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ZUSAMMENFASSUNG 

Seltenerdmetalle enthaltende endohedrale Fullerene haben große Beachtung gefunden auf 

Grund ihrer Eigenschaft Metallatome, Atome oder ganze Cluster innerhalb eines 

Kohlenstoffkäfigs einzuschließen. Durch Anregung der im Kohlenstoffkäfig eingeschlossenen 

Atome oder Cluster können die physikalischen und chemischen Eigenschaften dieser 

Fullerenverbindungen zielgerichtet verändert und eingestellt werden. Das Verständnis der 

magnetischen und elektrochemischen Eigenschaften von endohedralen Fullerenen spielt eine 

wichtige Rolle in der Grundlagenforschung und bietet ein hohes Potential für Anwendungen 

in der Materialentwicklung. In dieser Arbeit wird die Herstellung von 

Seltenerdmetallstrukturen beinhaltenden Fullerenen und  die Charakterisierung deren 

grundlegenden Eigenschaften beschrieben. Gleichzeitig werden Wege zur zielgerichteten 

Veränderung ihrer elektronischen und magnetischen Eigenschaften aufgezeigt. 

Im Lichtbogenverfahren nach Krätschmer-Huffman konnten verschiedene Lanthanit 

basierende gemischte Metall-Nitrid-Clusterfullerene (MMNCF) hergestellt werden. Diese 

Seltenerdmetalle enthaltende endohedrale Fullerene wurden in einem mehrstufigen 

Flüssigkeitstrennverfahren (HPLC) getrennt. Anschließend  wurden diese Strukturen mittels 

spektroskopischer Verfahren wie UV-vis-NIR, FTIR, Raman, LDI-TOF Massenspektroskopie, 

NMR, Elektrochemie und in situ Spektroelektrochemie charakterisiert. 

Die Holmium basierenden gemischt Metall-Nitrid-Clusterfullerene HoxM3-xN@C80 (M= Sc, 

Lu, Y; x=1, 2) wurden in einem “reactive gas atmosphere” oder “selective organic solid” 

Verfahren hergestellt. Die getrennten und gereinigten Proben wurden mit LDI-TOF 

Massenspektroskopie, UV-vis-NIR, FTIR, Raman-Spektroskopie und NMR-Spektroskopie 

charakterisiert. Die 13C-NMR-Spektroskopie Untersuchungen zeigen ein außergewöhnliches 

NMR-Verhalten was von der Änderung des zweiten Metalls innerhalb des Metall-Nitrid-

Clusters HoxM3-xN von Sc zu Lu und weiter zu Y herrührt.  

Die Strukturen LnSc2N@C80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCF wurden sowohl 

mit 13C als auch 45Sc-NMR-Spektroskopie untersucht. Entsprechend der Bleaney-Theorie 

konnte nachder Reilley-Methode die Unterscheidung von δPC und δcon von δpara durch eine 

primäre 13C und 45Sc-Analyse des LnSc2N@C80 (I) gezeigt werden. Die sehr gute lineare 

Anpassung (R2= 0.99) wurde bei der Betrachtung eines eingeschlossenen Clusters  LnSc2N 
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(Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) innerhalb eines C80:Ih Käfigs erreicht. Dies zeigt die 

fantastische Natur der magnetischen Anisotropie von Lanthanitenmetallen. 

Die CexY3-xN@C2n (x= 1, 2; 2n= 80-88) MMNCF Strukturen wurden mit dem Verfahren 

“selective organic solid” hergestellt. Die daraus isolierten Proben wurden mit LDI-TOF 

Massenspektroskopie, UV-vis-NIR-Spektroskopie, NMR-Spektroskopie und 

elektrochemischen Methoden untersucht. Das elektrochemische Oxidationsverhalten von 

CeM2N@C80 (M= Sc, Lu und Y) wurde vom eingeschlossenen Cluster (CeM2N; M= Sc, Lu 

und Y)  beeinflusst. Diese Annahme wird durch die 13C und 45Sc NMR Untersuchungen von 

[CeM2N@C80]
+ und DFT Berechnungen gestützt. 

Soweit wir wissen ist dies die erstmalige Entdeckung und der Nachweis 

(a) von paramagnetischen Zuständen von Seltenerdmetallen innerhalb 

endohedraler Fullerene durch ein zweites diamagnetisches Metall mit 

unterschiedlichem Ionenradius zielgerichtet beeinflusst werden können. 

(b) dass das elektrochemisches Verhalten von Ce basierenden endohedralen 

Fullerenen durch den eingeschlossenen Cluster CeM2N (M= Sc, Lu und Y) eingestellt 

werden kann.  
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ABSTRACT 

Rare-earth metal containing endohedral fullerenes have attracted much attention due to the 

feasibility of encaging metal atom, atoms or cluster inside of carbon cages. By switching the 

metal atom or cluster entrapped inside of the carbon cage the physical and chemical properties 

of the fullerene compounds can be tuned. The understanding of magnetic and electrochemical 

properties of endohedral fullerenes plays an essential role in fundamental scientific researches 

and potential applications in materials science. In this thesis, synthesizing novel rare-earth 

metal containing endohedral fullerene structures, studying the properties of these isolated 

endohedral fullerenes and the strategies of tuning the electronic and magnetic properties of 

endohedral fullerenes were introduced.  

The DC-arc discharging synthesis of different lanthanide metal-based (Ho, Ce and Pr) 

mixed metal nitride clusterfullerenes was achieved. Those rare-earth metal containing 

endohedral fullerenes were isolated by multi-step HPLC. The isolated samples were 

characterized by spectroscopic techniques included UV-vis-NIR, FTIR, Raman, LDI-TOF 

mass spectrometry, NMR and electrochemistry. 

The Ho-based mixed metal nitride clusterfullerenes HoxM3-xN@C80 (M= Sc, Lu, Y; x=1, 2) 

were synthesized by “reactive gas atmosphere” method or “selective organic solid” route. The 

isolated samples were characterized by LDI-TOF mass spectrometry, UV-vis-NIR, FTIR, 

Raman and NMR spectroscopy. The 13C NMR spectroscopic studies demonstrated 

exceptional NMR behaviors that resulted from switching the second metal inside of the mixed 

metal nitride cluster HoxM3-xN from Sc to Lu and further to Y.  

The LnSc2N@C80 (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) MMNCFs were characterized by 13C 

and 45Sc NMR study respectively. According to Bleaney’s theory and Reilley method, the 

separation of δPC and δcon from δpara was achieved by the primary 13C and 45Sc NMR analysis 

of LnSc2N@C80 (I).  The good linear fitting (R2= 0.99) was obtained by considering the 

encapsulating LnSc2N cluster (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) inside C80:Ih cage which 

indicated the fantastic nature of  magnetic anisotropy of lanthanide metals. 

The CexY3-xN@C2n (x= 1,2; 2n= 80-88) MMNCFs were synthesized by “selective organic 

solid” route. The isolated samples were characterized by LDI-TOF mass spectrometry, UV-

vis-NIR, NMR spectroscopy and electrochemistry. The electrochemical oxidation behaviors 

of CeM2N@C80 (M= Sc, Lu and Y) were interpreted as the strain-driven endohedral redox 



ABSTRACT 

 IV 

couple CeIV/CeIII  in CeM2N@C80 which supported by 13C and/or 45Sc NMR study of 

[CeM2N@C80]
+ and DFT calculations. 

As far as we know, this work is the first discovery of (a) the (para)magnetic properties of 

rare-earth metal containing endohedral fullerenes can be tuned by the second diamagnetic 

metal with different metal ionic radius and (b) electrochemical properties of Ce-based 

endohedral fullerenes can be tuned by the strain-driven between the encaged cluster and 

carbon cage.  
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Chapter 1 Introduction 

Since the discovery of fullerene (C60) in 1985, it has hogged the limelight as the potential 

materials.1 As the fourth allotrope of carbon, C60 was detected in a laser-vaporized cluster 

beam mass spectrum by Kroto et al. It has always been regarded as promising material in 

applications for nanoelectronics, superconductors, optical switching and field-effect 

transistor.2 Due to the intrinsic nature of fullerene molecules, the empty space inside the 

carbon cages could be utilized to host atom, atoms, clusters and even molecules. Soon after 

the discovery of C60, the encapsulation of lanthanum metal ion into fullerene cages was 

achieved. In the process of laser vaporization of the mixture of LaCl3 and graphite, LaC60 was 

detected as the first endohedral metallofullerene which indicated a wide prospect of all 

lanthanide metals.3 In the following years, plenty of metals had been trapped into the fullerene 

cages which included not only lanthanide metals but Group I-III metals as well which further 

classified as mono-,4 di-5 and tri-6 metallofullerenes according to the number of metal ions. 

Clusterfullerenes are a new class of fullerene family which includes metal carbide clusters,7 

metal nitride clusters,8 metal oxide clusters9 and metal sulfide clusters10 with respective to 

non-metal element. Metal carbide clusterfullerenes were found as the minor structures during 

the production of metallofullerenes. The low yield of metal carbide clusterfullerenes hindered 

the deep studies on their properties. In 1999, metal nitride clusterfullerenes (NCFs) 

Sc3N@C2n were discovered by Dorn et al by introducing a small amount of nitrogen gas into 

the Krätschmer-Huffman generator during the process of DC-arc discharging. The dominant 

structures demonstrated a higher yield than that of all other endohedral fullerenes. This novel 

method for producing M3N@C2n structures was named “trimetallic nitride template” (TNT) 

process. Since then, great efforts have been made for enhancing the yield and producing new 

structures. Dunsch et al proposed a new strategy to modify arc-burning process with the idea 

of the reactive-gas atmosphere which powerfully extended the family endohedral fullerenes.11  

1.1 Synthesis and isolation of endohedral fullerene s 
 

Looking through the history of fullerenes, two classical methods were employed to 

synthesize fullerene structures. High temperature laser vaporization method was firstly 

conducted to prepare empty fullerenes and endohedral fullerenes. The attainment of 

macroscopic amounts La@C82 was successfully fulfilled and then stimulated further studies 



Chapter 2 Synthesis and Isolation of Mixed Metal Nitride Clusterfullerenes 

 2 

on endohedral fullerene structures and indicated the potential applications of endohedral 

fullerenes in many fields. DC-arc discharging method has been regarded as the fantastic 

contribution to the development of fullerenes studies. Currently, the modified Krätschmer-

Huffman DC-arc discharging method is popularly applied in fullerene production. Briefly 

speaking, two hollow graphite rods packed with the mixture of metal oxides (or metals) and 

graphite powders are fixed in the generator as anode and cathode. During the process of DC-

arc discharging, the anode and cathode are switched to efficiently evaporate both rods and 

prevent excess disorder of carbon depositing on the cathode. Normally, it is necessary to 

remove the air inside the graphite rods by a short time preheating at high temperature which 

could depress the yield of empty fullerenes and enhance the yield of NCFs simultaneously. 

The configuration of the reactor is demonstrated in Figure 1.1.   

 

Figure 1.1 The scheme of fullerenes generator.  

 
The flourish of endohedral fullerenes family is usually accompanied by the innovation of 

synthesis condition. The introducing of nitrogen source plays an essential role in synthesizing 

metal nitride clusterfullerenes. As mentioned before, Sc3N@C80 was the first NCF which 

using the “Trimetallic Nitride Template” (TNT) method by adding small amount of nitrogen.  

But the problem that the total amount of NCFs is quite low in the soot extract (less than 5%) 

could not been solved until the Dunsch and co-workers switched the nitrogen source from 

nitrogen (N2) to solid state of nitrogen-containing compound. Calcium cyanamide has 

prominent influence on the status of NCFs in the family of endohedral fullerenes. On the one 

hand, the yield of Sc3N@C80 was significantly enhanced (from 3% to 42%) and NCFs were 

the dominant product for the first time. On the other hand, the relative yield of empty 

fullerenes and metallofullerenes were considerably suppressed which facilitated the process of 

purification in the next step. Dunsch and co-workers kept exploring novel approaches for 

improving the yield of NCFs. Ammonia (NH3) was chosen as reactive gas made remarkable 
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improvement. The total yield of NCFs could reach 80% of fullerenes in the soot. This route 

for preparing NCFs was named “reactive gas atmosphere” method. Recently, Dunsch and co-

workers proposed another strategy, “selective organic solid” (SOS) route, guanidine 

thiocyanate (CH3N3HSCN) was employed as the solid-state nitrogen source which further 

improved the total yield of NCFs and formed a new kind cluster fullerenes, named as metal 

sulfide clusterfullerenes.  

High performance liquid chromatography (HPLC) is widely used for isolating of mixtures 

of EMFs.12-28 Because the polarity, electric charge, the size of the molecule is different from 

each other, the mixture of EMFs can be separated when they move across the column.  

