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Abstract

Groundwater is an important natural resource. More than two thirds of the
German population rely on groundwater as the daily drinking water supply. Hence,
the understanding of processes like fluid flow and solute transport in porous media
are of broad relevance. A profound process understanding is not only important
for rational management of water resources but in particular for the preservation of
subsurface water quality. Further relevant aspects are the optimization of irrigation
and drainage efficiency, safe and economic extraction of subsurface mineral and
energy resources, as well as subsurface storage of energy and waste.

Subsurface hydrology faces two problems. On the one hand, information about
the character of the subsurface structure and hydraulic properties is scarce. Data
of quantities, like hydraulic pressure, porosity, and permeability, are limited to a
few locations. It results in a lack of spatial resolution of known aquifer parameters
for large-scale flow and transport problems. This is aggravated by the fact that
the processes are very slow. Thus, there is a deficiency in the temporal resolution
of observations. On the other hand, many aquifer parameters are heterogeneously
distributed in space. In particular, permeability shows a spatial variability that
results from the complex geological processes through which aquifers evolve. Large
differences in the permeability can be observed on local scale, i.e. in the range of
meters, as well as on large scale, i.e. in the range of kilometers up to the scale
of geological structures as the Thuringian Basin. However, permeability is a very
important hydraulic property since it controls the groundwater flow velocity and
hence flow and salt transport. In general, the scarcity of data does not allow to
give a detailed spatial resolution of heterogeneously distributed permeability. The
coincidence of both issues, scarcity of information and heterogeneity, inhibits a
simple analysis of the most problems of subsurface hydrology.

This thesis is dedicated to the question of how aquifer heterogeneity impacts on
processes of flow and salt transport in the subsurface at different scales. We present
a large-scale numerical model of the Thuringian basin in order to investigate the
mechanisms of brine transport within the aquifers of a shallow sedimentary basin.
The emphasis lies on the effects that heterogeneous permeability have on the flow
and salt patterns. To perform numerical simulations, prior knowledge of hydraulic
parameters is necessary. Of particular interest are those parameters that describe
the heterogeneous structure of porous media. Therefore, the second major issue of
this work is the development and discussion of a method to determine the statistical
parameters which describe the spatial distribution of permeability.

The first part of the work refers to the basic principles of modeling flow and salt
transport in porous media. We introduce the physical equations which describe the
relevant subsurface processes of fluid flow, salt transport and heat transport. We



4

explain the basic concepts of geostatistics and upscaling theory. The focus lies on
the statistical description of permeability, which is the basis for the upscaling meth-
ods developed in the second part. In addition, we present numerical benchmarks
in order to indicate the usability of the simulation software OpenGeoSys. We use
this numerical solver for the modeling of both, the complex large-scale model of the
sedimentary basin of Thuringia in the second part and for the pumping test model
in the third part.

In the second part, we present a numerical modeling approach to investigate the
fluid dynamics in the Thuringian basin. We focus on the impact of aquifer hetero-
geneity and fluid density differences on brine transport. Central questions are: How
does the large-scale fluid dynamics look like? Does a coupling between thermally-
induced deep fluid convection and near-surface groundwater flow exist? How comes
that saline groundwater reaches or comes close to the surface, which is a phe-
nomenon that is observed in many places in the Thuringian Basin?

We carry out numerical simulations of fluid flow, mass and heat transport in order
to understand the role of geological features such as faults, aquifer heterogeneity,
as well as fluid density differences caused by temperature and salt concentration
gradients. For this purpose we construct a profile model that represents the geolog-
ical setting of the Thuringian basin incorporating major hydraulic units and fault
structures.

The numerical results indicate that regional groundwater flow determines brine mi-
gration. The pattern of groundwater flow depends strongly on the local hydraulic
parameters. A qualitative sensitivity analysis indicates that small variations in per-
meability can have significant influence on the flow and salt patterns. The local
mean value, the degree of heterogeneity, and the local correlation structure of per-
meability impact on the location and amount of dissolved salt. This directly affects
the amount of salt which is transported to near-surface regions. Also variation in
fluid density due to salt concentration differences can cause significant changes in
the flow pattern. Brine is heavier than fresh water. If saline groundwater is trans-
ported upwards, e.g. by pressure induced groundwater flow, then the higher fluid
density of brine causes a counteracting downward movement. This effect leads to
enhanced mixing. Increased mixing amplifies the salinization of the deep aquifers
but prevents the upward movement of highly concentrated brine. Contrariwise, the
simulations show that temperature can be neglected as driving mechanism for fluid
flow. The shallow basin structure inhibits the developments of thermal convection
on a regional scale, due to small temperature differences.

The third part of the thesis refers to an upscaling method which we develop in order
to determine the statistics of aquifer heterogeneity from pumping test data. Per-
meability is the key parameter to describe groundwater flow velocities and the salt
distribution. However, the effects of heterogeneity cannot be captured by a single
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mean value. According to the statistical approach, permeability can be described by
a log-normal distribution which provides additional parameters, like the variance
and the correlation length. The variance represents the degree of heterogeneity,
whereas the correlation length describes the distance up to which permeability val-
ues are correlated in space. Head measurements of pumping tests are commonly
used to estimate hydraulic properties of porous media. Therefore it is reasonable
to develop analytical tools, which allow the determination of parameters of aquifer
heterogeneity from pumping test data.

First, we derive a formula for the hydraulic head describing the mean drawdown of
a three dimensional steady state pumping test in heterogeneous anisotropic porous
media. The derivation is based on the Coarse Graining upscaling method. The
closed form solution of the effective well flow hydraulic head can be understood
as an extension of Thiem’s formula to heterogeneous porous media. The effective
well flow solution is a function of the radial distance and accounts for the statistics
of the permeability, namely geometric mean variance, horizontal correlation length
and anisotropy ratio. We exploit the nature of the analytical solution to perform
a sensitivity analysis on the parameters of the effective well flow head solution and
implement an inverse estimation strategy. We analyze numerical pumping tests,
both an ensemble of as well as single pumping tests, to show the applicability of
the head solution to interpret drawdown data. The results of the inverse estimation
procedure show excellent agreement of estimated statistical parameters with initial
values.

Second, we determine whether the analytical solution of effective well flow is capable
of providing accurate and confident parameter estimates of a heterogeneous aquifer
under limited data availability. This is of practical relevance since head measure-
ments are limited in on-site pumping tests. We use simulated pumping tests to
systematically reduce sampling size while also determining the accuracy and uncer-
tainty of estimates at each level of data availability. Our findings indicate that the
accuracy and uncertainty of estimated parameters are sensitive to the number and
spatial distribution of head measurements. Piezometers are required at both loca-
tions, i.e. directly at the pumping well and at large distance, to reliably estimate
the respective values of hydraulic conductivity. Likewise, several piezometers are
needed in the vicinity of the well to increase accuracy and reduce uncertainty in
estimates of horizontal correlation length. We then apply the same analytical solu-
tion to estimate the statistical parameters of a fluvial heterogeneous aquifer at the
test site Horkheimer Insel, Germany. The estimated mean conductivity, variance
and correlation length agree very good with results from laboratory measurements.
Our work provides valuable implications regarding the conceptual design of ground
water pumping tests and the predictive power of established pumping test sites.
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Zusammenfassung

Grundwasser ist eine wichtige natürliche Ressource. In Deutschland wird der
tägliche Bedarf an Trinkwasser von mehr als zwei Drittel der deutschen Bevölkerung
durch Grundwasser gedeckt. Aus diesem Grund ist das Verständnis für die Prozesse
im Untergrund wie Fluidfluss und Stofftransport von weitreichender Relevanz. Ein
profundes Prozessverständnis ist sowohl für ein vernünftiges Ressourcenmanage-
ment als auch für die Sicherung der Grundwasserqualität wichtig. Weitere relevante
Aspekte sind die Optimierung von Bewässerung und Entwässerung, die sichere und
ökonomische Entnahme von Bodenschätzen und Energie, sowie die Einlagerung von
Energie und Abfällen im Untergrund.

Die Hydrogeologie sieht sich zwei grundlegenden Problemen gegenüber. Zum einen
gibt es oft sehr wenige Informationen zur Beschaffenheit des Untergrunds sowie
zu hydraulischen Eigenschaften. Messdaten von physikalischen Größen, wie pie-
zometrischer Druck, Porosität und Leitfähigkeit sind beschränkt auf wenige Orte.
Dadurch ergibt sich ein Mangel an räumlicher Auflösung von bekannten Daten für
großskalige Fließ- und Transportprobleme. Hinzukommt, dass die Prozesse im Un-
tergrund sehr langsam ablaufen, was eine geringe zeitliche Auflösung der Beobach-
tungsdaten zur Folge hat. Das zweite Problem bezieht sich auf die räumliche He-
terogenität vieler Aquiferparameter. Insbesondere die Leitfähigkeit unterliegt sehr
großen Schwankungen sowohl auf kleiner Skala, d.h. im Bereich von einigen Metern,
als auch auf großer Skala, d.h. im Bereich von Kilometern, bis hin zu Ausdehnun-
gen von großräumigen geologischen Strukturen wie dem Thüringer Sedimentbecken.
Die starke räumliche Heterogenität resultiert aus den komplexen geologischen Ent-
wicklungsprozessen. Die Permeabilität wiederum ist eine sehr wichtige hydraulische
Eigenschaft des Bodens, denn sie kontrolliert die Grundwasserfließgeschwindigkeit
und damit die Fließmuster und die daraus resultierende Salzverteilung. Im Allge-
meinen erlaubt der Mangel an Daten keine detailgetreue räumliche Auflösung der
heterogenen Leitfähigkeiten. Das Vorhandensein beider Aspekte, Informationsman-
gel und Heterogenität, erschweren eine einfache Analyse der meisten hydrogeologis-
chen Fragestellung maÃŸgeblich.

Die vorliegende Arbeit ist der Frage gewidmet wie Aquiferheterogenität Fließ- und
Transportprozesse im Untergrund auf verschiedenen Skalen beeinflusst. Zum einen
wird ein großräumiges numerisches Untergrundmodell des Thüringer Beckens ver-
wendet um die Mechanismen des Salztransports in Aquiferen eines flachen Sedi-
mentbeckens zu untersuchen. Der Schwerpunkt liegt auf den Effekten die heterogene
Leitfähigkeiten auf die Fließ- und Salzmuster haben. Um numerischen Simulatio-
nen durchführen zu können, werden Werte für hydrologische Parameter benötigt.
Von besonderem Interesse sind dabei solche Parameter, die die heterogene Struk-
tur des Untergrunds beschreiben. Aus diesem Grund liegt der zweite Schwerpunkt
dieser Arbeit auf der Entwicklung und Diskussion einer Skalierungsmethode. Diese
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dient der Bestimmung von statistischen Parametern, mit denen sich die räumliche
Verteilung von Leitfähigkeiten beschreiben lässt, aus Pumptestdaten.

Im ersten Teil der Arbeit werden die Grundlagen der Modellierung von Fließ-
und Transportprozessen im Untergrund eingeführt. Beschrieben werden unter an-
derem die physikalischen Gleichungen der relevanten Prozesse Fluidfluss, Salz- und
Wärmetransport. Weiterhin werden die grundlegenden Konzepte der Geostatistik
sowie der Skalierungstheorie (Upscaling) erklärt. Der Fokus liegt auf der statistis-
chen Beschreibung von heterogener Leitfähigkeit, welche Grundlage für die Meth-
ode ist, die im dritten Teil der Arbeit entwickelt wird. Zusätzlich werden nu-
merische Benchmarks präsentiert um die Verwendbarkeit der Simulationssoftware
OpenGeoSys zu zeigen. Sowohl für die Modellierung des Thüringer Beckens im
zweiten als auch für die numerischen Pumptests im dritten Teil, wird dieser nu-
merische Löser verwendet.

Ein numerischer Modelansatz zur Untersuchung der Fluiddynamik des Thüringer
Beckens wird im zweiten Teil der Arbeit präsentiert. Der Fokus liegt auf dem Ein-
fluss von Aquiferheterogenitäten und der Fluiddichte auf den Salztransport. Zen-
trale Fragen sind: Wie sieht die großräumige tiefe und oberflächennahe Fluiddy-
namik aus? Existieren Kopplungen thermisch angetriebener tiefer Fluidkonvektion
mit oberflächennahen Grundwasserströmungen? Wie ist das Phänomen zu erklären,
dass salzige Grundwasser in oberflächennahen Schichten vorkommen, was an vielen
Orten im Thüringer Becken zu beobachten ist?

Numerische Simulationen zum Fluidfluss, Salztransport sowie zumWärmetransport
im Thüringer Becken werden durchgeführt um zu verstehen, welche Bedeutung geo-
logische Besonderheiten wie Verwerfungen, Aquiferheterogenität und Dichteunter-
schiede haben. Schwankungen in der Fluiddichte können dabei durch Temperatur-
und Salzkonzentrationsgradienten entstehen. Zu diesem Zweck wird ein geologisches
Profilmodell konstruiert, welches die geologischen Begebenheiten mit den Haupt-
grundwasserleitern und -stauern sowie Verwerfungen im Thüringer Becken abbildet.

Die Simulationsergebnisse zeigen, dass der regionale Grundwasserfluss die Haupt-
triebkraft für die Salzverteilung ist. Der Grundwasserfluss wiederum ist stark von
den lokalen hydraulischen Eigenschaften abhängig. Eine qualitative Sensitivitäts-
analyse zeigt, dass kleine Veränderungen in der Leitfähigkeit großen Einfluss auf
die Fließmuster und die Salzverteilung haben können. Der lokale Mittelwert, die
Stärke der Abweichungen vom Mittelwert sowie die räumliche Korrelationsstruk-
tur der Leitfähigkeit beeinflussen die Verteilung sowie die Menge an gelöstem Salz
im Grundwasser. Davon ist insbesondere die Menge an Salz abhängig, die in
oberflächennahe Bereiche transportiert wird. Ebenso können salzkonzentrations-
abhängige Variationen in der Fluiddichte die Fließmuster maßgeblich verändern.
Salzige Grundwasser sind schwerer als frisches Grundwasser. Werden hochkonzen-
trierte Solen durch druckgetriebenen Grundwasserfluss aufwärts transportiert, dann
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bewirkt die höhere Fluiddichte eine entgegengesetzte Absinkbewegung die Durch-
mischung intensiviert. Die verstärkte Durchmischung wiederum erhöht die Ver-
salzung der tiefen Grundwasserleiter, aber verhindert den Aufstieg von hochkonzen-
trierter Sole. Auf der anderen Seite zeigen die Simulationen auch, dass Temperatur
als Triebkraft für konvektiven Fluidfluss vernachlässigt werden kann. Die flache
Struktur des Beckens verhindert die Entwicklung von großräumiger thermischer
Konvektion aufgrund der geringen Temperaturunterschiede.

Der dritte Teil der Arbeit beschäftigt sich mit einer Skalierungsmethode, welche
dazu dient die statistischen Parameter der heterogenen Leitfähigkeitsverteilung mit-
tels Pumptestdaten zu bestimmen. Leitfähigkeit ist der Schlüsselparameter um
Grundwasserfließgeschwindigkeiten und die Salzverteilung zu beschreiben. Aller-
dings benötigt es mehr als einen Mittelwert um die Effekte von Heterogenitäten
zu beschreiben. Bei Verwendung eines statistischen Ansatzes lassen sich Leit-
fähigkeiten durch eine Log-Normal-Verteilung beschreiben. Zusätzliche statistische
Parameter wie die Varianz und die Korrelationslänge erlauben eine detailliertere
Charakterisierung. Dabei bestimmt die Varianz die Stärke der lokalen Schwankun-
gen, d.h. den Grad der Heterogenität. Die Korrelationslänge beschreibt die Distanz
über die Leitfähigkeitswerte räumlich korreliert sind. Pumptests werden häufig ver-
wendet um die hydraulischen Eigenschaften eines Aquifers zu bestimmen. Deshalb
ist es sinnvoll analytische Methoden zu entwickeln, welche es erlauben die statis-
tischen Parameter der heterogenen Leitfähigkeitsverteilung aus Pumptestdaten zu
bestimmen.

Zunächst wird eine Formel für das hydraulische Druckpotential hergeleitet, die den
mittleren Absenktrichter eines kleinskaligen stationären Pumptests in einem dreidi-
mensionalen, anisotropen, heterogenen Medium beschreibt. Die Herleitung basiert
auf der Skalierungsmethode Coarse Graining. Die analytische Lösung für den ef-
fektiven Brunnenfluss kann man verstehen als eine Erweiterung für Thiems Formel
auf heterogene Medien. Die Lösung des effektiven Brunnenflusses ist einerseits
eine Funktion vom Abstand zum Pumpbrunnen und anderseits abhängig von den
statistischen Größen Mittelwert, Varianz, Korrelationslänge und Anisotropierate
der Leitfähigkeit. Die geschlossen-analytische Form der Lösung erlaubt es eine Sen-
sitivitätsanalyse bezüglich der statistischen Parameter durchzuführen sowie eine
inverse Schätzmethode zu entwickeln. Die Analyse von numerischen Pumptests,
sowohl einzelner als auch von Ensembles, zeigt, dass Absenktrichter aus Pumptests
in heterogenen Medien sehr genau durch die Lösung des effektiven Brunnenflusses
beschrieben werden können. Die Ergebnisse der Inversen Schätzung der statistis-
chen Leitfähigkeitsparameter stimmen sehr gut mit den Anfangswerten überein.

Es folgt die Untersuchung, ob die analytische Lösung des effektiven Brunnenflusses
dazu in der Lage ist genaue und zuverlässige Schätzwerte für die statistischen Pa-
rameter unter reduzierter Datenverfügbarkeit zu liefern. Dies ist relevant, da in der
Praxis meist nur wenige Messungen des hydraulischen Druckpotentials verfügbar



10

sind. Numerische Pumptest werden generiert und ausgewertet mit Hinblick auf die
Zuverlässigkeit und die Genauigkeit der Schätzergebnisse unter reduzierter Daten-
verfügbarkeit. Dazu wird die Anzahl von Messdatenpunkten systematisch reduziert
und für jedes Level der Datenverfügbarkeit die statistischen Parameter und ihre
Unsicherheiten invers geschätzt. Die Ergebnisse zeigen, dass die Genauigkeit und
Zuverlässigkeit der geschätzten statistischen Parameter sehr sensitiv gegenüber An-
zahl und räumlicher Verteilung der Druckpotentialmessungen sind. Untersuchungs-
brunnen sind sowohl im Nahfeld, d.h. in direkter Umgebung des Pumpbrunnens, als
auch im Fernfeld notwendig um eine sinnvolle Schätzung von Heterogenitätsparam-
etern gewährleisten zu können. Insbesondere die Schätzbarkeit der Korrelation-
slänge erfordert eine gewisse Anzahl an Piezometern im Umfeld des Pumpbrun-
nens. Abschließend wird die Schätzmethode auf Messdaten von Pumptests auf der
Horkheimer Insel, Deutschland angewendet. Es wird gezeigt, dass die Schätzwerte
der Methode des effektiven Brunnenflusses für die mittlere Leitfähigkeit, Varianz
und Korrelationlänge sehr gut mit den Messergebnissen aus Laboruntersuchungen
übereinstimmen. Die Untersuchungen geben wertvolle Hinweise in Bezug auf das
konzeptionelle Design von Pumptests als auf die Güte der Schätzung von Parame-
tern aus vorliegenden Pumptestdaten.
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List of Symbols and Abbreviations

Symbol Unit Quantity

αl [m] longitudinal solute dispersivity
αt [m] transversal solute dispersivity
ᾱl [m] longitudinal thermal dispersivity
ᾱt [m] transversal thermal dispersivity
βC [-] solute expansion coefficient
βT [K−1] thermal expansion coefficient
γ(e) anisotropy function

Γ exponential integral function
δ Kronecker delta
ζ [-] proportionality factor
η correlation function
η̃ Fourier transform of correlation function
κ [mD] permeability
λ [m] filter constant
λs [kgm2 s−3 K−1] thermal conductivity of solid
λw [kgm2 s−3 K−1] thermal conductivity of water
Λ [-] weighting factor
µ mean of log-conductivity
ν [kgm−1 s−1] viscosity
φ [-] porosity
θ [-] angular coordinate
ρ [kgm−3] fluid density
ρ0 [kgm−3] fresh water density
ρs [kgm−3] density of solid rock
σ2 [-] variance of log-conductivity
σ̂2 [-] estimated variance of log-conductivity
τ [-] tortuosity
χ abbreviation for ln(Kefu/Kwell)

Ωw [m2] surface of the well
∇ nabla operator

A [-] relative space fraction of an element in a numerical mesh
c [m2 s−2 K−1] thermal capacity of water
cs [m2 s−2 K−1] thermal capacity of solid rock
C [-] concentration

C0, C1, C2 integration constants
C̄ [-] spatial mean concentration

∆C [%] relative concentration difference
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Cr [-] Courant number
CV covariance function
d [-] number of spatial dimensions

D [m2 s−1] hydrodynamical dispersion tensor
Dm [m2 s−1] molecular diffusion coefficient
Ds [m2 s−1] mechanical dispersion tensor
DT [m2 s−1] thermal diffusion/dispersion tensor
e [-] anisotropy ratio
ê [-] estimated anisotropy ratio
f filter function
f̃ Fourier transform of filter function

g/ g [m s−2] gravitational acceleration / vector
h [m] hydraulic head
ĥ [m] estimated hydraulic head

hefw(r) [m] effective well flow hydraulic head
〈h(r)〉 [m] simulated hydraulic head
〈h(r)〉 [m] ensemble mean of simulated hydraulic heads

hThiem(r) [m] hydraulic head of Thiem’s solution
H [-] Hurst coefficient
Kf [m s−1] hydraulic conductivity
KA [m s−1] arithmetic mean conductivity
KG [m s−1] geometric mean conductivity
KH [m s−1] harmonic mean conductivity
Keq [m s−1] equivalent conductivity
Kef [m s−1] effective conductivity
Kefu [m s−1] effective conductivity for uniform flow
Kwell [m s−1] effective conductivity at the well
K(x) [m s−1] heterogeneous conductivity distribution

KCG(r) [m s−1] radial depending mean Coarse Graining conductivity
K̂A [m s−1] estimated arithmetic mean conductivity
K̂G [m s−1] estimated geometric mean conductivity
K̂H [m s−1] estimated harmonic mean conductivity

K̂well [m s−1] estimated conductivity at the well
K̂efu [m s−1] estimated conductivity far from field
〈KA〉 [m s−1] ’measured’ arithmetic mean conductivity
〈KH〉 [m s−1] ’measured’ geometric mean conductivity
〈Kwell〉 [m s−1] local mean of conductivity values at the well

` [m] correlation length
`h [m] horizontal correlation length
`v [m] vertical correlation length
ˆ̀ [m] estimated correlation length

L/Lz [m] aquifer thickness/vertical domain extend
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ODE ordinary differential equation
p [kgm−1 s−2] pressure

PD [m] penetration depth
PDE partial differential equation

pdf probability density function
Peg [-] grid Peclet number

q [m s−1] Darcy velocity vector
q [m s−1] absolute Darcy velocity
Q sink/source term
Qw [m3 s−1] pumping rate at the well
r [m] radial distance
rw [m] radius of the well
R [m] fixed radial distance from the pumping well

Rac [-] critical Rayleigh number
RaS [-] solute Rayleigh number
RaT [-] thermal Rayleigh number
REF representative elementary volume

s [m] two-point separation distance
S [m3 kg−1] specific storage coefficient

SRF spatial random function
SV semivariogram function
t [s] time
T [◦C] or [K] temperature
T̄ [-] spatial mean temperature

∆T [%] relative temperature difference
Tf [m2 s−1] transmissivity
v [m s−1] pore velocity vector

Z(x) spatial random function
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1. Principles of Fluid Flow and Salt Transport in Heterogeneous
Porous Media

1.1. Introduction

During the last 20 years numerical modeling has gained significant importance in hydrogeology.
The rapid evolution of computer technology allowed the development of complex software
which reproduces the physical processes occurring in the subsurface with spatial and temporal
resolution. Numerical models have several advantages. They can enhance the understanding
of fluid dynamics due to the fact that they allow simultaneous evaluation of processes and
thus investigation of coupling effects. Furthermore, models can serve quantitative aspects by
providing estimates of quantities that can be used for engineering and management purposes.

It requires several steps to establish a complex numerical model for subsurface flow and trans-
port. Starting point is the formulation of a hydrogeological conceptual model. This aspect is
significantly governed by the objective of the modeling project. The step contains the selection
of the geological setup by identifying boundaries of the formation and significant geological fea-
tures. The following step is to grasp the main mechanisms involved and to formulate physical
equations describing the processes. In case existing numerical solvers are used, the third step
contains the adaption of the hydrogeological conceptual model to the numerical framework.
It requires the discretization of the domain in space and in time, to fix boundary conditions,
initial conditions, as well as to set physical parameters.

Developing a conceptual model is very specific to the problem under consideration. However,
the physical equations which describe the major processes occurring in the subsurface are well
known. We discuss them briefly in section 1.2. These conservation laws form the basis of
physically-based simulation software, like OpenGeoSys [Kolditz et al., 2012b], FEFLOW [Fef,
2012], MODFLOW [U.S. Geological Survey, 2012], HydroGeoSphere [Brunner and Simmons,
2012], SUTRA [Voss and Provost, 2010], and many more. Complex numerical models with
spatial and temporal resolution for thermal, hydraulic, and mechanical subsurface processes
are important for the analysis of deep geological systems under high temperature, pressure and
stress conditions. Application areas are e.g. reproduction and prediction of the solute plume
development, geothermal energy utilization, nuclear waste disposal, and carbon dioxide storage
in the deep geological formation.

The hydraulic parameter of major interest within this work is the permeability. It shows a
spatially heterogeneous distribution, which inhibits a simple analysis of many subsurface flow
and transport problems. A detailed spatial resolution of the heterogeneous distribution is
not possible in numerical models in general due to complexity. Therefore methods have been
developed to handle aquifer heterogeneity in a stochastic manner which allows to incorporate
uncertainty about the spatial distribution of permeability. We discuss the fundamental concepts
of stochastic subsurface hydrology in section 1.3. To capture the aspects of heterogeneous
permeability in large scale hydrogeological models, it is necessary to reduce complexity by a
certain averaging strategy. This procedure is in general denoted upscaling. Upscaling methods



20 1. Principles of Fluid Flow and Salt Transport in Heterogeneous Porous Media

aim to find representative parameters for spatially distributed quantities, which are capable
of reproducing some average behavior of the system. We discuss the basics of upscaling in
section 1.4.

1.2. Physics of Porous Media

The simulation software of choice in this thesis is OpenGeoSys [Kolditz et al., 2012a, b]. It
follows the basic idea of continuum mechanics that the evolution of a physical system is com-
pletely determined by conservation laws. Basic properties such as mass, momentum and energy
are conserved during the considered process at all times. Any physical system can be com-
pletely determined by these conservation properties. To reproduce processes in porous media
numerically, additional information concerning the consistencies of the material (e.g. fluids,
solids, porous medium) in the form of constitutive laws is necessary.

In the following we shortly introduce the continuum concept of porous media and state the
macroscopic balance equations of mass of fluid, mass of solute, fluid momentum and energy
conservation. It is not aimed to give derivations nor to discuss or expand the fundamentals
of porous media theory. A detailed description of the theoretical background with derivations
can be found for instance in Bear [1972], Kinzelbach and Rausch [1995], as well as Nield and
Bejan [1999]. Detailed discussion on density dependent flow effects can be found e.g. in Kolditz
et al. [1998] and Diersch and Kolditz [2002].

1.2.1. Porous Media as Continuum

Porous media is the geological material in the subsurface which consist of a solid matrix and
pore space filled by water. The microscopic distribution of solid and pore space is complex
and in general impossible to resolve. A description of the processes of flow and transport on
microscopic level is neither feasible nor useful in most problems on macroscopic scale.

The continuum approach targets at resolving these difficulties by a transition to the macroscopic
level. At the macroscopic scale, porous media is regarded as a continuum that consists of an
immobile solid phase and a mobile fluid phase. Both phases are characterized by macroscopic
measurable quantities, which result from microscopic quantities by averaging over volumes. The
transformation from microscopic to macroscopic level requires appropriate averaging strategies.

The standard approach of averaging is to sample over a representative elementary volume (REV)
[Bear , 1972]. On the one hand, the REV has to be sufficiently large for fluctuations of spatially
averaged properties to be negligible on microscopic scale. On the other hand, it has to be small
enough to be regarded as a point at the macroscopic scale. In hydrogeology the REV is the
smallest volume over which measurements can be made that yield a representative value for
the entire domain under consideration. Quantities and parameters of porous media are only
valid above the scale of the REV.
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1.2.2. Continuity Equation of Flow

The continuity equation is derived from the principle of mass conservation of the fluid. It
describes the evolution of fluid flow in space and time. It relates the temporal change in fluid
mass to the differences in spatial distribution in combination with the existence of a fluid sink
or source.

The macroscopic mass balance equation of the fluid, averaged over a representative elementary
volume (REV), in a porous medium is given by

∂ (Sφρ)
∂t

+∇ · (φq) = ρQρ , (1.1)

where S is the specific storage coefficient, φ is the porosity, ρ is the fluid density, t is the time,
q is the Darcy velocity vector, and ρQρ is the sink/source term of the fluid mass in an aquifer.

1.2.3. Darcy’s Law

Darcy’s law characterizes the velocity vector q as a combination of porous medium charac-
teristics and the hydraulic gradient. Darcy’s law can be understood as a momentum balance
equation in porous media. In terms of hydraulic pressure p it is given by

q = φv = −κ
ν

(∇p+ ρg) , (1.2)

where v is the fluid or pore velocity vector, κ is the permeability of a porous medium, ν is the
viscosity, and g is the gravity vector.

An alternative way to write Eq. (1.2) is the formulation of Darcy’s law with the freshwater
hydraulic head h that directly relates the flow velocity to the driving forces

q = −Kf (∇h+ (ρ− ρ0)/ρ0ez) , (1.3)

whereKf is the hydraulic conductivity, ρ0 is the fresh water density, ρ is the actual fluid density
and ez is the unit vector in the gravitational direction. The buoyancy term (ρ − ρ0)/ρ0ez is
only present in processes where density differences are taken into account. In constant density
processes the velocity is determined by the gradient in hydraulic head ∇h. The hydraulic
conductivity

Kf = κρ0g

ν
(1.4)

is a porous medium property since it depends on permeability κ as a property of the solid
phase and on the fluid characteristics density ρ0 and viscosity ν.

The relation between hydrostatic pressure p and hydraulic head h is given by

h = p

ρ0g
+ zo,

where z0 denotes the vertical distance to the zero pressure position.
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1.2.4. Solute Transport Equation

The transport of a solute like salt in groundwater is governed by the advection-dispersion
equation

∂ (φC)
∂t

+∇ · (qC)−∇ · (φD · ∇C) = QC , (1.5)

where C ∈ [0, 1] is the relative mass concentration, D hydrodynamic dispersion tensor, and QC
is the mass supply.

