remains when all information bearing dn is dropped fromB. Note that the
independence follows from (B E) = 1, which is not assumed here, but may
be assumed with regard to the meaning of a backgrémosviedge- though, of
course, one must not assuméB) = 1 orp(E | B1E) = p(E | B); otherwise
one cannot the solve our problem.

Suppose therefore that(T' | B! E) is my degree of belief irf", on the
counterfactual supposition that | do not yet beliefAhwith degreep (E | B).
Consider theE andT' of the example, wherd” - E. What is the degree of
confirmation of7’ by E relative toB at timet,?

According to the above quotation, the calculation has to be based on my
subjective degree of belief function at timeg p,, because Howson/Urbach write

... wouldnow have..*3

So replacing B — E’ by * B! E’ in the definition ofhu, (T, E, B) yields** that
the degree of confirmation @f by E at timet, is given by

hup, (T, E,By) = pa(T | (B2l E)NE) - pa (E| Ba) +
+p2 (T'[ (B2 UE) A =E) -pa (0B | Ba) = p2 (T'| B2 E)

which is positive if and only if

P2 (E|TA(BUE)) > p2 (E | B2t E) and py (E | By) > p2 (E'| B2 E)
or
p2(E[TA(B2UE)) <p2(E | B2 E) and pa (E | By) <p2(E | B2l E),

whereB, is the background knowledge at time
For our example, wher€ is assumed to logically imply, this means that
at timet,, 7' is confirmed byFE relative to B, just in case my actual degree of

42The latter is necessary in order to solve the puzzle, for in the example my degree of belief in
E changes exogenously in going framto ¢s.

43The bold letters are due to me, but the italics are from the original.

44Cf. calculation 1, which does not u¢8 — F) A E - B, whence the equivalence of before
holds also with B E’ instead of ‘B — E’. The provisos stated there witl3? £’ substituted for
‘B — E’" are assumed to hold here.
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belief in E att,, ps (E | Bs), is greater than my degree of belief i on the
counterfactual supposition that | do not yet beliefAnwith degreep, (E | B,),
p2 (E'| B2 U E). This seems to be reasonable.

Let us now compare the degree of confirmatioff'ddy £ at timet, with that
att,. The only change in going from to ¢, is in E. Therefore it seems justified
to assume thaB; ! £ -+ By E, althoughB;, my background knowledge &t,
will differ from my background knowledge ai, B, (for the sake of argument, it
is currently assumed that the change in my degree of beligfimgoing fromi¢;
to ¢, is notexogenous, but is due to some statemer4inwhich is not in5,).

In order to solve our problem it has to be assumed théf3;) < 1 and
p2 (B2) < 1, though it may be the case that(B, ! E) = 1 andp, (B2 E) = 1.
Otherwise

P1 (E | Bl I E) =P (E) =P (E ‘ Bl) y and SO hupl (T,E,Bl) = O,
or
D2 (E | BQZE) = P2 (E) = P9 (E | Bg), and so hum (T,E,BQ) :O,

providedO < p; (E | B; 1 E) < 1.
Jeffrey conditionalisation then yields that

p2 (T | (BeUE)ANLE) =p (T | (Bi11E)AN£E).*

What abouip, (7' | Bo ! E'), my degree of belief if” att, on the counterfactual
supposition that | do not yet belief il with degreep, (E | B;)? Should this also
be the result of conditioning oA? A little bit calculation yields that

p (T | BiE) .
pi(E)-(1—pi(B))
(B |TA(BUE)) - (p2 (E'| Ba) —p1 (E)) +
+p1(E) - (1 —p2(E | By)],

p2 (T'| B2 E)

which is equal to

p2 (E'| By)
p1<E|Ble)7

p2(T|BlE)=p (T | Bl E) -

45Cf. calculation 2 and the provisos stated there. This holds also for counterfactual Jeffrey con-
ditionalisation, which results from Jeffrey conditionalisation by substitutingd +E | B2t E’
for ‘pg (:l:E | BQ),.
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if T+ E£.%6 This means that my degree of beliefihat ¢, on the counterfactual
supposition that | do not yet belief iR with degreep, (E' | B,) is greater than
my degree of belief if" at¢; on the counterfactual supposition that | do not yet
belief in £ with degreep; (E | B;) just in case

p(E|TA(BRE))>p (BB E) and py(E | B) > pi (E | BilE)
or
p(E[TAN(BIE)) <pi(E|BE) and py(E | By) <pi(E|BilE),

provided0 < p; (F) < 1 andp, (T'| By E) > 0, whereB,;! E 4+ B, F and
pi(E)=pi(E| B LE).
However, these assumptions yield the following oddfty.

Observation 2.1 (Oddity) Suppose
Ble_“_BQZE and pl(E|Ble):p1(E)
If po (T'| B2l E) is the result of Jeffrey conditioning afl, then

huy, (T,E,B)) > huy, (T, E, By)
iff
P (E|TA(BE) > pi (B BE) and pi(F | B) > (F | By B)
or
p(E[TA(BRE)) <pi(E[BiE) and p (E|B) <pi(E| B E).

In casel’ + E, this means that
hupl (T, E, Bl) > hum (T, E, BQ) iff py (E | Bl) > D1 (E | B E) .

It seems to be rather clear that this oddity arises from obtaipirt@’ | B! E)
by Jeffrey conditionalisation oi’. This is not allowed, becausgeg (T | B2 E)
should express my degree of belief’ihat ¢, on the counterfactual supposition
that | do not yet believe i’ with degreep, (£ | Bs).

p2 (T' | B2) should not be obtained by Jeffrey conditionalisationfnbut
by counterfactualeffrey conditionalisation o, which is just/C' but with my
degree of belief itk at t, on the counterfactual supposition that | do not yet belief

46Cf. calculation 3.
47Cf. calculation 4, which also gives the provisos under which the following holds.
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in E with degreep, (E | B2), p2 (F | B2 U E), instead of my actual degree of belief
in B at tz, P2 (E ’ BQ), |e

p2(T | BolE) = pi(T|(BolE)AE) -po(E | ByUE) +
+p1(T‘ (BQZE)/\_\E)])Q(_'E|BQZE),

which reduces to
D2 (E ’ By E)

pl(E’Ble)’

if T+ E, providedp, ((B1' E) A E) > 0.

This means that my degree of beliefihat¢, on the counterfactual suppo-
sition that | do not yet belief iy with degreep, (E' | Bs), p2 (T' | B2 U E), equals
my degree of belief irf” at¢; on the counterfactual supposition that | do not yet
belief in £ with degreep, (E | By), p1 (T | B1 1 E), justin cas&®

p1 (T | BiIlE) -

p(E[TAN(BUE))=pi(E|BE) or pi(E|BilE)=p:(E|B:lE).
In caseT + E this means that, givel < p, (E | B;1 E) < 1,

p2 (E | B2 E) =pi (E | BilE)
is necessary and sufficient for

p(T| Bl E)=pi (T | BIUE).

Assuming the latter seems to be natural, for, aftepallE | B; ¢ E') is my degree
of belief in £ at¢; on the counterfactual supposition that | do not yet believ& in
with degreep; (E | B;), and the only change in going fromto ¢, isin E.

And indeed — as shown by the theorem below — with these assumptions
one gets the desired result tHats more confirmed by, which is assumed to be
positively relevant fofl’, att, than att; if and only if the source of information for
E is more reliable at, than att;. More generally T is not assumed to logically
imply E):

Theorem 2.1 (NecSuff)Given

B EAEBlE, pi(E|BitE)=p(E), and p(T|BilE) >0,

48providedp; (T | By ! E) > 0. Cf. the proof of theorem 2.1.
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the equality
p1 (T | BilE) =p, (T | B2 E)

Is necessary and sufficient for the equivalence
hu,, (T,E,By) > huy,, (T, E, By)
iff
pi(E|TA(B1UE))>pi(E| BitE) and po (E | Ba) > pi (£ | By)
or
p(E|TAN(BUE)) <p(E| BilE) and py(E | By) <p1 (E | By),

provided

p2(B2) >0, py((BolE)AE) >0,
D2 ((BQ l E) N _|E) > 0, and 1> D1 (E) > 0.

With counterfactual Jeffrey condition this means that
pr(E[TA(BIUE))=pi(E|BlE) or pi(E|BilE)=py(E| Byl E)

is necessary and sufficient for this equivalence.

The result obtained seems to be the intuitively correct answer. Yet, is it in accor-
dance with what Howson/Urbach say on the problem of old evidence? According

to them, the source of the latter lies

in relativising all the probabilities to thetality of current knowledge.
They should, of course, have been relativised to current knowledge
minusE. The reason for the restriction is, of course, y@tr current
assessment of the support @f by £ measures the extent to which,

in your opinion, the addition o2 to your current stock of knowledge
would cause a change in your degree of beliefif?

As noted,B — E cannot be taken in the Jeffrey case where | do not khgpfor in

this case? is not part of B, whenceB = B— E. Howson/Urbach say that | have to

measure the extent to which, in my opinion, the additiowdd my current stock
of knowledge (minugy) would cause a change in my degree of belieTinBut

“SHowson/Urbach (1993), p. 404. | have changed the notation.
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to consider that change in caBés not part ofB,i.e.p(T'| BAE) —p(T | B),
whereB t/ E, takes us back to where we have started off, for

m(T|BANE)—p (T|B) > po(T| BANE)—py(T | B)

iff
iff

pi(E|TAB)>p (E|B) and py(E|B)>p: (E|B)
or

p(E|TAB)<pi(E|B) and po(E | B) <pi(E | B),

provided0 < p; (E) < 1 andp, (T | B) > 0.°

So, what is wrong with the Howson/Urbach-prescription? In my opinion
the trouble is caused by their relativisation to mwyrrent stock of knowledge.
The latter may contain information highly relevant &t although it does not
contain E itself. In this case | may already be quite surefofand assign it a

50For a Bayesian, it is also no help to consider
p1(T|(BIME)ANE) —p1 (T | BIUE) > po(T|(B2lE)YAE) —po(T| B2l E),
since (counterfactual) Jeffrey conditionalisation yields
p2 (T [ (B2tE)ANE) =p1 (T | (B E)NE),

andps (T | Bo 1 ) is definitely not smaller thap; (T' | Byt E). If po (T | B2 E) is obtained
by counterfactual Jeffrey conditionalisation, then

p2 (T | B2 E) > pi(T|BilE)
iff
p1(E|TABIUE)) >p1 (E| B E) and py(E | Bl E) >py (E| B1lE)
or
p1(E|TABIULE)<p1(E|B1lE) and ps(F | Bl E)<p1(E| B1lE),

and

p2(T | B2t E) = pi(T|B1E)

Cf. calculation 3 and the provisos stated there.
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veryhigh degree of belief. As a consequence, the extent to which, in my opinion,
the additon ofF’ to my currentstock of knowledge would cause a change in my
degree of belief iri” is usually only very small. In the limiting case, whefeis
known (in the sense of being assigned a degree of beligf tiiere is no increase
at all. Here Howson/Urbach tell one to dr@p yet in caseF is not known, but
only believed (in the sense thatE) < 1), F cannot be dropped. So their solution
to the problem of old evidence is no genuine solution, because it is no solution to
the more general problem.

| think a Bayesian has to make two corrections. First she should consider

the extent to which, in her opinion, the addition/6fto some part of
her stock of knowledge which contains no information bearing/on
e.g. B! E, would cause a change in her degree of beliéfin

Second, she should additionally take into account her actual degree of belief in
(cf. the preceding footnote).

The result I arrived at with the above prescription seemed to be correct ac-
cording to Bayesian intuitionst’ (which logically impliesE) is more confirmed
by E att, than att; if and only if the source of information foF is more reli-
able att, than att;, where it is assumed that (T' | B1 1 E) = po (T | B2 U E),
which | derived with counterfactual Jeffrey conditionalisation and by assuming
pi(E| BLUE) = py (E | By).

But what are these degrees of belief on counterfactual suppositions; and how
are they related to my actual degrees of belief? After all, Bayesian confirmation
theory aims at determining the degree of confirmation by means of someone’s ac-
tual degrees of belief. Finding the strongest consequence (or subsét)of B
withp (F | Bl E) = p(FE) is not only a difficult task; it may even be an impossi-
ble one, for there may be several £ which are probabilistically independent of
E (in the sense op), but which cannot be compared with respect to their logical
strength.

It also remains questionable what to do in case my degree of beliEf in
changes exogenously in going framto ¢,, for hereB; —+ Bs.

Furthermore, in order to obtain the desired result it was — and had to be
— assumed thai, (7| B E) = p (T'| B2 E). Given counterfactual Jeffrey
conditionalisation, this reduces to assumndE | Bi1 L E) = py (E | Bol E),
provided E' is positively relevant fofl’ (underp;). With the independence as-
sumption given by the intended meaningi®t F, it follows that

P(E)=p (E|BE)=ps(E| Bl E) =ps(E).
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This has to hold not only fot; andt,, a particularE, and a particulaf’, but for
all time pointst; andt;, for everypiece of evidencé’, and foreverytheoryT'.

That is, it has to hold for every theof¥, every evidence”, and all points
of timet; andt;: p; (T'| B;1 E) = p; (T'| B; 1 E), and, given the independence
assumption and counterfactual Jeffrey conditionalisation,

pi(E)=p;(E|BlE)=p;(E| B E)=p;(E).

This means that in order to avoid our problem, and to get confirmation right,
the counterfactual degrees of beliefihand £ have to be stable over time. In
particular,py (7' | By E) =p; (T'| B; L E), and

po(E)=po(E|BolE)=p;(E|BlE)=p;(E),

for every theoryl’, every evidencd’, and every point of time;.
So the degree of confirmation @fby F at timet; is given by

+pi (T | (BitE) A=E) - pi (E | Bi) = po (T'| Bl E)

wherep, (T') = po (T | Byl E), if, as seems to be justified in view of the meaning
of a backgroundknowledgep, (By ! E') = 1, or, more generallyy; (B; ! E) = 1.
Here, B; is the background knowledge at timg B; ! F is what remains
of B; if all information bearing on¥ is dropped fromB;, andt, is the first point
of time in the beginning when | first built up my probability space and made my
absolutely first guess in terms gaf.
Since Jeffrey conditionalisation arg} : &/ ++ 5; ¢ &/ — both of which are
justified by assuming that the only change in going frorto ¢; is in £/ — yield
thatp; (T'| Bt E) = p; (T' | B; 1 E), it follows that

huy, (T, E,B;) = po(T | (Bol E)ANE)-p; (E | B;) +
+po (T | (BolE) AN—E) -p; (=E | Bi) —po (T | Byl E).

In other words, the degree of confirmation’Bfby E crucially depends on my
absolutely first guess in terms gaf!

Before trying to relatey, (1" | (Bo! £) A E) andp, (T | By E)) to my ac-
tual degrees of belief, and discussing the consequences of all this, let us see

51|t seems reasonable to set

po(T|BoZE)=p0(T) and po(T|(BozE)/\E):po(T|E),
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whether these difficulties can be overcome by keeping more in touch with reality,
and by sticking to the Bayesian aim of determining the degree of confirmation in
terms of someoneactualdegrees of belief. In particular, this seems to be a good
advice with regard to the fact that we still do not have a solution for the case where
my degree of belief iy changes exogenously in going framandt,.

2.4.1.2.2 Actual Degrees of Belief In the preceding paragraph I tried to use
the counterfactual approach to the problem of old evidence to solve the more
general puzzle presented at the beginning of this section. The problems with it
are (1) how to obtain the counterfactual degrees of belief from the actual ones, (2)
what to do with exogenous belief changes, and (3) that the degree of confirmation
at any timet; crucially depends on my first guess in termspgf— that (3) is

the most serious of these problems is argued for later on. In this paragraph |
will therefore try to determine my degree of belief Thon the counterfactual
supposition that | do not yet believe il to some degree by keeping more in
touch with reality in the sense of using only actual degrees of belief.

Remember: In case of known evidenEeHowson/Urbach tell one to con-
sider “the extent to which, in your opinion, the additionfoto your current stock
of knowledge would cause a change in your degree of beligf.inln caseF
is not known but only believed, it may therefore be appropriate to consider the
extent to which, in my opinion, coming to believe with degreep (F) would
cause a change in my degree of belieflinwhere background knowledge is
suppressed.

In terms of actual degrees of belief, this extent, which should yield the de-
gree of confirmation of” by E att¢,, may be measured in one of the following
two ways: Either by the difference between my (actual) degree of beliéftt,
(where | do not yet believe i with degreep, (£)) conditional on the evidence
E, and my degree of belief i’ at ¢; beforel came to believe inF with degree
P2 (E), i.e.

Apy (T7E> =N (T | E) - DN (T)’

which is positive if and only if

pi(E|T)>pi(E),

both of which are consequences, if — as is natural for a (restricted) background knowlBgipe —
is assigned a degree of belief of 1. This is even more so, if it is assumead thatbeginning there
is no background knowledge at all, so thag : £ - By -+ T. Let me stress that whether or not
this is the case does not affect the discussion here.
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providedp; (') > 0 andp, (E) > 0, where it is assumed that my degree of
belief in £ changes exogenously in going framto ¢, so that the background
knowledge, which is suppressed, is the samg ahd att,.>?

Or else, the degree of confirmation is measured by the difference between
my actual degree of belief i at¢,, and my degree of belief i at¢; beforel
came to believe iy with degreep; (F), i.e.

bp, (T, E) = p2 (T) =1 (T)
which is positive just in case

p1(E|T)>pi (E) and py(E) > p (E)
or
p(E|T)<p(E) and py (E) <p (E),

providedp, (T') > 0 and1 > p; (E) > 0, where Jeffrey conditionalisation has
been used.

This means thaf’ is confirmed byFE at timet, either iff 7" is positively
relavant forE in the sense of,; or iff in additionto this, my degree of belief in
E increased in passing from to ¢,.

For a Bayesian, at least the second option seems to be reasonable — or so |
think. Note that in order to get the degree of confirmation for the example, where
T logically implies E, it must be assumed that | am logically omniscient in the
first sense that all logical truths are transparant tGe.

So far, so good. Now consider the degree of confirmaticfi by £ at time
t;. Here, | have to consider my subjective degree of belief fungtjoat timet,,
wheret, is the point of time just beforg . In order to arrive at

po(T|E)—=po(T) and p (T)—po(T),

| have to assume that | am logically omniscient in the second sense that | am
aware of all statements or propositions in my probability space (otherwise it is not
guaranteed thaty (E), ... are defined).

52Note that | cannot consider
pi(T|E) -pi(E)+p1(T|-E) p1(=E)—pi (T),

because this is always 0.
53Cf. Earman (1992), p. 122.
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Suppose again that the only change in my degree of belief in passing from
totot; isin E, wherep, (E) is my subjective degree of belief in ‘This chair in my
room is red’ at time at night when | wake up because of some noice, but before |
am looking at my chair at timg when the light is off. The source of information
for E att, is less reliable than that &t, because &t | am not even looking at my
chair, whence, (E) < p; (E), wherep, (E) is assumed to be positive.

Calculating the degree of confirmation yields that in both cdsesmore
confirmed byF att; than att,. More generally, it holds that

Qp, (T, E) > Qp, (T, E)
iff
po(E|T)>py(E) and p; (E) > po (E)
or
po(E|T)<po(E) and pi (E) <po(E),

and

by, (TLE) > by, (T, E)
iff
po(E|T)>po(E) and py (E) —po (E) > p2 (£) —p1 (£)
or
po(E|T)<po(E) and pi (E) —po(E) <p2(E) —p1(E),

providedp, (7) > 0 and1 > p, (E) > 0.

What went wrong? | think it is obvious that &t | must not consider my
subjective degree of belief ifi att, p; (1), but my subjective degree of belief in
T at timety, po ('), and that therefore the degree of confirmatiofi’'diy E att,

IS given by
ay, (T, E) =po (T | E) = po (T)

or
b;;2 (T, E) =p2(T) — po (T),
where the latter is positive if and only if
po(E|T)>po(E) and py(E) > po(E)

or
po(E|T)<po(FE) and ps(F) <po(E),
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providedp, (7') > 0 and1 > py (F) > 0. In this case the desired result follows
indeed for the second measure, since

v (T,E) > U, (T,E)

p1

iff

p2(T) —po(T) > pi(T)—po(T)
iff

m(E|T)>p (T) and ps (E) > p1 (E)
or

pi(E[T) <p(T) and py(E) <pi(E),

providedp, (T') > 0 and1 > p; (E) > 0. In the first case, the degree of confir-
mation of 7" by E att¢, does not differ from that at,.

As before, this has to hold not only féy andt,, but for any time pointg;
andt;, for every piece of evidencE, and every theory'. So is

ey (T, E) == pi(T)—po(T)
= pi(T|E) pi(E)+pi (T|=FE) pi(=E)—po(T)
= po(T|E) pi(E)+po(T|-E)-pi(=E)—po(T)

the solution to the puzz¥ the one which gives the degree of confirmatior7of

by E at timet; without recourse to counterfactual degrees of belief, and which
can also deal with exogenous belief changes? Note:thetvery similar tohu,, ;
indeed, they coincide if

po(T | BolE)=po(T) and po(T | (BYE)NE)=po(T | E),

both of which are consequences of settipd B, ! ) = 1, which, as already
mentioned several times, seems to be natural for a background knowledge, even
more so, if it is restricted.

| think ¢, — or its counterfactual relativéu, — are the best response a
Bayesian can give to the puzzle under consideration. Yet, they do not provide
an adequate measure of confirmation in terms of degrees of belief, but show what
is at the heart of confirmation theory. As there may be times béforene has

%4The last equality holds, because the only change 15.iiThe important point — namely that
the degree of confirmation at any timgcrucially depends on my first guess in termspgf- is
also true without this assumption.
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to consider the earliest time whénfirst appeared in the probability space. This
amounts to consider the point of time in my history, $gaywhen | built up my
probability space and made my absolutely first assignmient

In order forp; (T') to be defined, wherg; is any point of time aftet*, one
first has to assume that (E) > 0, for everyi < j, for otherwise one cannot
condition onk. In particular, this holds of* (E).

If T logically impliesE as in the example, then the degree of confirmation
of T' by E at any timet; is uniquely determined by my actual degree of belief in
E att;, p; (E), and my first guesses il and T, p* (FE) andp* (T). That is, my
absolutely first assignmept uniquely determines the degree of confirmation of
T by E at any timef; in caseF is known and logically implied by

Why the exclamation mark? The reason is that this shows that the idea
behind any Bayesian theory of confirmation — namely to determine the degree
of confirmation by means of someone’s degrees of belief — fails. For what is
this absolutely first assignmept? Any arbitrary assignment of values j0, 1]
to the atomic statements — among which | take to be at Igastis consis-
tent/coherent with the axioms of the probability calculus, whence any possible
value forc, (T, E') can be obtained as degree of confirmatioff'dfy £ — at least,
if T+ E.> For letr be any possible value fay, (T, E), i.e. let

r€pi(T)—pi(T|E),pi(T)).°
Then the functionp*,

pi (T E)-pi(E)—r p(T)—r
pi(T| E) pi(T|E)’

p*(E)

S5For reasons of time the following can only be conjectured at the moment:

Conjecture 2.1 (Anything Goes) For any Boolean algebra of propositiang, for any probabil-
ity function p; »( defined onM, for any two propositiond” and £ of M, and for any possible
valuer for ¢, ,, (T, E) there exists a probability functigpi,, on M such that (i)p; ¢ results
from p’ , by i times Jeffrey conditioning ofv, and (ii)

Cpim (Ta E) = Pi,M (T) — pj\/l (T) =

As | got to know only shortly before finishing this dissertation, there is a similar point in Albert
(2001), which I can only refer to.
56 cannot be smaller than (T) — p; (T' | E), becausd’ - E, whence

pr(T) <p"(T|E)=pi(T| E).
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(| £E) = pi(-|£E),
p () = pi(|E)-p (E)+pi(-|-E) p"(=E),

is a probability function (defined on the same language)ashich yields that the
degree of confirmation ¢f by F at timet; equals-, and where; results fromp*
by Jeffrey conditioning or.>’

It seems that we are back at the problem of assigning prior probabilities:
According to Earman (1992), there are three answers to this problem.

The first is that the assignment of priors is not a critical matter, be-
cause as the evidence accumulates, the differences in priors “wash
out.” [...] itis fair to say that the formal results apply only to the
long run and leave unanswered the challenge as it applies to the short
and medium runs. [...] The second response is to provide rules to
fix the supposedly reasonable initial degrees of belief. [...] We saw
that, although ingenious, Bayes’s attempt is problematic. Other rules
for fixing priors suffer from similar difficulties. And generally, none

of the rules cooked up so far are capable of coping with the wealth
of information that typically bears on the assignment of priors. [...]
The third response is that while it may be hopeless to state and jus-
tify precise rules for assigning numerically exact priors, still there are
plausibility considerations that can be used to guide the assignments.
[...] This response [...] opens the Bayesians to a new challengel[.]
[...] That is, Bayesians must hold that the appeal to plausibility argu-
ments does not commit them to the existence of a logically prior sort

*It suffices to show that < p* (E) < 1, and that,, (T, E) = r. The former holds, because
r<p;(T)andp; (T | E) -p; (E) —p; (T | E) < r; the latter holds, because

*

 (
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of reasoning: plausibility assessment. Plausibility arguments serve
to marshall the relevant considerations in a perspiciuous form, yet
the assessment of these considerations comes with the assignment of
priors. But, of course, this escape succeeds only by reactivating the
original challenge. The upshot seems to be that some form of the
washout solution had better work not just for the long run but also for
the short and medium runs as wéll.

| take the standard Bayesian answer to be that differences in the priors do not
matter, because they are “washed out” in the long run.

The point of the above example is that the limiting theorems of convergence
to certainty and merger of opinion are of no help, and would not even be of help, if
they worked for the medium and short runs: It shows that differences in the priors
do matter. For in casé logically implies E my first guess in®, p* (E), can be
used to obtain any possible value fQr(T", E') as degree of confirmation af by
E (in the sense of,) — providedE is among the atomic statements.

| do not see how this difficulty can be overcome — and how one can inter-
subjectify (objectify) Bayesian confirmation theory — without recourse to some
objective (logical) prior probability functiop*.

However — and that is the pinpointing upshot of all this — the difficulty of
determining such an objectively reasonable or logical probability fungtiomas
just the reason for turning to the subjective interpretation.

2.4.2 Steps Towards a Constructive Probabilism

As mentioned, | think the main problem of Bayesianism is its arbitrariness, which
is caused by the fact that the three (four) axioms of the probability calculus are
far too inclusive in the sense that any assignment of valugs i to the atomic
statements of the underlying language is consistent with these axioms — and the
subjective interpretation of probability as degree of belief does not put any restric-
tions on these assignments.

This suggests the following way out: To add new axioms to the three (four)
axioms of the probability calculus so that the set of all (unconditional) probabil-
ities is narrowed down more and more. A first step along these lines is Abner
Shimony’s strengthening of the second axiom to

p(A)=1 iff + A foreverywffA e Lpc,

S8earman (1992), p. 57-59.
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which narrows down the set of all (unconditional) probabilitleso the set of all
strict (unconditional) probabilitie®;,;.;.

For a given problem, e.g. the problem of a quantitative theory of confirma-
tion, the aim is to restricP in such a way that therder induced by the proba-
bilistic measure of confirmatiof;,, among all theorie$’, evidenced, and back-
ground knowledges3, is the same for every (unconditional) probability For
then it does not matter which (unconditional) probabilitthe measure of con-
firmation C, is based on in order to determine whettigns more confirmed by
E; relative toB, thanT; by E; relative toB,, for any theoried’, 15, evidences
E1, E,, and background knowledgés , B;.

Of course, thevaluesC, (T, £, B) of C, for givenT', E, and B will vary
with the (unconditional) probability. But there will be no theorie®;, 75, evi-
dencest, E,, background knowledgeB,, B,, and (unconditional) probabilities
p, p’ such that

Cp (Th E17 Bl) > Op (T27 E27 BQ) and Cp’ (T17 E17 Bl) < Cp’ (T27 E27 BQ) ;
and this is enough in order for the probabilistic measure of confirmation
C ={C, (+-,-) : pis a(n) (unconditional) probability

to implicitely provide a rule of acceptance for rational theory choice.

Another, perhaps more promising strategy may be sketched as follows: In
general, a Bayesian approach to some problem is a probabilistic modeling of the
problem under consideration. If the model thus established is dependent on par-
ticular values of the (unconditional) probabilitipsised in it, and if it varies with
varyingp — as is the case for any Bayesian relevance measure — then, other things
being equal, this model will be arbitrary.

59Cf. Shimony (1955). Shimony considers conditional probabilities as primitive, but the re-
formulation in terms of (unconditional) probabilities roughly amounts to the same, since a(n)
(unconditional) probability (-) can be defined in terms of a conditional probabifity | -) as

p(A):=p(A|T), foreverywffA e Lpc,

and — if (unconditional) probabilities are defined in this — it can be showngiliatis a strict
(unconditional) probability, ip (- | -) is a strict conditional probability in the sense that

p(B|A)=1 iff AF B, foranywifsA, B € Lpcwith At/ L.
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If, however, the problem in question can be modeled not by functfgns
depending on particular values of the (unconditional) probabilitjdmit by a set
of (un)equations between the functiofis then the model is not exposed to the
argument of arbitrariness, if — as is to be expected — this set of (un)equations
determines a non-arbitrary sétof functions f,,. Probabilistic modeling along
these lines is illustrated by Bovens/Olsson (2000), whereas the ordinal measure of
coherence defined in Hartmann/Bovens (2000) is arbffary

A third approach towards solving the problem of arbitrariness for Bayesian-
ism is to define (for as many statements as possible) a set of uniquely determined
— in somé&! sense: logical — (conditional or unconditional) probabilities. In the
limiting (and most desirable, but hardly imaginable) case, this set consists of a
single probabilityp* which is defined for all (sets of) statements ;).

50For a proof see the appendix to chapter 4.
51That of Keynes and (the early) Carnap.



Chapter 3

The Two Approaches

3.1 Preliminaries

The problem of a (quantitative) theory of confirmation has been — and still is — a
“hot topic” in the philosophy of science for over a half century, starting with such
classics as Carl Gustav HempeSsudies in the Logic of Confirmatiqi945},
Rudolf Carnap’s work on inductive logic and probabftityand various contribu-
tions by Nelson Goodman, Olaf Helmer, Janina Hosiasson-Lindenbaum, John G.
Kemeny, R. Sherman Lehman, Paul Oppenheim, Abner Shimony, and dthers.
Despite these efforts there is still no generally accepted definition of (degree of)
confirmation.

In my opinion one reason for this is that there are at least two conflicting
concepts of confirmatidn On the one hand there is tlikelinessconcept of con-
firmation expressing our acknowledging theoriethat are true olikely (proba-
ble, truthlike) relative to evidencE and background knowledge. On the other
hand there is thioveliness concept of confirmation expressing our acknowledg-
ing theories!" that are informative and which imply (predict, explain, account for)
together with the background knowled@emany of the data in the evidenée

1Cf. also Hempel (1943) and (1965).

2Cf. Carnap (1945), (1946), (1950), (1952) and Carnap/Stegmiiller (1959).

3Cf. Goodman (1946), Helmer/Oppenheim (1945), Hosiasson-Lindenbaum (1940), Kemeny
(1953) and (1955), Lehman (1955), Shimony (1955). If one understands the problem of a theory
of confirmation in a broad sense so that it includes the issue(s) of induction (and probability), it
can be traced back even to the ancients.

4Cf. Smokler (1968).

5The term is borrowed from Lipton (1993); cf. p. 114ff.

59
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Proponents of the likeliness concept of confirmation are all Bayesian and,
more generally, all probabilistic theories of confirmation. Their measures of con-
firmation C, either measure the probability of thedfygiven evidencer (and
background knowledg®); or else they measure the boost in the probability of
(subjective degree of belief i) (given B) which is caused by the addition of
E to B, i.e. the difference between(7' | B A E) andp (' | B). In the former
case, the focus is on confirmatonfamnessin the latter it is on confirmation as
increase in firmnes$

All what matters for the likely-ist is wheth&r is probable or more probable
given B and E' than withoutFE being given; questions as the informativeness of
(and B for E), its simplicity, and its coherence with respect to, henceforth w.r.t.,
E are neglected (except if they bearBis boost in probability by the extension of
B by FE). This exclusive focus on truth (probability) will be referred totlasory
enmityof theory hostility

Among the approaches based on the loveliness concept of confirmation
one can cite the various versions of Hypothetico-Deductivism (HBYt also
Bootstrap-Theo§/may be argued to be a case in point. According to (HBYi-
denceFE confirms theoryl” (relative to background knowledge) if(f) E is logi-
cally implied byT" (and B) in some suitable (relevant) way — the way depending
on the version of (HD) under consideration.

6Gillies’ (1998) distinction betweenonfirmationon the one hand ansupporton the other
amounts to the same.

"For a discussion of (HD) and its (alleged) hopelessness see Glymour (1980c). An (unsuccess-
ful — cf. Glymour 1980c) attempt to rescue (HD) can be found in Merrill (1979). Approaches to
(HD) whichreplacethe underlying (classical) logic by aiternativelogic are provided by Waters
(1987) and Sylvan/Nola (1991). Along similar lines Grimes (1990) tries to solve the problems
of (HD), most notably theéacking by conjunctioproblem, by considering the relation wirrow
consequencmstead of the classical logical consequence relation.

Far more promising are the accounts by Gerhard Schurz and Kenneth Gemes, which do not
replace, burestrict the classical consequence relation. Schurz demands of a (classically) valid
inferenceA + B to be in additionrelevant Gemes demands th@ be not only a (classical)
consequence ofi, but that it be acontent partof A. Cf. Schurz (1991a), (1991b), (1998),
Schurz/Weingartner (1987), and Weingartner/Schurz (1986) for his (their) theory of relevance, and
Schurz (1994) for an application to (HD); cf. Gemes (1994c) and (1997a) for his “New Theory of
Content”, and Gemes (1990), (1993), (1994a), (1998), and (1999) for a discussion of (HD).

8Cf. especially Glymour (1980a), but also Glymour (1975), (1977), (1980b), and (1983). For
discussions see Christensen (1990), Culler (1995), Edidin (1983), and Mitchell (1995).

%n contrast to probabilistic theories of confirmation, (HD) does not attempt do dedjn@rdi-
tative (or comparativg concept of confirmation, but confines itself to the definition qtialitative
one.
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A third class of theories of confirmation are the accounts of (explanatory)
coherence, which may be argued to take into account both the likeliness and the
loveliness concept of confirmation.

Loveliness and likeliness are callpdimary confirmational virtues (The
term ‘virtue’ should make clear that | consider confirmation theory to bera
mativetheory of theory assessment — just as logic is a normative theory of truth-
preserving reasoning.) They are conflicting in the following sense: Other things
being equal, a theory" implies (together with background knowledgs the
more data of the evidendg, the logically stronger it is, where&sis the likelier
relative toFE and B, the logically weaker it is.

Apart from the two primary confirmational virtues of loveliness and likeli-
ness, there are the derived confirmational virtuesimplicityandnatural formu-
lation: The theories we aim at should Banple and — if they are interpreted as
sets of statements, and the measure of confirmatioreed not be closed under
equivalence transformations of— they should béormulated naturally

A further property often cited as being of relevance for the assessment of
theory by evidence is theexplanatory coherenceof 7', B, and E, or the (ex-
planatory) coherence @f andB w.r.t. E.

In addition, evidencd is argued to be preferable, if it ilg” and varied
or diversein the sense that it reports about “different classes of facts”. Size and
variety together determine the “goodness” of the evidence which is the topic of
chapter 6. There | argue that the variety of evidefAtdepends on the theory
T and the background knowleddge under consideration. A non-arbitrary and
comprehensible functio@ (-, -, -) is defined which is computabe in the limit, and
such thatG (T, £, B) measures the goodness Bfin relation to7" and B by
measuring (i) how many classes of fagtsonsists of, (ii)) how much these differ
from each other, and (iii) how “big” they are. A class of facts is construed as a set
of individuals, because | take the latter to be ontologically basic.

In this chapter | will try to make precise what | mean by the confirmational
virtues. The next chapters deal with attempts to solve the problem of a quantitative
theory of confirmation by defining a measure of confirmatiowhich is formally
handy and materially adequate, i.e. non-arbitrary, comprehensible, computable in
the limit, and sensitive to all (and only) the confirmational virtues.

Prima facie there are two possible approaches for a solution to the problem
of a quantitative theory of confirmation. The one is (1) to argue that there is one
single property of theory in relation to evidencé’ and background knowledge
B which takes into account all (and only the) confirmational virtue$ o re-
lation to E and B; (2) to define a functiorCoh (-, -, -) such thatCoh (T, E, B)
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measures the degree to whighFE, and B exhibit this property — and thereby
the confirmational virtues; and (3) to identify the measure of confirmatienth
the functionCoh. As indicated, the candidate here is the coherence of tHEory
and background knowledge w.r.t. evidencer, measured by the formally handy
functionCoh presented in the next chapter.

The second approach is (1) to define, for each confirmational Viftua
function fy (-, -, -) such thatfy (T, £/, B) measures the degree to whithis ex-
hibited by 7", E, and B, for every theoryl', every evidence”, and every back-
ground knowledgd3; and (2) to define the measure of confirmat(©rms a func-
tion of (some of) these functions.

It will turn out that it suffices to consider the two primary confirmational
virtues of loveliness and likeliness (and the goodness of the evidence). So in
a sense, the idea here is to preserve and combine those elements of HD on the
one hand and Bayesian confirmation theory on the other which are worth being
preserved, and, at the same time, to get rid of their respective drawbacks.

It remains to be argued for one of these two approaches. In principle, there
is a simple criterion that would do the job, namely the answer to the question
whether the measure of confirmatiéhis to be closed under equivalence trans-
formations of7’, i.e. whether it should matter hoW — construed as a set of
statements —is formulated. Though this invariance does not hold of the coherence
measure_oh, it can be made to hold @f'oh by referring to some canonical for-
mulation of 7". So the answer to the question of how a thebris to be defined
— as a set of models, or as a set of statements — does not automatically give an
answer to the question which approach to take.

Nevertheless, the quantitative theory of confirmation resulting from the first
approach, which identifies degree of confirmation with degree of coherence w.r.t.
the evidence, can hardly be argued to be materially adequate in the sense that co-
herence w.r.t. the evidence is sensitive to all (and only) the confirmational virtues.
This is definitely not the case for the definitions of these virtues given in the next
sections.

In contrast to this, the result of the second approach, which defines the mea-
sure of confirmatiorC' as a function of (some of) the functiorfs (measuring
the confirmational virtue$’), can be shown to be sensitive to all (and only) the
(primary) confirmational virtues (of loveliness and likeliness). | will therefore
conclude that the second approach is a more promising way towards a solution to
the problem of a quantitative theory of confirmation.

In the last chapter, the measure of confirmatitis combined with the mea-
sure of the “goodness” of evidenceéto yield the refined measure of confirmation
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C* (-,-,-). C* additionally takes into account how much evider¢é worth for
the assessment of thedry

3.2 The Confirmational Virtues

The measure of confirmatiofi should be materially adequate in the sense that
it is sensitive to all (and only) the confirmational virtues. Two questions arise:
Which are these confirmational virtues, and what does it mean seh&tiveto

the confirmational virtues?

First, there are the conflicting primary confirmational virtuedoskliness
andlikeliness Loveliness expresses our acknowledging thedfi¢isat are infor-
mative or lovely in the sense that they imply (together with background knowledge
B) many of the data in evidendé. Likeliness expresses our acknowledging the-
oriesT that are likely in the sense that — when combined withB — speaks in
favour of T'.

Then there are theecondaryor derivedconfirmational virtues o$implicity
andnatural formulation where demanding the latter makes sense only, if7,
andB are construed as sets of statements, and the measure of confir@iatel
not be closed under equivalence transformatioris.of

Apart from these confirmational virtues, there is the (explanatory) coherence
of T"and B w.r.t. E, which seems to combine the former. Intuitively, B, and
E cohere not only, ifl" is likely relative to EF and B; they cohere also, " and
B imply (account for) many of the data iA. Furthermore, our pretheoretical
understanding of coherence tells us that this concept is implicitely sensitive to the
simplicity of 7', and perhaps also to the wdyis formulated. In sum, coherence
w.r.t. the evidence seems to take into account both the primary and the derived
confirmational virtues, which gives rise to the hypothesis that the problem of a
guantitative theory of confirmation is subsidiary to the problem of a quantitative
theory of coherence w.r.t. the evidence. Therefore, coherence w.r.t. the evidence
is not calleda confirmational virtue, for if this talk is proper one should better
speak othe confirmation virtue.

A final property of importance is the “goodness” (size plus variety) of the
evidenceF, which, at first sight, seems to differ from the confirmational virtues
in that it is a property of£’ which is independent of theory and background
knowledgeB. That this is not the case, but that variety and goodness of evidence
differ from the confirmational virtues in another respect, will be argued for in the
last chapter.
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3.3 The Primary Confirmational Virtues

In the foregoing sections | have appealed to an intuitive understanding of the love-
liness or power a theory in relation to an evidenc& and a background knowl-
edgeB. | think that any adequate measuté® (7', £, B) of the loveliness ofl’

and B for E should besearching powem the following sense:

Definition 3.1 (Searching Power)Let £ be an evidence. A functiofi(-, E,-),
f(,E,-) : T x Ex B — R, is searching power fornod (E) iff it holds for
any theories/” and7”, and every background knowledge If T U B t/ 1 and
T'U B 1, then

1. f(T,E,B) >0,
2. ifTUBF E,thenf (T,E,B) =1, and
3. if "+ T, thenf (T",E,B) > f (T, E, B).

Afunctionf (-,-,-), f(-,-,-) : T x € x B — R, is apower searcheiff f (-, F,-)
is searching power fafhod (E), for every evidence.

The notion of searching power can, of course, be generalised to any sets of state-
mentsT, E, and B respectively functiong with domainsp (Lpz;-). However,

it will turn out that the restriction to theori€s, evidencest, and background
knowledgesB is necessary in order for several theorems to hold.