1.2 Properties of metal nitride clusterfullerenes 
 

Since the discovery of Sc3N@C80, it has been always regarded as the prototype of 

homogenous metal nitride clusterfullerenes (NCFs) in the form of M3N@C80. As revealed 

from the electronic studies of Sc3N@C80, Sc3N is stabilized by the icosahedral C80:Ih cage 

through transferring six electrons from nitride cluster to the carbon cage which proved by the 
13C NMR and electrochemical analysis. Therefore, substantial efforts have been devoted to 

extend the family of metal NCFs with several strategies. Switching the encapsulated metal 

atoms inside the nitride cluster is one of the practical ways to synthesize new metal nitride 

clusterfullerenes. Up to now, plenty of group III metals have been successfully encaged into 

the C80 cage in the form of M3N@C80 where M includes Scandium, Yttrium, Praseodymium, 

Neodymium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium and 

Lutetium.29,30 Substituting one or two metals in the cluster made the new class of NCFs 

named as mixed metal nitride clusterfullerenes (MMNCFs). MMNCFs provide broad 

possibilities to study the spectroscopic, electronic and magnetic properties of metal NCFs.31  

1.2.1 Spectroscopic properties 
 

The absorption spectrum of nitride cluster fullerenes in the visible and near-IR range are 

predominantly due to the π-π* excitations of the carbon cage, which is directly dependent on 

the structure and the charge state of the carbon cage.32 Based on the theoretical calculations 

and experimental data, the highest occupied molecular orbital (HOMO) of endohedral 

fullerenes is anticipated to be localized on the carbon cage while the lowest unoccupied 

molecular orbital (LUMO) is primarily on the encaged clusters.33 Their absorption features 

mainly depend on the cage symmetry and the encaged clusters have minor influence on the 

absorption features of NCFs. Therefore, the absorption spectra of M3N@C80 (M= Y, Pr, Nd, 
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Gd, Tb, Dy, Ho, Er, Tm and Lu) are almost identical which indicates that the electronic state 

in the case of same cage isomer is the same.34  

It is well known that the time resolution of vibrational spectra is much higher than that of 

NMR. Vibrational spectroscopy could be employed to figure out: a) the interaction between 

carbon cage and encapsulated species; b) the interaction inside encapsulated species and c) the 

configurations of encapsulated species and carbon cage. When the 13C NMR and X-ray single 

crystal studies are not available due to the lower symmetry of the carbon cage or limited 

amount of the materials, vibrational spectra could provide supplemental information about the 

structure of endohedral fullerenes. Combining the experimental IR and Raman spectra with 

theoretical calculations, the interpretation of vibrational spectra could be achieved for specific 

vibrations such as metal-nitrogen or carbon-carbon bonding. Reliable prediction of vibrational 

modes in IR and Raman spectra could be done in the case of switching the clusters inside the 

same cage or changing cage size but preserving the same cluster.35  

As a class of endohedral fullerenes, metal nitride clusterfullerenes comprise more than 60 

atoms which afford a bunch of information about molecule configuration and electronic 

structure. The striking difference in number of atoms inside the carbon cage and on the carbon 

cages indicates that the vibrations of endohedral fullerenes largely come from vibrations of 

their carbon cages. The tangential C80 cage modes (800-1600 cm-1 and 400-600 cm-1) are 

almost identical for all of homogeneous metal NCFs because they own the same cage 

symmetry. Since inheriting features from the corresponding empty fullerenes, the vibrational 

spectroscopic studies of endohedral fullerenes are actually sensitive to the isomeric structures 

of carbon cage. However, the noticeable distinction between the mass number of carbon atom 

and metal atoms, the modes related to encaged species could be observed at low frequencies.  
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Figure 1.2 FTIR spectra of Sc3N@C80 (I), Sc3N@C78 and Sc3N@C68. 

 
The antisymmetric metal-nitrogen stretching vibrational modes of are assigned to the most 

intense low-energy IR lines in the 600-800 cm-1 range which are sensitively depend on the 

composition of the encaged metal M. Furthermore, in Raman spectra the cage modes are 

dominating above 220 cm-1 while the metal-based modes are seen at lower frequencies. A 

remarkable example is that the studies of experimental IR spectra of Sc3N@C2n (2n= 68, 78 

and 80:Ih) which compared with theoretical studies,36 see Figure 1.2. The cage modes are 

unique for each structure and the experimental data and theoretical calculations agree well. 

The metal-nitrogen stretching vibrational modes νSc-N increases from 599 cm-1 in Sc3N@C80 (I) 

to 623 cm−1 in Sc3N@C78 and 660 cm−1 in Sc3N@C68. The recent reports on the analysis of 

vibrational spectra of the metal NCFs combined with DFT calculations indicated that inherent 

strain of the Sc3N cluster are strongly influenced by the different size of carbon cage.30 

Unveiling from DFT-computed IR spectra, the interpretation of IR spectra could not be 

obtained by the superposition of the individual (Sc3N)6+ cation and −6
2nC  anion spectra.37,38 

The covalent contribution to the cluster-cage interactions should be considered as well.39 Y 

could be chosen as model for lanthanide metal with those ionic radius identical or smaller 

than Dy3+ which facilitates modeling of the vibrational spectra of lanthanide-containing NCFs. 

DFT calculations are still available for the analysis of lanthanide-containing NCFs under the 

consideration of similar ionic radius and different mass of Y and Dy atoms. The correlation 

could be found between the ionic radius of the metal and anti-symmetric metal-nitrogen 

frequency in a series of M3N@C80 (I). Specially, for lanthanide-containing NCFs which ionic 

radius smaller than Dy3+, the frequency remains almost constant (around 710 cm−1), see 
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Figure 1.3. From X-ray single crystal characterization, the geometry of metal nitride cluster 

transform from planar (i.e. Dy3N or Y3N) to pyramidal structure (i.e. Tb3N or Gd3N) result in 

the decrease of vibrational frequency originate from the changing the effective force constant. 

The increase of the radii of the lanthanide metal strengthen the inherent strain of M3N@C80 

(Ih) and result in that the inner space of C80 (Ih) cage is insufficient for M3N clusters due to the 

large lanthanides. But, this kind of inherent strain of all non-Sc M3N@C80 caused by the 

limited space inside the carbon cage become appreciably released when the metal atoms is 

replaced by one or two Sc atoms with smaller ionic radius.34,37 The details will be presented in 

the chapter 3.  

 

 

Figure 1.3 M-N antisymmetric mode frequency in M3N@C80 (I; M= Gd, Tb, Dy, Ho, Er, 

Tm, Lu and Y) as a function of the ionic radius of the metal. The inset shows DFT-

optimized structure of Gd3N@C80-Ih; pyramidalization of the Gd3N cluster can be 

clearly seen.  

1.2.2 Electrochemical and spectroelectrochemical pr operties  
  

Since the discovery of Sc3N@C80 as first metal nitride clusterfullerene (NCF) that has been 

successfully synthesized, the electronic properties of metal NCFs have attracted a lot of 

attention. The electronic structure of metal NCFs can be described in the form of 

(M3N)6+@(C2n)
6-, namely, six electrons transfer from the inside cluster to the outside cage.  

Cyclic voltammetry was employed to measure the redox properties of fullerene compounds, 

which provide the information about the electrochemical HOMO-LUMO gap energy and of 

the relative energies of the molecule frontier orbital. In the most of common case, the HOMO-

LUMO gaps of metal NCFs decrease progressively as the size of the carbon cage increases 
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from C80 to C88, and the irreversible reductions become reversible when the carbon cage 

reaches the C88 size.40 However, La3N@C88 is one of the exceptions of the family of 

M3N@C88 due to its unusual electrochemical behaviors.41 Two irreversible oxidations, a 

reversible first reduction and a quasi-reversible reduction of La3N@C88 were reported by 

Echegoyen and co-workers.  

As supposed by Campanera and co-workers, the large HOMO-LUMO gap which observed 

in metal NCFs can be estimated from the corresponding empty fullerenes. Theoretical 

calculations had predicted that the C80 have been remarkably stabilized by the six electrons 

which transfer from the encapsulated M3N cluster. The experimental work revealed that six 

electrons formally transfer to the HOMO on the carbon cage which forming an electronically 

closed-shell ground state. The existence of second isomer of Sc3N@C80 (D5h) was firstly 

proposed by Dorn and co-workers. They performed room temperature 13C NMR to the 

mixture of Sc3N@C80 (Ih) and Sc3N@C80 (D5h). Apart from the two major lines assigned to 

the Ih symmetry, six additional lines in ratio of 1:2:2:1:1:1 matched the pattern of C80:D5h. 

Then, the isolation and spectroscopic characterization was reported by Dunsch and co-

workers and the lowest absorption of UV-vis-NIR data suggested that the optical gap of 

Sc3N@C80 (Ih, 1.7 eV) is a little bit larger than Sc3N@C80 (D5h, 1.6 eV). The electrochemical 

properties of the two isomers of Sc3N@C80 and Lu3N@C80 were measured by cyclic 

voltammetry, Dorn and co-workers revealed two reduction peaks and one oxidation peak for 

each compound. They observed the first reduction potentials for the D5h isomers of Sc3N@C80 

and Lu3N@C80 are slightly more negative than those of the Ih isomers of Sc3N@C80 and 

Lu3N@C80 respectively, see Figure 1.4. However, the oxidation potential of the D5h isomers 

of Sc3N@C80 and Lu3N@C80 is lower than those of the Ih isomers, which is consistent with 

the result from Echegoyen’s group. The electrochemical gaps for the D5h isomers of 

Sc3N@C80 and Lu3N@C80 are significantly smaller than those of the D5h isomers which agree 

well their optical gap.  

Combining the experimental data and theoretical molecular orbital calculations, it could be 

concluded that the HOMO and LUMO energies of M3N@C80 (I and II) are largely dependent 

on the electronic structure of the C80 cage. The resemblance of the energy levels of HOMO 

for M3N@C80 manifests that the electron density distribution around the carbon cage for their 

compounds could be expressed as (M3N)6+@C80
6-. However, it should be mentioned that a 

minor contribution from the metal nitride cluster due to the electropositive character of 

encaged metal. For instance, the LUMO energies of the Sc3N@C80 (I and II) are related to the 
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encapsulating Sc3N cluster. The smaller electrochemical gap of M3N@C80 (D5h) indicates its 

relatively higher reactivity than the corresponding Ih isomer.  

 

  

Figure 1.4 Cyclic voltammogram of the Ih and D5h isomers of (left) Sc3N@C80 and (right) 

Lu 3N@C80 in o-dichlorobenzene solution, 0.1 M TBABF4, scan rate: 500 mV/s. 

 

The cyclic voltammograms of Dy3N@C80 (I, II) were reported by Dunsch and co-

workers.42 The cyclic voltammogram of Dy3N@C80 (I) exhibits two electrochemically 

irreversible, but chemically reversible reduction steps and one reversible oxidation step. 

Compared with Tm3N@C80 (I) and Sc3N@C80 (I), both the redox potentials and 

electrochemical gap of Dy3N@C80 (I) exhibit a striking resemblance to those of Tm3N@C80 (I) 

rather than to Sc3N@C80 (I). Based on a fast-scan CV study, Dunsch and coworkers proposed 

a double-square reaction scheme accounting for the observed redox-reaction behavior 

including the charge induced reversible rearrangement of the Dy3N@C80 (I) monoanion, see 

Scheme 1.1. The first oxidation potential of Dy3N@C80 (D5h) has a negative shift relative to 

that of Dy3N@C80 (Ih), indicating that lowering the molecular symmetry of the 

clusterfullerenes cage results in a pronounced increase in the electron-donating property, 

while the reduction potentials remain unchanged for these two isomers.  
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Scheme 1.1 Double-square reaction scheme of the electrochemical redox reaction of 

Dy3N@C80 (I). Dy3N@C80 (0), Dy3N@C80 (1), and Dy3N@C80 (2) represent the initial state 

of the molecule, the monoanion, and the dianion, respectively. Charge at the cage is not given. 

The stable species generated by the structural rearrangement are marked by asterisks. Black 

arrows with wider heads symbolize the preferable and fast structural rearrangements. The arc 

arrows show the main reaction pathways proposed (electrochemical–chemical–

electrochemical–chemical (ECEC) mechanisms; forward scan=solid arrows, back 

scan=dashed arrows). 

 

 

Figure 1.5 Cyclic voltammograms of Dy3N@C80 (II) (solid line) and Dy3N@C80 (I) (dash 

line) in TBABF4/o-DCB. Scan rate: 0.1 Vs-1. The asterisk labels an unidentified 

reduction peak.  

 
Metal NCFs have wide distribution of cage sizes, which range from cages as small as C68 to 

those as large as C98. Echegoyen and co-workers firstly reported the isolation of Gd3N@C2n 

(n= 40, 42 and 44).43 In Figure 1.6, their electrochemical studies demonstrated that the 

electronic properties of metal NCFs with large cages change dramatically with the size of the 

cage. For instance, irreversible CV behavior is observed for Gd3N@C80 and Gd3N@C84 at the 

reductions step, while both reduction and oxidation steps of Gd3N@C88 exhibit reversible 

electrochemical processes. In addition, Gd3N@C88 exhibits the smallest electrochemical 

HOMO-LUMO gap among of the known NCFs structures. The homogeneous metal nitride 
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clusterfullerenes with C84 and C86 cages have similar HOMO-LUMO gaps, which are 

intermediated between those of C80 and C88. Similar conclusions could be obtained from other 

lanthanide containing M3N@C2n (M= Ce, Pr and Nd; 2n= 80-88).44 

 

 

Figure 1.6 Cyclic voltammograms of Gd3N@C2n (2n= 80-88) compounds obtained in o-

DCB + 0.05M (n-Bu)4NPF6 (scan rate 0.1 V/s). 