Several fluxes are involved in the mass transport process in Eq. (1.5): the first term describes
the temporal change, the second term describes an advective flux and the third term includes
diffusive and dispersive effects. The right hand side accounts for a source of solute mass.

The dispersion tensor D in Eq. (1.5) incorporates dispersive and diffusive fluxes. According to
Scheidegger’s law [Bear , 1972] it is given in general tensor form by

Dij = τDm + Ds = τDm + αtqδij + (αl − αt)
qiqj
q

, (1.6)

where τ is the tortuosity and Dm is the coefficient of molecular diffusion. Ds is the mechanical
dispersion with the longitudinal and transversal dispersivities αl and αt, δij is the Kronecker
delta, q = |q| is the absolute value of Darcy velocity, and qi and qj are the Darcy velocities
in ith and jth principal directions, respectively.

A simplified description can be given in a Cartesian coordinate system, which is suitable for
instance for uniform flow. Choosing the x1-axis to be parallel to the average Darcy velocity q
the tensor Ds simplifies to

Ds =


αlq 0 0
0 αtq 0
0 0 αtq

 . (1.7)

Thus the dispersion in main flow direction is given by the product of the average Darcy ve-
locity q with the longitudinal dispersivity αl. In the perpendicular directions the dispersion
is proportional to the transversal dispersivity αt, which is commonly assumed to be at least
one order of magnitude smaller than αl. According to Bear [1972], the axes of the coordinate
system in which Ds is expressed in Eq. (1.7) are called the principal axes of dispersion.

1.2.5. Heat Transport Equation

Energy conservation has to be taken into account when describing temperature dependent
processes. The heat balance equation in porous media is based on a thermal equilibrium
between solid and liquid phase, which can be assumed due to the low velocities. The equation
is given by

(φcρ+ (1− φ)csρs)∂T
∂t

+ cρq · ∇T −∇ · (cρDT · ∇T ) = QT , (1.8)

where φcρ+ (1− φ)csρs is the heat capacity of the porous medium, with porosity φ, density ρ
and specific heat capacity c of water as well as density ρs and specific heat capacity cs of
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solid. T is the temperature, t it the time, q is the Darcy velocity, and DT is the thermal
diffusion/dispersion tensor. The heat source term is given in detail by QT = φρQwT + (1 −
φ)ρsQsT , where QwT is the heat production of water and QsT is the heat production of solid.

The thermal diffusion-dispersion tensor DT is given in analogy to the hydrodynamic dispersion
tensor D in Eq. (1.6),

DT
ij = DT δij + ᾱtqδij + (ᾱl − ᾱt)

qiqj
q

, (1.9)

where DT = φλw+(1−φ)λs
cρ is the thermal diffusivity with heat conductivity λw and λs of water

and solid, respectively. The second term and third term are part of the thermal dispersion
tensor with heat dispersion coefficients ᾱt and ᾱl in transversal and longitudinal directions.
δij is the Kronecker-delta, q = |q| is the absolute value of Darcy velocity, qi and qj denote the
Darcy velocities in ith and jth principle directions, respectively.

Due to the low velocities q in porous medium, thermal diffusion dominates the process of
thermal dispersion. Therefore the thermal dispersion term in Eq. (1.9) is mostly neglected,
resulting in cρDT = φλw + (1− φ)λs in Eq. (1.8).

1.2.6. Equation of State for Fluid Density

The description of processes where changes in fluid density take place requires a constitu-
tive fluid density model. Based on experiments, equations are formulated which describe the
relationship between fluid density and other relevant quantities like water pressure, solute con-
centration and temperature.

Different descriptions exist, like an exponential function as given by Kolditz et al. [1998] or the
additive description of Herbert et al. [1988]. The most common approximate relationship is the
linearized equation of the bulk fluid density [Kolditz et al., 1998; Diersch and Kolditz, 2002;
Nield and Bejan, 1999; Magri, 2005] accounting for thermal and solute mass effects

ρ = ρ0 (1 + βC∆C − βT∆T ) , (1.10)

where ρ denotes the fluid density, ρ0 is the reference density of freshwater, ∆C ∈ [0, 1] is the
change in relative solute concentration, βC is the solute expansion coefficient, ∆T = T−T0

T0
∈

[0, 1] is the change in temperature relative to the reference temperature T0, and βT is the
thermal expansion coefficient.

A similar model could be assumed for fluid viscosity since this property also depends on tem-
perature and solute mass. However, investigations of Magri [2005] and Kaiser et al. [2011]
show that the effects of fluid viscosity on flow pattern at basin scale is much less pronounced
in comparison to density effects. Thus a constant viscosity model is appropriate for moderate
temperature and solute mass gradients.
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1.2.7. Stability Criteria for Density Dependent Flow

The Rayleigh number is a classical instrument to characterize density dependent flow regimes.
The value of the Rayleigh number characterizes the stability of the system and is used to
predict the onset of convection. It results from a dimensional analysis of Darcy’s law (1.3) in
combination with the equation of state for fluid density (1.10) and the transport equations for
solutes (1.5) or heat (1.8).

The Rayleigh number is defined with reference to the quantity of influence on the fluid density
as Rayleigh number of solute RaS and thermal Rayleigh number RaT by

RaS = KfLzβC∆C
φD

and RaT = KfLz|βT |∆T
DT

, (1.11)

where Kf denotes the hydraulic conductivity, Lz is the vertical domain extent, φ is the poros-
ity, ∆C is change in solute concentration, βC is the solute expansion coefficient, D is the
hydrodynamic dispersion in the direction of interest, ∆T is the change in temperature, βT is
the thermal expansion coefficient, and DT is thermal diffusion-dispersion.

In double diffusive phenomena, where both concentration and temperature differences cause
buoyancy-driven transport, the Rayleigh number results as sum or difference of RaS and RaT,
corresponding to the direction of impact [Nield and Bejan, 1999]. Perturbation theory iden-
tified two important critical Rayleigh numbers: Ra(1)

c = 4π which characterizes the onset of
convection in stable stationary rolls and Ra(2)

c ≈ 400 marking the limit between stable and
unstable patterns.

1.2.8. Quantitative Indicators

Characteristic measures can help to quantify differences in simulation results. This issue is in
particular important for benchmarking and for sensitivity analysis of parameters. Indicators
can underline visually observed results or quantify discrepancies between simulations which
cannot be detected by pure visual comparison. A quantitative indicator has to be chosen
according to the problem of interest. For instance Prasad and Simmons [2005] presented a
number of methods to compare simulation results for variable density flow problems.

We distinguish between indicators referring to a single simulation and comparative measures
which quantify the difference between two simulations. Typical representatives for the first
group are spatial and/or temporal means as integrated measures. Further characteristics are the
penetration depth of concentration isolines, the center of mass, minimal or maximal velocities,
breakthrough curves, and so forth. Indicatiors of the second group compare results which
requires the analysis of the spatial structure and the distribution of quantities for of different
simulations. This can be a quite challenging task. Various disciplines use pattern matching
algorithms, like image analysis, meteorology or geographical information science. For a broad
literature scan see e.g. Hagen-Zanker [2006]. We focus on two integrated measures.
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Mean Concentration

We define the mean for the concentration C as the spatial average over the entire domain of a
simulation k with an arbitrary shape of the numerical mesh by

C̄k =
N∑
i=1

A(i)Ck(i) and (1.12)

where N is the number of elements of the mesh, A(i) ∈ [0; 1] is the relative space fraction of
the element i with

∑N
i=1A(i) = 1; C(i) is the concentration value of the element i. C̄ is a

dimensionless quantity due to the fact that the concentration is given in this work in relative
amounts C ∈ [0; 1]. The mean concentration C̄ corresponds directly to the amount of salt
being solved within the domain.

Relative Concentration Difference and Relative Temperature Difference

To perform a comparison between two simulations k and l on the same numerical grid, we
define the relative difference in concentration and temperature according to

∆Ckl = 100%
N∑
i=1

A(i) |Ck(i)− Cl(i)| and

∆T kl = 100%
Tmax − Tmin

N∑
i=1

A(i) |Tk(i)− Tl(i)| ,
(1.13)

where N is the number of elements of the mesh, A(i) ∈ [0; 1] is the relative space fraction of the
element i with

∑N
i=1A(i) = 1. Ck(i) and Cl(i) are the concentration values and Tk(i) and Tl(i)

are the temperature of element i of the simulations k and l, respectively. The division by the
difference between the minimal temperature Tmin and maximal temperature Tmax is necessary
to gain a relative quantity ∆T . The relative difference measures the accordance of spatial
pattern between two simulations. A value of zero corresponds to similarity.

1.3. Geostatistics in Subsurface Hydrology

Subsurface hydrology faces two problems concerning the characterization of hydraulic proper-
ties of porous media: a strong variability of properties in space and the scarcity of information.
The coincidence of both issues complicates the description and prediction of processes like the
fluid, mass and heat transport in porous media. To account for the heterogeneity of subsurface
characteristics, the theory of geostatistics has been developed in the context of hydrogeology
in the 1960s. One of the first scientists using this concept was Matheron [1967]. Geostatistics
attempts to find statistical characterizations which capture the patterns of spatial variability
and to explain field observations. It further aims to recognize and quantify the impact of sub-
surface heterogeneity on flow and transport processes. Variables of interest are the hydraulic
conductivity, transmissivity, hydraulic head, concentration, fracture density, and dispersivity.
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A detailed discussion on multiple geostatistical aspects are given e.g. in Dagan [1989]; Gelhar
[1993] and Rubin [2003]. In the following we focus on hydraulic conductivity Kf . All state-
ments and results are equally valid for the porous media quantity permeability, which is in one
to one correspondence to the hydraulic conductivity trough the relation given in Eq. (1.4).

The spatial variability of porous media is a result of complex geological processes through which
aquifers evolve. Physical and chemical processes, like structural deformation, deposition and
diagenesis control the geometry and texture of sedimentary deposits [Miall, 1996]. Field studies
indicate that hydraulic conductivity can vary by orders of magnitude over short distances of the
order of meters [Sudicky, 1986; Gelhar , 1993]. The spatial variability of hydraulic properties
influences fluid flow and transport, due to the fact that the conductivity controls direction and
magnitude of flow by Darcy’s law. Furthermore, heterogeneity triggers mechanical dispersion
and dominates the movement of a solute plume. However, it is of practical significance to
understand the actual movement of contaminants for their removal by remediation technologies.
A deterministic approach to characterize complex spatial patterns is inappropriate because it
requires the estimation of a large number of parameters which is in contrast to the rather small
number of measurements available. The lack of perfect or complete measurements makes our
knowledge of the variable uncertain , thus justifying the probabilistic approach.

1.3.1. Concept of Spatial Random Function

The geostatistical description of a spatially distributed quantity, like hydraulic conductivity,
uses the concept of spatial random functions (SRF). These are random variables that depend
on the location and exhibit a stochastic spatial structure. The goal of constructing a subsurface
quantity as SRF is to reduce the ensemble of measurements to a few useful statistics which
capture mathematically the pattern of spatial variability.

A SRF Z(x) can be characterized by a certain set of statistical parameters, in general its
statistical moments. The spatial variation of a SRF often shows an overall trend and a ran-
dom component associated with erratic fluctuations. These characteristics can be captured by
the first two moments of Z(x). The first order moment is the expected value or arithmetic
mean ZA(x), marking the trend. The second order moments include variance Var[Z(x)], the
auto-covariance CV[Z(x)] and the semivariogram SV[Z(x)]. The interdependency of conduc-
tivity values in space is covered by the model of spatial correlation, which is expressed by the
covariance function or semivariogram. In linear geostatistics higher moments are neglected.

For hydraulic conductivity the property of stationarity is often assumed, meaning that the
statistics do not change over space. Thus the mean is constant and the auto-correlation does
not depend on x, but on the separation distance of two points s. Additionally, there exists a
one-on-one correspondence between auto-covariance CV and semivariogram SV:

ZA = E[Z(x)],

CV(s) = Cov[Z(x + s), Z(x)] = E[Z(x + s)Z(x)]− Z2
A,

SV(s) = Var[Z(x)]− CV(s).
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1.3.2. Hydraulic Conductivity as Log-normally Distributed SFR

It is common to model the hydraulic conductivity K(x) conceptually as log-normally dis-
tributed SRF, referring to the summary of several field studies given by Gelhar [1993]. It
means that Y (x) = lnK(x) is normally distributed with a Gaussian probability density func-
tion pdfY (x) = 1

2πσ2 exp
(
− (x−µ)2

2σ2

)
in uni-variate form with µ and σ2 being the mean and the

variance of Y , respectively. The probability density function of K(x) is given by

pdfK(x) = 1
x
√

2πσ2
exp

(
− ln(x)− µ

2σ2

)
. (1.14)

The moments of K(x) can be calculated using the statistical parameters µ and σ2. The
arithmetic mean KA (first moment), the geometric mean KG as well as the harmonic mean KH

are important for the purpose of upscaling (section 1.4),

KG = exp (µ), (1.15)

KA = exp
(
µ+ 1

2σ
2
)

= KG exp
(

1
2σ

2
)
, (1.16)

KH = exp
(
µ− 1

2σ
2
)

= KG exp
(
−1

2σ
2
)
. (1.17)

The second moment of K(x) is given by

Var(K) =
(
exp (σ2)− 1

)
exp

(
2µ+ 1

2σ
2
)
.

The correlation structure of conductivity in space is captured by the covariance model. It can
be expressed using Y ’s covariance model

Cov [K(x + s),K(x)] = exp
(
2µ+ σ2 + CVY (s)

)
.

The statistical description of spatial correlation is based on the assumed covariance model. A
bunch of models exist, which all exhibit properties of spatial correlation that can be observed
in practice. Finding an appropriate model of correlation structure from field data includes an
estimation procedure, see e.g Samper and Neuman [1989a, b]. In general, spatially distributed
measurements are log-transformed and interpreted to gain an experimental semivariogram or a
covariance function, respectively. The data is then fitted to the covariance model. At this point
different models might lead to equivalent good results describing the correlation structure.

The exponential, Gaussian and spherical models are typical representatives for covariance mod-
els used in practice [Rubin, 2003]. They differ in the near-origin behavior and the rate of decay
of correlation as function of distance. The exponential model is indicative of sharp transition
occurring between blocks of different values and the spatial correlation decays at a very low rate
with large distances. The Gaussian covariance model describes a gradual transition between
blocks of different conductivity values and shows a faster decay of correlation. The spherical
model describes sharp transitions and discontinuities between zones of different conductivity
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values. In practice it is often very difficult to determine which of the models fit best to the
observed data, e.g. Turcke and Kueper [1996] . Riva and Willmann [2009] showed that mean
values of quantities like the hydraulic head are not considerably influenced by the choice of one
of these three variogram types.

We focus on a 3D-Gaussian model with the auto-covariance function CovG(s) = σ2ηG(s),
where ηG(s) is the correlation function

ηG(s) = exp
(
−
∑
i

(si/`i)2
)
. (1.18)

The model relies on stationarity and hence can be expressed as function of the separation
distance s = (s1, s2, s3). The Gaussian model refers to a finite correlation structure, which is
expressed by the correlation length ` = (`1, `2, `3) > 0. It characterizes the degree of continuity
in every direction. It is most likely to assume that the correlation length is different for different
directions. In case of equality `1 = `2 = `3 the medium is said to be isotropic. Otherwise it is
called anisotropic, where the anisotropy between the two directions i and j is expressed by the
ratio e = `i/`j .

Another quantity commonly used to describe the spatial persistence of K(x) is the integral
scale defined as Ii = 1/σ2 ∫∞

0 C(si) dsi, in ith direction. The larger the integral scale, the
longer is the spatial persistence of the correlation. The integral scale is proportional to the
correlation length and can be transformed according to the model of choice. For the Gaussian
model the relation is given by Ii =

√
π/2`i.

These mentioned models all assume a finite correlation scale continuously distributed over
space. However, geological media exhibit correlation on multiple scales depending on the
problem of consideration and observation [Gelhar , 1986; Dagan, 1986]. A fractal model allows
to account for an evolving heterogeneity structure. Neuman et al. [2008] showed that, even
though sample data appear to fit either Gaussian or Exponential variograms, they could be
represented equally well in terms of a truncated power law variogram model.

The semivariogram of the power law model is given by

SVPL(r) = C0r
2H , (1.19)

with Hurst coefficient 0 < H < 1 and constant C0. The model is also referred to as self-similar.
The power law model does not have a finite variance nor a finite correlation length, capturing
the effect of correlation on multiple scales [Neuman, 1990]. The shape of a conductivity field
depends on the choice of the Hurst coefficient: for H > 0.5 the probability of observing incre-
ments to the same sign over large distances is high and fields becoming smooth in appearance.
For H < 0.5 larger small-scale variability can be observed and the appearance is more rugged.

The unbounded growth of variability is a theoretical hypothesis which cannot be captured
in numerical studies. For generating fields of hydraulic conductivity numerically a truncated
power law is used, where a cutoff length is chosen larger than the domain size.
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1.3.3. Quantifying Variables of Flow and Transport in Stochastic Media

Two approaches are commonly used to solve a problem in stochastic subsurface hydrology:
the analytical and the numerical approach. The idea of the analytical approach is to derive
explicit expressions for effective quantities from stochastic differential equations. The numerical
approach uses random field generators to produce hydraulic conductivity fields. They serve as
input to numerical flow and transport models which provide numerical solutions for the flow
field and/or concentration patterns in heterogeneous media.

Since hydraulic parameters may vary over distance and time, variables of flow and transport
like hydraulic head or the concentration distribution of a tracer may be spatially dependent,
too. Introducing K(x) as SRF into Darcy law, Eq. (1.2), and the mass conservation equation,
in Eq. (1.5), results in stochastic PDE’s. Hence, flow variables are also SRF. It is often aimed
to express these SRF with the statistical parameters of K(x), which are KG, σ2 and ` for
a Gaussian covariance model. In general, the hydraulic head is less variable than the log
conductivity due to physical constrains, given by the PDE’s [Rubin, 2003].

Using the Monte Carlo approach to solve the flow equation with heterogeneous conductivity
distributions numerically is conceptually simple and needs no particular assumption. It allows
the analysis of complex scenarios which are not accessible to analytical methods. The main
steps of such a procedure are (i) assuming a probability distribution of the known input variable,
which is in general the hydraulic conductivity K(x); (ii) generating realizations synthetically;
(iii) solving the flow equation with appropriate boundary conditions for every realization; (iv)
computing the statistics of the model output variables. An advantage of this approach is the
flexibility in the problem description. A disadvantage is that the calculation of huge ensembles
of realizations might be necessary, which can be quite consuming in time and computational
power. Furthermore, it is often difficult to predict how many realizations and thus simulations
are necessary to achieve convergence of solutions.

1.4. Upscaling

One of the questions arising in groundwater flow problems is how to treat heterogeneity in
aquifer models. In order to reduce complexity it is important to find representative parameters,
which are capable of reproducing some average behavior of the system by upscaling. Upscaling
basically aims to connect scales, either to connect conceptual model scale to observation scale
or to connect different observation scales.

The emergence of upscaling in hydrogeology is directly linked to the application of geostatis-
tical methods on subsurface flow and transport problems. Matheron [1967] was the first who
described heterogeneously distributed hydraulic conductivity as SRF and directly asked for
representative values and bounds. Since then a huge amount of literature emerged, concerning
upscaling of hydraulic conductivity. For a detailed review see e.g. Dagan [1989]; Renard and
de Marsily [1997]; Sánchez-Vila et al. [2006].

In the context of stochastic subsurface hydrology, numerical models can serve for validating
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theoretical upscaling approaches. It is often very complicated to define upscaled hydraulic
parameters for complex flow regimes. Due to the lack of data it is very difficult to validate
averaged values obtained from upscaling approaches directly. Numerical models can be used
to fill the gap of missing measurements. Based on the physical process equations we can
perform numerical experiments and generate virtual data. Results from upscaling theory can
be validated by comparing analytical solutions with numerical experiment data. The first
following this strategy was Freeze [1975]. We discuss the combination of theoretical framework
and numerical methods to find upscaled descriptions of hydraulic conductivity in the flow
conditions of uniform flow and well flow in detail in the sections 2.3 and 4, respectively.

1.4.1. Scale Hierarchy

Heterogeneity in hydraulic properties of porous media can be observed on multiple scales.
The characterization of the spatial correlation scale of the property of interest coincides with
the definition of spatial scales of flow domains. Dagan [1986] defined three major scales:
the laboratory, the local, and the regional scale with corresponding correlation on pore scale,
correlation of hydraulic conductivity, and correlation of transmissivity.

Heterogeneity on pore scale is not considered here. For flow on local scale the hydraulic
conductivity K(x) = K(x, y, z) is the variable of interest. The vertical component of the
flow has to be taken into account, since the flow patterns are strongly influenced by the three
dimensional nature of the porous media. Furthermore, anisotropy effects have to be considered.

For flow on regional scale the relation between the horizontal extent and the aquifer thickness
becomes very small. Thus, it is assumed that vertical flow can be neglected and the flow field
can be seen as horizontal. The porous media can be described by the two dimensional trans-
missivity T (x), which is the vertical average of the hydraulic conductivity K(x) = K(x, y, z)
over the domain thickness L,

T (x, y) =
∫ L

0
K(x, y, z) dz .

1.4.2. Effective and Equivalent Conductivity

Two main approaches have evolved in literature to find representative parameters. The first
is the approach of effective quantities which are gained by performing ensemble averages. The
second approach uses spatial averaging to find equivalent parameters. However, determining
upscaled parameters for a certain problem of consideration can be quite challenging. Effective
values might not exist or spatial averages can strongly depend on the scale of the averaging
volume.

Effective hydraulic conductivity is defined as the value Kef (or Keff) which satisfies Darcy’s
law 〈q(x)〉 = −Kef〈∇h(x)〉 with ensemble averaged quantities 〈.〉 of flux q and hydraulic head h.
The effective conductivity relates expected values of specific discharge and head gradient. Kef is
defined as a function of aquifer’s material properties and must be valid throughout the entire
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domain; it is a characteristic property of the medium but must not be influenced by flow
conditions [Rubin, 2003].

Closed-form results for an effective conductivity Kef are available in steady uniform flow for
cases of low variability and simple flow regimes, discussed in more detail in section 1.4.3. In
complex flow configurations or for large variances the effective conductivity can be bracketed
by bounds of arithmetic and harmonic mean KA and KH. These are given in Eq. (1.16) and
Eq. (1.17) for log-normally distributed hydraulic conductivity fields [Matheron, 1967; Sánchez-
Vila et al., 2006]. Non-uniform flow regimes like in pumping tests lead to Kef depending
on space coordinates and/or boundary conditions. Thus, the common definition of effective
conductivity is not appropriate to describe representative conductivity in these flow regimes.

Another approach to define an upscaled conductivity refers to volume averaging. The equivalent
conductivity Keq is defined to fulfill Darcy’s law q̄ = −Keq∇h̄ with the spatial average of the
flux q̄ = 1

V

∫
V q dV and of the head gradient ∆h̄. Equivalent parameters are associated with

a particular geometry and boundary conditions and can thus be defined for non-uniform flow
conditions.

In case of ergodicity, ensemble averages can be replaced by spatial averages. Hence, effective
and equivalent conductivity are identical. In stationary conductivity fields and when flow is
induced by a linear pressure gradient, ergodicity can be assumed throughout the entire domain.
The mean flux is equal to the spatial average of the flux [Rubin, 2003] and thus Kef = Keq.
For non-uniform flow this relation is not valid, due to the ergodicity breakdown.

Beyond the two approaches of effective and equivalent parameters a lot of work has been
devoted to finding representative descriptions of conductivity for more complex flow regimes,
as discussed in detail e.g. in Sánchez-Vila et al. [2006].

1.4.3. Upscaled Conductivity for Uniform Flow

Steady state parallel flow in stationary media is one of the particular situations where effective
conductivity, denoted by Kefu, exists. The theoretical approach provides analytical solutions
for the effective conductivity of a log-normally distributed isotropic conductivity K(x) in de-
pendence on the dimensionality d of the considered flow field,

Kefu = KG exp
(
σ2
(

1
2 −

1
d

))
, (1.20)

with the statistical quantities geometric mean KG (Eq. (1.15)) and variance σ2 of K(x). For
the more complex solution in anisotropic media, see section 4.2.2 or [Gelhar and Axness, 1983;
Dagan, 1989].

For all dimensions Kefu is bounded between KA and KH, regardless of the assumed correlation
structure. In one dimension the effective conductivity is the smallest with K

(1d)
efu = KH =

KG exp
(
− 1

2σ
2
)
, due to the fact that in one direction a serial flow pattern dominates, where

the harmonic mean is the average of choice. In two and even stronger in three dimensions, flow
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can circumvent areas of low conductivity, thus the effective values are given by K(2d)
efu = KG

(or transmissivity Tefu = TG, respectively) and K(3d)
efu = KG exp

(
1
6σ

2
)
.

In section 2.3 we show that the analytical description of Kefu in Eq. (1.20) can be reproduced
by the effective hydraulic conductivity calculated from an ensemble of simulations with uniform
flow through two-dimensional heterogeneous log-normally distributed conductivity fields.

1.4.4. Upscaled Conductivity for Well Flow

Most field methods, which rely on well flow scenarios to obtain hydraulic conductivity values,
assume homogeneity [Kruseman and de Ridder , 2000]. In homogeneous media well flow can be
described by Thiem’s solution [Thiem, 1906] for steady state

h(r) = − Qw
2πLK ln r

R
+ hR (1.21)

or Theis’ solution [Theis, 1935] for transient flow, where h(r) is the hydraulic head, depend-
ing on the radial distance r from the well. Qw is the discharge at the well, L is the aquifer
thickness, K is the homogeneous conductivity, and hR = h(R) is the known hydraulic head
at a certain distance R from the well. The analytical solution of Thiem (1.21) can be used to
benchmark numerical codes for convergent flow regimes, see section 2.2.

Well flow in heterogeneous media reveals a much more complex behavior than in homogeneous
media. The constitutive equation, which is the average of Darcy’s law, has a non-local structure
for non-uniform flow and it is in general not possible to find a single upscaled conductivity
[Matheron, 1967; Indelman and Abramovich, 1994; Indelman et al., 1996]. The steep pressure
gradients which occur at the well, lead to a breakdown of the ergodicity assumption. An
effective conductivity value Kef, which is valid throughout the entire range, does not exist and
thus the definition of effective parameters is not applicable to convergent flow.

Although a single representative conductivity for well flow does not exist, the asymptotic
behavior is well known [Indelman and Abramovich, 1994]. Flow can be assumed to be uniform
in average far from the well, thus the representative value is Kefu = KG exp

(
1
6σ

2
)
in three

dimensions and Tefu = TG in two dimensions. The near-well representative value Kwell or Twell
is stronger impacted by heterogeneity due to the high pressure gradients. The value depends
on the boundary condition assumed at the well. It is either the arithmetic mean KA or TA
for a constant head or the harmonic mean KH or TH for a constant flux boundary condition,
e.g. [Shvidler , 1966; Dagan, 1989; Indelman et al., 1996; Indelman and Dagan, 2004]. A detailed
discussion on that is given in section 4.2.2.

Since ensemble averaging is not applicable, the concept of spatial averaging can be used to
obtain an equivalent conductivity, which depends on the distance to the well. Indelman et al.
[1996] defined the equivalent conductivity Keq(r) based on Thiem’s formula (1.21) as a spatial
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average over a circle of radius r around the well in the sense of Matheron [1967],

Keq(r) = Qw(ln r − ln rw)
2πL(h(r)− h(rw)) ,

where Qw is the flow rate, rw is the radius of the well, h(rw) is the head at the well and L is
the aquifer thickness. Keq(r) can be interpreted as the conductivity of a cylinder of radius r
in homogeneous media which conveys the same discharge as the actual medium for the same
mean head difference. In contrast to Kefu in uniform flow Keq(r) depends on the flow geometry.
Firmani et al. [2006] showed by the use of numerical simulations that Keq(r) is appropriate to
describe the conductivity of well flow only for small variances and high anisotropy ratios.

A large amount of work is focused on finding upscaled descriptions of the conductivity and
transmissivity in well flow regimes expressed by a radial dependency. Some studies are based
on the definition of Keq(r) or Teq(r), respectively; e.g. Fiori et al. [1998]; Dagan and Lessoff
[2007]. But also other approaches have emerged, e.g. Neuman and Orr [1993]; Sánchez-Vila
[1997]; Sánchez-Vila et al. [1999]; Guadagnini et al. [2003]; Neuman et al. [2004].

1.4.5. Well Flow Adapted Filtering

Schneider and Attinger [2008] presented a promising alternative approach of upscaling well flow
in two dimensions. They presented a radially dependent upscaled transmissivity TCG(r), which
allows a transition from near field transmissivity TH to far field value Tefu = TG controlled by
the correlation length `,

TCG
H (r) = TG exp

(
−1

2
σ2

(1 + ζ2r2/`2)

)
, (1.22)

where r is the radial distance from the well, TG is the geometric mean, σ2 is the variance and
` is the correlation length of the log-normally distributed transmissivity T (x). ζ is a factor of
proportionality.

The formula of TCG
H (r) in Eq (1.22) was derived making use of the upscaling procedure Coarse

Graining, introduced for uniform flow by Attinger [2003]. The procedure of Coarse Graining
and its application on two-dimensional well flow can be found in Schneider and Attinger [2008].
We discuss it for three-dimensional well flow in section 4.3. The fundamental idea is to perform
a spatial filtering on the flow equation which is appropriate to the non-uniform character of a
pumping test. The filter is proportional to the radial distance from the well. Hence near the
well the filter length is very small, so nearly no filtering is applied and the heterogeneity of the
local transmissivities is still resolved. Far away from the well the filter volumes are very large
and the local heterogeneous transmissivity values are replaced by the effective value Tefu.

The analytical expression of TCG
H (r) in Eq. (1.22) allows a direct calculation of the corresponding

upscaled hydraulic head hewf(2d)(r) by solving the groundwater flow equation, as done in the
Appendix A.4. The solution hewf(2d)(r), called the effective well flow head, provides an effective
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description of the hydraulic head for large-scale pumping tests in a two-dimensional flow regime

hewf(2d)(r) = − Qw
4πTG

(
Γ (z(r))− Γ (z(R))− e

σ2
2 Γ

(
z(r)− σ2

2

)
+ e

σ2
2 Γ

(
z(R)− σ2

2

))
+ hR ,

(1.23)
where r is the radial distance from the well, Qw is the pumping rate, TG is the geometric mean,
and σ2 is the variance of the log-transmissivity. Γ(z) is the Theis function or exponential integral
function Γ(z) =

∫ z
−∞

exp(z′)
z′ dz′. z(r) is an abbreviation for z(r) = σ2

2
1

(1+(ζr/`)2) , likewise z(R) =
σ2

2
1

(1+(ζR/`)2) , with ` being the correlation length and ζ being the factor of proportionality. R
is an arbitrary distance from the well, where the hydraulic head h(R) = hR is known.