The first and second condition set lower and upper bounds, respectively, for
the values a power searcher can take on, where the second condition in addition
tells one that the power @f for E relative toB is maximal, if7" and B guarantee
(in the sense of logical implication) that is true. The third condition is a con-
dition of monotonicity saying that the power @f for E relative toB is greater
than or equal to the power @f for E relative toB, if T is logically implied by
T'. That is, power or loveliness increases with logical strength.

A consequence of the third condition is that every power searcliieis
closed under equivalence transformation§’oMore precisely:

If TUBW LandT’ -+ T, thenf (T, E,B) = f (T, E, B),

for any theoriesl’, 7", every evidencd?, every background knowledgB, and
every power search&tO (-, E, -) for mod (E).

The intuitive understanding of likeliness | have appealed to in the last sec-
tion is made precise by demanding of any meadl#éT’, £, B) of the likeliness
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of theoryT relative to evidencé’ and background knowledge to beindicating
truth in the following sense:

Definition 3.2 (Indicating Truth) Let £ be an evidence. A functiofi(-, £, -),
f(,E,-): T x Ex B — R,isindicating truth inmod (E) iff it holds for any
theoriesl" and7”, and every background knowledge If £ U Bt/ L, then

1. f(T,E,B) >0,
2. if FUBF T, thenf (T,E,B) =1, and
3. if 7"+ T, thenf (T",E,B) < f (T, E, B).

Afunction f (-,-,-), f(,-,-) : T x & x B — R, is atruth indicatoriff f (-, F,-)
is indicating truth inmod (E), for every evidencév.

This definition can, of course, also be generalised to any sets of statements. As
mentioned before, the restriction to theoriBs evidencesF, and background
knowledgesB is necessary in order for several theorems to hold. In particular,
this is the case for the truth indicativeness of the likeliness fundtibpresented

in chapter 5.

The first and second conditions set again lower and upper bounds, respec-
tively, for the values a truth indicator can take on, where the second condition in
addition tells one that the likeliness @f relative toE and B is maximal, if £
and B guarantee the truth af. As in the previous case, the third condition is a
condition of monotonicity saying that the likeliness'Bfrelative toF and B is
greater than or equal to the likeliness@f relative to £ and B, if 7" logically
impliesT. In other words, likeliness decreases with logical stredgth.

A consequence of the third condition is that every truth indic#l®ris
closed under equivalence transformation§ of

There are many power searchers and truth indicators.

Theorem 3.1 (Power Searcher and Truth Indicator) LetT’, F, andB range over
wifs of £,,,, (instead of theories, evidences, and background knowlegdes, respec-
tively, which are sets of wffs of p1;—) in the definitions of searching power and

1%0ne might want to add the condition that likeliness increases with the logical strength of the
background knowledgs8, i.e.

if B'vB, then LI(T,E,B')>LI(T,E,B).

In my opinion this is inadequate, because new background information may even lead to the refu-
tation of a theory. A similar remark applies to the definition of searching power.
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indicating truth. Then it holds for every contingent wifand every strict (uncon-
ditional) probabilityp (-):

1. p(- | E A -)isindicating truth inmod (E).
2.i(,FE,"):=1—p(-A\-|—FE) is searching power fatrod (F).

3.7(,E,:) :=1—p(-|~EA-) is searching power fomod (E), if it is
defined, i.e. iFEA B L.

What is needed are not only two functiof® andLZ which are searching power
and indicating truth, respectively. In addition these functions have to be formally
handy, i.e. non-arbitrary, comprehensible, and computable in the limit. Arbitrari-
ness will be avoided by defining two single functions; comprehensibility will be
achieved by purely syntactical definitions in the termsPdil = and ZF'; and
computability in the limit will be a consequence of these definitions.

Let me stress that the measure of confirmatibshould not be both search-
ing power and indicating truth, for such functions are constant.

Theorem 3.2 (Truth Indicating Power Searchers Are Constant)Let £ be an
evidence, and let (-, E,-), f(-,E,:) : T x E x B — R, be searching power
for mod (E).

If f(-, E, B)isindicating truth inmod (F), then it holds for every theory
and every background knowledgewith EU Bt/ L: f(T,E, B) = 1.

The measure of confirmatiari should besensitiveto loveliness and likeliness; it
should balance between these two conflicting concepts of confirmation.

If the likeliness ofT’ relative toE and B equals the likeliness df’ relative
to £’ and B’, then the degree of confirmatian (7', E, B) of T' by E relative to
B should be greater than the degree of confirmatiof”, £’, B') of 7" by E’
relative toB’ just in case the loveliness or powerbfand B for E is greater than
the loveliness or power @’ and B’ for E’. Similarly, if the loveliness or power in
the first case is equal to the loveliness or power in the second case, then the degree
of confirmation should be greater in the first case if and only if the likeliness is.
Furthermore, confirmation should be minimal just in case loveliness or likeliness
iIs minimal; and it should be maximal if and only if both are maximal. This is
expressed in the following definition.

Definition 3.3 (Sensitivity to Loveliness and Likeliness)Let £O (-, -,-), LO (-, -, -) :
T x & x B — R, be apower searcher, and &L (-,-,-), LZ (-,+,:) : T xEXB —
R, be a truth indicator.
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A function f (-,-,-), f(-,-,-) : T x €& x B — R, is sensitive to loveliness
and likeliness in the sense @O and LZ iff it holds for any theories” and
T', any evidencedg’ and E’, and any background knowledgé&sand B’, where
X =(T,E,B)andX’' = (I, E', B'):

1. If LT (X) = LT (X') # 0, thenf (X) > f (X") iff LO(X) > LO (X),
2. if LO(X) = LO(X') #0, thenf (X) > f (X')iff LT (X) > LT (X'),}
3. f(X)=0iff LO(X)=00r£Z(X)=0,and

4. f(X)=1iff LO(X)=1andLT (X)=1.

It is straightforward that sensitivity to loveliness and likeliness in the sense of
some power search&© and some truth indicatafZ is sufficient for invariance
under equivalence transformationsiaf

3.4 The Derived Confirmational Virtues

Let us turn to thesecondaryor derived confirmational virtuesf simplicity and
natural formulation. | will not define when a thedfis simple (w.r.t. to some ev-
idenceE’ and some background knowledgg, or when it is formulated naturally,
but will restrict myself to giving necessary conditions. As it stands, the necessary
condition for being formulated naturally is a consequence of that for being simple
(w.r.t. some evidenc& and some background knowled&g.

Though | think that the concept of simplicity applies to theofiem rela-
tion to evidences”, background knowledgeB, and power searcherdO, this
four-place concept of simplicity can also be construed as a one-place concept ap-
plying to theories. Intuitively, if a theory" is simple w.r.t. some evidencg,
some background knowledde, and some power search€©, thenT' contains
no statement that is superfluous fol and B w.r.t. £O in the sense that the
power of 7" withouth and B for E equals the power ¢f and B for E; that is, T
must not contain a statemefnsuch that

L£O(T\{h},E,B) = LO(T,E,B).

Note that conditions (1) and (2) are equivalent witi instead of >’.
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Necessary Condition 3.1 £O-Simplicity) Let E be an evidence, Id¢ be a back-
ground knowledge, and I&tO be a power searcher.
If a theoryT is LO-simple w.r.t. E and B, then there is no wif, € T such
that
LO(T\{h},E,B)=LO(T,E,B).

Any such wffh is called aLO-superfluous part ofl” for £ and B.

This four-place concept of simplicity gives rise to a one-place concept of simplic-
ity per se The necessary condition for the latter is the following.

Necessary Condition 3.2 (Simplicity)If a theory T" is simple then there is at
least one power searchg€) for which there is no wffh € T such that it holds
for every evidencd”, and every background knowleddge

LO(T\{h},E,B) = LO(T,E,B) .2

Any such wiffh is called aLO-superfluous part off’; i.e. h is a LO-superfluous
part of T iff it holds for every evidencéd’, and every background knowledge
h is a LO-superfluous part df for £ andB.

h is asuperfluous part of” iff there is at least one power search&? such
thath is aLO-superfluous part df .

Let us now briefly turn to the derived confirmational virtue of being formulated
naturally. It is rather doubtless that a thedrywhich is formulated naturally
should or does not contain any redundant part that is already logically implied by
the rest of7".

Necessary Condition 3.3 (Natural Formulation) If a theoryT is formulated nat-
urally, thenT is formulated non-redundantly.

Clearly, every simple theory is formulated non-redundantly.

2Demanding of a simple theof¥ to be such that there is at least one power searftiefor
which there is no statemehte T such that it holds for at least one evideri¢eand at least one
background knowledg8:

LO(T\{h},BE,B) = LO(T,E,B),

would yield that no theor{” is simple. The reason is that for every the@tyevery wifh € T,
every power searchéO, and every evidencg with EUT t/ | there is at least one background
knowledgeB —e.g.B = EUT or B = E—suchthat£O (T \ {h},E,B) = LO(T,E,B) = 1.
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Observation 3.1 (Non-Redundancy)If there is an evidencé&, a power searcher
L0, and a background knowledde such thatl’ is LO-simple w.r.t. £ and B,
thenT is formulated non-redundantly.

A measure of confirmation' should be sensitive to simplicity considera-
tionst3, and it should not be impressable by redundancies. Before presenting these
notions let me make a point concerning their definition: In the section on theories
in chapter 1 | pointed out that a thedrfyis taken to be a set of statements in order
to allow for both the semantic and the syntactic definition of theories, and in order
to put no restrictions on the behaviour of an adequate measure of confiration

Now | am concerned with putting restrictions on the behaviour of an ade-
guate measure of confirmation. The question is whether these may be so strong as
to rule out the semantic interpretation of theories; i.e. whether they may be such
that a measure of confirmation satisfying them cannot be closed under equivalence
transformations of. It turns out that if the following definitions are formulated
with ‘>’ (and not '), then this does not follow. However, if these definitions
are fomulated with >’ instead of =, it follows that no function satisfying any of
these conditions can be closed under equivalence transformati®@ng berefore
the following definitions are formulated witk>* instead of &'

Definition 3.4 (Sensitivity to Simplicity Considerations i.w.s.) A functionf (-, -, -),
f(,) T xE&x B — R, issensitve to simplicity considerations in the weak
senseff there is at least one power searclf&? such that it holds for every theory
T, every evidencé’, every background knowleddge, and every wffh € T".

If hisaLlO-superfluous part of, thenf (T'\ {h},E,B) > f (T, E, B);
i.e. which is such that it holds for every thedfy and every wffh € T

If LO(T\{h},E,B) = f(T,E,B), for every evidencé’, and ev-
ery background knowledg®, thenf (7'\ {h},E,B) > f (T, E, B),
for every evidencd”, and every background knowledge

Definition 3.5 (Sensitivity to Simplicity Considerations i.s.s.)A functionf (-, -, ),
f(,): T xEx B — R, issensitive to simplicity considerations in the strong
senseff there is at least one power searcl{&? such that it holds for every theory
T, every evidencé’, every background knowledge, and every wfth € T

13The measure of confirmation presented in the chapter on loveliness and likeliness is sensitive
to simplicity considerations in the very strong sense.
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If hisaLlO-superfluous part df for £ andB, thenf (T'\ {h},E, B) >
f(T.E,B);

i.e. which is such that it holds for every thedfy every evidencd’, every back-
ground knowledge3, and every wfth € T

If LO(T\ {h},E,B) = LO(T,E, B), thenf (T'\ {h},E, B) >
(T, B, B).

A generalisation of the last definition (in the sense that sensitivity to simplicity
considerations i.s.s. is a consequence of sensitivity to simplicity considerations
I.v.s.s.) is the following.

Definition 3.6 (Sensitivity to Simplicity Considerations i.v.s.s.)A function f (-, -, -),
f(,-) T x & x B — R, issensitive to simplicity considerations in the very
strong senséf there is at least one power search®&P such that it holds for any
theoriesl” andT”, every evidencé’, and every background knowledge

If 7"+ T andLO (T,E,B) = LO(T',E,B), thenf (T, E,B) >
f(T' E,B).

Definition 3.7 (Unimpressability by Redundancies)A function f (-, -,-), f (-,-,) :
T x & x B — R, cannot be impressed by redundanafés holds for every theory
T, every evidencé’, every background knowleddge, and every wffh € T

If his aredundant part &, thenf (T'\ {h},E,B) > f (T, E, B).*

Before turning to coherence w.r.t. the evidence respectively the first approach
to a solution of the problem of a quantitative theory of confirmation in the next
chapter, let me note some relations between sensitivity to loveliness and likeliness
(in the sense of some power searciér and some truth indicatatZ), sensitivity

to simplicity considerations (in some sense), and invariance under equivalence
transformations.

Theorem 3.3 (SensSimplCons and Unimpressabilityy et f (-,-,-), f(-,-,-) :
T x € x B — R, be a function.

1. If f is sensitive to simplicity considerations in the very strong sense, then
is sensitive to simplicity considerations in the strong sense.

1Note that no function which is closed under equivalence transformatiofis an be im-
pressed by redundancies.
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2. If f is sensitive to simplicity considerations in the strong sense, thisn
sensitive to simplicity considerations in the weak sense.

3. If f is sensitive to simplicity considerations in the weak sense, freamnot
be impressed by redundancies.

The last theorem holds also in casg’ is relaced by >’ in the definitions of
sensitivity to simplicity considerations in any sense and unimpressability by re-
dundancies. As no function which is closed under equivalence transformations of
T satisfiesstrict unimpressability by redundancies, i.e. unimpressability with *
instead of >’, no such function can bstrictly sensitive to simplicity considera-
tions in any sense.

It is obvious that sensitivity to simplicity considerations in the very strong
sense implies invariance under equivalence transformatiofds dfis does not
hold of sensitivity to simplicity considerations in the strong sense.

Theorem 3.4 (SensSimplCons i.s.s. Does Not Imply InvEquTrand)et f (-, -, -),
f(,-): T xEx B — R, beafunction. Iff is sensitive to simplicity consider-
ations in the strong sense, thémeed not be closed under equivalence transfor-
mations of7" in the sense that

f(TE,B)=f(T',E,B), if T-1T,
for any theoried” and7”, every evidencé’, and every background knowledge

Theorem 3.5 (InvEquTrans Implies SensSimplCons i.w.s.Jf f is closed un-
der equivalence transformations 6f then f is sensitive to simplicity consid-
erations in the weak sense.

Theorem 3.6 (InvEquTrans Does Not Imply SensSimplCons i.s.slf f is closed
under equivalence transformationsigfthen f need not be sensitive to simplicity
considerations in the strong sense.

A consequence of these theorems is that if there is a property which implies sensi-
tivity to simplicity considerations in the very strong sense, then a function having
this property is sensitive to all derived confirmational virtues; i.e. such a func-
tion is sensitive to simplicity considerations in any sense, (it is invariant under
equivalence transformations 6f and) it cannot be impressed by redundancies.

The following theorem states that sensitivity to loveliness and likeliness in
the sense of some power searcli&® and some truth indicato€Z is such a
property, whence every function which is sensitive to the primary confirmational
virtues is automatically sensitive to all derived confirmational virtues.
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Theorem 3.7 (SensLoveLike Implies SensSimplCons i.v.s.detf (-,-,-), f (-,-,-) :
T x £ x B — R, be afunction. Iff is sensitive to loveliness and likeliness in the
sense of some power searcli#p and some truth indicatafZ, thenf is sensitive

to simplicity considerations in the very strong sense.



Chapter 4

Coherence with Respect to the
Evidence

4.1 Coherence as Truth-Indicator

Coherence plays a prominent role in the philosophy of science — in the theory of
confirmation —and, more generally, in epistemology — in the theory of justification
— as indicator of truth.

There is an enduring discusstomhether the coherence of a set of statemets
or propositionsS' is indicative of the truth of (the statements or propositions in)
S, or as it is often put: whether coherencdristh conducive | think the answer
to this question is straightforward: Either one adopts a coherence theory of truth
according to which a statements true just in case is an element of at least one
coherentset of statement§’ (and a set of statementsis true if and only if all
statements irp’ are elements of at least one such@gt Then the coherence 6f
is not only indicative of the truth of the statementsSinit is guaranteeingheir
truth.

Or else one adopts a correspondence theory of truth according to which truth
is a binary relation between a statemermn the one hand and a world or model
M on the other. Then the coherence of a set of statentecégnot be indicative
of the truth ofS in some world or modelM, if the coherence aof is independent
of M.2 More formally:

1Cf. Akiba (2000), Barker (1994), Cross (1999), Klein/Warfield (1994) and (1996), Merricks
(1995), Millgram (2000), Olsson (2001) and (2002), and Shogeniji (1999), (2001a), and (2001b).
2The claim that coherence is truth indicative may also be read as the claim that coherence is

73
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Necessary Condition 4.1 (Coherence as Truth Indicator).et M = (Dom, ¢)
be a model, and suppoé&h (-, M), Coh (-, M) : DxM — R, D C o (Lpr1-),
is a function such that'oh (S, M) measures the coherenceiv.r.t. M, for ev-
ery set of wifsS € D.

If Coh (-, M) is indicative of truth inM, then it does not hold for every set
of wifs S € D, and every modeM’: Coh (S, M) = Coh (S, M’).2

Obviously, this condition is not satisfied by any functionh (-), Coh (-) : D —
R, D C o (Lpri=), which is independent of the world whose truth in one is
interested irf.

| adopt a theory of truth along the lines of Taskivhence coherence — if
construed in the usual way as a one-place concept applying to sets of statements
or propositions — is not indicative of truth (in any model). The reason being that
the coherence of a set of statemefits independent of the model whose truth in
one is interested in.

If this one-place property of coherenper seis not indicative of truth in
some model, because it is independent of every model, then the concept of coher-
ence has to be relativised to the model whose truth in one is interested in. Let me

indicative of truth in the actual world. The reason may be seen in a principle of the coherence of
the world — in a way similar to the justification of induction (as a valid inference for the actual
world) by reference to a principle of the uniformity of nature. Before accepting such a principle of
the coherence of the world | would rather accept the claim of the truth conduciveness of coherence
itself.

3The restriction to a subsé? of o (L£pr1—) should avoid that this condition does not make
sense, if there is no complete or total coherence measyreM), wherem (-, M) is complete
or total iff m (S, M) is defined foreveryset of wffs S C Lp;;—. The existence of such a
complete coherence measure may be questioned, but nothing really substantial hinges on this for
the necessary condition for coherence as truth indicator.

Note that it is not even unplausible that there is no conneotdihal coherence measure
= (-,-, M), wherex= (S,5’, M) says thatS is as coherent w.r.t\M as or more coherent w.r.t.
M thanS’. > (-,-, M) is connectedff it holds for any two sets of wffsS, S’ C Lppi=:
(S,8" M) e=(-,-,M)or(s',S,M) e~ (-,-, M). Cf. Hartmann/Bovens (2000).

“Note that the necessary condition for coherence as truth indicator allows for cases, where
Coh (S, My) = Coh (S, Ms), for someset of statementS, S € D, andsomemodelsM;, M.
There may even be some set of statemé&ngsich that this holds for any modeld, M'.

51t does not matter whether it is adequate to call Tarski’s theory of truth a correspondence
theory of truth. Although Tarski himself does so, the adequacy of this may be questioned on
the grounds that the actual world is no model consisting of a doiain and an interpretation
functiony, and that a correspondence theory of truth seeks a correspondence with the actual world.
However, this does no harm, if the actual world can be adequately represented by someglmodel
of the mentioned form.



4.1. COHERENCE AS TRUTH-INDICATOR 75

stress that | do not claim that coherence is indicative of truth in some niadel
if it is relativised toM; all | claim is thatif coherence is to be indicative of truth
in the modelM, then it has to be relativised 1®1.

Which is the world whose truth in we are interested in? The answer to
this question may depend on the set of statem&niader consideration, but in
general we are interested in truth in thetual world. So for most cases it will
be appropriate to relativise the coherenceSdb the actual world — or a model
A = (A, p4) adequately representing the actual world as a set-theoretical struc-
ture consisting of a domaiA and an interpretation function,. Thus the question
is not whether coherengeer seis truth indicative — it is not — but whether coher-
ence w.r.t. to the actual world respectively a madeddequately representing the
latter is indicative of truth in the actual world respectively4n

AssumeAd = (A, p4) is a model adequately representing the actual world,
which will be identified with.A in the following. How can such a relativisation of
the coherence of to the actual world4 look like? After all, our pretheoretical
and intuitive understanding of coherence tells us that this concept applies to sets
of statements (or propositions). Furthermore, under the assumption that the actual
world exists at all, we hardly have access to it — and, for sure, the aim is a theory
of coherence that not only explicates the notion of coherence (w.r.t. some model),
but that also enables one to determine whether (and to what degree) a given set of
statements' is coherent w.r.t. the actual world. In order to achieve this one needs
a (true) description of the actual world which allows for this determination.

However, there seems to be no fully reliable method — no algorithm — that
tells one, for a given set of statemeiits whetherD is a description of the actual
world A. So what to do? Well, simplgssumef some set of statemenis, that
it is a description ofA. Then one can determine whether a set of statenents
is coherent w.r.t. the actual world, if one can determine whethéris coherent
W.r.t. D 4.

Of course, the reliability of the determination of the degree of coherence
w.r.t. the actual world4 by means of the degree of coherence w.r.t. one of its
descriptionsD 4 depends on the detailedness or accuracygf The latter is
maximal, only if D 4 is complete in the sense that it holds for every staterhent
If A= h,thenD4 = h, which is not neccessary in order for a set of statements
D, to be a description of some modéf.

The chosen set of statemends, should be such that assuming of it to be a
description of4 is as weak an assumption as possible. In my opinion there is one
special candidate that is epistemically distinguished in just this respect: the set
of those statements that we take to express what we take to be the case because
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of perceiving it; in other words: thevidenceE which is available at some given
point of time. In the following itisassumedhat an evidencé’ is true in the actual
world A4; i.e. | will make assumption 1.4, which is restated here as assumption
4.1.

Assumption 4.1 (Epistemic Mark of Distinction) If E isan evidence fronb, ..., Dy,
thenE is assumedo betrue in the actual worldli.e.

A € mod (FE), foreveryevidencd € €.

Let me stress that this assumption should only enable me to make sense of the
claim that coherence (w.r.t. the actual worg is indicative of truth (inA). |

do not claim that an evidencE is true in the actual world4, nor do | claim

that coherence is indicative of truth in the actual woddif it is relativised to an
evidenceE. On the contrary, it will turn out that coherence w.r.t. evideAtes

not even indicative of truth imod (E), and thus (under the above assumption that

A € mod (E)) not indicative of truth ind — given that the measure of coherence
w.r.t. the evidence defined below properly models our pretheoretical and intuitive
concept of coherence (w.r.t. the evidence).

This is one reason for preferring the second approach of a solution to the
problem a quantitative theory of confirmation: the definition of the measure of
confirmationC' by means of a function of the functiod®) and£Z measuring the
primary confirmational virtues of loveliness and likeliness. Another reason for not
adopting the first approach, which argues that coherence w.r.t. the evidehee is
confirmation value, and takes account of all (and only) the primary and derived
confirmational virtues, is the following: Coherence w.r.t. the evideficein its
formalisationCoh (-, E, -) of below — is neither indicating truth imod (£), nor
is it sensitive to loveliness and likeliness in the sense of any power sedai¢her
and any truth indicato£Z.

Before continuing remember the definition of a descriptiox, of some
model M, and the fact that every evidende is a description every moded
adequately representing the actual world.

As already indicated, one has to assume that there is at least one model
A = (A, p4) which adequately represents the actual world in order for Tarski’s
theory of truth to be able to define a notion of truth in the actual world — the
reason being that the actual world can hardly be argued to be an ordered pair
M = (Dom, v) consisting of a domaiom and an interpretation functiop.

Assumption 4.2 (Existence of a Model of the Actual World) There is at least one
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model of the actual world fo€p1;—, i.e. there is at least one modél= (A, v )
such that it holds for every wfi € Lp;,—:

h is true in the actual world if and only il |= A,

where the concept of being true in the actual world is a primitive concept which
is assumed to be meaningful.

So in order to construe coherence w.r.t. the actual world as coherence w.r.t. the ev-
idence, one has to assume as primitive a meaningful concept of truth in the actual
world, and the existence of at least one madet (A, v 4) of the actual world for
Lpri1—. Otherwise the claim that coherence w.r.t. evidehAds indicative of truth

in the actual world cannot be based on the claim thek (-, E, -) is indicating

truth inmod (£).

As mentioned, the indication of truth in the actual world by means of co-
herence w.r.t. the actual world is not fully reliable, if the evidence is no complete
description of the actual world, which, in general, it is not. A measure of the
reliability of the indication of truth in the actual world by means of a function
f (..., E)which is indicating truth innod (E), for some evidencé&, may be
seen in the measure of the “goodness” of evidefic€ (-, E, -), presented in the
last chapte?.

4.2 Arbitrary Theories of (Explanatory) Coherence

4.2.1 Introductory Remarks

Against promoting an own account of the coherence of a set of stateifients.

an evidencer (and a background knowledgg) it may be objected that there
have already been proposed several theories of (explanatory) coherence. Why
not adopt one of these? The answer to this is twofold: First, | am aiming at a
formal theory of coherence that enables men@asurehe coherence of a set of
statement§” w.r.t. an evidence” (and a background knowledde) or, at least,

to comparetriples (T, E, B) and(T", E’, B") with regard to their coherence w.r.t.

the evidence; i.e. the aim is the definition ofjaantitative at leastcomparative
concept of coherence w.r.t. the evidence. Second, the theory of coherence w.r.t.
the evidence should be formally handy, in particular non-arbitrary.

6As the measure of coherence w.r.t. the evideAc€oh (-, E, -), defined below is not indi-
cating truth inmod (E), for any evidence, the measuré& (-, E, -) is of no help for a coherentist
adoptingCoh (-, E, -).
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To demand of a theory to be non-arbitrary makes sense, only if this theory
is formal in the sense that it defines a quantitative or comparative concept of (ex-
planatory) coherence by means of some (set of) function(s). Apart from the fact
that non-formal theories cannot fulfill theesideratumthere is still another rea-
son that justifies an own approach as concerns the non-formal coherence theories
of BonJour (1985), Lehrer (1990), and Bartelborth (1996).

As to the formal theories of (explanatory) coherence, | rely on the formal
condition of adequacy that any such formal theory be non-arbitrary, comprehensi-
ble, and computable in the limit. The most popular of these theories is the theory
of explanatory coherencEEC' of Thagard (1989) respectively its formalisation
ECHO. ApartfromT EC, there are the fuzzy measure of explanatory coherence
of Schoch (2000), and the probabilistic theory of the coherence of an informa-
tion set of Hartmann/Bovens (2000). As a matter of fact, these three theories are
arbitrary.

Since the account of Schoch (2000) is, according to his own words, a for-
malisation of the theory of coherence of Bartelborth (1996), and as | consider the
notion of coherence of Bartelborth (1996) as an improvement of the notions of
coherence of both BonJour (1985) and Lehrer (1990gke the introduction of
Coh to be independently justified as concerns these three theories of (explanatory)
coherence.

The following two subsections deal with the theory of explanatory coher-
encel EC of Thagard (1989) (and its formal modelC HO), and the fuzzy mea-
sure for explanatory coherence of Schoch (2000). This should make familiar with
the concept of explanatory coherence, which is similar to the concept of coher-
ence w.r.t. the evidence. Despite this similarity, the functi@nh is definitely not
a measure of explanatory coherefice.

In the last section | have argued that the coherence of a set of state$nents
has to be relativised to the modet whose truth in one is interested in; otherwise

’I do not have the place to argue for this here. Let me only note that the conception of the
coherence of a system of beliefsof Lehrer (1990) is not very elaborated in that hardly anything
else is demanded df except that it must not contain alternative or concurring beliefs. Though
BonJour (1985) adds some conditions — in particular, he demandsSthaist not consist of
several unrelated subsystems — it is not precisely determined when these conditions are fulfilled.
For a discussion cf. Bartelborth (1996), who argues that his coherence theory of justification is not
exposed to objections that may be raised against the accounts of BonJour and Lehrer.

8In particular, the concept of accounting for, which the notion of coherence w.r.t. the evidence
is based on, is not at all intended to be an explication or even definition of the concept of ex-
planation. For more on this see the section on foundationalist coherentism, and the section on
accounting for in the chapter on loveliness and likeliness.
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the coherence of cannot be indicative of the truth ¢f in M. | have indicated

to do this by relativising the coherence 6fto an evidencely. Although the
accounts of Thagard (1989) and Schoch (2000) do not explicitely relativise the
coherence ob to an evidencd” or some other epistemically distinguished set of
statements there is a similar element in their accounts: Those statements in the
set of statementS, whose explanatory coherence is to be assessed,

that describe the results of observation
are epistemically distinguished in that they
have a degree of acceptability on their otfin.

In contrast to this, the probabilistic theory of the coherence of an information set
of Hartmann/Bovens (2000) does not have such an epistemically distinguished
element which would enable their account to explicate a concept of coherence
which is indicative of truth in some model. Furthermore, their account is based on
a somewhat different concept of coherence than that of coherence w.r.t. the evi-
dencé!, which differs also from the concept of explanatory coherence. Therefore
their theory will not be discussed. Let me only note the following.

Theorem 4.1 ¢ Is Arbitrary) The ordinal measure of coherene®f Hartmann/Bovens
(2000) is arbitrary.

Finally, it is to be noted that, for reasons of space and time, the related topic of
(explanatory) unification is not dealt with. This shortcoming is in particular
serious for the account of Schurz/Lambert (1994) and Schurz (1999) according to
which

coherence minus circularity unification',

which is in accordance with the claim that coherence has to be relativised to the
evidence.

9Like Hartmann/Bovens (2000), Thagard (1989) and Schoch (2000) consider propositions in-
stead of statements.

0Thagard (1989), p. 437. In case of Schoch this finds its expression in the principle of data
evidence which says that the singletpf} containing the propositiof is coherent, if there is
positive evidence fol (if there is negative evidence fdr, then there is positive evidence for
—FE). Cf. Schoch (2000), p. 298.

This is — at least partly — due to the fact that their concept of coherence is one of coherence
per se

12Cf. Friedman (1974), (1979), and (1990), Kitcher (1981) and (1990), Morrison (1990),
Schurz/Lambert (1994), and Schurz (1999). For a recent comment on Schurz (1999) cf. We-
ber/van Dyck (2002).

B3Schurz/Lambert (1994), p. 72. Cf. also Schurz (1999), p. 98.
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4.2.2 The Theory of Explanatory Coherence of Thagard (1989)

The theory of explanatory coheren€d’C of Thagard (1989), which is applied

to case studies from the history of the sciences in Eliasmith/Thagard (1997) and
Nowak/Thagard (1992, is the most popular non-Bayesian theory of (explana-
tory) coherencel’ EC is modeled by the computer progrdiid’ H O (Explanatory
Coherence by Harmany Optimization), which generates connectionist networks.
The various exhibitory and inhibitory links between the units — standing for hy-
potheses —in such a network are assigned numbers representing the strength of the
links. A link between two unitg andj is excitatory, if the two hypotheses rep-
resented by and;j cohere; it is inhibitory, if they incohere, which is something
stronger than not to cohere:

The term ‘incohere’ is used to mean more than just that two proposi-
tions do not cohere: to incohere is to resist holding togéther.

The arbitrariness o#C' HO can already be seen here: There are no restrictions
on the numbers which are assigned to the links between two waitd ; — rep-
resenting the strength of the (in)coherence relation between the two hypotheses
represented byand;.

T EC consists of the following series of principles:

Principle 1. Symmetry.

(a) If P and@ cohere, therd) and P cohere.

(b) If P and(@ incohere, therd) and P incohere.

Principle 2. Explanation.

If P,..., P, explain@, then:

(a) ForeachP;in Py, ..., P,, P, and( cohere.

(b) For each?; andP; in Py, ..., P,, P, andP; cohere.

(c) In (a) and (b), the degree of coherence is inversely proportional to
the number of propositions;, ..., P,,.

Principle 3. Analogy.

(a) If P, explains@q, P, explains(@-, P; is analogous td>, and@;
is analogous t@),, then P, and P, cohere, and);, and(@, cohere.

14Cf. also Eliasmith/Thagard (2001), Holyoak/Thagard (1997), O’Laughlin/Thagard (2000),
Thagard (1997), (1999), and (2000), Thagard/Kunda (1998), Thagard/Millgram (1995), Tha-
gard/Shelley (1997) and (2001), and Thagard/Verbeurgt (1998), all of which can be found on
http://cogsci.uwaterloo.ca/Articles/Pages/Coherence.html. In addition, the latter contains articles
that are forthcoming or in progress.

15Cf. Nowak/Thagard (1992), p. 274.
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(b) If P, explains@,, P, explainsQ-, @), is analogous ta@),, but P,

is disanalogous t@», then P, and P, incohere.

Principle 4. Data Priority.

Propositions that describe the results of observation have a degree of
acceptability on their own.

Principle 5. Contradiction.

If P contradicts), thenP and( incohere.

Principle 6. Acceptability.

(a) The acceptability of a propositidn in a systems depends on its
coherence with the proposition[s] i

(b) If many results of relevant experimental observations are unex-
plained, then the acceptability of a propositiBrihat explains only a
few of them is reduced.

Principle 7. System Coherence.

The global explanatory coherence of a systegmf propositions is a
function of the pairwise local coherence of those propositténs.

An additional principle is introduced in Nowak/Thagard (1992):

Principle C. Competition.

If P and (@ both explain evidencé’, and if P and @) are not ex-
planatorily connected, theR and ) incohere. HereP and @ are
explanatorily connected if any of the following conditions holds:

(a) P is part of the explanation a.

(b) Q is part of the explanation af.

(c) P and(@ are together part of the explanation of some proposition
R.

(d) P and@ are both explained by some higher-level propositibt

The global coherence of a systéhof propositions is thus traced back to the local
coherence between pairs of propositions. This is just the critic of Schoch (2000):

[Thagard’s] measure of coherence is shown to be incapable of deal-
ing adequately with explanatorily relations between more than two
sentence&®

16Thagard (1989), pp. 436-437.
"Nowak/Thagard (1992), p. 277.
83choch (2000), p. 292; cf. also Schoch (2000), pp. 295-296.
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Thagard presupposes — as does Schoch (2000) — as primitive the notion of ex-
planation (and that of analogy). This is problematic, not because explanatorily
relations have no impact on the coherence of a set of staterfients the con-

trary — but because the notion of explanation is itself in need of explication; in
particular, the concept of explanation is not comprehensible. One may be of a
different opinion — as is, for instance, Thagard, who even praises his theory for
not depending on a particular notion of explanation:

Our account of theory acceptance and our input€oH O [...] do not
presuppose any special theory of explanation. [...] Explanation, how-
ever, has many aspects and construing theory choice in terms of ex-
planatory coherence is compatible with various ways of understand-
ing causality and explanatidfi.

But what, if coherence is itself an indispensable ingredient of explanation, so that
any adequate definition of explanation presupposes the concept of cohétence?

Furthermore, the central principle 2 of explanation makes the question-
able assumption (as does the principle 6 of acceptance) that propositions can be
counted. Though this point will be discussed later on once more, let me note that
without any restrictions on the way a given set of propositiSrisas to be rep-
resented (or formulated, 8 is a set of statements), there seems to be no way of
uniquely determining how many propositiodonsists of!

A consequence of principle 2 is that, if several propositiéys . ., P, to-
gether explain a propositiod, and each propositioR; is necessary for this ex-
planation of(), then the relation of coherence holds betwégand any single
propositionP;, though, intuitively,() coheres only with the set (conjunction) of all

Eliasmith/Thagard (1997), p. 11.
20This is not even bizarre. For instance, one may define as follows, where sets of statements
are considered instead of (sets of) propositidh&xplainsE (relative toB) just in caseél’ and E
cohere (relative t&), where such an explanation is the better, the greater the degree of coherence.
In this manner one may define an inference fréhfand B) to T; as abductively valid or as
an inference to the best explanation just in case (T;, £, B) > Coh (Tj,E, B), for every
j,1 <j <n,whereTy,..., T, are the finitely many available alternative theories (whose domain
of applicationE belongs to), and3 is the background knowledge. If one prefers a quantitative
concept of abductive validity, then one may ad6ft: (T;, E, B) or

min {Coh (T;, E,B) — Coh (T;,E,B) : 1 < j <n}

as the degree of abductive validity of the inference fiBrtand B) to T;.
2IAn elegant way of representing knowledge by relevant elements — and thereby solving this
problem — can be found in Schurz/Lambert (1994), p. 88ff.
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propositionsP, ..., P,. For instance, i¥/z (Fx — Gz) and Fa together explain
Ga, it follows from principle 2 thatia coheres withvz (Fz — Gz), and thatGa
coheres withF'a, though, intuitivelyGa coheres only wit{Vz (Fz — Gz) , Fa}.
That is, we would say that the stz (Fx — Gx), Fa,Ga} is coherent, but nei-
ther would we say that the s€¥x (Fz — Gz),Ga} is coherent, nor would we
say that the setF'a, Ga} is coherent.

Eventually, in order to escape the reproach of arbitrariness, Thagard (1989)
would have to presuppose as primitiveqaantitative notion of explanation —
something which, to the best of my knowledge, no theory of explanation discussed
in the literature even aims at.

Apart from all this, Thagard'$'EC and EC HO are not adopted for the fol-
lowing reasons: First, both £C and EC HO are not comprehensibfé. Though
this gives no ground for rejecting them, if one considers the goal of a theory of
explanatory coherence the explication of the concept of explanatory coherence in
terms of the concept of explanation, the following theorem is a case in point even
if the concept of explanation is assumed to be comprehensible.

Theorem 4.2 CHO Is Arbitrary) The computer prografC' H O, which mod-
els the theory of explanatory cohereric€C' of Thagard (1989), is arbitrary.

4.2.3 The Fuzzy Measure for Explanatory Coherence of Schoch
(2000)
Let me now turn to the fuzzy measure for explanatory coherence of Schoch{2000)

which may be considered as a formalisation of the theory of coherence of Bartel-
borth (1996). Schoch himself notes that

[his] approach satisfies all these requirements except the last without
further restrictiong?

22ThatTEC is not comprehensible follows from assumption 2.2 (Comprehensible Concepts),
and the fact thai’ EC presupposes as primitive, apart from the concept of analogy, the concept
of explanation. That?C'HO is not comprehensible follows from the same assumption, and the
fact thatEC HO presupposes as primitive a quantitative concept of explanation. The latter finds
its expression in the weights;; representing the strength of the explanatory relation between the
propositions represented by the unitnd;. Cf. the proof of the next theorem in the appendix to
this chapter.

ZThatT EC is not arbitrary has its reason in the fact that it does not define explanatory coher-
ence by a (set of) function(s) to which the concept of arbitrariness could apply.

24Cf. also Schoch (2001).

25Schoch (2000), p. 302.
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where he refers to the principles of systematic coherence and of incoherence,
which form the theory of coherence within the coherence theory of justification of
Bartelborth (199658

The basic structure of Schoch’s fuzzy measure is the same as that of Tha-
gard's theory. It consists of (1) a set of propositiéghg2) a setR of rules of the
form *P explains@’, P C &, Q € &£, 'P is contradictory’, or £ is afact',E € &;
(3) aclosed interval C R representing truth value$ & [0, 1] in case of Schoch,
and/ = [—1, 1] in case of Thagard); (4) a set of real-valued variables. . , z,
with domain/ (for Schochz; is the fuzzy truth value of théth proposition inf;
for Thagardr; = a; (t) is the degree of acceptance of thih proposition inf at
some given point of time); (5) a first-degree polynomit and (6) an algorithm
translating the rules iR to the weights:,, ., respectivelyw;;.

Schoch considers his account as a generalisation of Thagafd’s which

[...] does not adequately represent explanatory relations between more
than two proposition&

Schoch’s measure is defined for pairs of sets of constituents, where a constituent
is a subsefP of a set of signed propositiors over a set of proposition®R,
E=PRU{=P: P e PR}, suchthat there is no propositidghe £ with P € P
and—-P € P. So the measure is defined for pairs of sets of sets of propositions
not containing both a proposition and its negation.

The coherence valu\é<c7|> of the pair of set<C andl of coherent respec-

tively incoherent constituents is recursively defined as follows:

VPZ' (xla s axn) = Ty,

26Cf. Bartelborth (1996), p. 193. The requirement not satisfied by Schoch’s account is that

the degree of (systematical) coherence of a belief system [...] decreases with the
number of unconnected subsystems.

Schoch (2000), p. 302.
27
V(xl,...,xn): Z Gry ..., Tn.qu.-.‘/r;,n
0<ry,....,rn <1
in case of Schoch. In Thagard’s model it is
HED =Vr(a1(t),...,an ()= Y > wi-ai(t)-a;(t).
0<i<n 0<j<n

Cf. the appendix to this chapter, which includes a presentation of the basic struchuf&bi.
283choch (2000), p. 291.
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Vop (21, .., 2,) =1 — @y,
Vp (z1,...,20) = Cp - H Vp,
PepP
V<C,|> ($17...,In) = Z Vp— Z Vp.
PeC Pel

The constantsp, called the weight factor of coherence, can be con-
sidered as the strength of explanation or competition respectively.

The functionV<C7|> satisfies the following principles:

(1) Principle of Explanation

If P={P,...,P,}explainsQ and both? U {Q} andP U {-Q}

are constituents, theR U {Q} coheres an® U {—~Q} incoheres with
the same weight factet.

(2) Principle of Competition

If P is contradictory or competing arfd is a constituent, the® in-
coheres.

(3) Principle of Data Evidence

If there is positive evidence faF, then{E} is coherent. If there is
negative evidence faf, then there is positive evidence for.

(4) Principle of Fuzzy Confirmation

The measure of coherence only depends on the coherent and inco-
herent constituents. P coheres® € C), the degree of coherence
is proportional to the fuzzy truth value of the conjunction of its el-
ements. IfP incoheres(P € 1), the degree of coherence is pro-
portional to the negative fuzzy truth value of the conjunction of its
elements.

(5) Principle of Language Independence

Let P be a proposition which does not occur in any rulédn Then
the rule systenR’ obtained froniR by replacing each rule of the form
‘Q explainsR’ by the two rules © U { P} explainsRk’, * Q U {-P}
explainsRk’ and each rule of the formQ incoheres’ by O U { P} in-
coheres’, Q U {—P} incoheres’ induces the same order of coherence
over& U { P} irrespective of the value a?.*°

29Schoch (2000), p. 299.
30Cf. Schoch (2000), pp. 297-299.