 
Generally, the studies of a redox behavior of C80-based NCFs have shown that the 

endohedral cluster is redox-inert, while the oxidation or reduction of NCFs occurs by 

changing the charge state of the carbon cage. Recently, Popov, Yang and Dunsch reported 

that TiSc2N@C80 (I) demonstrates an extraordinary redox behavior that the valence state of 

the Ti within TiSc2N changes from Ti3+ (in the neutral state) to Ti2+ (in the anion) and to Ti4+ 

(in the cation) in the process of first reduction and oxidation steps, while in former reported 

M3N@C80 (I) structures the cage electron is removed upon oxidation,45 see Figure 1.7. 
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Figure 1.7 Cyclic voltammetry of TiSc2N@C80 measured in o-DCB solution (room 

temperature, TBABF4 as supporting electrolyte) at a scan rate of 20 mV/s. Dotted 

vertical bars denote reversible redox potentials of Sc3N@C80 (I). 

 

1.2.3 Magnetic properties  
 

Endohedral fullerenes (with lanthanide atom, atoms or cluster encapsulated inside the 

carbon cage) have attracted broad interests due to the magnetic anisotropy of lanthanide ions. 

Magnetic properties of EMFs are usually studied by SQUID magmnetometry and X-ray 

magnetic dichroism.19 The lanthanide-induced chemical shifts in NMR spectra can also give 

valuable information on the magnetic properties of EMFs, but the main bottlenecks in 

extensive studies of the magnetic properties of endohedral fullerenes NMR are their low yield 

in synthesis, time-consuming purification, low cage symmetry and severe broadening of the 

NMR spectral lines because if the shortened relaxation times.46-48 Furthermore, when carbon 

cage is also paramagnetics, NMR studies are usually not possible at all. For instance, the 

characterizations of metallofullerenes such as La@C82 in the pristine form were not successful 

because of the paramagnetic cage state. According to the oxidation state of metal atom inside, 

M@C82 are classified into two groups with divalent metals (M2+@C82
2-) and trivalent metals 

(M3+@C82
3-). For the former (Tm@C82, Yb@C82 and Sm@C82), NMR studies are in principle 

possible because the carbon cage is diamagnetic. For M3+@C82
3-, the 13C NMR measurements 

of metallofullerenes in anionic forms were considered as a practical tool for structural 

determination. Much effort has been paid to understand the electronic and magnetic properties 

of metallofullerenes which have 4f electron(s) such as M@C82 (M= La, Tm, Ce, Pr and Gd). 

The 125 MHz 13C NMR spectrum of La@C82 (A) anion exhibits 17 distinct lines of near-
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equal intensity and 7 lines of half the intensity which clearly indicates that La@C82 (A) has 

C2v symmetry which have been predicted by theoretical calculations and then confirmed by 

the XRD characterization (Figure 1.8).49  

 

  

Figure 1.8 (a) 13C NMR spectrum of La@C82 anion, (b) its expanded views. 

 

The spin-spin interaction between the lanthanide metal (M3+, except for La3+ and Lu3+) and 

carbon cage has pronounced influence on the 13C NMR studies. The lanthanide-induced 

chemical shifts originate from the magnetic anisotropy of the ionic state of lanthanide metal. 

All carbon chemical shifts demonstrate temperature dependent chemical shifts which could be 

explained as the sum of diamagnetic contribution, Fermi contact and pseudocontact 

contribution. Compare to La@C82 anion, the chemical shifts of Ce@C82 anion was confirmed 

as the dominant pseudocontact mechanism and the Ce atom in Ce@C82 as well as its anion is 

located at an off-centered position adjacent to a hexagonal ring along the C2 axis of the C2v-

C82 cage,50 see Figure 1.9.  

 

Figure 1.9 13C NMR spectrums of (a) Ce@C82 anion and (b) La@C82 anion.  
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As mentioned in the beginning of this section, metal NCFs could be regarded as the 

suitable candidate to study magnetic properties of metal NCFs due to their relatively high 

yield. However, among of all lanthanide-containing metal NCFs in the form of M3N@C80 

(except for Lu) no 13C NMR study is available because the complex interaction between three 

lanthanide metals and carbon cage. The magnetic studies of Ho3N@C80 and Tb3N@C80 were 

performed by our group in 2005.51 The magnetic moment of Ho3N@C80 and Tb3N@C80 is 

found to be 21 µB and 17 µB respectively. The strong ligand field within the M3N cluster of the 

nitride cluster fullerenes Ho3N@C80 accounts for the unusual net magnetic moment of the 

compounds. As a result of these interactions the individual magnetic moments m of the Ho 

metal ions are not parallel or antiparallel to each other, but parallel to the M-N bond (see 

Figure 1.10 and 11). 

 

 

 
Figure 1.10 The experimental data M(H,T) for Ho 3N@C80 and Tb3N@C80 (symbols) 

corrected for the diamagnetic contribution and normalized to the saturation. The solid 

line represents the fitted Langevin function with a magnetic moment µ= 21 µB for 

Ho3N@C80 and µ= 17 µB for Tb 3N@C80.  
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Figure 1.11 a) Structure of an M3N@C80 molecule, blue: carbon, green: nitrogen, and 

red: lanthanide metal atoms; b) orientation of the individual R magnetic moments m 

(arrows) in the M3N cluster in M3N@C80 (M= Ho or Tb). 

For MMNCFs, with two non-magnetic atoms inside the nitride cluster could be an 

appropriate template to understand the role of lanthanide metal on the NMR studies. In 

particular, Sc-based MMNCFs are known to have a relatively higher yield compared to that of 

the homogeneous NCFs with other lanthanides. Based on its relatively high yield and known 

cage symmetry, it is advantageous to study Sc-based MMNCFs in the form of MSc2N@C80 

(M= Lanthanide metal, except for Lu). To investigate role of lanthanide metal inside the 

MSc2N, we have chance to switch the lanthanide metal from Ce to other ones. Up to now, the 

only paramagnetic 13C NMR studies of Ce-containing MMNCFs were reported for 

CeSc2N@C80 and CeLu2N@C80 (Ih).
52  

 

 

Table 1.1 Comparison of chemical shifts in 13C NMR spectra of several endohedral fullerenes. 
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Figure 1.12 97.2 MHz 45Sc solution NMR spectra of CeSc2N@C80 in 1, 2-

dichlorobenzene at various temperatures and Sc3N@C80 (Ih) in 1, 2-dichlorobenzene. 

 
Reported by Dorn and co-workers, the chemical shift difference between CeSc2N@C80 and 

Sc3N@C80 is a subtle upfield shift of approximately 1.5 ppm for two 13C signals, see Figure 

1.11. Comparable 13C NMR shifts were reported for Ce2@C80 (Ih) which encapsulated two 

Ce3+ ions.53 The 45Sc NMR chemical shift of CeSc2N@C80 exhibits a temperature-dependent 

Curie upfield chemical shift and a single 45Sc signal, see Figure 1.12. Similarly, the 13C NMR 

spectrum of Lu2CeN@C80 in CS2 at room temperature exhibits only two lines at 136.48 and 

142.65 ppm with an intensity ratio of 1 : 3,54 respectively (see Figure 1.13). It should be noted 

that the chemical upfield-shifts and broadening of the 13C signals originates from the single f 

electron spin remaining on the Ce3+ (4f15d0). Those results also indicated that at room 

temperature: a) rotation of the Lu2CeN (or CeSc2N) cluster is fast enough to provide the 

effective icosahedral symmetry of the cage; b) the internal motion provides the same average 

electronic environment for the two Sc atoms in the CeSc2N cluster. To get a better insight into 

the effect of Ce3+ variable-temperature (VT) NMR studies were performed in the range of 

268-308 K (see Figure 1.13). Confirmed by the analysis of VT 45Sc and 13C NMR, the 

pseudocontact term has a dominant contribution to the paramagnetic chemical shift of 

scandium atoms in CeSc2N@C80 and of carbon atoms and Lu2CeN@C80 respectively.  
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Figure 1.13 13C NMR spectra of Lu2CeN@C80 compared with Lu3N@C80 (left side) were 

measured at room temperature; and 13C chemical shifts in the NMR spectra of 

Lu 2CeN@C80 and their extrapolation to T-2= 0 (right side). The room-temperature 13C 

shifts for CeSc2N@C80 as well as a series of some diamagnetic M3N@C80 are also shown 

for comparison. 

 
 
 
 
 
 
 
 
 
 

1.3 Motivation 
  

Mixed metal nitride clusterfullerenes (MMNCFs) represent a new class of fullerenes which 

attracted much attention due to their electronic features as a consequence of charge transfer 

and interactions between the encaged cluster and the carbon cage. Based on the former studies, 

choosing the different kinds and numbers of rare-earth metal can significantly influence the 

electronic and magnetic properties of MMNCFs. In particular, the latter can be tuned by the 

composition of mixed metal nitride cluster (e.g. metal ionic state and metal-nitrogen bond 

length) and the magnetic moment from the encaged metal atoms. Although many 

contributions have been made in the field of EMF research, there are still open questions in 

understanding the situation in EMFs to be explored. It is unknown that tuning the physical 

and chemical properties of MMNCFs by switching the second metal M in the mixed metal 
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nitride cluster template LnxM3-xN. Since the inner strain between the encaged cluster and cage 

can be tuned by changing the component of mixed metal nitride cluster, it could be realized 

by extending the size of carbon cage (from C80 to C88) as well. Therefore, the relationship 

between inner strains resulting from encapsulated cluster and carbon cage and properties of 

MMNCFs should be clarified and studied in detail. Furthermore, the search for new structures 

with new properties is of high importance.  

The reasons that we choose those lanthanide metals in my PhD work can be explained as: 

(a) The C80 cage is quite suitable for the formation of MMNCFs and the yield of C80-based 

MMNCFs is quite high; (b) The Ho has more unpaired 4f electrons than Ce and Pr. It would 

be valuable to study the paramagnetic property of HoxM3-xN MMNCFs with different second 

metal even they are diamagnetic; (c) According to former studies, the Ce-based endohedral 

fullerenes can be considered as the good candidate for the electrochemical studies.  

 
Electrochemical properties 

 
1. The electrochemical studies on endohedral clusterfullerene CeY2N@C80 (I) are highly 

important due to the extremely large encaged cluster inside the C80:Ih cage. The redox 

behavior of CeY2N@C80 (I) in the anodic range makes it outstanding compared to the 

CeLu2N@C80 (I) and CeSc2N@C80 (I). Our group recently reported that the removal of 

the Ce 4f electron bypassed the carbon cage leads to the formation of CeIV. It is quite 

important to confirm whether the inner strain between CeM2N cluster and carbon cage can 

release during the oxidation process. The geometry of CeY2N could be expected to be 

switching from the pyramidal to planar structure. Comparing the inner strain between 

CeM2N cluster and carbon cage, the oxidation potential of the CeY2N@C80 (I) should be 

somehow lower than the case of CeLu2N@C80 (I) and CeSc2N@C80 (I) due to the 

decrease of cluster size. The 13C NMR study of CeIIIM2N@C80 and [CeIVM2N@C80]
+ 

combined with theoretical study could provide further valuable information. 

 
2. The cage size dependence of the electrochemical properties of MMNCFs (cage size larger 

than C80) has to overcome the barrier of relatively low yield and time-consuming 

purification. However, it is promising to find out whether the pyramidal CeY2N unit could 

gradually become planar form by extending the cage size from C80 to C88. Based on the 

former studies (M3N@C2n, M= Ce, Pr and Nd; 2n= 80-88), the redox behavior of the 

series compounds of CexY3-xN@C2n (2n=80, 84, 86 and 88; x= 0-3) help us understand 
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the contribution from the single 4f electron on the Ce atom during the planarization of 

CeY2N unit.  

 
3. The study of paramagnetic PrSc2N@C80 (I) is the first attempting to understand the even 

number 4f-electrons influence on the chemical shift of carbon signal and electrochemical 

property. Compared with CeSc2N@C80 (I) and CeLu2N@C80 (I), one more 4f electron 

could change the spin density on the nitride cluster, and the oxidation potential will shift 

accordingly. The variable temperature 13C and 45Sc NMR study armed with vibrational 

spectroscopic study could provide some additional information. 

 
NMR Magnetic studies 

 
The NMR investigation of Ho-based endohedral fullerenes has been hindered in a long time. 

In principle, the 4f10 electrons locate on the Ho atom could result in remarkably broad NMR 

peaks and strong paramagnetic chemical shifts in the NMR spectra. To gain insight into the 

nature of influence of different encaged Ho atoms with 10 4f-electrons, it is still imperative to 

do 13C NMR studies on MMNCFs which would be the key to opening up additional 

opportunities for the studies on Ho3+-induced paramagnetic properties. HoxM3-xN@Ih-C80 

(M= Sc, Lu, Y; x=1, 2) were chosen as the radius of their trivalent ions are sufficiently 

different to detailed study the influence of different cluster size and geometry on the cluster-

cage interaction. Meanwhile, a variable temperature 45Sc NMR spectroscopic study of two 

isomers of HoSc2N@C80 could be regarded as the probe for the Ho3+-induced paramagnetic 

chemical shift.  