Numerical simulations of pumping tests in a two-dimensional flow regime showed that ensem-
ble averaged drawdowns can be reproduced very well by making use of TCG

H (r) as shown by
Schneider and Attinger [2008].
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2. Numerical Benchmarks

2.1. Introduction

Complicated hydrogeological problems can be analyzed using modern numerical codes. Major
challenges for scientists are the understanding of the coupled processes, the implementation of
algorithms, and the integration of the available experimental data. To cope with the problems,
interdisciplinary cooperation and an interactive development procedure are required.

Benchmarking is a common procedure for model verification. Complex numerical models rely
on a properly and efficiently implemented code. Therefore, the numerical software is tested on
examples. In case analytical solutions exist, benchmarking comprises of the comparison with
the numerical solution. Another approach is to compare simulated results with observational
data. In these cases caution has to be given to the fact that measurements can be biased.
For models without analytical solutions or observational evidence a cross comparison with
other numerical codes is often done. For the simulation software OpenGeoSys an extensive
benchmarking documentation is given in Kolditz et al. [2012a].

The scope of this section is to introduce four specific benchmarks that refer to the complex
problems discussed in parts II and III. On the one hand, it serves as code testing. On the
other hand, we outline important features of numerical simulations dealing with heterogeneous
parameter distributions and density dependent flow.

The four benchmarks can be understood as examples for the development of simple hydrogeo-
logical models with reference to the steps of model evolution, as described in section 1.1. We
introduce the conceptual model and state the process equations of relevance which are discussed
in detail in section 1.2. We further adapt the problems to the software OpenGeoSys [Kolditz
et al., 2012b]. This includes defining the model domain with a spatial grid resolution, fixing a
temporal resolution, defining initial and boundary conditions as well as specifying physical pa-
rameters. In addition, the discussion of each of the four benchmarks includes a short literature
review.

2.2. Pumping Test in Homogeneous Porous Media

Pumping tests are a widely used tool to identify hydraulic properties. In a pumping test water
is extracted from a single location which causes a radial flow character. From the mathematical
point of view this point source creates a singularity at the pumping well, which complicates
the investigation of the flow equation in particular in heterogeneous porous media. For ho-
mogeneous media an analytical solution exists, introduced by Thiem [1906]. We benchmark
the numerical solver OpenGeoSys for convergent flow by comparing a simulated pumping test
drawdown with Thiem’s solution.
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Figure 1: Radial refinement of the numerical mesh in the area of 1m around the pumping well.

2.2.1. Thiem’s Solution

We give a short derivation of Thiem’s solution. The starting point is the equation for saturated
groundwater flow, which is a combination of the continuity equation of flow (1.1) and Darcy’s
law (1.3),

S
∂h(x, t)
∂t

−∇ · (K(x)∇h(x, t)) = Q(x, t) , (2.1)

where S is the storage capacity, h(x, t) is the hydraulic head in space x = (x1, x2) and time t,
K(x) is the hydraulic conductivity and Q(x, t) represents a source or sink term.

For a steady state pumping test the time derivative is zero. Furthermore, we assume homo-
geneity in hydraulic conductivity, thus K(x) = K. Transforming Eq. (2.1) from Cartesian to
polar coordinates (x1, x2)→ (r, θ), with radius r and angular coordinate θ, results in

0 = 1
r
K

dh(r)
dr +K

d2h(r)
dr2 . (2.2)

According to the nature of radial flow the solution h(r) does not depend on the angular coordi-
nate θ. In Eq. (2.2) the sink term is not included, which is instead used as boundary condition.
A constant discharge Qw at the well corresponds to a Neumann boundary condition and is
calculated as the flux over the surface Ωw of the pumping well,

Qw =
∮

Ωw
q(rw) dΩw = −2πrwLKh′(rw),

where rw is the radius of the well, L is the aquifer thickness, and q(r) is the flux, which is
given by Darcy’s law in radial coordinates q(r) = −Kh′(r)er with er being the unit vector in
radial direction. The second boundary condition for the ODE (2.2) is given by a fixed hydraulic
head h(R) at the radial distance R.
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Figure 2: Drawdowns of simulated pumping test (dots) and analytical Thiem’s solution (solid
line) in dependence on the radial distance r from the well.

The solution of the ODE (2.2) is given by h(r) = C1 ln r + C2. The integration constants C1

and C2 are determined using the previously discussed boundary conditions, resulting in C1 =
r dh(r)

dr = − Qw
2πLK and C2 = Qw

2πLK lnR+ h(R). Thus Thiem’s solution reads

h(r) = − Qw
2πLK ln r

R
+ h(R) . (2.3)

2.2.2. Simulation Results

We carried out simulations on a two dimensional numerical mesh ranging from −6.4m to 6.4m
in both directions. We established a radial refinement at the well in the range of −1m to 1m as
visualized in Figure 1. It provides high resolution of the hydraulic head drawdown around the
well. The well is not included as a point source but as a hollow cylinder with radius rw = 0.01m.
We chose a constant head of zero at the outer radial distance R = 6.4m as boundary conditions.
At the well we used a constant total pumping rate of Qw = −1e-3m3/s.

Figure 2 shows the comparison of the drawdowns from a simulated pumping test and the an-
alytical Thiem’s solution, Eq. (2.3). Theoretical and numerical drawdowns are in very good
agreement. Especially at the well the refined mesh provides good resolution. Thus, the sim-
ulation software OpenGeoSys can reproduce very well the radial dependent groundwater flow
with steep gradients at a pumping well.

2.3. Uniform Flow in Heterogeneous Porous Media

The existence of an analytical expression for the effective hydraulic conductivity Kefu makes
the uniform flow regime favorable for numerical benchmarking. We performed simulations in
heterogeneous porous media with a uniform flow field in a simple domain design. It allows the
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application of the Monte Carlo approach to determine the statistics of flow in stochastic media,
as described in section 1.3.3. From the simulated hydraulic head distribution a simulated
effective conductivity K̂efu can be inferred using Darcy’s law and averaging strategies. The
benchmark focuses on the comparison of the analytical expression of Kefu with the simulated
effective conductivity K̂efu.

Analytical and Simulated Effective Hydraulic Conductivity

The evaluation of an effective conductivity for uniform flow in heterogeneous porous media
has been subject of several studies since the beginning of geostatistics in hydrogeology. Math-
eron [1967] started by obtaining the upper and lower bounds, later Gelhar and Axness [1983];
Dagan [1989] presented a general analytical expression, called Kefu. The expression for all
dimensions d = 1, 2, 3 can be written according to Eq. (1.20) as

Kefu = KG exp
(
σ2
(

1
2 −

1
d

))
,

with KG being the geometric mean and σ2 the variance of the log-normal distributed conduc-
tivity K(x).

Several authors addressed the issue of comparing the analytical expression forKefu with effective
mean values obtained from simulations. Although the analytical expression of Kefu was derived
for unbounded domains, it can be assumed that it is valid in bounded domains for a sufficiently
large domain extent, discussed in detail in Sánchez-Vila et al. [2006]. Freeze [1975] was the first
who performed numerical investigations of one dimensional flow in heterogeneous media. Follin
[1992] gave a numerical confirmation of K̂efu = Kefu in two dimensions (up to σ2 = 16) and
Dykaar and Kitanidis [1992b] in three dimensions (up to σ2 = 6). Dykaar and Kitanidis [1992b]
also investigated the relation of domain extent and convergence of the effective conductivity
toward an asymptotic value. Their results confirm that an analysis with Kefu is valid in case
of large domain extent with respect to the corresponding directional correlation length.

To obtain an effective conductivity K̂efu from simulations, we averaged the simulated hydraulic
head ĥ in the direction perpendicular to the flow direction, ĥ(x) =

∫
ĥ(x, y) dy. In the second

step, we inserted ĥ(x) into an inverted Darcy’s law, Eq. (1.3),

K̂efu =
∫ x2

x1
Qw

(Lx − x)
ĥ(x)

dx,

where Qw denotes the flow rate and Lx the horizontal domain extent. The integration limits x1

and x2 were chosen sufficiently far from the boundaries.

Numerical Simulation Setup

We carried out simulations in a two-dimensional domain with a spatial extension of Lx = 200m
and Ly = 50m and a regular grid spacing of 1m. We established a constant flow rate of Q =
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Figure 3: Realization of a generated normally distributed log-conductivity field Y = lnK(x)
with Gaussian correlation function. Light patches indicate high conductivity, whereas
dark patches indicate low conductivity. Statistical parameters: KG = 1e-4m/s, σ2 =
1, ` = 5m, and e = 1.

5·e-7m3/s at the left boundary (x = 0m) as inflow. The outflow area is at the right side
(x = 200m), with a constant head of h(x = 200) = 0m. The top and bottom boundaries are
impervious to the flow. The setting resembles a section of a confined aquifer with a mean head
gradient of 1m over a distance of 200m.

We generated an ensemble of 20 heterogeneously distributed conductivity fields. Fields are
of log-normal distribution with a Gaussian correlation structure, as defined in Eq. (1.14) and
Eq. (1.18). The statistical parameter are the following: mean conductivity of KG = 1e-4m/s,
variance of σ2 = 1, correlation length of ` = 5m, and anisotropy ratio of e = 1. We visualized
a snapshot of one realization in Figure 3.

One correlation length is resolved over five elements of the numerical grid. The relation of
domain size to correlation length is Lx/` = 20 which is sufficient for Gaussian correlated fields
to neglect boundary effects according to Dykaar and Kitanidis [1992b].

Results

We plotted the simulated drawdowns of 20 realizations and the ensemble mean drawdown in
comparison to the drawdown in homogeneous media with Kefu = KG as substitute value in
Figure 4. The effective conductivities K̂efu of single realizations deviate up to 10% from the
analytical solution Kefu = KG. The ensemble mean of the 20 simulation runs deviates only
less than 1% from KG.

In general, it was possible to reproduce the effective conductivity for uniform flow Kefu with
numerical simulations of flow in heterogeneous media quite well. However, the domain size
is too small to guarantee convergence to Kefu within a single realization. Convergence to the
analytical solution can be found by taking the mean of several simulations runs. These results
underline the fact that the sample size and the number of realizations is crucial in simulations
with heterogeneous conductivity distributions.
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Figure 4: Simulated drawdowns of hydraulic head: drawdowns of 20 simulation runs (dotted
lines), ensemble mean drawdown (dashed line) and drawdown in homogeneous media
with Kefu = KG as homogeneous substitute value (solid line).

2.4. The Elder Benchmark

The Elder benchmark is one of the commonly used benchmarks to verify density-dependent
flow in hydrogeological simulation software [Voss and Souza, 1987; Oldenburg and Pruess,
1995; Kolditz et al., 1998; Frolkovic and Schepper , 2001; Diersch and Kolditz , 2002; Prasad and
Simmons, 2003; Park and Aral, 2007]. The wide use of this benchmark is due to the fact that
it is a problem of free convection where flow is purely driven by density differences.

Background

The benchmark is based on numerical studies of the "short heater problem" introduced by Elder
[1967a, b] in combination with experimental measurements of thermally driven convection in
porous media. Voss and Souza [1987] adapted and reformulated the problem in terms of
density dependent flow induced by salt concentration differences for code testing purposes.
Resulting salt concentration distribution patterns of Elder [1967b] and Voss and Souza [1987]
matched quite well. In subsequent numerical studies different steady state solutions, varying in
number and development of salt plumes, have been observed e.g. Oldenburg and Pruess [1995];
Frolkovic and Schepper [2001]; Diersch and Kolditz [2002]; Park and Aral [2007]. At first, these
discrepancies have been mainly attributed to mesh resolution [Frolkovic and Schepper , 2001;
Diersch and Kolditz , 2002]. By making use of bifurcation analysis Johannsen [2003] showed
that (at least) three stable and a further eight unstable steady state solutions co-exist. Different
domain discretizations, numerical schemes and initial conditions can lead to different solutions
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Figure 5: Geometry and boundary conditions of the Elder benchmark for the left half domain.

in number of down-welling plumes, shown by Park and Aral [2007]. However, the existence of
multiple steady state solutions is an intrinsic characteristic of the Elder problem.

The lack of a unique steady state solution makes the Elder problem questionable for bench-
marking purposes. By making use of a pseudo-spectral approach, van Reeuwijk et al. [2009]
confirmed the results of Johannsen [2003] and underlined the fact that bifurcation depends
on the Rayleigh number as defined in Eq. (1.11). According to their analysis only one steady
state solution exists for lower Rayleigh numbers than originally used in the Elder benchmark.
Consequently, they established a low Rayleigh number Elder benchmark with slightly changed
setting. We adopting that idea and present results for both, the classical Elder benchmark as
well as the low Rayleigh number Elder benchmark.

Problem Definition

The Elder domain is a vertical cross section of x = 600m length and z = 150m height (Fig-
ure 5). Half of the surface contains a salt source with a constant concentration of C = 1. The
bottom has a fixed concentration of zero. The hydraulic head is constant in the entire domain
and all boundaries are impervious to flow and mass transport. The hydraulic parameters are
listed in Table 2. Voss and Souza [1987] proposed to use these values to obtain a Rayleigh
number of Ra = 400, following the lines of the "short heater problem" of Elder [1967b].

Following the lines of van Reeuwijk et al. [2009] the low Rayleigh number Elder benchmark
remains with the geometry and the parameter setting of the classical Elder benchmark with
the exceptions of: (i) a reduced value of maximal density of 1 030 kg/m3 instead of 1 200 kg/m3,
resulting in a Rayleigh number of Ra = 60; (ii) a change in boundary condition at the surface:
the concentration it fixed to zero at x = 0 − 150m and x = 450 − 600m; and (iii) a coarser
time stepping. Parameters different for both simulation settings are listed in Table 3.
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symbol [unit] quantity value
φ [-] porosity 0.1
κ [m2] permeability 4.845 e-13

∆C [-] relative concentration difference 1
ρ0 [kgm−3] fresh water density 1 000
ν [kgm−1 s−1] viscosity 0.001

Dm [m2 s−1] molecular diffusion coefficient 3.565 e-6
αl, αt [m] solute dispersivities 0

Table 2: Parameters valid for classical and low Rayleigh number Elder benchmark.

symbol [unit] quantity Ra = 400 Ra = 60
βC [-] volumetric expansion 0.2 0.03
∆t [s] time stepping 1 314 000 7 884 000

vmax [m/s] maximal velocity 2e-6 3.0e-7
Peg grid Peclet number 1.3 0.2
Cr Courant number 1.1 1

Table 3: Parameters and numerical stability numbers for classical and the low Rayleigh number
Elder benchmark.

We reproduced the classical and the low Rayleigh number Elder benchmark with OpenGeoSys
[Kolditz et al., 2012b]. We performed all simulations on the half domain, which is sufficient
due to the symmetry of the problem. The mesh contains 128 · 64 identical square elements,
corresponding to a mesh refinement level of 6, according to Frolkovic and Schepper [2001];
Diersch and Kolditz [2002].

The governing equations used to solve variable density flow consist of the three fundamental
conservation equations: the continuity equation of flow, given in Eq. (1.1), the momentum
equation (1.2), and the mass transport equation (1.5). The equations are coupled to the
equation of fluid density (1.10) and the hydrodynamic dispersion (1.6). We used no numer-
ical stabilization schemes. Calculating grid stability criteria like the grid Peclet number and
Courant number, as e.g. defined in Kolditz [2012] result in values satisfying the criteria for
numerical stability in spatial and temporal discretization (Table 3).

Simulation Results

We visualized the results of the concentration patterns in combination with the flow velocity
field for both Elder Benchmarks in Figure 6. The first time step is at an early stage of plume
evolution, the second step is at a later stage when simulations reached the steady state. For the
Elder benchmark this is at t = 3 year and t = 30 years and for the low Rayleigh number Elder
benchmark at t = 20 year and t = 200 years. The differences in evolution time corresponds to
the difference in the Rayleigh number.
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Figure 6: Isolines of simulated salt concentration C = [0.1, . . . , 0.9] of the classical and the low
Rayleigh number Elder benchmark for two time steps: top left Ra=400, t=3 years;
down left Ra=400, t=30 years; top right Ra=60, t=20 years; down right Ra=60,
t=200 years. The arrows mark the flow directions, their color the flow velocity.

The evolving concentration pattern for the classical Elder benchmark shows several down-
welling fingers at an early stage and finally one central down-welling finger at the steady state
resembling the results of Frolkovic and Schepper [2001]; Diersch and Kolditz [2002]; Park and
Aral [2007]. The results for the low Rayleigh number Elder benchmark correspond perfectly
to the distribution of isolines presented in van Reeuwijk et al. [2009].

For a quantitative comparison we calculated the maximal penetration depth of several con-
centration isolines, listed in Table 4. For the penetration depth of the isoline of C = 0.6 the
value of the classical Elder benchmark corresponds perfectly to the calculated value given in
Prasad and Simmons [2005]. The values for the low Rayleigh number Elder benchmark match
the location of the isolines given in van Reeuwijk et al. [2009].

C PD (RaS = 400) PD (RaS = 60)
0.2 −145m −138m
0.4 −141m −127m
0.6 −136m −113m
0.8 −56.3m −84.4m

Table 4: Maximal penetration depth PD [m] at steady state for different concentration isolines
for the classical and the low Rayleigh number Elder benchmark.



44 2. Numerical Benchmarks

Figure 7: Geometrical setting and boundary conditions of the Saltdome benchmark.

2.5. The Saltdome Problem

The Saltdome benchmark reflects the idealized groundwater flow over a salt dome, taking
significant variations of fluid density due to salt dissolution into account. It was originally
formulated in the frame of the international HYDROCOIN groundwater modeling project (Case
5, Level 1 problem). The setting is in reference to the salt dome nuclear waste disposal site at
Gorleben, Germany [Herbert et al., 1988; Oldenburg and Pruess, 1995; Konikow et al., 1997].
The model aims to identify how convective flow, which is induced by fluid density differences,
interacts with the advective flow process initiated by pressure differences. We examine the
Saltdome benchmark more closely since the idealized setting is of similar character as the cross
section model of the Thuringian Basin, which we discuss in section 3.

2.5.1. Problem Definition

The benchmark consists of three processes. Continuity equation of flow (1.1) and Darcy’s
law (1.2) determine the groundwater flow. Eq. (1.5) describes the salt transport. The heat
transport process requires the evolution of the energy balance equation in the porous media,
Eq. (1.8). These processes are successfully implemented into the physical based simulation soft-
ware OpenGeoSys [Kolditz et al., 2012b], which we used to evaluate the Saltdome benchmark.

The model region is a two dimensional vertical cross section of 900m length and 300m height,
representing a homogeneous and isotropic aquifer. The geometrical setting and the boundary
conditions are visualized in Figure 7. We applied a linear pressure gradient of 1e5Pa at the top
from left to right. We established a constant salt concentration boundary at the central third
of the bottom, representing a salt source exposed to the aquifer. The boundary conditions of
the heat transport process are given by a constant temperature of T = 8 ◦C at the surface
and of T = 35 ◦C at the bottom of the basin. It implies a constant temperature gradient
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Figure 8: Numerical mesh used for the Saltdome benchmark simulations.

symbol [unit] quantity value
φ [-] porosity 0.2
κ [mD] permeability 1 000
ν [kgm−1 s−1] viscosity 0.001
ρ0 [kgm−3] fresh water density 1 000
C [-] normalized salt concentration [0, 1]
βC [-] solute expansion coefficient 0.2
Dm [m2 s−1] molecular diffusion 5 e-08

αl, αt [m] solute dispersivities 20; 2
T [ ◦C] temperature [8, 35]
βT [K−1] thermal expansion coefficient -3 e-04
λw [kgm2 s−3 K−1] thermal conductivity of water 0.6
λs [kgm2 s−3 K−1] thermal conductivity of solid 2.0
cw [m2 s−2 K−1] thermal capacity of water 4 200
cs [m2 s−2 K−1] thermal capacity of solid rock 1 000
ρs [kgm−3] rock density 2 700

Table 5: Parameters for the Saltdome benchmark in line with the problem definition of Herbert
et al. [1988]; Kolditz et al. [1998].

of 30 ◦C/km. The lateral and bottom boundaries are impervious to flow, salt, and heat. The
initial concentration in the domain is C = 0. The initial temperature is T = 8 ◦C. The specific
hydraulic parameters used in this application are given in Table 5.

For numerical simulations, we use an unstructured grid consisting of 23 581 triangular elements
with gradual refinements in the area of the salt dome. The edge lengths are between 1m
and 30m. Figure 8 gives a visualization of the mesh. We adapt the time stepping to the
choice of the mesh and the processes incorporated. Generally, a time step is in the range of
one month. Simulations reached the steady state after 1 000 years.

We performed numerical simulations with two different approaches of transport. First, we
assume conservative transport of salt and heat. We neglect their impact on fluid density by
using a constant density model ρ = ρ0. The system is not coupled: mass and heat transport
depend on fluid flow but not vice versa. Second, fluid density effects are taken into account.
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Figure 9: Isolines of calculated salt concentration C = [0.1, . . . , 0.9] in the Saltdome benchmark
domain after 1 000 years simulation time for (a) the constant density model ρ0 and
(b) for the concentration and temperature dependent density model ρ(C, T ). The
arrows mark the flow directions, the color of the arrows indicate the flow velocity.

Differences in salt concentration and temperature affect the fluid density via a linear density
model ρ = ρ(C, T ), as described in Eq. (1.10). As a consequence, the fluid flow equation
depends on the salt mass and heat transport resulting in a non-linear coupling of equations.

2.5.2. Results

Simulation results of the salt concentration distribution for the constant fluid density model ρ =
ρ0 are given in Figure 9a. A uniform regional groundwater flow regime develops from left to
right due to the imposed pressure gradient. Mass and heat are transported conservatively with
the groundwater according to the flow pattern. High concentrated solute (up to C = 0.4) rises
to the surface on the top right edge. We observe no salt at the left side of the salt dome area.
The temperature pattern is similar, as it can be seen in Figure 10a. A stable temperature
stratification is suppressed by inflowing cold water at the left side of the domain, whereas
warmer water (up to T = 24 ◦C) from the bottom region is transported to the surface in the
discharge area at the right side.

Figure 9b shows the simulated salt concentration distribution for the non-constant fluid density
model ρ = ρ(C, T ). In contrast to the results of the constant density model (Figure 9a), salt
can be observed in at the left side of the salt dome. The entire bottom region of the domain
is filled with highly concentrated brine. Though the concentration of brine which reaches the
surface at the right edge is less than C = 0.2.
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Figure 10: Calculated isolines of temperature T = [9, 12, . . . , 33] ◦C in the Saltdome benchmark
domain after 1 000 years simulation time for (a) the constant density model ρ0 and
(b) for the concentration and temperature dependent density model ρ(C, T ). The
arrows mark the flow directions, the color of the arrows indicate the flow velocity.

The regional groundwater flow is mainly present in the shallow basin region, whereas in deep
basin regions the impact of the pressure gradient is significantly reduced. Flow occurs in
vertical direction, visible at the flow field arrows. The temperature distribution resembles the
salt distribution. The reduced impact of advective flow results in a smoother temperature
stratification, as visible in Figure 10b.

2.5.3. Discussion

A comparison of the simulation results for the different density models reveals that the evolving
salt concentration and temperature patterns differ significantly from each other. The salt
concentration is higher in the lower basin region for the fully coupled simulation with ρ =
ρ(C, T ), but less highly concentrated saline groundwater is transported to the surface in contrast
to the uncoupled simulation with ρ = ρ0.

The total amount of dissolved salt is higher for the concentration dependent density model, see
Table 6. To emphasize on that the horizontal distribution of salt concentration at z = −200m
depth C(x, z = −200m) for constant and non-constant density model is visualized in Figure 11.
It can be clearly seen that the slope of the salt plume is steeper for the constant density model,
indicating a much stronger impact of advective flow in deep aquifer regions.

In contrast to the advection dominated transport processes in the constant density simulations,
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Figure 11: Salt concentration after 1 000 years at z = −200m depth for the constant density
model ρ0 (solid line) and the non-constant density model ρ(C, T ) (crosses).

ρ0 ρ(C, T ) ρ(C) ρ(T )
C̄ 0.097 0.229 0.224 0.086

Table 6: Mean concentration C̄ for different density models, as defined in Eq. (1.12).

the flow regime for salt and temperature dependent density is of mixed convection [Nield and
Bejan, 1999]. The main groundwater flow is driven by a pressure gradient, but density effects
can give rise to free convection at the bottom of the aquifer. This is supported by the high
Rayleigh number of solute RaS ≈ 9 600, calculated according to Eq. (1.11). The horizontal
density differences provoke the formation of eddies, resulting in an increased velocity in vertical
direction. Higher velocities in combination with dispersion lead to a stronger spread of salt
and thus the effect of recirculation provokes stronger upconing. An increased density inhibits
the upward transport of highly concentrated brine into shallow region by the groundwater
flow. The evolving flow pattern represents a balance among buoyancy effects, advection and
dispersion.

Several studies [Herbert et al., 1988; Oldenburg and Pruess, 1995; Konikow et al., 1997; Kolditz
et al., 1998; Diersch and Kolditz , 1998; Younes et al., 1999] investigated the effects of boundary
and initial conditions, spatial discretization, dispersion and diffusion coefficients as well as
other parameters for the Saltdome benchmark with concentration dependent fluid density.
Of particular interest is the setting of diffusion and dispersion coefficients. Coarse numerical
meshes require a certain numerical and/or physical diffusion or sufficiently large dispersion to
prevent numerical errors and guarantees convergence. Large values of diffusion or dispersion
results in stronger upconing of salt. The dependency of the amount of dissolved salt on the
refinement of the mesh is due to the synergetic feedback effect of dispersive transport. It is
more pronounced for coarser meshes since the numerically calculated advective flux depends on
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∆C [%] ρ0 ρ(C, T ) ρ(C) ρ(C)
ρ0 0 15.1 15.7 1.1
ρ(C, T ) 15.1 0 0.6 15.2
ρ(C) 15.7 0.6 0 15.7
ρ(T ) 1.1 15.2 15.7 0

Table 7: Relative concentration difference ∆C [%] between density models, as defined in
Eq. (1.13).

∆T [%] ρ0 ρ(C, T ) ρ(C) ρ(T )
ρ0 0 18.8 19.5 1.9
ρ(C, T ) 18.8 0 0.7 20.1
ρ(C) 19.5 0.7 0 20.8
ρ(T ) 1.9 20.1 20.8 0

Table 8: Relative temperature difference ∆T [%] between density models, as defined in
Eq. (1.13).

the scale of discretization [Konikow et al., 1997]. Refined meshes allow for more realistic, lower
values of diffusion and dispersion resulting in less salt spreading as shown by Younes et al.
[1999]. In this line the discretization of the constant salt boundary condition at the bottom is
of importance, since it regulates the amount of brine entering from the bottom source region.
This in turn is responsible for the development of a gravity-driven clockwise circulation against
the overall counterclockwise flow imposed by the pressure boundary conditions [Oldenburg and
Pruess, 1995; Konikow et al., 1997; Kolditz et al., 1998]. The more brine is dissolved, the
stronger is the recirculation effect.

The impact of the temperature process on the evolving flow pattern is small. Simulation results
for purely temperature dependent density ρ = ρ(T ) (not visualized) and constant density ρ = ρ0

are very similar. The same is valid for simulation results for the variable density model without
and with temperature ρ = ρ(C) (not visualized) and ρ = ρ(C, T ), respectively. These findings
are underlined by the similar relative mean salt concentration and mean temperature, listed
in Table 6 and the small relative difference in salt concentration and temperature distribution,
listed in Tables 7 and 8. These findings are supported by the relatively low thermal Rayleigh
number of RaT ≈ 170. It is above the critical value of Rac = 4π, which marks the onset
of convection. However, advective flow suppresses the development of convection cells and
thus the upward movement of fluid due to smaller density. This is in line with the findings of
Diersch and Kolditz [1998]. Thus, temperature differences present in this setting are too small
to significantly impact on the flow pattern.

More recently, Holzbecher et al. [2010] investigated the sensitivity of double diffusive convection
above a salt dome, in a setting comparable with the Saltdome benchmark. Holzbecher et al.
[2010] confirmed that the formation of eddies is an effect of salinity differences. The smaller
the buoyancy effect, the less pronounced is the upconing of salt. Moreover a stronger potential
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flow reduces the tendency of eddy formation. Simulations accounting for temperature effects on
fluid density underlined the fact that for gradients of 25 ◦C/km, typically found in sedimentary
basins in Germany, the effect of temperature on the evolving flow and salt pattern is marginal.
Furthermore, Holzbecher et al. [2010] re-evaluated parameters aiming to use characteristic val-
ues most likely to be found in a real aquifer, confirming most values used in the Saltdome
benchmark.

Finally, we can state that the results for the Saltdome benchmark calculated with Open-
GeoSys are in line with previous findings of Herbert et al. [1988]; Kolditz et al. [1998]; Diersch
and Kolditz [1998]. Although the setting is highly idealized, the Saltdome benchmark is of
general interest for studying strongly coupled groundwater flow and solute transport due to
highly concentrated brine. The results show that flow patterns look significantly different when
taking into account density effects. Even though the effects of mixed convection are different
from a purely advective regime, the results point toward the fact the saline groundwater can
be transported to shallow aquifer regions by an interplay of regional groundwater flow and
dispersive flux in deep aquifer regions.
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Part II.

Impact of Heterogeneity and Density
Dependent Flow on Regional Scale
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3. Mechanisms of Salt Transport in the Thuringian Basin

3.1. Introduction

Saline groundwater, which comes close to or reaches the surface, is a phenomenon that can be
observed in many places in the Thuringian Basin [Seidel, 2003]. However, it is not obvious why
denser brine overlays lighter fresh water in this region. The hydrogeological processes, which
cause the rising of saltwater plumes from deeper geological layers to the surface, are not yet
fully understood. The aim of this numerical study is to investigate the mechanism of brine
transport within the aquifers of shallow sedimentary basins in general, and of the Thuringian
Basin in particular.

Numerous mechanism can be responsible for fluid migration within sedimentary basins like
gradients in hydraulic head driven by topography and fluid density variations, but also tectonic
loading, seismogenic pumping and the production of diagenetic fluids [Person et al., 1996]. The
relative importance and the degree of interaction of these driving forces on fluid flow varies,
depending on the local hydraulic and tectonic conditions (e.g. permeability, porosity and
geological structure). The role of specific driving mechanisms on fluid flow within different
tectonic environments is examined in several studies, e.g. Magri et al. [2005, 2008] and Lampe
and Person [2002].

The understanding of basin-scale flow and transport phenomena is important for geothermal
applications, hydrocarbon migration and in particular for assessing long-term behavior of pollu-
tants. Results from numerical simulations provide essential information about active processes
in the subsurface on the basis of physical principles. Mathematical models complement field
or laboratory-based investigations because they represent geologic processes that occur at very
slow rates and over large length scales. Furthermore they take into account the simultaneity
of flow, heat and mass transport and can consider coupling effects [Nield and Bejan, 1999;
Simmons et al., 2001; Diersch and Kolditz, 2002].