86 CHAPTER 4. COHERENCE WITH RESPECT TO THE EVIDENCE

Besides that it will not always be clear whether a set of propositions is compet-
ing®!, Schoch’s fuzzy theory of explanatory coheretiée not comprehensibfé,

However, let me stress that it would be unfair if | took this as a point against
Schoch’s account: He explicitéfydistinguishes between a micro- and a macro-
level on which theories of explanation can be formulated, where

[...] the macro-level view takes the concept of explanation as an un-
defined primitive. It either inquires into the general properties of ex-
planations, or uses explanatory relations in certain contextual frame-
works3®

The general question Schoch is

interested in is the problem of choice between concurrent hypothe-
ses®,

whence he takes on the macro-level view.

Apart from the above mentioned minor points, | consider Schoch’s theory
as a refinement of Thagard/SE'C. In particular, Schoch is aware of the fact that
the weight factorgp have to be specified (in order to avoid arbitrariness).

We introduce the [...] concept of an irreducible ‘proper’ explanation
and define the weight factors only for them. [Footnote:] This must

31Schoch (2000), p. 298, mentions as example — which he ascribes to Thagard — two competing
theories of dinosaur extinction, which could be caused by meteorite impact or a drop in sea-level;
though

these events are not mutually exclusive, scientists are interested in establishing the
best explanation and therefore regard the two theories as competing.

| agree; but according to principles (2a) and (4b) of Bartelborth (1996) p. 193, the existence of
several explanations of one and the same event may also lead to an increase in the coherence of
a system of propositions — and Schoch does not give a criterion deciding whether the fact that a
propositionR is explained by two distinct sets of propositioRsand Q leads to an increase in
the coherence of some set of propositidhgontainingP, Q, and R, or whether this yields
competing. A more modest principle obntradictionmay be easier to handle.

32| take the fuzzy theory of explanatory coherence of Schoch (2000) to be given by the five
principles mentioned above.

33This follows from assumption 2.2 (Comprehensible Concepts), and the fact that the fuzzy
theory of explanatory coherence of Schoch (2000) presupposes as primitive, apart from the concept
of competition, the concept of explanation.

34Cf. Schoch (2000), p. 291.

35Schoch (2000), p. 291.

36Schoch (2000), p. 291.



4.2. ARBITRARY THEORIES OF COHERENCE 87

also be done in order to avoid ambiguities in the weight factors, oth-
erwise redundant parts of the explanations will effectively enlarge the
weight factor if they are added.

The concept of a proper explanation is defined for rules: The MleXplains
@’ in the rule systenR is aproper explanationf and only if it holds for every
rule ‘'S explains@’ with § C P thatS = P. The weight factor for the set of
propositionsP is then defined agp = 2V=("), where N, (P) is the number of
propositions which are properly explained Byin the rule systenRk.>’

By doing so Schoch seems to escape the reproach of arbitrariness, for the
functionV (x4, ..., z,) is uniquely determined for given values of the variables
x1,...,x,, if the weight factorscp of all coherentand incoherent constituents
P C & are fixed.

However, despite the fact that in order for the concept of a proper explana-
tion to be meaningful one has to assume that the data and the hypotheses can be
partitioned into distinct atomic propositions so that counting propositions makes
sense; and apart from the strange consequence that the weight factors of the con-
stituents{ £} containing the datd& are all equal t@"=  and thus increase
exponentially with the numbeNy () of data inR®®; there is no corresponding
function which uniquely determines the weight factogsof the incoherent con-
stituents@Q € |, whence the weight factors are uniquely determined only for rule
systemsR without competing constituents, and the fuzzy measure for explanatory
coherence turns out to be arbitrary, after all — and this it does in two respects.

Obviously, the functio®V (x4, .. ., z,,) takes on different values for different
values of the variables,, . . ., z,,.

The problem is to find a truth value assignment which maximizes
explanatory coherengg

so that the sef of signed propositions can be partitioned into two disjoint sets
of accepted and rejected propositions. It turns out that there are examples of rule
systemsR such that the sets of accepted and rejected propositions, into which

3’Presumablys is supposed to be non-empty. Otherwise the weight fagtaf any constituent
P # () explaining at least one datufmis equal to 1, because

[d]ata evidence is handled as a special instance of the explanation rule with an
empty explanans.

Schoch (2000), p. 298.
38Cf. the preceding footnote.
39Schoch (2000), p. 292.



88 CHAPTER 4. COHERENCE WITH RESPECT TO THE EVIDENCE

the underlying sef of signed propositions is partitioned &, differ with the
weights assigned to some single incoherent constitQeatl .

This problem may be solved by fixing the weight factors for the incoherent
constituents. The more important point is that there are examples of rule systems
R, R, on a common set of signed propositiahgover some set of propositions
PR) such that (i) the explanatory coherence of rule syskenis strictly greater
than the explanatory coherence of the rule sysknif the truth value assignment
1 Which maximizes the explanatory coherenc&gfis adopted; (ii) the explana-
tory coherence of rule systeRy, is strictly greater than the explanatory coherence
of the rule systenR ., if the truth value assignment, which maximizes the ex-
planatory coherence ®, is adopted; and (iii) the explanatory coherence of both
the rule systeriR; and the rule systerR is 0, if any other truth value assignment
¢ is adopted, where the truth values are restricted to 0 &idflhowever, one
considers the combined rule systén= R, U R,, then the explanatory coher-
ence ofR is O for every truth value assignmept(including ¢, andy,). This is
shown in the proof of the next theorem.

Theorem 4.3 (Fuzzy Measuré/ Is Arbitrary) The fuzzy measur® for explana-
tory coherence of Schoch (2000) is arbitrary.

Let me note that the arbitrariness vf(z4,...,z,) is not caused by its being
stated in the framework of fuzzy-logf¢.

As already noted at the beginning of this chapter, coherence plays an im-
portant role as indicator of truth. What is characteristic of the problem situations
where coherence enters is that one is given a set of statesiarisse truth val-
ues are not known, and one wants to know whether believing or accepting (the
statements iny is justified. The coherence 6fis then taken to provide the justi-
fication for believingS or acceptings as true (in some world or modéh) — the
reason being that coherence is indicative of truth\n*.

If, however, the truth values (im) of all statements ir5' are known in
advance, then there is no need of an indicator of truthMiy which justifies
believingS or acceptings as true (inM), and coherence can be dispensed with.

In short, coherence is of interétonly if the truth values — fuzzy or not —
in someM of the statements if are not all known in advance, and if coherence

40This can be done because of lemma 1.1 of Schoch (2000). Cf. Schoch (2000), p. 293.

41Cf. application 2.1 (Arbitrariness).

42Which it is only if it is not wholly independent of the modsi.

“Namely as justifier for believing or acceptings as true (inM) via being indicative of truth
(in M).
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is adopted as truth indicator; otherwise — and under the assumption that the aim
is to accept true statements, and to reject false ones — it is clear, or so | think, that
one accepts the true and rejects the false ¢h8s.if one has to adopt in advance
a truth value assignment to the statements in the sets of statefjesmsl .S, in
order to determine which of these two sets is more coherent, this presupposes too
much: The whole idea of coherence as truth indicator is E&@bsurdumif
the truth values of those statements whose truth (in some metjeshould be
indicated have to be assumed.

Before concluding let me note that | do not claim that no truth value (in
some modejM) of any statement in a sétof such can be assumed to be given.
On the contrary, in order for coherence to be indicative of truthirthis is even
necessarily so (as argued above). However, supposing that the truth valiv} (in
of all statements iy’ are given, trivially yields a truth-guaranteer (t), i.e. an
algorithm for truth inM.

The challenge is to define a functi@ivh (-) which determines the degree
of coherence&’'oh (S) of any set of statements, and which does not presuppose
the truth values of all statements$h where the assumption of being true (ir)
or, more generally, of being epistemically distinguished (wA:), should be as
light as possible.

This will be done below by partitioning' into two disjoint subset§" and
E, where the latter has to be an evidefiteThis has the consequence that the
measure of coherence is defined only for sets of statements with an evidence as
a subset. However, as my interest is in the role of coherence in the context of
assessing theories by evidences (relative to background knowledges), this is no
serious restriction. Anyway, it will turn out that coherence w.r.t. evideficd
modeled by the functioftoh(-, E, -) of below, is neither indicative of truth in any
model M € mod (E); nor sensitive to loveliness and likeliness in the sense of
any power searchet© and any truth indicato£Z; nor closed under equivalence
transformations of .

“Lemma 1.1 of Schoch (2000) states that one can restrict oneself to the classical truth values
‘true’ and ‘false’, if these are taken to be represented by the fuzzy truth values 1 and 0, respec-
tively. This means that if the functiol (z1,...,z,) has a global maximum for a distribution
of values for then real-valued variables,, . . ., z,, which are not all in the s€f0, 1}, then there
is always another distribution of values ovey, . .., z,, such that all these values are in the set
{0,1}, and such that this “classical” distribution yields the same coherence judgement (accord-
ingtoV (z1,...,x,)), i.e. such that’ (z4, ..., z,) takes on the same global maximum for the
“classical” distribution as it does for the first distribution.

“5Besides this, the concept of coherence (w.r.t. the evidence) is relativised to a background
knowledgeB.
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4.3 Foundationalist Coherentism

In this section | will present an own proposal for a measure of coherence. Before
doing so, let me note why no probabilistic account is given.

4.3.1 Why No Probabilistic Measure of Coherence?

Intuitively, a set of statements is coherent, if the statements ih hang together
or fit each other. A probabilistic characterisation of this is the following: A (finite)
set of statementd = {h4, ..., h,}is coherent, if every statemehtin H is likely

to be true, given that the remaining statements H are true.

Consider a story: If the statements the story is composed of hang together
or fit each other, and if each of them is likely to be true, given that the rest of them
iIs — and if there is evidence for at least some of these statements — then, so the
coherentist line of argument, one will be inclined to believe the story. If, however,
the statements of the story do not hang together, or if not all of them are likely to
be true, given that the remaining ones are®tueor if there is no evidence for any
of them — then, according to the coherentist, one will not be inclined to believe
the story.

How can this notion of coherence be made precise? The preceding para-
graph suggests a probabilistic modeling that runs as follows: For a given condi-
tional probabilityp (- | -), the probabilistic degree of coherence of a finite set of
statement$! = {h4, ..., h,}, ProbCoh, (H), is given as

ProbCoh, (H)= > plhi| N h;i].
1<i<n 1<j#i<n
A measure with rang@, 1] could then be defined as

_ ProbCoh, (H)

n

ProbCoh;, (H)

Apart from the question whether coherence has anything to do with subjective
degrees of belief (and, again, how propositions are counted), this — and any sim-
ilarly defined — probabilistic measure of coherence is exposed to the reproach of
arbitrariness.

48In particular, if there are some statements which are unlikely to be true or likely to be false,
given that the remaining ones are true.
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Bayesian¥’ often argue that the prior distribution to the statements in a
given languageC does not really matter much, for the limit theorems of con-
vergence to certainty and merger of opinion yield that the differences in the prior
probabilities are “washed oudf’in the long run. | disagree. In my opinion, the
Bayesian faces the following dilemma:

(1) Either she admits that the distribution of the prior probabilities is not
justified; and that one can explain nearly everything by choosing the “right” prior
distribution — where, in principle, nothing is really explained, because this distri-
bution is not justified.

(2) Or else she tries to justify the prior distribution by recourse to the limit
theorems; and argues that different prior distributions do not matter, because the
differences in the conditional probabilities based on them go to zero in the long
run, i.e. if the number of statements which the conditional probabilities are con-
ditional on goes to infinity? But then the Bayesian has to assume the (fourth)
axiom of countable additivity. The latter is problematic, because it forces one
to play favourites in the sense that one has to assign different degrees of belief
to the statements of a countably infinite set of mutually exclusive statethents
Furthermore, countable additivity yields the dogmatism of Bayesianism: Every
agent that is rational in the sense of Bayesianism, i.e. coherent (consistent with
the axioms of the probability calculus), has to be sure (in the sense of having a
subjective degree of belief of 1) that every statement — of whatever complexity and
quantifier structure — is equivalent to a verifutable statement; where a statement
is verifutablejust in case it is a truth-functional combination of verifiable and/or
refutable statements.

Moreover, the limit theorems do not really help much, for they do not tell
one anything about the convergence ra&teConsider convergence to certainty.
What this theorem says is that for every statenierdgvery subjective degree of
belief functionp (-), nearly? every possible world, and every real number> 0

47In the tradition of Horwich (1982), Earman (1992), Howson/Urbach (1993). Cf. also Skyrms
(2000).

48Cf. Earman (1992), p. 141.

“9That there are cases where such a justification is of no help, even if the limit theorems would
work for the short and medium runs, is argued for in the last section of chapter 2.

500therwise the disjunction of all these mutually exclusive statements would be assigned a
degree of belief greater than 1.

5ICf. Earman (1992), p. 192.

52For the following cf. Earman (1992), p. 144ff; cf. also Gaifman/Snir (1982).

S3All possible worldsw except those whose probability measiite(w) is 0. The probability
measurePr (), which is defined on the set of all possible worlds, is uniquely determined by the
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there is at least one (time-) point such that it holds for every (later time-) point
n > m: the difference between the subjective degree of beligf given evidence
A1<i<n €i (w) of world w at timen, p (h | Ai<i<m €i (w)), and the truth value
¢ (h,w) of hinw is at most, i.e.

Vh € LVp (-) YwVe > 0ImVn > m :

Pr(w) >0 — <e,

p<h! A ei(w)) — ¢ (h,w)

1<i<n

wherep (- | -) is the conditional probability based on the (unconditional) proba-
bility p (), and it is assumed that for any two distinct possible woagdsndw,

there is at least one statementin the set of statement8 = {ey,...,¢e,,...}

such thak; is true inwy, but false inw,, i.e. v (e;,w;) = 1 andy (e;, wy) = 0.

What convergence to certainty does not say is when this (time-) pasneached,
whence one never knows that one believes in a true statement, if one believes in a
true statement — under the assumption that the actual world is at all among nearly
all possible worlds.

Something similar holds of merger of opinion, except that it is additionally
assumed that the merging subjective degree of belief or (unconditional) probabil-
ity functionsp () andp’ () areequally dogmaticThis means that the probability
measuresPr (-) and Pr’ (), which are uniquely determined ky(-) andp’ (+),
respectively, assign the measur& the same possible worlds, so that the set
of nearly all possible worlds is the same foandp’ respectivelyPr and Pr’.

Eventually (and as already noted), Bayesianisitihéory enemyr theory
hostilein the sense that all what matters for the assessment of a hypothesis or
theoryT by some evidencé& relative to some background knowledéeis the
probability of " given £ and B, or the boost in the probability af that is caused
by the addition ofF to B, i.e. the difference (in whichever manner it is measured)
ofp(T | EAB)andp (T | B). That is, the focus of Bayesianism is exclusively
on the likeliness concept of confirmation. Other aspécis particular those

(unconditional) probability (-), which is defined on the underlying formal languagelt thus
depends on the (unconditional) probability-) (and the languag€), which possible worldsv
are among nearly all possible worlds.

54Bayesian arguments to the effect that relevance measures as the distance measure

d(T,E|B) =p(T|EAB)—p(T|B)

are sensitive to the variety df depend on the right choice of the prior probability i6f These
arguments run as follows (background knowledis suppressed): The prior probability E) of
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corresponding to the loveliness concept of confirmation are neglected, except if
they bear on (the boost in) the probabilityBithat results by adding' to B.

4.3.2 No Evidence Without Relevance

At the beginning of this chapter it has been argued that in order for coherence
to be indicative of truth in the actual (or some other) world, coherence has to be
relativised to this world. This has been done by relativising the coherence of a set
of statement§” to an evidencé”, which is assumed to be true in the actual world.
In a certain sense, thisfsundationalist coherentism

As an evidence is in general no complete description of the actual world,
coherence w.r.t. the evidence is, properly speaking, not indicative of truth in the
actual world — if it is truth indicative at all — but indicative of truthinod(E).
The idea behind the concept of coherence w.r.t. the evidence can be sketched as
follows:

Idea 1 (Informal Characterisation of Coherence w.r.t. ) Two statements; and
hs cohere with the world or the data, if their conjuntibp A h, says something
about the world or the data which is not already said by ong of, alone.

Two statement®,; andh, cohere the more with the world or the data, the
more their conjuntiork; A h, Says about the world or the data which is not already
said by one of, h, alone.

This relation of coherence is symmetric in the sense Ahatndh, cohere with

the world or the data, ik; andh, do. Itis stipulated that two statements logically
contradicting each other do not cohere with the world; their degree of coherence
w.r.t. the data is minimal. Furthermore, the evidential statements describing data
about the world have a special status: They are epistemically distinguished in the
sense of assumption 1.4 respectively 4.1. A more difficult question is whether it
makes sense to call a single statement coherent with the data.

evidenceF is the smaller, the greater the variety or diversityfbfAs the conditional probability
p(T | E) of T given E is the greater, the smallgr E), it follows that, other things being equal,
the degree of confirmation af by E is the greater, the greater the varietyfof the other things
beingp (T) andp (E | T).

This is clearly seen in casE logically implies E, for herep (T | E) = %, which is the
greater, the smaller(E), providedp (T) is held constant.

As already noted, by choosing the “right” prior distribution one can explain nearly everything;
for instance, thaf” is more confirmed by, if the weather is nice than if it is not, for on sunny
days one is inclined to assign high priorsii@and low priors taF, whereas on rainy days it is the
other way round.
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The idea of coherence w.r.t. the evidence as informally characterised above
is similar to the concept of relevance of Sperber/Wilson (1995) according to which

[a]n assumption is relevant in a context if and only if it has some
contextual effect in that conte3t.

Here,

[...] the various types of possible contextual effects [include]: contex-
tual implications, strengthenings, and contradictions resulting in the
erasure of premises from the contét.

The important concept of a contextual implication is defined as follows:

A set of assumptionB contextually impliean assumptiol® in the
contextC if and only if (i) the Union ofP andC non-trivially implies
Q, (i) P does not non-trivially implyQ, and (iii) C does not non-
trivially imply Q.5’

Without restrictions, the idea of above results in triviality in the sense that any two
statement#; andh; (none of which logically implies the other) cohere, because
there is always something the conjunctionA h, says which is not already said

by one ofhq, h, alone — namely the conjunction A h,. In order to avoid this,
Sperber/Wilson (1995) restrict the consequences of the ihio€ — in our case:

the consequences of the conjunctignA h, — to non-trivial logical implications
involving only elimination rules:

A set of assumptionB logically and non-trivially impliesan assump-
tion Q if and only if, whenP is the set of initial theses in a derivation
involving only elimination rulesQ belongs to the set of final theses.

Another possibility® is to restrict the consequences of the conjunctiom h,
to relevant (consequence-) elements in the sense of Schurz (1998) respectively
Schurz/Weingartner (1987), and to consider

RE (hy A ho) \ (RE (hy) U RE (hs)) .

SSSperber/Wilson (1995), p. 122.

S6Sperber/Wilson (1995), p. 115.

57Sperber/Wilson (1995), p. 107-108.

58Note that restricting the consequences pf i, to content parts in the sense of Gemes (1994c)
and (1997a) is not sufficient, fdr; A hs is a content part ok, A hs, for any two statements;
andhs,. For more on the notion of a content part see below.
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A third way of solving the problem that any two statemehisand h, none of
which logically implies the other cohere is not to let it arise at all: This is the case
if, for a given statemeni, to say something about the world or the data means to
account for some entitymentioned in some evidendg>°

Definition 4.1 (Account) LetT', B, andS be (not necessarily finite) sets of wffs,
let £ be an evidence, and let be a constant term occurring iA. T" accounts
for ¢ respectively ¢’ in E relative to B iff there is a finite and non-redund&ht
D C Dg (t) and awffA € D such that

TUBU (D\{A})F A

The set of all constant terms accounted for byl" in E relative toB is calledthe
account of7" in E relative toB; it is denoted by A (7', E, B)'.

The set of all constanitterms /' in A (T, E, B) N Ce, (E) for which there
iSnoj < [ such that

1. T accounts fot;ﬁ in E relative toB, and
2. SUEH;Z =,

is called theS-representative ofd (T, E, B). Itis denoted byAs_,.,. (T, E, B)".%!
If 7" consists of a single wif,, ‘A (h, £, B)" and ‘As_,¢, (h, E, B)" are
written instead of A ({h}, E, B) and *As_,,r ({h}, E, B)’, respectively.

In order for the problem of above to arise it would have to hold that for any state-
mentshy, hy (not logically implying each other), every evidenég and every
background knowledg® there is at least one constant teme C' (E) such that

hi N hy acounts fort¢’ in E relative toB, buth; does not, and, does not either.
Clearly, this is not the case — it suffices to give an example of two statements

(not logically implying each other), an evidengg and a background knowledge

B such that it holds for every constant terth& C (E): If hy A hy accounts for
‘t’in E relative toB, then so does one af, h, alone® In this sense there is no
evidence without conclusion-relevance.

SdInsofar as the notion of accounting for is defined in terms of relevant elements, this way is
subsidiary to the second one of restricting the consequences to relevant elements.

%Non-redundancy should avoid triviality. As= ¢ is a relevant element df, for any ‘" and
any F, there is always a finite (but redundant) set of relevant elemetiis-aiamelyD = {t = ¢}
—and awffA € D (hamelyt = t) such thatl’ U BU (D \ {A}) - A.

61The representative should avoid that an entityith more than one name is counted more
than once.

%2h) = VzFx, hy = VoG, E = {Fa,Gb}, andB = () do the job.
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In the following the distinction between the constant terms and the entities
denoted by them is handled loosely, if no confusion can arise. Before turning to
the measure of coherence w.r.t. the evidence, let me introduce a notion which will
provide useful below: Power.

Definition 4.2 (Power) Let 7" and B be (not necessarily finite) sets of wiffs, and
let E' be an evidence. Theower of T" for E relative toB, P (T, E, B), is given
by the following equation:

’ABfrepr (T, E7 B)’ 63
T E.B) = .
PELEB) =15, &)

If T consists of a single wfi, ‘P (h, E, B)'is written instead of P ({h} , E, B)".

The power functiorP is discussed to a greater extent in the chapter on loveliness
and likeliness. For the moment it suffices to note A& a power searcher which
is formally handy for finite sets of statemeritsand B.

4.3.3 The Measure of Coherence w.r.t. the Evidence

The informal characterisation of coherence w.r.t. the evidence is generalized by
the surplus of a set of statemefitsv.r.t. an evidencé’ and a set of statemenis

Definition 4.3 (Surplus) Let T, B, andV be (not necessarily finite) sets of wffs,
and letE be an evidence. Thaurplus of 7" in E relative toB, S (T, E, B), is the
set of constant terms’*which are accounted for by in E relative toB, but by
none of its proper subseds, i.e.

S(T,E,B)= A(T,E,B)\ |J A(T',E,B).

T'CT

The set of constantterms ¢’ in S (T, E, B) N C.s, (E) for which there is no
j < [ such that

't € S(T,E,B) and EUV k=t

is called thél/-representative of (T, £, B). Itis denoted by Sy _,,, (T, E, B)'.
If T consists of a single wfh, ‘S (h, £, B)" and 'Sy _,.,, (h, E, B)" are
written instead of S ({h} , £, B)" and 'Sy _,.,- ({h}, E, B)", respectively.

83CE _repr (E) is always non-empty.



4.3. FOUNDATIONALIST COHERENTISM 97

Some immediate consequences of this definition are the following.

Theorem 4.4 (Surplus) Let 7" and B be (not necessarily finite) sets of wifs, and
let £/ be an evidence.

1. S(T,E,B) =0, if Tis infinite,

2. S(0,E,B)=A0,E,B) = A(B,E,B) = A(T,E,B),if BI-T,
3. S(B,E,B)=0,if B#0,

4. S(T,E,B)=0,if T # 0andB + T, and

5 S(hr,E,B) = A(hy,E,B) = A(T, E, B), for every single wffar with
hy 4= T,if A(Q,E, B) = 0.

The measure of coherence w.r.t. the evidence is defined as follows.

Definition 4.4 (Coherence w.r.t. the Evidence)Let T" be a finite set of wffs, let
E be an evidence, and I&t be a (not necessarily finite) set of wifs. Ttegree of
coherence ofl” w.r.t. E relative toB, Coh (T, E, B), is defined as follows:

If T#£0andT UBUE I/ 1, then

’SBfrepr (T/7E7 B)’ .64
(B @7 - 1)

Coh (T,E,B) =
PLT'CT ‘ CBfrepr

otherwiseCoh (T, E, B) = 0.

LetT = {hy,..., h,,...} be a countably infinite set of wffs, and I&f :=
{h1, ..., h;} for some enumaratioh, . .., h,, ... of the wifs inT. Thedegree of
coherence ofl’ w.r.t. E relative toB, Coh (T, E, B), is defined as follows:

If lim;_., Coh (T}, E, B) exists, and is the same for every enumeration
hi,..., h,,...ofthe wffsinT, then

Coh (T, E, B) = lim Coh (T}, F, B) ;
otherwiseCoh (T, E, B) = 0.
If T"consists of a single wfi, ‘C'oh (h, E, B)' is written instead of Coh ({h} , E, B)'.

$4CE _repr (E) is always non-empty.
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The notion of the surplus and consequently also the measure of coherence w.r.t.
evidenceC'oh are implicitely sensitive to aspects of premise-relevance: If a con-
stant term?’ is in the surplus of som& w.r.t. some evidencé relative to some

B, then every statementc 7' is necessary in order far to account fort¢’ in £
relative toB.

Theorem 4.5 (Coh Is Formally Handy) Coh (-, -, ),
Coh ('7 ) ) COfin (EPle) x € X pfm (‘CPle) - §R7

is non-arbitrary, comprehensible, and computable in the limit, wherg( L pr1-)
is the set of all finite sets of wifs df pr;—.

This holds in particular, if" is a theory and3 is a background knowledge. Let us
turn to some examples.

4.3.4 Examples

In the following T is a finite set of statements afds empty. Coh (T, E)’ stands
for ‘Coh (T, E,()’; similarly for ‘P (T, E)’.

(1) The first example illustrates that coherence coincides with power if single
hypothese$ are considered. Let

E ={Fa,,Gay,...,Fa,,Ga,} and T ={Va(Fz — Gzx)}.

Then . "
———=1=—=P(T,E).

n- (21 —1) n P(T.E)

(2) The second example is one where a unified th&@rys more coherent w.r.t.
evidenceF than the uniorf; of two theoriesl';, and7y,. Let

Coh (T, E) =

E = {Fay,Gay, Hiay, Fay, Gay, Hyas},
Ty, = {Vz(Fx — Hx)},
Ty, = {Vo(Fx— Hx)},
Ty = Ty, UTy, ={Ve(Fr — Hyz) Vo (Fz — Hyx)},

Te = {Vax(Fzr— Gx)}.
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Then )
COh (THl,E) == COh(TH27E) = m = 1/27
and
1+1+0
COh(TH,E> 5. (22 — 1) /3 < 5. (21 — 1) Coh (Tg,E)

(3) The third and fourth example show ti@ah (7', E) is not closed under equiv-
alence transformations @f. Let

E = {Fa,Ga},
Ty = {Vz(Fz — Gzx),Vo (Gx — Fz) Yz (Fr — Hz) Yo (Hr — Fx)},
T, = {Va(Fzx— Gz),Vo(Gx — Fz),Yo (Fx — Hz) Vo (Hr — Gx)},
T3 = {Vz(Fz — Gzx),Vo(Gx — Hzx) Vo (Hx — Fz)},

Ve (Hr — Gz) Vo (Gx — Fx)}

Y

(
(
T, = {Va(Fz — Hx),
Ts = {Va(Fx < Gz),Vz(Gr < Hzx)},
Ts = {Va(Fzx < Hx),Vx(Hx < Gx)}.
T; 4= T3, for every: andyj, 1 <14, j < 6, but
3

Coh (Th, ) = 1(23_1) =215 < 315 = [ = Coh (T D)
< 27— 1(23_1) — Coh (T4, E)
_ 97— 1(23_1) — Coh (Ty, E)
< 1/3= 1(21_1) — Coh (Ts, E)
— 13— 1(21_1> — Coh (T}, E) .
(4) Let

E = {Fa,Ga,Ra},

T, = {Vz(Fz — Gzx),Vo(Gx — Hzx) Vo (Hx — Fz),Vx (Rr — Hzx)},
T, = {Va(Fz < Gz),Vo(Gz < Hx),Vx (Rx — Hz)},

T3 = {Va(Fz < Hx),Vx(Hx < Gzx),Vo (Rx — Hzx)}.
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T; 4+ T;, for everyi andyj, 1 <i,j < 3, but
1404+04+0+04+04+0+140+1404+0+04+0+0

Coh(T1, E) = (@ =)
— 3/15
1+0+04+0+0+1+40
2/7 = = T, F
< 27 o] Coh (Ty, E)
0+04+0+1+1+4+1+0
< 37 D) Coh (T, E)

(5) The fifth example shows that coherence decreases with the number of state-
ments inT" that areP-superfluous fo’ andf. Let

E={Fay,...,Fa,} and T ={VeFz VzGix,... V2G,x}.

Then
n

n - (2m+1 _ 1)
(6) The sixth example shows that theoriésvhich are, in an intuitive sense, “in-
ternally” coherent may have a higher degree of coherence w.r.t. an evidence
than theories consisting of isolated subtheorife#his “internal” coherence of’
yields that more entities (constant terms) are accounted fdr, loy that some of
them are accounted for in different ways. Let

Coh(T,E) = — 0, if m— oo.

E = {Hay,...,Ha,},
Ty = {VaeFz,VaeGx,VxHzx},
Ty, = {VaFz,VaGz,Vx (FxV Gr — Hzx)}.

AlthoughT; - T3,

0+0+n+0+0+0+0

Coh (T, E) = @)

= 1/7
< 2/7
0+0+0+04+n+n-+0

= h @ 1) = Coh (1T, E) .

(7) The seventh example shows that theofieghich are in the above intuitive
sense “internally” coherent need not have a higher degree of coherence w.r.t. an
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evidenceF than theories consisting of isolated subtheories. They may even have
a lower degree of coherence w.r.t. an evideAgéd this “internal” coherence of

T doesnotyield that more entities (constant terms) are accounted far, loy that
some of them are accounted for in different ways. Let

E = {Ha,...,Hq},

T, = {VaeFix,... VeF,z,VeHz, Ve (Fix — Gix), ...
Vo (Fpe — Gpr) Ve (Hr — Gpaz),
Ve (Gpi1r — Guaox), ...,V (Gyyx — Gux)},

T, = {VeFix,... VeF,z,Vx (Fla V...V F,x — Hzx),
VaeGiz, ... VeGux},

wherel > 1 and1l < m < n. AlthoughT; -+ T,

l
l- (2m+n+1 _ 1)
[-m

= T, F).
< [-(2mtntl — 1) Coh (13, E)

COh (Tl, E) =

(8) As mentioned, the necessary condition 4.1 (Coherence as Truth Indicator)
allows for the existence of sets of statemehitsnd models\M; and M, with

Coh (T, Ml) = Coh (T, ./\/12) .
ForCoh (-, -), thisis illustrated by the last example. Let

E, = {Pa,Qa,Fby,...,Fb,},
Ey, = {Pa,Qa,Gecy,...,Gep},
T = {Vz(Pxr— Qux)}.
Then
1
(n+1)- (28 =1)

Coh (T, El) = = Coh (T, Eg) .

4.3.5 Properties ofCoh

As is obvious from the examples of the last subsection, the valués/otlepend
heavily on the formulation df'. In particular,C'oh is not closed under equivalence
transformations of .
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Theorem 4.6 (No InvEquTrans of 7" for C'oh) For every evidencé’, and every
set of wffs B there are theorieg and7” such that

TH-T" and Coh(T,E,B)# Coh(T'",E,B),
provided there is at least one thedrywith Coh (T, E, B) # 0.

Theorem 4.7 (Coherence Versus Powerl.et T" be a finite set of wffs, lefy be
an evidence, and |68 be a set of wffs. ITUBUE I/ L andAg_,c,- (0, E, B) =
0, then

Coh (T, E, B) < Coh (/\,E,B) —P(T,E,B),

heT
whereP is closed under equivalence transformationg @nd B.

RememberP is not only closed under equivalence transformatioris ahd B; it
is also searching power and formally handy for finite sets of staterfieatsl 5.

What do the above theorems tell us? There are at least the following four
interpretations.

1. The definition of coherence (w.r.t. the evidence) respectively its measure
Coh is not adequate — e.g. because the relation of accounting for is mono-
tone w.r.t.7 and B.%°

2. The concept of coherence (w.r.t. the evidence) can be dispensed with. The
concept of power (for the evidence) is sufficient and has the advantage that
its measureP is closed under equivalence transformationg ofwhence
theoriesT' may be defined as sets of model®d (7") without restricting
oneself to some “canonical” formulation &t

3. Itdoes not make sense to call a single statement — as the conjufigtiph
— coherent w.r.t. an evidendg because the concept of coherence (w.r.t. an
evidence) makes only sense, if several statements (propositions) are consid-
ered.

4. The set of statemenfs whose coherence w.r.t. some evidericés to be
assessed, has to be formulated in some special, perhaps uniquely determined
way.

85That is, ifT" accounts for#' in E relative B, then so does evef§’ logically implying T'; and
T does so relative to ever’ logically implying B. This is not the case faF, becausé-..,.; is
not monotone.



4.3. FOUNDATIONALIST COHERENTISM 103

Obviously, (3) and (4) are intimately related. If one considers these four alterna-
tives as the only serious interpretations of the above theorems; if one adapts
as measure of coherence w.r.t. the evidence; and if one does not already give up
the concept of coherence at this point of the discussion, then (3) and (4) are the
only possible alternatives.

How, then, has the set of statemehtbe formulated? Intuitively/” should
be formulated naturally in the sense of being split up into its smallest (content)
parts. There are at least two approaches to this end: The first is based on Schurz’
notion of a relevant (consequence-) elenfént.

1. The formulation ofl" has to be arrreducible representation of, i.e. a
non-redundant setof relevant elements af such that? - 7.

The second is based on Gemes’ notion of a contentpart.

2. The formulation ofl" has to be aatural axiomatization off’, i.e. a finite
set of wffs A such that

21 AT,
2.2 every wffh € A is a content part of (the conjunction of all wffs iA)

2.3 there is no content part of some wffh € A such thatd \ {h} I ¢,
and

2.4 there is no finite set of wffd’ satisfying (2.1)-(2.3) withA’| > | A|.%8

However, if Coh has to be closed under equivalence transformatioris, afien
neither (1) nor (2) is viable, for there are theoriBsand1;, evidencest, and
background knowledges such that botfl; and7; are irreducible representations
and natural axiomatizations f, and such that'oh (T3, E, B) # Coh (13, E, B)

— this is shown byl andT5;, of example (3) of the preceding subsectfdn.

66Cf. Schurz (1991a), (1998), and Schurz/Weingartner (1987).

67Cf. Gemes (1993), (1994c), and (1997a).

%8The fourth clause is added by Gemes in a footnote — cf. Gemes (1993), p. 483. Without it the
concept of a natural axiomatization is of no help here, for the conjungtion, » of all wffs of a
finite set of wffsA satisfying clauses (2.1)-(2.3) for a given set of wifslso satisfies (2.1)-(2.3)
forT.

89« — is not eliminated, and the notion of content part is formulated as follows:

For any wffsA and B: B is a content part ofl iff (i) A andB are contingent, (ii)
A+ B, and (iii) there is no wifC' such thatA - C, C + B, B t/ C, andC'is
formulated in the vocabulary ds,
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Nevertheless, suppose these cases are only very rare, so that for the most
partCoh (T', E, B) is the same for all irreducible representations or natural ax-
iomatizations/” of T'. Then the measure of coherence w.r.t. the evidéhgecan
be made invariant under equivalence transformatioriSloy defining it in one of
the following two ways:

Cohy (T, E, B) = max{Coh (T',E,B) : T' €1 (T)},
Cohp, (T, E, B) = max{Coh (T",E,B) : T € NA(T)}.

One could, of course, take some other function instead of the maximum func-
tion. Note that it would not be of help to consider all sets of stateméhts
with 77 -+ T, for then one would nearly always — whenevéis a theory and
Ap_repr (0, E, B) = ) — consider the singletofiA,,;» 1/} containing the con-
junction of all statements of some finite axiomatizatidrof 7". Though this does
not hold of the minimum function, a similar problem arises in this case, for one
would have to deal with the set of all statements logically following fflBm

A question not yet answered is whether for every set of statememis
Lpr1— there is at least one irreducible representation or natural axiomatization
of T. For the propositional calculus, the answer is affirmative for irreducible
representations: In Schurz/Weingartner (1987) it is shown that for every statement
A of Lp¢ there is a statement’ such thatd 4+ A’ and A’ -, A'.7°

Suppose, however, all these problems can be dealt with in a satisfying way.
Is coherence w.r.t. the evidence under these assumptions indicating truth in the
actual world? The answer is no, for it is not even indicating truthvirl (£): For
a given evidencé’, there are always theori€s; and background knowledgés:;
such that

FUBgFHTE and OOh(TE,E,BE):O

—which violates the second clause of the definition of indicating truthdad (E).

Still, one may argue that although the feature of interest usually ascribed to
coherence is that of being truth indicative, this is not what coherence should do in
case of the assessment of theory by evidence relative to background knowledge.

then onlyTs andTg, but neitherT; nor Ty of example (3) are natural axiomatizations@f.
However, for this notion — which is the one Gemes (in personal correspondence) fadouasd
T5 of example (4) are sufficient to show th@bh is not closed under equivalence transformations
of T', even ifT has to be a natural axiomatization of itself (based on the notion of content part just
stated).T; of this example is an irreducible representation, but no natural axiomatization of itself
(in second sense of this footnote).

0Cf. Schurz/Weingartner (1987), p. 58.
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Here the job of coherence w.r.t. the evidence is not to indicate trutivih(£),

for some evidencé’, but to be sensitive to loveliness and likeliness in the sense
of some power search&© and some truth indicato£Z. However, this does
not either hold ofCoh — even if it is assumed that there is exactly one canonical
formulation F'r for every set of statemenis

Theorem 4.8 (No SensLovelike of’oh) For every power search&Q, every
truth indicator£Z, and every evidencg there is a theor{’z and a background
knowledgeBj such that it holds for any sets of wffsand B, and every evidence
E:fT ATy, E' 4 E,andB -+ Bg, then

1. TUBF E', and thusO (T, E', B) = 1,
2. FUBFT,andthusCZ (T, E',B) = 1,and
3. Coh (T, E',B) = 0.

I conclude that ifCoh captures to some extent the concept of coherence (w.r.t.
the evidence), then the latter has to be given up as indicator of truth in the actual
world, provided the second clause of the definition of indicating truthad (E)

is adopted as minimal requirement for any truth indigtolf evidenceF together

with background knowledgé® guarantees (in the sense of logical implication)
the truth of some theory, then the degree to whichindicates the truth of " in

mod (F) relative toB is maximal.

I conclude further that’oh is no adequate measure of confirmation, because
it is not sensitive to loveliness and likeliness in the sense of any power searcher
LO and any truth indicato£Z — even if it is assumed that there is exactly one
canonical formulatiorf7- for every set of statements.

In the next chapter | will therefore pursue the second approach to a solution
of the problem of a quantitative theory of confirmation: First, to define for ev-
ery (primary) confirmational virtu& a functionfy (-, -,-) such thatfy (T, E, B)
measures the degree to which (primary) confirmational virfus exhibited by
T, E, andB, for every theoryl', every evidencé’, and every background knowl-
edgeB; and then to define the measure of confirmatioas a function of (some
of) these functiong, .
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Chapter 5

| oveliness and Likeliness

5.1 Recapitulation

This chapter contains the definition of a power searéhert -, -), P (+,-,-) : 7 X
& x B — R, and a truth indicatofZ (-,-,-), LZ (-,-,+) : T x & x B — R, which
together determine the measure of confirmatiof, -, -).

We know from theorem 3.1 that there are lots of power searchers and truth
indicators. As has been noted there, what is needed are a power searcher and
a truth indicator which are formally handy, i.e. non-arbitrary, comprehensible,
and computable in the limit. Arbitrariness will be avoided by defining two single
functions (without parameters that can be chosen arbitrarily); comprehensibility
will be achieved by purely syntactical definitions in the term#afl = andZ F;
computability in the limit will be a consequence of these definitions.

Before defining these functions remember that non-arbitrariness, compre-
hensibility, and computability in the limit af®rmal conditions of adequacy for
any formal theory, in particular, any quantitative theory of confirmation intended
to implicitely provide a rule of acceptance for rational theory choice. Sensitivity
to (and only to) the confirmational virtues isnaaterial condition of adequacy
for any quantitative theory of confirmation. The second approach to a solution
of the problem of a quantitative theory of confirmation defines the measure of
confirmationC' as a function of (some of) the functiorfs (-, -, -) measuring the
confirmational virtued’. The formal conditions of adequacy for these functions
are inherited from those far'. The material conditions of adequacy are those of
chapter 3: The functioyi,o which measures loveliness has to be a power searcher;
the functionf;; which measures likeliness has to be a truth indicator.

107
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There will not be any functions for the derived confirmational virtues. These
enter only when the resulting measure of confirmatiois considered.C' has
to be sensitive to the primary and derived confirmational virtues, i.e. sensitive
to loveliness and likeliness in the sense of some power seatiflesaind some
truth indicator£Z — sensitivity to simplicity considerations and unimpressability
by redundancies (and invariance under equivalence transformatidisheing
consequences of this.

In the next chaptet’ is combined with a functiot¥ (-, -, -), whereG (T, E, B)
measures the “goodness” of eviden€an relation to theoryl” and background
knowledgeB. The reason for this is th&t does not and is not intended to take
into account that evidence which is varied or diverse is better than evidence which
is uniform or homogenous; and thatis the better, the more information it con-
tains. C (T, E, B) only tells you how much" is confirmed byF relative to B,
if E'is all the evidence available. The refined measure of confirmatian, -, -)
which is the result of combining’ andG can be shown to be sensitive to diversity
considerations in the sense@fandG.! Before continuing, let me note thétis
independent of”, and may be combined with any measure of confirmation — or
coherence (w.r.t. the evidence).