Based on the lanthanide-involved MMNCFs in the form of LnSc2N@Ih-C80 (Ln= Ce, Pr, 

Nd, Tb, Dy, Ho, Lu), the single Ln atom inside C80-Ih carbon cage could induce the 

paramagnetic 13C and 45Sc NMR chemical shifts derived from their anisotropy in the 

susceptibility. The systematic analysis of NMR chemical shifts of LnSc2N@Ih-C80 could help 

us interpret the magnetic behavior of lanthanide metals. As the minor isomer of C80, the 

investigation of 13C NMR C80-D5h could be anticipated much more complicated because the 

decrease of symmetry of carbon cage.  

 



Chapter 2 Synthesis and Isolation of Mixed Metal Nitride Clusterfullerenes 

 19 

Chapter 2 Synthesis and Isolation of Mixed 

Metal Nitride Clusterfullerenes 

2.1 Introduction 
 

After the discovery of Sc3N@C80 in 1999, continuous efforts have been dedicated to 

attaining Scandium-, Yttrium- and Lanthanide-based homogeneous and mixed metal nitride 

clusterfullerenes.55 One of the directions in which nitride clusterfullerenes (NCFs) research 

branched was the study of mixed metal nitride clusterfullerenes (MMNCFs) with two or three 

different metals in the nitride cluster. Numerous C80-based MMNCFs have been successfully 

isolated and characterized over the last decade, including MSc2N@C80 (I; M= Ti,56 Y,57 Ce,52 

Nd,34 Dy,34 Tb58 and Er59), M2ScN@C80 (I; M= Y,57 Nd,34 Dy34 and Er34), ScYErN@C80,
60 

GdxSc3-xN@C80 (I, II; x= 1, 2),61 LuxSc3-xN@C80 (I, II; x= 1, 2)34 and LuxY3-xN@C80 (I; x= 1, 

2).62 Furthermore, the feasibility of varying the encapsulated metal atoms, stabilizing different 

cage sizes (i.e. LuxSc3-xN@C68 (x= 1, 2),63 DySc2N@C68
63 and DySc2N@C76

64) and the 

existence of different isomeric structures are believed to give rise to special electrochemical, 

optical and magnetic properties of MMNCFs. Taking into the account the paramagnetic 

contribution of the 4f-electrons from the encaged metals, among the existing of homogenous 

metal NCFs and MMNCFs, only CeSc2N@C80 (I)52 and CeLu2N@C80 (I)54 have been 

successfully studied by 13C NMR. Besides, the 45Sc NMR exhibited a temperature-dependent 

chemical shift for CeSc2N@C80 (I),  and the redox behaviour of CeLu2N@C80 (I) in the 

anodic range revealed that the removal of the Ce 4f-electron was fulfilled bypassing the 

carbon cage. To gain a further insight into the nature of influence of the different entrapped 

metals with more than one 4f-electron, it is still imperative to do the NMR study of MMNCFs 

which would be the key to open up additional opportunities for the studies of their magnetic 

properties and cluster-cage interactions.  

In this chapter, the synthesis and isolation of Ho-based, Ce-based and Pr-based MMNCFs 

is presented. Ho is chosen as the major components of the mixed metal nitride cluster, namely 

HoxM3-xN (M= Sc, Lu and Y). For HoxSc3-xN, because: a) Sc-involved MMNCFs are known 

to have a relatively higher yield compared to that of the homogeneous metal NCFs with other 
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lanthanides; b) the radii of their trivalent ions are sufficiently different to study the influence 

of the different cluster size and the geometry on the cluster-cage interaction; c) the knowledge 

about dependence of the (para)magnetic behaviour of metal NCFs comprising lanthanides 

with more than single 4f-electron is still scarce. Then, Lu and Y are chosen because their M3+ 

ions are diamagnetic and because their ionic radii are somewhat smaller (Lu3+) and somewhat 

larger (Y3+) than Ho. Thus, variation of the "second" metal from Sc to Lu to Y offers us a 

chance to study whether the Ho-based magnetic properties of MMNCFs rely on the geometry 

of metal nitride cluster. To the best of our knowledge, this work will be the first investigation 

of 1) the 13C NMR spectra of Ln2MN@C80 (I; Ln= Lanthanide, except for Lutetium; M= Sc, 

Lu and Y); 2) 45Sc NMR spectra for the D5h isomer of LnSc2N@C80, which is significantly 

complicated by the relative low-yield (compared to the Ih isomer) and the time-consuming 

multi-steps isolation necessary to obtain the studied compounds in isomerically pure form; 3) 

the vibrational spectroscopic studies of Ln3-xScxN@C80 (I; Ln= Lanthanide, except for 

Lutetium).  

To tune the electronic properties of metal NCFs, mixed metal nitride cluster template 

provides a convenient platform to achieve this goal. By selectively encapsulating the redox-

active metal into the nitride cluster, the oxidation behaviors of metal NCFs could be 

manipulated by the specific metal rather than be dominated by the charge transfer on the 

carbon cage. However, there is still scarce knowledge about the dependence of the redox 

properties on the other properties of the nitride cluster. Unfortunately, Ce3N@C80 is not 

reported yet which could be reasonably concluded that the unbearable inner strains between 

the pyramidal Ce3N cluster and the C80 cage. Therefore, Ce-based mixed metal nitride clusters 

are promising to undertake this task. Combination of Ce and other metals, the inner strain 

could be preserved and fine-tuned by switching the second metal, for instance from Sc to Lu 

or Y. Furthermore, with extending the size of carbon cage from C80 to C88, the inner strains 

could be released accordingly as well. Hence, there are plenty of open and interesting 

questions to be answered. The relationship between the geometry of endohedral cluster and 

the inner strains induced by the pyramidal cluster should be illustrated.   

Among C80-based MMNCFs, Praseodymium-containing structures have not been reported. 

Although Echegoyen and co-workers reported the synthesis, isolation and electrochemical 

study of Pr3N@C2n (2n= 80-88), the low yield of Pr-compounds hinders the further NMR 

studies. The motivations of the Pr-based MMNCFs are their vibrational spectroscopic and the 

NMR study. The comparative study of MSc2N@C80 (I; M= Lanthanide metals) could reveal: 

a) the dependence of their electronic and vibrational properties on the encapsulated metal due 
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to the well-known Lanthanide contraction; b) their different paramagnetic 13C and 45Sc NMR 

behaviors could be compared considering their similar ionic radii but different 4f-electrons 

configurations. 

2.2 Synthesis and isolation of Ho xM3-xN@C80 

2.2.2 Synthesis and isolation of Ho xSc3−xN@C80 (x= 1, 2) 
 

The synthesis of HoxSc3-xN@C80 MMNCFs was achieved by the “reactive gas atmosphere” 

method as previously described. By a modified Krätschmer-Huffman DC-arc discharging 

method with the addition of NH3 (20 mbar) as described elsewhere. Briefly, a mixture of 

Ho2O3 and Sc2O3 (99.9%, MaTeck GmbH, Germany) and graphite powder was used (molar 

ratio Ho/Sc/C=1:1:15). After dc-arc discharging, the soot was pre-extracted by acetone and 

further Soxhlet-extracted by CS2 for 20h. Figure 2.1 displays a typical HPLC chromatogram 

of the HoxSc3−xN@C2n (x= 0-3) fullerenes extract obtained under the optimized condition. 

Analyzed by the integrated areas of the corresponding chromatographic peaks, the dominant 

products are two isomers of HoxSc3-xN@C80 (x= 1, 2), and the relative yield of Sc3N@C80 (I 

and II) is around 20%. 

 

  
Figure 2.1 Chromatogram of a raw HoxSc3−xN@C2n fullerenes extract synthesized by the 

“reactive gas atmosphere” method (linear combination of two 4.6×250 mm Buckyprep 

columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

The inset shows the enlarged chromatographic region of 28.0-33.0 min. 
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Figure 2.2 The HPLC isolation of fraction A by three-step recycling HPLC. (a) Removal 

of HoSc2N@C80 (I) (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection 

volume 5 ml; toluene as eluent; 20 ℃℃℃℃). (b) Removal of Sc3N@C78 and HoSc2N@C78 

(10×250 mm Buckyclutcher column; flow rate 1.5 ml/min; injection volume 5 ml; 

toluene as eluent). (c) Removal of Ho3N@C80 (I) (10×250 mm Buckyprep column; flow 

rate 1.5 ml/min; injection volume 5 ml; toluene as eluent), (d) shows the enlarged 

chromatographic region at 1025-1125 min. 

 
Two isomers of HoxSc3−xN@C80 (x= 1, 2) were isolated by the multi-step HPLC (see 

Figures 2.1-2.5). At the first step, linear combination of two 4.6×250 mm Buckyprep columns 

was used to separate fractions A-D (Figure 2.1). Each of the fractions was then subjected to 

the isolation by recycling HPLC on a Buckyprep and/or Buckyclutcher column. In particular, 

to isolate Ho2ScN@C80 (I) from fraction A, first, the Buckyprep column was employed to 

remove the HoSc2N@C80 (I) (Figure 2.2 a); second, the Buckyclutcher column was employed 

to remove Sc3N@C78 and HoSc2N@C78 (Figure 2.2 b); third, due to the close retention times 

of the Ho3N@C80 (I) and Ho2ScN@C80 (I), only small amount of pure Ho2ScN@C80 (I) was 

obtained by recycling HPLC after 11 cycles (Figure 2.2 c and d).  
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Figure 2.3 The HPLC isolation of fraction B by recycling HPLC. The removal of 

Sc3N@C78, HoSc2N@C78 and Ho2ScN@C80 (I) (10×250 mm Buckyprep column; flow 

rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 ℃℃℃℃). 

 
Compared to the Ho2ScN@C80 (I), the isolation of HoSc2N@C80 (I) was achieved after 

recycling fraction B 10 times to remove the other structures which included Sc3N@C78, 

HoSc2N@C78 and Ho2ScN@C80 (I). Due to the peak tailing in the first step (Figure 2. 1 inset), 

considerable amount of minor structures in the Fraction B was removed in the second cycle, 

see Figure 2. 3b. 



Chapter 2 Synthesis and Isolation of Mixed Metal Nitride Clusterfullerenes 

 24 

 
Figure 2.4 The HPLC isolation of fraction C by recycling HPLC. 

  

The isolation of Ho2ScN@C80 (II) from the fraction C was accomplished by collecting the 

fraction between HoSc2N@C80 (I) and Sc3N@C80 (I) after several cycles (Figure 2.4). 

Retention times of HoSc2N@C80 (II) and Sc3N@C80 (II) are quite close; moreover, the 

amount of these two compounds is quite low in the fraction D. So the mixture of these two 

compounds had to be enriched in the first step (Figure 2.5a), then after 24 cycles, limited 

amount of the purified HoSc2N@C80 (II) could be obtained (Figure 2.5 b and c). 
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Figure 2.5 The isolation of fraction D. The removal of Ho2ScN@C80 (II) and Sc3N@C80 

(II) (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; 

toluene as eluent; 20 ℃℃℃℃). 
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The isolated samples of HoxSc3−xN@C80 (I, II; x=1, 2) were identified by laser 

desorption/ionization time-of-flight (LDI-TOF) mass spectrum analysis (Figure 2. 6), which 

confirmed their high purity. 

 
Figure 2.6 Positive Ion LDI-TOF mass spectra of the isolated HoxSc3−xN@C80 (I, II; x= 1, 

2). 

2.2.2 Synthesis and isolation of Ho xY3−xN@C80 (x=1, 2) 
 

 
 

Figure 2.7 Chromatogram of a raw HoxY3−xN@C2n fullerenes extract synthesized by the 

“selective organic solid” method (linear combination of two 4.6×250 mm Buckyprep 

columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

The inset shows the enlarged chromatographic region of 29.5-34.5 min. 
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The synthesis of HoxY3−xN@C80 (I; x= 1, 2) was achieved by “selective organic solid” 

route as previously described in chapter 1. The process of dc-arc discharging and solution 

extraction was the same in the production of HoxSc3−xN@C80. A mixture of Ho2O3 and Y2O3 

(99.9%, MaTeck GmbH, Germany), guanidine thiocyanate (GT) and graphite powder was 

used (molar ratio Ho/Y/GT/C=1:1:2.5:15). The typical chromatogram of the extracted 

HoxY3−xN@C2n fullerenes is shown in Figure 2.7.  

 

 
Figure 2.8 The HPLC isolation of fraction 3. (10×250 mm Buckyprep column; flow rate 

1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 ℃℃℃℃). 

  
Two isomer of HoxY3-xN@C80 (x= 0-3) were isolated by multistep HPLC (see Figure 2.8 - 

2.10). Firstly, the analytical HPLC was employed to collect HoxY3−xN@C80 (I) (Fraction 3) 

and HoxY3−xN@C80 (II) (Fraction 4) respectively. Different to HoxSc3−xN@C80 (I; x= 1, 2), the 

retention time of HoxY3−xN@C80 (I) in Buckyprep column (4.6×250 mm) are identical. 

Secondly, the Fr 3 was subjected to isolation by recycling HPLC on a Buckyprep column 
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(10×250 mm), see Figure 2. 8a. After 12 recycling cycles, four sub-fractions could be 

obtained which marked as Fr 31 to Fr 34. The relative yield of HoxY3−xN@C80 (x= 0-3) could 

be estimated from the integrated areas of the corresponding chromatographic peaks which 

agrees well with mass spectrum result of fraction 3 (Figure 2. 8b and c).  