Regional groundwater flow develops due to hydrostatic pressure gradients caused by differences
in topography. Permeability is the property of porous media, which mainly determines the flow
velocities and thus the groundwater flow pattern by Darcy’s law. However, the distribution
of permeabilities is subject to a high degree of uncertainty. On the one hand, the amount
of available measured data is very low. On the other hand, permeability is heterogeneously
distributed in space. Variations over orders of magnitude are common [Aehnelt et al., 2011]. An
additional factor of uncertainty are the permeabilities in fault zones. These regions often show
very distinct hydraulic behavior compared to undisturbed basin compartments: sometimes they
act as conduit, other times as barrier to groundwater flow [Lampe and Person, 2002; Bense
and Person, 2006].

Due to the strong heterogeneity of permeability values, estimates of mean permeability on basin
scale can hardly be representative for the entire area of interest. Generally, averages can only
be given within ranges. Thus, large scale groundwater flow simulations using one set of homo-
geneous permeabilities for all sedimentary layers might not be appropriate to describe the fluid
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Figure 12: Geological surface map of Thuringia with focus on the Thuringian Basin (modified
according to Thüringer Landesamt für Umwelt und Geologie (TLUG) [2002]). The
bold lines indicate locations of cross sections, where A-A’ marks the location of the
southwest-northeast cross section used for numerical modeling.

dynamics satisfactorily. Furthermore, averaged permeability values for large sedimentary units
do not take into account the effects of local heterogeneity on the flow pattern. In combination
with density dependent flow, caused by salt concentration and/or temperature gradients, they
can play an import role. Several studies like Simmons et al. [2001] point towards the fact
that heterogeneity and disturbances in the geological layering can have quite diverse impacts
on the onset and development of convection cells. Local differences in the permeability can
cause the onset of convection. Contrariwise, heterogeneity can enhance mixing and thus lead
to the breakdown of convection. Classical measures like the Rayleigh number are probably not
appropriate to predict the onset of convection in heterogeneous porous media.

The importance of temperature as source for density instabilities that can create free convection
in deep permeable sedimentary rocks is well known, e.g. Elder [1967a]; Diersch and Kolditz
[1998]; Nield and Bejan [1999]. Magri et al. [2005, 2008] showed for the North East Ger-
man Basin that salinization is probably caused by the interaction of hydrostatic and thermal
forces. The simulation results point out that the interaction between temperature induced deep
thermohaline convection and topography driven flow in shallow aquifers can transport saline
groundwater over large distances into near-surface regions. More recent studies by Kaiser
et al. [2011] suggest that convection, which is triggered by temperature dependent fluid density
variations, affects the flow pattern of the North East German Basin only locally.



3.2. Hydrogeological Characterization of the Study Area 55

From Rayleigh theory it is known that the development of convection requires highly permeable
sedimentary units with large vertical expansion and large differences in temperature [Nield and
Bejan, 1999]. Comparing the flat and shallow geological setting of the Thuringian basin with
the much deeper and strongly structured North East German Basin, it cannot be expected
that thermal convection is the major driving force within the Thuringian basin. It is rather
assumed that regional groundwater flow interacting with the fault structure is the major force
driving deep saline water to shallow aquifers.

To give numerical proof of the hypothesized fluid dynamics of the Thuringian basin, we per-
formed transient coupled simulations of hydraulic, thermal and mass transport processes on a
selected profile. The aim of the numerical study is to analyze the major mechanisms influencing
the flow pattern: topography driven flow in a geological setting with faults, impact of hydraulic
properties and heterogeneity, as well as fluid density differences caused by temperature and salt
concentration gradients.

3.2. Hydrogeological Characterization of the Study Area

3.2.1. Geological Overview

The geologically closed unit of the Thuringian Basin is located in the center of Germany. It
stretches in an oval shape approximately 150 km from northwest to southeast and 80 km from
northeast to southwest, see Figure 12. In the north, it borders on the Harz and Kyffhäuser
mountains, in the west on the Eichsfeld Swell, and in the south on the Thuringian Forest
mountains as well as Thuringian shale mountains [Hoppe, 1959; Jordan and Weder , 1995;
Seidel, 2003; Kober , 2008].

Over much of its history the Thuringian Basin was part of the North German Basin. It became
separated in the Late Cretaceous by the nearly 100 km long Finne fault zone, which symbolizes
the morphological and geological northeast border of the Thuringian Basin [Malz and Kley,
2012].

The recent tectonic structure of the Thuringian Basin developed mainly during the Late Cre-
taceous and the Cenozoic. The sedimentary succession of the Thuringian Basin started with
the Upper Permian Zechstein. Polyphase deformations of the basements and of the sedimen-
tary cover have created the complex tectonics of the Thuringian Basin from Triassic and latest
Cretaceous time. Several northwest-southeast striking faults subdivide the synclinar structure
[Seidel, 2003; Malz and Kley, 2012]. Their influence on the groundwater flow pattern can be
significant on a local up to a regional scale. Depending on the size, location, direction and
their petrophysical characteristics, they can act as barriers or preferential pathways.

The basin is filled with Permian and Triassic sediments, while the overlying layers of Jurassic
and Cretaceous age are mainly eroded. Tertiary and Quaternary deposits are restricted to
recent river valley. The internal structure of the basin is strongly influenced by the Upper
Permian Zechstein salt deposits. In the center of the basin the Zechstein is located in 1 000m
depth, whereas the outcrops of the Zechstein deposits mark the edge of the basin [Seidel, 2003].
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sedimentary sedimentary abbre- thickness hydrogeol.
unitunit subunit viation

Trias

Keuper middle km 0− 220m

shallow
aquifer

lower ku 0− 65m
Muschelkalk upper mo 45− 75m

middle mm 45− 115m
lower mu 85− 120m

Buntsandstein upper so 100− 190m aquiclude
middle sm 140− 240m deep

aquiferlower Bernburg suB 150− 170m
Calvörde suC 170− 190m

Table 9: Diagrammatic plan of the sedimentary units used in the Thuringian Basin model with
subunits, abbreviations, and thicknesses according to Gaupp et al. [1998] and Seidel
[2003]. The rightmost column shows the hydrogeological classification which is based
on the permeabilities of the sedimentary units, given in Table 10.

3.2.2. Hydrogeological Characterization of Sedimentary Units

We reduced the hydrogeological characterization of the Thuringian Basin to the sedimentary
units overlaying the Zechstein salt. It can be assumed that the thick sequence of Zechstein
salt decouples mechanically and hydraulically the sub-salt Permian deposits from the Trias-
sic sediments [Rödiger , 2005]. A diagrammatic plan with thickness and general hydrological
characterization is given in Table 9.

The dominating basin filling sediments are the Buntsandstein (Lower Triassic) and the Muschel-
kalk (Middle Triassic), which form the two main aquifer systems. Small areas of Keuper de-
posits operate as permeable shallow aquifers, mainly in the center of the Thuringian Basin.
They have minor influence on the flow pattern due to their spatially limited occurrence.
Younger remained deposits - from Tertiary and Quaternary - are not relevant for the large
scale hydrogeology of the basin. To allow a differentiation of the lithology dependent hydraulic
and thermal properties the Triassic units Buntsandstein and Muschelkalk were further divided
into subunits (Table 9).

Buntsandstein

The Buntsandstein sediments in the Thuringian Basin have an overall thickness of 500− 720m
[Puff et al., 2003]. They are structured into Upper, Middle and Lower Buntsandstein (so, sm
and su). Due to significant differences in the hydraulic properties, the Lower Buntsandstein is
further divided into Bernburg formation (suB) and Calvörde formation (suC), see Table 9.

The Röt-formation (Upper Buntsandstein, so) contains large contents of clay, forming the
regional most important aquiclude of the Thuringian Basin. The Röt separates the aquifer
of Lower and Middle Buntsandstein from the Muschelkalk aquifer system [Jordan and Weder ,
1995; Hecht, 2003; Rödiger , 2005], see Table 9. Only few values for measurements of permeabil-
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κ(1) [mD] κ(2) [mD] κ(3) [mD] κ(4) [mD]
km 1 000 - - -
ku 1 000 - - -
mo 50− 10 000 10− 100 - -
mm 50− 10 000 10− 10 000 - -
mu 50− 10 000 20− 200 - 2.5
so - - 10 0.025− 2.5
sm 100− 300 3− 3 000 100− 5 000 25− 2 500
suB 100− 300 3− 3 000 100− 5 000 25− 250
suC 20− 40 - 100− 5 000 2.5

Table 10: Permeability values κ for the sedimentary units from literature: (1)Jordan and Weder
[1995], (2)Hecht [2003] and Merz [1987], (3)Rödiger [2005], and (4)Aehnelt et al. [2011].
Transmissivities Tf from pumping tests in Jordan and Weder [1995]; Hecht [2003];
Merz [1987], and Rödiger [2005] are converted to permeability by κ = Tfν/(Lρg).
Permeability measurements by Aehnelt et al. [2011] from bore logs are multiplied by
the factor 25 to account for effects of fractures according to Hauthal [1967].

ities can be found in literature, see Table 10. In his hydrogeological model of the Buntsandstein
aquifer system in the Eastern Part of the Thuringian Basin, Rödiger [2005] used a conductivity
of Kf (so)= 1e-7m/s. Bore-log permeability measurements [Aehnelt et al., 2011] point towards
much smaller values of κ = 0.001− 0.1mD, which corresponds to Kf = 1e-11−1e-9m/s.

The facies of Lower and Middle Buntsandstein fluctuate between fluvial sandstones and la-
custrine deposits [Gaupp et al., 1998]. The units of the Middle Buntsandstein (sm) and the
upper part of the Lower Buntsandstein, the Bernburg formation (suB), can be assumed as one
hydraulic unit [Jordan and Weder , 1995; Rödiger , 2005]. They form an aquifer with double-
porosity characteristic [Jordan and Weder , 1995]. The effects of the flow in the pore matrix
is overlaid by the much faster reacting groundwater flow in the fissures and fractures. Com-
parisons of permeability measurements and pumping test results point toward a 20− 30 times
higher velocity in the fissures than in the pore matrix [Hauthal, 1967].

The fissured character of the sm/suB-aquifer is recognizable in large variations of permeability.
Hecht [2003] stated a spread of permeabilities over four orders of magnitudes, depending on
their position, from undisturbed rock formation up to strongly shattered sediments in crossings
of fault zones. Recent investigations on Buntsandstein aquifer characteristics by Aehnelt et al.
[2011] support these findings. In general, the range of permeability is very large, whereas values
tend to decrease with depth. Typical values found in literature are listed in Table 10.

The Calvörde formation (suC) of the Lower Buntsandstein has a mixed hydraulic character.
The upper part, connecting to the Bernburg formation (suB) is acting as an aquiclude. Lower
units, which connect to the Zechstein, consist of permeable deposits with aquifer characteristics
[Jordan and Weder , 1995; Rödiger , 2005]. Thus, different mean values for the permeability
emerge in literature, see Table 10. Permeability values of the suC are assumed to be smaller
than those of the sm/suB-aquifer [Aehnelt et al., 2011; Jordan and Weder , 1995].
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Muschelkalk

The Muschelkalk is marked by a prevailing marine environment and is subdivided into three
units which reach on average an overall thickness of about 250m [Gaupp et al., 1998]. The
Lower Muschelkalk (mu) consists mainly of massive limestone with varying composition. The
Middle Muschelkalk (mm) deposits are evaporites, such as dolomit marls, gypsum and even
rock salt and dolomit limestone. The Upper Muschelkalk (mo) is characterized by limestones
and marl [Gaupp et al., 1998]. The thicknesses of the subunits are listed in Table 9.

The Muschelkalk forms a connected aquifer system, although it is marked by an alternating
layering of aquifers and aquicludes [Hecht, 2003; Merz, 1987]. A closed thick aquiclude layer,
like the Röt formation, is not present above or within the Muschelkalk. Since the Muschelkalk
is mainly formed by limestone sediments, it is a Karst aquifer were flow takes place in faults and
fissures. Depending on the degree of subrosion, large variations in permeability can be observed,
which result in a strong heterogeneity of the aquifer [Merz, 1987; Hecht, 2003; Rödiger , 2005].
Higher permeabilities are often present where the rock formation shows a looser structure
due to tectonic faults. Especially the low permeable limestone from the Muschelkalk can have
increased permeable character in fault zones and change its character from aquiclude to aquifer
[Jordan and Weder , 1995]. Mean permeabilities from literature are given in Table 10.

3.2.3. Hydrodynamic

The hydrodynamic of the Thuringian Basin is dominated by the two large aquifer systems
of the Muschelkalk and Buntsandstein. The aquiclude Röt separates both hydraulic units,
allowing only little communication, except in fault zones or graben structures [Rödiger , 2005].

For the Buntsandstein areas the groundwater catchments coincide with the surface water catch-
ments, giving that the groundwater is flowing mainly according to the morphological conditions
[Jordan and Weder , 1995]. This can be assumed for the Muschelkalk aquifer system as well.
The central part of the Thuringian Basin belongs to the Unstrut-catchment, whereas the east-
ern part belongs to the Saale-catchment.

Areas of groundwater recharge are at the southwest, west and southeast margins of the basin.
The main discharge takes place at the northeast margin, which coincides with the outflow
direction of the rivers Unstrut and Saale. The study of Meincke [1967] points towards higher
flow velocities at the recharge areas than in the basin center and in the discharge areas. Even
a stagnating flow regime can be assumed for parts of the basin center. The different flow
velocities indicate the existence of local spots of discharge.

The general direction of groundwater flow is from southwest to northeast [Meincke, 1967]. The
main fault zones striking from northwest to southeast can cause significant modifications of the
flow pattern. A fault can act as barrier or preferential pathway depending on size, location,
direction, and petrophysical characteristics. Thus, faults can connect or disconnect permeable
layers and accordingly they can operate as areas of recharge or discharge [Meincke, 1967; Jordan
and Weder , 1995; Hecht, 2003].
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Figure 13: Geological structure of the southwest-northeast cross section with fault zones and
sedimentary units: km - Middle Keuper, ku - Lower Keuper, mo - Upper Muschel-
kalk, mm - Middle Muschelkalk, mu - Lower Muschelkalk, so - Upper Buntsandstein,
sm - Middle Buntsandstein, suB - Lower Buntsandstein (Bernburg formation), suC
- Lower Buntsandstein (Calvörde formation) . Superelevation factor of 10.

Salinization of ground water due to subrosion of Zechstein salt was observed especially in the
Saale-Valley [Hecht, 2003; Rödiger , 2005]. The effect of salinization is particularly strong in
fault zones.

3.2.4. Temperature Distribution

Hurtig and Meincke [1969] investigated the temperature distribution, thermal conductivities
and heat flow in the Thuringian Basin. They showed that only small thermal anomalies are
present in the Thuringian Basin. Unusual or disturbing heat sources are most likely not present.
Observed heat flow anomalies are due to the relief and the rock composition of the basement.

According to Meincke et al. [1967], inflowing meteoric fresh water influences the temperature
distribution up to 400m depth. Especially at the basin margins a cooling effect can be observed.
The thermal gradient amounts in average to 30 ◦C/km. Higher gradients up to 33 ◦C/km-
36 ◦C/km were observed in elevated regions, like the Eichsfeld Swell. In flat areas like the
basin center the gradients decrease to values of 21 ◦C/km-27 ◦C/km [Meincke et al., 1967].
The relatively low thermal gradients correspond to the fact that thermal water springs are not
known in the Thuringian Basin [Hecht, 2003].

3.3. Numerical Groundwater Flow Model

3.3.1. Cross Section Model

We performed simulations on a southwest-northwest cross section of approximately 70 km
length and maximal 1 000m depth, shown in Figure 13. The profile ranges from the northern
rim of the Thuringian Forest in the southeast, cutting through the region of Erfurt in the basin
center, to the Finne fault in the northeast. The location of the cross section in the Thuringian
Basin is depicted in Figure 12 as line A-A’.
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Figure 14: Detail of the numerical mesh in the environment of the Eichenberg-Gotha-Saalfeld
fault zone. Sedimentary units are separated by bold black lines. Without
superelevation.

We chose the transect perpendicular to the northwest-southeast-striking faults. The choice is
based on the one hand, on the general flow direction from southwest to northeast. On the
other hand, we aim to investigate the effects faults have on the flow pattern, by incorporating
the main fault structures, as given in Figure 13.

The cross section model is based on the basin stratigraphy as described in Jordan and Weder
[1995]; Gaupp et al. [1998]; Seidel [2003]; Rödiger [2005]. It contains the Triassic sediments of
the Buntsandstein, Muschelkalk and Keuper as discussed in detail in section 3.2. The Zechstein
deposits form a natural boundary in depth for the study area due to their impermeability to
fluid flow. We did not incorporate the Zechstein layer into the cross section model. However,
at the bottom of the basin, where the Triassic sediments are in contact with the Zechstein,
dissolved salt can be transported by groundwater flow.

We developed a work flow to gain a spatially discretized mesh, which is appropriate for numer-
ical transport simulations from geostratigraphical input data. We generated a balanced cross-
sections model using the software 2D-Move on the basis of geological surface maps GK 1 : 25 000
of Thuringia with stratigraphical information from a digital underground model of Kober [2008].
We incorporated faults structures according to Malz and Kley [2012]. For generating the finite
element mesh, we transformed and loaded the profile into the software Gocad. Subsequently
we used Gocad and the interfaces described in Zehner [2011] to generate the numerical grid.
A part of the numerical mesh in the environment of the Eichenberg-Gotha-Saalfeld fault zone
is visualized in Figure 14. The unstructured finite element mesh consists of 121 983 triangular
elements. The average side length of a triangle is 35−40m. The maximum side length amounts
to 50m. Locally refined triangles can have a side length of about 5m. The mesh satisfies the
regularity conditions and the resolution allows to model variations in fluid density. We assume
mesh convergence due to the fact that additional simulations, which we performed on finer
meshes give the same results for all simulation scenarios.

We incorporated discontinuities in the layering, which result from major fault structures, to
the mesh. This results in a natural break up of the horizontal stratification into compartments
of flat, undisturbed basin fill, interrupted by faults zones of regional importance (Figure 13).
Partly the fault zones have a horizontal extension (Eichenberg-Gotha-Saalfeld fault zone, Er-
furter fault zone and Finne fault zones), which allows for a separate assignment of parameters.
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3.3.2. Processes and Numerical Framework

We carried out all simulations using the software OpenGeoSys. This finite element based
simulator provides algorithms for solving coupled fluid flow, mass and heat transport processes
in porous media. The software was successfully tested against a wide range of benchmarks
for fluid, heat and mass transport by Kolditz et al. [2012a], and for density dependent flow in
particular in section 2.4 and 2.5.

Three processes have been established on the cross section model: a hydraulic process calculates
the groundwater flow; a mass transport process gives the distribution of salt; and a heat
transport process calculates the temperature distribution. Several partial differential equations
describe these processes of flow and transport in saturated porous media: Darcy’s law given in
Eq. (1.2), the continuity equation of flow (1.1), the equation of solute mass conservation (1.5)
as well as the energy balance equation of the fluid and the porous media (1.8). The resulting
system is fully implemented in OpenGeoSys.

We conducted several simulation scenarios to investigate the impact of two main transport
mechanisms. First, we performed simulations with different mean hydraulic permeability dis-
tributions. The parametrization of these scenarios is given in section 3.3.4. Thereby we used
a constant density model of conservative mass and heat transport. Second, we investigated
the role of density dependent flow. This required a coupling of all equations through a mass
and temperature dependent fluid density model. In OpenGeoSys a linear relation for mass and
temperature dependent fluid density is implemented, according to Eq. (1.10).

3.3.3. Boundary and Initial Conditions

We set the fluid pressure at the surface boundary to a constant value of zero to establish a
regional groundwater flow. This corresponds to a hydraulic head following the local topo-
graphical elevation. It induces a steady regional flow with recharge areas in the highlands and
discharge areas in the lowlands.

We implemented a mass transport in all simulations by fixing a constant salt concentration at
the bottom of the basin model, where the Buntsandstein is in contact with the Zechstein salt.
We fixed a zero mass concentration at the surface, representing the recharge with meteoric
fresh water. Although this condition does not allow saline water to enter the surface, it is
sufficient to localize zones where deep groundwater rises to near-surface levels.

We applied a constant surface temperature of 8 ◦C for the heat transport process. It corre-
sponds to the current average annual temperature for the area under consideration. We fixed
the temperature values at the lower boundaries corresponding to a linear vertical gradient
of 30 ◦C/km [Meincke et al., 1967]. Thus, the temperature at the bottom of the basin varies
between 30 ◦C and 38.4 ◦C, depending on the depth and distance to the surface.

We defined the lateral boundaries impermeable for fluid, heat and mass transport. The initial
conditions are given by a zero pressure and pure fresh water distribution in the whole simulation
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symbol [unit] quantity value
C − normalized salt concentration [0, 1]
T [◦C] temperature [8, 38.4]
βT K−1 thermal expansion coefficient −0.0003
βC − solute expansion coefficient 0.2
Dm [m2 s−1] molecular diffusion coefficient 1e-8

αl, αt [m] longitudinal and transversal dispersion 20; 2
ρ0 [kgm−3] density of fresh water 1 000
ν [kg m−1 s−1] viscosity 0.001
λw [kgm2 s−3 K−1] thermal conductivity of water 0.6
cw [m2 s−2 K−1] thermal capacity of water 4 200
cs [m2 s−2 K−1] thermal capacity of solid rock 1 000

Table 11: Simulation parameters for the entire model domain.

domain. The initial temperature was 8◦C. We performed all simulations with a computing time
of 200 000 years to assure that the system reaches steady state.

3.3.4. Parametrization

Table 11 contains all model parameters for fluid, mass and heat transport processes, which
are valid for the entire cross section model. Physical properties, which can be distinguished
for the stratigraphical units, are listed in Table 12. We grouped the nine sedimentary layers
to three main hydraulic units: a shallow aquifer consisting of Keuper and Muschelkalk (km/
ku/mo/mm/mu), the aquiclude unit Röt (so), and the deep aquifer formed by sediments from
Middle and Lower Buntsandstein (sm/suB/suC), see also Table 9. Reasonable ranges and
representative mean values of permeability are given in Table 12 for every sedimentary layer,
based on the findings from literature as discussed in section 3.2 (Table 10). We considered each
layer homogeneous and isotropic in density, thermal properties and porosity.

We applied three reasonable mean permeabilities for every sedimentary layer: a lower (l), a
reference (r) and a higher (h) permeability, given in Table 12. Having three permeability dis-
tributions for every of the three hydraulic units (shallow aquifer, aquiclude and deep aquifer)
results in 27 possible simulation scenarios with different mean permeabilities. Additionally,
we performed simulations with varied permeability values within the fault zones (Eichenberg-
Gotha-Saalfeld fault zone, Erfurter fault zone and Finne fault zone). While we kept the per-
meabilities in the undisturbed basin units constant at the reference value κ(r), we varied the
permeability values within the faults over several orders of magnitude by multiplying with the
factors 10, 100, 0.1 and 0.01. This is in line with findings of permeability values in fault zone
in the Thuringian basin [Hecht, 2003; Aehnelt et al., 2011].

We generated ensembles of heterogeneous permeability distributions κ(x) according to a log
normal distribution κ(x) ∝ LN (µ, σ2), as described in section 1.3.2. The statistical distri-
bution is characterized by the geometric mean κ = expµ and variance σ2. The investigation
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layer L ρs λs φ range of κ κ(l) κ(r) κ(h)
km 0− 45 2 600 2.0 0.30 100− 1 000 100 100 1 000
ku 0− 55 2 600 2.0 0.25 100− 1 000 100 100 1 000
mo 80 2 800 2.0 0.20 5− 200 5 20 200
mm 50 2 800 2.0 0.20 20− 1 000 20 100 1 000
mu 100 2 800 2.0 0.20 5− 200 5 20 200
so 100 2 400 2.7 0.05 0.02− 2 0.02 0.2 2
sm 240 2 400 2.1 0.15 30− 3 000 30 300 3 000
suB 160 2 400 2.1 0.13 30− 300 30 100 300
suC 185 2 400 1.7 0.08 2− 100 2 20 100

Table 12: Simulation parameters for sedimentary layers: mean thickness L [m], rock density ρs
[kgm−3], thermal conductivity λs [kgm2 s−3 K−1], porosity φ [-], and permeability κ
[mD] (=[1e-15m2]). The ranges of κ correspond to results found in the literature (Ta-
ble 10.) κ(l), κ(r), and κ(h) are the three mean permeability values for every sedi-
mentary layer, with abbreviations (l) for low, (r) for reference, and (h) for high.

included three degrees of heterogeneity: mildly heterogeneous media, expressed by a variances
of σ2 = 0.2, medium heterogeneous media with σ2 = 1 and strongly heterogeneous media
with σ2 = 4. We used two different spatial correlation structure models. First, we applied a
Gaussian covariance model, according to Eq. (1.18), characterized by a horizontal and a vertical
correlation length `h and `v. We generated heterogeneous fields with correlation lengths over
four orders of magnitude: from local scale `h = 20m (`v = 2m) corresponding to the size of
a grid cell, over regional scale `h = 200m (`v = 20m) and `h = 2 000m (`v = 50m) up to
basin scale `h = 20 000m (`v = 50m) which corresponds to the maximal size of an undisturbed
basin compartment. Second, we used the truncated power law covariance model, according
to Eq. (1.19). In this model there is no finite correlation length, but correlation exists at any
scale. We used an upper cut-off value of `max

h = 25 000m (`max
v = 50m) which is above the

maximal size of an undisturbed basin compartment in the Thuringian Basin. Every ensemble
consists of 200 realizations with identical choice of statistical parameters.

We performed simulations to investigate density dependent flow, where the fluid density can
change due to dissolved salt or temperature variations. We applied a linear density model,
according to Eq. (1.10): ρ = ρ0(1 + βC∆C + βT∆T ). We set the solute expansion coefficient
to βC = 0.2, which refers to a maximal saturated brine density of ρC = 1 200 kg/m3 for a
normalized salt concentration C ∈ [0, 1]. The thermal expansion coefficient is βT = −0.0003
corresponding to minimal density of ρT = 991 kg/m3 for the maximal temperature of 38 ◦C
and a fresh water density of ρ0 = 1 000 kg/m3 for 8 ◦C (Table 11).

We made some simplifying assumptions. We assumed the brine to be pure NaCl solution
and neglected viscosity variations due to temperature and salt concentration. Furthermore,
the simulation results cannot reproduce the real groundwater flow, which is naturally three
dimensional. Nevertheless, the two dimensional approach allowed to investigate brine migration
in shallow sedimentary basins and to gain insight into the role of geological fault structures,
hydraulic parameters and fluid density variation on the flow, salt and temperature pattern.
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3.4. Discussion of Simulation Results

In the following we discuss, compare, and interpret the results for velocity distribution, salt
concentration, and temperature pattern of different simulation scenarios.The results of the
reference simulation serve as basis for comparison with all other simulation scenarios. We then
present the results for changes in the mean permeability of different sedimentary layers and in
the fault zones. It is followed by an interpretation of the simulation results with heterogeneous
permeability distributions and an analysis of the impact of the statistical quantities. The final
step involves the discussion of simulation results for density dependent flow.

Besides visual comparison, we use quantitative characteristics to support interpretation results.
For every simulation we computed the mean of the salt concentration C̄ ∈ [0, 1], as given in
Eq. (1.12) which gives a relative value of the total amount of dissolved salt in in the entire
domain. For every simulation scenario, we calculated the relative concentration difference ∆C
[%] and the relative temperature difference ∆T [%] to the reference simulation, as given in
Eq. (1.13). Solute and thermal Rayleigh numbers RaS and RaT are calculated according to
Eq. (1.11) for density dependent flow.

3.4.1. Reference Simulation

The initial point for all comparisons of different simulation scenarios is the reference simulation.
Boundary and initial conditions as well as domain parameters are defined in section 3.3.3 and
section 3.3.4. We assumed the permeability to be homogeneously distributed with mean values
of all layers according to the reference values κ(r), defined in Table 12. The transport of salt
and heat is conservative, meaning that a constant fluid density model is used, where salt and
temperature do not impact on the flow pattern.

Simulation results of velocity, normalized salt concentration distribution and the temperature
distribution after 100 000 years are visualized in Figure 15. We assume that these results rep-
resent the steady state solution because for all processes the changes to subsequent simulation
time steps are less than 0.05%. The time needed to establish the regional flow pattern from
the initial conditions can be neglected compared to the time needed to reach a steady state
in temperature and salt concentration. The temperature distribution reaches steady state af-
ter 30 000 years, whereas the salt requires approximately 100 000 years to reach a stadium of
stable salt stratification. The faster development of thermal steady state is due to the higher
diffusivity of the heat transport process.

The topography determines the flow pattern (Figure 15a), according to the choice of the con-
stant hydraulic head flow boundary condition at the basin surface. Flow takes place from
elevated regions to lower basin parts. The main area of recharge is the southwest basin margin
at the Thuringian forest border fault. Discharge takes place locally, especially in flat basin re-
gions and near the fault zones. We observe high velocities in the shallow Keuper layer (km/ku)
and the Middle Buntsandstein (sm) aquifer due to the high permeabilities. We find very low
velocity in the Röt aquiclude (so) and in the Lower Buntsandstein layers (suB/suC). Especially
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Figure 15: Simulation results for reference simulation: (a) Velocity distribution with arrows
marking the flow direction, (b) normalized salt concentration with isolines at C =
[0.1, . . . , 0.9] and (c) Temperature distribution with isolines at distance of 2◦C. Sed-
imentary units are separated by bold black lines. Superelevation factor of 10.

in the flat basin center flow is nearly stagnant, which corresponds to the findings of Meincke
[1967]. The fault geometry has distinct effects on the flow pattern. Where the Eichenberg-
Gotha-Saalfelder fault zone and the Erfurter fault zone serve as transit areas for flow, the
Sömmerdaer fault has a barrier effect on the flow causing the groundwater to rise.