5.2 A Power Searcher and a Truth Indicator

The basic ideas behind the definitions of the functi®nand £Z are due to Carl
Gustav Hempel, and can be found in dtudies in the Logic of Confirmation
(1945) under the headings of the prediction criterion and the satisfaction criterion,
respectively.

It is crucial that these functions are only defined, if the evidential domains
and the domains of proper investigation overlap. Any domain which is among
both is called aonfirmational domairfof 7" and E'). Though the definitions are
stated in semantic terms, they are purely syntactic, because the domains are only
distinguished by means of the different sorts of variables and constants occurring
inT, £, andB.

The evidential domains and the domains of proper investigation overlap
whenever there is an essential occurrence ofariable, but no occurrence of a
constant-term in7’, and no occurrence of arvariable, but a constamterm es-
sentially occurring inF, for some sort of variables and constants. The domains

For a definition of the concept of sensitivity to diversity considerations in the sense of some
functionsC.o .7 andg see chapter 6.
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of T, E, and B are also only distinguished by the sorts of variables and con-
stants occurring iff’, £, and B. Strictly speaking, these “domains” ademain
variablestaking domains as their values.

So referring to the domains &f, F, and B, D.,..., D,, is just another
way of referring ton different sorts of variables and constants occurrin@ i,
andB. The functionsP andLZ therefore have three argument places; the confir-
mational domains are uniquely determinedbgnd E. Technically, the valug®
takes on for givefl’, F, andB, is avectorwhose length equals the number of con-
firmational domains of andE, and is of the form{P (T, E, B; Dy),...,P (T, E, B; D.)),
whereD, ..., D, are the confirmational domains 6fand £. The claim thatP
IS a power searcher means that conditions (1)-(3) in the definition of searching
power formod (F) are satisfied byP (T, E, B; D;) for everyconfirmational do-
main D; of T"'and E, for all T, E, and B. Similar remarks apply t€Z and its
being a truth indicator.

The functionP is already familiar from the chapter on coherence w.r.t. the
evidence.

Definition 5.1 (Confirmational Domain) LetT be a theory with domains of proper
investigationD? ... DT let E be an evidence fronw¥ ... DE and letD; be
a domain (with correspondingvariables and constaitterms).

D; is aconfirmational domain ofl" and FE iff D; is among both the evi-
dential domains of?, D, ... D, and the domains of proper investigation of
T, DT ..., DT i.e. iff T contains an essential occurrence ofiarariable, but
no occurrence of a constaisterm, andE contains an essential occurrence of a
constant-term, but no occurrence of arvariable.

Definition 5.2 (Power) Let T be a theory, lefy be an evidence, |g8 be a back-
ground knowledge, and I€?; be a confirmational domain af and £’ (with cor-
responding-variables and constafterms).
Thepower of T" for E relative toB in D;, P (T, E, B; D;), is given by the
following equation:
A _yepr (T, E, B) N G

T E,B;D;) =
P( ) I ) Z) |OB_repr (E) ﬂ C,L| I

where(; is the set of constaritterms?

205 _repr (E)NC; # 0, because; is a confirmational domain &f and E, and hence among
the evidential domains of.
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The function£Z has not been dealt with so far.

Definition 5.3 (Likeliness) Let T' be a theory, letr be an evidence, leB be a
background knowledge, and I&; be a confirmational domain @ and £ (with
corresponding-variables and constaiterms).

Thelikeliness ofT'w.r.t. F and B in D;, LZ (T, E, B; D;), is given by the
following equation:

max.7 (T, E, B; D;)
LT (T,E, B;D;) = 3
( ’ ’ 7 ) |CB—T€[)T (E)QC” ’

providedE£ U B I/ 1, where
max (T,E,B; D;) := max{|CNCpyepr (E)]: C C Cgp,,
E+ Deve, ., (B) = Deve (T)},

Ceppi = C(EUB)NC; = C;(EUB), C;(X) is the set of constantterms
occurring inX, and(; is the set of constaritterms.

Concerning likeliness in domaib;, it is important to note that only thevariables
in T are replaced by the constaiterms ofC' in the development of” for C,
Deve (T); thek-variablesk # i, occurring inT" and the quantifiers binding them
remain unchanged (cf. definition 1.11).

The following theorems yield tha and L7 satisfy the formal and material
conditions of adequacy.

Theorem 5.1 (P Is a Formally Handy Power Searcher) P (-,-,-), P (-,-,:) : T X
Ex B — R, is a power searcher which is non-arbitrary, comprehensible, and com-
putable in the limit, provided for everf € £ and everyt’ € C.s (E) there is a
contingent A € RE (E) with ‘¢’ € C (A).

More precisely,P is formally handy, and for any theori@sand7”, every
evidenceF, every background knowledge, and every confirmational domain
D, of T"andE, and of 7" and E:

1. P(T,E,B;D;) >0,
2. fTUBF E, thenP (T, E, B; D;) = 1, and

3Cf. the preceding footnote.
4Contingency should rule odt= ¢, which is a relevant consequence of diy
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3. if '+ T, thenP (T, E, B; D;) > P (T, E, B; D;),

provided for everyE' € £ and everyt’ € C. (F) there is a contingentl €
RE (E)with‘t" € C (A).

Theorem 5.2 (CZ Is a Formally Handy Truth Indicator) £Z(-,-,-),LZ(-,-,-) :
T x € x B — R, is a truth indicator which is non-arbitrary, comprehensible, and
computable in the limit.

More preciselyLZ is formally handy, and for any theori@sand7”, every
evidenceFE, every background knowledgg, and every confirmational domain
D;of T'andE, and of 7" andE: If EU Bt/ L, then

1. LT (T,E,B;D;) >0,
2. fEUBFT,thenlZ (T, FE,B;D;) =1, and

3. if 7'+ T, thenCZ (T', E, B; D;) < LI (T, E, B; D;).

If the proviso in theorem 5.1 does not hold for some constant teranC'z_,..,, (E),
for someE and B, thennoT" can account fort’ in E relative toB. The proviso
is satisfied, if (L)RE (E) - E; orif (2) E is minimally observationah the sense
that for every t’ essentially occurring irE’ (and thus for everyt' € Cz_,., (E))
there is at least one contingent statemérdontaining only one predicate occur-
rence such thatt® € C'(A) andE = A. (Any such statemend is a relevant
element of any evidenc& logically implying A. There is just one predicate
occurrence that can be replaced, whence substituting a logically determined pred-
icate for it would yieldE inconsistent.)

The term ‘minimally observational’ arises from the following consideration:
One may define an evidence to bbservationajjust in case it consists only of
(possibly negated) atomic statements, because — so it may be argued — we do not
observe (negative or) disjunctive properties, but only whether some entity has a
property (whether some entities stand in some relation); disjunctive (and negative)
properties are not observed, lferred

Any (possibly negated) atomic statement has only one predicate occurrence,
and thus is of the required form. But other statements — e.g. Popgasssatze
of the form ‘At space-time point there arex, ..., x, such thatd [z, ..., z,]'°
—do not have the form of (possibly negated) atomic statements; nor do they imply

SCf. Popper (1994), p. 66ff.
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such statements. However, they usually entail a statement with just one predicate
occurrence.

The proviso is superfluous, #'5_,.,. (£) is restricted to those constant
terms t’ for which there is at least one contingent relevant elemé&nt £ with
‘t' € C(A). The reason for not doing so is that | conjecture that the proviso is
satisfied anyway — for lack of mathematical skill | just cannot prove it.

5.3 The Measure of Confirmation

This section contains the definition of the degree of confirmatidf’, F, B) of
theory T by evidenceF relative to background knowledg@, which is the re-
sult of pursuing the second approach to a solution of the problem of a quantita-
tive theory of confirmation.C' is defined as the product of the functioRsand
L7 measuring the primary confirmational virtues of loveliness and likeliness, re-
spectively. An immediate consequence of this definition is ¢h& sensitive to
loveliness and likeliness in the sensefand £Z. The formal handiness @f is
straightforward, because and £Z are both non-arbitrary, comprehensible, and
computable in the limit, and the multiplication functiopreserves these proper-
ties, as it is itself a single and thus non-arbitrary computable function that can be
defined in the terms oPL1 = and ZF'. Sensitivity to simplicity considerations
I.v.s.s., unimpressability by redundancies, and invariance under equivalence trans-
formations ofT" result fromC' being sensitive to loveliness and likeliness in the
sense ofP andLZ.

As in the case of power and likeliness, confirmatioff'dfy F relative toB
is only defined for the confirmational domains®fand . Strictly speaking, the
valueC (T, E, B)of C'for T, E,andBisavectorC (T, E,B;D;),...,C (T, E, B; D,)),
whose lengtle equals the number of confirmational domain§'&ndF, D, ..., D..

Definition 5.4 (Degree of Confirmation) Let T" be a theory, letE be an evi-
dence, letB be a background knowledge, and It be a confirmational domain
of T'andFE.

Thedegree of confirmation of" by E relative toB in D;, C' (T, E, B; D;),
is given by the following equation:

provided bothP (T, £, B; D;) andLZ (T, E, B; D;) are defined.
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The claim thatC' is sensitive to loveliness and likeliness in the sens@® @ind
LT means that (T, E, B; D;) satisfies the four conditions in the definition of
sensitivity to loveliness and likeliness, feveryconfirmational domairD;.

Main Theorem 1 (C' Is Formally Handy and Materially Adequate) C'(-,-,-),C (-,-, ) :
T x € x B — R, is non-arbitrary, comprehensible, computable in the limit, and
sensitive to loveliness and likeliness in the sens ehd£Z, provided for every

E e &andeveryt’ € C. (E) thereisamd € RE (E) with ‘t’ € C (A).

More precisely,C' is formally handy, and for any theorigs and7”, any
evidencesr andE£’, any background knowledgésand B’, every confirmational
domainD of 7" and F, and every confirmational domai’ of 7" and £’, where
X =(T,E,B;DyandX' = (T",E', B’; D'):

1. If LT (X) = LI (X') #0,thenC (X) > C (X)iff P(X) > P (X'),
2. if P(X)=P(X') #0,thenC (X) > C(X') iff LT (X)> LT (X'),
3. C(X)=0iff P(X)=0o0rLZ(X)=0,and

(

4. C(X)=1iff P(X)=1andLI (X) =1,

providedP (X), P (X'), LZ (X), andLZ (X’) are defined, and for evelly € £
and everyt' € C,,, (E) thereisand € RE (E) with‘t’ € C (A).5

As a corollary we get that' is sensitive to simplicity considerations i.v.s.s.; it
cannot be impressed by redundancies; and it is closed under equivalence transfor-
mations ofT7".

Observation 5.1 (Derived ConfVirtues and InvEquTransf) For any theorie§’
and7”, every evidencd’, every background knowledge, every confirmational
domainD; of T"and F, and of 7" andE, and every wffh € T

1. ¥T'"+-TandP(T,E,B;D;) =P (T',E, B; D;), thenC (T, E, B; D;) >
C(T',E,B:; D),

2. if hisaredundant part df, thenC (T'\ {h}, E, B; D;) > C (T, E, B; D;),
and

3. if T -+ T", thenC (T, E, B; D;) = C (T', E, B; D),

providedC' (T, E, B; D;) andC (1", E, B; D;) are defined, and for evety € £
and everyt’ € C.ss (F) thereisamd € RE (E) with ‘'t € C (A).

5Proof omitted.
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5.4 On Accounting

The adequacy of the definition &f, and therefore that af, depend on the notion
of accounting for, which is a generalisation of an idea due to C. G. Hépgal

is defined between sets of stateméhind B on the one hand and constant terms
‘t’ occurring in some evidenc& on the other. Which concept is this definition
intended to capture?

Most importantly, it isnotsupposed to grasp the notion of explanation — this
being the reason why | have avoided to speak oftkanatorypower (of T for
E relative toB).

Note first that only constant termg ‘occurring in some evidencé& can
be accounted for by a some set of statemé@ntglative to another such sét,
whereas in case of explanation, if it is defined for pairs of sets of staterients
andT;, T, need not be an evidence. Also laws of nature, at least empirical gen-
eralisations or observational law hypotheses of the farA [x] — C[x]), ‘X’
being a vector of individual variables, and {x]’ and ‘C' [x]’ being conjunctions
or disjunctions of observational predicates, can be explained by balgumed
under more general laws. This is not the case for the relation of accounting for.

Furthermore, in contrast to the relation of explanation, the relation of ac-
counting for is monotone with respect 1o and B: If T accounts for#’ in E
relative to B, then so does ever¥’ logically implying 7'; and if 7" accounts for
‘t’ in £ relative toB, thenT does so relative to ever§’ logically implying B.

This holds in particular, iff” or B’ is inconsistent (though one may, of course,
exclude this in the definition of accounting for). All this need not be the case for
explanation.

Enough has been said to show that accounting for and explanation are two
different things. Which concept, then, is to be captured? The definition of ac-
counting for is the formal characterisation of the relation that holds between (i)
an individualt and the properties we observ® have (respectively a set of state-
ments describing this), (ii) a theof, in particular, a set of empirical general-
isations or observational law hypotheses, whose intended domain of application
t belongs to, and (iii) a set of statememsexpressing the available background
knowledge, if there are propertiéss expected to have with regard Toand B
on the basis of the remaining properties already observed lonother words, if
T together withB could havepredictedsome oft’s properties on the basis of its
remaining ones. More precisely, if a statement describing part of what has been

’Cf. the prediction criterion in Hempel (1945).
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observed of is logically implied by7 and B together with statements describing
the rest of what has been observed.of

5.5 An Obijection

An objection that may be raised against this approach is that the degree of con-
firmation is — in contrast to Bayesian theories of confirmétiand the various
versions of (HDJ — not defined between any (sets of) statemerit(sy, and B,

but only forT's satisfying assumption 1.1 (Finite Axiomatizability Without Con-
stants), evidencek, and finite sets of statemenis

My response is that it is, of course, always better to do with as few and
as weak assumptions as possible (cf. the remark after the proof of theorem 5.2),
but thatC' (T, E, B) is intended to measure how muctseientific theoryl" is
confirmed by an (observationadyidencel relative to abackground knowledge
B — and for these the restrictions @f F, and B are appropriate, or so | have
argued.

There may be some relation of “making plausible with regard to” that is
defined between any three (sets of) statements. However, this concept is different
from the concept of confirmation which is the topic discussed here: Confirmation
of theoryT' by an evidencé" relative to background knowledge is more than
E merely making it plausible with regard 18 thatT (is true). If £ confirmsT
relative toB, thenE also makes it plausible with regard ithat7" (is true); but
there are many cases whdremakes it plausible with regard 18 thatT is true,
which are no cases of confirmation: That Peter is happy may make it plausible —
with regard to the information that Peter and Mary love each other — that Mary
is happy, too; and that there are demons not liking George may make it plausible

8Cf., however, Gillies (1998), p. 150ff., who argues that Bayesian confirmation theory has
to be restricted to singular statements (!) — apart from the further condition of the fixity of the
theoretical framework. For the latter cf. Gillies (2001).

%n case of (HD) the conditions specifying the suitable w&pas to follow logically fromT’
and B in order for E to confirmT relative toB may restrict the class of statements for which the
qualitative concept of (HD)-confirmation is defined.

The concept of confirmaton of Glymour’s Bootstrap-Theory is not defined for any statefhents
and FZ, because here evidenékhas to be, roughly speaking, a particular instance of th&ory

Of course, if one wants to define the concept of confirmation between any three sets of state-
mentsT’, E, andB, then the restrictions may be circumvented by setting the degree of confirmation
to 0, if T" does not satisfy assumption 1A,is no evidence, oB is not finite. Obviously, this
amounts to cheating.



116 CHAPTER 5. LOVELINESS AND LIKELINESS

(with regard to some suitable information about demons) that George is hindered
in daily life; but in neither case would we say that some evidence confirms a
scientific theory relative to some background knowledge.

5.6 Properties ofC

C'is sensitive to loveliness and likeliness in the sens® @ind £Z, and thus to
the derived confirmational virtues. What is this good for?

If you have got a body of evidenck, a theoryT’, and some background
knowledgeB, and you are to asse$srelative toE' and B in the sense of con-
firmation combining the likeliness and the loveliness concept, then — other things
being equaf — if you makeT logically stronger, for instance, by adding new hy-
potheses? will not become likelier relative t&& and B, and may become less
likely, but 7" may get more power foF relative to B, and its power will not
decrease.

On the other hand, if you makilogically weaker, say, by deleting some of
the hypotheses i, thenT" will — other things being equai— not get more power
for E relative toB, and may become less powerful, bitmay become likelier
relative toF and B, and its likeliness will not decrease. This is the contribution
of the third conditions in the definitions of searching power and indicating truth,
respectively, to the definition of being sensitive to loveliness and likeliness.

However, whether or not the power and the likelines# oélative to~£ and
B are increased by makirif logically stronger respectively weaker, depends on
the way this is done. It depends on the added or deleted hypotheses whether a
change in logical content results in an increase or a decrease of one of the primary
confirmational virtues.

What is the point of changing the logical contentif(by adding and/or
deleting hypotheses)? By adding new hypotheses we hope to’fala@e pow-
erful for E relative to B, but thereby not to make it less likely; by deleting hy-
potheses we aim at an increase in the likeliness oélative to £ and B, which
should not also result in a decrease of its power.

Furthermore, the power df for E relative toB should be increased, only
if the addition of new hypotheses makEsot only logically stronger, but enables
it to account for data that have not been accounted for so far by; thereby the cost
in likeliness should be as small as possible. In the same way the likeliness of

10 e. if evidenceE and background knowledge are held constant.
The other things being, B, and the remaining hypotheseslin
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T relative to £ and B should be increased, only if the deletion of hypotheses
results inT" becoming more likely relative t&' and B, which is the case, if those
hypotheses are dropped which are not related to or unlikely relativeand B;
also here, the cost in power should be as small as possible.

What the measure of confirmatid@nis expected to do with regard to this is
that it balancesbetween the two primary confirmational virtues: The jolbis
to take into account both of these aspects, and to weigh between them in such a
way that there results aquilibriumbetween loveliness and likeliness.

This balance is optimal, if’ can account for all the data it relative B, and
is also maximally likely relative t&Z and B. In particular, if the theoryl” to be
assessed coincides with the evidehta the sense thaf is just a reformulation
of £ as a set of statements satisfying assumption 1.1, then the balance between
these two aspects is optimal, whert€€7’, £, B) should be maximal in this case.
This is exactly what the following theorem states.

Observation 5.2 (Maximal Confirmation for 7" 4+~ E) Let T be a theory, and
let £ be an evidence. Then it holds for every background knowld¢igend every
confirmational domairD; of T"and E':

If 74 ForEUB AT orTUB -+ E, thenC (T, E, B; D;) = 1,
providedC (T, E, B; D;) is defined.

Now this result may seem to be quite odd, for after all, what it tells us is that no
theoryT can be better confirmed than some odd reformulation of the evidence.
Moreover, in case of the rule of acceptance for rational theory ch@e the
above theorem tells us for every typical problem situation with a finite set of al-
ternative theorie§T}, ..., T,}, andE belonging to the domain of application of
eachT; that we should accept some reformulatibnof £.

So, does our measure of confirmatiohforce us to draw the conclusion
that we can do without all the theories proposed in the history of the sciences by
various ingenious scientists, and that we better stick to a theory-like formulation of
all data gathered so far? It would, if there were no reasons for restricting the class
of sets of statementE that may be considered as serious candidates for scientific
theories to those which are finitely axiomatizable without constégtms, where
D; is among the domains of proper investigatiory of

Given this restriction, the consequences of the preceding observation need
not be drawn.
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Observation 5.3 (There Is Nol" with 7" ++ E) Let E be an evidence. Then it
holds for every theory” for which there is at least one confirmational domain of
T andFE:

THE or EFT.

(By assumption, there is at least one confirmational domgiof 7"and E. This
D; is among the evidential domains Bf whence there is a constariermessen-
tially occurring inE; but D; is also among the domains of proper investigation of
T, whencel’ contains no occurrence of a constéaitgerm.)

This does, of course, not mean that no thedrgan be maximally con-
firmed by some evidencé relative to some background knowledge Let
E ={Fay,...,Fa,},n>1,B=0,andT = {VzFz}. Then

C(T,E,B)=P(T,E,B)-LI(T,E,B)=1-1=1.

5.7 A Shortcoming?

The last example does not only show that there are thedriesidences, and
background knowledgeB such thatC' (T, £, B) = 1. It also illustrates that the
degree of confirmation is determined by fireportionof those constant terms
which — in case ofP — are in the account ¢f in E relative toB to all constant
terms ' € Cp_,.p (E); and similarly forCZ. The size of the evidencE in the
sense of the cardinality @f's_,.,- (E£) and its variety or diversity do not matter
for power, likeliness, and confirmation.

Is this a point against the approach presented here? | think it is not. The
measure of confirmatiofi' does not — ané not intended te- measure the overall
support there is for a given theowy. (7', £, B) tells us how mucH is confirmed
giventhat £ is all the evidence available angl is thewholebackground knowl-
edge. Whether there is a lot of overall supportfodoes not only depend on its
degree of confirmation by relative toB; it additionally depends on whethér
Is goodevidence.

What follows? Do we have to rely on some principleathl evidenceelling
us that in assessing a given the@iye always have to consider the total available
evidenceF, and the total available background knowledge- at least if we
expect the measure of confirmatiéhto implicitely provide a rule of acceptance
for rational theory choice?

| do not think so. IfC is not to provide a rule of acceptance for rational the-
ory choice, then al” (T, E, B) is expected to tell us is how mug@his confirmed
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by E relative to B — and this it does. If, howeve¢, is to provide such a rule

of acceptance for rational theory choice, then there are two possibilities: Either
the problem situations this rule is to handle are of the type described in chapter
2, in which case&” does its job, for these problem situations are relative to some
evidenceFE (and some background knowled. Or else the problem situations

this rule is to handle are not relative to sortiie(and B), but ask which theory

to accept independently of the evidence under consideration (and the background
knowledge taken for granted).

If, among others, the theory to be chosen should be true in the actual world
— and | take this to be one of the features we aim at — then every such problem
situation has to be understood as asking which theory to accept with regard to a
complete description of the actual world (or at least the total available evidence).
For, after all, (sorry, | am repeating myself), truth is a binary relation between
a (set of) statement(s) on the one hand and a world or model on the other, and
thus cannot be taken into account without recourse to the world or model whose
truth in one is interested in. However, establishing this link is just the purpose of
the evidence, and the reason why it is assumed to be true in the actual world. So
every problem situation of the latter kind is relative to a complete description of
the actual world, whence the second type of problem situation is only a special
kind of the first one.

There is a peculiarity of demanding to consider a complete description of the
actual world or the total available evidence. The idea behind a rule of accpetance
for rational theory choice is to be a guide in deciding which theory to accept with
regard to a given evidence and a given background knowledge. If the answer to
this question demands of us to collect all the data there are, or even to consider a
complete description of the actual world, then we will never be in the position to
apply this rule, for we will never have collected all the data there are — nor will we
ever possess a complete description of the actual world. So if a rule of acceptance
for rational theory choice is to be meaningfully combined with a principle of total
evidence, then all this principle can demand of us is to consider all the evidence
that ispractically available (at a given point of time). The question is whether
there is not a better strategy for dealing with all this.

| think there is: In assessing a given thedryelative to some evidenceé
and some background knowled@k one has to consider not only the degree of
confirmation of" by E relative toB, but must also take into account the “good-
ness” of the evidenc&'. What the latter consists of, and how it can be measured,
is the topic of the last chapter.



120 CHAPTER 5. LOVELINESS AND LIKELINESS



Chapter 6

Variety and Goodness of the
Evidence

6.1 Introductory Remarks

As already mentioned the measure of confirmatidoes not tell us anything
about the overall degree of confirmation of a theory, which additionally depends
on the “goodness” of the evidence. Similarly, the reliability of the rid®® of
acceptance for rational theory choice of chapter 2 depends not only on the degree
of confirmation, but also on the goodness of the evidence, which | take to consist
in its size and its variety or diversity.

In this chapter a functiol (-, -, -) is defined on the set of all evidencés
the set of all theorieq”, and the set of all background knowleddgeésand it is
argued that, for a given evidende, G (T, E, B) measures the goodness bf
relative to theoryl” and background knowledgB in the sense of the formers
size and variety (diversity). | will reason that the refined measure of confirmation
C*, which is based o@' andG, gives an answer to the question why scientists
(should) gather evidence, and that it resolves the ravens paradox. The chapter
ends with some comments on the reliability of truth indicators.

Intuitively, an evidence is the better, the more data it reports about, the more
different classes of facts it consists of, the greater these classes of facts are, the
more detailed or accurate they are described, and the more they differ from each
other. The concept of evidential diversity or variety of evidence thus clearly de-
pends on the notion of a class of facts, in particular, on when two classes of facts
count as different ones, on when they (are big and) described in detail, and on

121
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when two classes of facts differ more from each other than two other ones. A
class of facts is construed as a set of individuals mentioned in some evilence
respectively a set of constant terms occurring’ir because | take individuals to

be ontologically fundamental.

Whether two classes of facts count as different ones depends on the hypoth-
esis or theory one is concerned with. Therefore determining the goodness of an
evidenceE — by determining the number, size, accuracy, and difference of the
classes of facté’ consists of — involves considering the theory in question. The
background knowledg® has to say something, too, whence the measure of the
goodness of evideno& is construed as a function with three argument places.
For convenience, a fourth argument place is added for the confirmational domains
the individuals in the various classes of facts are taken from; but again, strictly
speaking the value @ for givenT’, E, andB is a vector whose length equals the
number of confirmational domains @fandE.

Let us consider why the notion of a class of facts has to be relativised to
the hypothesis or theory under consideration. Relative to a theory that claims to
account for the colour of people’s hair a black haired man and a black haired
woman belong to the same class of facts, whereas a black haired woman and a
red haired woman belong to two different classes of facts. On the other hand,
relative to a theory about the sexual behaviour of humans the black haired man
and the black haired woman belong to two different classes of facts, whereas the
black haired woman and the red haired woman belong to the same class of facts
— the reason being that the colour of humans’ hair is irrelevant for their sexual
behaviour, but relevant for the colour of their hair, whereas the sex of humans is
irrelevant for the colour of their hair, but relevant for their sexual behaviour.

Furthermore, enlarging the data may yield that two individuals which belong
to the same class of facts relative to a given theory in the old evidence belong to
two different classes of facts relative to the same theory in the enlarged evidence,
because the new data may be relevant for this theory. For instance, by taking into
account the age of humans the black haired and the red haired woman of before,
which belong to the same class of facts relative to the theory about the sexual
behaviour in the old evidence, will no longer belong to the same class of facts
relative to this theory, because their age, which is assumed to be very different, is
relevant for and will make a difference in their sexual behaviour.
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6.2 (Maximal) Classes of Facts

A class of facts is construed as a set of individuals mentioned in some evidence
E. The information we have about these individuals, and on which we can rely
in classifying them, is contained il and the background knowleddg Since |
want to classify single individuals, and not whaeldupels, | have to consider one-
place predicates instead @fary ones. Finally, as is familiar by now, individuals
enter the scencda their names, the constant terms(ig_, ., (E).

Let us first consider an-ary predicate P (z4, ..., z,)’, where all variables
‘x;’ are of the same sort. Such a predicate gives rigé td-n one-place predicates

Qixy ... Qiflxilez#lmiJrl Qe P (96’1, ey L1, Ty Tjq 1y e e - ,l’n) )

1 < i < n, where@Q); is an existential quantifief or a univeral quantifiel/,
1 < j # 1 < n. By rearranging these quantifiers (changing their order) one gets
2n=1. (pn —1)!-n =2""1.n! one place predicates from arary predicate (some
of them denote the same property, because the order of the quantifiers does not
always matter).
Binding argument places with quantifiers is not the only way to get one-

place predicates from+ary ones. In combination with a set of constant tereq’s *

.., ‘¢, of the appropriate sort,” (xy, ..., x,)" gives rise tom™~! - n predicates

P (ckl, ey Chy gy Ty Chyyyy e - - ,ckn) ,
1<i<n,1<k; <m,foreveryj, 1< j+#1i<n.Together these two methods

yield
Z ( r ).mr'inr

0<r<n—1 \"* — 1

one-place predicates

Q11 Qic1%i1Qit1Tig1 - Quan P (t1, .t Ty tiga, ooy ),

1 <4 < n, out of onen-ary predicate, wher€); is either3 or v, and ;" =
‘wiior't; € {'¢t’,...,'cn’ }, 1 < j # i < n, whence some (namely of the
guantifiers occur vacuously. By rearranging the- 1 — r quantifiers occurring
non-vacuously one thus gets

3 ( " >~m’“-2””.(n—1—r)!

0<r<n—1 \"V — 1
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one-place predicates out of one singlary predicate.
A set PR of p n;-ary predicates then gives rise to

>y ( " )-m’”-Q”il’"-(ni—r—l)!
152po<ran—1 \1i — 1
one-place predicates, whetgis the arity of the-th predicate inPR, 1 < ¢ < p.

Things get more complicated, when one considers different sorts. | will not
show how to get one-placepredicates Pz*' out of n-ary ki, . . ., k,-predicates
‘P (xkl, ...,x* )" and various sets of constaitterms. | hope the above is suffi-
cient to show that thisanbe done, and that the result idiaite set of one-place
i-predicates.

| have argued that whether two individuals belong to the same class of facts
depends on the theory under consideration. This appears in the definition of a
class of facts by taking as the set of predicdtésthe set of predicateB R, (T')
essentially occurring in theof§ which is to be assessed yrelative toB.!

The restriction to the predicatessentiallyoccurring inT" is necessary, be-
cause otherwise the set of predicafé® can be chosen arbitrarily (by adding
hypotheses which are logically valid and contain occurrences of the predicates
one wants to have added).

Theratio behind takingP R, (T') is that if two individualst andt’ (should)
belong to two different classes of facts as far as some thEasyconcerned, then
this must be due to some propertytofthat ' does not have. If every property
that can be expressed in terms of the predicates essentially occurfing either
possessed by bothandt’ or by none of them, then all properties distinguishing
betweert andt’ are irrelevant fof’, whence andt’ cannot belong to two different
classes of facts as far @sis concerned. So the predicates essentially occurring in
T settle the relevant conceptual space for the classification of the individuals the
evidence is talking about.

In the example of before, the predicates ‘male’ and ‘female’ are among
the predicates essentially occurring in the theory about the sexual behaviour of
humans, whereas the predicates ‘black haired’ and ‘red haired’ do not belong to
the essential vocabulary of this theory. Therefore the black haired man and the
black haired woman can be distinguished by means of the conceptual framework
of this theory, but not by the conceptual framework of the hair colour theory.

Allwe can rely on in determining the size and the variety -gbedness- of
evidenceF, is contained in& or the background knowledge. In particular, the

1So PR is empty, ifT' is logically determined.
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information that there is a propertytheoryT’ is talking about which is possessed
by individual ¢, but not by individualt’, must be obtained fror’ and B. In the
definition of a class of facts, this finds its expression in considering whéther
and B logically imply Pt, where Pz’ € PRy, ‘t' € Cp_repr (E), and PRy is
the set of one-place predicates the set of predicRiRs; (1') gives rise to in
combination with the constant termsd@f_,.,, (£).

Based on these considerations we can now define the notion of a (maximal)
class of facts.

Definition 6.1 ((Maximal) Class of Facts)Let T be a theory, letE be an evi-
dence, letB be a background knowledge, and It be a confirmational domain
of T"andE (soCg_,r (E) N C; is NOt empty). Let

PR= PR, (T)= ()| PR(T),

T'4-T

andlet Py =" P/ («h, .. o ), B = Pre (af, L o ) be an enu-
meration of the predicates AR, wherep = | PR|. Let PR! be the set of all one-
placei-predicates which result from any of the following one-plageedicates
by rearranging the quantifiers:

Qiz™ .. Qi Qg atr anxk"q P, (tkl, o ther gk ke ,tk”Q> ,

1 <1 < ng, where t%" = *z%" or ‘t"" € Cp_,epe (E) N Cy, (Cy, is the set of
constantk;-terms),1 < j #1 < n, ‘P’ € PR,1 < ¢ < p,and oh = ¥
(otherwise one does not gepredicates).

Let PR! be partitioned intaV := 2/7%i| setsCi, ..., C% of negated or
unnegated one-plaéepredicates such that it holds for every suié]hl <j <N,
and every one-placepredicate P’ € PR;:

‘P eC; iff ‘=P ¢

For each of thes&/ setsC”, letC be thek-th subset of in some enumeration
C;il, e C}N of its N subsets. Lett' € Cp_,ep (E) N C;.

‘t' respectivelyt belongs taC"; iff it holds for every negated or unnegated
one-place-predicate +P' € C; , EU B = +Pt.

‘t’' respectivelyt belongsmaximallyto C7 " iff

1. 't belongs toC? , and
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2. there is noCj, 1 < I < N, for which there is at least on€] < (7,
1 < p < N, satisfying (1) and such that, c Cj 2

The (maxima) class ofi-facts induced by’ relative toT', E, and B, CF} , is
given as follows:

Cij = {‘t’ € Cp_yepr () N C; - 't belongs (maximally) toﬁ}k}.

The set of all (maximal) classes OfactsCij induced bij’ik relative to7', F,
andB, for anyj andk, 1 < j, k < N, is the set of (maximal) classessfactsT,
E, andB give rise to

Let CF; be the (maximal) class affacts induced by’ relative toT,
E, and B, for some set of negated or unnegated one-plgmedicates” , 1 <
J, k< N.

(Jij is anon-emptymaximal) class ot-facts relative tdl’, £, and B iff
gFg} ] ZIAB@. OtherwiseC'F; is anempty(maximal) class of-facts relative tdl’,

2|t is important to demand that there be no such proper superéé;'t obDemanding that there
be noCZp with C” F C” andCl ¥ Cy, has the consequence that there may be constantns
‘t’ belonging maX|maIIy to more than one set of negated or unnegated oneifpaedicates.

For the definition given, maximal classesieficts are disjoint. For suppose there is a constant
i-term 't’ € Cp_r¢pr (E) N C; that belongs maximally to at least two different sets of negated or
unnegated one-plagepredicates”; andCs. Then

FuBF+Pt, foreverytP' € (C;UCsy,

and there is n@; D C; or C}, D (5 such that the above holds of ‘and C respectivelyCs,.
As C; # Cs there is at least one negated or unnegated one-plaeicate 4+ P*’ with * £ P*’
€ Cy and ‘+=P*" € Cs (or the other way round). By the above,U B + +P*¢. But then there is
a proper supersét; of C; — namelyCs> U {+P*} — such that

EUBF+Pt, forevery+P' € Cj

— a contradiction.

With I instead ofC this need not be the case, becau3€ may be of the fornrdz3y P (z, y, a),
and bothCy andC> may contain 3y3zP (z,y,a)’.

Here the logical consequence relatiobetween such se@}k andC}p of negated or unnegated

one-placei-predicates holds iff this relation holds between the e{e‘.tsPt P e C;k} and
{iPt VP e C}p } where t' is a constant-term.
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6.3 Proper Classes of Facts

Consider the maximal classes of facts

CF = {te€Cpy(E):EUBFFtAGt}={ay,...,an},>
CF, = { €Cyyop(E): EUBF FtAGEAOQut} = {b} .
CFk = {‘t’ ECBfrepr(E) EUB"Ft/\Gt/\th}:{bk}, k’Zl,

which are induced by the sets of negated or unnegated predicates
C={Fz,'Ge'},C, ={"Fz'",' G, " Q12" } ,...,Cr ={'Fa’, ' Gx’, " Qyx" } ,
respectively, relative to

T = {Va(Fr— Gz) Vo (Pix — Qz),...,Vr (Pyr — Qr)},
E = {Fal,Gal,...,Fam,Gam,Fbl,Gbl,lel,...,Fbk,Gbk,kak}, and
B = 1,

because it holds for every ‘c CF:
EUBFFt, EUBFGt, and EUBWQ;t, forevery;,1<j<k;
because it holds for every,' € CF;,1 < i < k:

FUBF Fb;, FUBFGb, EUBFQb, and
EUBWQ;b;, foreveryj,1<j#i<k;

and because
PRy = PR=PR. (T)={"Fz','Gx’, " Pix’, " Q12 ..., ' Pex’, " Q' } .

T accounts for (every individual respectively constant term of) the maximal class
of factsC'F' in F relative to B; andT accounts for (every individual of) every
maximal class of fact€'F; in E relative toB, 1 < ¢ < k. However, the informa-
tion about the individulag; which goes beyond that of their having the properties
F andG is not necessary in order fd@r to account fom; in E relative toB. It
suffices to know thali; has propertie$” andG. Let

E, = {Fal,Gal,...,Fam,Gam,Fbl,Gbl,...,Fbk,Gbk}.

3The quotation marks are dropped.
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The only maximal class of facts’ gives rise to in combination with’ and B is
CF' = {'t € Cp_yepr (E'): E'UBF Ft NGt}
== {‘al,a ey ‘a’m’a‘blya ey ‘bk"} - CB—repr (El) )

which is the maximal class of facts induced by the set of negated or unnegated
predicates

C'={Fa2','Ge’} C PR, = PR= PR (T)
relative toT, E’', and B. As before,T" accounts for (every individual of) the
maximal class of fact§'F’ in E’ relative toB.

In both examples]’ can account for all individuals mentioned in the evi-
dence. The only difference between the evideréesnd £’ is that the redundaht
information of individualb; having property); is missing inE’. Now suppose
one claims thaf" is better confirmed by than by £’ (each time relative t@®),
because evidenck is varied, whereas evidendg is not. The question is: Does
this strike us as counterintuitive? If it doest, then the concept of a maximal
class of facts as defined in the preceding section is sufficient.

If, however, it does, then it seems that in determining the variety of evidence
E relative to theoryl” and background knowledge we have to rely only on that
information about the individualsin the class of fact§'F’ which is necessary in
order for7 to account fort in E relative toB. This is exactly what the notion of
a proper class of facts is intended to capture.

Definition 6.2 (Proper Class of Facts)Let 7" be a theory, lefr be an evidence,
let B be a background knowledge, and Iet be a confirmational domain af
andE. Let CF},...,CF' be the classes offactsT, E, and B give rise to,
and letC%, ..., C" be the corresponding sets of negated or unnegated one-place
i-predicates which induc€'ry, .. ., C'F}, respectively, relative t@’, £, and B.

T accounts forC’F;' in E relative toB, 1 < j < n, iff there is a non-
redundant’ C C7 and a (contingent) negated or unnegated one-phpcedicate
‘+P*" € C such that

TUBU{+Pt: ‘P € C\ {'P"}} F £P*,

where such a sét of negated or unnegated one-plageedicates is non-redundant
iff the set{+ Pt : ‘£ P € C} is non-redundant, and'‘is a constant-term.

Let CF;’ be a class of-facts relative tdl’, F/, andB. C'F; is aproperclass
of i-facts relative tdl', F, andB iff

4This information is redundant for the question whetfileaccounts foib; in F relative toB,
but, of course, not in general.
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1. T accounts foCFj in E relative toB, and

2. thereisnd’} C C},1 < k < n, such thafl” accounts foC'F in E relative
to B.

In speaking of a (proper or maximal) class:efacts | will always mean &on-
empty(proper or maximal) class oeffacts.

6.4 The Measure of the Goodness of the Evidence

| take the goodness measure to be defined in terms of proper classéscts.
Nevertheless, if one considers the preceding example as one of two evidences
E and £’ with the same diversity relative to the thedfyand the background
knowledgeB of the example, the definition may be based on maximal classes of
i-facts.

Definition 6.3 (Goodness of Evidence).et T" be a theory, lef be an evidence,
let B be a background knowledge, and et be a confirmational domain af
andE. LetCF},...,CF' be the non-empty proper (or maximal) classes-of
factsT, F, and B give rise to, and leC?, ..., C' be the corresponding sets of
negated or unnegated one-plageredicates which induce the non-empty proper
(or maximal) classes of facGF}, . .., CF!, respectively, relative t@', £, andB.

Thegoodness oft relative to7" and B in D;, G (T, E, B; D;), is given by
the following equation:

1
log(¢g(T,E,B;D;) +1)+ 1’

G(T,E,B;D;)=1—

where
g(T,E,B;D;) = ‘C;AC}; -
1<j7k<n
1 1
log (‘CF; + 1) +log (|CFi|+1)+ 1]

G is not called a measure of evidential diversity, because it additionally takes into
account thesizeof the evidence.
Both G andg increase with
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1. the numbemn of non-empty proper (or maximal) classesiefcts C‘FjZ
1<j<mn

2. the size of the proper (or maximal) classesi-tﬂctsCFj, l.e. the number
‘CF;’ of constant-terms inC'F;

3. the detailedness or accuracy of the descriptions of the non-empty proper (or
maximal) classes offfactsCFj’?, which | take to be proportional q@;‘ and

4. the degree to which the non-empty proper (or maximal) classé$acts
CF;' and C'F} differ from each other — the latter being proportional to

Cinci1<i#k<n.

The formal conditions of adequacy f6fare familiar by now.

Theorem 6.1 (5 Is Formally Handy) G (-,-,-), G(-,+,:) : T x E x B — R, is
non-arbitrary, comprehensible, computable in the limit, and closed under equiva-
lence transformations af.

6.5 The Refined Measure of Confirmation

The measure of confirmatiofi’ is not sensitive to the size or the diversity of
evidenceF (relative to som&” andB), both of which are taken into account by the
goodness measureg. A measure of confirmation which is additionally sensitive

to diversity considerations in this sense, is the refined measure of confirmation
C™.

Definition 6.4 (Refined Degree of Confirmation)Let 7" be a theory, leE be an
evidence, letB be a background knowledge, and Iet be a confirmational do-
main of T" and .

Therefined degree of confirmation @fby E relative toB in D;, C* (T, E, B; D;),
Is given by the following equation:

providedC (T, E, B; D;) andG (T, E, B; D;) are defined.