 

 
Figure 2.9 The isolation of fraction Fr 32. (10×250 mm Buckyprep column; flow rate 1.5 

ml/min; injection volume 5 ml; toluene as eluent; 20 ℃℃℃℃). 
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Figure 2.10 The isolation of fraction Fr 33. (10×250 mm Buckyprep column; flow rate 

1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 ℃℃℃℃). 

 
Isolation of HoY2N@C80 (I) was accomplished by removing the small amount of Y3N@C80 

(I) and Ho2YN@C80 (I) from fraction 32 after 30 cycles. Likewise, the pure Ho2YN@C80 (I) 

could be obtained by removing the minor structures (HoY2N@C80 (I) and Ho3N@C80 (I)) in 

fraction 33  through 27 cycles. The purity of HoxY3-xN@C80 (I; x= 1, 2) were confirmed by 

LDI-TOF mass spectroscopy (Figure 2.10 and 2.11). 
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Figure 2.11 The isolated samples of HoxY3−xN@C80 (I; x=1, 2) were identified by laser-

desorption time-of-flight (LDI-TOF) mass spectrum analysis, which confirmed their 

high purity. 

 

2.2.3 Synthesis and Isolation of Ho xLu 3−xN@C80 (x=1, 2)  

 

 
Figure 2.12 Chromatogram of a raw HoxLu3−xN@C2n fullerenes extract synthesized by 

the “reactive gas atmosphere” method (linear combination of two 4.6×250 mm 

Buckyprep columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile 

phase, 40 ℃℃℃℃). The inset shows the enlarged chromatographic region of 28.0 - 31.5 min. 

 
The synthesis of HoxLu3−xN@C80 (x= 1, 2) was achieved by “selective organic solid” route 

as previously described in the synthesis of HoxY3−xN@C80 (I; x= 1, 2). The process of dc-arc 
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discharging and solution extraction was the same procedure of HoxY3−xN@C80. A mixture of 

Ho2O3 and Lu2O3 (99.9%, MaTeck GmbH, Germany), guanidine thiocyanate (GT) and 

graphite powder was used (molar ratio Ho/Lu/GT/C=1:1:2.5:15). 

 

 
Figure 2.13 The isolation of fraction Fr 1. (10×250 mm Buckyprep column; flow rate 1.5 

ml/min; injection volume 5 ml; toluene as eluent; 20 ℃℃℃℃). 
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Figure 2.14 The isolation of fraction Fr 12. (10×250 mm Buckyprep column; flow rate 

1.5 ml/min; injection volume is 5 ml; toluene as eluent; 20 ℃℃℃℃). 

 
The mixture of HoxLu3−xN@C2n was subjected to isolation by analytical HPLC in the first 

step (Figure 2.12). HoxLu3−xN@C80 (I) and HoxLu3−xN@C80 (II) were separated into Fr 1 

(28.0 - 29.9 min) and Fr 2 (29.9 - 31.5 min) respectively according to the difference of their 

cage symmetry. In the second step, three sub-fractions could be obtained after recycling 

fraction 1 over 30 times which then named as Fr 11, Fr 12 and Fr 13. Checking by mass 

spectrum, the dominant structure in Fr 12 is HoxLu3−xN@C80 (I) (Figure 2.13). In the third 

step, the Fr 12 was subjected to recycling HPLC again for removing minor structures 

(HoLu2N@C80 (I) and Ho3N@C80 (I)). As shown in Figure 2.14, Fr 122 was collected after 44 

cycles. In the fourth step, after running another 44 cycles, the isolation of Ho2LuN@C80 (I) 
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was successfully achieved and its purity was confirmed by LDI-TOF mass spectroscopy 

(Figure 2.15).  

 

 
Figure 2.15 The isolation of fraction Fr 122. (10×250 mm Buckyprep column; flow rate 

1.5 ml/min; injection volume 4 ml; toluene as eluent; 20 ℃℃℃℃). 

 
Similar to Ho2LuN@C80 (I), the isolation of HoLu2N@C80 (I) is extremely time-consuming 

due to the retention time of Lu3N@C80 (I) and HoLu2N@C80 (I) is almost identical. Only by 

running on recycling HPLC over 73 cycles, small amount of HoLu2N@C80 (I) was obtained, 

see Figure 2.16. The purity of HoLu2N@C80 (I) was confirmed by LDI-TOF mass 

spectroscopy (Figure 2.17). 
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Figure 2.16 The isolation of fraction Fr 121. (10×250 mm Buckyprep column; flow rate 

1.5 ml/min; injection volume is 4 ml; toluene as eluent; 20 ℃℃℃℃). 
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Figure 2.17 The isolated samples of HoxLu3−xN@C80 (I; x=1, 2) were identified by laser-

desorption time-of-flight (LDI-TOF) mass spectrum analysis, which confirmed their 

high purity. 

 

2.3 Synthesis and isolation of Ce-based MMNCFs 

2.3.1 Synthesis and isolation of CeY 2N@C80 (I) 
 

 
Figure 2.18 Chromatogram of CexY3-xN@C2n (2n= 80-88) fullerene extract mixture 

synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep columns, 

flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

 
CeY2N@C80 (I) was synthesized by the “selective organic solid” (SOS) route (using 

guanidine thiocyanate (GT) as the nitrogen source). After dc-arc discharging, the soot was 
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pre-extracted by acetone and further Soxhlet-extracted by CS2 for 20h. The extraction solution 

was dried and then endohedral fullerenes-containing crude mixture was dissolved in toluene. 

Figure 2.1 shows a typical chromatogram of CexY3-xN@C2n (2n= 80-88) fullerene extract 

mixture obtained under the optimized condition (molar ratio Ce/Y/GT/C= 1:1:2.5:15). The 

largest peak (tret= 29.0-31.0 min) in the chromatogram is assigned to Y3N@C80 (I) and the 

dominated fraction (tret= 31.0-33.0 min) contains Y3N@C80 (II) and CeY2N@C80 (I). The Ce-

based mixed metal nitride (CexY3-xN) could be encaged into the carbon cages larger than C80 

as well, which included the cage size from C82 to C88 with retention time longer than 33.0 min. 

Their isolation and characterization will be discussed later.  

 

 
Figure 2.19 The isolation of CeY2N@C80 (I). CeY2N@C80 (I) was obtained by recycling 

HPLC after 29 cycles (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection 

volume is 5 ml; toluene as eluent; room temperature); the inset shows the last cycle 

(between 2870 and 2970 min).  

 
Due to the retention time of CeY2N@C80 (I) and Y3N@C80 (II) is quite close, this fraction 

was subjected to isolation by recycling HPLC on a Buckyprep column. Pure CeY2N@C80 (I) 

was obtained by recycling HPLC after 29 cycles and further characterized by laser-desorption 

time-of-flight (LDI-TOF) mass spectroscopy which confirmed its high purity (see Figure 

2.20).  
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Figure 2.20 The LDI-TOF mass spectrum of purified CeY2N@C80 (I). 

 

2.3.2 Synthesis and isolation of Ce xY3-xN@C2n (2n= 84-88) 
 

 
Figure 2.21 Chromatogram of CexY3-xN@C2n fullerenes extract mixture synthesized by 

the “SOS” method (combination of two 4.6×250 mm Buckyprep columns, flow rate 1.6 

ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

 
Ce-based large MMNCFs, namely CexY3-xN@C2n (2n= 84-88), were synthesized by the 

“selective organic solid” (SOS) route as described preciously. After dc-arc discharging, the 

soot was extracted by acetone and by CS2 respectively. As mentioned, the largest peak in the 

chromatogram is assigned to Y3N@C80 (I), and the Fraction 7 (tret= 38.5-42.0 min) contains 

CexY3-xN@C86, the Fraction 8 (tret= 42.0-44.5 min) contains CexY3-xN@C84 and the Fraction 

9 (tret= 42.0-44.5 min) contains CexY3-xN@C88, respectively. 
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Figure 2.22 Chromatogram of the Fraction 7 of CexY3-xN@C86 fullerenes extract 

mixture synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep 

columns, flow rate was set at 3.0 ml/min, injection volume 3 mL, toluene as mobile phase, 

room temperature).  

 

According to the integrated area of Fraction labeled in Figure 2.21, it could be estimated 

that the relative yield of CexY3-xN@C2n (2n= 84-88) are much lower than the Y3N@C80 (I). 

Pure CeY2N@C86 could be isolated by running recycling HPLC with Fr 7, see Figure 2.22 b 

and c. Because the retention time of Y3N@C86 and Ce2YN@C86 is quite close, this sub-

fraction was collected as the mixture of these two structures.  
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Figure 2.23 Chromatogram of the Fraction 8 of CexY3-xN@C84 fullerenes extract 

mixture synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep 

columns, flow rate 2.0 ml/min, injection volume 3 mL, toluene as mobile phase, room 

temperature). 

 

CeY2N@C84 and Y3N@C84 are major structures in the Fraction 8, see Figure 2.23 a. Both 

of them were isolated after 42 cycles. They were characterized by LDI-TOF mass 

spectroscopy which confirmed theirs high purity.  
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Figure 2.24 Chromatogram of the Fraction 9 of CexY3-xN@C88 fullerenes extract 

mixture synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep 

columns, flow rate 2.0 ml/min, injection volume 3 mL, toluene as mobile phase, room 

temperature). 

 
In Fraction 9, Ce2YN@C88 and CeY2N@C88 were isolated after 11 cycles, see Figure 2.24. 

Confirmation of their high purity was performed by LDI-TOF mass spectroscopy. 
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2.3.3 Synthesis and isolation of CeSc 2N@C80 (II) 
 

 
Figure 2.25 Chromatogram of CexSc3-xN@C2n (2n= 78-88) fullerene extract mixture 

synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep columns, 

flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

 
The synthesis of CeSc2N@C80 (I and II) was achieved by SOS route. The procedure of the 

soot treatment was the same to CeY2N@C80 (I). The typical HPLC chromatogram of CexSc3-

xN@C2n (2n= 78-88) fullerene extract mixture obtained under the optimized condition (molar 

ratio Ce/Sc/GT/C= 1:1:2.5:15) in Figure 2.25.  

In Figure 2.25, the Fraction 7 (tret= 30.0-36.4 min) in the chromatogram contains 

CeSc2N@C80 (II) and two isomers of Sc3N@C80. The isolation of CeSc2N@C80 (II) was 

accomplished in two stages. In the first stage, the Sc3N@C80 (II) was removed after 10 cycles 

(see Figure 2.5 b). Because the retention time of CeSc2N@C80 (II) is very close Sc3N@C80 (I), 

small amount of CeSc2N@C80 (II) could be obtained after 25 cycles (see Figure 2.26 c). The 

high purity of CeSc2N@C80 (II) was confirmed by LDI-TOF mass spectroscopy which shown 

in Figure 2.27. 
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Figure 2.26 The isolation of CeSc2N@C80 (II). (a) CeSc2N@C80 (II) was obtained by 

recycling HPLC after 24 cycles (10×250 mm Buckyprep column; flow rate 1.5 ml/min; 

injection volume is 5 ml; toluene as eluent; room temperature); (b) The enlarged views 

of 9th and 25th cycle from (a) are shown in (b) and (c) respectively, (tret= 910-1020 min 

and tret= 2580-2700 min). 
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Figure 2.27 The LDI-TOF mass spectrum of purified CeSc2N@C80 (II). 
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2.4 Synthesis and Isolation of Pr-based MMNCFs  

 
Figure 2.28 Chromatogram of PrxSc3-xN@C2n (2n= 78-88) fullerene extract mixture 

which synthesized by the “SOS” method (combination of two 4.6×250 mm Buckyprep 

columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 ℃℃℃℃). 

 
Two isomers of PrSc2N@C80 were synthesized by the “selective organic solid” (SOS) route 

(using guanidine thiocyanate (GT) as the nitrogen source). After dc-arc discharging, the soot 

was pre-extracted by acetone and further Soxhlet-extracted by CS2 for 20h. The extraction 

solution was dried and then endohedral fullerenes-containing crude mixture was dissolved in 

toluene. The HPLC chromatogram of PrxSc3-xN@C2n (2n= 78-88) fullerene extract mixture 

obtained under the optimized condition (molar ratio Pr/Sc/GT/C= 1:1:2.5:15) is shown in 

Figure 4.1. The largest peak (tret= 30.2-32.7 min) in the chromatogram is correlated to C80-

based PrSc2N@C80 (I) and Pr2ScN@C80 (I), and C78-based PrSc2N@C78 and Sc3N@C78 

(Fraction 4). The second dominated fraction (tret= 32.7-36.0 min) mainly contains 

PrSc2N@C80 (II) and two isomers of Sc3N@C80 (Fraction 5). The Ce-based mixed metal 

nitride (PrxSc3-xN) could be encaged into the carbon cages ranging from C82 to C88 with 

retention time between 37.0 and 59.0 min.  
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Figure 2.29 The isolation of PrSc2N@C80 (I). PrSc2N@C80 (I) was obtained by recycling 

HPLC after 35 cycles (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection 

volume is 5 ml of Fraction 4; toluene as eluent; room temperature); The enlarged views 

of 9th and 35th cycle from (a) are shown in (b) and (c) respectively, (tret= 860 - 965 min 

and tret= 3465 – 3670 min).  