The salt concentration pattern (Figure 15b) corresponds to the distribution of velocities. The
choice of permeabilities allow the development of large scale groundwater advection cell. They
reach the deep aquifer units of the Buntsandstein and transport saline groundwater to near-
surface regions. Steep plumes of salt water develop in the two central undisturbed basin
compartments and one in the vicinity of the Sömmerdaer fault. The mean concentration in the
entire domain is C̄(k/m/s) = 0.159, where the amount of salt in the shallow aquifer C̄(k/m)
= 0.016 is very low compared to the amount in the deep aquifer C̄(sm/su) = 0.224 (Table 13).
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κ(k/m) κ(so) κ(sm/su) C̄(k/m/s) C̄(k/m) C̄(so) C̄(sm/su) ∆C [%]
r r r 0.157 0.014 0.030 0.224 0
h r r 0.154 0.004 0.025 0.221 2.66
l r r 0.171 0.022 0.028 0.239 3.73
r h r 0.133 0.010 0.013 0.190 6.16
r l r 0.194 0.012 0.050 0.274 7.88
r r h 0.189 0.023 0.031 0.266 7.82
r r l 0.142 0.009 0.022 0.202 5.22
r h h 0.163 0.014 0.013 0.231 4.44
r h l 0.124 0.007 0.012 0.177 6.44
r l h 0.194 0.016 0.050 0.273 8.73
r l l 0.179 0.008 0.046 0.254 4.70
h r h 0.172 0.006 0.023 0.247 6.56
h r l 0.140 0.002 0.019 0.203 5.16
l r h 0.174 0.028 0.027 0.257 7.51
l r l 0.143 0.014 0.023 0.202 5.26
h h r 0.133 0.005 0.012 0.191 6.05
l h r 0.139 0.013 0.015 0.197 5.92
h l r 0.175 0.002 0.033 0.266 7.35
l l r 0.218 0.032 0.075 0.299 10.03
h h h 0.149 0.007 0.013 0.215 3.31
h h l 0.122 0.002 0.001 0.177 6.44
h l h 0.172 0.002 0.026 0.248 7.16
h l l 0.178 0.001 0.037 0.256 5.22
l h h 0.165 0.019 0.016 0.233 4.55
l h l 0.126 0.011 0.013 0.180 6.36
l l h 0.216 0.044 0.073 0.292 10.80
l l l 0.178 0.018 0.054 0.262 5.33

Table 13: Mean concentration C̄, as defined in Eq. (1.12) and relative concentration dif-
ference ∆C to the reference simulation, as defined in Eq. (1.13) for combina-
tions of homogeneous permeabilities of the three hydraulic units shallow aquifer
Keuper/Muschelkalk (k/m), aquiclude Röt (so) and deep aquifer Middle and
Lower Buntsandstein (sm/su). The first three columns denote the choice of per-
meability κ: l=low, r=reference, h=high, according to the values given in Ta-
ble 12; C̄(k/m/s) is the mean concentration in the entire domain; C̄(k/m), C̄(so),
and C̄(sm/su) are the mean concentrations in the corresponding hydraulic units.
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The distribution of temperature (Figure 15c) develops according to the thermal gradient
of 30 ◦C per 1 km depth: from 8 ◦C at the surface to maximal 38.4 ◦C at the bottom of the basin.
The stable temperature stratification, which develops by conductive heat transport trough the
solid and fluid phase, is disturbed by regional groundwater flow. Surface-near regions of lower
and higher temperatures coincide with the areas of recharge and discharge: cold meteoric fresh
water enters the system and is transported with the regional groundwater flow into deeper
aquifer units. This can be observed especially in the environment of fault zones. In discharge
areas the warmer groundwater from deeper regions is transported to the surface. This can
be observed mainly in the flat undisturbed basin units, where also salt water plumes develop.
Thus, conduction is the main transport mechanism in deep aquifer units, which is visible at the
flat isolines. Whereas advection dominates the temperature distribution in the shallow aquifer
units.

3.4.2. Scenarios of Homogeneous Permeability

The combination of the three choices of permeability κ, as listed in Table 12, for every of the
three hydraulic units results in 27 possible scenarios of mean permeability distribution. In
Table 13 we give the calculated characteristic numbers of mean concentration C̄ in the entire
domain (k/m/s) and the hydraulic units Keuper/Muschelkalk (k/m), Röt (so) and Middle
and Lower Buntsandstein (sm/su) as well as the relative difference to the reference simula-
tion ∆C for all simulations. To distinguish between the simulation scenarios, we use subscripts
symbolizing the choice of κ in the corresponding hydraulic unit; for instance C̄lrh describes
the mean concentration for the scenario with low permeability in the shallow aquifer Keu-
per/Muschelkalk κ(k/m)= l, reference permeability in the aquiclude Röt κ(so)= r and high
permeability in the deep aquifer Middle/Lower Buntsandstein κ(sm/su)= h.

The discussion and visualization of simulation results focus on the salt distribution of scenarios
where permeabilities of only one hydraulic unit were modified compared to the reference simu-
lation. For brevity, simulation results for the flow field are not visualized separately, since it can
be inferred from the salt concentration distribution. Furthermore, the temperature distribution
is not visualized and discussed, because changes to the reference temperature distribution are
small.

Variation of Permeability in the Shallow Aquifer

The simulated concentration distribution for the scenarios with increased and decreased per-
meabilities in the Keuper and Muschelkalk layers are visualized in Figure 16. The overall flow
pattern only changes little compared to the reference simulation. Number and location of salt
plumes are similar, which is emphasized by the small concentration difference to the reference
simulation of ∆Chrr = 2.66% and ∆C lrr = 3.73% (Table 13).

We observe differences in the mean concentration of the entire domain which is higher for
lower permeabilities and vice versa: C̄lrr(k/m/s) = 0.171 and C̄hrr(k/m/s) = 0.154 compared
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Figure 16: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with (a) increased and (b) decreased permeability in shallow aquifer
Keuper/Muschelkalk (k/m). Sedimentary units are separated by bold black lines.
Superelevation factor of 10.

to C̄rrr(k/m/s) = 0.159. Significant differences occur in the shallow aquifer units Keuper and
Muschelkalk (Table 13). The spreading of salt within the Muschelkalk is apparently damped
for higher permeabilities. This effect can be explained by deeper intruding fresh water due to
higher velocities. However, a change in permeability of the shallow aquifer has little impact on
the flow pattern in the aquiclude Röt or the Buntsandstein aquifer.

Variation of Permeability in the Aquiclude

Simulated concentration distribution for varied permeabilities in the aquiclude Röt (so) are
given in Figure 17. The changes compared to the reference simulation are significant, visible
in ∆Crhr = 6.16% and ∆Crlr = 7.88% (Table 13).

An increased mean permeability leads to more salt plumes with slightly changed position in
comparison to those of the reference simulation. The salt plumes are steeper and have sharper
interfaces. Furthermore, less salt is dissolved (C̄rhr(k/m/s) = 0.133, Table 13). An increased
permeability in the Röt allows a stronger communication between the shallow aquifer and the
deep aquifer. Thus, the regional groundwater flow has a stronger impact in deeper basin units,
resulting in more pronounced large scale advection cells.

The flow and salt patterns change completely when reducing the permeability of the Röt.
An impermeable Röt layer disconnects Muschelkalk and Middle/Lower Buntsandstein layers,
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Figure 17: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with (a) increased and (b) decreased permeability in aquiclude Röt (so).
Sedimentary units are separated by bold black lines. Superelevation factor of 10.

which results in a break down of large scale advection cells. In the flat basin center diffusive
and dispersive salt transport dominates due to the very low groundwater flow velocities in
this region. A strong salinization of the deep aquifer (sm/su) can be observed (Figure 17b).
Although the mean salt concentration increased to C̄rlr(k/m/s) = 0.194, the amount of salt
reaching near-surface areas is reduced.

Variation of Permeability in the Deep Aquifer

Changes in the permeabilities of the deep aquifer units have strong impact on the flow pattern,
visualized in in Figure 18. The concentration distribution for varied permeabilities in the deep
aquifer differs significantly from the results of the reference simulation (Figure 15b). This is
underlined by the high relative differences of ∆Crrh = 7.82% and ∆Crrl = 5.22% (Table 13).

For higher permeabilities κ(sm/su)= h less salt plumes develop (Figure 18a). We observe only
one large plume in the flat basin center. It shows that the occurrence of large scale groundwater
advection is reduced. The salinization is stronger in the Lower Buntsandstein layers, visible in
a higher amount of dissolve salt, C̄rrh(k/m/s) = 0.189 (Table 13).

A reduction of permeability in the Buntsandstein aquifer has contrary effects. The concentra-
tion distribution shows more and smaller salt plumes than the reference simulation (Figure 18b
compared to Figure 15b). The total amount of dissolved salt is reduced, C̄rrl(k/m/s) = 0.142,
as well as the mean concentration for all hydrological units (Table 13).
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Figure 18: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with (a) increased and (b) decreased permeability in deep aquifer Middle
and Lower Buntsandstein (sm/su). Sedimentary units are separated by bold black
lines. Superelevation factor of 10.

Variation of Permeabilities in the Faults

The impact of the permeability distribution in the fault zones is investigated by multiplying
the mean permeabilities of all sedimentary layers in the fault zones with a certain factor, while
keeping the mean permeability distribution in the undisturbed basin compartments constant.
Simulation results are visualized in Figures 19 and 20. Table 14 contains the calculated mean
concentration C̄ in the entire domain and in the sedimentary units, as well as the relative
difference to the reference simulation ∆C.

The changes in flow and salt patterns are recognizable but overall small. The number of
salt plumes and the total amount of dissolved salt is constant. This is underlined by the
small concentration differences to the reference simulation ∆C for all scenarios, which are
between 1.4% and 4% (Table 14).

We observe differences to the reference simulation locally in the shape and positions of the
salt plumes. Most significant are the changes in flow pattern for highly impermeable faults,
Figure 20b. Differences can be seen in the location of the salt plume at the Sömmerdaer fault
and of the plume in the vicinity of the Eichenberg-Gotha-Saalfeld fault zone. Furthermore, the
salt distribution in the shallow aquifer of the central salt plume is modified. These changes can
be explained by differences in the velocity of inflowing fresh water in the fault.
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Figure 19: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with increased permeability κ in fault zones: (a) 10 · κ, (b) 100 · κ.
Sedimentary units are separated by bold black lines. Superelevation factor of 10.

Figure 20: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with decreased permeability κ in fault zones: (a) 0.1 · κ, (b) 0.01 · κ.
Sedimentary units are separated by bold black lines. Superelevation factor of 10.
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κ* C̄(k/m/s) C̄(k/m) C̄(so) C̄(sm/su) ∆C [%]
1 0.159 0.016 0.030 0.224 0

10 0.158 0.016 0.033 0.222 1.43
100 0.154 0.016 0.031 0.217 1.65
0.1 0.159 0.013 0.029 0.225 1.97

0.01 0.156 0.013 0.025 0.221 4.04

Table 14: Mean concentration C̄, as defined in Eq. (1.12) and relative concentration differ-
ence ∆C to the reference simulation, as defined in Eq. (1.13) for different permeabil-
ities in fault zones: κ* denotes the factor of modified permeability in fault zones,
as defined in section 3.3.4; C̄(k/m/s) is the mean concentration in the entire do-
main, C̄(k/m), C̄(so) and C̄(sm/su) are the mean concentrations in the corresponding
hydraulic units.

σ2 `h [m] `v [m] 〈C̄(k/m/s)〉 〈C̄(k/m)〉 〈C̄(so)〉 〈C̄(sm/su)〉 〈∆C〉 ∆〈C〉
0 0 0 0 0.159 0.014 0.030 0.224 0 0
10 0.2 20 2 0.153 0.014 0.028 0.217 1.15 0.84
20 0.2 200 20 0.156 0.014 0.030 0.220 2.27 1.39
30 0.2 2 000 50 0.157 0.014 0.028 0.222 3.59 1.96
40 0.2 20 000 50 0.159 0.014 0.027 0.225 3.63 2.26
50 0.2 25 000 50 0.158 0.014 0.027 0.223 3.08 1.86
11 1 20 2 0.156 0.017 0.031 0.219 2.39 1.77
21 1 200 20 0.165 0.020 0.037 0.231 4.79 3.45
31 1 2 000 50 0.170 0.020 0.036 0.238 6.73 4.26
41 1 20 000 50 0.170 0.017 0.032 0.240 6.32 4.20
51 1 25 000 50 0.168 0.017 0.031 0.236 5.52 3.61
12 4 20 2 0.158 0.022 0.038 0.220 5.11 3.93
22 4 200 20 0.169 0.026 0.049 0.232 7.41 5.64
32 4 2 000 50 0.188 0.030 0.058 0.259 10.49 7.39
42 4 20 000 50 0.190 0.028 0.054 0.262 9.91 6.95
52 4 25 000 50 0.181 0.025 0.048 0.251 8.84 6.20

Table 15: Ensemble mean concentrations and relative concentration differences for all ensembles
of heterogeneous permeability distributions: The first column denotes the ID of the
ensemble. The choice of statistical parameters is given by the variance σ2 and the hor-
izontal and vertical correlation lengths `h and `v, respectively. 〈C̄(k/m/s)〉 is the en-
semble mean concentration in the entire domain, 〈C̄(k/m)〉, 〈C̄(so)〉, and 〈C̄(sm/su)〉
are the ensemble mean concentrations in the corresponding hydraulic units. They
are calculated as ensemble average over the mean concentrations C̄ of the 200 re-
alization; 〈∆C〉 [%] is the ensemble average of the relative differences of concentra-
tion ∆Ci, i = 1, . . . , 200 between single realization i and the reference simulation.
Whereas ∆〈C〉 [%] is the relative difference of concentration between the ensemble
mean 〈C〉 and the reference simulation.
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3.4.3. Scenarios of Heterogeneous Permeability Distribution

For every ensemble, we calculated the spatially distributed ensemble concentration 〈C〉 as the
mean over the concentration distribution of all realizations. Table 15 contains the calculated
quantitative measures for the simulated ensembles of heterogeneous permeability distributions.
The ensemble mean concentration 〈C̄〉 is the ensemble average of the mean concentrations C̄ of
all realizations. The relative ensemble difference 〈∆C〉 is the ensemble average of the relative
difference ∆C between every single realization and the reference simulation, whereas the en-
semble relative difference in concentration ∆〈C〉 denotes the difference between the ensemble
mean 〈C〉 and the reference simulation.

Impact of the Correlation Structure

We compare the simulation results for different correlation structures while keeping the variance
at a medium level of σ2 = 1. First, we investigate the impact of a Gaussian correlation structure
for four cases of correlation length (`h = 20m, 200m, 2 000m and 20 000m) ranging from local
to basin scale, as defined in section 3.3.4. Second, we analyze an ensemble with a truncated
power law covariance structure with cutoff a length of 25 000m.

Figure 21 shows the simulated salt concentration distributions for two realizations and the
ensemble mean of ensemble 11. The correlation length of `h = 20m ranges in the size of one
grid cell. It can be seen that a small correlation length causes local fluctuations in the salt
concentration, but does not impact on the shape and the position of the salt plumes compared
to the homogeneous reference simulation (Figure 15b). This is underlined by the small mean
difference of 〈∆C11〉 = 2.39% (Table 15). The differences between realizations (Figure 21a
and 21b) are little. Thus, the ensemble mean concentration pattern 〈C11〉 is nearly identical
to the concentration distribution with homogeneous permeabilities (Figure 21c compared to
Figure 15b). This fact is underlined by the small relative difference ∆〈C11〉 = 1.52% and a
similar amount of dissolved salt 〈C̄11(k/m/s) 〉 = 0.156 compared to the reference simulation.

We visualize the simulation results for a medium scale correlation length of `h = 200m (en-
semble 12) in Figure 22. Small changes exist in position and shape of salt plumes for the
heterogeneous realizations (Figures 22a and b) compared to the homogeneous reference simu-
lation (Figure 15b). Local fluctuations are more pronounced in comparison to the results for a
small correlation length of 20m. This is supported by a higher relative concentration difference
of 〈∆C21〉 = 4.79%. An increased spreading of salt is visible in a higher amount of dissolved
salt 〈C̄21(k/m/s) 〉 = 0.165 (Table 15) compared to the reference simulation. The ensemble
mean of heterogeneous simulations 〈C21〉 in Figure 22c mirrors changes in the concentration
pattern: salt plumes are damped and there exists a certain range in which salt plumes develop.
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Figure 21: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with heterogeneous permeability distribution: (a) and (b) are single
realizations and (c) is the mean over 200 realizations of ensemble 11 with small
correlation length (` = 20m). Sedimentary units are separated by bold black lines.
Superelevation factor of 10.
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Figure 22: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with heterogeneous permeability distribution: (a) and (b) are single
realizations and (c) is the mean over 200 realizations of ensemble 21 with medium
correlation length (` = 200m). Sedimentary units are separated by bold black lines.
Superelevation factor of 10.
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Figure 23: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with heterogeneous permeability distribution: (a) and (b) are single
realizations and (c) is the mean over 200 realizations of ensemble 31 with large
correlation length (` = 2 000m). Sedimentary units are separated by bold black
lines. Superelevation factor of 10.

Figure 23 shows the simulation results for large scale correlation length of `h = 2 000m.
Local fluctuation are of larger scale and can lead to significantly different salt patterns for
different realizations (Figure 23a and b). We observe differences in number, position and
shape of salt plumes. The differences to the reference simulation (Figure 15b) are large, sup-
ported by the relative ensemble difference of 〈∆C31〉 = 6.73%. A higher amount of dissolved
salt 〈C̄31(k/m/s)〉 = 0.17 indicates a wider spread of salt plumes. The ensemble concentration
pattern 〈C31〉 (Figure 23c) shows a flat salt distribution without clear salt plumes. It displays
the range of positions of salt plumes.

In Figure 24, we visualize the simulation results for a correlation length of `h = 20 000m, which
corresponds to the maximum distance of an undisturbed basin compartment. The results show
significant differences in number, position, and shape of salt plumes. Realizations differ strongly
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Figure 24: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9]
of simulations with heterogeneous permeability distribution: (a) and (b) are single
realizations and (c) is the mean over 200 realizations of ensemble 41 with correlation
length at basin scale (` = 20 000m). Sedimentary units are separated by bold black
lines. Superelevation factor of 10.

among each other and from the homogeneous reference simulation, visible at 〈∆C41〉 = 6.32%
(Table 15). Due to the very large correlation length, the results can be similar to salt patterns
of simulations with homogeneous permeabilities, as discussed in section 3.4.2. The amount
of dissolved salt is higher (〈C̄41(k/m/s)〉 = 0.17) compared to homogeneous simulations. The
pattern of the ensemble mean 〈C41〉 (Figure 24c) is similar to that of the large scale correlation
length `h = 2 000m (Figure 23c) mirroring the areas of salt plumes.

Figure 25 shows the simulation results with the truncated power law correlation model, dis-
playing a heterogeneous medium with correlation on all scales. In the resulting concentration
patterns, we observe local fluctuations, as in simulations with small correlation lengths and
changes in position and shape of salt plumes, as observed in simulations with high and basin
scale correlation lengths. The concentration distributions differ in average 〈∆C51〉 = 5.52%.
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Figure 25: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9] of
simulations with heterogeneous permeability distribution: (a) and (b) are single
realizations and (c) is the mean over 200 realizations of ensemble 51 with infinite
correlation length (truncated power law model). Sedimentary units are separated
by bold black lines. Superelevation factor of 10.

The mean concentration pattern 〈C91〉 (Figure 25c) mirrors changes compared to the homo-
geneous reference simulation, as for the large scale correlation length. Generally, the result-
ing salt concentration patterns are very similar to those with correlation length ` = 2 000m
and ` = 20 000m, which shows that the effect of large correlation lengths is dominant.

Impact of the Variance

We analyze simulations with three choices of variance: mildly heterogeneous media (σ2 =
0.2), medium heterogeneous media (σ2 = 1), and strongly heterogeneous media (σ2 = 4).
Figure 26 shows the simulated salt distributions for three realization with different variances
and a Gaussian correlation length of `h = 2 000m. We chose the spatial correlation structure
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Figure 26: Distribution of normalized salt concentration with isolines at C = [0.1, . . . , 0.9]
of simulations with heterogeneous permeability distribution for different variances:
realizations from ensembles 30, 31 and 32 with identical correlation structure (`h =
2 000m) and (a) σ2 = 0.2, (b) σ2 = 1 and (c) σ2 = 4. Sedimentary units are
separated by bold black lines. Superelevation factor of 10.

identically for all variances, which allows a direct comparison of realizations. It can be seen
that a higher variance goes along with a stronger salinization. This is valid for all choices of
correlation structure, which is visible in increasing values of 〈C̄〉 for increasing variance for all
correlation lengths (Table 15). However, the variance does not directly impact on number and
position of salt plumes, only on the shape due to the higher amount of dissolved salt. This is
in particular valid in combination with larger correlation lengths.

Heterogeneity contributes to the mechanical dispersion [Bear , 1972]. The variance controls
the range of permeability values, amplifying differences between areas of higher and lower
permeability. As a consequence, the larger the variance, the stronger are the variations in
velocity. Higher velocities result in increased mechanical dispersion and thus in higher amounts
of dissolved salt. This effect can be observed in particular in the shallow aquifer units.
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density model C̄(k/m/s) C̄(k/m) C̄(so) C̄(sm/su) ∆C [%] ∆T [%]
ρ0 0.157 0.014 0.030 0.224 0 0
ρ(T ) 0.157 0.014 0.029 0.222 1.00 0.17
ρ(C) 0.309 0.079 0.149 0.408 15.87 2.17
ρ(T,C) 0.308 0.078 0.146 0.406 15.71 2.14

Table 16: Mean concentration C̄, as defined in Eq. (1.12), relative difference in concentra-
tion ∆C and relative difference in temperature ∆T to the reference simulation, as
defined in Eq. (1.13) for different fluid density models: ρ0 is the constant density
model, ρ(T ) is the purely temperature dependent density model, ρ(C) is the purely
salt concentration dependent density model, and ρ(T,C) is the concentration and
temperature dependent density model according to Eq. (1.10). C̄(k/m/s) is the mean
concentration in the entire domain, C̄(k/m), C̄(so) and C̄(sm/su) are the mean con-
centrations in the corresponding hydraulic units.

3.4.4. Density Dependent Flow

Impact of the Temperature

The simulation results for a temperature dependent fluid density model ρ(T ) are given in
Figure 27. The salt and temperature distributions resemble those of the constant density
reference simulation in Figure 15. We observe no differences in the temperature distribution
visually. Small changes in the salt pattern can be found in the form of the central salt plume.
The marginal differences are underlined by the nearly identical values of the mean concentra-
tion (Table 16) and the small values of the relative difference in temperature ∆T = 0.17% and
salt concentration ∆C = 1.0%.

The marginal changes for a temperature dependent density model are due to the fact that
the temperature differences are too small to initiate convective flow. According to the lin-
ear density model described in Eq. (1.10), the density of water can vary between 1 000 kg/m3

and 991 kg/m3, which corresponds to the thermal expansion coefficient of βT = −0.0003 and
the minimal and maximal temperature of 8 ◦C and 38.4 ◦C respectively. The maximal thermal
Rayleigh number RaT, as defined in Eq. (1.11) for all sedimentary units can be found in the
Middle Buntsandstein aquifer with RaT = 11.7. This is beneath the critical value of 4π which
characterizes the onset of convection [Nield and Bejan, 1999].

Even for higher permeabilities, thus higher thermal Rayleigh numbers, regional groundwater
flow would superpose convective processes due to higher flow velocities. From the Rayleigh
theory we know that temperature induced convection requires highly permeable media of suf-
ficiently large vertical extent and which is undisturbed from other flow sources. Since this is
not present in the Thuringian Basin, conduction and advection dominate the heat transport
process. Thus, temperature dependent density driven flow is negligible in the Thuringian Basin
due to the significant regional flow.
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Figure 27: Simulated temperature and salt distribution for flow impacted by temperature in-
duced density variations and regional groundwater flow: (a) salt concentration dis-
tribution with isolines at C = [0.1, . . . , 0.9] and (b) temperature distribution with
isolines at distance of 2 ◦C. Sedimentary units are separated by bold black lines.
Superelevation factor of 10.
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Figure 28: Results of temperature and salt distribution for flow impacted by density varia-
tions due to salt concentration differences and regional groundwater flow: (a) salt
concentration distribution with isolines at C = [0.1, . . . , 0.9] and (b) temperature
distribution with isolines at distance of 2 ◦C. Sedimentary units are separated by
bold black lines. Superelevation factor of 10.

Impact of Salt Concentration

Effects of dissolved salt on the fluid density result in salt concentration and temperature
patterns given in Figure 28. Significant differences are visually recognizable compared to
the reference simulation in Figure 15b. More salt is dissolved for a salt dependent density
model ρ(C) than for the constant density model ρ0: C̄(k/m/s) = 0.309 compared to C̄(k/m/s)
= 0.159, respectively (Table 16). The salt plume pattern is less pronounced. High concentra-
tion brine (C > 0.7) does not move upwards. Salt is stronger laterally distributed, in particular
in the central basin compartments.

Changes in temperature distribution (Figure 28b) are less pronounced but observable compared
to the reference simulation (Figure 15c). The temperature isolines are smoother, which results
from changed velocity fields in the deep aquifer, due to salt mass effects. The relative difference
in temperature pattern amounts to ∆T = 2.17%.

The strong impact of salt on the flow and salt pattern can be explained by the interplay
of density differences and the regional groundwater flow. Full salt saturation can lead to
a fluid density of up to 1 200 kg/m3. This results in large solute Rayleigh numbers RaS in
all sedimentary layers. In the deep aquifer the values range between RaS = 800 − 6 000,
where the highest values occur in the Middle Buntsandstein of the undisturbed central basin
compartment. In areas of discharge water pressure gradients cause an upward movement of
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Figure 29: Results of temperature and salt distribution for flow impacted by density variations
due to temperature and salt concentration differences and regional groundwater
flow: (a) salt concentration distribution with isolines at C = [0.1, . . . , 0.9] and (b)
temperature distribution with isolines at distance of 2 ◦C. Sedimentary units are
separated by bold black lines. Superelevation factor of 10.

brine. The effect of an increased fluid density due to solved salt leads to the counteracting effect
of downward convection. It results in smoothed pressure gradients in horizontal direction but
increased vertical velocities. Higher velocities cause an increase in dispersion. Furthermore,
local eddies develop as described in Holzbecher et al. [2010], which enhance local mixing. Both
effects result in a stronger spreading of salt.

Impact of Temperature and Salt Concentration

Simulation results for a salt and temperature dependent density model ρ(C, T ) are given in
Figure 29. The salt and temperature distributions resemble the patterns with a purely salt
dependent density ρ(C) (Figure 28). Changes in the characteristic numbers are small: the total
amount of salt and the relative difference to the reference simulation are marginally lower than
for purely salt dependent density (Table 16). In general, the effect of salt is slightly reduced,
but still dominant. The reduction can be explained by the opposite character of salt and of
temperature on fluid density.
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3.5. Conclusions

The aim of the study was to investigate the main fluid dynamics within the Thuringian Basin.
We performed transient coupled simulations of hydraulic, thermal, and mass transport pro-
cesses on a selected profile to quantify the impact of the permeability distribution and density
differences on the flow pattern, the salt concentration and the temperature distribution. To
capture the uncertainty in permeability, which determines regional groundwater flow, we per-
formed simulations with different mean permeabilities in the main hydraulic units as well as in
the fault zones. We further analyzed effects of heterogeneity. Thereby permeability was char-
acterized by three parameters: mean, variance and correlation structure. In a first step, we
examined the effect of mean permeability varying within a realistic range by conducting simula-
tion with different distributions of homogeneous permeability within the three hydraulic units
shallow aquifer (Keuper/Muschelkalk), aquiclude (Röt), and deep aquifer (Middle and Lower
Buntsandstein). In a second step, we investigated the impact of heterogeneity using ensembles
of heterogeneous permeability distributions with different values of variance and correlation
structure. Thirdly, we examined the impact of salt mass and temperature on the groundwater
flow. We performed simulations with a non-constant fluid density model, depending on salt
concentration and temperature differences.

The main driving force of fluid flow in the Thuringian Basin is the water pressure gradient, due
to differences in the topography. The shallow basin structure causes the regional groundwater
flow to impact on flow directions and velocities down to the deep aquifer units, connecting to
the Zechstein salt in up to 1 000m depth. Especially in vicinity of faults, meteoric fresh water
can infiltrate deeply into the basin. It results in high flow velocities and causes anomalies in
the temperature stratification. Areas of discharge are the flat undisturbed basin compartments
located in the basin center.

Since flow velocities are proportional to the permeabilities of the sedimentary layers, their
distribution significantly determines flow and salt concentration pattern. Simulation results
with permeability variations in all hydraulic units indicate that variations in the permeability
of the shallow aquifer (Keuper/Muschelkalk) have little impact on the salt distribution in the
deep aquifer (Middle and Lower Buntsandstein). On the contrary, the permeability of the
aquiclude (Röt) determines the amount of communication between deep and shallow aquifers
and thus the flow pattern: the lower the permeability, the lower is the interaction and the more
salt is dissolved in the deep aquifer, but the less salt is transported to surface near regions.
Changes in permeability of the deep aquifer have significant impact on the amount of dissolved
salt: the higher the permeability, the more salt is dissolve, but the salt plume pattern is less
pronounced, thus less salt is transported to the surface.

Heterogeneity in permeability can have significant impact on the developing flow pattern and
thus the salt distribution. In general, an increase in correlation length and variance goes along
with a deviation of the flow and salt pattern from results for a homogeneous permeability dis-
tribution. Fluctuations in the salt concentration pattern correspond to the choice of correlation
length: small correlation lengths in the range of 20m cause local fluctuations with similar salt
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patterns as homogeneous simulation. Large correlation lengths in the range of 2 000m control
large ranges of hydraulic conductivity. Thus heterogeneous simulation results can vary signif-
icantly in number and position of salt plumes, as it was the case for homogenous simulations
with increased and decreased conductivity in the entire sedimentary layers. The truncated
power law correlation structure could capture the effects of correlation lengths on all scales.
A comparison with the Gaussian correlation structure for different correlation lengths showed
that effects of large scale correlation lengths dominate over those of small scale correlation
lengths.

The variance as degree of heterogeneity has a different effect. Differences in permeability
are stronger the larger the variance is. The resulting spread in local flow velocity enhances
mechanical dispersion. Thus, higher variances only slightly change the overall flow and salt
pattern but strongly impact on the amount of dissolved salt. The effect of an increased amount
of dissolved salt is also given for increasing correlation length, although it is not that strong as
for the variance. In cases of large correlation lengths and large variances, the deviation from
salt distributions for homogeneous permeabilities is the strongest.

Effects of a non-constant fluid density can impact on the flow pattern and thus the distribution
of salt and temperature significantly. This is in particular the case for density variations due
to salt concentration differences. High amounts of dissolved salt result in an increased density
which causes downward movement of fluid. The counteracting effect of regional groundwater
flow in discharge areas changes the velocity field and leads to the development of local eddies.
It results in an enhanced mixing and thus an increase in the amount of dissolved salt. Solute
Rayleigh numbers above the critical value of 4π in all aquifer units confirm these findings. On
the contrary, the impact of temperature is little. Thermal induced convection is not present due
to low temperature gradients and high regional flow velocities. These results from simulations
are supported by Rayleigh theory: calculated thermal Rayleigh number RaT are lower than
the critical value for onset of convection.

The numerical study showed that in general two main transport mechanism interact in the
Thuringian Basin: topography driven regional groundwater flow and convection due to fluid
density differences. The interaction of both processes results in a wide spread of salt in the deep
aquifer (Middle and Lower Buntsandstein) in the central basin. Salt transport to near-surface
regions can be observed locally, especially in the basin center.

In contrast to the dynamics of deep sedimentary basins like the North East German Basin,
the shallow character of the Thuringian Basin inhibits the evolution of large thermal convec-
tion cells. From Rayleigh theory it is known that onset of convection requires thick, high
permeable aquifers which are undisturbed from external flow. Those units are not present
in the Thuringian Basin. However, other mechanism are responsible for brine transport to
near-surface regions, which we showed by this numerical study.
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Part III.