It is straightforward that'* is formally handy and closed under equivalence trans-
formations ofT".
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Observation 6.1 (Formal Handiness and InvEquTransf ofC*) C* (-,-,-),C* (-, -,") :
T x € x B — R, is non-arbitrary, comprehensible, computable in the limit, and
closed under equivalence transformation§ of

Definition 6.5 (Sensitivity to Diversity Considerations) Let LO be a power searcher,
let L7 be a truth indicator, and I1€» 7 be sensitive to loveliness and likeliness.

A function f (-,-,-), f(-,-,-) : 7 x &€ x B — R, is sensitive to diversity
considerations in the sense 6t -z and G iff it holds for any theoriesl” and
T', any evidenceg’ and E’, and any background knowledgé&sand B’, where
X =(T,E,B)andX’ = (T', E', B'):

1. If CL(’),LI (X) = 650751 (X/) 75 0, thenf(X) > f(X/) iff G(X) >
G (X'),

2. |fG<X) = G(X/> 7& 0, thenf (X) > f (X/) iff C[;@’[;I (X) > Cco@z’ (X,),
3. f(X)=0iff Ccorz(X)=00rG(X)=0,and

4. f(X) = 1iff Cl:o’l:_’[(X) =1 andG(X) = 1.

C* is sensitive to diversity considerations in the sens€ ef C» -7 andG, which
means that the above holds #®veryconfirmational domairD of 7" and E, and
everyconfirmational domairD’ of 7" and E’.

Observation 6.2 (SensDivCons aof*) For any theorie§” and7”, any evidences
E and E’, any background knowledges and B’, every confirmational domain

D of T and E/, and every confirmational domaii’ of 7/ and E’, where X =
(T,E,B;D)andX’ = (T'",E', B"; D'):

1. 1f C(X) = C (X) £ 0, thenC* (X) > C* (X") iff G (X) > G (X'),
2. if G (X) = G(X') £0, thenC* (X) > C* (X") iff C'(X) > C'(X),
3. C*(X) = 0iff C'(X)=00rG(X)=0,and

4. C*(X)=1iff C(X)=1andG (X) =1,

providedC (X) andC' (X') are defined.
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6.6 Why Scientists Gather Evidence

This section deals with the question — posed by Maher (1990) — why scientists
(should) gather evidence. Interestingly, it is of importance thas based on
proper classes of-facts.

One answer to this question is that scientists (should) gather evidence, be-
cause the “bigger” the evidence, the “better” it is, and, as a consequence, the more
reliable the inferences based on it. In particular, the determination of the degree
of confirmation of some theor¥ by E relative to background knowledde says
the more about the overall degree of confirmatiofi'pthe better the evidendeé.

This goodness of the evidenée (in relation to theoryl” and background
knowledgeB) is exactly what- is intended to measure. Furthermore, the refined
measure of confirmatiofi* differs from(' just in the respect that* additionally
takes into account the goodness of the evidence.

So if it can be shown that, other things being efutile refined degree of
confirmationC* (T, E, B) of T by F relative toB is the greater, the bigger the
evidenceF, thenC* can explain why scientists (should) gather evidence.

Apart from this it may be argued that it is a material condition of adequacy
anyway that a measure of the goodness of the evidérice, -) increases withF
getting bigger, i.e. thaf (T, E, B) is the greater, the biggé?, for all theoriesT,
evidenced”, and background knowledgés

What does it mean for an evidengég to be bigger than some evidenEg?
There are at least the following two answers:

1. EvidenceF; is bigger than or equally big as evidenkgiff F; - E.
2. EvidenceF; is bigger than or equally big as evidengEgiff £, C Fj.

I will stick to (1), because it is the more general claim (so the claims below
hold also for 2). By the definition of*, it suffices to show that: satisfies
the mentioned material condition of adequacy in order to showhat’, £, B)
Is the greater, the bigger the evidenEe provided the degree of confirmation
C (T, E, B) is held constant.

The goodness measufesatisfies this material condition of adequacy;, if it
is based on proper classesidhcts, but not, if it is based on maximal classes of
i-facts.

SIf C (T, E, B) is held constant.
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Definition 6.6 (To Support Gathering Evidence) A functionf (-,-,-), f (-,-,+) :
T x €& x B — R, supports gathering evidendeéit holds for every theoryl’, any
evidenced” andE’, and every background knowledge

If E'-E, then f(T,E.B)> f(T,E,B).

Theorem 6.2 (& Supports Gathering Evidence)G (-, -,-), G(-,+,-) : T x € X
B — R, supports gathering evidence, if its definition is based on proper classes of
i-facts, and ifCp_epr (E) € Cp_repr (E').

More precisely, for every theory, any evidences and E’, every back-
ground knowledgd3, and every confirmational domain; of 7" and £

f E'FE and Cp_rep (E) C Cprepr (),
then G(T,E',B;D,)>G(T,.E,B;D;).

This additional condition is superfluousGf;_,.,, (E) is restricted to those con-
stant terms for which the evidenéeand the background knowledggentail that

they are different, i.e. ifE U B & t; # ty, for ‘4, ¢}’ € Cp_repr (E). The
latter seems to be in accordance with our intuitive understanding and implicitely
assumed of th&-representative of’ (£) as the set of those constant terms which
represent the individuals the evidence is talking about.

Forinstance, it = {Fay,...,Fa,},n> 1,isenrichedtd®’ = {Fay, ..., Fa,,a; = as,...

then what we learn in going frori' to £’ is that, after all, we know of just one
single entitity that it is anf’. The proviso can also be dropped if it is stipulated
that in describing the data she is observing, the scientist uses a new name, only if
she is investigating a new entity.

Definition 6.7 (Liking Supporters of Gathering Evidence) Let LO be a power
searcher, leLZ be a truth indicator, and I€l;» 7 be sensitive to loveliness and
likeliness in the sense &fO andLZ.

Afunctionf (-,-,-), f (,-,-) : T xExB — R, likes supporters of gathering
evidence in the sense 6f 7 iff it holds for every theoryl’, any evidences
andE’, and every background knowledge

fE'+E andC£(9’£Z (T, E, B) = Cg(f)’gz <T, E, B), thenf (T, £, B) >
f(T,E,B).

C* likes supporters of gathering evidence in the senge ef C» 7, which means
that the above holds faveryconfirmational domaiD; of T"andE, and ofT" and
E'.

y Ap—1
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Observation 6.3 (C* Likes Supporters of Gathering Evidence) For every the-
ory T', any evidence# and E’, every background knowledge, and every con-
firmational domainD, of T"and E, and of7” and E:

f B/ + E, C(T,E,B,D;) = C(T,E',B: D;), andCp_,ep (E) C
Cp_yepr (E'), thenC* (T, E/, B; D;) > C* (T, E, B; D;),

providedC (T, E, B; D;) andC (T, E’, B; D;) are defined, and the definition of
G is based on proper classesidacts.

6.7 The Ravens Paradox

The famous ravens paradox, to which attention has been drawn by Hempel (1945),
can be stated as follows: Thicod Criterion(NC) says that conjunctive instances
Ala/x] A C [a/x] of universal hypotheses of the forix (A [x] — C'[x]) confirm
the latter (X’ is a vector of individual variables, an@™is a vector of constant
terms of the same length). For instance, according to the Nicod Criterion the
statementd is a black raven’ Ra A Ba, confirms the ravens hypothesis ‘All ravens
are black’ Vz (Rx — Bux).

With the following intuitively plausible condition of adequacy, thquiva-
lence Conditior(EC),

(EC) If a (set of) wff(s)E confirms a (set of) wff(s)’, and if a (set
of) wff(s) 7" is logically equivalent td’, thenE confirmsT”.

one arrives at the allegedly paradoxical result that the statememeither black
nor a raven’~Ba A —Ra, confirms the ravens hypotheSis.

Furthermore, if the Nicod criterion (NC) is replaced by thstance Confir-
mation ConditionICC),

(ICC) A universal hypothesigx A [x] is confirmed by any of its sub-
stitution instances! [a.

and if one adopts thReversed Consequence Condit{CC),

6(NC) yields that & is neither black nor a raven;Ba A —Ra, confirms ‘All non-black
things are non-ravensvz (—Bxz — —Rx), which is logically equivalent to ‘All ravens are black’,
Va (Rz — Bx). By (EC), ‘a is neither black nor a raven;Ba A = Ra, confirms ‘All ravens are
black’,Va (Rx — Bx).
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(RCC) If a (set of) wif(s)E' confirms a (set of) wif(sY’, and if a (set
of) wff(s) E’ logically implies £ and does not disconfirff, thenE’
confirmsT.

then it follows that the statement is no raven’,—Ra, and the statement ‘is
black’, Ba, each confirm the ravens hypotheSis.

Can the account presented here resolve this “paradox™? First, let me note
that we do not observe that something, says a non-black non-raven. What
we observe is that is, for instance, a white swan. If the evidence contains the
statementd is a white swan’ so thab = {Sa, Wa}, it follows that the likeliness
of the ravens hypothesis fdf relative to an appropriate background knowledge
B (containing the information that no swan is a raven, and that nothing white is
black) is maximal, because

Sa,Wat Dev{‘d} (B) — Dev{‘d} (T),

Sa,Wat (Sa — —Ra) N (Wa — -Ba) — (Ra — Ba).

But the power ofl" = {Vx (Rx — Bx)} for E relative toB = {Vz (Sx — —Rx),
Vo (Wz — —Bz)} is minimal, sincel” does not account far in E relative toB,
because

Vo (Rx — Bx),Vx (Sx — —Rx) Yo (Wx — =Bx),Salf Wa,
and
Vo (Rx — Bzx),Vx (Sx — —Rx) Vo (Wx — —Bz),Wal/ Sa.

However, T" accounts fora in E relative to B, if £ = {-Ra,Wa} or £ =
{=Ra,—-Ba}, for

Va (Rx — Bx) ,Vx (Wxz — —Bx),Wat —Ra,

and
Va (Rx — Bx),—Bat —Ra,

By (ICC), ‘All ravens are black’¥x (Rx — Bx), is confirmed by ‘Ifa is a raven, them is
black’, Ra — Ba. The latter is logically implied byd is no raven’~Ra, and by « is black’, Ba,
both of which are assumed to be not disconfirming ‘All ravens are blaek Rz — Bx).
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whence here both loveliness and likeliness are maximal. Nevertheless, even this
can be handled by the refined measure of confirmatian

Before turning to this let me state what | think is “paradoxical” about the
ravens paradox: It isotthat a statement reporting that something is neither black
nor a raven does not confirm the ravens hypothesis, but that the degree to which
the ravens hypothesis is confirmed by such a statementadlerthan the degree
to which it is confirmed by a statement reporting that something is a black raven.
In other words, if the evidenc& says, among others, thatis a black raven
and thatb is neither black nor a raver{,Ra, Ba,—Rb,—~Bb} C E, then both
E; = {Ra,Wa} andE, = {—~Rb, ~B} confirm the ravens hypothesis, bt is
confirming it more tharf,.

The reason for this is that there are by far more non-black non-ravens than
there are black ravens, whence the additionzpfto the available evidenc&
yields a greater boost in the degree of confirmation of the ravens hypothesis than
does the addition af,, provided this information — that there are by far more non-
black non-ravens than there are black ravens — is part of the available evidence
for only with the latter is it the case that the ravens hypothesis is more confirmed
by E; than by E,. This is exactly what the refined measure of confirmatitn
yields.

First, the theory in question i = {Vz (Rx — Bz)}; second, the back-
ground knowledge3* contains, among others, the information that nothing white
is black, that no swan is a raven, that nothing green is black, that no avocado is a
raven, and so on; i.e.

B = {Va(Wx — —-Bzx),Vz (Szr — —Rx),
Vo (Gr — —=Bzx),Vx (Ar — -Rz)} < BT
third, the available evidencgé* contains data to the effect that there are by far

more non-black non-ravens — as white swans, green avocados, and so on — than
there are black ravens:

E = {Ral,Bal,...,Rap,Bap,Sbl,Wbl,...,qu,qu,
Acy,Gey, ..., Ac,,Ge,} € E*, q+r>p8

Now suppose the degree 6tconfirmation the ravens-hypothesis receives from
‘bis awhite swan’Sb A Wb, or from ‘c is neither black nor a raven;Re A = Be,

8Instead of considering white swans and green avocados one can also consider non-black non-
ravens—Rby, ~Bby, ..., Rb,, ~Rb,, whereg > p. | have chosen this way of dealing with the
ravens paradox, because it is more realistic (we usually do not observe non-black non-ravens, but
infer that the green avocados we had for dinner are — or were — non-black non-ravens).



6.7. THE RAVENS PARADOX 137

is the same as the one it receives frams a black raven’Ra A Ba — each time
relative to the same appropriate background knowledge. In other words,

C(T,EU{Sh,Wb} ,B) = C (T,EU{Ra, Ba} ,B)°

Still,
C*(T,EU{Ra, Ba},B) > C* (T, EU{Sb, Wb}, B),

for £ U {Ra, Ba} is better evidence relative 6 and B thanE U {Sb, Wb}, i.e.
G (T,EU{Ra,Ba},B) > G(T,EU{Sb,Wba},B).

This holds independently of basirig on proper classes of facts or on maximal
classes of facts.

The set of predicateBR = PR, (T) is {' Rz’, * Bz}, which is the same
as the set of one-place predicaie®, generated by°R andCp_,.,, (E). The
(non-empty and consistent) sets of negated or unnegated one-place predicates are

01:{‘R$1}, 02:{‘3113’}, 03:{‘—|R:L"}, 04:{‘—\B1"}’
Cs={Rz’",'Bz'}, Cg={Rz','—Bzx'},
Cr={~Re,*Bz'}, and Cs={—Ra  —Br'},

which induce the following two non-empty maximal classes of facts relatig to
E, andB:

CFy={t €Cp_yep (E): EUBF RtABt} ={a1,...,a,}, and
CFgZ{‘t’ ECB_TepT(E)ZEUB}_ﬁRtA_'Bt}:{bl,...,bq,cl,...,CT}.

The maximal classes of factsFy; andC F; are empty, because it holds for every
‘t' e CB_,«epr (E)

FEUuBW -RtANBt and EUBI/ Rt N—Bt.

Finally, the proper classes of fact§ F, and B give rise to are the non-empty
maximal classes of facts, far F; and C'Fy are both accounted for by in £
relative to B, and there is no set of negated or unnegated predicatesC’; or
C' C Cy such thatl” accounts for the class of factsF' induced byC relative to
T, E,andB.

That evidence? contains data to the effect that there are by far more non-
black non-ravens than there are black ravens means that it mentions by far more

The case of U {~Rc, ~Bc} is dealt with in the same way.
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white swans or green avocados and so on (or just non-black non-ravens) than black
ravens. That is, the class of factd; consists of much more individuals than the
class of fact€ F5. This finds its expression in the numbers;, andr, which are
such that

|ICFs| =q+r>p=|CF5|.

So we get the following?®

1
T.E,B) = |C,AC-[1-
g( ) [&wAyen l 1og(|CF1|+1)+10g(|CF4|+1)+1]

1
4-11— .
l log(p+1)+log(q+7"+1)+1]

Although the ravens hypothesis is assumed to be equaaltpnfirmed byF U
{Ra, Ba} and by E U {Sb, Wb} (relative to the appropriate background knowl-
edge), it still holds thaty U { Ra, Ba} provides more_*-confirmation thant' U
{Sb,Wb}. For

C*(T,EU{Ra,Ba},B) > C*(T,EU{Sb,Wb},B)
iff
g(T,EU{Ra,Ba},B) > g(T,EU{Sb,Wb},B),

which holds just in case

1
4-11— >
[ log(1~|—p+1)+log(q+r—|—1)+1]

> 4.

1-— ! :
log(p+1)+log(1+q+r+1)+1]
The latter is the case if and only if

q-+r>p,

i.e. if and only if there are more non-black non-ravens than black ravens. (Note,
this means also that the ravens hypotheslisssconfirmed by a black raven than

by a non-black non-raven, if there afewer non-black non-ravens than black
ravens — which is as it should be.)

1°The confirmational domai® of T and E is suppressed, whei® is the domain (variable)
corresponding to the variableand the individual constants,;’, ‘ b;’, and ‘c;’.
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6.8 Reliable Inquiry

The topic of the last section is the reliability of measufes-, -, -) as indicators
of trutht!, whereP is some property of theoriés in relation to evidence& and
background knowledges.

Let P be any such property that is assumed to be indicating truth in some
model M* = (Dom*, ¢*), and supposép (-,-,-), fp (-,+,) : 7 x E x B — R,
is a function such thafr (T, E, B) measures the degree to which propefty
is exhibited byT', FE, and B, for all theoriesT’, evidencesF, and background
knowledgess.

As argued in chapter 4, respectively its measupg cannot be indicative of
truth in M*, if its applying toT’, F, andB is independent of the modal* whose
truth in one is interested in. Although is a property of theorie®' in relation to
evidencedy and background knowledgés— and not a relation between theories
and models 4 may be indicating truth inoM* by means of the assumption that
M* € mod (E) (or M* € mod (E) N'mod (B)).

Suppose this is the case. Thgn(-, E, -) indicates truth in all modeld1 €
mod (E). As the model of interesM* is only one among them, the reliability
of P respectivelyfr (-, F,-) as indicator of truth inM* depends on how many
models there are imod (E). Therefore the valugr (T, E, B) is not the only
parameter that must be considered in determining the degree to which tffith of
in M* is indicated.

An example illustrating this fo£Z, P, andC is one from chapter & Let
E={Fay,...,Fa,},n>1,B=0,andT = {VzFx}. Then

C(T,E,B)=P(T,E,B) = LI(T,E,B) = 1.13

In case of£Z, the reliability of the indication of truth ibM* € mod (E) depends
on the number of individuals mentioned in

But the size of the evidendg (in the sense ofCs_,.,- (£)|) is not the only
property of importance for the reliability aiZ (T, £, B) as indicator of truth of
T in M* relative toB. Let

E = {Flal,Glal, e G’nal, Ce ,Fle, Glam, ey GnGm} s

More generally, as indicators of some epistemically distinguished property of (sets of) state-
ments in relation to models.

2In case ofP the epistemically distinguished property of theofies relation to models\ is
not truth of 7" in M, but power ofT" for M; in case ofC it is the concatenation of power for and
truth in M.

30Once more, the confirmational domain is suppressed.
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E, = {Flal,...,Fnal,Glal,...,Gnal,...,
o Fram, .o Fpam, Gian, ... ,Gran},
B = 0, and

T = {Va(Fiz — Gix),...,.Voe (F,x — Gux)}.
Then
P(T,E,B)=P(T,E,B) = LI(T,E,B) = LI (T,E,B) = 1.

Although the number of individuals mentionedihequals the number of individ-
uals mentioned i’ the indication of truth ofl” in M* € mod (FE) N mod (E')
relative to B by means ofCZ (T, E’, B) is more reliable than that by means of
LI (T,E,B).

The reason for this may be seen in the fact that the set of all possible worlds
or models in whichE’ is true is a subset of the set of all models in whi€hs
true. Put differently, the more models eviden¢eexcludes as candidates for the
model of interesi\*, the more reliable the indication of truth 6fin M* relative
to B by means offp (T, E, B), provided fp (T, £, B) is held constant. As a
consequence, the indication of truth* by means offp (-, E, -) is maximally
reliable, ifmod (E) = {M*}.

If evidenceF is considered as a test of thedfyrelative to background
knowledge B, andT is taken to be the more severely tested yrelative to
B, the less models there are in whiéh(andT’) are true, then the above may
be put as follows: The indication of truth @f in M* relative toB by means of
fp (T, E', B) is more reliable than by means i (T, £, B), becausé”’ provides
a more severe test df relative toB than E. The degree of severity of the test
provided by some evidencE for some theoryl" relative to some background
knowledgeB could then be defined as a function of some measure funetion
defined on the powerset of the set of all modéls.

14For reasons discussed below (arbitrariness), | do not pursue the question of how the severity
of a test can be measured in this way. Let me just refer to Mayo (1996), p. 180, where it is argued
that

[plassing a test” (with [result] e) counts as a good test of or as good evidence for
[hypothesis]H just to the extentd fits e andT" is asevere tesvf H,

and the criterion for severe tests is that

[tlhere is a high probability that test proceddrewould not yield such a passing
result, if H is false[,]
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Under the assumption that evidengas true in the model of interest1*,
one may argue that' excludes the more models! as candidates faM*, the
more £ is similar to a (correct and) complete descriptibn,- of M*, or the
moremod (E) is similar to M*. Given this, an alternative of this position says
that the indication of truth iob\i* by means off» (-, E, -) is the more reliable, the
greater the similarity off to a (correct and) complete descriptidh, - of M*

(the greater the similarity ofiod (E) to M*).15

However, one may also be of the opinion that the indication of trufh iof
M* by means of» (T, E’, B) is more reliable than that by meansfef (7', E, B),
because evidend€ is (not smaller and) more varied than eviderité.e. because
E' is better thart.

The question is whether these two positions — namely (1) exclusion of many
models as candidates far(* by E, and (2) goodness (size plus diversity)oft
coincide.

Suppose the first position is right. In order to get a measure for the reliability
of fp (-, E,-) as indicator of truth inM*, one has to measure how many models
M there are excluded b¥ as candidates fot1*, or — in terms of verisimilitude
and under the assumption th&* € mod (E) — how similarE' is to a (correct
and) complete description g¥1*.

By assumption, every evidenéeis true inM*, whence every (correct and)
complete descriptio .+ is an extension of in the sense thab .- logically
implies £. But then it either holds that (i) the reliability g (-, F, -) as indicator
of truth in M* coincides with the logical content &, because the wak is made
logically stronger respectively logically weaker does not matter; or else (ii) one is
in need of some (correct and) complete descripfign- of M* so that one can
determine the similarity off to D »4-.

In the first case the question is how such a measure could look like. To take
some measure function (-) defined on the powerset of the set of all models, and
to define the reliability offp (-, E, ) as indicator of truth inM* € mod (E) as
a function ofm (+) is problematic. There are uncountably many measurés,
but no criterion for choosing the right one, whence defining such a funoban
arbitrarily seems to be impossible.

where such a passing result is

one that accords at least as well withase does.

5For the topic of verisimilitude, truthlikeness, or likeness to truth cf. Kuipers (1987), Niiniluoto
(1987), and Oddie (1986); for a survey article see Niiniluoto (1998).
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So one has to be more modest, and be satisfied with a comparative concept
of reliability. The indication of truth inM* by means off» (-, E’, ) can then
be defined to be more reliable than that by meangdf, £, -), if evidenceE’
logically implies evidences. However, a consequence of this is that hardly any
two functionsfp (-, £, ) and fp (-, E’, -) can be compared with respect to their
reliability as truth indicators. Furthermore, theorem 6.2 tells us that every such
ordinal measure is inferior to the goodness measirprovidedCp_, ., (E) C
CBfrepr (E/>

In the second case the problem is that we do not have a (correct and) com-
plete descriptiorD .- of M* — at least, ifM* is some model of the actual world
—whence we will never be in the position to determine the reliabilityof , £, -)
as indicator of truth inM* € mod (E). Moreover, if we had such a (correct and)
complete descriptio® - of M* (in Lp11-), then every indicator of truth in1*
would be superfluous, for in this case we would know how the truth, the whole
truth, and nothing but the truth inv* looks like.

| conclude that even if the similarity of to D -, for some (correct and)
complete descriptio® - of M* is the reason for the reliability of (-, £, -) as
indicator of truth inM*, this line of argument is not worth being pursued, because
we simply do not have a (correct and) complete descripftign of the model of
interestM* — and if we did, we would not be in need of an indicator of truth in
M.

Furthermore, the only practically applicable approach to reliability of truth
indicators based on the exclusion-of-many-models-claim — namely to identify it
with the logical content off — is not only not promising, but is also inferior to the
goodness measu(e.

Thus the second approach — reliability 6f (T, E, B) as indicator of truth
of T in M* € mod (E) relative toB is goodness of relative to7 and B — is
superior to the first one, because it does not presuppose a (correct and) complete
descriptionD - of M* (respectively the model of interedt* itself), and be-
cause it takes into account thetio behind the first approach in the sense that
supports gathering evidence.



Chapter 7

In Conclusion

Concerning the combination of likeliness and loveliness, let me remark that the
epistemically distinguished properties (of theories in relation to worlds or models)
behind them are truth for the former, and power for the latter. For long, truth
has been considerdtle epistemically distinguished property. This monograph
should, among others, show that this exclusive focus on truth is not warranted.
Having true theories is nice, but it is not all we want our theories to be — the
theories we aim at should also be informative.

Finally, some prospects: As mentioned in chapter 3, confirmation has been
a hot topic in the philosophy of science for more than a half century; but despite
great efforts, there is still no generally accepted definition of (degree of) confir-
mation. This may be surprising. However, another observation strikes me as even
more surprising: To the best of my knowledge, no-one has ever dealt with — let
alone answered — the question what confirmation is good for, why we should stick
to theories that are well confirmed. There are many theories of confirmation, but
— as far as | know — there is no argument to the effect that confirmation is worth
being pursued. Until now, there is no justification of confirmation!

One obvious reply is that confirmation by evidence from the actual world is
indicative of truth in the actual world. However, if | am right, this is not the only
feature we are after. Confirmation should not only lead to true theories (those are
easy to obtain); it should lead to theories that are both true and informative.

A future project | am working on is therefore to investigate whether (prob-
abilistic and non-probabilistic) theories of confirmation can be justified. In my
opinion, the framework best suited for dealing with this question is formal learn-
ing theory (cf. Kelly 1996): Roughly speaking, the idea is to consider the long-run
behaviour of a method (of discovery or assessment) that obeys the methodological
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recommendations of a given theory of confirmation. The question is whether and

in which sense such a methodréiable (for which class of hypotheses does the
method converge to the correct answer; and in which sense of convergence does it
do so?). For the approach presented here, the questions concern the performance
of a lovely learner, a likely learner, and a learner which is sensitive to loveliness

and likeliness.

1| am grateful to Vincent F. Hendricks for his suggestions concerning this justification of con-
firmation.



Appendix A

Proofs for Chapter 1

A.1 Proof of Theorem 1.1

Theorem A.1 (Domains of Proper Investigation)Let 7" be a scientific theory
with domainDomy = (Dy,...,D,) andDy,, ..., Dy, as its domains of proper
investigation,l < k; < r,foreveryl,1 <[ <n.

Then there is at least one finite axiomatizatidp of 7" with at least one
occurrence of &;-variable, and without occurrences bfconstants, for every
[,L1<l<n.

Proof.
Let 7" be a theory with domaiomr = (Ds,...,D,) andDy,, ..., Dy, asits
domains of proper investigation,< k; < r, for everyl,1 < [ < n. This means
that for everyDy, there is at least one finite axiomatizatidp, of 7" with at least
one essential occurrence ofavariable, and without occurrencesigfconstants.
Obviously, theAy, are not logically determined, for otherwise they cannot
contain essential occurrences of a variable.
ConsiderA;,. From the interpolation-theorem (and the compactness of
PL1 =) it follows that there is at least one finite set of wffssuch that

Ay, FLF A, C(L) CC(A)NC(Ag,).

As Ay, F Ay, it follows that A, 4+ I 4+ Ay,, which means that; is a finite
axiomatization ofl” with at least one essential occurrence @f;avariable, with
at least one essential occurrence @favariable, and without occurrencesigf
or ky-constants. In particular, this means that- Ay.,.
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A second application of the interpolation theorem (in combination with the
compactness aP L1 =) yields the existence of a finite set of wifs with

LFLF Ay, C(L)CCO@)NC(Ay) CC(A)NC(A)NC (Ay),

which is a finite axiomatization df’ with at least one essential occurrence of a
k;-variable, with at least one essential occurrence bf-gariable, with at least
one essential occurrence okgvariable, and without occurrencesiof, k»-, or
ks-constants, becaus®,, - I;.

By continuing in this manner one arrives (after 1 steps) at a finite set of
wifs I,,_; with

Lok LAy, C(Iia) CCULi2)NC(A) S () C(Aw),
1<i<n

which is a finite axiomatization ¢f with at least one essential occurrence éf-a

variable, and without occurrences/gfconstants, for every 1 <[ < n, because
Ap F I O

A.2 Proof of Theorem 1.2

Theorem A.2 (Strict Probabilities) Letp (-), p(-) : L,0p — R, be a strict (un-
conditional) probability, and let (- | -) be the conditional probability based on
p(-). Then it holds for any wffsA, B € L., with p (4) > 0:

p(B|A)=1, onlyif AF B.

Proof.

Letp(-),p(-) : Ly — R, be a strict (unconditional) probability, and Jet- | -)
be the conditional probability based pn-). Let A, B € L,,,, with p (4) > 0,
and supposg (B | A) =1,i.e.p(B A A) = p(A), which holds iff

p(BAA)+p(-A) = 1
iff
p((B/\A)\/—!A) = 1 AANBF—--A
only if
F(BANA)V—-A  p() is strict
iff
Al B.



Appendix B
Proofs for Chapter 2

B.1 Proof of (Non-) Arbitrariness Claim

Application B.1 (Arbitrariness)

1. Every set of Bayesian relevance measures is arbitray; in particular,
this holds ofd, r, [, s, andc.
3. The uncountable sét of functionsf, (-), f. (-) : R — R, with

fal@)=2% z2eRy ={r:2eR x>0},
aeR" ={z:xeR x>0},

is not arbitrary.

Proof.

1. It suffices to construct two probability spaces with four events, where the back-
ground knowledge¥ is settoT, H is some hypothesis, andis some evidence.

Let

m(HAE)=05,p (-HAE)=025p (HAN-E)=p (-HAN-E)=0.125,
and let
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whence it holds for every set of relevance measures
my, (H,E)>0>m, (-H,E).

p(H|B) = < - =p(H) and p(~H | E)= ) > = =ps(~H),
whence it holds for every set of relevance measures
my, (H,E) <0< m,, (-H,E).
3. There are na,y € R} anda, b € N+ such that
fo(@) < faly) and fiy(y) < fo(2),

since it holds for any;, y € R¢ and everyu € R+:

x<y Iiff 2% <y

B.2 Calculations

B.2.1 Calculation1

hu, (T,E,B) > 0
iff
p(E[TN(B-E))>p(E|B-FE) and p(E|B)>p(E|B-E)
or
p(E|TN(B-E))<p(E|B-E) and p(E|B)<p(E|B-E),

providedp (' A (B—FE)) >0,1>p(E| B—FE)>0,andp(B) > 0.
Calculation

hUP(T7E7B> = p(T‘ (B—E)/\E)p(E‘B)—l—
p(T| (B~ E)A-E)-p(~E| B)—~p(T | B~ )
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is positive, i.e.> 0, iff

p(TAN(B—-E)ANE) p(E|B)
p((B—-E)NE)

p(T'N(B—FE)A=E)-p(~F|B)
p((B—E)A-E)

p(E | B)
p(E| B - E)

p(-E | B)
p(-E| B - E)

p(E|TN(B-FE))- +

+p(—mE|TN(B-FE))-

p(E|TNB-E))-
p(E|B)-(1-p(E|B-E))+
+(1=p(E[TAN(B-E))-
(1-p(E[B)) p(E|B-E)

p(E[TNB-E))-
(p(E|B)—p(E|B-E))

p(E|TAN(B-E))>p(E|B-E)

p(E|TAN(B-E))<p(E|B-E)
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. PITA(B-E)
p(B—E)

iff

> 1

iff

> p(E|B-E)-
-(1-p(E|B-E))
iff

> p(E|B-E)-
(p(E|B)—p(E|B-E))

iff

and p(E|B)>p(E|B—E)

or

and p(E|B)<p(E|B—E).

Note that this result holds also in cagd B — E)’ is replaced by p (B E)'.

B.2.2 Calculation 2

po (T | (BelEYNE)=p (T | (Bi1lE)\NE),

provided B; ! E 4F Byl E, po (E | By) > 0, po (B! E)ANE) > 0, and

p (BILE) A E) > 0.
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Calculation

po (TN (Bl E) N E)
po ((B2UE)NE)
m(TNANBIULE)NE|E)-py(E| By) +
P (BIE)AE|E)-py(E| Ba) +
+p1 (T A (B1UE)NE | =E) - pa (mE | By)
+p1 (BIUE)AE | —E) - py (0F)
JC, and Bl!E - B, E 1
p (T A(BUE)ANE|E)-ps(E | By)
p((BIRE)ANE | E) - pz (E | B)
= n(T[(BIlE)ANE),

po (T | (B2lE)ANE) =

where Jeffrey conditionalisation is replaced by strict conditionalisatign (if)) =
1, and s, (E) = p2 (E'| By) = 1.
In the same way one shows that

p2 (T | (B2 E) A =E) = pi (T | (Bi L E) A —E),

provided By ! E 4 By L E, po (E | By) > 0, po (B2 E) A—=E) > 0, and
m ((B1UE)AN—FE) > 0, where Jeffrey conditionalisation is replaced by strict
conditionalisation, ifp; (—F) = 1, and sqp, (—E) = ps (—F | Bs) = 1.

Note that this result holds also for counterfactual Jeffrey conditionalisation,
i.e.if ‘ps (XF | By) isreplaced by py (£E | BV E)'.

B.2.3 Calculation 3

p (T'| Bi1UE) ‘
p1(E) - (1—pi(E))
i (E|TA(BUE)) - (p2 (E'| Ba) —p1 (E)) +
+p1 (E) - (1 —p2 (B | By)],

providedB; ! F -+ By  E, p;
0, D1 (Bl l E) > 0, andl > P1

p2 (T | By E)

| BIUE) = p1 (E), p2 (B2) > 0,p2 (B2 E) >

(E
(E) > 0.

1The reader should be so kind to read this as one single fraction over two lines.
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Calculation
If p1 (T'A(B1UE)) > 0, then

p2 (TN (Ba U E))
p2 (B2l E)
m(TAN(B1UE) | E) -pa(E| By) +
i (BiUE | E)-p2(E | By)+
+p1 (T AN (B UE) | 2E) - py (0E | By)
+p1 (BilE | -E) - pa (mE | By)
JC, and B {E -+ By E 2
p1 (T A (B1lE))
p1 (Bl E)
_(pl(E|TA(313E))'P1(ﬁE)'p2(E|B2)+
pi(E | BUE) -p1 (2F) -pa (E | Bs) +
+p1 (CE | TA(Bi1UE)) pi(E) -p2(—F | Bz))
+p1 (~E | BIUE) - p1(E) - pa (-E | By)
p (T | BiE) ‘
p1(E) - (1—pi(B))
L (B |TA(BLUE)) -p1 (2E) -p2 (B | Ba) +
+p1 (CE [T A (BiUE)) -pi(E) - p2 (—E | By)]
i (E| BilE) =pi(E)
p (T| BiE) ‘
pi(E) - (1—pi(B))
" (E|TA(BUE)) - (p2 (E'| Ba) —p1 (E)) +
+p1 (E) - (1 —p2 (£ | By)]

pe (T | BolE) =

which is equal to
P2 (B By)
pi(E)
if T+ E.Incasep, (TN (B1UE)) =0,p2 (T | By E) = 0.
If counterfactual Jeffrey conditionalisation is used apgl(E | By)’ is re-

Pl(T|Ble)

2The reader should be so kind to read this and the following as one single fraction over two
lines.
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placed by p, (E' | By E)’, calculation 3 yields that

p1 (T | BilE) .
pi(E) - (1—pi(E))
[p1 (B | TAN(BLUE)) - (p2 (B | B2l E) —p1 (E)) +
pL(E)-(1—p2(E| Bl E))],

which is greater thap, (7' | B E) just in case

p2 (T | Bl E)

pL(E[TA(BIUE))>pi(E| B E) and py (E | Byt E) > pi (B | BiE)
or
pL(E|TA(BRE)) <pi(E[BE) and py(E | Bl E) <pi (E| Bl E);

B.2.4 Calculation 4
Suppose

BilFE 4 By E and pl(E|Ble):p1(E)
If po (T | B2 E) is the result of Jeffrey conditioning afi, then

huy, (T,E,B)) > huy, (T, E, By)
iff
pi(E|TA(BRE))>p (BB E) and pi(E | By) > pi (E]BilE)
or
pL(E[TA(BRE)) <pi(E[BiE) and p (E|By) <pi(E]| Bl E),

provided

p2(B2) >0, p((B2lE)AE) >0, p2((B2lE)A-E) >0,
p(BilE) >0, 1>pi(E)>0, and p(T|BiE)>0.

Calculation
Let

o PUE[TA(BRE)) - (p2 (B Bz) — pi (E)) +p1 (E) - (1 —p2 (B | By))

p1(E) - (1 —pi(E))
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Then

pi(T| (BitE)ANE) -pi (E | Bi)+
+p1 (T | (BIYE) A=E)-
p1 (RE | B))—p1 (T | B1 E)

pi (T (BilE)ANE)-pi(E | By) +
+p1 (T | (BIVE) A—E)-
p1(~E | B)) —pi (T | B E)

pi(T | (BilE)AN-E)-
“(p1 (=E | By) —pa (E | Ba)) +
+p1 (T | BIUE) - (z—1)

The latter holds just in case

r—1

P (E|TA(BLUE))-
1.
(p2 (B | By) —p1 (B)) +
1 (E)-
+p1 (E) - (1 —pa (E | By))
(1 =p1(E))
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p2 (T | (B2t E) AN E) - ps(E | By) +
+po (T | (B U E) N—FE) -
P2 (2E | By) —pa (T | B2 E)

(T (BilE)NE)-py(E| Bg) +
+p1 (T | (B1UE) AN —E) -

P2 (mE | By) —p1 (T | BilE) - x
B E 4 By E,

calculations 2 and 3

p1(T | (BIlE)AE)-
(02 (E'| By) =pu (B | By)).

(p2 (B | B2) —p1 (E | By)) -
_(pl(E|TA(Ble))

p(E| BiUE)

nm (ﬂE|T/\(Ble))>
D1 (_‘E | B12E)
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E)-(1-— FE
2B A=p ) | By - i (B BY)-

p1(E) - (1—pi(E))
PLE[TA(BE)) —pi(E)

p(E) - (1—pi(E))
pi(E|BlE)=p (E) 3

iff
(p1 (B | TA(B1UE)) —pi(E)) -
(p2(E | Be) =pi (E)) > (p2(E | By) —p1 (B | By)) -
(i (E|TN(BUE)) —p1(F)),
which holds if and only if

or
p(E[TAN(BUE)) <pi(E| B E) and pi(E|Bi) <pi(E|BilE).

B.3 Proof of Theorem 2.1

Theorem B.1 (NecSuff) Given
BIlEAF Bl E, pi(E | BllE)=p(E), and p, (T |BilE)>0,
the equality
pi(T|BUE)=ps (T | By E)

is necessary and sufficient for the equivalence

hu,, (T,E,By) > huy,, (T, E, By)
iff
p1(E|TAN(B1UE))>pi(E| BilE) and ps (E | Ba) > p1 (E | By)
or
pr(E|TA(BUE)) <pi(E|BilE) and py (E | By) <pi(E | Bi),
provided

p2(B2) >0, p2((B21E)AE) >0,
p2 (B2 E)A—-E) >0, and 1>p;(E)>0.

3The reader should be so kind to read this as one single fraction over three lines.
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With counterfactual Jeffrey condition this means that
pi(E|TA(BE) =pi (E|BUE) of p(E| B E)=p(E| Bl E)
is necessary and sufficient for this equivalence.

Proof.
It is easily seen that the equation

(T | BIUE) =po (T | By E)

is sufficient for the above equivalence. That it is also necessary is seen as follows.
Suppose the equivalence holds. Now

p2 (T | (B2 E)NE)-p2(E | By) +
+po (T | (BeU E) N —FE) -
P2 (2B | By) =p2 (T | BoE) > pi(T|(BllE)ANE) -p1 (E | By) +
+p1 (T | (Bl E) A—E) -
p1(E | B)—p1 (T | B1lE)

p (T (BIME)ANE)-
(p2(E | Ba) —p1 (| B1)) +
+p1 (T | (B1LE) AN —E)-
“(p2(E | B2) =pr (E | B1)) > po(T'| B2l E) —
—p1 (T | B1LE)
calculation 2

pl(E|T/\(Ble)).
p1(E|Ble)

(P2 (E| By) =p1 (B | By)) >

pi(0E [T A(B1UE))
p(~E|BE)

(p2 (B | B2) —p1 (E | By)) +
p2 (T | BV E) B
p (T | B E) ’

which, by assumption, holds just in case

pu(E[TA(BIlE))>pi(E| B E) and py (E | By) > pi (E| By)
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or
p(E|TA(BiUE)) < pi (E| BIUE) and ps(E|By) < pi (E| By).

Since

p(E | BilE) p1(—E | BiLE)
iff
pi(E[TA(BIUE)) > pi(E|BE),

the following has to hold:
p (T | BilE)=p(T| Bl E).
Finally, counterfactual Jeffrey conditionalisation yields that

p2(T'|BotE) = pi(T'|BilE)
iff
m(E|TAN(BE))-
(P2 (E| B2l E) —p1 (E)) +

pL(E)-(L=p2(E|B2E)) = pi(E)-(1-p(E))
calculation 3
iff
p(E|TA(BE))-
‘(P2 (E | B2UE) =pi(E)) = pi(E):(p2(E | B2E) —p1 (E))
iff

p(E|TABUE) =pi (B| BLLE) of pi(E| Bl E)=p(E| Bl E).

O
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Proofs for Chapter 3

C.1 Proof of Theorem 3.1

Theorem C.1 (Power Searcher and Truth Indicator) Let 7', E, and B range

over wffs ofC,,,, (instead of theories, evidences, and background knowlegdes, re-
spectively, which are sets of wffs @fp;,_) in the definitions of searching power
and indicating truth. Then it holds for every contingent \iiffand every strict
(unconditional) probability (-):

1. p(- | EA-)isindicating truth inmod (F).
2.i(,E,-):=1—p(-N-|—FE) is searching power fanod (E).

3.7 (,E,)) :=1—=p(-|~EAN-)is searching power fomod (E), if it is
defined, i.e. iFEA B L.