 

Figure 2.30 The LDI-TOF mass spectrum of purified PrSc2N@C80 (I). 
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Because the retention time of these four compounds (PrSc2N@C80 (I) and Pr2ScN@C80 (I), 

PrSc2N@C78 and Sc3N@C78) in Fraction 4 is rather close. The Fraction 4 was subjected to 

next-step isolation by recycling HPLC on a Buckyprep column (Figure 2.29). Pure 

PrSc2N@C80 (I) was obtained by recycling HPLC on the second step after 35 cycles. All of 

the Sc3N@C78 and PrSc2N@C78 could be removed after 9 cycles (see Figure 2.29 b) and only 

trace of Pr2ScN@C80 (I) remained in the fraction. Finally, the removal of this minor structure 

could be achieved on the 35th cycle (see Figure 2.29 c). PrSc2N@C80 (I) was characterized by 

LDI-TOF mass spectroscopy which confirmed its high purity (see Figure 2.30).  

 

 

 
Figure 2.31 The isolation of PrSc2N@C80 (II). PrSc2N@C80 (II) was obtained by 

recycling HPLC after 37 cycles (10×250 mm Buckyprep column; flow rate 1.5 ml/min; 

injection volume is 5 ml of Fraction 5; toluene as eluent; room temperature); The 

enlarged views of 14th and 37th cycle from (a) are shown in (b) and (c) respectively, (tret= 

1430 -1540 min and tret= 3830 - 3940 min).  
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Figure 2.32 The LDI-TOF mass spectrum of purified PrSc2N@C80 (II). 

 
The isolation of PrSc2N@C80 (II) was accomplished in two steps. Firstly, the PrSc2N@C80 

(II) was collected with Sc3N@C80 (I and II) into Fraction 5 (see Figure 2.31). Secondly, 

similar to the case of PrSc2N@C80 (I), the same Buckyprep column was employed to remove 

two isomers of Sc3N@C80 and the details have been described in Figure 2.31b. The retention 

time of PrSc2N@C80 (II) is found between that of Sc3N@C80 (I) and Sc3N@C80 (II). After 37 

cycles, the PrSc2N@C80 (II) could be obtained. The high purity of PrSc2N@C80 (II) was 

confirmed by LDI-TOF mass spectroscopy which shown in Figure 2.32. 
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2.5 Conclusion  
   

The synthesis of Ho-based, Ce-based and Pr-based MMNCFs was achieved by the 

“reactive gas atmosphere” or “selective organic solid” route. The isolation of C80-based 

MMNCFs which including HoxSc3-xN@C80 (I, II; x= 1, 2), HoxLu3-xN@C80 (I; x= 1, 2), 

HoxY3-xN@C80 (I; x= 1, 2), CeY2N@C80 (I), CeSc2N@C80 (II) and PrSc2N@C80 (I, II) was 

accomplished by multi-step HPLC. Additionally, Ce-based MMNCFs with carbon cage larger 

than C80 were synthesized and isolated which include CeY2N@C84, CeY2N@C86, 

Ce2YN@C86, Ce2YN@C88 and CeY2N@C88. The purity of above-mentioned MMNCFs was 

confirmed by LDI-TOF mass spectroscopy. To understand and tune the electronic, magnetic 

and electrochemical properties of the MMNCFs, Ho, Ce and Pr are chosen due to their 

different metal ionic radii, the number of 4f-electron and magnetic moment. In the following 

chapter, those endohedral fullerenes will be compared according to the same carbon cage 

structure containing different encaged cluster or the same encapsulated cluster in different 

carbon cages.   

It should be mentioned that Anja Grohme finished the synthesis of CexSc3-xN@C2n 

compounds.  
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Chapter 3 Spectroscopic Characterization of Mixed Metal 

Nitride Clusterfullerenes 

3.1 UV-Vis-NIR spectroscopy of MMNCFs 
 

  The absorptions of metal nitride clusterfullerenes (NCFs) in the visible and NIR range are 

predominantly due to the π-π* excitations of the carbon cage, which are strongly dependent 

on the structure and the charge state of the carbon cage. A comparison of the spectra of 

HoxSc3-xN@C80 (I, II; x= 1, 2) in toluene solution is illustrated in Figure 3.1. The electronic 

absorption spectra of HoxSc3-xN@C80 (I; x= 1, 2), exhibited intermediate spectral features in 

comparison with Ho3N@C80 (I) and Sc3N@C80 (I). Ho2ScN@C80 (I) has mainly inherited the 

characteristic absorption feature of Ho3N@C80 (I) with absorption maxima at 667/696 nm, 

which are slightly red-shifted to 669/698 nm in Ho2ScN@C80 (I). Substituting the cluster 

Ho2ScN for HoSc2N led to a further red shift of this doublet to 679/713 nm. In addition, the 

distinct visible absorption peak observed at 399 nm of Ho3N@C80 (I) is shifted to 408 nm in 

the Ho2ScN@C80 (I) and disappeared in HoSc2N@C80 (I) and Sc3N@C80 (I). Similarly, the 

shoulder peak of Ho3N@C80 (I) at 557 nm and HoSc2N@C80 (I) at 562 nm gradually faded in 

HoSc2N@C80 (I) and Sc3N@C80 (I). The electronic absorption spectra of HoxSc3-xN@C80 (II; 

x= 0-2) are consistent with the differences in the absorption spectra of isomers II found for 

other MMNCFs. Correspondingly, the absorption peak at 712 nm in the spectrum of 

Ho2ScN@C80 (II) is red-shifted to 723 nm for HoSc2N@C80 (II), and vanished in Sc3N@C80 

(II). The shoulder peak at 632 nm in the spectrum of Ho2ScN@C80 (II) retained in 

HoSc2N@C80 (II). Similarly to isomer I, the strongest absorption peak in the visible range of 

Ho2ScN@C80 (II) at 457 nm is slightly shifted to 447 nm in the spectrum of HoSc2N@C80 (II) 

and splits into a doublet peak with absorption maxima at 413/472 nm for Sc3N@C80 (II). The 

electronic absorption features of HoSc2N@C80 (II) exhibit an intermediate state in comparison 

with Ho2ScN@C80 (II) and Sc3N@C80 (II). The similarities and differences in the overall 

absorption spectrum of HoxSc3−xN@C80 (I, II; x= 1, 2) are comparable to those of 

GdxSc3−xN@C80 (I, II; x=1, 2) reported earlier.61 
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Figure 3.1 UV-vis-NIR spectra of (a) HoxSc3-xN@C80 (I; x= 0-3) and (b) HoxSc3-xN@C80 

(II; x= 0-2) in toluene. 
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Figure 3.2 UV-vis-NIR spectra of HoxY3−xN@C80 (I; x= 0-3) and HoxLu 3-xN@C80 (I; x= 

0-3). 

 
The electronic absorption spectra of HoxY3−xN@C80 (I; x=0-3) and HoxLu3−xN@C80 (I; 

x=0–3) are compared in Figure 3.2. Substituting the cluster from Ho3N to Ho2YN and HoY2N 

do not lead to any significant shift of the doublet at 667/696 nm. However, more pronounced 

shifts are found in the absorption spectra of HoxLu3−xN (I; x=0-3): the characteristic 

absorption at 659/686 nm in Lu3N@C80 (I) is gradually red-shifted to 661/689 nm in 

HoLu2N@C80 (I) and 661/689 nm in Ho2LuN@C80 (I), and further to 667/696 nm in 

Ho3N@C80 (I). 

In summary, the absorption spectra of HoxY3-xN@C80 (I; x= 0-3) and HoxLu3-xN@C80 (I; 

x= 0-3) are quite close to each other and to those of YxLu3−xN@C80 (I; x= 0-3).62 The close 

resemblance of their electronic properties could be related to the similarity of Y3+, Ho3+ and 
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Lu3+ in terms of their ionic radii, and the HPLC retention behavior of corresponding NCFs 

previous chapter.   

 
Figure 3.3 UV-Vis-NIR spectra of CeM2N@C80 (I; M= Y, Lu and Sc). 

 
A comparison of the spectra of CeM2N@C80 (I; M=Y, Lu and Sc) in toluene solution is 

illustrated (see Figure 3.3). The overall absorption features of CeM2N@C80 (I) are quite 

similar, only with subtle shifts of the bands. Their absorption onset indicated that comparable 

optical band gaps and could be explained as the resemblance of their electronic properties 

when preserving Ce atom but substituting two metal atoms from Y to Lu and Sc. CeY2N@C80 

(I) has the characteristic absorption at 671/699 nm, which are slightly blue-shifted to 666/694 

nm in CeLu2N@C80 (I), but red-shifted to 684/726 nm in CeSc2N@C80 (I).  
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Figure 3.4 UV-Vis-NIR spectra of (up) MSc2N@C80 (I; M= Ce, Pr and Nd) and (bottom) 

MSc2N@C80 (I; M= Ce, Pr) which compared with Sc3N@C80 (I) and Sc3N@C80 (II) 

respectively. 

 
A comparison of the spectra of MSc2N@C80 (I, II; M= Ce, Pr, Nd) and Sc3N@C80 (I, II) in 

toluene solution is illustrated (see Figure 3.4). The overall absorption features of MSc2N@C80 

are quite similar, only with insignificant shifts of the bands. Their absorption onset indicated 

that comparable optical band gaps and could be explained as the resemblance of their 

electronic properties when preserving two Sc atoms but substituting Lanthanide atom from 

Nd to Pr and Ce. NdSc2N@C80 (I) has the characteristic absorption at 718 nm, which are 

slightly red-shifted to 724 nm in PrSc2N@C80 (I) and further to 728 nm in CeSc2N@C80 (I). 

According to former studies on the homogeneous metal NCFs M3N@C80 (I; M= Pr, Nd, Gd, 

Tb, Dy, Ho, Er, Tm, Lu and Y), the electronic absorption property of M3N@C80 fairly 

depends on the size of the encaged cluster. The electronic spectra of PrSc2N@C80, agree well 

with other MSc2N@C80 structures (I; M= Ce, Nd, Gd, Tb, Dy, Er, Lu and Y).63 Because their 
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electronic spectra are dominated by the C80 (I) cage and the insignificant shifts causing by 

changing the MSc2N cluster which is dominated by the corresponding lanthanide metal ions. 

Figure 3.4 (bottom) shows that electronic absorption spectra of MSc2N@C80 (II) is different 

from its isomer (I), which agrees well with the differences in the absorption spectra of isomers 

I and II of M3N@C80 (M= Sc, Lu, Y). Substituting one Sc atom with Ce or Pr, the significant 

change of the electronic absorption could be observed. Firstly, the strongest absorption peak 

in the spectrum of PrSc2N@C80 (II) is found to blue-shift from 446 nm to 442 nm in 

CeSc2N@C80 (II). Secondly, the shoulder peak around 725 nm in the spectrum of 

PrSc2N@C80 (II) remains almost unchanged in CeSc2N@C80 (II), but becomes undetectable 

in Sc3N@C80 (II).  

In Figure 3.5, a comparison of the -Vis-NIR spectra of CexY3-xN@C2n (x= 0-2; 2n= 84, 86 

and 88) in toluene solution is demonstrated. Previous studies demonstrated the reliability of 

UV-Vis-NIR for the characterization of endohedral fullerenes. The UV/Vis/NIR spectra of 

Dy3N@C2n (2n= 78-88) compounds have been reported by our group previously.65 The 

optical band-gap of the Dy3N@C2n could be classified into two ranges depending on the cage 

size of fullerenes. As above-mentioned, no Ce-based MMNCFs has been isolated and 

characterized in the carbon cage from C84 to C88 so far.66 In general, the spectra of Ce-based 

MMNCFs are comparable to the M3N@C2n (2n= 84-88) for each cage which indicates the 

identical cage symmetry and similar electronic structure. Substituting the encaged cluster 

from Y3N to CeY2N in the C84 cage, the strongest visible absorption peak of CeY2N@C84 is 

622 nm, which is exactly identical to Y3N@C84. Such an absorption feature agrees well with 

reported structures including Gd3N@C84, Dy3N@C84 and Tm3N@C84. CeY2N@C86 presents 

reasonable correspondence to the spectra of Y3N@C86. There is a marginal difference 

between the characteristic absorption peak at 636 nm in Y3N@C86 and at 633 nm 

CeY2N@C86. The absorption peaks of Y3N@C88 at 727/975/1034 nm slightly shift to 

747/972/1039 nm in CeY2N@C88 and 755/975/1046 nm in Ce2YN@C88. This suggests that 

the resemblance of their electronic structures among Y3N@C88, CeY2N@C88 and 

Ce2YN@C88.  
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Figure 3.5 UV-Vis-NIR spectra of CexY3-xN@C2n (x= 0-2; 2n= 84, 86 and 88). 
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3.2 Vibrational spectroscopy of MMNCFs 

3.2.1 FTIR Vibrational Spectroscopic study of MMNCF s 
 

Vibrational spectroscopy is a useful tool to analyze the structure of fullerenes due to its 

high structural sensitivity and its higher time resolution as compared to NMR 

spectroscopy.29,35,37,67 The FTIR spectra of HoxSc3-xN@C80 (I, II; x= 0-3) compared in Figure 

3.6 show a clear similarity of the tangential cage modes (800 - 1600 cm-1) and radial cage 

modes (400 - 600 cm-1) within each group of MMNCFs with the same cage isomer. The 

spectra of the MMNCFs (isomer I) are also virtually identical to those of other M3N@C80 

structures (I; M= Sc, Y, Gd, Tb, Dy, Ho, Er, Tm). This result enables us to assign the cage 

isomer, C80-Ih(7) to all structures of isomer I. Likewise, cage modes in the spectra of 

HoxSc3−xN@C80 (II; x= 1, 2) are very similar to those of GdxSc3−xN@C80 (II; x= 1, 2) and 

LuxSc3−xN@C80 (II; x= 1, 2) with D5h(6) carbon cage.  