Determining Aquifer Heterogeneity on
Local Scale
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4. The Extended Thiem’s Solution - Including the Impact of
Heterogeneity

4.1. Introduction

Determining hydraulic properties of an aquifer has been a matter of research for several decades.
Not only for characterizing groundwater flow but also for describing transport processes in the
subsurface a good perception of the heterogeneous structure of porous media is necessary, see
for e.g. Dagan [1989]; Gelhar [1993]; Rubin [2003].

Pumping tests are a widely used tool to identify hydraulic parameters which effect the ground-
water flow pattern. Analyzing Darcy’s Law in combination with the continuity equation for
steady state pumping tests in homogeneous porous media leads to the well known Thiem’s
solution

hThiem(r) = − Qw
2πLK ln r

R
+ h(R) . (4.1)

It describes the drawdown of the hydraulic head h(r) depending on the radial distance from
the well r for homogeneous hydraulic conductivity K. Thiem’s solution is valid in a confined
aquifer of thickness L with fully penetrating well and the constant discharge Qw; h(R) is a
known reference head at the distance R from the well.

The applicability of Thiem’s solution to pumping tests in heterogeneous media is limited. It
requires a representative conductivity value K for the whole range of the depression cone. As
stated by Matheron [1967], a single representative K-value for well flow does not exist, due to
the emergence of different mean conductivities characterizing the behavior near and far from
the well. Since then an enormous amount of work has been devoted to find representative
conductivity descriptions for well flow and to estimate statistical parameters of the hydraulic
conductivity from drawdown data. For a detailed review see Sánchez-Vila et al. [2006]. Most
of the studies are limited to a two dimensional analysis, like Shvidler [1966]; Desbarats [1992];
Sánchez-Vila et al. [1999]; Copty and Findikakis [2004]; Neuman et al. [2004, 2007]; Dagan and
Lessoff [2007]; Schneider and Attinger [2008] and many more. Only a few authors addressed
the impact of modeling the conductivity in three dimensions upon radial flow [Indelman and
Abramovich, 1994; Indelman et al., 1996; Guadagnini et al., 2003]. In particular, only Firmani
et al. [2006] presented a fully three dimensional numerical investigation.

In order to find a description of the hydraulic head field in pumping tests for heterogeneous
media, the conductivity K(x) is commonly modeled as a log-normal distributed spatial ran-
dom function. Based on this assumption Indelman and Abramovich [1994] solved an averaged
Darcy’s Law and presented a fundamental solution for the mean head distribution for arbitrary
boundary conditions. Since it is given in Fourier space, only approximate solutions in real space
are available. In this line Indelman et al. [1996] performed a perturbation expansion in the
variance σ2 of lnK(x) to present a first order solution in the hydraulic head for well flow. The
result has been expanded by several authors to higher orders, e.g. Fiori et al. [1998]; Indel-
man [2001]. Additionally, Guadagnini et al. [2003] presented a three-dimensional steady state
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solution for mean flow based on recursive approximations of exact non-local moment equations.

The implicit character of these head solutions inhibits the application to analyze pumping
test drawdowns directly. Furthermore, the reliability of a perturbation approach to describe
well flow is questionable due to a ergodicity breakdown near the well which is mathematically
a singularity. None of the solutions could reproduce the head drawdown of a pumping test
exactly as numerical investigation showed [Guadagnini et al., 2003; Firmani et al., 2006] nor
allowed an inverse estimation of the parameters of K(x) in highly heterogeneous porous media.

Making use of the equivalent conductivity Keq as defined by Matheron [1967] and their first or-
der solution, Indelman et al. [1996] derived the expression Keq(r) = Kwell(1−Λ(r))+Λ(r)Kefu.
It relates the near well representative conductivity Kwell to the far field value Kefu (in detail
discussed in section 4.2.2) by a weighting factor Λ(r) which depends on the statistical param-
eters of K(x) and the radius r. This description was used by Firmani et al. [2006] for inverse
parameter estimation from numerical pumping tests. But as their simulations showed, the de-
scription of Keq(r) is only valid for small variances σ2 up to 0.5. Furthermore, the estimation
of the parameters is of high uncertainty.

To overcome the above mentioned limitations Schneider and Attinger [2008] showed that in two
dimensions another description for the conductivity, respectively transmissivity, is appropriate
to describe well flow effectively. They introduced a new approach by applying an upscaling
technique to the flow equation to derive their representative description for the transmissiv-
ity TCG(r), depending on the radial distance and the statistical parameters. Based on that
they performed forward simulations to achieve a head drawdown from TCG(r) and compared
it to ensemble averages of simulated two dimensional pumping tests in heterogeneous media.
They stated that this method allows a much better parameter estimation for T (x) than existing
methods do.

In this study we do not only extend the results of Schneider and Attinger [2008] to three dimen-
sions but will go one step further by introducing a closed form solution for the effective well flow
hydraulic head hefw(r). It describes the depression cone of a three dimensional pumping test in
heterogeneous media effectively. This new solution hefw(r) can be understood as an extension
of Thiem’s formula (4.1) to heterogeneous media. It accounts for the statistical parameters
of K(x) and reproduces the vertical mean hydraulic head field at every radial distance r from
the well preserving the flow rates.

In contrast to existing solutions, hefw(r) does not result from a perturbation analysis of the
mean head by expansion on the variance σ2. Therefore, it is also valid for highly heterogeneous
media. Furthermore, hefw(r) directly allows to estimate parameters of K(x) without the detour
to a representative description of the conductivity as done by Indelman et al. [1996] and Firmani
et al. [2006].

After stating the problem, we will shortly sum up known results for near and far field represen-
tative conductivities of pumping tests in section 4.2. In part 4.3, we introduce the upscaling
method Coarse Graining and apply it to three dimensional well flow resulting in the represen-
tative conductivity description KCG(r). In section 4.4, we derive hefw(r) by solving the radial
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flow equation withKCG(r) and perform a sensitivity analysis for the parameters ofK(x) on the
drawdown hefw(r). We finally prove the applicability of hefw(r) by analyzing three dimensional
numerical pumping tests in highly heterogeneous media. Moreover, we implement an inverse
estimation procedure to infer on the statistics of K(x) in part 4.5. The results presented within
this section refer to the publication Zech et al. [2012].

4.2. Statement of the Problem

4.2.1. Flow and Conductivity Model

In this study we focus on steady state pumping tests with fully penetrating well in a confined
aquifer, where water is extracted at a constant pumping rate Qw. The three dimensional flow
is characterized by Darcy’s Law in combination with the continuity equation

−∇(K(x)∇h(x)) = Q(x) , (4.2)

with x = (x1, x2, x3). The sink/source term Q(x) can be written as Qwδ(xw − x), using the
delta distribution function δ, where xw is the position of the well.

To cover the spatial structure of the hydraulic conductivity K(x) we model it as log-normal
distributed field K(x) ∝ LN (µ, σ2), meaning that lnK(x)/K0 is a normal distributed quantity
with mean µ and variance σ2. The spatial correlation structure described by a Gaussian shaped
covariance model CV(x− x′) = σ2η(x− x′) includes the correlation function

η(x) = exp
(
−x

2
1
`21
− x2

2
`22
− x2

3
`23

)
, (4.3)

where `i is the correlation length in ith direction. To reflect the anisotropic structure of three
dimensional heterogeneous media, we presume the correlation length in both horizontal direc-
tions to be identical `1 = `2 = ` whereas in vertical direction we assume a smaller correlation
length `3 = e`, with e ∈ [0, 1] denoting the anisotropy ratio.

4.2.2. Far and Near Field Conductivities

The issue of representative conductivity values for well flow has been discussed intensively over
several years, starting with Shvidler [1966] and Matheron [1967]. However, most of the studies
are limited to a two dimensional analysis. For three dimensional convergent flow Indelman
and Abramovich [1994] concluded that the far field behavior is best covered by the effective
hydraulic conductivity for uniform flow in three dimensions

Kefu = KG exp
(
σ2
(

1
2 − γ(e)

))
, (4.4)



92 4. The Extended Thiem’s Solution - Including the Impact of Heterogeneity

Figure 30: Relationship between Kefu, KA and KH. The values on the left refer to a variance
of σ2 = 1 and KG = 1m/s and are drawn to scale.

where γ(e) is the anisotropy function, known from Dagan [1989],

γ(e) = e

2(1− e2)

( 1√
1− e2

arctan(
√

1/e2 − 1)− e
)

. (4.5)

Depending on the degree of anisotropy, γ(e) varies between 1
3 (e=1) and zero (e=0), thus

causingK iso
efu = KG exp

(
1
6σ

2
)
to be the limit for isotropic media and the arithmetic mean KA =

KG exp
(

1
2σ

2
)
to be the limit for stratified media.

For a representative description of the conductivity near the well, in the following denoted
by Kwell, different results emerge in literature (e.g. Indelman et al. [1996]; Indelman and
Dagan [2004]), depending on the description of the discharge at the well. Theoretically, either
a constant head hw (corresponding to a Dirichlet boundary condition) or a constant pumping
rate Qw (Neumann boundary condition) can be applied. A constant pumping rate, in the
following denoted as BCH, leads to a varying head along the well resulting is the harmonic
mean of the hydraulic conductivity values at the well. On the contrary, a constant head gives
the arithmetic mean as representative near well conductivity value. If ergodicity is fulfilled the
means are given by KA = KG exp

(
1
2σ

2
)
and KH = KG exp

(
− 1

2σ
2
)
.

An additional approach was introduced by Indelman et al. [1996] where a constant discharge was
subdivided into fluxes proportional to the local conductivities along the well. This assumption
leads to similar conditions as the constant head boundary condition, giving Kwell = KA, we
will therefore call this BCA. All of these results were confirmed by numerical simulations by
Firmani et al. [2006].

An important feature of three dimensional well flow is the asymmetric relation between KA,KH

and Kefu, especially when taking anisotropy into account. As shown in Figure 30 the dis-
tance between Kefu and KA is much smaller than between Kefu and KH, even becoming
zero for stratified media. Unlike in two dimension where we have K2d

efu = KG and thus
| ln(K2d

efu/KA)| = | ln(K2d
efu/KH)| = 1

2σ
2, we find in three dimensions | ln(K3d(iso)

efu /KA)| = 1
3σ

2

whereas | ln(K3d(iso)
efu /KH)| = 2

3σ
2. This fact becomes important when comparing results for

the different boundary conditions BCA and BCH at the well.



4.3. Method of Coarse Graining 93

4.3. Method of Coarse Graining

We use the upscaling technique Coarse Graining as introduced by Attinger [2003] to gain a
representative description for the well flow conductivity. Schneider and Attinger [2008] already
applied Coarse Graining to radial convergent flow in two dimensions, focusing on regional
scale flow. The following procedure of deriving KCG(r) will be similar, but we focus on three
dimensional media, additionally incorporating anisotropy.

4.3.1. Coarse Graining as Spatial Filtering Procedure

The idea of the Coarse Graining method is to apply a spatial filter of variable volume size
on the flow equation (4.2) to transform it to a coarser scale. The approach was originally
developed for Large Eddy Simulations, see Layton [2002]. The background of using Coarse
Graining in hydrogeological modeling is to find a representative conductivity on a coarser scale
still considering sub-scale effects.

The procedure is based on averaging the flow equation over a filter volume controlled by the
filter length scale λ. Mathematically this is expressed by a convolution with a smoothing
function fλ(x). It results in a flow equation on coarser scale for the filtered heads hλ(x) =

1∫
fλ(x′) dx′

∫
R3 fλ(x′)h(x′ + x) d3x′ where the effects of head fluctuations smaller than λ are

covered by the scale dependent λ-filtered conductivity KCG
λ (x). Recapitulating the method

derived in Attinger [2003], the head equation is transformed to Fourier space, then the filtering
procedure is applied to the transformed head equation. After some mathematical treatment
and certain approximations the equation is transformed back and we result in the filtered head

−∇
(
KCG
λ (x)∇hλ(x)

)
= Qλ(x) , (4.6)

where Qλ(x) is the filtered sink term. KCG
λ (x) = KCG

A (λ) + K̃CG(x, λ) denotes the λ-filtered
hydraulic conductivity, which is still a spatial random function on a coarser scale. It is composed
of the filtered mean conductivity KCG

A (λ), depending on λ, but not on x and the filtered
fluctuation part K̃CG(x, λ).

The result for KCG
A (λ) depends on the geostatistical model and on the choice of the filter

function fλ(x). Using a Gaussian shaped filter function fλ(x) ∝ exp
(

x2

λ2

)
and making use of

renormalization theory, Attinger [2003] presented a closed form solution for isotropic media

by KCG
A (λ) = K iso

efu exp
(

1
3σ

2
(
1 + λ2

4`2
)− 3

2
)
, where K iso

efu is defined in Eq. (4.4) with e = 1.

4.3.2. Coarse Graining for Well Flow

Coarse Graining comprises the possibility of applying a filter of variable volume size on the flow
equation which is of significant importance when dealing with well flow. For pumping tests the
singular character of the source causes a strong influence of local heterogeneities on the flow
pattern near the well, where the impact decreases with distance from the well. We therefore
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think that an adaptive filter with high resolution, thus small filter volumes near the well and
increasing filter volumes towards the far field, applies best to the flow equation. It still fulfills
the physics of this strongly nonuniform flow pattern.

As proposed by Attinger [2003] and Schneider and Attinger [2008] we use a Gaussian shaped
filter function. Based on the nonuniform flow pattern for radial convergent flow we consider the
filter length scale λ to be proportional to the radius r as described in Schneider and Attinger
[2008], covering the idea of nearly no smoothing near the well and large smoothing in the far
field. For isotropic media we choose a filter function of the form

f isor (x) = 1
π3/2ζ3r3 exp

(
− x2

ζ2r2

)
,

with x ∈ R3, r the radial distance from the well, treated as parameter and ζ a constant of
proportionality, determining the width of the Gaussian filter. Note that f isor (x) is normalized.

In case of anisotropy we modify the filter in that way that in horizontal direction the filter
width is λ1, λ2 ∝ r, whereas in vertical direction the filter is weighted with the anisotropy
ratio λ3 ∝ e · r. At the same time the filter volume stays constant and independent of e,
thus λ1 · λ2 · λ3 ∝ r3. Hence we find λ1 = λ2 = e−

1
3 ζr and λ3 = e

2
3 ζr which results in a more

general filter function for anisotropic media

fanisor (x1, x2, x3) = 1
π3/2ζ3r3 exp

(
−x

2
1 + x2

2 + e−2x2
3

e−2/3ζ2r2

)
. (4.7)

What is the physical meaning of this spatial averaging? Imagine the filter in the original Coarse
Graining procedure in three dimensions to be a block of volume λ3 around a point x, where all
spatial heterogeneities are averaged within this block, leading to a filtered head hλ(x). Then
the radial depending filter can be seen as a cube around x growing with distance from the
well. Near the well, the filter is very small leaving nearly all heterogeneity of K(x) unchanged,
whereas far away the local conductivities are replaced by an averaged value. In the same way
heads and fluxes are stepwise filtered with distance to the well. The influence of the anisotropy
is covered by an adapted filter in vertical direction, giving that the filtering is still proportional
to the correlation length in all directions. For e 6= 1 the fictitious cube filter around a point x is
deformed to a cuboid with the same volume, reflecting the fact that the vertical compensation
is reduced due to the stratification.

Following the line of derivation in Attinger [2003] and Schneider and Attinger [2008] we evalu-
ateKCG

A (r) with the correlation function in Eq. (4.3) and the adapted filter function in Eq. (4.7).
Details on the derivation are presented in the appendix A.1. We result in the filtered conduc-
tivity KCG

r (x) = KCG
A (r) + K̃CG(x, r), where K̃CG(x, r) is the fluctuating part and KCG

A (r) is
the scale dependent mean hydraulic conductivity given by

KCG
A (r) = Kefu exp

σ2γ(e)
(

1 + ζ2r2

3
√
e

2
`2

)− 3
2
 , (4.8)
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with the anisotropy function γ(e) and Kefu given in Eq. (4.5) and Eq. (4.4).

4.3.3. Representative Conductivity for Well Flow

The Coarse Graining conductivity KCG
r (x) = KCG

A (r) + K̃CG(x, r) still contains local fluctu-
ations. Since we are interested in a representative conductivity for well flow which depends
only on the radius, we perform a vertical average over a sufficiently thick aquifer. This re-
flects the fact that heads measured in real pumping tests can be regarded as means over the
vertical extension of the well. Since the average of the fluctuating part K̃CG(x, r) is zero by
definition, KCG

A (r) remains as representative conductivity value for well flow. It can be seen in
Eq. (4.8) that the asymptotic behavior of KCG

A (r) covers KA as near field and Kefu as far field
representative conductivity values.

As discussed in section 4.2.2 different boundary conditions at the well result in different near
field representative conductivities. We therefore generalize the result to both possibilities
of Kwell. For the BCA with Kwell = KA we use the abbreviation χA = σ2γ(e) and for
BCH with Kwell = KH we write χH = σ2(γ(e) − 1). We result in a general expression for
the representative well flow conductivity for both boundary conditions

KCG(r) = Kefu exp

χ(σ2, e)
(

1 + ζ2r2

3
√
e

2
`2

)− 3
2
 . (4.9)

A universal definition of χ is given by χ = ln (Kwell/Kefu). It allows KCG(r) to act as a general
interpolating function between the near and far field representative conductivity values Kwell

and Kefu, respectively.

4.4. The Extended Thiem’s Solution

4.4.1. Derivation of hefw(r)

The Coarse Graining conductivity KCG(r), as given in Eq. (4.9) reflects the impact of het-
erogeneity on well flow in porous media. It is the representative conductivity value for which
the solution of the flow equation best fits the drawdown of pumping tests. More precisely
inserting KCG(r) to the flow equation (4.2) delivers a head which reproduces the vertically
averaged drawdown of a three dimensional pumping test at every radial distance r from the
well in dependence on the parameters KG, σ2, ` and e of K(x).

The final step in our approach is to derive the effective well flow head hefw(r) by solving the
radial flow equation with KCG(r). We transform Eq. (4.2) to polar coordinates, evaluate the
vertical component and result in

hefw(r) = C1 exp (−χ) ln r

R
+ C1 sinh(χ)U1(r) (4.10)

+C1 (1− cosh(χ))U2(r) + h(R) ,
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Figure 31: Comparison of hefw(r) and Thiem’s solution for two conductivity fields (KG =
10−4 m/s, σ2 = 1, e = 1, ` = 5m, and ` = 10m) and both boundary conditions,
BCA and BCH. Reference head is h(R = 32m) = 0m.

with C1 = − Qw
2πLKefu

and

U1(r) = ln u(r) + 1
u(R) + 1 −

1
u(r) + 1

u(R) ,

U2(r) = ln u(r)
u(R) −

1
2u(r)2 + 1

2u(R)2 −
1

4u(r)4 + 1
4u(R)4 ,

where u(r) serves as abbreviation for u(r) =
√

1 + (ζr)2/( 3
√
e`)2 and χ = ln (Kwell/Kefu). L is

the aquifer thickness and Qw the pumping rate. h(R) is a reference head measured at the
arbitrary distance R. This can be e.g. the head at the well h(R = rw) or a measured head
value h(R) = hR in the far field, within the radius of influence of the pumping test. Details on
the mathematical derivation can be found in the appendix A.3.

The solution hefw(r) is a general expression for both boundary conditions at the well with hefwA (r)
for Kwell = KA (BCA) and hefwH (r) for Kwell = KH (BCH). hefwA (r) and hefwH (r) differ in the
parameter ζ. For BCA we fix ζA = 0.8. For BCH we set ζH = 1.6. The relation ζA = 0.5 ∗ ζH
results from the fact that the transition zone from KA to Kefu is half the size of the transi-
tion from KH to Kefu. It results from the asymmetric relation between Kefu, KA and KH as
discussed in section 4.2.2, see Figure 30.

Analyzing hefw(r) in Eq. (4.10), we see that the first term results in Thiem’s Formula with Kwell

as homogeneous substitute value. The terms U1 and U2 operate as correction terms, gaining in
influence with increasing distance from the well. For homogeneous media χ becomes zero and
Eq. (4.10) reduces to Thiem’s solution, Eq. (4.1).
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Figure 32: Derivation of hefwA (r) and hefwH (r) with respect to parameters σ2 and ` in dimen-
sionless scale r/`. The left plot shows the derivatives for σ2 = 0.5, the right one
for σ2 = 2. Used setting: KG = 10−4 m/s, e = 1 and h(r/` = 6.4) = 0m.

As shown in Figure 31, hefw(r) interpolates between the drawdowns of Thiem’s solution with
Kwell and Kefu as homogeneous substitute values, where the transition is determined by the
correlation length `. In Figure 31 also the different sizes of the transition zone for BCA and
BCH can be seen.

4.4.2. Sensitivity Analysis

Formula (4.10) for the effective well flow head hefw(r) allows for a detailed analysis of the
influence of the parameters of K(x) on the drawdown. Depending on Kwell meaning the
applied boundary condition (BCA or BCH), the effects can be quite different. However, for
both boundary conditions we state from our findings that the geometric mean KG influences
the entire curve. The variance σ2 mainly impacts on the drawdown at the well. And the
correlation length ` determines the ’velocity’ of transition from near to far field behavior.

The variance σ2 determines the magnitude of the drawdown in the vicinity of the well. For
BCA a higher variance σ2 causes larger values for KA and hence flattens the depression cone.
For BCH the opposite effect appears. The larger σ2, the steeper becomes the depression cone.
This effect can be seen in Figure 32, where we plotted the absolute values of the derivative
of hefw(r) with respect to the variance σ2 for both near well conductivity values Kwell = KA

and Kwell = KH and two choices of σ2. For hefwA (r), we can see that the influence of the variance
near the well is very strong and smooths out in the far field, but is still present through Kefu.
For hefwH (r) the effect of σ2 on the drawdown reverses because of the different signs in the
exponent of KH and Kefu. In particular, within the distance of the first correlation length
there exists an area where a change in σ2 does not influence the depression of hefw(r) for BCH.

The effect of a change in correlation length ` on the drawdown can be seen in Figure 31 where we
plotted hefw(r) for two different correlation lengths. The larger `, the longer takes the transition
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Figure 33: Contour plot of anisotropy ratio e: the black lines show the isolines for the
head hefwA (r) in dependence on the dimensionless distance r/` and the anisotropy
ratio e. Used setting: KG = 10−4 m/s, σ2 = 1 and h(r/` = 6.4) = 0m.

fromKwell toKefu. In Figure 32 we plotted the dimensionless version of the derivative of hefw(r)
with respect to the correlation length ` for two different values of the variance σ2. Noticeable
is the increasing influence of ` with increasing variance σ2 for both boundary conditions BCA
and BCH. This is caused by a larger distance between Kwell and Kefu for larger variances.
Furthermore, it can be seen that the influence of ` on hefw(r) vanishes quickly with increasing
distance to the well. This is caused by the fact that the drawdown reaches the far field behavior
after approximately two correlation lengths, meaning that hefw(r > 2`) = hThiem(r > 2`)
with Kefu as homogeneous substitute value in Eq. (4.1). This is in line with the findings of
Neuman et al. [2004, 2007].

If anisotropy (e 6= 1) is assumed an additional quantity impacts the hydraulic head drawdown.
The anisotropy rate e influences the far field behavior by its impact on Kefu in Eq. (4.4).
Additionally, it is present as a scaling factor to the horizontal correlation length (visible in the
expression of u(r)), since the relation between Kefu and Kwell also manipulates the transition
zone. The impact of a change in e on the drawdown is plotted in Figure 33 for BCA, where we
see that the sensitivity of hefwA (r) towards e is very low. The same can be observed for BCH.
This can be explained by the fact that a stronger stratification does not impact very much on
the flow pattern of pumping tests, which is mainly determined by horizontal flow.

4.4.3. The Head Solution as an Inverse Estimation Tool

The analytical solution hefw(r) provides a useful tool to analyze pumping test data. Depending
on the available amount of data, hefw(r) enables the inverse estimation of statistical properties
under the assumption of a log-normal, Gaussian correlated hydraulic conductivity field.
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Examining Eq. (4.10) more closely we see that KG and σ2 are both incorporated in Kwell

and Kefu, where the relation Kwell = KG exp
(
± 1

2σ
2
)
only holds if ergodicity is fulfilled at

the well. Generalizing hefw(r) to non-ergodic conditions, we shift the input variables from KG

and σ2 to Kwell and Kefu by using χ = ln (Kwell/Kefu).

However, from the discussion in section 4.4.2 it can be seen that Kwell, Kefu (respectively σ2

and KG under ergodic conditions) and ` all have a unique influence on the drawdown, which
serves as a good basis for estimating them through a regression. Furthermore, Figure 32 shows
that the estimation of ` becomes even more certain the higher the variance σ2 is. In contrast, e
cannot be treated as an independent parameter, because of its low influence on hefw(r), see
Figure 33. We therefore support the statement of Firmani et al. [2006] that an estimation of
the anisotropy ratio e through pumping test data is very error prone.

What is not discussed until now is the influence of the boundary condition assumed at the
well on the parameter estimation. The certainty in estimating Kwell and Kefu (respectively KG

and σ2) is independent on the choice of BCA or BCH. But to infer on ` the crucial area is the
transition zone from Kwell to Kefu. This zone is smaller for BCA than for BCH, independent
of σ2, because of the relation of Kefu to KA and KH, see Figure 30. In case of anisotropy the
transition zone for BCA becomes even smaller and vanishes for stratified media since Kefu(e =
0) = KA. This makes a parameter estimation with BCA more difficult and less reliable. For
BCH the opposite effect occurs. A convergence of Kefu to KA enlarges the transition zone,
thus improves the ability of estimating `.

4.5. Interpreting Numerical Pumping Test

In this section we analyze three dimensional numerical pumping tests in highly heterogeneous
porous media to confirm the validity of hefw(r) to describe well flow effectively. We examine
the drawdown results and develop a method to infer on the statistical parameters of the con-
ductivity distribution K(x). With our simulations we characterize the transition zone of near
well to far field behavior being the main area of influence of heterogeneity. Furthermore, we
discuss the question if a single pumping test realization is sufficient to infer on all parameters
of K(x) and present several ways to cope with a lack of ergodicity.

4.5.1. Simulation Setup

To examine the question of ergodicity and the influence of domain size on a numerical pumping
test drawdown, we perform simulations on several meshes of different horizontal and vertical
extension. Starting from the findings of Firmani et al. [2006], we generate a large domain G3

with horizontal mesh size of R3 = 40`, a medium sized domain G2 with R2 = 25.6` and a
small one, G1 with R1 = 6.4`, all of them having a vertical extension of 64`v. Adapting to
the radial flow system, we establish a mesh refinement in the range of −` to `. It provides a
high resolution of the head drawdown near the well. Additionally, the well is not included as a
point source but as a hollow cylinder with radius rw = 0.01m. All meshes refer to a correlation
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Ensemble KG [10−4 m/s] σ2 ` [m] e

E1 1.0 1.0 5.0 1
E2 1.0 2.0 5.0 1
E3 1.0 1.0 10.0 1
E4 1.0 1.0 10.0 0.5

Table 17: Input parameters of generated ensembles.

length of ` = 5m and a resolution of 5 cells per correlation length, resulting in a cell size of
1m, being in the range of an idealized small scale pumping test. Note that for the ensembles
with a correlation length of ` = 10m these ratios change while keeping the meshes unchanged.

The boundary conditions of the simulations are the following: The upper and lower horizontal
planes delimiting the domain are set impervious which reflects a confined aquifer. At the
radial distance Ri according to Gi a constant head h(Ri) = 0 is applied, giving a circular outer
horizontal boundary condition. At the well we use a constant total pumping rate of Qw =
−10−3 m3/s with two different boundary conditions: (i) constant flux (BCH), where we assign
the same pumping rate Qi at every grid cell, resulting in Kwell = KH and (ii) proportional flux
(BCA), where the assigned rate is proportional to the local conductivity of the grid cellQi ∝ Ki,
giving Kwell = KA, as stated by Indelman et al. [1996] and Firmani et al. [2006].

All simulations are performed using the finite element software OpenGeoSys developed by
Kolditz et al. [2012a]. The code was tested against a steady state pumping test with homo-
geneous conductivity and the results in two and three dimension are in very good agreement
with the analytical solution of Thiem (4.1).

To generate heterogeneous, log-normal distributed, Gaussian correlated conductivity fields we
make use of the statistical field generator randomfield provided by Cirpka [2010]. Hydraulic
conductivity fields are created by a given deterministic power spectra, as described in Dykaar
and Kitanidis [1992a]. We generate several realizations of hydraulic conductivity fields in three
dimensions of the same statistical parameters, i.e. geometric mean KG, variance σ2, correlation
length ` and anisotropy ratio e all forming one ensemble. To investigate the influence of pa-
rameters on the drawdown numerically, we generate several ensembles with varying parameter
setups, listed in Table 17. In this study every ensemble consists of 20 realizations.

We focus on the vertical average of the simulated head 〈h(x1, x2)〉 = 1/L
∫ L

0 h(x1, x2, x3)dx3.
We take the mean of 〈h(x1, x2)〉 on the x1 and x2 axes as representative drawdown 〈h(r)〉
for a realization, only depending on the distance to the well r. In a first step, we compare
the drawdown 〈h(r)〉 with hefw(r) and Thiem’s solution hThiem(r), using Kefu and Kwell as
homogeneous substitutes. In a second step, we use hefw(r) to infer on the statistical parameters
of K(x) by applying a nonlinear regression to find estimates K̂G, σ̂

2, ˆ̀which minimize the mean
square error between the numerical drawdown data 〈h(r)〉 and hefw(r).

In this estimation procedure we include all available points ri in the range of 5` (corresponds to
25m) of the drawdown 〈h(r)〉. The question of the applicability of hefw(r) on limited head data
is of quite a complex nature. Answering it from the perspective of numerical pumping tests
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Figure 34: Comparison of 20 simulated drawdowns (BCH on G1) from ensemble E2 (KG =
10−4 m/s, σ2 = 2, ` = 5m, e = 1) in log scale.

with full data availability results in a complicated selection criteria. The necessary detailed
statistical analysis is given in section 5. Though in reality a full range of head data will not
be available, we first focus on examining the validity of hefw(r) more theoretically in order to
describe three dimensional well flow effectively.

4.5.2. Influence of Domain size

We test different horizontally extended domains to investigate how the position of the outer
boundary condition influences the simulated head. Comparing the numerical drawdown results
for identical heterogeneity fields on all three domains G1, G2 and G3 shows negligible differ-
ences in the qualitative behavior, valid for all realizations and all ensembles. A quantitative
comparison proves that the maximum relative difference maxr

∣∣∣ 〈hG1 (r)〉−〈hG3 (r)〉
〈hG1 (r)〉

∣∣∣ between the
drawdowns on G1 and G3 is less than 0.5%. Furthermore, the inverse estimation results are
nearly identical (not shown here).

The numerical simulations - independent of the used domain - confirmed the findings of the
sensitivity analysis in 4.4.2 that the mean drawdown reaches the far field representative behavior
after less than two correlation lengths. It shows that reducing the horizontal extension does
not impact on the simulated drawdown, as long as the outer boundary applies at a distance of
more than tree to four correlation length. In the following we will thus reduce the discussion
on numerical results to domain setup G1, since we believe that it contains all information
necessary to determine the impact of heterogeneity on the drawdown.