Proof.
LetT', T, E, andB be four wffs ofL,,.,, £ being contingent, and let(- | -) be
the conditional probability based on some strict (unconditional) probability.
So0 < p(F),p(—E) < 1. SupposeZ A Bt/ L, whencep (E' A B) > 0.

(1.1)

p(T N E N B)

p(T'|EAB) = v (EAB)

> 0.

(1.2) If E A B+ T, then

_pIT'ANEANB) p(EAB)
PTIEND) == gy ~pEAD &
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@.3)IfT" T, then

p(I"NE A B) <p(T/\E/\B)

P(TIENB) =" En By = pErD)

=p(T | ENB).
(2.1)

i(T,E,B)=1-p(TAB|-E)>1-1=0.
(2.2)IfT AN B+ E, thenp (T AN BA—-E) =0, whence

p(T A BA—E)
p(—E)

23)IfT" =T, thenp (TN B | -E) <p(T N B|—FE), whence

i(T,E,B)=1—-p(TAB|-E)=1- =1-0=1.

i(T'E,B)=1—p(T'AB|-E)>1-p(TAB|~E)=i(T,E,B).

(3) is shown in a similar way. O

C.2 Proof of Theorem 3.2

Theorem C.2 (Truth Indicating Power Searchers Are Constant)Let £ be an
evidence, and lef (-, E,-), f (-, E,-) : T x € x B — R, be searching power for
mod (E).

If f(-, £, B) isindicating truth inmod (E), then it holds for every theory
and every background knowledgewith EU Bt/ L: f(T,E, B) = 1.

Proof.
Let £ be an evidence fromdy, ..., Dy, and letf (-, E,-), f(-,E,:) : T x £ X
B — R, be searching power fonod (E). Suppose (-, £, ) is indicating truth in
mod (FE), and letB be a background knowledge withu B I/ L.
E' is contingent, for otherwise it cannot contain an essential occurrence of
an:-constant. Lefl; be defined as follows:

Tp = {Hx1 XA [xl/al,...,x’“/a’“} P A€ E},
where

I axEA XAl xb et =

_ 3,1 1 k k 1/.1 101 k /o k ko/ ok
—Elxl...Elel...Elazl...ElxlkA{:Ul/al,...,xll/all,...,xl/al,...,xlk/alk],
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andal, ..., qj are alli-constants essentially occurring 1y for everyi,1 < i <
k. Tgis atheory withDy, ..., D, as its domains of proper investigation, and such
that

TEUBVJ_, and FUBFTg,

whencef (Tg, E, B) = 1.
Let 7 be any theorywitl' UTp UB W L. ASTUTg + Tg;asf (-, E,-)
is indicating truth inmod (E); and asf (-, £, ) is searching power fatod (E),

f(ruTlg, E,B)< f(1Tg,E,B)=1, and
f(TUTg, E,B) > f(Tg, E,B) =1,

ie. f(T"UTg, E,B) = 1. Inthe same way it follows frori’ U T - T that
f(T,E,B)> f(T'UTy, E,B)=1, and
f(T,E,B)< f(TUTg, E,B) =1,

i.e.f(T,E,B) = 1. O

C.3 Proof of Theorem 3.3

Theorem C.3 (SensSimplCons and Unimpressabilityyet f (-,-, ), f(-,-,-) :
T x € x B— R, be a function.

1. If fis sensitive to simplicity considerations in the very strong sense, fthen
is sensitive to simplicity considerations in the strong sense.

2. If f is sensitive to simplicity considerations in the strong sense, thisn
sensitive to simplicity considerations in the weak sense.

3. If f is sensitive to simplicity considerations in the weak sense, freamnot
be impressed by redundancies.

Proof.

(1) Let f(-,~,-), f(,+) : T x Ex B — R, be a function that is sensitive

to simplicity considerations in the very strong sense. Then there is at least one
power searchefO such that it holds for any theori@sand7”, every evidence

E, and every background knowledge

If 7'+ T and£O (T, E,B) = LO (T, E, B), thenf (T, E, B) >
f(T',E,B).
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Let 7" be a theory, lef be an evidence, leB be a background knowledge, and
supposér € T'is aLO-superfluous part df’ for £ andB, i.e.

LO(T\{h},E,B) = LO(T,E,B).

AsT + T\ {h}, and asf is sensitive to simplicity considerations in the very
strong sense,
f(T\{h},E,B) = f(T.E,B).

So there is at least one power searcfiér such that it holds for every theof¥,
every evidenceé”, and every background knowledge

If hisaLlO-superfluous part df for £ andB, thenf (T'\ {h},E,B) >
f(T,E,B),

which just means thaf is sensitive to simplicity considerations in the strong
sense.

@ Letf (), f(-) T x&Ex B — R, be afunction that is sensitive to
simplicity considerations in the strong sense. Then there is at least one power
searchelL O such that it holds for every theofdy, every evidencé’, every back-
ground knowledge3, and every wfth € T

If his alLO-superfluous part df for £ andB, thenf (T'\ {h},E,B) >
f(T,E,B),

I.e. which is such that it holds for every thedfy every evidence”, every back-
ground knowledge3, and every wfth € T

If LO(T\ {h},E,B) = LO(T,E, B), thenf (T'\ {h}, E, B) >
f(T, B, B).

Let T be a theory, and suppogec T is a LO-superfluous part of. Then it
holds for every evidenc&, and every background knowledge

LO(T\{h},E,B)=LO(T,E,B).

From the above it follows for every evidenég and every background knowledge
B:
f(T\{h},E,B) > f(T,E,B).

So there is at least one power searcfiér such that it holds for every theofd,
and every wfth € T
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It LO(T'\{h},E,B) = LO(T,E,B), for every evidence, and
every background knowledd®, thenf (T'\ {h},E,B) > f (T, E, B),
for every evidencd”, and every background knowleddgg

which just means that is sensitive to simplicity considerations in the weak sense.

) Letf(-,--), f(,-):T xEx B — R, be a function that is sensitive to
simplicity considerations in the weak sense. Then there is at least one power
searcher O such that it holds for every theofk, every background knowledge

B, and every wffh € T':

If hisaLlO-superfluous partdf, thenf (T'\ {h},E,B) > f (T, E, B),
i.e. which is such that it holds for every thedfy and every wffh € T

If LO(T\{h},E,B) = LO(T,E,B), for every evidencd’, and
every background knowleddg#, thenf (T'\ {h},E,B) > f (T, E, B),
for every evidence”, and every background knowledge

Let T be a theory, and let € T be a redundant part . ThenT \ {h} -+ T,
whence

LO(T\{h},E,B)=LO(T,E,B),
for every evidence”, and every background knowledgk becauseO is closed
under equivalence transformationsiaf As f is sensitive to simplicity consider-
ations i.w.s.,

f(T'\{r},E,B)> f(T,E,B),

for every evidencd”, and every background knowledgk which just means that
f is sensitive to redundancy considerations.

Please note that i’ is replaced by >’ in the definitions of sensitivity
to simplicity considerations in any sense and unimpressability by redundancies,
then theorem 3.5 still holds. The proof is obtained by substitutingfor all
occurrences of>’ in this proof. O

C.4 Proof of Theorem 3.4

Theorem C.4 (SensSimplCons i.s.s. Does Not Imply InvEquTranshet f (-, -, ),
f(, )T x & x B— R, beafunction. Iff is sensitive to simplicity consider-
ations in the strong sense, thgmeed not be closed under equivalence transfor-
mations of7" in the sense that

f(T,E,B)=f(T",E,B), if THT,
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for any theoried” and7”, every evidencé’, and every background knowledge

Proof.

It suffices to give an example of a functigr(-,-,-), f(-,-,-) : 7 xE X B — R,
which is sensitive to simplicity considerations in the strong sense, but not closed
under equivalence transformationsiofn the sense that

f(T,E,B)=f(T'",E,B), if T T,

for any theoried” and7”, every evidencé”, and every background knowledge
The following one is a case in point:

|T| + 2

T,E,B):=LO(T,E,B)- :
£ ) ( ) AES

for every theoryr’, every evidencé’, and every background knowledge where
LO is a power searcher (theorem 3.1 guarantuees that there are such).

Obviously f is not closed under equivalence transformations. Tha
sensitive to simplicity considerations i.s.s. is seen as follows.Tlle¢ a theory,
let £ be an evidence, leB be a background knowledge, and suppbse T is a
LO-superfluous part df’ for £ andB. Then

LO(T\{h},E,B) = LO(T,E, B),

whence
B [T\ {h}|+2
f(T\{h}7E?B) = ‘CO(T\{h}vE’B)'W
T + 2
> LO(T.B.B) ]
= f(T,E,B),

which just means that is (even strictly) sensitive to simplicity considerations in
the strong sense. O

C.5 Proof of Theorem 3.5

Theorem C.5 (InvEquTrans Implies SensSimplCons i.w.s.)f f is closed un-
der equivalence transformationssf then f is sensitive to simplicity considera-
tions in the weak sense.
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Proof.

Let f(-,-,-), f(-++) : T x & x B — R, be a function which is closed under
equivalence transformations 6f That f is sensitive to simplicity considerations
in the weak sense means that there is at least one power sedt@lserch that it
holds for every theory’, and every wfth € T':

If LO(T'\{h},E,B) = LO(T,E,B), for every evidence, and
every background knowledd®, thenf (T'\ {h},E,B) > f (T, E, B),
for every evidencd”, and every background knowledge

Let such a functiolL O be defined as follows:

1, if TUBFE,
LO(T.E,B) = { 0 otherwise,i.e.if TUBV FE,
for every theoryl’, every evidencé’, and every background knowledge
That £LO is a power searcher is seen as follows. Teand7” be theories,
let £ be an evidence, and Iét and B’ be background knowledges. Obviously,
LO(T,E,B) >0,andLO(T,E,B) =1,if TUBF E.
If 7"uUB' +TuUBandT U B FE, then

LO(T',E,B") > LO(T,E,B) =0,
andif7"UB'+-TUBandT U B F E, then
LO(T'E,B")=LO(T,E,B) =1.

Let me now show for every theofd, every functionf (-,-,-), f(-,-,:) : 7 X € X
B — R, which is closed under equivalence transformation¥'cénd every wif
heT:

If LO(T\{h},E,B) = LO(T,E,B), for every evidencd’, and
every background knowledge, thenf (T"\ {r},E,B) > f (T, E, B),
for every evidence”, and every background knowledge

Let 7" be a theory, lef be a function which is closed under equivalence transfor-
mations ofl’, and leth be a wff ofT". Suppos&€O (T'\ {h},E,B) = LO (T, E, B),
for every evidencd”, and every background knowledge

One has to show that (7' \ {r}, E, B) > f (T, E, B), for every evidence
E, and every background knowledge
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It suffices to show that\{h} - T', forthenf (T'\ {h},E,B) = f (T, E, B),
for every evidence”, and every background knowleddgg becausef is closed
under equivalence transformationsiaf Suppose thaft' \ {h} t/ T.

Let ‘P’ be ann-ary predicate which does not occur in (any wff @f) and
let‘a’, ..., ‘a,” ben individual constants not occurring in (any wff &f). Then

T+ P(ay,...,a,), onlyif T+ L.
AsT\ {h}t/h, T\ {h} /L, whence
T\{h}V/ P(a,...,a,).

It follows that

LO(T\{h},{P(ar,...,an)},{h — P(ay,...,a,)}) =0, and
LO(T,{P(ay,...,a,)},{h — P(ay,...,a,)}) =1,

whence there is an evidenéeand a background knowledde such that
LO(T\{h},E,B)# LO(T,E,B).

— a contradiction. So there is at least one power seartiesuch that it holds
for every theoryl', every functionf (-,-,-), f (-,-,+) : 7 x & x B — R, which is
closed under equivalence transformation§’oénd every wfth € T If

LO(T\{h},E,B)=LO(T, E,B), for every evidencé’, and ev-
ery background knowledgg,

thenT \ {h} -+ T, and thus

f(T'\{h},E,B) = f(T,E,B), for every evidence”, and every
background knowledg®,

which means (even something stronger than) thiatsensitive to simplicity con-
siderations in the weak sense fifs closed under equivalence transformations of
T. O

C.6 Proof of Theorem 3.6

Theorem C.6 (InvEquTrans Does Not Imply SensSimplCons i.s.slf fis closed
under equivalence transformationsigfthen f need not be sensitive to simplicity
considerations in the strong sense.
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Proof.

It suffices to give an example of a functigr(-,-,-), f(-,-,*) : 7 x E x B — R,
which is closed under equivalence transformatioris,atnd which is not sensitive
to simplicity considerations in the strong sense. Thetnot sensitive to simplic-
ity considerations in the strong sense means that there is no power seatzher
such that it holds for every theofly, every evidencd’, every background knowl-
edgeB, and every wffh € T

If LO(T\{h},E,B) = LO(T,E,B), thenf (T'\ {h},E,B) >
f(T,E,B).

In other words, one has to show that there is at least one fungtion -), f (-, -, ) :
T xExB — R, which is closed under equivalence transformatioris,and such
that for every power search€© there are theorie$, evidencesd”, background
knowledgesB, and wffsh € T with:

LO(T\ {h} ,E,B)=LO(T,E,B), and
f(T\{h},E,B)< f(T,E,B).

A consequence of the latter is tH&t\ {A} I/ T', becaus¢ is closed under equiv-
alence transformations @f.
The following one is a case in point:

1, if THBUE,
f(T,E,B) —{ 0 otherwise, i.e.if Tt/ BUE,

for every theoryl’, every evidencé’, and every background knowleddge
Obviously, f is closed under equivalence transformationg'oket LO be a
power searcher, |t = {Gay,...,Ga,}, forsomen > 1,letT = {Vz (Fz — Gx),VaFx},
let B = {Vz (Fx — Gz)},and leth = Vz (Fx — Gz). AsT\{h} 1/ EUBand
THEUDB,
f(T\{r},E,B)=0<1= f(T,E,B).

Furthermorel'\ {h} U B+ E andT U B + E, whence
LO (T \{h},E,B)=LO(T,E,B) =1.

So there is at least one functigi(-,-,-), f(-,,-) : 7 x &€ x B — R, which is
closed under equivalence transformationg’ofand for which there are theories
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T, evidenced”, background knowledge3, and wffsh € T such that it holds for
every power search&tO:

LO(T\{h},E,B)=LO(T,E,B), and
f(T\Ah},E,B) < f(T,E, B),

which means (even something stronger than) thet closed under equivalence
transformations of’’, but not sensitive to simplicity considerations in the strong
sense. O

C.7 Proof of Theorem 3.7

Theorem C.7 (SensLoveLike Implies SensSimplCons i.v.s.det f (-, -, ), f (-, ) :
T x & x B — R, be afunction. Iff is sensitive to loveliness and likeliness in the
sense of some power searcli&? and some truth indicatatZ, thenf is sensitive

to simplicity considerations in the very strong sense.

Proof.

Let f(-,,), f(,+,:) : T x &€ x B — R, be a function which is sensitive to
loveliness and likeliness in the sense of some power seaf&eand some truth
indicator £Z*. Then it holds for any theorieg and7”, any evidences’ and
E’, and any background knowledgé&sand B’, whereX = T, FE, B and X’ =
T E' B

1. [ LT (X) = £LT* (X') £ 0, thenf (X) > f (X")iff LO* (X) > LO* (X"),
2. if LO* (X) = LO* (X') £ 0, thenf (X) > f (X')iff £LT*(X) > LT* (X"),
3. £(X) = 0iff £I*(X) = 0o0r LO* (X) = 0, and

4. f(X)=1iff £I*(X) = 1andLO* (X') = 1.

It has to be shown that there is at least one power searfiiesuch that it holds
for any theoried” andT”, every evidencé’, and every background knowledge

If 7'+ T and£O (T, E, B) = LO (T, E, B), thenf (T, E, B) >
f(T' E,B).
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| show thatLO* is such a function.
Let7"and?” be theories, lek be an evidence, |d¢ be a background knowl-
edge, and suppo&€ - T. ThenLZI* (T, E,B) > LI*(T', E, B). Suppose

LO*(T,E,B) = LO*(T', E, B) # 0.

As f is sensitive to loveliness and likeliness in the sens€©Of and LZ*, it
follows that

f(T,E,B)> f(T',E,B) iff L£I*(T,E,B)>LI*(T",E B,

whencef (T, E,B) > f (T, E, B).
Suppose
LO*(T,E,B) = LO*(T',E,B) = 0.

As f is sensitive to loveliness and likeliness in the sens€©f and £LZ*, it
follows that
f(T,E,B)=f(I",E,B) =0,

whence agaitf (T, E,B) > f (1", E, B).
So there is at least one power searchérsuch that it holds for any theories
T andT’, every evidencé’, and every background knowledge

If T+ T andCO (T, E,B) = LO(T',E, B), thenf (T, E, B) >
f(T",E, B),

which just means that is sensitive to simplicity considerations in the very strong
sense. O
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Appendix D
Proofs for Chapter 4

D.1 Proof of Theorem 4.1

Theorem D.1 (= Is Arbitrary)) The ordinal measure of coherengeof Hart-
mann/Bovens (2000) is arbitrary.

Proof.
The ordinal measure of cohereneeof Hartmann/Bovens (2000) is defined as
follows:

For any two information setS, S’:
S is more coherent than or equally cohererftaS = S, iff f, (S,S") >
0, for all values ofr € (0,1).

An information set S is a set of finitely many propositidds . . ., R,,. The func-
tion f, is defined for pairs of information se$sS’ in the following way:

[ (S,8) = ¢ (S) — e (5).

¢, measures the impact of the coherence of an informatiof se{R4,..., R, }
on the degree of confidencen

P*(Ry,...,Ry) = P(R4,..., Ry | Repry, ..., Repr,),
and is defined as follows:
c:(S) = ¢ (Ry,...,Ry)
P*(Ry,...,Rn) /P (Rq,...,Ry)

ap + (1 —ap) - 2"
ioai-wt

169
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Repr; is the proposition that after consultation with the proper source, there is a
report to the effect thak; is the case, ané is a joint probability for the propo-
sitional variablesR,, ..., R,, Repry, ..., Repr,. The information sources are
assumed to be independent in the sense that the variahie is probabilis-
tically independent (undeP) of the variablesR,, Repry, ..., R;_1, Repr;_1,
R;i1, Repriiq, ... Ry, Repr, given R;, for everyi, 1 < i < n. The propositional
variableR; can take on the two valudy andR;, i.e. not-R;, and the propositional
variable Repr; can take on the two valud¥epr; andRepr;; the latter saying that
after consultation with the proper source, there is no report to the effecRthat
is the case. Note that for the ordinal measure of coherenitsuffices thatP is
defined overRy, ..., R,.

Furthermoreg; is the sum of the joint probabilities of all combinations of
the variables?y, . . ., R, that have negative values ana — i positive values, i.e.

a; = Z P(:i:Rl,...7:tRn),

where

Y

neg (£Ry, ..., £Ry) ::’{Ezlgjgn}

and+R; is eitherR; or R;, for everyj, 1 < j < n, whence in particular
ap =P (Ry,...,Ry).

The variable o
r=q/p=P (Repri ] Ri) /P (Repr; | Ry),

is assumed to be equal for every < i < n, and expresses the reliability of the
information source which reports by means &fepr; thatR; is the case.

Finally, for a given probability distributior”, the probability distribution
P is defined as

P (R;) = P ((n] Ri> =P (Ry,...,Ra),

and
P™*(R; | Ry) =1, foreveryiandj,1<i,j<n.

In order to prove that the ordinal measure of coherenad Hartmann/Bovens
(2000) is arbitrary, | have to rely on the strict ordinal measure of coherence
which is induced by~ on the set of all information sets, and which is defined as
follows:
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For any two information setS, S’:
S is more coherent tha®l, S > S, iff S = S"andS’ £ S,

For any two information sets, S':
S is more coherent tha#l, S > ', iff f. (S,S") > 0, for all values of
z € (0,1),andf, (S',S) < 0, for at least one value af € (0, 1).

When provingS > S/, for some information setsandS/, it will be shown that
fz(S,S") > 0, for all values ofz € (0,1),

which is something stronger th&n- S'.

It suffices to give an example of two information séts {R;, ..., Ru}
andS’ = {R/, ..., R.}, two probability distributions’, and P, over Ry, ..., R,,,
and two probability distributiong’] and P, over R}, ..., R/, such thats’ >~ S
according toP, and P/, andS > S’ according toP, and P;. The following
example does the job. Let

S = {Ri,Re},8" = {R}, Ry},

Py (Ry,Ry) = Py (R, Ra) = Pr (Ry, Rz) = P (Rp, Ry) = 0.25,
P{ (R}, R}) = 0.125, P{ (Rf, R}) = P/ (R}, Rg) = 0.25, and

P} (R, Rj) = 0.375.

Then

a1, = P (Ry,Rs) = 0.25,

Ry, Rz) + Py (R, Ry) = 0.254 025 = 0.5,

ai, = P, (Ry,Ra) = 0.25,

d, = P| (Rq,Ry) = 0.125,

dj, = P{ (Ri,Rz) + Pj (R4, Rz) = 025+ 0.25 = 0.5, and
d, = P (Ry,Ry) = 0.375.

ah:Pl

It follows that

f1.(8,8) = e, (S)—c, (5)
a, + (1 —ay,) - 2? B

5 -
Zi:o ay, - x*
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ah, + (1 — a’lo) - x?
Yo aj, -t
0.25 4 (1 — 0.25) - 22
0.25-2° 4+ 0.5 - 21 + 0.25 - 22
0.125 + (1 — 0.125) - 22
012529+ 0.5 2! + 0.375 - 22’

whence
f1.(S,8) > 0
iff
0.25 4+ 0.75 - 22 - 0.125 + 0.875 - 22
0.254+0.5 -2+ 0.25 - 22 0.125+0.5-2 +0.375 - 22
iff

0.25-0.125 4+ 0.25- 0.5 - 2+
+(0.25 - 0.375 + 0.75 - 0.125) - 2*+
+0.75-0.5-2° +0.75-0.375 - 2* > 0.125-0.25+0.125-0.5- 2 +
+(0.125 - 0.25 4+ 0.875 - 0.25) - % +
4+0.875-0.5 - 2° 4+ 0.875 - 0.25 - 2*
iff
2/32-x—2/32-2* > 2/32.2°—-2/32.2"
iff
r-(1—-2) > 2°-(1—2),
which holds for all values of € (0,1). ThusS >, S'. Let

Py(Ry,Ry) = P, (Rp,Ro) = P2 (Ry, Rz) = P, (Ry, Ry) = 0.25,
P} (R}, Ry) = 0.375, P} (R, R}) = Py (R}, Rg) = 0.25, and
Py (R7, R5) = 0.125.
Then
az, = P> (R1,Ry) = 0.25,
Ry, Rs) + Py (Ry, Ry) = 0.25 4025 = 0.5,
ag, = Py Ri,Rs) = 0.25,
dy, = P} (Rq, Ry) = 0.375,
Ry, Rz) + P} (Ry,Rz) = 0.25 +0.25 = 0.5, and
Ri,Ry) = 0.125.

Cl21:P2

_ /
ay, = Py

/ _ /
ay, = P,
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It follows that

f23: (Sl? S) - 0292 (S,) - CQw (S>
ah, + (1 — a/20> 22

- 2 / 7
i=0 A2, X

as, + (1 — ag,) - 22
- Z?:O Qg, * !

0.375 + (1 — 0.375) - 22
0.375-29 4+ 0.5 - 2! +0.125 - 22
0.25 + (1 —0.25) - 22

S 0.25-20+ 0521 +0.25 - 22’

whence
fa, (S',S) > 0
iff
0.375 + 0.625 - 22 - 0.25 4+ 0.75 - 22
0.3754+05-2+0.125 - 22 025405 24+ 0.25 - 22
iff

0.375-0.25 + 0.375 - 0.5 - 2+
+(0.375-0.25 + 0.625 - 0.25) - 2>+
+0.625-0.5- 2% +0.625-0.25 - 2* > 0.25-0.375+0.25-0.5 -2 +
+(0.25-0.125 4+ 0.75 - 0.375) - x* +
4+0.75-0.5- 2% +0.75-0.125 - *

2/32-x—2/32-2* > 2/32.2°—-2/32.2"
iff
v-(1—2) > 2°-(1—2),

which holds for all values of € (0, 1). ThusS’ 5 S.

Put together, these two results yield tBat-; S’ andS’ >, S, which just
means that the strict ordinal measure of coherencwhich is induced by-, is
arbitrary. O
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D.2 Proof of Theorem 4.2

Theorem D.2 (EC'HO Is Arbitrary) The computer prograthC' HO, which mod-
els the theory of explanatory coherelc€C' of Thagard (1989), is arbitrary.

Proof.
The definition of the measui® (.5, t) of the global coherence of a systeirof n
propositions at time runs as follows:

0<i<n 0<j<n
w;; is the weight of the excitatory or inhibitory link from unito unit j, a; (¢) is
the activation of unit at timet, andn is the number of propositions in the system
S which are represented by the units. . , n.

An excitatory link between two unitsandj represents a coherence relation
between the two propositions the unitand j stand for, whereas an inhibitory
link represents an incoherence relation. The activatidm) of unit ; at timet
expresses the degree of acceptance of the proposition represented:tat time
t.

An input in form of (values for the) activations (0) of the unitsi of some
system of proposition$' at time 0 is used to set up a network which includes
— besides the unit$, ..., n — a special uni0 with activationa, (¢) = 1, for
every timet. Then the network is run in cycles that synchronously update all the
units so that the activation streams from the special@oiter units representing
data (evidences) to units representing hypotheses which are explanatorily linked
to these data.

The activationa; (-), a; () : N — [—1,1], of any unit: is a continuous
function of all units; linked to it. The contribution of each such uriidepends
on the weightw;; of the link fromi to j. These weightsv;; — expressing the
strength of the (in)coherence relation between the proposifirand (), which
are represented by the unitandj, respectively — have to obey the equation

default weight
>simplicity impact

weight (P, Q) =
(number of cohypotheses &%,

where( is explained byPy, ..., Py, ..., P, 1 < k <m.

Despite this, thev;; can be chosen in an arbitrary way, for both the default
weight and the simplicity impact can be freely chosen. The number of cohy-
potheses of propositiofi;, is the numbern — 1 of propositions that occur in the
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explanation of@ by Py, ..., P,..., P, apart fromP,. The activation; (-) of
unit s is updated by the following equation:

a; (t) - (1 —0) +net; (t+ 1) - (max —a; (t)),
if net; (t+1) >0,

GE+1) =0 0 0) (1= 0)+ ety (t+ 1) - (as (£) — min),
if net; (t+1) <0.
0 is a decay parameter decrementing each aaitevery cyclemin = —1 is the

minimum activationmax = 1 is the maximum activation, anekt; (¢t + 1) is the
net input to unit at timet + 1, which is given as

net; (t+1) = Z wij - a; (),

0<j<n

wheren is again the number of propositions (respectively units without the special
unit 0) in the system of propositions. By repeating updating cycles some units
get activated, whereas others get deactivated.

In order to prove the above claim it suffices to give an example of two sets
of propositionsS; and S, and two measure# (-,-) and H' (-, ) of the global
coherence of a system of propositions for which there is a tinseich that it
holds for every time¢ > ¢

H(Sl,t) > H(Sg,t) and H' (Sl,t) < H (Sg,t) .

LetS; = {E1, P», P3}, where evidencé; is supposed to be explained by each of
the two hypothese®, and P;. F is represented by, P, by 2, and P; by 3; the
special unit with activation is represented bg. Let

Wi =Wo1 =1, Wiy =woy =1=wiz3=ws, 0=0.

Thus the strength of the explanatory relation betwé&emand £, is assumed to
be equal to the strength of the explanatory relation betw&eand £ ; and both
are supposed to be equal to the degree of acceptance Whicasquabeing an
evidence.

a; (1) =a; (0)- (1 —0)+nety (1) (max—ay (0)) =0-(1—-0)+1-(1—-0) =1,
for

netl(l):wlo-ao(O)—l—wlg-a2(0)+w13~a3(0):1-1+1-O+1-O:1>O.
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as (1) = az (0)-(1 — @)+nety (1)-(az (0) — min) = 0-(1 — 0)+0-(0 — (—1)) =0,
" nety (1) = we - a1 (0)=1-0=0<0.
as (1) = a3 (0)-(1 — @)+nets (1)-(as (0) — min) = 0-(1 — 0)+0-(0 — (—1)) =0,
o nets (1) =ws -a; (0)=1-0=0<0.
a1 (2) =a; (1)- (1 —60)+net; (2)- (max—a; (1)) =1-(1-0)+1-(1—-1) =1,
for
nety (2) = wyp-ap (1) +wig-az (1) +wiz-az(l)=1-1+1-0+1-0=1> 0.
as (2) =az (1)- (1 — 0) +nety (2) - (max —as (1)) =0-(1 = 0)+1-(1 —0) =1,
for

nety (2) =we -a; (1) =1-1=1>0.
az (2) = a3 (1)- (1 — 0) +net3 (2)- (max—a3 (1)) =0-(1 —=0)+1-(1 —0) =1,

n€t3(2>:U)31'CL1(1>:1'1:1>0.

H,(5,2) = Z Z wij - a; (2) - a; (2)

0<i<30<;5<3
= wo - ap(2) a1 (2) +wi-a(2)ap(2)+
+wig - a1 (2) - az (2) + wiz - a1 (2) - az (2) +
+woy - as (2) - ay (2) + wsy - az(2) - ay (2)
= 1-1-1+1-1-1+1-1-1+
+1-1-1+1-1-141-1-1
= 6.
It will be shown (by induction on timé) thata, (¢) = 1, for everyi andt, 1 < i <
3,t > 2. Lett > 2, and suppose the induction hypothesis holds.
ap(t+1) = a1 (t)- (1 —60)+net; (t+1)- (max —ay (1))
net; (t+1)=3>0
= 1-(1—0)+net; (t+1) - (max—1)
by induction hypothesis
= 1-(1-0)4+3-0 =0, net;(t+1)=3
=1

Y
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for

net1 (t+1) = wm-ao(t)+w12~a2(t)+w13-a3(t)
= w1+ w1+ wz-1 byinduction hypothesis
= 1-141-1+1-1=3>0.

ag (t+1) = ay(t) - (1 —6)+nety(t+1)- (max —ay (1))
nety(t+1)=1>0
= 1-(1—-0)+neta(t+1)- (max—1)
by induction hypothesis
= 1-(1-04+0-(1—-1) 6=0, neta(t+1)=1

= 1’
for
7’L€t2 (t + 1) = W21 * Q71 (t)
= weq -1 by induction hypothesis
1-1=1>0.
as(t+1) = as(t)- (1 —60)+nets(t+1)- (max—as(t))
nets (t+1)=1>0
= 1-(1-0)+netz(t+1)- (max—1)
by induction hypothesis
= 1-(1-0)40-(1-1) 0=0, nets(t+1)=1
= 1,
for

netg (t + 1) = W31 Q1 (t)
= ws; -1 by induction hypothesis
= 1-1=1>0.

Thus for everyt > 2:

Hy(S1,t) = Z Z wgj - a; (t) - a; (t)

0<i<30<5<3
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= woy - ag(t)-ay(t) +wip-ay(t)-ap(t)+
+wig - ay (t) - ag (t) +wis - ay (t) - ag (t) +
+way - ag (t) - ar (t) +wsy - as (t) - aq (¢)
= 1-1-1+1-1-1+1-1-1+4+
+1-1-1+1-1-141-1-1
= 6.
Let S, = {Fy, E»}, Ey and E, being evidencesE) is represented by, F, by 2,
and the special unit with activationis represented bf. Let

Wi = Wo1 = Wy = W2 = 1, 6 =0.

Thus the degree of acceptance whichhasquabeing an evidence is supposed
to be equal to the degree of acceptance wliiglhasquabeing an evidence.

a; (1) =ay (0)- (1 —0)+nety (1)- (max—ay (0)) =0-(1 —0)+1-(1—0) =1,
for
net; (1) =wyp-ap(0)=1-1=1>0.
as (1) = a9 (0)- (1 —0)+nety (1) (max —ay (0)) =0-(1 —0)+1-(1—0) =1,
for
nety (1) = weg - ag (0) =1-1=1> 0.
a1 (2) =a; (1)- (1 —0)+net; (2)- (max—a; (1)) =1-(1-0)+1-(1 —1) =1,
for
net1(2):w10~a0(1):1-1:1>0.
as (2) =as (1)- (1 —0)+nety(2)- (max —ay (1)) =1-(1-0)+1-(1 —1) =1,
for
nets (2) = wgy - ag(l) =1-1=1>0.
So
Hy(5,2) = Z Z wij - a; (2) - a; (2)
= U;U;-a;(é)-a1(2)+w02-a0(2)-a2(2)+
+wig - aq (2)-a0(2)+w20-a2(2)-a0(2)
= 1-1-14+1-1-1+1-1-14+1-1-1
= 4.
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It will be shown (by induction on timé) thata; (t) = 1, for everyi andt, 1 < i <
2,t > 2. Lett > 2, and suppose the induction hypothesis holds.
ar(t+1) = a1 (t)- (1 —60)+net; (t+1) - (max—ay (¢))
nety (t+1)=1>0
= 1-(1—-0)+net; (1) (max—1)
by induction hypothesis
= 1-1-0)+1-(1-1) 6=0, net;(t+1)=1

Pt 17
for
netl(t—l—l):wmao(t):l1:1>O
as(t+1) = az(t) - (1 —6)+nety(t+1) - (max—as (t))
nety (t+1)=1>0
= 1-(1—0)+nety(t+1)- (max—1)
by induction hypothesis
= 1-1-0)+1-(1-1) 60=0, netr(t+1)=1
= 1,
for

n€t2<t+1) :wgo'ao(t) =1-1=1>0.
So it holds for every > 2:

Hi(So,t) = 3 > wy-ai(t)-a;(t)

0<i<20<5<2
= Wo1 * Qg (t) - ay (t) —|— Wo2 * Ao (t) (D) (t) —|—
+U)10 ©aq (t) B (t) + W0 * A2 (t) e (t)

= 1-1-1+1-1-1+1-1-141-1-1

= 4.
It follows for everyt > 2:

H; (Sl,t) =6>4=H (Sg,t) .
Consider agaity; = { £, P», Ps}, where evidencé; is supposed to be explained
by each ofP, and P;. This time let

/ _ ! o / o / _ _ / o / !/
Wiy =Wy = 1,  wi, = wy = 1/10 = w)y = wy, 0 =0.
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Thus the strength of the explanatory relation betwBeand F; is again assumed
to be equal to the strength of the explanatory betwBegand E;; but this time
they are both supposed to be smaller than the degree of acceptancelwhiab
gquabeing an evidence.

ar (1) =ay (0)- (1 — 0) +net} (1) (max—ay (0)) =0-(1=0)+1-(1-0) =1,
for

nety (1) = wig-ao(0) +wl2 - as (0) + wis - az (0)
— 1-1+(1/10)-0 4 (1/10)-0=1 > 0.
as (1) = as (0)-(1 — @)+nets, (1)-(az (0) — min) = 0-(1 — 0)+0-(0 — (—1)) =0,

for
nety (1) = wy; - a1 (0) = (1/10) -0 =0 < 0.

az (1) = a3 (0)-(1 — 0)+net; (1)-(ag (0) — min) = 0-(1 — 0)4+0-(0 — (—1)) = 0,

for
nety (1) = wyy - ay (0) = (1/10) -0 =0 < 0.

a1 (2) =a; (1)-(1 —0)+mnet; (2)-(max—a; (1)) =1-(1-0)+1-(1—-1) =1,
for

net, (2) = wly-ao (1) +wl2 - as (1) + wy - as (1)
= 1-1+(1/10)-0+(1/10)-0=1 > 0.

az(2) = ay(1)- (1 —0)+nety(2) - (max —ay (1))
= 0-(1-0)+(1/10)- (1 —0) = 1/10,

for
nety (2) = wy, - a; (1) = (1/10) - 1 =1/10 > 0.
as(2) = az(1)- (1 —0)+nety(2) - (max —asz (1))
0-(1—0)+(1/10)- (1 — 0) = 1/10,
for

nety (2) = wy, - a; (1) = (1/10) - 1 =1/10 > 0.
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So
H'(5,2) = Z Z wi; - a; (2) - a; (2)

— a0 (2) - ar (2) + wh - ar (2) - ag (2) +
+wly a1 (2) - ax (2) + wiz - a1 (2) - a3 (2)
+wh - az(2) - ay (2) + wyy - a3 (2) - a1 (2)

— 1-1-1+1-1-1+
+(1/10)-1-(1/10) + (1/10) - 1 - (1/10)
+(1/10) - (1/10) - 1+ (1/10) - (1/10) - 1

= 2.04.

_|_

As before it holds (by induction on tim@ thata, (¢t) = 1, for everyt > 2. From
this one gets for every > 2:

H'(S1,t) = Z Z ng -a; (t) - a; (t)
0<:<3 05553
= weyy - ag (t)-ar (t) +wig-ay (t) - ap(t) +
Wiy ay (t) - ag (t) +wis - ay (t) - as (t) +
Fwhy - ag (t) - ar (t) +wyy - az (t) - ay (1)
= 1-1-1+1-1-1+
+(1/10) -1 - ag (t) + (1/10) - 1 - as (t) +
+(1/10) - ag (t) - 1+ (1/10) - az (t) - 1
= 141+(2/10) - (az (t) + a3 (1))
< 4
iff
as (t) +as(t) < 10.
The latter holds for every > 2, sinceq; (t) < 1, for everyi andt,2 < i < 3,¢t >
2, because the range of(-) is the closed intervdl-1, 1].

Consider agairb, = {F1, F»}, E; and £, being evidences. As before the
degree of acceptance whiéh hasquabeing an evidence is supposed to be equal
to the degree of acceptance whiEh hasquabeing an evidence. Again, let

Wiy = Wh; = Way = Wpy =1, 6" =0.

As
! ! ! !/ 0/ . 6
Wiy = Wio, Wy = Wo1, Wpy = Wo2, Wony = W2, — Y
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it follows that
Hl (SQ,2) = H (32,2) = 4,

and — by the same reasoning (induction) as above — that it holds for ey
H' (Sy,t) = H (So,t) = 4.

Thus
H'(S1,t) =2.04 <4 = H'(S,,t), foreveryt>2.

Put together these results yield that there is at least'daayt’ > 2 does the job)
such that it holds for every> ¢’

H(Si,t) > H(Ss,t) and H'(Sy,t) < H'(Ss.1).

D.3 Proof of Theorem 4.3

Theorem D.3 (Fuzzy Measuré/ Is Arbitrary) The fuzzy measuré” for ex-
planatory coherence of Schoch (2000) is arbitrary.

Proof.

As mentioned in the chapter on coherence w.r.t. the evidence, the fuzzy measure
V (z4,...,x,) for explanatory coherence of Schoch (2000) is arbitrary in two re-
spects.

First Respect: On the one hand, the partition of the set of signed propositions
E, & =PRU{-P:P e PR} into two disjoint sets of accepted and rejected
propositions — by optimizing the explanatory coherence of some rule sy8tem
on £ — is dependent on the weight factors of incoherenc®f the incoherent
constituents? € |, whose choice is arbitrary.

In order to show this one has to find a rule syst®nior which there are
at least two functiond’ (z1,...,z,) andV’ (z4, ..., x,) — differing from each
other at most in the weight factorg of the incoherent constituents € | — such
that the truth value assignmeptwhich maximizes the explanatory coherence of
R according toV (z1, ..., x,) differs from the truth value assignmept which
maximizes the explanatory coherence7faccording toV’ (x4,...,x,). The
following example does the job.
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Let PR = { P, P», F1, E>} be the set of propositions over which the set of
signed propositions is defined, and let the rule systénconsist of the following
rules:

‘{P,} explainsE;’, ‘{P,} explainsE,’, ' E; is a fact’

‘Eyisafact, and {P,} U {E,} is competing’
The weight factor(p, g, of the coherent constituegt’,, £, } is 2 = 2!, since
Nr ({P1}) = 1, similarly, the weight factorp, x,; of the coherent constituent
{P,, E»} is 2 = 2!, sinceNg ({P»}) = 1. The weight factors:;g,; andcg,,
of the coherent constituen{sz; } and {E,}, respectively, aréd = 2%, because
Nz (0) = 2.

For V (z1,...,z4), let the weight factorc(p, g,; of the incoherent con-
stituent{ P,, F»} be 1. The truth values of the propositions/¥R are supposed
to be in{0, 1}. In the following the propositions i will be identified with their
truth values.

Ve (x1,...,24) = cpopy-Pr-(2-E1—1)+
tepmy - Po- (2- By — 1)+ cqpy - (2- E1 — 1) +
teimy - (2- By — 1) —cip oy - P By

= 2. P (2B —1)+2 P (2-FB— 1)+
44-(2-E —1)+4-(2-Ey—1)—1- P, - By,

which is maximal £ 11) iff! P, = P, = F, = B, = 1.
_ For V' (xq,...,x4), let the weight factorc’{PhEz} of the incoherent con-
stituent{ P, E» } be 10.

V&(.ﬁlﬁl,...,le) = C{Pl,El}'Pl'(z'El_1)+
—|—C{p27E2}-P2-(2-E2—1)+C{E1}-(2~E1—1)—|—
+ciEsy - (2-FEy—1)— C{{PI,EQ} - Py Ey

= 2-P1-(2-E1—1)—|—2-P2-<2-E2—1)—|—
4 (2B —1) 44 (2-Ea—1)—10- P, - By,

which is maximal & 10) iff2 P, = 0, andP, = E, = E, = 1.

Second Respect: On the other hand, in comparing two rule syRemsdR, on

1The ‘only if’ holds only if the truth values of the propositions®R are restricted tg0, 1}.
2Cf. the preceding footnote.
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a common set of signed propositiofigover some set of propositiorBR) with
respect to their explanatory coherence, the answer to the question which of the
two systemsR; andR, is more coherent depends (apart from the weight factors
¢p) on the truth value assignment to the proposition®® = { Py, ..., B, }, i.e.
on the values of the variables, . .., z,. The choice of the latter is again arbi-
trary, since there is no criterion telling one which truth value assignment to adopt
and to base one’s coherence judgement on.