 

 
Figure 3.6 FTIR spectra of (a) HoxSc3-xN@C80 (I; x= 0-3) and (b) HoxSc3-xN@C80 (II; x= 

0-2). 
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Figure 3.5 displays that the antisymmetric metal-nitrogen stretching vibrational modes of 

HoxSc3-xN@C80 (I, II; x= 0-3), which are assigned to the most intense low-energy IR lines in 

the 600 - 800 cm-1 range and which are sensitively dependent on the composition of the 

encaged HoxSc3-xN cluster. For HoxSc3-xN@C80 (I; x= 0-3), the anti-symmetric M–N 

stretching vibrational mode (νM-N), which is two-fold degenerate for a homogeneous cluster 

(at 599 cm-1 in Sc3N@C80 (I) and around 710 cm-1 in Ho3N@C80 (I)), was found to be split 

for the HoxSc3-xN clusters (645 and 673 cm-1 for HoSc2N@C80, 660 and 728 cm-1 for 

Ho2ScN@C80) (Figure 3.6a). Our recent reports on the analysis of vibrational spectra of the 

MMNCFs combined with DFT calculations have shown that the geometry parameters of the 

nitride cluster are strongly influenced by the ionic radii of the metal atoms. In particular, an 

inherent strain of all non-Sc M3N@C80 caused by the limited space inside the carbon cage 

become appreciably released when the metal atoms is replaced by one or two Sc atoms with 

smaller ionic radius. As a result, substitution of Ho atoms by Sc results in the synchronous 

elongation of the Ho-N bonds and shortening of the Sc-N bonds (in comparison to Ho3N@C80 

and Sc3N@C80). With the variation of the cluster composition, the νSc-N shifts from 599 cm-1 

in Sc3N@C80 (I) to 673 cm-1 in HoSc2N@C80 (I) and to 728 cm-1 in Ho2ScN@C80 (I). When 

the Sc3N cluster is replaced by the HoxSc3-xN cluster within C80:D5h, the M-N stretching 

vibrational modes have a similar splitting (see Figure 3.6 b). 

 

 
Figure 3.7 The FTIR spectra of (a) HoxY3-xN@C80 and HoxLu3-xN@C80 (I; x= 0-3). 

 
The FTIR spectra of HoxY3-xN@C80 and HoxLu3-xN@C80 (I; x= 1, 2) are compared with 

M3N@C80 (I; M= Ho, Y and Lu) in Figure 3.7. Their tangential and radial cage vibrational 
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modes are virtually identical to those of other M3N@C80 structures (I; M= Y, Lu, Ho, Dy, Gd 

and Tm) which allow us to assign the same cage isomer (C80:Ih). But in contrast to HoxSc3-

xN@C80 (I; x= 1, 2), no considerable splitting of antisymmetric M-N stretching vibrational 

modes has been observed in HoxY3-xN@C80 or HoxLu3-xN@C80 (I; x= 1, 2) due to similar 

ionic radii of Lu3+ (0.85 Å), Ho3+ (0.90 Å) and Y3+ (0.90 Å).62 Switching the encaged cluster 

from Lu3N to Ho3N, and further to Y3N results in the change of νM-N from 703/715 cm-1 in 

Lu3N@C80 (I) to 703/712 cm-1 in Ho3N@C80 (I), and further to 714/725 cm-1 in Y3N@C80 (I). 

X-ray single crystal studies have shown that Lu3N cluster is planar in Lu3N@C80 (I) and Y3N 

cluster is slightly pyramidal in Y3N@C80 (I) (the N being 0.083 Å displaced out of Y3 plane). 

Theoretical calculation predicted that Ho3N is still a planar structure inside the carbon cage. 

The magnitude of the splitting of antisymmetric M-N stretching vibrational modes of HoxLu3-

xN@C80 (I) is larger than in the case of HoxY3-xN@C80 (I) which could be understood as the 

ionic radii difference between Ho3+-Lu3+ and Ho3+-Y3+. FTIR analysis demonstrated marginal 

shifts caused by shrinking of the encaged nitride cluster, that is, in the order of Y3N@C80→ 

HoY2N@C80→ Ho2YN@C80→ Ho3N@C80→ Ho2LuN@C80→ HoLu2N@C80→ Lu3N@C80. 

The M-N stretching frequency is correlated with the structure of M3N, which is dependent on 

the cluster size and/or the radius of metal ions as discussed above. However, it is impossible 

to distinguish νHo-N, νY-N and νLu-N from each other according to the abovementioned data.  

 
M3N@C80 νM-N / cm-1 

Y3N@C80 715, 725 

HoY2N@C80 713, 722 

Ho2YN@C80 704, 712 

Ho3N@C80 703, 712 

Ho2LuN@C80 673, 698, 715, 725 

HoLu2N@C80 674, 699, 711, 725 

Lu 3N@C80 703, 715 

Table 3.1 Characteristic antisymmetric metal-nitrogen vibrational modes of Ho-based 

MMNCFs.  

 
The FTIR spectra of the isomer I of M2ScN@C80 (M= Gd, Dy, Ho, Lu and Sc) is presented 

in the Figure 3.8a. As stated, νM-N is generally split in MxSc3−xN@C80 (x= 1, 2), the high-

frequency vibrational mode has been definitively assigned to νSc–N. By considering the ionic 



Chapter 3 Spectroscopic Characterization of Mixed Metal Nitride Clusterfullerenes 

 59 

radius of the Lanthanide metal Ln3+ (Ce3+: 1.03 Å, Pr3+: 1.01 Å, Nd3+: 0.995 Å, Gd3+: 0.94 Å, 

Tb3+: 0.92 Å, Dy3+: 0.91 Å, Ho3+: 0.90 Å, Er3+: 0.88 Å, Lu3+: 0.85 Å; Sc3+: 0.75 Å), our 

results agree well with the previous studies of Gd2ScN@C80 (I) and Dy2ScN@C80 (I), and 

Lu2ScN@C80 (I). For M2ScN@C80 (I), νSc-N steadily increases from 599 cm-1 in Sc3N@C80 (I) 

to 710 cm-1 (M= Lu), 725 cm-1 (Er), 728 cm-1 (Ho), 737 cm-1 (Dy), 749 cm-1 (Tb), 759 cm-1 

(Gd) and 769 cm-1 (Nd). Meanwhile, νLn-N gradually decreases from 668 cm-1 in Lu2ScN@C80 

(I) to 661 cm-1 (M= Er and Ho), and further to 737 cm-1 (Dy), 659 cm-1 (Dy), 658 cm-1 (Tb), 

649 cm-1 (Gd) and 598 cm-1 (Nd). The magnitude of the splitting of antisymmetric M-N 

stretching vibrational modes of M2ScN@C80 (∆ν= νSc-N - νLn-N) became remarkable since the 

metal ionic radii difference between the encaged Sc and Lanthanide metal in the order of Lu, 

Er, Ho, Dy, Tb, Gd and Nd), see Figure 3.8b. 
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Figure 3.8 FTIR spectra of (a) Ln2ScN@C80 (I; Ln= Nd, Gd, Tb, Dy, Ho, Er and Lu) and 

Sc3N@C80 (I); (b) the dependence of νSc-N and νLn-N of Ln2ScN@C80 on the ionic radius 

(r) of the encaged Lanthanide metal. 

 
In contrast to the Ln2ScN@C80 (I), in the series of LnSc2N@C80 (I) the shifts including  νSc-

N and νLn-N are less pronounced: a) νSc-N of LuSc2N@C80 (I) (652 cm-1) shifts to 667 cm-1 (Er), 

672 cm-1 (Ho), 678 cm-1 (Dy), 684 cm-1 (Tb), 694 cm-1 (Gd), 715 cm-1 (Nd) to 718 cm-1 (Pr) 

and 728 cm-1 (Ce), see Figure 3.9a. The good linear correlation between the frequency and 

ionic radius is observed for the data points from Lu to Ce for LnSc2N@C80 (I) (Figure 3.9b); 

b) νLn-N of LuSc2N@C80 (I) (652 cm-1) shifts to 647 cm-1 (Er), 645 cm-1 (Ho), 647cm-1 (Dy, Tb 
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and Gd), 637 cm-1 (Nd) to 639 cm-1 (Pr) and further to 644 cm-1 (Ce). Noticeably, the νSc-N 

increases in the order of lanthanide metal ionic radius from Lu (0.85 Å) to Ce (1.03 Å). 

However, the changes of νLn-N fluctuate in the range from 652 cm-1 to 637 cm-1. 

 

 
 

 
Figure 3.9 FTIR spectra of (a) LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er and 

Lu) and Sc3N@C80 (I); (b) the dependence of νSc-N and νLn-N of LnSc2N@C80 on the ionic 

radius (r) of the encaged Lanthanide metal. 
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Figure 3.10 FTIR spectra of MSc2N@C80 (a) and M2ScN@C80 (b) (II; M= Gd, Dy, Ho 

and Lu; x= 1, 2) compared with Sc3N@C80 (II). 

 
Due to the relatively low yield and complicated process of purification, only several 

structures of isomer II MxSc3−xN@C80 have been obtained. Comparison of the FTIR spectra 

for those M2ScN@C80 and MSc2N@C80 (M= Gd, Dy, Ho and Lu; x= 1, 2) is demonstrated in 

Figure 3.10. For M2ScN@C80 (II), νSc-N increases from 594 cm-1 in Sc3N@C80 (II) to 697 cm-1 

(Lu), 714 cm-1 (Ho), 716 cm-1 (Dy), and 741 cm-1 (Gd). Similar to the MSc2N@C80 (I), νLn-N 

declines from 661 cm-1 (Lu) to 651 cm-1 (Ho), 650 cm-1 (Dy) and 646 cm-1 (Gd). Switching 

the cage symmetry of C80 from I to II results in that FTIR spectra of MSc2N@C80 (II) 

demonstrates less prominent shifts, νSc-N of Sc3N@C80 (II) (594 cm-1) shifts to 649 cm-1 (Lu), 
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665 cm-1 (Ho), 669 cm-1 (Dy) and 685 cm-1 (Gd). Since the radius of Ho3+ is somewhat 

smaller than that of Gd3+ and Dy3+, the fluctuations of νSc-N induced by encaged Ho atom(s) 

are less prominent than those for Gd and Dy but larger than Lu. As discussed above, the 

splitting of νM-N is considerably dependent on two factors: the composition of the encaged 

cluster (M2ScN or MSc2N) and the symmetry of carbon cage (Ih or D5h). It could be 

summarized that: (a) for carbon cage with the same symmetry (Ih or D5h), the splitting of νM-N 

in M2ScN@C80 is stronger than in MSc2N@C80; (b) for Ln2ScN@C80 and LnSc2N@C80, the 

splitting of νM-N in Ln2ScN@C80 is stronger than in LnSc2N@C80 due to the change of cage 

symmetry; (c) the good linearity based on νSc-N from Lu to Ce for LnSc2N@C80 (I) could be 

obtained (R2 is 0.995) and (d) for the encaged metal with similar metal ionic radii (e.g. Ho3+ 

and Y3+), it is difficult to distinguish νM-N modes. 

 

3.2.2 Raman Spectroscopic study of MMNCFs 
 

The Raman spectra of nitride cluster fullerenes commonly consist of four regions: the 

tangential C80 modes in the range of 1000 - 1600 cm-1; a gaplike region from 815 to 1000 cm-1, 

the radial breathing cage modes between 200 and 815 cm-1, and the low-energy metal cage 

modes below 200 cm-1.68 A detailed analysis of low-energy metal cage modes is shown below, 

which give us more information on the structure of the cluster and cluster-cage interaction. 
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Figure 3.11 Raman spectra of (a) HoxSc3-xN@C80 (I; x= 0-2) and (b) HoxSc3−xN@C80 (II; 

x= 0–2) measured at 120 K and with the laser wavelength of 647 nm. 

 
A comparison of the Raman spectra of HoxSc3−xN@C80 (I, II; x=0-2) is presented in the 

Figure 3.11. Similar to the IR spectra, spectral patterns of the HoxSc3-xN@C80 MMNCFs with 

the same carbon cage are rather similar and are considerably different when two cage isomers 

of the same cluster composition are compared with each other. Some differences in the 

relative intensity of the Raman bands could be ascribed to the different resonance effects of 

the specific structures. To investigate the interaction between the HoxSc3-xN cluster and the 

C80 cage, the low-energy part of the vibrational pattern in the Raman spectrum was studied as 

well, due to its correlation to the bond formation between the nitride cluster and carbon cage. 