In the next step, we test the influence of the vertical domain extent on the drawdown results. We
observe significant differences in the mean drawdown when reducing the vertical domain size,
being in the line with the findings of Firmani et al. [2006]. They state that a vertical extension
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Figure 35: Plot of simulated drawdowns (BCA and BCH on G1) of a single realization of
ensemble E1 (KG = 10−4 m/s, σ2 = 1, ` = 5m, e = 1) versus hefw(r) with local
and theoretical value for near well conductivity: 〈KA〉 = 1.422 · 10−4 m/s, KA =
1.649 · 10−4 m/s, 〈KH〉 = 0.523 · 10−4 m/s, KH = 0.607 · 10−4 m/s.

of L ≥ 60`z ensures ergodicity. To check whether this also holds true for our simulation setup
with L being even 64`z we compare the resulting drawdowns 〈h(r)〉 for one ensemble and find
large differences between the 20 realizations. We find that behavior in particular near the well,
as shown in Figure 34 for ensemble E2, which is in contradiction to the findings of Firmani
et al. [2006].

The reason for the spreading within one ensemble becomes evident when relating the draw-
down 〈h(r)〉 of every realization to its local hydraulic conductivity value at the well 〈Kwell〉.
According to both boundary conditions, we calculate the arithmetic mean 〈KA〉 = 1

m

∑m
i=1Ki

and the harmonic mean 〈KH〉 =
(

1
m

∑m
i=1

1
Ki

)−1
of the conductivity values Ki of the m = 320

cells along the well. As predicted by theory, the local mean 〈Kwell〉 determines the depression
in the vicinity of the well. But in contrast to Firmani et al. [2006], who found differences of
less than 1.4% between 〈Kwell〉 and the theoretical value Kwell = KG exp

(
± 1

2σ
2
)
, we found

differences up to 20%.

The discrepancies between local and theoretical expected means, 〈Kwell〉 6= KG exp
(
± 1

2σ
2
)
, we

trace back on a too small sample size. A mean over 320 K-values, moreover spatially correlated,
is not representative for a full K-field of over one million values, ensuring the convergence to
the theoretical expected mean. We therefore state that a single three dimensional pumping
test, with a randomly chosen well position, does not fulfill ergodic conditions, even for very
large vertical domain extensions.
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Figure 36: Statistics on results of ensemble E1 (n = 20): The upper boxplots compare the
local means at the well 〈Kwell〉 with the inverse estimated values K̂well. The lower
boxplots compare the estimation results of K̂efu and ˆ̀ for both boundary conditions
(BCA and BCH). The appropriate theoretical value is marked on the vertical axis.

4.5.3. Analysis of a Single Pumping Test

To overcome the lack of ergodicity, we analyze single pumping tests with hefw(r), accounting
for local variations at the well. We use the universal definition of χ = ln (〈Kwell〉/Kefu) as
introduced and discussed in section 4.3.3 and 4.4.3 with the local mean 〈Kwell〉 instead of the
theoretical value Kwell and find very high accordance between 〈h(r)〉 and hefw(r). Figure 35
shows the impact of 〈Kwell〉 on the simulated drawdown of a single realization for ensemble E1
and the large differences between hefw(r) when using 〈Kwell〉 compared to Kwell. It can be seen
quite well that hefw(r) with 〈Kwell〉 matches the simulated drawdown for both boundary con-
ditions. This is clearly not the case for hefw(r) with Kwell, because of the significant differences
of 13.8% between Kwell and 〈Kwell〉 for both boundary conditions.

It should be mentioned that a modification of hefw(r) goes along with a shift of input parameters
from KG and σ2 to the far and near field representative values 〈Kwell〉 and Kefu. In terms of
analyzing single realizations, it can be interpreted as a decoupling of the full field variance σ2

incorporated in Kefu and a local variance at the well 〈σ2〉 incorporated in 〈Kwell〉. Both values,
local and full field variance, might differ significantly from each other.

We performed a parameter estimation by using Eq. (4.10) with χ = ln 〈Kwell〉
Kefu

on every realiza-
tion of ensemble E1. A statistical analysis of the results is shown in the box plots of Figure 36.
For both boundary conditions, we find a very high accordance between the local mean values
at the well 〈Kwell〉 (〈KA〉 and 〈KH〉, respectively) and the estimated values K̂well (K̂A and K̂H),
plotted in the upper box plots. The estimation results for the far field conductivity K̂efu are
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K̂G [10−4 m/s] σ̂2 K̂efu [10−4 m/s] K̂A [10−4 m/s] ˆ̀ [m]
E1 1.0 1.0 1.181 1.649 5.0

0.972 1.064 1.16 1.654 4.99
(±0.014) (±0.028) (±0.013) (±0.008) (±0.42)

E2 1.0 2.0 1.396 2.718 5.0
0.946 2.083 1.338 2.68 5.05
(±0.023) (±0.05) (±0.023) (±0.028) (±0.41)

E3 1.0 1.0 1.181 1.649 10.0
0.954 1.079 1.142 1.636 10.12
(±0.005) (±0.011) (±0.004) (±0.005) (±0.55)

Table 18: Parameter estimation results of simulated mean head 〈h(r)〉 for three ensembles
with BCA. Expected ensemble parameters in italic, the inverse estimates in bold and
the 95% confidence intervalls in brackets.

shown in the lower left box plot. We can see that BCA underestimates and BCH overestimates
the theoretical expected value Kefu, but only by small deviations. The estimated values for
the correlation length ˆ̀ match the theoretical value ` very well, visible in the lower right box
plot. However, the variability is quite large, especially for BCA. This corresponds to the large
spread of 〈KA〉 from KA, because the estimation of the correlation length depends strongly on
the transition zone and is therefore triggered by the local discrepancies at the well.

We conclude from the analysis of a single realization that hefw(r) allows a good estimation
of the statistical parameters K̂well, K̂efu and ˆ̀. Since K̂well is very much influenced by the
local distribution of the conductivity near the well, it does not necessarily correspond to the
theoretical value Kwell = KG exp

(
± 1

2σ
2
)
and we thus recommend to be careful when tracing

back KG and σ2 from K̂well and K̂efu for a single pumping test.

4.5.4. Analysis of an Ensemble of Pumping Tests

Since a vertical extension of L = 64`z does not ensure ergodicity sufficiently, we state that
even in three dimensions it is necessary to investigate an ensemble of pumping tests to infer on
the statistics of K(x). A further extension in vertical direction would also be a possibility to
ameliorate the results in theory. However, even assuming high anisotropy rates these conditions
will hardly be fulfilled in reality. On the other hand, a number of pumping tests within
an observation area will give much better insights into the heterogeneous structure of the
subsurface.

Within our setting we tested several ensemble sizes up to n = 20 realizations and estimate
the statistical parameters for the ensemble mean 〈h(r)〉n =

∑n
i=1〈hi(r)〉. We found a quick

convergence of K̂efu and ˆ̀ to the theoretical assigned values: less than 10 realizations are suffi-
cient to be in a range of 95% accuracy. For the near well conductivity about 15-20 realizations
are necessary to ensure an acceptable good agreement between K̂well and Kwell. Table 18 and
Table 19 show results for the estimated parameters K̂well, K̂efu and ˆ̀ from 〈h(r)〉n=20 for three
different ensembles and both boundary conditions. The values for K̂G and σ̂2 can either be
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K̂G [10−4 m/s] σ̂2 K̂efu [10−4 m/s] K̂H [10−4 m/s] ˆ̀ [m]
E1 1.0 1.0 1.181 0.607 5.0

1.008 0.972 1.186 0.62 5.01
(±0.003) (±0.005) (±0.004) (±0.001) (±0.09)

E2 1.0 2.0 1.396 0.368 5.0
0.986 2.025 1.383 0.358 5.07
(±0.007) (±0.013) (±0.012) (±0.001) (±0.08)

E3 1.0 1.0 1.181 0.607 10.0
1.031 0.94 1.206 0.644 10.26
(±0.006) (±0.011) (±0.009) (±0.001) (±0.27)

Table 19: Parameter estimation results of simulated mean head 〈h(r)〉 for three ensembles
with BCH. Expected ensemble parameters in italic, the inverse estimates in bold and
the 95% confidence intervalls in brackets.

evaluated from K̂well and K̂efu or directly estimated by using χA = σγ(e) and χH = σ(γ(e)−1);
the estimation results are also listed in Table 18 and Table 19.

Again we state that the good estimation results for K̂well and σ̂2 are mainly caused by the
fact that for a sufficiently large number of realizations, the local mean at the well 〈Kwell〉
converges to the theoretical assigned value Kwell. A precise number of pumping tests needed
to ensure ergodicity can be traced back on the question: What sample size N is necessary to
guarantee the convergence of the mean of a sample of spatially correlated log-normal distributed
values 〈K〉N = 1

N

∑N
i=1Ki to the theoretical expected mean KA = KG exp

(
1
2σ

2
)
. Answering

this question is out of the scope of this study. Most likely, there does not exist a single number
being appropriate for all possible statistical and geometrical settings.

An item which is not discussed until now is the interpretation of drawdowns in anisotropic
media. As discussed in section 4.4.2 we do not incorporate e into our estimation procedure due
to the low sensitivity of hefw(r) towards e. However, applying hefw(r) on drawdown data in
anisotropic media is possible and useful, as shown in Figure 37. Assuming a reasonable value
for e leads to very good accordance of 〈h(r)〉n=20 and hefw(r) and further allows the estimation
of K̂efu, K̂well and ˆ̀. For application on real pumping tests data we would recommend to fix e to
a reasonable value or to carry out several estimations with various ratios for e like 0.01, 0.1, 0.5
and 1.0 and interpret the results with respect to the accordance of K̂efu, K̂well and ˆ̀ to the
drawdown.

We conclude by stating that our numerical results show that hefw(r) is a promising tool to
characterize aquifer properties like mean conductivity, variance, and spatial correlation at a
very local scale by interpreting the near well behavior of steady state pumping tests.

4.6. Summary and Conclusions

In this study we introduced a representative description of the hydraulic head drawdown for
a steady state pumping test with fully penetrating well for highly heterogeneous media. By
making use of the upscaling technique Coarse Graining, we derived a radial depending con-
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Figure 37: Plot of ensemble drawdown 〈h(r)〉n=20 for ensemble E4 (KG = 10−4 m/s, σ2 =
1, ` = 10m, e = 0.5) versus hefw(r) in anisotropic media for BCA and BCH. The
inset shows the near well behavior in log scale.

ductivity KCG(r). It interpolates between the known near and far field representative con-
ductivities for well flow. Therefore, we deduced the effective well flow head solution hefw(r)
which reproduces the mean drawdown of a pumping test adequately. We understand hefw(r)
as an extension of Thiem’s Formula incorporating the effects of the statistical parameters of
the underlying log-normal distributed conductivity field K(x) on the flow pattern.

The analytical character of hefw(r) allowed us to perform a sensitivity analysis for the param-
eters of K(x) on the drawdown. We found that the variance σ2 has the strongest impact on
the hydraulic head directly at the well. The horizontal correlation length ` determines the
transition from near to far field behavior. In particular the impact of ` increases with increas-
ing variance σ2, which makes a prediction of ` easier for highly heterogeneous media. The
anisotropy ratio e has only little influence on the drawdown, giving that hefw(r) shows very
low sensitivity towards changes in e.

To validate the applicability of hefw(r) we performed steady state numerical pumping tests
in three dimensional highly heterogeneous anisotropic media, with variances up to σ2 = 2.
Our investigations confirmed the findings of Indelman et al. [1996] that the far field behavior
is covered by Kefu = KG exp

(
σ2( 1

2 − γ(e))
)
. We also found the near well representative

conductivity Kwell to be the arithmetic KA or harmonic mean KH, depending on the assigned
Dirichlet or Neumann boundary condition.

However, the means at the well have to be considered very locally. Investigations on the local
distribution of K(x) showed that the arithmetic and harmonic mean of the conductivity values
directly along the well 〈KA〉 and 〈KH〉 are not representative for the theoretically expected
means of the full field KA = KG exp

(
1
2σ

2
)
and KH = KG exp

(
− 1

2σ
2
)
. We found discrepancies

up to 20% between KA and 〈KA〉 as well as between KH and 〈KH〉 for all tested variances. We
therefore conclude that a single pumping test realization does not fulfill ergodic conditions in
the vicinity of the well even for a large vertical extension of more than 60 correlation lengths.
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This is in contrast to a previous work published by Firmani et al. [2006].

In order to make predictions for the overall statistics, we analyzed ensembles of pumping
tests and showed that hefw(r) does not only reproduce the ensemble drawdown but enables
the estimation of the statistical parameters with very high accuracy. In isotropic media the
estimated results K̂G, σ̂2 and ˆ̀ differ less than 6% from the expected ones for all ensembles
with very high confidence. Solely the anisotropy ratio e is difficult to infer. We agree with
Firmani et al. [2006] that the estimation of e from pumping test data is very error prone.
Nonetheless, hefw(r) also allows the interpretation of drawdowns in anisotropic media (e < 1)
by assuming a reasonable ratio e and then estimating the parameters K̂G, σ̂2 and ˆ̀.

However, being limited to ensemble averages of multiple pumping tests is clearly a limitation
for interpreting real drawdown data. To overcome the lack of ergodicity at the well in a sin-
gle realization we adapted our proposed formula hefw(r) on local statistics of the conductivity,
incorporating 〈KA〉 and 〈KH〉, which gives a much better reproduction of the simulated depres-
sion cone than with theoretically values KA and KH. This modification allows to estimate K̂A

and K̂H respectively, K̂efu and ˆ̀ for single drawdown data. If several pumping tests in one
area are available each can be interpreted with hefw(r) and afterwards a statistical analysis can
be applied to infer on σ̂2 and K̂G. Thus hefw(r) can serve as a helpful tool to interpret real
drawdown data for an arbitrary number of steady state pumping tests.

Exploiting our results with respect to predictions on a real pumping test sampling design we
suppose that the quality of the parameter estimation mainly depend on the position of the
observation wells. A good estimation of the variance σ2 requires measurements directly at the
well. To infer on the correlation length ` the vicinity of the well, meaning the area within
two correlation lengths has to be investigated. Measurements far from the well allow to infer
on Kefu. The larger the number of head data in the corresponding area of influence of a
parameter, the more reliable are its estimation result. Thus we can use hefw(r) not only to
infer on the statistics but it also allows to judge the usefulness of measurements with respect
to the estimation of the parameters for the underlying hydraulic conductivity field.
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5. Estimating Parameters of Aquifer Heterogeneity Using Pumping
Tests - a Paradigm for Field Applications

5.1. Introduction

Groundwater pumping tests are applied as common and well-established tool to estimate hy-
draulic properties of porous media. Estimating parameters such as the saturated hydraulic
conductivity of an aquifer is based on measurements of the hydraulic head across the area of
drawdown. Classical approaches to estimate hydraulic conductivity from pumping tests are
based on Thiem’s formula [Thiem, 1906] or Theis’ solution [Theis, 1935] for steady state or
transient flow conditions, respectively; the latter having been simplified by Cooper and Jacob
[1946]. Detailed information on the application of those approaches under numerous boundary
conditions was provided by Kruseman and de Ridder [2000].

With regard to natural aquifers, a critical shortcoming of these methods is the simplified
assumption of aquifers being homogeneous. The vast majority of natural aquifers are charac-
terized by discontinuities evolved from geomorphologic processes which affect the drawdown
curve derived from pumping tests [Dagan and Neuman, 1997]. Estimating the heterogeneous
structure of aquifers is crucial for characterizing the groundwater flow toward the pumping
well and for predicting solute transport, particularly in regard to contaminant migration and
in-situ remediation. For example, assuming a log-normal hydraulic conductivity model, the
horizontal dispersivity of an aquifer is proportional to the product of the variance σ2 and the
horizontal correlation length ` [Gelhar , 1993].

Taking heterogeneity into account, the hydraulic conductivity is assumed to be represented
by a spatial random function K(x) with log-normal distributed values K(x) ∝ LN (µ, σ2),
where µ and σ2 denote the mean and variance of the normal distribution lnK(x), respectively.
However, using a single representative mean value of K(x) to describe the water flow toward
the pumping well is inadequate for steady state conditions [Matheron, 1967], because distinct
representative values emerge for the flow near (Kwell) and far from the pumping well (Kefu).
The mathematical expressions of Kwell and Kefu depend on µ and σ2 and are related to the
dimensionality of the water flow, see Sánchez-Vila et al. [2006] for details.

Most studies concerning well flow in heterogeneous porous media are limited to a two dimen-
sional flow model and therefore are representative for large scale pumping tests, e.g. Desbarats
[1992]; Sánchez-Vila et al. [1999]; Copty and Findikakis [2004]; Neuman et al. [2004]; Leven
and Dietrich [2006]; Neuman et al. [2007]; Dagan and Lessoff [2007]; Schneider and Attinger
[2008]. However, for small scale pumping tests vertical flow in the vicinity of the pumping well
is a critical component that influences the drawdown. Those considerations indicate the need
to reliably estimate statistical parameters of K(x) using data from pumping tests and applying
simple analytical solutions for three dimensional water flow [Indelman and Abramovich, 1994;
Indelman et al., 1996; Indelman, 2001; Guadagnini et al., 2003; Firmani et al., 2006; Zech et al.,
2012], thereby reducing time and cost-load otherwise involved with methods such as laboratory
trials.
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By deriving the vertical mean drawdown of a steady state pumping test in three dimensional
heterogeneous porous media, we presented in the previous section 4.4 an analytical tool to
analyze statistical parameters of K(x). The developed formula – referring to the effective well
flow head hefw(r) – depends on the radial distance from the pumping well r and the statistical
properties KG, σ2, ` and e of K(x). In contrast to Indelman and Abramovich [1994] and
subsequent works, this method is based on an upscaling procedure called Coarse Graining
[Attinger , 2003] rather than perturbation theory. Numerical simulations of pumping tests
showed that hefw(r) reliably reproduces the radial depression cone of a steady state pumping
test for a range of statistical parameter values.

In contrast to simulated pumping tests, the underlying K(x) distribution of on site aquifers
is unknown, which hampers the qualitative assessment of parameter estimates when using
empirical field-site data. Moreover, sample size of head measurements is limited, which involves
uncertainty in parameter estimates, e.g. if pumping tests are by chance conducted in areas of
extraordinary low or high permeability. Thus the question remains whether hefw(r) is capable
to estimate the statistical parameters of an natural aquifer using field-site pumping test data.

The aim of this study is to close the gap between theoretical and field application of hefw(r)
on pumping test data. We examined the capability and predictive power of hefw(r) to provide
estimates of statistical parameters of K(x) from pumping test data such as under field-site
conditions. As a first step (section 5.3), we analyzed simulated pumping tests by reducing
the sample size of head measurements and evaluating the quality of parameter estimation.
As a second step (section 5.4), we applied hefw(r) on empirical groundwater pumping test
data from the field site Horkheimer Insel, Germany [Schad and Teutsch, 1994] and compared
the hefw(r) estimates with the findings from laboratory investigations [Schad, 1997]. Based
on these findings, we provide consideration regarding the conceptual design of groundwater
pumping tests and the predictive power of established pumping tests sites.

5.2. Theoretical Framework

This study is based on the effective well flow head hefw(r) introduced in section 4 and published
in Zech et al. [2012]. The relation between the effective well flow head and the hydraulic head
for pumping tests conducted in heterogeneous porous media is depicted in Figure 38. Moreover,
the fundamentally distinct method of predicting the hydraulic head of homogeneous aquifers
using Thiem’s solution is illustrated. Starting point is a spatially distributed heterogeneous
conductivity field K(x,KG, σ

2, `, e). Conducting pumping tests on such an aquifer results in
a spatially distributed hydraulic head field h(r, θ,KG, σ

2, `, e), also depending on the statistics
of K(x). Tracing back the parameters of K(x) from h(r, θ,KG, σ

2, `, e) is the fundamental goal
of estimating aquifer parameters inversely.

The approach of Zech et al. [2012] is based on adapted spatial averaging of K(x,KG, σ
2, `, e)

according to the conditions of pumping tests. Using the upscaling procedure Coarse Graining
[Attinger , 2003] a representative conductivity KCG(r,KG, σ

2, `, e) is derived, which is not fully
homogenized, but still depends on the statistical parameter of K(x).
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Figure 38: Relation between the deduction of hefw(r) and processes occurring during field site
pumping tests.

Coarse Graining can be best explained as a spatial filtering procedure that averages over
volumes of variable filter size. Applied to pumping tests, Coarse Graining allows to account
for the character of radial convergent flow. Near the pumping well, where the impact of
heterogeneity is large, the filter size is adjusted such as that small volumes are captured,
thereby leaving the heterogeneity unchanged. Whereas far from the pumping well, the filter
size is larger resulting in averaged values.

Performing a pumping test on KCG(r) results in the effective well flow head hefw(r,KG, σ
2, `, e)

(Figure 38). Numerical simulation in section 4.5 showed that hefw reproduces the vertical aver-
aged hydraulic head h(r, θ,KG, σ

2, `, e) of a pumping test in randomly heterogeneous medium,
due to its ability to capture effects of heterogeneity in contrast to Thiem’s solution hT(r,KG).

5.2.1. The Effective Well Flow Head

The effective well flow head hefw(r) can be considered an extension of Thiem’s solution to
heterogeneous media. It reproduces the vertical mean drawdown of a steady state pumping
test in relation to the radial distance r and the statistical parameters of K(x):

hefw(r) = C1 exp (−χ) ln r

R
+ C1 sinh(χ)U1(r) + C1 (1− cosh(χ))U2(r) + h(R) , (5.1)

with the abbreviations C1 = − Qw
2πLKefu

, χ = ln Kwell
Kefu

, u(r) =
√

1 +
(
ζr
3√e`

)2
and the terms

U1(r) = ln u(r) + 1
u(R) + 1 −

1
u(r) + 1

u(R)

U2(r) = ln u(r)
u(R) −

1
2u(r)2 + 1

2u(R)2 −
1

4u(r)4 + 1
4u(R)4 ,
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where Qw is the pumping rate, L is the aquifer thickness, ζ is a constant of proportionality,
` is the horizontal correlation length and e ∈ [0, 1] is the anisotropy ratio assuming a Gaussian
shaped spatial correlation structure in horizontally isotropic and vertically anisotropic media.
The reference head h(R) is measured at the radial distance R, which can either be at the
pumping well or in the far field.

The hefw(r)-solution interpolates between the representative hydraulic conductivities at the
pumping well and in the far field – Kwell and Kefu, respectively. They differ remarkably for
steady state flow conditions, thereby affecting the flow characteristics of each radial section of
the depression cone.

For log-normal distributed conductivity the asymptotic drawdown behavior in the far field of
a steady state pumping test in three dimensions is characterized by the effective hydraulic
conductivity for uniform flow [Dagan, 1989; Indelman and Abramovich, 1994; Sánchez-Vila
et al., 2006]:

Kefu = KG expσ2
(

1
2 − γ(e)

)
, (5.2)

where KG denotes the geometric mean, σ2 the variance and γ(e) is the anisotropy function
γ(e) = e

2(1−e2)

(
1√

1−e2 arctan
(√

1/e2 − 1
)
− e

)
.

Estimates of Kwell depend on the assigned boundary condition, [Indelman et al., 1996; Indel-
man and Dagan, 2004]: (i) the Neumann boundary condition (hereafter referred to as BCH)
is based on constant flux and corresponds to the harmonic mean Kwell = KH, whereas (ii) the
Dirichlet boundary condition (BCA) is based on a constant head and corresponds to the arith-
metic mean Kwell = KA. If ergodicity applies at the pumping well the values for Kwell can be
calculated as KH = KG exp

(
− 1

2σ
2
)
for BCH, and KA = KG exp

(
1
2σ

2
)
for BCA. Both bound-

ary conditions are addressed in Eq. (5.1) through Kwell in χ = ln Kwell
Kefu

and the parameter ζ,
which is ζBCH = 1.6 and ζBCA = 0.8, see section 4.4.1.

Notably, hefw(r) is a deterministic head solution governed by the statistical characteristics
of K(x) rather than a spatial random function. The solution presented in Eq. (5.1) is based
on the four parameters Kefu and Kwell, ` and e. If ergodic conditions apply σ2 and KG can be
calculated via

σ2 = 2 (lnKwell − lnKefu)
2γ(e)− 1± 1 , (5.3)

with + for BCA and − for BCH and KG = Kwell exp
(
∓ 1

2σ
2
)

= Kefu exp
(
−σ2

(
1
2 − γ(e)

))
.

However, for single pumping tests ergodicity cannot be presumed in the vicinity of the pump-
ing well and Kefu and Kwell are required for Eq. (5.1) to be independent from any ergodicity
assumption. This modification is particularly useful for single pumping tests where Kwell is
not related to the theoretical values of KH or KA (section 4.5.2). Both parameterizations, KG

and σ2 for ergodic conditions, and Kefu and Kwell for non-ergodic conditions, are able to re-
produce ensemble head means of simulated pumping tests. Since the aim of this study is to
examine the capability and predictive power of hefw(r) to estimate statistical parameters using
single pumping test data from field campaigns, we focus on non-ergodic conditions hereafter.
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5.2.2. Inverse Parameter Estimation

While the analytical character of hefw(r) allows for examining the influence of statistical param-
eters of K(x) on the depression cone, it also can be utilized to estimate those parameters in-
versely from pumping tests. Based on this premise nonlinear regression is used to estimate best
values of K̂efu, K̂well and ˆ̀ to minimize the mean square error of the difference between hefw(r)
and the measured drawdown 〈h(r)〉.

However, to determine the accuracy and certainty of those estimates it is essential to ascer-
tain the sensitivity of hefw(r) to each of the parameters. A sensitivity analysis, performed in
section 4.4.2, revealed that Kwell and Kefu influence hefw(r) in the vicinity of the pumping
well and the far field, respectively, whereas the correlation length ` controls the transition be-
tween Kwell-driven and Kefu-driven drawdown. The larger ` the larger is the transition zone
around the pumping well.

Moreover, hefw(r) is highly sensitive to changes in values of Kefu, Kwell and `, whereas the
sensitivity of hefw(r) towards changes in the anisotropy ratio e is very low. Hence, estimating e
from pumping tests is hardly possible [Firmani et al., 2006; Zech et al., 2012] and reliable
estimates of K̂efu, K̂well and ˆ̀ can only be achieved if e is considered constant.

Comparing the confidence intervals, denoted by CI, of the three parameters reveals that CIˆ̀

is much greater than CIK̂efu
and CIK̂well

. This is caused by the distinct areas that effect K̂efu

and K̂well – far field and vicinity of pumping well, respectively – whereas the accuracy of ˆ̀ also
depends on the estimates of K̂efu and K̂well. Alternatively, to eliminate this intrinsic uncertainty
and thereby decreasing the confidence interval, the correlation length ˜̀ rather than ` can be
estimated using K̂efu and K̂well as constant parameters.

5.3. Pumping Tests under Limited Data Availability - a Paradigm for Field
Applications

We examined the capability of hefw(r) to estimate statistical parameters of a heterogeneity
under limited data availability as found under conditions of on-site pumping tests. In order
to characterize the impact of the number and location of head measurements on the esti-
mation quality, represented by accuracy and uncertainty, we performed simulated numerical
experiments. The simulations were based on head data of pumping tests conducted in three
dimensional aquifers with randomly generated hydraulic conductivity fields. Sample size of
head measurements was systematically reduced with regard to their horizontal distribution
and their radial distance relative to the pumping well.

5.3.1. Pumping Test Model

The finite element software OpenGeoSys [Kolditz et al., 2012a] was used to simulate pumping
tests on randomly generated realizations of three dimensional hydraulic conductivity fields. The
statistical parameters of the aquifer were set as KG = 10−4ms−1, σ2 = 1, ` = 8m, and e = 1.
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ri in [m] #ri characteristics
S1 rw, 1,..,32 33 full range, equidistant, 1m interval
S2 rw, 2,..,32 17 full range, equidistant, 2m interval
S3 rw, 4,..,32 9 full range, equidistant, 4m interval
S4 rw, 8,..,32 5 full range, equidistant, 8m interval
S5 rw, 1,..,8 9 vicinity of the well
S6 9,..,32 24 far field
S7 rw, 2, 4, 6, 8, 16, 24, 32 8 full range, focus on vicinity of the well
S8 rw, 8, 16, 20, 24, 28, 32 7 full range, focus on far field

Table 20: Scenarios S1-S8 of limited radial head data ri. The total number of measurements is
denoted as #ri. Head measurements were sampled from all four axial directions.

The numerical grid was similar to the one used previously in section 4.5, with small adaption to
conditions of short term pumping tests as conducted on-site at the Horkheimer Insel by Schad
[1997], (section 5.4). The horizontal grid size was 8` (64m) with a uniform grid cell size of 1

8 `

(1m) except for cells in the vicinity of the pumping well, which were required to be smaller for
the purpose of integrating steep head gradients. The vertical grid size was 15e` with a uniform
grid cell size of 1

8 e`.

Impermeable horizontal layers formed the base and top of the aquifer. The outer boundary
condition was set as fixed head h(R = 4`) = 0. At the pumping well both BCH and BCA
were applied, respectively (section 5.2). For the first the pumping rate of Qw = −10−3m3s−1

was equally distributed over all vertical grid cells at the pumping well, whereas for the latter
the pumping rate was proportional to the vertically distributed hydraulic conductivity values
at the pumping well Qi ∝ Ki, which corresponds to the constant head boundary condition
[Firmani et al., 2006; Zech et al., 2012].

Simulated heads were measured at the four axial directions θ1 = 0, θ2 = 1/2π, θ3 = π, θ4 = 3/2π
with a resolution of 1m. We used vertically averaged heads to reflect on head measurements
as derived under field-site conditions, eventually only depending on the horizontal position de-
scribed by the radial distance ri and the angular position θj : 〈h(ri, θj)〉 = 1/L

∫ L
0 h(ri, θj , z)dz.

5.3.2. Methods of Sample Size Reduction

We reduced the sample size of simulated head measurements stepwise according to (i) their
angular position, (ii) radial distance relative to the pumping well, and (iii) a combination of
both. For each step we estimated the statistical parameters K̂efu, K̂well and ˆ̀ according to the
procedure described in section 5.2.2. The average hydraulic head 〈h(r)〉 derived as the mean
of the four axial directions θ1 = 0, θ2 = 1/2π, θ3 = π, θ4 = 3/2π and measured at 1m intervals
serves as reference scenario S1 (Table 20) with full data availability.