It will be shown that there are rules systefis and’R, on some common
set of signed propositior& such that

VR, (1) > VR, (¢1), VR, (p2) < V&, (¢2), and
Vr, (¢) = Vg, () =0, for any other assignmentof truth values
in {0, 1} to the propositions iPR, ¢ # @1, # v,

wherey; is the (uniquely determinéjitruth value assignment to the propositions
in PR which maximizes the explanatory coherenceRf, o, is the (uniquely
determined) truth value assignment to the propositiongA®R which maximizes
the explanatory coherence®f,; andy is any assignment of truth values{if, 1}
to the propositions irPR, which means that the truth values are again restricted
to {0,1}. This result holds despite the fact that the weight factgrsf the con-
stituentsP € £ occurring in the rules iR, andR, are assumed to be fixed.

Let PR = {P, E'} be the set of propositions over which the set of signed
propositionst is defined; let the rule systef; consist of the rule{ P} explains
E’; and let the rule syster®®, consist of the rule{P} explains—£”. In the rule
systemR,, the weight factorp 5, of the coherent constituef’, E} is 2 = 21,
since Ng, ({P}) = 1. In the rule systenRR,, the weight factorp_x; of the
coherent constituedt?, = FE} is 2 = 2!, sinceNg, ({P}) = 1.

VR1(£E1,$2):C{PjE}'P'(Q'E—l):2'P-(2'E—1),
which is maximal & 2) iff> P = E = 1, whencep, (P) = ¢, (E) = 1.
VRQ("El,ZEg):C{PﬁE}P(2(1—E)—1):2P(2(1—E)—1),

which is maximal € 2) iff® P = 1 andE = 0, whencep, (P) = 1 andy, (E) =
0.

3Under the assumption that the truth values of the propositiofirare restricted tq0, 1}.
4Cf. the preceding footnote.
5The ‘only if” holds only if the truth values of the propositionsAR are restricted t40, 1}.
6Cf. the preceding footnote.
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For ¢, one gets

VR1(901):V731(171) = 2'1'(2'1_1)

= 2
)
2:1-2-(1=1)=1)=Vg, (1,1) = Vg, (¢1)

V

for ¢, one gets

VR, (p2) = Vg, (1,0) = 2-1-(2:0-1)

= -2
2
1-(2-(1=0) = 1) = Vg, (1,0) = Vg, (¢2);

and for any other truth value assignments # ¢1, ¢ # 3, One gets

A

0
2:0-(2-(1—2)—1) = Vg, (0,2) = Vg, (¢)

for everyz € {0, 1}, i.e. for everyp, ¢ # ¢1, ¢ # ©s.
Finally, for the combined rule syste®R = R, UR, one gets for every truth

value assignment (including ¢, andyp,)
Vr(p)=Vr(z,y)=2-2-2-y—1)+2-2-(2-(1-y)—1)=0

forall z,y € {0,1}, i.e. foreverypy € {(x,y) : z,y € {0,1}} = {0,1} x {0,1}.
O

D.4 Proof of Theorem 4.4

Theorem D.4 (Surplus) Let T and B be (not necessatrily finite) sets of wffs, and
let £ be an evidence.

1. S(T,E,B) =0, if T is infinite,
2. S(0,E,B)=A(),E,B)=A(B,E,B) = A(T,E,B),if BT,
3. S(B,E,B)=0,if B#0,
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4. S(T,E,B)=0,if T #(andB T, and

5 S(hr,E,B) = A(hr,E,B) = A(T, E, B), for every single wffhr with
hy 4 T,if A0, E, B) = 0.

Proof.

Let 7', B be (not necessarily finite) sets of wffs, [Btbe an evidence, and let *
be a constant term occurring i

(1) Supposd is infinite. If 7" accounts for?’ in E relative toB, i.e.

TUBU(D\{A}) I A,

for some finite and non-redundamt C (Dg (t)) and someA € D, then the
compactness aP L1 = yields that there is a finite séiz C 7' U B such that

TUBFTz+ N\ h— A
heD\{A}

ConsiderTy;, := T NTp. T}y is finite, becausd is finite. Furthermore,
Tp C Ty UB,forif h € T, then ()h € T or (ii) h € B.
():If h e T, thenh € T NTp = T}y, Whenceh € Ty, U B.
(i): If h € B,thenh € Ty, U B.
Therefore
Trin UBU (D \ {A}) F A,
which means thal’;, accounts for¢’ in E relative toB. As Ty, is finite and
T is infinite, T;,, C T. So for every constant ternt’ ‘accounted for byl" in £

relative toB, there is a finite and thus proper subgéof 7" such thatl” accounts
for ‘¢’ in E relative toB. Hence

A(T,E,B)C |J A(T',E,B),
T'CT

and thus
S(T,E,B)=A(T,E,B)\ |J A(T",E,B) = 0.

T'CT

(2) Suppose thaB + T', and thatB accounts for?’ in E relative toB. Then
BUBU(D\ {A}) F A,

for some finite and non-redundaft C (Dg (t)) and someA € D. This holds

justin case
PUBU(D\{A})F A,
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for some finite and non-redundabt C (Dg (t)) and somed € D, which holds
again just in case
TUBU(D\{A})F A,

for some finite and non-redundabtC (Dg (t)) and somed € D, sinceB - T.
So
A(B,E,B)=A(0,E,B)=A(T,E,B),

if BFT.As

S,E,By=A0,E B)\ |J A(T",E,B) = A(),E, B),

T'Ch
it follows that
SW,E,By=A0,E,B)=A(B,E,B)=A(T,FE,B).

(3) If B # 0, thenA (B, E,B) = A(B', E, B), for everyB" with B’ C B, since
B B’ for every suchB’. So

A(B,E,B)= |J A(B,E,B),

B'CB

and thus
S(B,E,B)=A(B,E,B)\ |J A(B,E,B)=0.

B'CB

(4 IfT #0andB+ T, thenB + T for everyT’ with 7" C T, whence
AW0,E,B)=A(B,E,B)=A(T",E,B),
for everyT” with 7/ C T'. So

A(T,E,B)= |J A(T',E, B),

T'CcT

and therefore

S(T,E,B)= A(T,E,B)\ |J A(T',E,B)=.

T'CT
(5) Let hr be a single wif such that; 4+ 7". Then

TUBU(D\ {A})F A,
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for some finite and non-redundabtC (Dg (¢)) and somed € D, iff
hr UBU(D\ {A}) F A,

for some finite and non-redundabtC (Dg (t)) and somed € D. SoA (T, E, B) =
A(hr,E,B). AssumeA (0, E, B) = 0. Then it holds for every single wfi:

S(h,E,B) = A(hE,B)\ |J A(T,E,B)
T'Cc{h}
A(hvaB)\AE,B(Q))
= A(hE,B).

So
S(hr,E,B)=A(hr,E,B)=A(T,E,B).

D.5 Proof of Theorem 4.5

Theorem D.5 (Coh Is Formally Handy) Coh (-, -,-),
Coh (+,,+) : P fin (Lpri=) x € x ®fin (Lpri=) — X,

is non-arbitrary, comprehensible, and computable in the limit, wherg Lpr1—)
is the set of all finite sets of wifs af 7,1 —.

Proof.
Coh is non-arbitray, because it is a single function without parameters that can be
freely chosen. It is comprehensible because its definition is stated in the terms of
PL1 =andZF.

Computability in the limit is more involved. Lét' and B be finite sets of
wffs, and letE be an evidence. Suppo$e) BUE I/ L. In order to determine the
correctvalueC'oh (T, E, B) of Coh for T, E/, andB, one first has to determine the
accountofl” in E relative toB, A (T", E, B), for all the finitely many subsefg”
of any of the finitely many non-empty subsétsof 7. By means of the latter one
can determine the surplus6f in E relative toB, S (T, E, B), for all the finitely
many non-empty subsets of T'. Next one has to determine tiierepresentatives
Sp_repr (I, E, B) (respectively their cardinality) of these surplused”, £, B).
Together with the (cardinality of théj-representative of' (E), Cg_,r (E), ONE
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can then determine the degree of coherencE wir.t. £ andB, Coh (T, E, B).
For the former, it is sufficient to determine the (cardinality of tBejfepresentative
of the account off” in E relative toB, Ap_.,r (1", E, B), for every (possibly
empty) subsel” of T'.

| will present a method that stabilizes to the correct valug .., (E)| of
the cardinality of theB-representative af’ (E'), and to the correctvalyelp_.,. (1", E, B)|
of the cardinality of theB-representative of the account’Bfin E relative toB,
for every subsef” of T'. This method can then be used to stabilize to the correct
valueCoh (T, E, B) of Cohfor T', £/, andB, provided'UBUEFE t/ L. In addition
with a method stabilizing té, if 77U BU E I/ 1, and to0 otherwise, the method
conjecturing their product will thus stabilize to the correct valug: (T, E, B).

The method doing most of the work is calleda’s conjectures will then be
used by another methad which eventually starts to conjecture the correct value
Coh (T, E, B) and continues to do so forever.

Let ‘¢,’, ..., ‘t,,” be all constant terms occurring ifi, and letTy, ..., Ty
be theNV := 2/7l subsets ofl". One first has to answer the - N questions,;:
DoesT; account fort;” in E relative toB,1 <i <m,1<j < N?

For each such questiap;; there will be a tableé; o uses in conjecturing
whetherT; accounts for?;” in E relative to5. In addition to thesen - NV tables,

a considersn tablesl, . . ., m in conjecturing whether, for a given constant term
‘t;", there is a constant termy,” with (i) p < 4, (i) EU B - t; = t,, and (iii) ‘¢’

c O (E'), for every finite set of wifst’ with £ 4 E (i.e. ‘t,) € C.., (E)); or
whether there is a finite set of wffs’ with £ 4~ E and t;" ¢ C' (E') (i.e. ‘t;’

¢ Ces (E)).T

Let us first consider thetableg 1 <i <m,1 < j < N. Foragiven subset
T; of T and a given constant termy*occurring in &, the question is whether there
is a finite and non-redundant sbBtof relevant elements o and a wifA € D
such thatt;” € C (A’) for every wif A’ € D, and

T,UBU(D\ {A}) F A.

More precisely, the question is whether there is a finite set of Wfésnd a wff A
such that

1. Ae D,

It is sufficient to consider finite sets of wffg’, for if there is an infinite set of wff&’ with
E' 4+ F—-ie.E+ FE' andE’' - E—andt;’ ¢ C(E'), then there is a finite séf}m C E'such

thatE%,, - E'—and, of course, alsB - E,, and ;" ¢ C (E’fm)
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w0 DN

o1

6. every wffA’ € D is a normal form,

7. there is no wffA’ € D for which there is am > 1 such thatd’ -+
AN ... N A, and every wifA;, 1 < i < n, is shorter tham’, where —’

T,UBU(D\ {A}) F A,

APPENDIX D. PROOFS FOR CHAPTER 4

Et.q A foreverywffA’ € D,

‘t;) € C'(A), forevery wff A’ € D,

D\ {A'} t/ A, for every wff A’ € D,

is eliminated and brackets are not counted, and

8. every quantifier scope of every wif € D is a conjunctionB; A ... A B,,,
m > 1, such that it holds for every conjunét,, 1 < k < m: there is no
n > 1such thatB, 4+ A; A ... A A, and every wif4;,1 < i < n,is
shorter thamB,, where —' is eliminated and brackets are not counted.

Let Ay, ...,

length) of Ly, and letDq, . . .,

A,, ... be an enumeration of all the countably many wffs (of finite
D,, ... be an enumeration of all the countably
many finite sets of wffs oL »;;—. The following table shows that there are only

countably many pairs of wffgl and finite sets of wff.

Al Ay | As | Ag] As | - A,
Dyl 121671516

D, 518 [14]17

Ds| 4913

D,y 10| 12

Ds | 11

Dn

LetDAy,...
wifs A.

,DA,,...beanenumeration of all pairs of finite sets of wfisand
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The above table shows also that for a given $eif countably many ele-
mentss there are only countably many sequences of such elements of length 2.
This result can be generalised (by induction) to sequences of any finite length.
For suppose the induction hypothesis holds, i.e. there are only countably many
sequence®™ = (sy,...,s,) of lengthm, wheres, € 5,1 < k < m, for some
set S of countably many elements. Lé{", ..., P ... be an enumeration of
these countably many sequences of lengthand letsy,...,s,,... be an enu-
meration of the countably many elementsSfEvery P/, i > 1, is of the form
P™ = (si1,...,8m), Wheres;, € S, for everyk,1 < k < m. Each sequence
of elements ofS of lengthm + 1 is of the formP"*" = (s;1, ..., Sim, s;), for
somei, 7 > 1. The above table (witl’” instead of4;, and withs; instead ofD,)
shows that there are only countably many such sequences of length.

Let P,...,P,,... be an enumeration of all finite sequences of wffs of
Lpr1—. Each such finite sequence of wifs may be a proof of some wif from
some set of wffs. The reasoning of the preceding paragraph can be used once
more to obtain that there are only countably many finite sets of finite sequences
of wffs. Let Prq, ..., Pr,,... be an enumeration of all the countably many finite
sets of finite sequences of wiffs.

A final application of the mentioned reasoning shows that there are only
countably many pair&rC' of finite sets of finite sequences of wifs- and wffsC'.

Let PrCy,..., PrC,,... be an enumeration of these pairs (the wffs are denoted
by ‘C” instead of ‘A’ in order to avoid confusion).

For a given paitD A; of a finite set of wffsD; and a wffA;,2 the question is
whether

1. A, € D,

2. 't € C(A), forevery wif A’ € Dy,
3. Bt A, forevery wif A’ € D,

4. T;UBU (D \{A}) F A,

5. D\ {A'} I/ A, for every wif A’ € D,

6. every wifA’ € D, is a normal form,

8The index is inherited fromD A;.
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7. there is no wifA’ € D, for which there is am > 1 such thatA’ -+
AN N A, and every wifA;, 1 < i < n, is shorter thamd’, where —’
is eliminated and brackets are not counted, and

8. every quantifier scope of every wif € D, is a conjunctionB; A ... A B,,,
m > 1, such that it holds for every conjuné&t,, 1 < k < m: there is no
n > 1suchthatB, 4+ A; A ... A A, and every wif4;,1 < i < n,is
shorter thanB,,, where =’ is eliminated and brackets are not counted.

In answering this question one first has to find out whethed(1¢ D;; (2) ‘t;’
e C (A, for every wif A’ € D,; whether there is a paiPrC,, of a finite set of
finite sequences of wff&r,, and a wffC,,° such that (3a) for every wifi’ ¢ D,
there is aP € Pr,, which is a proof ofd’ from E; and (4) there is & € Pr,,
which is a proof ofA; from T; U BU (D; \ {4,}).*°

T; U B U Dy is finite, and a proof of some wif’ from some set of wffs
S is a finite sequence of wff§A,, ..., A,) such that4,, = C, and for every
i,1 <i<mn:(i) 4; isanaxiom, (ii))A; isin S, or (iii) A; is the result of applying
a derivation rule to some wffd,, 1 < k£ < i. So questions (1), (2), (3a), and (4)
can be answered in finitely many steps for a given pai’,,, .

If the answer to at least one of these questions is negative for a fiven
— called ablock— and a givenPrC,,, a writes a “no” in them-th column of the
O-line of block! of tableij. Otherwise it writes a “yes” in the:-th column of
the O-line of block of tableij (see below). So a “yes” in the-th column of the
O-line of block! of tablei; means thaPrC,,, shows that conditions (1), (2), (3a),
and (4) hold ofT’, ‘t;’, E, B, D, and A,.

In a second step checks for every wffA’ € D, whether there are (marked)
occurrences of predicatd®;, ..., R, in A’ such that the following holds of the
wif A which is the result of replacing these marked occurrences by new or
starred predicateRy, ..., R}, respectively: There is at least one finite sequence
of wifs P € Pr,, which is a proof ofA”™ from E.

Note that for every wffA’ € D, there are only finitely many such wff$*:
namely2” — 1, wheren’ is the number of occurrences of predicatesdin In
order for A’ to be a relevant consequencefit has to hold for all thesg”' — 1
wifs A™*: B I/ A1

9The indexm is inherited fromPrC,,,.

101 there is a finite setPr,, and a wffC,, satisfying (3a), and if there is a finite s&-,
satisfying (4), then there is a finite set(e.g. Pr,, U Pr,,) and a wffC,,, satisfying (3a) and (4).

llSo
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If there is at least one such wiff* for which there is @ € Pr,, which is a
proof of A™ from E, o writes atentative"yes” at the topof the m-th column of
the line corresponding td’ in block [ of tableij. Otherwise it writes aentative
“no” at the topof the m-th column of the line corresponding # in block [ of
tableij. Thus a tentative “yes” at the top means that there is a proof showing that
A’ is no relevant consequence Bf

In a third stepn checks for every wffA’” € D, whether (a) there is a finite
sequence of wff§? € Pr,, which is a proof ofA’ — C,, from (; (b) C,, is of
the formA; A ... A A, for somen > 1; and (c) every wff4;,1 < i < n, is
shorter thamd’, where =’ is eliminated and brackets are not countedurites a
tentative'yes” in the middleof them-th column of the line corresponding 3 in
block! of tableiy, if the answers to questions (a)-(c) are affirmative. Otherwise it
writes atentative“no” in the middleof the m-th column of the line corresponding
to A" in block( of tableij. So a tentative “yes” in the middle means that there is
a proof showing thatl’ is not elementary.

In a fourth stepn checks for everyd’ € D, whether there is at least one
guantifier scope iM’ which is a conjunctiomB3; A ... A B,,, m > 1, such that it
holds for at least one conjuné,, 1 < k < m: (i) there is at least on® € Pr,,
which is a proof ofB,, < C,, from ; (ii) C,, is of the formA; A ... A A, for
somen > 1; and (iii) every wff A;, 1 < i < n, is shorter tharB;, where =’ is
eliminated and brackets are not counted. If at least one quantifier scopasin
such a conjunctiony writes atentative“yes” at the bottonof the m-th column
of the line corresponding’ in block( of tableij. Otherwise it writes @entative
“no” at the bottonof the m-th column of the line corresponding/ in block  of
tableij. So a tentative “yes” at the bottom means that there is a proof showing

Abtcrer Biff A BandA W/, By and. .. andA i/ By,

whereN := 2" — 1, n is the number of predicate occurrenceddnandB; is thei-th result of
replacing (marked) predicate occurrenceBiby new or starred ones$,< ¢ < N. This shows that
if the underlying logicL is decidable, then both,,.; 1 andl/...;,; are recursively enumerable
(re.), where,; 1 is defined as-...; except that the consequence-relationftfl =, F, is
replaced by the consequence relatioof ;..

A theorem due to Kit Fine shows that the other direction holds, too, for every r.e.llagased
under substitution and containing classical propositional I&Yit— it says that every such logic
L is decidable, if-¢,;, 1, is r.e. Cf. Schurz (1991), p. 415.

Sincet,.; 1, is decidable just in case both...; ;, andt/...; ; are r.e., it holds for every r.e.
logic L closed under substitution and containiRg'":

L is decidable iff-c,¢; 1, is r.e. iff -, 1 is decidable.
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that at least one quantifier scopeAfis not a conjunction of elementary wifs.

In a fifth stepa: checks evend’ € D, on its being a normal form. A’ is a
normal form,« writes atentative“yes” at the leftof the m-th column of the line
corresponding tod’ in block ! of table:j. Otherwise it writes @entative“no” at
the leftof the m-th column of the line corresponding ¥ in block of tablei;.
So a tentative “no” at the left means thétis no normal form.

In sum: If there is a tentative “yes” at the top, in the middleat the bottom,
or a tentative “no” at the left of the:-th column of the line corresponding
in block! of tableij, thenPrC,, shows thatd’ € D, is no relevant element df.
It remains to be determined wheth@r is non-redundant.

Therefore, in a sixth step checks for everyd’ € D, whether there is a
finite sequence of wff$> € Pr,,, which is a proof ofd’ from D, \ {A'}. « writes
atentative'yes” at the rightof them-th column of the line corresponding #3 in
block ! of tableiy, if there is such & € Pr. Otherwise it writes @aentative“no”
at the rightof them-th column of the line corresponding # in block( of table
ij. So a tentative “yes” at the right means that there is a proof showingithat
a redundant part ab;.

In concluding,« looks at them-th column of the line corresponding
in block [ of tableij: If there is a tentative “yes” at the top, in the middle, at
the bottom,or at the right,or a tentative “no” at the left, thea cleansthe m-th
column of the line corresponding ' in block/ of tableij and writes alefinite
“yes”. Otherwise it cleans the:-th column of this line and writes @efinite“no”.

A definite “yes” in them-th column of the line corresponding 6 in block
[ of tableij therefore means thdtrC,, shows thatD, is nota non-redundant set
of relevant elements of .
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Tableij is of the following form, where]; is the number of wffs inD;.

tableij | PrCy | - | - | - | PrC,,
DA, 1 2167 C O-line of B
Al 3 |5|8]-| O line 1 corresponding tet}, in | L
. 4 9 L O
10 U C
. 11 M K
Alg, N line d; corresponding tol,; in | 1

m

DA, l 0-line of B
Ay line 1 corresponding tel;, in | L
@)
C
K
Alg, line d; corresponding tol;; in |

In the endx will have filled every blank with a “yes” or “no”. A blockis called
positive in the limijust in case there is a “yes” in at least one column of the O-line
of block!, and there are only “no”s in every column of any line corresponding any
wff A’ € D,. A block! is callednegative in the limiiff there is a “no” in every
column of the O-line of block, or there is a “yes” in at least one column of at least
one line corresponding to some wif € D;.

A block! is calledpositive at step iff there is a “yes” in at least one column
of the O-line of blockl which has already been investigated by stefpe. at step
n, a has already written down a “yes” in the 0-line), and there are only “no”s in
every columralready investigated by stepof any line corresponding to any wif
A" € D, (i.e. at stem, o has not yet written down a “yes” in any such line). A
block is callednegative at step just in case there is a “no” in every column of
the O-line of blockl which has already been investigated by stepe. at step,
a has not yet written down a “yes” in the 0-line), or there is a “yes” in at least one
columnalready investigated by stepof at least one line corresponding to some
wff A" € D, (i.e. at stem, a has already written down a “yes” in some such line).
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The question each tabig is designed to answer is whettiEraccounts for
‘t;in E relative toB. This holds just in case there is at least one finite and non-
redundant seb of relevant elements af and at least one wifl € D such that
‘t; € C(A) foreverywff A’ € D, and

T,UBU(D\ {A}) F A

It is straightforward that this holds if and only if there is at least one block
tableij which is positive in the limit.

At each stem in table:j, o conjectures “yes” —i.€l’; accounts for¢;,” in E
relative toB — just in case there is at least one bldak tablei; which is positive
at stepn. Otherwise it conjectures “no”.

There arem - N tablesij. In addition to theseqn considersm tables
1,...,m — one for each constant tery’* € C (FE). Tablei,1 < i < m, has
countably many columns listing all the countably many finite sequences of wifs
Py,...,P,,.... Thenthere aré— 1 one-line blocks listing the constant termsg,

.., 't;_1"; they are put at the beginning. Furthermore tabf@s countable many
blocks listing all the countably many finite sets of wity, ..., D,,.... Each
such block consists aflines (one for eacht;’, 1 < k < 7). So tablei is of the
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following form:

table:s | P | -] ]| | P,

‘4 11267

. 3158
419
10

it 11

Dy, 'ty

Dy, 'ty

D, ‘t’

D,,‘t;

Foragivent,’, 1 < k < i — 1 - called aone-line block- and a given?,,, «
checks whethep,, is a proof oft; = t;, from E'U B. If the answer is yesy writes
a “yes” in them-th column of one-line block of tablei; otherwise it writes a
“no” there. So a “yes” in then-th column of one-line block < i — 1 of table:
means that’, is a proof oft; = ¢, from F U B. EU B  t; = t;, holds just in
case there is at least one “yes” in one-line bléaif table:.

For a givenD, — again called d&lock— and a givenP,,, a checks whether
(@) P, is a proof of A\ . € < Agep, d from (), and whether (b.1)’ occurs inD,
..., (b4d) 't;" occurs inD;. If (a) is the case, but (b) is not,a writes a “yes” in the
m-th column of linep of block! +i — 1 of tablei; otherwise it writes a “no” there.
So a “yes” in then-th column of linep of block/ + i — 1 of table: means thaf,,
is a proof ofA\.cp < Agep, d, Where t,” & C'(Dy). 't,) € Cey (E) iff there is a
“yes” in at least one column of lingof at least one block+ ¢ — 1 (corresponding
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to D)) of tablei.

At a given stepr, o conjectures “yes” —i.e.t;’ ¢ C.., (E),or EUB F
t; = t,, for at least onet,” € C.s (E), p < ¢ — iff there is a “yes” in at least
one column of ling of at least one block+ i — 1 of table: which has already
been investigated by step(i.e. at stem, a has already written down a “yes” in
line i of some such block)or if there is a “yes” in at least one colunaiready
investigated by step of some one-line block < ¢ — 1 of tablei, and there are
only “no”s in every columnalready investigated by stepof line & of any block
[ + i — 1. Otherwise it conjectures “no”.

If *¢;" € Coss (F), there is a “yes” in at least one column of linef some
block! + i — 1 of tablei; soa will eventually start to conjecture “yes”, and it will
continue to do so forever. EUB F t; = t,, forsomet,’ € C.s (E), p < 1, then
there is a “yes” in at least one column of some one-line bjoeki — 1, and there
is no “yes” in linep of any blockl + ¢ — 1 of tablei; again,« will eventually start
to conjecture “yes”, and it will continue to do so forever. if ‘c C. s (F) and
EUBFt, =t,forno‘t, € C.s(F), p <i,thenthere are only “no”s in every
column of linei of any blockl + i — 1 of tablei; and for everyp, 1 < p <i — 1:
there are only “no”s in every column of one-line blogkor there is a “yes” in at
least one column of ling of some blockl + i — 1 of tablei. Thereforea will
never conjecture “yes”, or it will eventually start to conjecture “no”, and it will
continue to do so forever. Sostabilizes to the correct answer for every constant
term ‘t;” occurring in £,

Finally, o uses a table 0 in conjecturing whettléty B U E I/ 1. Table 0
consists of a single line and countably many columns listing all finite sequences
of wifs P,,..., P,,.... For a givenP,,, a writes a “yes” in them-th column of
table O, if P,,, is a proof of L from7T"U BU E. Otherwise it writes a “no” there. At
stepn, « conjectures “yes” —i.€'U BU FE is consistent — iff there are only “no”s
in every columrelready investigated by step(i.e. at step:, « has not yet written
down a “yes”). Otherwise it conjectures “no” —i.€.U BU E I/ 1. « stabilizes
to the correct answer for table O: It conjectures thatB U E is consistent except
it has found a proof of the opposite claim which makes it conjecture “no” forever.

In sum there aren - (N + 1) + 1 tablesiyj, ¢, and 0.« starts with step 1 of
table 1, and checks through all the (N + 1)+ 1 first steps; after that it continues
with step 2 of table 1, and so on. dfstarts to conjecture “yes” at some stepf
some tablej, because there is a “yes” in at least one column already investigated
by stepn. of the 0-line of some blockof tableij, and because there are only “no”s
in any column already investigated by stepf any line corresponding to any wif
A’ € Dy, thena sticks to block until it changes its mindecause of a “yes” in
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some column of some line corresponding to someAfE D,, in which case it
goes back to where it has started deviating from its usual path. In other words,
in such a case investigates only th€, lines corresponding to the wffd’ € D,.
This guarantuees thatconjectures infinitely many “no”s for tablg, if 7; does
not account for¢;” in E relative toB.

At stepn, a conjecturesn — ¢ (n) as value folCp_,,r (E)|, Wherec (n)
is the number of tablesamongl, . .., m for which « conjectures “yes” at step
—i.e. thereis at,’ € C.s (F) suchthap < iandE U B - t; = t,. Clearly
« stabilizes to the correct valuy€'s_,.,. (E)|. It remains to be shown that
stabilizes to the correct valud ;_,.,, (1}, E, B)| for any subsef; of T'.

Supposel; C T accounts for?;” in E relative toB. Then there is at least
one block in tableij which is positive in the limit. In other words, there is a
block [ which contains a “yes” in at least one column, say#h¢h, of the O-line
of block [ of tableij, and which contains only “no”s in any column of any line
corresponding to any wffi’ € D;,. When writing down this “yes” in then-th
column of the O-line of blocK, « starts to conjecture thaf; accounts for¢;’ in
E relative toB, and it will continue to conjecture this forever, because there will
always be this “yes” in the 0-line, and there will never be a “no” in any column of
any line corresponding to any wif’ € D;. As a consequence,conjectures only
finitely many “no’s.

Suppose€l; does not account fort,” in E relative to5. Then there is no
block! in tablei;j which is positive in the limit. So for every blodk Either there
is no “yes” in any column of the O-line of blodk or there is a “yes” in at least
one column of at least one line corresponding to someAN# D,. Letl be any
block of table:j. If there is no “yes” in any column of the O-line of blo¢ka can
never takd as reason to conjecture “yes”. If, however, there is a “yes” in at least
one column of at least one line corresponding to someAvf D;, thena cannot
takel as reason to conjecture tHAt accounts for?;” in E relative toB after it
has written down this “yes”.

So for every blocK there is a step such that it holds for all later steps >
n. « cannot take block as reason to conjecture “yes” at step Unfortunately,
this doesnot mean that there is a step such that it holds for all later steps
m’ > n': At stepm’/, no block! can be taken as reason to conjecture “yes”. (If
this were the case, the proof would be finished here.) Howevennjectures
infinitely many “no”s.

a will therefore eventually conjecture correctly and forever thaaccounts
for ‘¢, in E relative toB, if it does so. However, if; does not account for;’
in F relative toB, it may happen that does not stabilize to the correct answer
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“no”: Though it will not wrongly stabilize to “yes”, it need not stabilize at all, but
may continue to change its mind forever.

In order to overcome this difficulty the improved methedis introduced:
The input fora* is the output ofx. More precisely, wheré&’; is any subset of’,
1<j<N,let

a; (7 n) = 1, if o conjectures “no” for table; at stepn,
IV 00 otherwise;

and

ot n) = 1, if a conjectures “yes” for tabléat stepn,
|1 0 otherwise

So
a(T;,'t;",n) = Z min{1,a; (‘t;', k) +a ('t k)}
1<k<n
is the number of steps up to ste@t whicha conjectures thét); doesnotaccount
for ‘¢, in E relative toB, that ¢, & C.s, (E), or that there is at,’ € Cess (E)
withp <iandE U B - t; = t,. Itis important to note that
nlirgloa(Tj ‘t;",n) = oo,
if 7; does not account fot,” in E relative toB, if ‘¢, ¢ C..s (E), or if there is a
‘t,)) € Cess (E) Withp <iandE U B F t; = t,; and that

T}Lngoa(ﬂ ‘tn) <w,

if T, accounts for?,” in E relative toB, ‘t;’ € C.s (E), and there is not,’
€ Cess (E)withp <iandE U B Ft; = t,.

For if T, does not account for,” in E relative to B, thena conjectures
infinitely many “no”s for tableij; and if ‘t,’ ¢ C.s (E), or if there is a t,’
€ Cess () withp < iandE U B + t; = t,, thena starts to conjecture “yes” for
table: after some time, and continues to do so forever. If, howeéleaccounts
for ‘'t;” in E relative toB, ‘t;' € C.s (E), and there is not,’ € C.,s (E) with
p <iandE U B F t; = t,, thena conjectures only finitely many “no”s for table
17, and only finitely many “yes”s for tablg if it ever conjectures “yes” for table
1.

Let K be any of the finitely many subsets@f( ), and define

K:=C(E)\ K, min(K,T;,n):=min{a(T},t',n):t; € K},
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and
max (K, Tj,n) := max {a (1},'t,’,n) : ‘t;/ € K}.

At stepn, o considers
d, (K,T;) := min (F,Tj,n) —max (K,Tj,n),

for every K C C (E), and its conjecture at stepis that X (1) is the set of all
constant termst;" € C.,s (£) which are accounted for by, in E relative to5,

and for which there is na,’ € C.s (E) withp <iandE U B + T; = t,, where
K} (T;) is that subsef ™ of C' (E) such that

dn (K7, T5) > dn (K, Tj)
foreveryK C C' (F), K # K*,ifthereis such d™ C C (FE); otherwiseK?: (T;)
isC (FE).
It will be shown that there is a step such that it holds for all later steps

m > n.

dm (AB—repr (j—jj?E’ B) 71—;) > dm (K7T‘J)7

forevery K C C(E), K # Ap_,epr (T}, E, B); i.e. there is am such that it
holds for allm > n:

Kr*n (TJ) = AB—TePT (ij E, B) .

Note first that
nh—golo dn (AB—repr (ir]a E> B) 77—}) = o0,
because
nh—>nc}o min (ABfrepr (1—‘1]7 E7 B)7 j}v n) = 00,
and

lim max (Ag_yepr (15, E, B) ,Tj,n) < w.

n—oo

The reason is that
lim a(7j,'t;",n) = oo,

n—oo

forevery t,’ € Ap_,epr (15, E, B), and
lim a(73,'t,n) < w,

n—oo

forevery t;' € Ap_yepr (15, E, B).
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Let K be any subset af' (E), K # Ag_,epr (15, E, B) C C' (E). Then
K CAp_yepr (I, E,B) 0Of Ap_yepr (15, E,B) C K.
In the first case there is at least ong & C' (E) with
‘t;! € Ap_yepr (15, E,B)N K,
whence
7115{)10 min (F,Tj,n) < w, andthus T}Lnolo d, (K,T;,n) < w,

because
max (AB—Tepr (erv E7 B) 7Tjjan) Z max (Kvl-rj)n) )

for everyn. In the second case there is at least ariec C' (E) with
‘ti’ € AB—repr (Tj? Ea B) N K7

whence
lim max (K, Tj,n) = oo,

n—oo

where for everyn,
min (AB_TepT (T;,E, B), 1}, n) > min (K,Tj, n) i
So in both cases there is a stepuch that it holds for all later steps > n:
dm (Ap—repr (T3, E, B) , Tj) > d (K, T5) ,

foreveryK C C(E), K # Ap_yepr (1, E, B).
As a consequence,* stabilizes to the correct valuelp_,.,- (1, E, B) |,
for every subset; of T'. At stepn, o conjectures

s*(T',E,B,n) = |K; (T")\ |J K;(T")
T//CT/
as value foi S, (T, E, B)|, 0 # T' C T. By conjecturing
*(T",E,B
r* (7—:7 E,B,n) — Z S ( ) 7T7|1) T,

sirer (m—c(n)) - (27 —1)
at stepn, o* stabilizes to the correct valu€oh (T, E, B) of Coh for T', E, and
B, where

| 1, if o* conjectures “yes” for table O at step
=10 otherwise
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D.6 Proof of Theorem 4.6

Theorem D.6 (No InvEquTrans of T for C'oh) For every evidencé&’, and every
set of wffs B there are theorieg and7” such that

T+ T and Coh(T,E,B)+# Coh(T',E,B),
provided there is at least one thedryith Coh (T, E, B) # 0.

Proof.
Let £ be an evidence, and |ét be a set of wifs. Suppose there is at least one
theoryT with Coh (T, E, B) # 0.

Let h := Va' (Fz' V =Fz'), where " is some predicate not occurring in
T, E, or B, andT contains at least one essential occurrence abariable. So
T U{h} is atheory withl" 4~ T"U {h}. Therefore

1SB—repr (1", E, B))|
pirrer |CB—repr (E)] - (271 — 1)

|S5—repr (I, £, B))|
sirer |Coorepr (E)] - (271 = 1)
|Sp—repr (1" U{h}, E, B)|

Coh (T,E,B) =

+®¢T/g:r |CB—repr (E)| - (2171 = 1)
|Sp_repr (T, E, B)|

0AT'CTU{h} |CB—repr (E)| - (2171 — 1)

|SB—repr (T, E, B)|

>

0£T'CTU{h} ‘CBfrepr (E)| . (2|TU{h}‘ — 1)

= Coh(TU{h},E,B).

The proviso is non-trivial, since there are evidenéeand sets of wffsB such
that it holds for every theory: Coh (T, E, B) # 0, onlyif none of the evidential
domains ofF’ is among the domains of proper investigatiod 6 even ifEU B t/
L andAg_sepr (0, E, B) # Cp_repr (E).

Let E = {Fa} and B = {-VzFxz}. ThenAp_ .., (0,FE,B) = 0 #
Chrepr (E)andE U B I/ L.

Supposd’ is a theory such that ((Yoh (T, E, B) # 0, and (ii) at least one
of the evidential domains df is a domain of proper investigation 6t (i) yields
TUB*F Fa,ie. T+ -VeFz — Fa.
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Because of (ii), &' cannot occur inT’, whenceT' + Yy (-VzFz — Fy),
ie. T+ Vy (VYaFz Vv Fy), and thusl' - VzFz. ButthenT U B + L, whence
Coh (T, E, B) = 0 — a contradiction. O

D.7 Proof of Theorem 4.7

Theorem D.7 (Coherence Versus Power).et T" be a finite set of wifs, lefy’ be
an evidence, and lé be a set of wifs. ITUBUE I/ L andAg_,p (0, E, B) =
0, then

Coh (T, E, B) <C’0h(/\ E B) P(T,E,B),

heT
where?P is closed under equivalence transformation%'@nd B.

Proof.

ThatP is closed under equivalence transformation§’and B is an immediate
consequence of its definition. L&tbe a finite set of wifs, lefs be an evidence,
and letB be a (not necessarily finite) set of wffs. Supp@se BU E I/ 1 and
Ap_repr (0, E,B) = 0. If T =0, then{Acr h} = 0, and thus

coh(T,E,B):Coh(/\ h,E,B) —0=P(T,E,B),
heT

becaus&'s_,c,r (E) # 0 andAg_,epr (T, E, B) = Ag_yepr (0, E, B) = 0.
Supposd’ # ). As T is finite, andAp_,.,. (0, E, B) = 0, it holds for every
T"CT,

S(T',E,B)C A(T',E,B)C A(T,E,B) = (/\hEB)

heT

SinceA\ C C B\ C,if A C B, forany sets4, B, C, it holds for everyl” C T,

SB—repr (/\ h7E7 B) ‘ :

heT

|SB—repr (T/> E7 B)| S

Let N := 2/l — 1, and letT, ..., Ty be all theN non-empty subsets @f.

‘SBfrepr (TlaEaB)’_F'--—i_’SBfrepr (TN7E7B)‘ < N'|SBfrepr (/\heThvE7B)‘
|CB*T€]JT (EN ’ (2|T| - 1) N ’CBfrepr (E)’ : (2|T| - 1)
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iff
’SB—WPT (T,’Ev B)’ < |SB_repr (/\hET haEyB)‘
0£T'CT |CB_T€W (E)| ) (2|T| - 1) n |CB—repr (E)|
N =21 _1
iff

Coh (T,E,B) < C’oh(/\ h,E,B).

heT

AS SB_repr (Aner 1, E, B) = Ap_repr (T, E, B), it follows that

heT

Coh (T, E, B) < Coh (/\ h,E,B) —P(T,E,B).

D.8 Proof of Theorem 4.8

Theorem D.8 (No SensLovelLike ofCoh) For every power searche&lO, every
truth indicator£Z, and every evidencé there is a theory’z and a background
knowledgeBy such that it holds for any sets of wffsand B, and every evidence
E:fTH- Ty, E' 4+ E, andB -+ Bpg, then

1. TUBF E',and thusCO (T, E', B) =1,
2. FUBFT,andthusCZ (T, E',B) = 1,and
3. Coh (T, E', B) = 0.

Proof.
Let LO be a power searcher, I6Z be a truth indicator, and Iéf be an evidence.
Ty and By, are defined as followsiy = {Vz'Fz'}, and By = E U Tg, Where
‘F’ is some predicate not occurring . T is a theory, and3 is a background
knowledge.

E is consistent, whenc€& U B andTy U By are consistent, too. By the
definition of By, Ty U B + EandE U B + Tk.

Let £/ be an evidence, and Iétand B be sets of wffs. Supposg’ - F,
T -+ Ty, andB 4+ Bg. ThenT U B+ E’andE’ U B + T. As a consequence,
LO(T,E',B)=LI(T,E' B)=1.
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Theorem 4.4 (Surplus) yields that(T, E’, B) = (), if T # ) andB + T,
whence it holds for every”, ) £ 17" C T

Sprep (T',E',B) C S(T', E', B) = 0.
Supposé€’ is finite. ASCp_,,- (E') is always non-empty,

‘SB—repr (T/7 El? B)|

= 0.
|Crpepr (E')] - (271 = 1)

Coh(T,E',B)= Y
0AT'CT

Suppos€l is a set of countably many wffs, aitn, .., Coh (T;, E', B) exists,
and is the same for every enumeration. .., h,, ... of the wffs in T, where
T; = {hy,..., h;}. Lethy,... h,,... be an enumeration of the wffs ifi, and
consider?; = {hy,...,h;}, foranyi > 1. As B + T, B + T/ for everyT},
0 # T} C T;, whence

SB—repr (iri/a El; B) - S (nla E/v B) - (Z)

As before, it follows thatCoh (T}, E’, B) = 0. Since this holds for every >
1, it follows thatlim; .., Coh (T;, E', B) exists, and equal8. By assumption,
lim; .., Coh (T}, E', B) is the same for every enumeratién, ..., h,, ... of the
wifsin 7. SoCoh (T, E', B) = 0.

Finally, if 7" is a set of uncountably many wff§/oh (T, E’, B) is not de-
fined, and may be set equal(o

Note that this holds in particular for the — by assumption existing — unique
canonical formulatiorf’,, of 7. O



Appendix E
Proofs for Chapter 5

E.1 Proof of Theorem 5.1

Theorem E.1 (P Is a Formally Handy Power Searcher) P (-,-,-), P (+,+,*) : T X
ExB — R, is a power searcher which is non-arbitrary, comprehensible, and com-
putable in the limit, provided for everf € £ and everyt’ € C.,, (EF) there is a
contingent A € RE (E) with ‘¢’ € C (A).

More precisely,P is formally handy, and for any theori@sand1”, every
evidenceFE, every background knowledgg, and every confirmational domain
D, of T'andE, and of 7" and E:

1. P(T,E,B;D;) >0,
2. if TUBF E, thenP (T, E, B; D;) = 1, and
3. if '+ T, thenP (T", E, B; D;) > P (T, E, B; D;),

provided for everyE' € £ and everyt’ € C. (F) there is a contingentl €
RE (E)with‘t" € C (A).

Proof.

That P is non-arbitrary, comprehensible, and computable in the limit is a con-
sequence of theorem 4.5 and the proof of theorem 5.2, where it is shown how
to stabilize to the correct answer to the question wheiheis a confirmational
domain of7" and E.

1Contingency should rule out= ¢, which is a relevant consequence of dny

207
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Let 7 and 7" be theories, letr be an evidence, leB be a background
knowledge, and leD; be a confirmational domain @f and £, and of 7" and E.

Clearly,
|AB—rep7’ (T7 E7 B) N CZ‘
P(T,E,B;D;) = > 0.
( )= T (Coren (BYNC
Supposé’'U B + E. By assumption, for every” € C.,, (E) — and thus for every
‘t"" € Cp_repr (E)NC; —thereis a contingemt; € RE (E) with‘t’ € C' (A;). So
for every 1" € Cg_epr (E) N C; there is a finite and non-redundantC Dy (¢*)
—namelyD = {A,} —and awffA € D (namelyA,) such thatt”” € C (A’), for
everyA' € D, and

TUBU(D\{A})F A.

As aconsequencé_,.,, (1, E, B)NC; = Cp_yepr (E)NC;, and thusP (T, E, B; D;) =
1.
Finally, suppos€” + T, and let t”" € Ag_,., (T, E, B) N C;. This means
that there is a finite and non-redunddntC Dy (¢') and a wffA € D such that
‘t" € C (A'), foreveryA’ € D, and

TUBU(D\{A})F A.

But then there is also a finite and non-redund@n€ Dy (t') and a wffA € D
such thatt” € C' (A'), for everyA’ € D, and

T"UBU(D\ {A}) F A.
S0Ag ey (T, E,B)NC; C Ap_yepr (T", E, B) N C;, and therefore

P(T,E,B;D;) <P(T',E,B;D;).

E.2 Proof of Theorem 5.2

Theorem E.2 (L7 Is a Formally Handy Truth Indicator) £Z (-,-,-),LZ (,,-):
T x € x B — R, is a truth indicator which is non-arbitrary, comprehensible, and
computable in the limit.

More preciselyLZ is formally handy, and for any theori@sand7”, every
evidencelL, every background knowledgg, and every confirmational domain
D;of TandFE, and of7" andE: If EU B/ 1, then
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1. LI (T,E,B;D;) >0,
2. fEUBFT,thenlZ (T, E,B;D;) =1, and
3. if 7'+ T, thenlZ (T, E, B: D;) < LI (T, E, B; D,).

Proof.

L7 is non-arbitrary, because it is a single function without parameters that can be
freely chosen. It is comprehensible because its definition is stated in the terms of
PL1 =andZF.

For computability in the limit one has to show that there is a method
that stabilizes to the correct valuéZ (T, £, B; D;) of L7 for T, E, B, and
every confirmational domai®; of 7" and F, for all theoriesT, evidencesF,
and background knowledge&$. The proof of theorem 4.5 shows how to stabi-
lize to the correct valuéC_,¢,- (E)| — and thus tdCp_,epr (E) N C; (E)| =
|Cp_repr (E) N C;| — for everyE and B. It also shows how to stabilize to 1, if
E U B/ 1, and to 0 otherwise. It remains to be shown how to stabilize to the
correct valuenax,7 (T, E, B; D;), i.e.

max {|C' N Cp_repr (E)| : C C Cp s, B & Devey, ,,, (B) — Deve (T)}

Cegpi=C(EUB)NC; =C;(EUB),forallT, E, B, and every confirmational
domainD; of T'and .

Let 7" be a theory, leE’ be an evidence, and Iét be a background knowl-
edge. One first has to determine the confirmational domaifisafd £. Let D;
be any domain such thdt contains an occurrence of &variable, but no occur-
rence of a constaritterm, andE’ contains an occurrence of a constaterm, but
no occurrence of afrvariable; let ti’, ..., ‘¢! * be the constani-terms occurring
in £ let‘t;, ", ..., ‘t’ be the constant-terms occurring inB but not in £; and
let K1, ..., Ky be the2? subsets of’; (F' U B).

The question is whethdr contains aressentiabccurrence of airvariable,
and whether there is at least one constaletrm essentiallyoccurring inE. (We
already know that there are no occurrences of congtgerins in7’, and no oc-
currences of-variables inE.) In order to answer this question methadises
m + 1 tablesT" andT7,..., T all of which consist of countably many columns
listing all finite sequence of wff#,, ..., P,,... and countable many lines listing
all finite sets of wifsD, ..., D,,, .. ..

For a givenP,, and a givenC;, a checks whether (i)7,, is a proof of
Aner b < Agep, d from ), and (i) D; contains an occurrence of asvariable.
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If (i) is the case, but (ii) is noty writes a “no” in them-th column of linel of
tableT’; otherwise it writes a “yes” therd. contains an essential occurrence of an
i-variable just in case there are only “yes”s in every column of every line of table
T.

Furthermoreq checks whether (if,, is a proof ofA ..z e < Ayep, d from
@, and (ii) D; contains an occurrence df, 1 < k < m. If (i) is the case, but (ii)
IS not, o writes a “no” in them-th column of linel of table7}; otherwise it writes
a “yes” there.F contains an essential occurrence ©f iff there are only “yes”s
in every column of every line of tablg/.

At stepn, o conjectures “yes” —i.eD; is a confirmational domain @f and
E —iff there are only “yes”s in every column of every linfeady investigated by
stepn of tableT', andthere are only “yes”s in every column of every liakeady
investigated by step of at least ongable amond/7,..., 7T/ (i.e. at stem, «
has not yet written down a “no” in any column of any line of talblenor has it
written down a “no” in any column of any line sometable amond, ..., T)).

« stabilizes to the correct answer: II; is a confirmational domain df
and F, then there are only “yes”s in every column of every line of tdbland
of at least one further table amof, . .., 7., whencex will always conjecture
correctly “yes”. If D; is no confirmational domain df’ and E, then there is a
“no” in at least one column of at least one line of tableor there is a “no” in at
least one column of at least one linealf tablesT],..., 7’ . In the first caseq
conjectures correctly and forever that is no confirmational domain &f and £
after it has written down this “no” in tabl&’; in the second case; conjectures
correctly and forever thab; is no confirmational domain &f and £ after it has
written down these “no”s in all tableg|, ..., 77 .

In additiona usesN = 27 tables7;, 1 < 57 < N —one for eachk; C
C; (F' U B) —in conjecturing the correct valueax,.z (T, E, B; D;).

TableT; consists of one single line and countably many columns listing all
finite sequences of wffg, ..., P,,.... For a givenP,,, a checks whetheP,, is
a proof of Deve,, . (B) — Devg, (T) from E. If the answer is affirmativey
writes a “yes” in then-th column of tablel;; otherwise it writes a “no” there. At
stepn, a conjectures “yes” —i.el logically implies Deve,, ., (B) — Devg, (T))
— iff there is a “yes” in at least one colunafready investigated by step(i.e. at
stepn, o has already written down a “yes” in some column of tébfg otherwise
it conjectures “no”. a stabilizes to the correct answek + Devc,, ,, (B) —
Devg, (T') holds iff there is a proof oDevc,, ., (B) — Devg, (T') from E, which
holds just in case there is a “yes” in at least one column of t&hle



E.2. PROOF OF THEOREM 5.2 211

Furthermoreq considersn tablesl, ..., m — one for each constaiterm
‘t:” € C; (E)—in conjecturing whethet}’ € Cp_ ., (E). « just copies what the
« of the proof of theorem 4.5 does. Therefore it stabilizes to the correct answer to
the question whether (i};" € C.., (£), and whether (i) there is @’ € C., (E)
withp <kandEU Bt} =t,.

Finally, o uses a table 0 in conjecturing whethietu B # L. Again,« just
copies what thev of the proof of theorem 4.5 does, and thus stabilizes to 1, if
EuU Bt/ 1, and to 0 otherwise.

As in the proof of theorem 4.5, another methedobserves the output of
a. At stepn, o* conjectures thatZ (T, E, B; D;) is not defined, if, at step, «
conjectures “no” for tabld” or it conjectures “no” for all table§7,..., 7  —i.e.

D; is no confirmational domain df and E; or if o conjectures 0 for table 0 at
stepn—i.e. FUBF L.

If, however,a’s conjecture at step is thatD; is a confirmational domain
of T and E; and if, at stepr, a conjectures “yes” for tables,, . . ., k,> among
tablesl,...,m,s > 1,1 < k., < m, foreveryr,1 < r < s; and if, at stepz, «
conjectures that’ U B I/ L; thena* conjectures at stepthatLZ (T, E, B; D;)
is defined, and that

KrnQitt oo
LI(T,E,B;D;) = | Utk L) ,
m—c;,
where
1. ¢¢ = m — s is the number of tables amongl, . .., m for which « conjec-

tures “no” at stepr —i.e. ‘.’ & Cp_repr (E); and
2. K} is that subsei(; of C; (E U B) such that

(a) at stepn, o conjectures “yes” for tablg — i.e. E logically implies
Devey, . (B) — Devg, (T');

(b) Jij {0}
< N;and

, foreveryl, 1 <

> (KN {t, ..., 4%}

(c) thereis nak,, ¢ < j, satisfying (b) and (c).

If there is no suchi;, thenk;; = (.

2Indexn is suppressed for obvious reasons.
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« stabilizes to the correct answer for every tabld < k£ < m. So there
is a stepn; such that at all later steps > n;, a* conjectures correctly that
{‘ L ‘tis’} = Cp_repr (E). Furthermoreg stabilizes to the correct answer
for every tablel;, 1 < j < N, whence there is a step such that at all later steps
n > ng, o* takes correctly into account all and only thdse C C; (E' U B) with
E & Devey, ., (B) — Deve, (T).

As « also stabilizes to the correct answer for the taldlgs, 77, ..., 7},
there is a stem* such that it holds for all later steps > n*: (1) At stepn, o*
conjectures thafZ (T, E, B; D;) is defined, and that

max,7 (T, E, B; D;)
|Cprepr (B) NG|

LI(T,E,B;D; =

where
max (I,E,B;D;) = max{|CNCp_yepr (E)|: C C Cgp,,
E+ Deve, ,, (B) — Devc (T)},

if D; is a confirmational domain &f andE, andE U B t/ L. (2) At stepn, o*
conjetures thatZ (T, E, B; D;) is not defined, ifD; is no confirmational domain
of T"andFE, or E U B + L. That much to computability in the limit.

As to truth indicativeness, |éf and7” be theories, letr be an evidence,
and letB be a background knowledge. L&t be a confirmational domain @af
and E, and of 7" and E (with corresponding-variables and constamtterms),
and letD, ..., D, be the domains df’, F/, andB (i.e. there occur variables and
constants of, different sorts ifl’, £, andB). Suppose~ U Bt/ L.

(A) Obviously,LZ (T, E, B; D;) > 0.
(B) Supposer U B + T'. | show that
E & Devey, ., (B) — Devey, ., (T,

for then c (B)NC(EUB)
_ N C; U
LI(T,E,B;D;) = —5-rer : =1
( )= T Comra (B) N

Suppose
E |71 DeUCE,B,i (B> - DevcE,B,i (T) :
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Then there is at least one model = (Dom, y), Dom = (D, ..., D,), such
that

o(E)=v (DevcE?Byi (B)) =1 and ¢ (DevcE,B’i (T)) =0.

Itis shown that, under this assumption, there is at least one mddet (Dom*, ¢*),
Dom* = (D3, ..., D?), such that

" (E)=¢"(B)=1 and ¢"(T)=0
— in contradiction to the assumption that B - T'.
LetD; = Dy, 1 <k #1i<n,and
Df ={a: ¢ (‘t") = «a, for some constantterm ¢’ € C; (EU B)},
and note that

Ci (Deve,, ,,, (B) — Deve,, ,, (T)) = C; (EUB) = Cp ..

LetC be the set of all constant terms occurringinDevc,, , , (B), of Devey, ., (T).
Let

o (a’) =¢(‘a),
for every individual constant’ € C,

Dy, ifk #i

* (0 phpa1r) ¢ rkna? * * * kjs J )

SD(’f ’ )—Qp(f ! )m<Dk17’Dk"+l>’ ij_{D:7 |fk]:Z7
for every(n + 1)-ary k,,,1-function symbol fkn+1’ = ¢ frns (m’“, . ,xkn)’ oc-

curring inE, Devey, ,, (B), or Deve,, ,,, (T'), and

X [ n - Pn? * * * D'7 Ifk 7:7
@ (PY) =@ (P")N (Do DL, ) Dka-:{D:J ifkj-ii

for everyn-ary (k1, . .., k,-) predicate P = p» (xkl, . ,xk">’ occurring inE,
Devey, ., (B), of Devey, ., (T).

Note thatn-ary predicate P"’ occurs in Deve,, . (B) or Deve,, . (T)
just in case P™ occurs in B respectivelyl’; and that(n + 1)-ary function sym-
bol ‘ f5+1" occurs inDeve,, ., (B) of Devc,, ., (T), if (but not only if) * fFn+’
occurs inB respectivelyl'.

3If + fkn+1" is part of some constanitterm t € C; (E), but does not occur i or T', then
‘ fFn+17 oceurs inDeve,, ,, , (B) andDeve,, , , (T).
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Let me first show thap* (‘t’) = ¢ (‘t’), for every constant term” € C,
and, given this, thap* (A) = ¢ (A), for every wff A in E, Devc,, ,, (B), or
Devg,, . (T). It follows that

" (B) = ¢ (E) = 1= ¢ (Devey , (B)) = ¢ (Deve, , (B)),  and
©* (DeUC’E,B,i (T)) = (DGUCE,B,i (T)) —0.

Finally it is shown that

" (Devey . (B)) =¢" (B)=1 and ¢ (Devc, ,, (T)) = 9™ (T) =0,

which contradicts the assumption thaty B + 7.

By definition, o* (‘a’) = ¢ (‘a’), for every individual constanta' € C.
Let ‘t7, ..., ‘t*’ be n constantt;-terms,1 < j < n, let ‘ fk+1" be ann-ary
k,+1-function symbol, and supposg+1 (t’“, . ,t’“l)’ eC:

PR at)) = () (5 () ()

= ¢ (‘f’“"“’) (so (‘t’“’) e (‘tkn’))

by induction hypothesis
= () (o (). ()
) (t’“) € Dj , foreveryi, 1 <i <n, and
o (*flt (4, #)") € D, because
e () e C
= @ (‘fkn"rl (tkl, . ,tk”>’) .
Let A be awffinE, Devc,, ,, (B), or Deve,, ,, (T'). A contains no occurrence
of an i-variablez® (or a corresponding quantifier), for these are eliminated in
Devey, ., (B) andDeve,, ., (T'), and do not occur i, because); is an eviden-
tial domain ofE.
(1) If A is atomic, i.e. ifA is of the formP» (t’“, . ,tk"), ‘tki* € C being a

constantt;-term,1 < j < n, and ‘P being ann-ary (ki, ..., k,-) predicate,
then

o* (P” (tkl,...,tk")) =1 Iiff <g0* (‘t’“’),...,gp* (‘tk”’>>€g0*(‘P”’)
(o) o ()
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by the abové

ift (i (‘7).

215

o (th)) ep(Pm)

o (‘PM) = (P"’) (D;,,....Dy) =

=@ ("P)°

o (P () =1

(2)If A=-B, then

" (A) =1 iff ¢"(=B)=1
iff " (B)=0
iff ©(B)=
iff o(-B)=1
iff ©(A)=1.

3)If A= BAC,then
e (A)=1 iff ¢"(BAC)=
iff ¢*(B)=1andy*(C)=1
iff (B
iff o(BAC)=
iff o (4) =

(4)-(5) Similarly forA = Bv CandA =B — C.
(6) If A=VakB [xk} k +# i, then

P (A) =1 iff ¢ (V"B |2*]) =1

0 by induction hypothesis

iff " (B [mk]) = 1, for every interpretation functiop™
differing from ¢* at most in the value for*’

iff (B [x’“]) = 1, for every interpretation function’
differing from ¢ at most in the value for*’
by induction hypothesis, and becausg = D,

iff o (kaB [ka =1

iff ©(A)=1.

Ytk e C, for everyj, 1 < j < n, whencep* (‘thi") = ¢ (‘t""), for everyj, 1 < j < n.
Sp (‘t"’) € Dy, since ti* € C, for everyj, 1 < j < n.
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(7) Similarly for A = 3z*B [mk} ki,

Thus
¢ (E) = ¢(B) = 1= ¢" (Devey, ., (B)) = ¢ (Devey ,, (B)),  and
P (DeUcE,B,i (T ) = (DevcE’B)i (T)) =0.

Let me now show by induction on the length of the conjunciigpy /. of all wifs
h € B and the conjunction\, ., h of all wifs i € 7" that

" (B) = ¢" (Deve, ., (B))  and ¢ (T) = ¢* (Devey ,, (T)),
where ‘B’ is short for ‘A,c5 k', and ‘I" is short for ‘A,cr h'. Let 'S’ be “I” or
‘B’.

(1) If S is atomic, i.e. ifS is of the form P" (t’“l, . ,t’“"), ‘tki’ € C being a
constantk;-term,1 < j < n, and ‘P™ being ann-ary (k,,..., k,-) predicate
occurring inE, Deve,, , . (B), or Devg,, ,, (T), then

" (S)=1 iff o (P” (tkl, . ,tk”>)
iff ¢ (Deve, ,, (P"(¢,...,#))) =1 definition of

the developmenbeuvq (T') of (a finite set of) wif(s)I"
for a finite set of constanttermsC'

iff (DevcE’B,i (S)) = 1.
(2) If S =—A, then

¥
@
iff ¢ (Deve, ,, (A)) =0 by induction hypothesis
" (ﬂDevcE’Bﬂ. (A)) =1

iff ¢ (Devey, ,, (-A)) =1 definition of the develop-

mentDeve (T') of (a finite set of) wff(s)I" for a
finite set of constanttermsC’

iff (DGUCE,BJ (S)) =1
(3)If S = A A B, then
e (S)=1 iff ¢*(AANB)=1
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iff
iff

*(A) =1landy* (B) =1

" (Devey 5, (A)) = landy* <D€U0E,B,i (B)) =1
by induction hypothesis

iff (DGUCE,BJ (A) A Devey, g, (B)) =1

iff ¢ (Deve,, ,, (AAB)) =1 definition of the develop-
mentDeve (T') of (a finite set of) wff(s)I" for a
finite set of constanttermsC'

iff o (DGUCEﬂB’i (S)) = 1.

(4)-(5) Similarly forS = AV BandS = A — B.
(6) If S = Vz'A[z], then

g
'

e () =1 iff ¢~ (inA {xz]) =1
iff  * (A [:ﬁ]) = 1 for every interpretation functiop*’
differing from * at most in the value forz”’

iff " A A [ti/x"] =1 foreverya € D; there
‘1" € Cg,B,;
is at least onet”” € Cj p,; such thaty* (‘t"") = «
iff " (Devey,, (Va'A[2'])) =1 definition of the
developmenDeuv (T') of (a finite set of) wif(s)I"
for a finite set of constanttermsC

iff (DevcE?Byi (S)) =1
(7) If S = 3z A [27], then
" (S) =1 iff ¢~ (ElasiA {xl]) =1
iff o (A {xl}) = 1 for at least one interpretation function
©*' differing from ©* at most in the value forz”’

iff " \V} A [t"/x’} =1 foreverya € D; there
't" € Cpp
is at least onet”” € Cg p; such thato* (‘t”") = «
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iff ¢ (Deve, ,, (32°A [2'])) =1 definition of the
developmenDeuve (T') of (a finite set of) wff(s)I"
for a finite set of constanttermsC'

iff (DevcE’B’i (S)) = 1.
(8) If S = Va* A [, k # i, then

e (S)=1 iff ¢~ (kaA {ka =1

iff (A [m’“}) = 1 for every interpretation functiop®’
differing from ¢* at most in the value for*’

iff o (D‘EUCE,BJ- (A [ka) = 1 for every interpretation
function*’ differing from * at most in the value forz*’
by induction hypothesis

iff (V:EkDevcEyB’i (A {ka) =1

iff ¢ (Deve, ,, (Va*A [2¥])) =1 definition of the
developmenDeuve (T') of (a finite set of) wff(s)I’
for a finite set of constarnittermsC’

iff (DevcE’B’i (S)) = 1.

(9) Similarly for § = 3a* A [a*), k # i,
It follows that

¢" (B) = ¢" (Deve, ,, (B)) =1 and ¢ (T) = ¢" (Deve, ,, (T)) =0,

since
©* DeUCE,B,i (B)) =@ (DeUCE,B,i (B)) =1, and
©* (Devey, 5, (T)) = (DGUCE,BJ (T)) = 0.
So there is at least one mod®t* = (Dom*, v*), Dom* = (D5, ..., D}), such
that
P (E)=¢"(B)=1 and ¢"(T) =0

— in contradiction to the assumption thatu B - T

(C) Supposed” + T, and letD;, ..., D, be the domains of’ andT” (i.e. there
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occur variables and constantsroflifferent sorts iril” and7”). It suffices to show
that
E & Devey, ., (B) — Deve,, (T),

for everyCr C C; (E U B) with

E+ Devey, ., (B) — Deve,, (T).

For then
max (T, E, B; D;) > max (T", E, B; D;) ,

LT LT
and thus

LI (T,E,B;D;)> LI (T E,B;D;).
Suppose

E+ Devey, ., (B) — Devg,, (T'),

but

E W Devey, ., (B) — Deve,, (T),
for someCr C C; (E'U B). Then

Deve,, (T') ¥ Deve,, (T).
So there is at least one model = (Dom, ), Dom = (D, ..., D,), such that
® <Dech/ (T’)) =1 and o (DevCT, (T)) =0.

Once more it is shown that, under this assumption, there is at least one model
M* = (Dom*, o*), Dom* = (D5, ..., D#), such that

e (T")=1 and " (T)=0

— in contradiction to the assumption that- 7.
Let Df = Dy, 1 < k #i <n,and

D; ={a:¢(‘t") = «, for some constantterm ‘¢’ € Cy},

and note that
C; (DevCT, (T’)) U C; (DeUCT, (T)) = Cypr,

becausd); is among the domains of proper investigation of bftand7”.
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LetC be the set of all constant terms occurrindiavc, , (1”) or Deve,, (T).
Let
@ (a) = p(a),
for every individual constanu’ € C,

o (1) =0 (o) (Do) o= B B E

for every (n + 1)-ary k,,,-function symbol fkn+1’ = ¢ fhni1 (9:’“1, .. ,:n’“n)’ oc-
curring in Deve,, (T") or Deve,, (T'), and

X [ I - Pn? * * * 'D'J Ifk#l7
# (PY) = (PY) (D DL ij:{D? it hy = i

for everyn-ary (k1,...,k,-) predicate P*' = * pP» (xkl, . ,xkn)’ occurring in
Devc,, (T") or Devc,, (T).

As before,n-ary predicate P™ occurs in Deve,, (1") or Devc,, (T') just
in case P™ occurs inT" respectivelyl’; and(n + 1)-ary function symbol f*n+1’
occurs inDevc,, (T') or Deve,, (T), if (but not only if) ‘f*+1* occurs inT”
respectivelyr’.

| first show thaty* (‘t') = ¢ (‘t"), for every constant term™ € C'; given
this, I show thatp* (4) = ¢ (A), for every wif A in Devc,, (1") or Deve,, (T).
It follows again that

©* (Deve,, (T’)) = (Dech/ (T’)) =1, and
¢* (Deve,, (T)) = (DevCT, (T)) =0.

Finally, it is shown that
©* (Dech/ (T’)> =" (T")=1 and ¢* (DevCT, (T)> =" (T) =0,

which contradicts the assumption tH&t- 7.

By definition, o* (‘a’) = ¢ (‘a’), for every individual constanta’ € C.
Let ‘t, ..., ‘t"’ be n constantt;-terms,1 < j < n, let ‘ f*+1" be ann-ary
k,1-function symbol, and supposg™ -+ (t’“, . ,t’“l)’ eC:

o (S (et ) = () (o (1) (180))



E.2. PROOF OF THEOREM 5.2 221

= ¢ (‘fk"“’) (90 (‘tkl’),...,gp(‘tk"’D

by induction hypothesis

= o () (o (), ()

) (t’“) € D;,, foreveryi,1 <i <n, and

SR () e C
= ol (B 1))
Let A be a wif in Deve,, (T") or Deve,, (T'). A contains no occurrence of an

i-variablez® (or a corresponding quantifier), for these are eliminated.
(1) If A is atomic, i.e. ifA is of the formP™ (%, ..., thn), ‘tki* € C being a

constantt;-term,1 < j < n, and ‘P being ann-ary (ki, ..., k,-) predicate,
then
" <P” (tkl ..... tk")) =1 Iiff <gp* ( th1 ) ..... " (‘tk )> € ("P™)
it (o (1), e () € o (P7)
by the above
it (o (1), (1)) € o (P

(
e (' P™)

(2) If A= -B, then

(A =1 iff o (~B)=1
iff ¢ (B)=0
iff ¢ (B)=0 Dby induction hypothesis
iff o(-B)=1
iff p(A) =1

(3)If A= BAC,then

e (A)=1 iff " (BAC)=1
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iff " (B)=1andy"(C)=1

iff ©(B)=1andy(C)=1 Dby induction hypothesis
iff p(BAC)=1

iff ©(A)=1.

(4)-(5) Similarly forA = BvVv CandA =B — C.
(6) If A =Va*B [a*], k # i, then

" (A)=1 iff " (‘v’ka [ka =1

iff  * (B [ka = 1, for every interpretation functiop™’
differing from ¢* at most in the value for**’

iff ¢ (B [m’“]) = 1, for every interpretation functiop’
differing from ¢ at most in the value for*’
by induction hypothesis, and becausg = D

iff o (mGB [ka =1

iff p(A)=1.

(7) Similarly for A = 32* B [*), k # i.

Thus
¢* (Deve,, (T’)) = (DevCT, (T')) =1, and

¢* (Deve,, (T)) = (DeUCT, (T)) = 0.

Let me now show by induction on the length of the conjuncign; i of all wifs
h € T" and the conjunctiop, . h of all wifs h € T" that

" (T") = ¢* (Dech, (T’)) and ¢ (T) = ¢* (DeUCT, (T)) ,

where 7" is short for ‘A, h', and ‘T” is short for ‘A, h'. Let*S” be I or
‘T“,

(1) If S is atomic, i.e. ifS is of the formP" (t%1, ... ,t’“ﬂ), ‘tki* € C being a
constantk;-term,1 < j < n, and ‘P being ann-ary (£, ..., k,-) predicate
occurring inDeve,, (1") or Deve,, (T'), then

" (S)=1 iff ¢~ (P” (tkl, . ,tk">>
ift ¢ (Deve,, (P (..., t"))) =1 definition of
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the developmenbeuvq (T) of (a finite set of) wff(s)I"
for a finite set of constanttermsC

iff o~ (Dech/ (S)) = 1.

(2) If S =—A, then

e (5) =1 iff " (-A) =
ifft " (A4) =0
iff o (DevCT, >_0 by induction hypothesis
iff " (_|D€UCT, ) 1

iff ¢ (Deve,, (~A)) =1 definition of the develop-
mentDevq (T) of (a finite set of) wif(s)I" for a
finite set of constanttermsC'

iff o (Dech, (S)) =1

(3)If S = AA B, then

¥
iff ¢*(A)=1landy"(B)=1
" (DevCT, (A)) = 1l andyp” (DevCT, (B)) =1
by induction hypothesis
iff " (DevCT, (A) A Deve,, (B)) =1
iff ¢ (Deve,, (AAB)) =1 definition of the develop-
mentDeuvq (T) of (a finite set of) wif(s)I" for a

finite set of constanttermsC
iff " (Deve,, (5)) = 1.

(4)-(5) Similarly forS = Av BandS = A — B.
(6) If S = Vz'A|[z], then
" (S) =1 iff o (V:ciA [x’]) =1
iff  o* (A[ lD = 1 for every interpretation functiop™’
differing from ¢* at most in the value forz”
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iff o ( A [ti/xl}) =1 foreverya € D; there
‘" e Cp
is at least onet”” € Crv such thaty* (‘') = «
iff ¢ (Deve,, (VoA [a'])) =1 definition of the
developmenDeuvq (T') of (a finite set of) wif(s)I’
for a finite set of constanittermsC

iff o (DevCT, (S)) = 1.
(7) Similarly for S = 3z A [z7].
(8) If S = Va* A ], k # i, then
e (S)=1 iff ¢~ (kaA {ka =1
iff (A [x’“]) = 1 for every interpretation functiop®’
differing from ¢* at most in the value for*’
iff (Dech, (A [a:kD) = 1 for every interpretation
functiony* differing from * at most in the value for*’
by induction hypothesis
iff " (kaDevCT, (A [:ka) =1
iff ¢ (Deve,, (Va*A[z*])) =1 definition of the
developmenDeuv (T') of (a finite set of) wff(sS)I"
for a finite set of constarnittermsC’

iff " (Dech/ (S)) = 1.

(9) Similarly for § = 3z A ||, k # .
It follows that
O (T") = p* (DevCT, (T/)) =1 and ¢ (T)=¢" (DevCT, (T)) =0,
since
¢* (Deve,, (T’)) = (Dech, (T')) =1, and
¢* ( Deve,, (T)) = (DevCT, (T)) = 0.
So there is at least one modet* = (Dom*, ¢*), Dom* = (D5, ..., D), such

that
e (T")=1 and ¢*(T)=0
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— in contradiction to the assumption that- 7. O
TheoriesT” and background knowledgés have to be finite, for otherwise

Deve (T') and Deve (B) are not defined, for any finite set of constant texths

The following example shows that — for the definition given (cf. the remark below)

— it is also necessary that theories do not contain occurrences of cointtems:

(1) LetE ={Fa,Gb}, B=0,T = {Ve (Fxz A Fb)}, andT’ = {VxFz}. Then

T, EF Dev{‘d} (B) — Dev{‘d} (T"), and
E IfDev{‘&’} (B) — Dev{‘&’} (T),

VeFz EVx (Fx ANFb), Fa,GbF Fa, and Fa,Gbl/ Fa A Fb,

whence
LI(T',E,B;D)=1/2>0=LI(T,E,B;D),

which violates the third condition in the definition of indicating truth, whéres
the domain corresponding to the variabtéand the individual constants™and
‘b

It is also necessary to consider the constaetms occurring in botl®’ and
B, as illustrated by the second example.
(2) LetE = {Fa}, B = {Gb}, andT = {IxGz}. Then

FuBFT, and EVD@U{‘a1}(B)—>D6U{‘a’}(T>,

le.
Fa,Gb+ dzGx, and Fal/ Gb— Ga,

whence
LI(T,E,B;D)=0<1,

which violates the second condition of the definition of indicating truth.

Only recently — and too late in order to rewrite this dissertation — have | real-
ized that by considering; (£ U B U T) in the definition ofmax, (T, E, B; D;)
one can drop the assumption that theoffiedo not talk about particular individ-
uals of their domains of proper investigation, i.e. one can drop the condition that
T contains no occurrences of constatterms, if D; is among7’s domains of
proper investigation. Though I still think that this restriction is appropriate, it is,
of course, always better to do without some assumptions or with weaker ones.
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Moreover, it is not even necessary to demand of an evidence with evidential
domainsDy, ..., D, to contain no occurrences ofvariables (or corresponding
guantifiers),l < i < n. Just consider

max {|C N OB—repr (E)| :C Q OT,E,B,i, DeUCT,E,Bﬂ. (E A B) F Devc (T)} s

WhereCﬂE,B,i = Cz (T UFU B)



Appendix F

Proofs for chapter 6

F.1 Proof of Theorem 6.1

Theorem F.1 G Is Formally Handy) G (-,-,-), G(-,~,-) : T x Ex B — R, is
non-arbitrary, comprehensible, computable in the limit, and closed under equiva-
lence transformations af.

Proof.

G is non-arbitrary and comprehensible, because it is a single function (without
parameters that can be chosen freely) which is defined in the terf&lof= and

ZF.

G is computable in the limit, because all one has to determine for a given
theoryT', a given evidencd”, and a given background knowledd@eare (1) the
confirmational domains df’ and E; (2) the set of predicates essentially occur-
ring inT, PR, (T); (3) whether the logical consequence relation holds between
various sets of statements; and (4) whether various sets of negated or unnegated
one-placei-predicates are subsets of other such sets — the fundtigns, and
+ preserve computability in the limit, because they are computable. The proofs
of theorems 4.5 and 5.2 are sufficient to show how to construct a method that
stabilizes to the correct answer to all these questions.

G is closed under equivalence transformationg'pfor if 7" - 7", then (i)
PR.ss (T') = PR.s (1"), and (ii) T" accounts for a class of facfsF" just in case
T’ does. O

227
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F.2 Proof of Theorem 6.2

Theorem F.2 (G Supports Gathering Evidence)G (-,-,-), G (+,-,*) : 7 x € x
B — R, supports gathering evidence, if its definition is based on proper classes of
i-facts, and ifCp_,cpr (E) C Cp_yepr (E').

More precisely, for every theory, any evidences and E’, every back-
ground knowledge3, and every confirmational domaib; of 7" and E:

If E' = EandCp_repr (E) C Cp_repr (E'), thenG (T, E', B; D;) >
G(T,E, B; D).

Proof.
Let T be a theory, lef? and £’ be evidences, leB be a background knowledge,
and letD; be a confirmational domain &f and E, and ofT" and E’. Suppose
EF'+F andCB,rep,, (E) - CBfrepr (E/>
Let CF},...,CF}, be the classes affactsT, £, and B give rise to, and
let Ci,...,C" be the corresponding sets of negated or unnegated one+place
predicates which induc€F}, ... CF!, respectively, relative td@’, FE, and B.
Ci,...,C" are generated b B!, which is generated b¥ R.s (T') andCp_pr (E).
By assumptiorCs_,¢,r (E) € Cp_repr (E'), Whence the set of one-place
i-predicatesP R} generated byPR..; (') andCs_,,, (E) is a subset of the set
of one-place-predicates” R; generated by’ R.., (1) andCp_¢p (E').

LetCFY,...,CFY, n > m,be the classes offactsT, E’, andB give rise
to, and letCY’, ..., C"’ be the corresponding sets of negated or unnegated one-
placei-predicates which induc€'Fy’, ..., C'F!', respectively, relative ta@’, £,

andB (CY,...,C"" are generated by R}).

As PR, C PRy, it follows that for everyC;ﬁ, 1 < j < m,thereis aCj“
1 <j' < n,suchthaC} = C%'. SinceCp_rcpr (E) C Cp_repr (E'), this implies
that for every class oi-factsC'F;, 1 < j < m, there is a class aoffactsC'F}/’,

1 < j < mn,amongCFY,...,CF; such thatCF; C CFj;"andC} = C}/
(though bothC'F} andC'F;,’ may be empty).

SupposeC'F?, 1 < j < m, is a proper class offacts relative tol’, F,
andB. This means thdl’ accounts fonCFji in E relative toB, and that there is
no class ofi-factsC;, C C;., 1 < k < m, such thatl" accounts forC'F} in E
relative toB. ThatT" accounts folC’F in E relative toB holds independently of
E, whencel also accounts for the classofactsC'F},' in E' relative toB.

It remains to be shown thﬁfFj,’ is aproper class ofi-facts relative tdr’,

E', and B. So it has to be shown that there is no class-fi#fcts C}' C ;’
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1 <[ < n, among the classes offactsT’, F’, and B give rise to such thal’
accounts fol £} in E’ relative toB, whereC}" is the set of negated or unnegated
one-place-predicates which inducesF}’ relative toT', E’, andB.

Suppose there is a such a class-tictsCF}’, 1 < 1 < n. AsC}/ = (1,
and asCy’ C C}/, it follows thatC}’ C Cj. But then there is a set of negated
or unnegated one-plagepredicates”;, 1 < p < m, such thatC; = ¢}’ and
CF} C CF/, whereCF} is the class oi-facts induced by relative toT’, E,
andB.

SinceT" accounts folC'F}” in E' relative toB, andC;’ = C;, T accounts
for CF; in E relative B. Therefore there is at least one class-fdctsC), C (7,

1 < p < m, such thafl" accounts foCF;' in E relative toB — in contradiction to
the assumption that'F; is a proper class offacts relative tdl’, £, andB.

So for every proper class affacts CF;, 1 < j < m, among (the not
necessarily propen)'Fy, ..., CFy, there is a proper class éffacts C'Fj/’, 1 <
j' < n, among (the not necessarily propétfy’, ..., CF;’ such thatC? = C?/
andCFj C CE}’,’.

Let C'F; andC'F; be two proper classes offacts relative tdl’, £, and B,

1 < j,k < m,and letCF}’ and CF}/', respectively, be the two corresponding
proper classes offactsT’, £’, and B give rise to,1 < j', k' < n. Then(]F;’ -
CF}"andCF} C CF}/,andC} = Ci/ andCj, = C},’. Because of the latter,

CF/ +CF., if CF #CF.

For if CF} # CF, then there is at least oné ‘c Cp_,.,- (E) N C; such that
‘te CF;and t" ¢ CF, or't’ ¢ CF; and ' € CFy. Suppose without loss
of generality that?” € CFjand t' ¢ C'F;. AsCF; C CF}/,‘t" € CF}'. But
then © ¢ CF}/; otherwise t’ € (Cp_repr (E') \ Co_repr (E)) N C;, becauset’

¢ CF; andC}, = C},’ —in contradiction tot’ € CF} C Cp_repr (E) N C;.

This means that there is an injective (one-to-one) function from the set of all
proper classes atfactsT, F, and B give rise to into — but not necessarily onto
(i.e. the function need not be surjective) — the set of all proper classe€adisT,
E’, andB give rise to. ACp_epr (E) C Cp_pepr ('), there is also an injective
function from the set of all non-empty proper classes-faicts7’, £, andB give
rise to into the set of all non-empty proper classesfacts’, E’, andB give rise
to.

Let CF},...,CF}, p < m, be the non-empty proper classesigéacts T’

E, and B give rise to, and leCFY, ... ,CF;" be the corresponding non-empty
proper classes atfactsT', £’, and B give rise to. SaC'Fy’, ..., CF,' are those
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non-empty proper classessfacts among all non-empty proper classes-facts
T, E’, andB give rise to withC} = C}’ andCF; C CF}', for everyj,1 < j < p.
Finally, IetCF;H’, e ,_CFqi’_, q > p, be the remaining non-empty proper classes
of i-factsT', £/, and B give rise to.

As Ci = CY, foreveryj, 1 < j <p,

> |ciac]= 3> |cracy)

1<j#k<p 1<j#k<p

and asC'F; C C'F}', foreveryj, 1 < j <p,

1
+1) +log (|CFi| +1) +1

1- :
1<i#h<p [ log (|CF;

1
S Z 1 - . . )
1<j#k<p log (‘CF}’ +1) +log (|CFY| + 1) + 1
whence
1<j#k<p
1
1= : :
[ log (|CFi| +1) +log (ICFi| +1) + 1
< Y aracy
1<j#k<p
1 1
log (‘CF]-’" + 1) +log (|CEY|+1)+1
< Y laracy
1<j#k<q
1 1
log (|CF| +1) +log (|CF/| +1) + 1
= g(T,E B;D;).
The claim follows, becausg is a monotone increasing function @f O

(G does not support gathering evidence, if its definition is based on maxi-
mal classes oi-facts, as is shown by the following example (the basi®gfis
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assumed to bR). Let

E = {Fa,Fb,Gb,Fcy,Gecy,Hey, ..., Fe,,Ge,, Hey}

E' = {Fa,Fb,Gb,Hb, Fci,Gey,Hey, ..., Fen,Gey, Hey} = EU{Hb},
T = {Vz(FzANGx— Hz)}, and

B = 0.

There are the following three non-empty maximal classes of facts relatiVe to
E, andB:

CFi={t €Cpyepr (E): EUBF FtANGtNHt} = {c1,...,cn},?t
CF,={'t €Cp_yepr (F): EUBF Ft NGt} ={b}, and
CEy={'t" € Cp_repr (E): EUBF Ft} ={a},

which are induced by the sets of negated or unnegated one-place predicates
Cr={F«,'Ge’,"H2'}, Co={Fz','Gy’}, and C3={Fzx'},

respectively, relative t@’, £, andB. T, E’, and B, on the other hand, give rise to
the following two non-empty maximal classes of facts:

CFl = {'t' €Cpoye (E'): EUBF FEAGtAHE) = {b,cy,... cn}
= CRU{b}, and
CF) = ('t €Cporop(B): F'UBFFi) = {a}

which are induced by the sets of negated or unnegated one-place predicates
Ci={Fz, ‘G, Hx'} =C, and C{={Fz'}=0C;,

respectively, relative td@’, £’ and B. AlthoughE C E’ (and thust’ + E) and
CB_repr (E) € Cp_repr (E'), it holds for everyn > 1:2

g(T,E,B) = |Cl A CQ| :
1
1—
log (|CFi|+ 1) +log (|CFy| + 1) + 1
+|Cy A Csl -

1The quotation marks are suppressed.
2The reference to the confirmational domdiris dropped, wheré is the domain (variable)
corresponding to the variable*and the individual constants*, ‘ b’, and ‘c,,’.
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1
T leg(CR[+ ) g (R + )+ 1)
+1Ch A G-
. -1_ 1
| log (|CF3| + 1) +log (|CF5| +1) 4+ 1]

1
1-{1- +
[ log(n+1)+log(1+1)+1]
B 1
log(n+1)+log(l+1)+1

+2- [1 -

1
11—
[ 10g(1+1)+10g(1+1)+1]

1
2-11—
[ log(n+1+1)+log(1+1)+1]
= [C1AG]-

1
1=
[ 10g(|C’F{|+1)+10g(|CF§|—1—1)—1—1]
= ¢g(T,F',B).
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