Firstly, we controlled the sample size of head measurements with respect to their angular
arrangement, while remaining the full sample size with regard to their radial distance from the
pumping well. The statistical parameters were estimated for each of the four axial directions,
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K̂well [10−4 m/s] K̂efu [10−4 m/s] ˆ̀ [m]
reference parameter 0.648 1.181 8.0
〈h(r)〉 0.665 (±0.003) 1.165 (±0.012) 8.86 (±0.54)
〈h(r, θ1)〉 0.657 (±0.006) 1.176 (±0.020) 7.58 (±0.83)
〈h(r, θ2)〉 0.663 (±0.006) 1.207 (±0.027) 8.95 (±1.07)
〈h(r, θ3)〉 0.677 (±0.009) 1.199 (±0.054) 12.52 (±2.42)
〈h(r, θ4)〉 0.664 (±0.005) 1.106 (±0.016) 7.60 (±0.82)
〈h̃(r, θC1)〉 0.660 (±0.011) 1.155 (±0.039) 8.04 (±1.73)
〈h̃(r, θC2)〉 0.659 (±0.010) 1.152 (±0.034) 7.72 (±1.52)
〈h̃(r, θC3)〉 0.661 (±0.012) 1.179 (±0.049) 8.73 (±2.08)
〈h̃(r, θC4)〉 0.672 (±0.011) 1.173 (±0.048) 9.65 (±2.17)
〈h̃(r, θC5)〉 0.660 (±0.010) 1.134 (±0.030) 7.12 (±1.40)

Table 21: Estimates of K̂well, K̂efu and ˆ̀ for the mean of all angular directions 〈h(r)〉, single
transects 〈h(r, θj)〉 and five distinct combinations of heads with randomly chosen
angular position 〈h̃(r, θCk)〉k=1,...,5. In brackets are given the 95% confidence inter-
vals. The sampling size with regard to the radial distance remained constant at 1m
intervals.

hereafter referred to as transects 〈h(r, θ1)〉,. . . , 〈h(r, θ4)〉 (Table 21). Then the drawdown curves
were analyzed with a random combination of head measurements from any of the four axial
directions 〈h̃(r, θC1)〉,. . . , 〈h̃(r, θC5)〉, listed in Table 21.

Secondly, we controlled the sample size regarding the radial distance to the pumping well,
while using the average hydraulic head of all transects. The sample size was reduced with
respect to equidistant sampling intervals for scenarios S2-S4 (Table 20). For scenarios S5 and
S6 sampling intervals remained at 1m, but focused only on head measurements in the vicinity
of the pumping well or the far field, respectively (notably, head measurement at the pumping
well was excluded for S6). Likewise, head measurements focused on the vicinity of the pumping
well or the far field for scenarios S7 and S8, respectively, but heads were sampled across the
entire range of the aquifer (logarithmic scaled arrangement).

Finally, we combined the two controlled experiments and randomly sampled head measurements
from any of the four transects for all scenarios as defined in Table 20.

5.3.3. Parameter Estimation under Angular Limitation

The drawdown curves in Figure 39 – angular mean, the four transects and one random angular
combination of head measurements – were in good accordance in the far field and directly at
the pumping well. Hence, estimates of K̂well and K̂efu were accurate and only little uncertainty
was involved for both, the four transects 〈h(r, θi)〉 and the random combinations 〈h(r, θCi)〉
(Table 21). The hydraulic conditions of both locations, pumping well and far field, were the
same for all θj and θCk, thereby resulting in similar estimates for K̂well and K̂efu.

At a radial distance from the pumping well corresponding to one correlation length (` = 8m) the
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Figure 39: Simulated drawdowns of a single realization (with statistics KG = 10−4 m/s, σ2 =
1, e = 1, ` = 8m and h(R = 32m) = 0m). Black line denotes the angular
mean 〈h(r)〉 of the four transects 〈h(r, θ1)〉, . . . , 〈h(r, θ4)〉 (grey dashed lines). The
black dots mark one random combination of head measurements 〈h(r, θC1)〉 .

drawdowns of the four transects 〈h(r, θi)〉 (dashed lines in Figure 39) deviated from the angular
mean 〈h(r)〉, indicating that the estimated correlation length ˆ̀ was sensitive to the selected
transect. Likewise, estimates of ˆ̀were less accurate for selected transects, e.g., ˆ̀ of 〈h(r, θ3)〉 =
12.52 in Table 21. A possible explanation for this is the occurrence of patches of much higher or
lower than the average hydraulic conductivity in the environment of the pumping well, which
critically influence hydraulic heads of the transition zone between Kwell-driven and Kefu-driven
depression.

For randomly combined head measurements from all four transects 〈h(r, θCi)〉 (black dots
in Figure 39) the estimates of ˆ̀ were more accurate but less certain, as indicated by larger
confidence intervals (Table 21). The random distribution of measurements around the pumping
well buffers the effect of estimating local values as for single transects, but also results in a
larger deviation from the mean head 〈h(r)〉 (Figure 39). Based on these findings, we conclude
that for heterogeneous aquifers the angular arrangement of head measurements is critical to
estimate sound and certain values of ˆ̀.

5.3.4. Parameter Estimation under Radial Limitation

For each scenario S1-S8 (Table 20) the estimates of K̂efu, K̂well and ˆ̀and the corresponding con-
fidence intervals CIK̂efu

, CIK̂well
and CIˆ̀ – all normalized by the initial parameters Kefu, Kwell

and ` – are depicted in Figure 40, where values close to one indicate high accuracy. Likewise, ˜̀

is plotted as alternative estimate to ˆ̀ to depict estimates of the correlation length while K̂efu

and K̂well being constant. For each scenario the approach of estimating ˜̀ separately from K̂efu

and K̂well was found to be very suitable to reduce the confidence interval CI˜̀ dramatically
(Figure 40).
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Figure 40: Normalized estimation results for eight scenarios of radially limited head data (Ta-
ble 20) with error bars marking the normalized 95% confidence intervals. Circles
denote results for K̂efu/Kefu, squares for K̂well/〈Kwell〉, stars for ˆ̀/` and diamonds
for ˜̀/`.

Parameter estimates of K̂well and K̂efu were nearly insensitive to any sampling arrangement
with regard to the radial distance except for S6 where the estimation of K̂well failed due to a
lack of head measurement at the pumping well. As a consequence also estimates of correlation
length were unreliable for S6. Otherwise, estimates of the correlation length were sensitive
to increasing sampling intervals (S2-S4) and the distance of the head measurements from the
pumping well (S5, S7 and S8).

These findings emphasize that at least one (if measured at the pumping well) to three (if
measured in the vicinity of the pumping well) head measurements are required to facilitate
reliable estimates of K̂well. Likewise, four to five head measurements located in the far field of
the depression cone enhance reliable estimates of K̂efu.

Based on this findings, we conclude that limited sample size with regard to the radial distance
from the pumping well affects the uncertainty of the estimates K̂efu and K̂well, represented
by larger confidence intervals rather than their accuracy. This uncertainty also influences the
uncertainty of the correlation length ˆ̀, whereas the accuracy of ˆ̀ critically depends on the
number of head measurements located at the transition zone (0− 2`). This result is critical for
field applications where the correlation length is the target rather than the input parameter.

The combination of both approaches, sample size reduction with regard to angular and radial
head limitations, even amplified the effects: the accuracy of parameter estimates decreased
while confidence intervals increased, particularly for the correlation length.
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Figure 41: Distribution of pumping wells (black dots) and observation wells (circles) in the area
of investigation at the field site Horkheimer Insel (according to Schad [1997]).

5.4. Field Application

Given our findings from the simulated pumping tests in section 5.3, we applied hefw(r) using
empirical data from on-site pumping tests to estimate the parameters K̂G, σ̂2 and ˆ̀of a natural
aquifer.

5.4.1. Field Site Horkheimer Insel

We used empirical pumping test data from the Horkheimer Insel [Schad , 1997], located in the
Neckar Valley in southern Germany. The aquifer consisted of unconsolidated fluvial sediments
with poorly sorted sand and gravel and can be considered heterogeneous with a log-normal
conductivity distribution [Schad and Teutsch, 1994]. On average the saturated thickness L
was 3m, overlain by impermeable flood deposits and underlain by limestone formations. The
dominating general hydraulic gradient was 0.001 towards the Neckar River. The infiltration
rate from bedrock into the aquifer was negligible. According to the findings of Schad [1997] the
average hydraulic conductivity derived from flowmeter measurements was KG = 4.57e-3m/s.
The average transmissivity was estimated as T = 3.1e-2m2/s using Theis’ analytical solution,
which is equivalent to Kefu = T/L = 1.0e-2m/s. Detailed variogram analysis revealed that the
vertical and horizontal correlation length ranged between `v = 0.15− 0.25m and ` = 6− 10m,
respectively, resulting in an anisotropy ratio of e = `v/` = 0.015 − 0.04. The variance of
hydraulic conductivity ranged from σ2 = 3.17 for permeameter measurements and σ2 = 2.32
for grain size analyzes to σ2 = 1.57 for flowmeter measurements. More details regarding the
field site, wells, pumping tests, and parameter estimates of K(x) from laboratory trials are
provided in Schad [1997].

For the purpose of this study we used data derived from small scale pumping tests (Figure 41).
At each of the three pumping wells W40, W42, and W44, two pumping tests were performed.
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For each of the pumping tests the drawdown was measured at four observation wells. The tests
continued for two hours with pumping rates varying between 2l/s and 5.5l/s depending on the
well yield.

The pumping test duration of two hours is assumed to be ideal (neither too short nor too
long) because (i) transient drawdown data at later times corresponds to a quasi steady state
flow regime [Neuman et al., 2007], (ii) the influence of field-site dependent boundaries can be
neglected until three hours of pumping [Schad and Teutsch, 1994], (iii) storativity, well bore
storage and well loss have a significant influence to drawdown at early times which can be
eliminated by using drawdown data at later times [Kruseman and de Ridder , 2000]; (iv) the
influence of areas with low permeability do not affect effective conductivity until after two hours
of pumping [Schad and Teutsch, 1994]; (v) after two hours the flow is essentially horizontal,
whereas vertical flow becomes negligible and, hence, this phase is interpreted as influenced by
inherent aquifer properties only [Schad and Teutsch, 1994].

5.4.2. Analysis of Empirical Data

The measured drawdown data 〈h(r)〉 of pumping tests PT40, PT42 and PT44 was compared
to Thiem’s solution (Figure 42), such that it matched the drawdown near and at a large
distance from the pumping well, eventually resulting in representative conductivities that can
be considered first estimates of Kwell and Kefu, respectively.

Then, hefw(r) was applied using nonlinear regression to estimate the parameters of K(x), as
described in section 5.2.2. The boundary conditions at the pumping well were assumed to be
BCH because pumping tests were performed at constant pumping rates andKwell < Kefu. Thus,
the representative hydraulic conductivity at the pumping well was set to a value corresponding
to the harmonic mean Kwell = KH and ζH = 0.8 in Eq. (5.1). The anisotropy ratio was set
to e = 0.025. The reference head h(R) corresponded to the observation well with the largest
distance to the pumping well.

Pumping rates were normalized to a value of Qw = 0.001 m3/s and combined pumping tests
sharing the same pumping well, eventually resulting in three quasi-steady state tests with
eight observational points 〈h(ri)〉i=1,...,8 (with h(r8) = h(R) = 0), including the drawdown at
the pumping well. Further, we calculated K̂G and σ̂2 by substituting the estimates of K̂efu

and K̂well into Eq. (5.3).

The set-up of the three pumping tests is well reflected by scenario S8 (Table 20), with ob-
servational wells being located at large distance rather than in the vicinity of the pumping
well. Hence, head measurements in distance of one correlation length from the pumping well
(` = 6 − 10m [Schad, 1997]) are rare, eventually biasing the accuracy and certainty of esti-
mates of ˆ̀ (section 5.3.4). Therefore, we subdivided the parameter estimation: firstly, we esti-
mated K̂efu and K̂well, and then estimated ˜̀while keeping K̂efu and K̂well fixed (section 5.2.2).
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Figure 42: Drawdowns of the three pumping tests with fitted analytical solution hefw(r) (bold
line) and Thiem’s solution for K̂efu (dashed line) and K̂well (dashed dotted line) as
well as hydraulic head measurements of the pumping tests PT40, PT42 and PT44.
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K̂efu [10−3m/s] K̂well [10−3m/s] K̂G [10−3m/s] σ̂2 ˜̀ [m]
PT40 4.19 (±1.23) 1.16 (±0.18) 2.23 (±0.18) 1.32 (±0.46) 8.22 (±1.38)
PT42 12.25 (±1.4) 2.36 (±0.13) 5.47 (±0.21) 1.68 (±0.17) 7.89 (±0.46)
PT44 3.42 (±0.90) 0.67 (±0.07) 1.53 (±0.14) 1.66 (±0.37) 9.36 (±1.27)
mean 6.62 1.40 3.08 1.55 8.49

Table 22: Estimation results for PT40, PT42, PT44 and the mean of the three pumping tests
with 95% confidence intervals in brackets.

5.4.3. Estimated Field Parameters

For a selected range of pumping tests at the Horkheimer Insel, the effective well flow head hefw(r)
provided reliable predictions of drawdown for the entire range of the depression cone (Fig-
ure 42). Whereas Thiem’s solution predicted the drawdown accurately only in the vicinity or
at large distance from the pumping well. This is due to the additional parameters σ2 and `

integrated into hefw(r), considering the influence of heterogeneity, and hence, capturing the
transition between Kwell-driven and Kefu-driven drawdown (section 5.2.2).

The estimated parameters of K(x) for PT40, PT42 and PT44 (Table 22) were in good ac-
cordance with those derived by Schad [1997] (section 5.4.1). Regarding the diverse analyzing
methods used by Schad [1997] the parameters from flowmeter measurements corresponded best
to our estimates using hefw(r). This is no surprise as measurements from both flowmeter and
pumping tests represent data that is averaged across large volumes of the aquifer.

The estimated correlation length was similar across the three pumping tests, whereas the
estimated hydraulic conductivities K̂well and K̂efu were considerably different. Substituting
those estimates into Eq. (5.3)) clarified that the variability of K̂well and K̂efu was caused by
different values of K̂G rather than σ̂2, indicating that the local permeability was considerably
different across the three pumping wells but the overall heterogeneity structure of the aquifer
regarding variance σ̂2 = 1.55 and correlation length ˜̀ = 8.5m was the same for the area
influenced by the pumping tests (Figure 41).

The uncertainty involved with the parameter estimation was low for the estimates of variance
and the conductivity values. Since there was only a limited number of observation wells located
in the vicinity of the well, CI˜̀was higher compared to CIK̂efu

and CIK̂well
. However, the method

of estimating ˜̀ rather than ˆ̀ established as valid procedure to decrease the confidence interval,
thereby increasing the certainty of the estimates of the correlation length.

5.5. Conclusions

We showed that the analytical effective well flow solution hefw(r) is capable to provide reliable
parameter estimates of a heterogeneous aquifer under field-site conditions. By using simulated
pumping tests to systematically reduce the sampling size, we assessed the accuracy and uncer-
tainty of estimates at each level of data availability. Then we applied hefw(r) using empirical
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pumping test data from the field site Horkheimer Insel. The estimated parameters of the fluvial
heterogeneous aquifer are in agreement with estimates derived from laboratory measurements,
published in Schad [1997]. From these findings, we have elucidated how the quality of param-
eter estimates is affected by number and spatial distribution of measurement locations having
implications for: (i) the conceptual design of field site pumping tests, and (ii) the potential
power to estimate reliable parameters at established pumping test sites.

Regarding the former (i), it is recommended to optimize the spatial distribution of piezometers
relative to the pumping well. A large number of piezometers facilitate accurate and confident
parameter estimation, but also provoke high cost-load. Likewise, limited sample size of head
measurements or poorly conducted piezometers with regard to their relative location to the
pumping well provoke poor parameter estimates, and high work- and cost-load.

To achieve reliable parameter estimates, it is critical to capture the entire range of the depres-
sion cone. Our findings emphasize that at least three to five head measurements located in the
far field are required to facilitate accurate estimates of Kefu. To gain any estimates of K̂well,
drawdown data at the pumping well is a prerequisite. For sound and confident estimates of the
correlation length ˆ̀, several piezometers located in the transition zone are required, i.e. be-
tween pumping well and the distance of few correlation lengths. This is particularly challenging
since this parameter is usually unknown a priori. However, simple laboratory tests, such as
grain size analyses at random site locations, can be used as indicators for pre-estimating both
the vertical and horizontal correlation length.

Regarding the spatial distribution of piezometers our findings point toward two strategies. On
the one hand, piezometers located along one transect from the pumping well provide high confi-
dence but low accuracy in parameter estimates because each transect represents the statistical
properties along one angular direction only. Whereas spatially random distributed piezometers
around the pumping well better represent the statistics of the overall conductivity field, thereby
providing more accurate parameter estimates with lower confidence.

Regarding the latter (ii) examining the pumping test design in relation to the number and
spatial distribution of the piezometers is important to clarify what accuracy and uncertainty
can be expected. Likewise, the predictive power of the established pumping test design depends
on the parameter of interest. Having drawdown data at the pumping well and at a distance
of several correlation lengths from the pumping well enables accurate estimates of hydraulic
conductivity at both locations (K̂well and K̂efu). These parameters can then be used to reduce
the uncertainty in estimates of the correlation length. Likewise, piezometers located in the
vicinity of the well increase the accuracy of correlation length estimates.

Based on the high accuracy and relatively low uncertainty involved with the inverse estimation
of aquifer parameters, we conclude that hefw(r) is a simple alternative to laboratory trials to
estimate the statistical heterogeneity parameter KG, σ2 and ` more cost-efficiently.
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6. Summary and Outlook

The current work provided insights into the effects of aquifer heterogeneity on subsurface flow
and salt transport. The hydraulic property of permeability is a key parameter to describe
groundwater flow. However, spatial heterogeneity is an intrinsic property of permeability and
a large range of values can be found in measurement data. By capturing the spatial variability
with a stochastic approach we examined how permeability impacts on subsurface processes at
large scale and on local scale.

We first performed a numerical study on regional scale to investigate the fluid dynamics of
the Thuringian Basin. The results underline that the permeability is a decisive factor for the
pattern of regional groundwater flow and salt distribution. The impact of heterogeneity is
strong. Amongst others we performed simulations with different mean permeability values in
all sedimentary layers, with permeability distributions of different variances and of different
correlation structures. We saw that all these parameters impact on the evolving fluid cir-
culation pattern and thus, the amount of dissolved salt and the location where salt reaches
near-surface regions. Additionally, we examined how density differences caused by tempera-
ture and salt concentration gradients impact on the fluid dynamics. We found that thermally
induced convection is not present in the shallow sedimentary basin of Thuringia. However, the
changes in fluid density due to dissolved salt can lead to significant changes in the distribution
and amount of salt in the Thuringian Basin.

In a second step, we showed that heterogeneity in permeability values also effects flow on local
scale. Of interest are well flow regimes, because pumping tests are a widely used tool to infer
on porous medium parameters in particular in shallow aquifer units. However, pumping tests
in heterogeneous aquifers show a distinct drawdown behavior compared to well flow in homo-
geneous media. We used this specific characteristic of well flow to determine the parameters
of aquifer heterogeneity. We derived an analytical solution to describe the mean drawdown
of a steady state pumping test in three dimensional heterogeneous anisotropic media. By
combining the analytical solution with an inverse estimation strategy we determined param-
eters of aquifer heterogeneity, like mean permeability, variance, and a quantity capturing the
correlation structure from on-site pumping tests.

The method to describe mean well flows is currently limited to steady state pumping tests. In
future work, we aim to expand the theory and its practical application to transient pumping
tests. This kind of pumping tests is of high practical relevance. The temporal resolution of
data can provide more information of the area of investigation. Further fields of expansion are
pumping tests in heterogeneous porous media with advanced descriptions of the spatial corre-
lation structure like stochastic media with facies structure or media with infinite correlation
structure.

The numerical study of the Thuringian Basin showed that the knowledge about the permeability
distribution is the key to determine the flow pattern and salt distribution. Additional data
is necessary to reduce uncertainty and enhance the reproduction and prediction of the fluid
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dynamics in the Thuringian Basin. The application of the upscaling method to pumping test
performed in the Thuringian Basin can help to gain more information about the heterogeneous
structure of the shallow aquifers. The analysis of existing and the performance of additional
pumping test in the Thuringian Basin will we be a goal of future research.

Deep drilling projects are necessary to gain information of geological units in several hundreds of
meters depth. As part of the research project INFLUINS a scientific drilling is currently (July
2013) performed in the center of the Thuringian Basin near Erfurt. Numerous experiments
concerning fluid flow between the different sedimentary units are done as part of the drilling.
Furthermore, bore-log data can provide further information about the sedimentary and hydro-
geological character of the sediments. This drilling project can enhance the data availability
for numerical basin models and thus lead to more precise reproductions and predictions of the
fluid dynamics of the Thuringian Basin.

With this work we contribute to the understanding of flow and transport processes in the
subsurface that are influenced by density differences and local geological characteristics. We
observed the mechanisms controlling the fluid dynamics in the Thuringian Basin, but they can
be representative for any shallow sedimentary basin with conditions comparable to those in
Thuringia.
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A. Appendix

A.1. The Coarse Graining Conductivity in Anisotropic Media

As presented in Attinger [2003] the filtered conductivity, gained from Coarse Graining, covering
the small scale effects in the filtered flow equation (4.6) is of the form KCG

λ (x) = KCG
A (λ) +

K̃CG(x, λ), with a filtered fluctuation part K̃CG(x, λ) and scale dependent mean conductivity
KCG

A (λ) = KA+δKCG(λ). The latter one is composed of the arithmetic mean of the unfiltered
conductivity KA and the scale dependent partial mean conductivity δKCG(λ), given by the
integral

δKCG(λ) = −KA
σ2

(2π)d
∫
Rd
η̃(y) y

2
1

y2
(
1− f̃λ(y)

)
ddy , (A.1)

where d is the dimension, σ2 is the variance of the log conductivity, η̃(y) is the Fourier trans-
formed of the correlation function, and f̃λ(y) is the filter function in Fourier space.

Adapting the integral (A.1) to Coarse Graining for well flow in three dimensions we replace
the scaling factor λ by λx, λy ∝ r and λz ∝ e · r. The Fourier transforms of the adapted filter
function fr, as given in Eq. (4.7), and the correlation function η, as given in Eq. (4.3), are

η̃(y) = π3/2e`3 exp
(
−1

4 `
2(y2
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, (A.2)

f̃r(y) = exp
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1 + y2
2 + e2y2

3)
)
, (A.3)

where r is the radial distance from the well, ` is the correlation length in horizontal direction,
e is the anisotropy ratio and ζ is the factor of proportionality.

Applying Eq. (A.2) and Eq. (A.3) to Eq. (A.1) results in

δKCG(r) = −KA
σ2

(2π)3

(∫
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y2
1

y2 η̃(y) dy −
∫
R3

y2
1
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(A.4)

= −KAσ
2

γ(e)− γ(e)
(

1 + ζ2r2

3√
e2`2

)−3/2
 , (A.5)

where γ(e) is the anisotropy function as presented in Eq. (4.5). We give the solution of the
integrals in (A.4) to gain γ(e) and γ̃(e) = γ(e)

(
1 + ζ2r2

3√
e2`2

)−3/2
separately in section A.2.

Following the line of procedure in Attinger [2003] we find the solution for the upscaled mean
conductivity KCG

A (r) = KA + δKCG(r) by interpreting the terms in Eq. (A.5) as first terms of
an exponential series,

KCG
A (r) = Kefu exp

σ2γ(e)
(

1 + ζ2r2

3√
e2`2

)−3/2
 , (A.6)

where Kefu = KA exp
(
−σ2γ(e)

)
is the effective conductivity for uniform flow as given in

Eq. (4.4). Attinger [2003] showed the validity of this procedure using renormalization theory.
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A.2. The Anisotropy Function

The function γ(e), as given in Eq. (4.5), expresses the impact of anisotropy e on the effective
conductivity for uniform flow in three dimensions. It results as solution of the integral

γ(e) = 1
(2π)3

∫
R3

y2
1

y2 η̃(y) dy . (A.7)

Using an Gaussian correlation function η, as given in Eq. (4.3) with the Fourier transformed η̃
as given in Eq. (A.2), the integral (A.7) results in

γ(e) = e`3
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We use a short cut to solve Eq. (A.8). We substitute
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into Eq. (A.8), resort the terms and solve the integral in y by using
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√
π√

(`2 + z)/4

√
π√

(e2`2 + z)/4
dz

= e`3

2

∫ ∞
0

1
`2 + z

1√
e2`2 + z

dz.

We solve the integral in z by substitution and results in

γ(e) = e`3

2

 1
`3(1− e2)3/2 arctan

√
z + e2`2

`2 − e2`2
+

√
e2`2 + z

`2(1− e2)(`2 + z)

∞
0

= e

2

(
1

(1− e2)3/2 arctan
√

1
e2 − 1 −

e

1− e2

)
,

which is the solution of the gamma function as given in Eq. (4.5). The result can be transformed
to the solution presented in Dagan [1989].

The integral for γ̃(e, `, r) as given in Eq. (A.4) can be solved in a similar way. We evalu-
ate γ̃(e, `, r) using Eq. (A.2) and Eq. (A.3) with the abbreviation ω2 = e−2/3ζ2r2 as well as
Eq. (A.9):

γ̃(e, `, r) = 1
(2π)3

∫
R3

y2
1

y2 η̃(y)f̃r(y) dy

= e`3

23π3/2

∫
R3

y2
1

y2 exp
(
−1

4 `
2
(
y2

1 + y2
2 + y2

3e
2`2
))

exp
(
−1

4ω
2
(
y2

1 + y2
2 + e2y2

3

))
dy
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= e`3

2

∫ ∞
0

1
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1√
e2`2 + e2ω2 + z

dz

= e`3

2
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0
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= e`3

2

(
1

(1− e2)2/3(`2 + ω2)2/3 arctan
√
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1 + ζ2r2
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)3/2

A.3. Derivation of the Effective Well Flow Head in Three Dimensions

In order to derive the effective well flow head hefw(r) we solve the steady state flow equation (4.2)
with KCG(r) as defined in Eq. (4.9). We transform the flow equation to polar coordinates
and evaluate the vertical component. We result in the ODE for the hydraulic head h(r) =∫ L
0 h̃(r, z)dz,

0 = KCG(r)
(

1
r

dh(r)
dr + d2h(r)

dr2

)
+ dKCG(r)

dr
dh(r)

dr . (A.10)

For brevity, we write KCG(r) = Kefu exp
(

χ
u3(r)

)
with u(r) =

√
1 + ζ2r2/( 3√

e2`2) and χ =
ln (Kwell/Kefu). Solving the ODE (A.10) by separation of variables using d

drK
CG(r) = KCG(r)·

χ · d
dr

(
1

u3(r)

)
, we result in

h(r2)− h(r1) = C0

∫ r2

r1

1
r

exp
( −χ
u3(r)

)
dr

= C0

∞∑
i=0

(−χ)i

i!

∫ r2

r1

1
ru3i(r)dr, (A.11)

where we perform a series expansion of the exponential function. C0 is the integration constant.
For every i the solution of the integral in Eq. (A.11) is given by∫ 1

ru3i(r)dr = ln r for i=0

= ln r − ln (u(r) + 1) + 1
u(r) + . . .+ 1

(3i− 2)u3i−2(r) for i ≥ 1 odd

= ln r − ln u(r) + 1
2u2(r) + . . .+ 1

(3i− 2)u3i−2(r) for i ≥ 2 even.

We insert this result to Eq. (A.11) and resort the sum in terms of r. Furthermore, we use
the definition of the exponential function

∑∞
j=0

(−χ)j
j! = e−χ and of the hyperbolic sine and

cosine functions
∑∞
j=0

(−χ)2j+1

(2j+1)! = − sinh(χ),
∑∞
j=0

(−χ)2j

(2j)! = cosh(χ). We neglect all terms of
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the form 1
juj(r) with j ≥ 3 and result in

h(r2)− h(r1) = C0 exp (−χ) ln r2
r1

+ C0 sinh(χ)U1 + C0(1− cosh(χ))U2 , (A.12)

with

U1 = ln u(r2) + 1
u(r1) + 1 −

1
u(r2) + 1

u(r1) ,

U2 = ln u(r2)
u(r1) −

1
2u2(r2) + 1

2u2(r1) −
1

4u4(r2) + 1
4u4(r1) .

The final result for hefw(r) as presented in Eq. (4.10) results by inserting the boundary con-
ditions r2 = r, r1 = R and C0 = − Qw

2πLKefu
. We derive the constant C0 from the relations

Qw = −2πrwLKCGh′(rw) and h′(rw) = C0
rw

Kefu
KCG , with Qw being the pumping rate and L the

aquifer thickness.

The solution in Eq. (A.12) is nearly exact. The logarithmic terms dominate the drawdown.
The truncated parts contain terms of the form O(χk) 1

juj(r) , with j, k ≥ 3 impacting on the
drawdown for very small r and large variances σ2 and can therefore be neglected without
changing the character of the solution.

A.4. Derivation of the Effective Well Flow Head in Two Dimensions

We apply the same procedure as presented in section A.3 to find the closed form solution for
the upscaled hydraulic head hewf(2d)(r) as given in Eq. (1.23). The steady state groundwater
flow equation in radial coordinates with the upscaled Coarse Graining transmissivity TCG

H (r)
given in Eq. (1.22) reads

0 = TCG
H (r)

(
1
r

dh
dr + d2h

dr2

)
+ TCG

H (r)
dr

dh
dr . (A.13)

Performing the derivation in TCG
H (r) and solving the ODE (A.13) by separation of variables

results in
h(r2)− h(r1) = C1

∫ r2

r1

1
r

exp
(
σ2

2
1

(1 + ζ2r2/`2)

)
dr , (A.14)

with integration constants C1 and C2.

We evaluate the integral (A.14) analytically by making use of the exponential integral function
Γ(x) − Γ(X) =

∫ x
X

exp(z)
z dz. It requires a substitution of the argument z = σ2

2
1

(1+ζ2r2/`2) with

dr = − `σ2

4ζz2

(
σ2

2z − 1
)− 1

2 dz. Eq. (A.14) results in

h(r2)− h(r1) = C1
σ2

4

∫ z(r2)

z(r1)

exp (z)
z(z − σ2

2 )
dz

= C1
2

∫ z(r2)

z(r1)

exp (z)
z − σ2

2
− exp (z)

z
dz
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= C1
2

∫ z(r2)−σ2
2

z(r1)−σ2
2

exp (z + σ2

2 )
z

dz − C1
2

∫ z(r2)
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exp (z)
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= C1
2 exp
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2
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(
z(r2)− σ2

2

)
− Γ

(
z(r1)− σ2

2
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− C1

2 (Γ(z(r2))− Γ(z(r1))) .

We derive the constant C1 = − Qw
2πTG

from the boundary condition of constant flux at the
well Qw = −2πrwTCG(rw)h′(rw) = −2πrwTCG(rw)C1

rw
TG/T

CG(rw). Inserting r1 = r, r2 = R

with h(R) = hR and resubstituting z(r) = σ2
2

1
(1+ζ2r2/`2) gives the effective well flow head for

large scale pumping tests

hefw(2d)(r) =− Qw
4πTG

(
Γ
(
σ2

2
1

1 + ζ2r2/`2

)
− Γ

(
σ2

2
1

1 + ζ2R2/`2
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+ Qw
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exp
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2
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2
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1 + ζ2r2/`2
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2
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+ hR .

(A.15)
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