The low-energy part of the Raman spectra of HoxSc3−xN@C80 (I, II; x=0-2) observed at 120 K 

with the laser wavelength of 647 nm consisted of the radial C80 cage modes and of cluster-

based modes ranging from 220 to 40 cm-1 (Figure 3.12). The cluster-based modes included 
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the in-plane cluster deformation mode and the frustrated translations and rotations of the 

nitride cluster, which provided critical information on the interaction between the entrapped 

nitride cluster and the C80 cage. As shown in our earlier report on the Raman/DFT study on 

the GdxSc3-xN@C80, the medium-intensity Raman lines of Sc3N@C80 (I) at 210 cm-1 referred 

to the frustrated in-plane cluster translation with a partial contribution from the in-plane M3N 

deformation. The two-fold degenerate mode of the homogeneous Sc3N cluster is split into two 

components for the HoSc2N and Ho2ScN mixed cluster similar to the anitisymmetric M-N 

modes in the IR spectra (this mode is also two-degenerate in the homogeneous nitride 

clusterfullerenes). In the Raman spectrum of the isomer I, two lines at 213/166 cm-1 for 

HoSc2N@C80 and at 178/162 cm-1 for Ho2ScN@C80 are assigned to this kind of vibrations. 

Compared to isomer I, the subtle shifts of lines for isomer II of HoxSc3-xN@C80 could be 

determined, 211/160 cm-1 for the HoSc2N@C80 and 173/159 cm-1 for Ho2ScN@C80, due to 

the alteration of the cage symmetry. Based on experimental and earlier theoretical studies, the 

difference between the GdxSc3-xN@C80 and HoxSc3-xN@C80 (x= 1, 2), could be explained by 

the increasing mass of the metal cluster and the decreasing cluster-cage force constants.  
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Figure 3.12 The low-energy Raman spectra of HoxSc3-xN@C80 (I, II; x= 0-2) measured at 

120 K and with the laser wavelength of 647 nm.  

 
The low-energy Raman spectrum of HoxLu3-xN@C80 (I; x= 1, 2) are compared with 

Ho3N@C80 (I), see Figure 3.13a. Comparable to their FTIR spectra, the metal-cage stretching 

vibrational modes of HoLu2N and Ho2LuN do not lead to any significant splitting and behave 

as the mode of homogeneous Ho3N cluster (160 cm-1). In the contrary, the metal-cage 

vibrational mode of HoxY3-xN (I; x= 1, 2) is split into two components for the HoY2N and 

Ho2YN mixed cluster, although these two clusterfullerenes are almost undistinguishable in 

their FTIR spectra. In Figure 3.12b, two peaks at 196/170 cm-1 for HoY2N@C80 and at 

181/163 cm-1 for Ho2YN@C80 are assigned to this kind of vibrations. It is reasonable that for 

HoxLu3-xN@C80 (x= 1, 2) structures could not be effectively distinguished from both the FTIR 

and the low-energy Raman spectra due to the similarity of both the ionic radii and mass of Ho 

and Lu.  
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Figure 3.13 The low-energy Raman spectra of (a) HoxLu3-xN@C80 (I; x= 1-3) and (b) 

HoxY3-xN@C80 (I; x= 1-3) were obtained at 120 K and with the laser wavelength of 647 

nm.  
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3.3 NMR spectroscopy of Ln-based MMNCFs 
 

In the present state of the NCFs knowledge, 13C NMR spectra could be regarded as a 

definitive proof for determining the symmetry of the carbon cage. The studies of Cerium-

based MMNCFs (CeSc2N@C80 and CeLu2N@C80) showed that even the single 4f-electron on 

the Ce atom induces considerable paramagnetic chemical shift and broadening of the 13C 

NMR lines.52,54 Similar effects were observed in numerous 13C NMR studies of Ce-based 

mono-50 and dimetallofullerenes50,53,69-72 and their derivatives.73,74 To our knowledge, the only 

paramagnetic 13C NMR studies of non-Ce lanthanide metallofullerenes were reported for 

three isomers of Tm@C82
75 and for the Pr@C82

– anion.76,77 The influence of multiple 4f-

electrons on the carbon cage is still unresolved question which requires further study. 

 

 

Figure 3.14 13C NMR spectra of CeY2N@C80 (I), PrSc2N@C80 (I), Y3N@C80 (I) and 

Sc3N@C80 (I) respectively at 298 K. 

 
The 125 MHz 13C NMR spectra of CeY2N@C80 (I) and PrSc2N@C80 (I) at 298 K presented 

in Figure 3.14 exhibit two peaks. Similar to Sc3N@C80 (I)
8 and Y3N@C80 (I)

55, the intensity 

ratio of these two peaks is 3:1, which is characteristic for NCFs with the C80 (Ih) cage isomer. 

As introduced in the previous reports about the 13C NMR study of YxLu3-xN@C80 (I) and 

LuxSc3-xN@C80 (I; x= 0-3), the geometrical factor influences on the chemical shifts of 

MMNCFs without considering paramagnetic contribution. For CeY2N@C80 (I), two δ(13C) 

signals around 144 and 138 ppm are still close to the Y3N@C80 (I) which indicates these 13C 

NMR chemical shifts are changed by 4f1-Ce3+ paramagnetic contribution as well. However, it 
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seems that the 13C chemical shifts of PrSc2N@C80 (I) are majorly dominated by the 

paramagnetic action of 4f2-Pr3+.  

 

 

 

Figure 3.15 13C NMR spectra of (a) HoM2N@C80 and (b) Ho2MN@C80 (I; M= Y, Lu and 

Sc) CS2/d6-acetone at the room temperature. Black dots denote Lu3N@C80 (I) in (a). 

Asterisks denote the signals of the solvent. 

 
Herein, we report the first 13C NMR spectroscopy of HoxM3-xN@C80 (I; M= Y, Lu and Sc; 

x= 1-2) which obtained at room temperature exhibit two broad peaks with chemical shift of 

119 and 74 ppm (HoSc2N@C80), 107 and 66 ppm (HoLu2N@C80), 101 and 76 ppm 

(HoY2N@C80), 77 and 2 ppm (Ho2ScN@C80), 66 and 2 ppm (Ho2LuN@C80), 59 and 5 ppm 

(Ho2YN@C80), respectively (see Figure 3.15). The intensity ratio of those two peaks is 
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roughly 3:1 for each structure, which is characteristic for classical NCF with the C80 (Ih) cage 

isomer as CeY2N@C80 (I) and PrSc2N@C80 (I).  

 

 

Figure 3.16 45Sc NMR spectra of HoSc2N@C80 (I, II), PrSc2N@C80 (I) measured in the 

solution of CS2/d6-acetone at 298 K which compared with LuSc2N@C80 (I). 

 
The 45Sc NMR spectroscopy of LuSc2N@C80 (I), PrSc2N@C80 (I), HoSc2N@C80 (I) and 

HoSc2N@C80 (II) are compared in Figure 3.16. Each of above mentioned compounds exhibit 

a single and symmetric peak which indicates the dynamic behavior of the two Sc atoms 

encaged in the carbon cage. Substituting the involved lanthanide metal from 4f1-Ce3+ to 4f2-

Pr3+ and 4f10-Ho3+, paramagnetic chemical shifts induced by the corresponding lanthanide 

metal are different. Switching the symmetry of the carbon cage from Ih to D5h but preserving 

encapsulated HoSc2N, the significant difference between the two isomers of HoSc2N@C80 

could be observed. More discussions about the magnetic properties of MMNCFs will be 

completed in the next chapter, which related to the involved lanthanide metal and the 

geometry of encaged cluster and/or the carbon cage. 
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3.4 Conclusion 
 

In summary, HoxSc3-xN@C80 (I, II; x= 1, 2), HoxLu3−xN@C80 (I; x= 1, 2), HoxY3-xN@C80 (I; 

x= 1, 2), CeY2N@C80 (I), CexY3-xN@C2n (2n= 84, 86 and 88; x= 1-3), CeSc2N@C80 (II), 

PrSc2N@C80 (I, II) were characterized. A systematic comparison of the UV-Vis-NIR, FTIR 

and Raman spectroscopic studies indicates that the vibrational modes of HoxM3−xN@C80 (M= 

Sc, Lu, Y; x= 1, 2) resemble to Ho3N@C80 (I) and M3N@C80 (I; M= Sc, Lu, Y). The 4f 

electron(s) located on the encaged lanthanide metal (e.g. 4f1-Ce3+, 4f2-Pr3+ and 4f10-Ho3+) 

results in remarkable 13C NMR paramagnetic chemical shifts. The 45Sc NMR spectroscopic 

study demonstrated that lanthanide-induced paramagnetic shifts are influenced by both the 

component of metal nitride cluster and the geometry of encapsulated cluster and carbon cage. 

Particularly, based on the current available data of the diamagnetic metal, such as Sc, Lu, Y, 

could help us tune the paramagnetic properties of MMNCFs which substantially broaden 

potential applications of EMFs. The state of paramagnetic lanthanide metals in MMNCFs and 

their electrochemical properties will be presented in the following chapters. 
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Chapter 4 Magnetic Properties of Mixed Metal 

Nitride Clusterfullerenes 

4.1 13C NMR spectroscopic study of CeM 2N@C80 
 

As introduced in the former reports, there are two kinds of carbon atoms within the C80-Ih, 

the pyrene-type carbon atoms (triple-hexagon junctions, THJs, whose NMR signals appear at 

chemical shifts of 137-138 ppm) and corannulene-type carbon atoms 

(pentagon/hexagon/hexagon junctions, PHHJs, whose NMR signals appear at a higher shift of 

ca 144 ppm). Without the consideration of paramagnetic contribution, the appreciable upfield-

shifts are induced by shrinking the size of the encaged nitride cluster in the order of 

Y3N@C80→ Y2LuN@C80→ YLu2N@C80→ Lu3N@C80→ Lu2ScN@C80→ LuSc2N@C80 

(summarized in Table 4.1).  

 

  
Figure 4.1 The 125 MHz 13C NMR spectra of CeM2N@C80 and LuM2N@C80 (I; M= Sc, 

Lu and Y) in CS2/d6-acetone at 298 K.  

  
The 125 MHz 13C NMR spectra of CeM2N@C80 (M= Sc, Lu, Y) obtained at 288 K exhibit 

two peaks with the intensity ratio of 3:1 (Figure 4.1), which unambiguously proves the Ih(7) 

symmetry of the carbon cage and rapid rotation of the CeM2N cluster in all these NCFs. 
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Established on the current knowledge, CeY2N@C80 has a dual advantage in 13C NMR study 

of C80-based MMNCFs as a result of the competition between geometrical factor of large 

cluster and weakly paramagnetic contribution, because both of these two terms inherently 

originate from the nature of Ce3+. Firstly, because of the substantially different ionic radii of 

Ce3+ (1.03 Å) and Y3+ (0.90 Å), CeY2N has a larger size than Y3N inside the same C80 (I) 

cage. Secondly, recent studies on the CeLu2N@C80 and CeSc2N@C80 demonstrated that the 

single 4f-electron on Ce3+ (4f15d0) resulted in chemical upfield-shifts due to the paramagnetic 

contribution. Compared to the typical δ (13C) values in diamagnetic M3N@C80-Ih(7) NCFs, the 
13C NMR signals in CeM2N@C80 experience a paramagnetic shift of 1-3 ppm due to the 

single 4f electron of Ce3+. 

 
 PHHJs / ppm THJs / ppm ∆∆∆∆ δ / ppm 

CeY2N@C80 143.51 138.25 5.26 

CeLu2N@C80 142.93 136.76 6.17 

CeSc2N@C80 142.86 135.89 6.97 

Y3N@C80 144.44 138.04 6.40 

Y2LuN@C80 144.41 137.95 6.46 

YLu 2N@C80 144.22 137.66 6.56 

Lu 3N@C80 144.02 137.39 6.63 

Lu 2ScN@C80 143.99 137.12 6.87 

LuSc2N@C80 143.99 136.90 7.09 

Sc3N@C80 144.18 136.87 7. 31 

Table 4.1 125 MHz 13C NMR chemical shift data (ppm) of CeM2N@C80 (I; M= Sc, Lu, Y), 

compared with YxLu3-xN@C80 (I) and LuxSc3-xN@C80 (I) (x= 0-3) MMNCFs in CS2/d6-

acetone at 298 K. 

 
In these two respects large metal ionic radius and unpaired 4f-electron will cause 

competitive 13C NMR chemical shifts. Under the weakly paramagnetic contribution from Ce3+, 

the pattern of chemical downfield-shifts from CeSc2N@C80 (I) to CeLu2N@C80 (I) and 

further to CeY2N@C80 (I) agrees well with our former studies on the cage pyramidalization 

induced by the increasing the size of endohedral cluster as LuSc2N→Lu3N→LuY2N. With 

small metal ion radius of Sc3+ (0.75 Å) and Lu3+ (0.85 Å), the downfield-shifts of THJs and 

PHHJs are largely dominated by the paramagnetic contribution which has been supported by 
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crystal structure data and DFT calculation respectively. But, in the case of CeY2N@C80 (I) the 

geometrical factor influences on the THJs slightly more than the paramagnetic contribution of 

PHHJs (for Y3N@C80 (I): 138.04 ppm and for CeLu2N@C80 (I): 138.25 ppm). Such a kind of 

unique chemical shifts agrees well with our former π-orbital axis vector (POAV) analysis78,79 

that the THJs are much more sensitive than PHHJs for the pyramidalization of the carbon 

atoms (C80-Ih) with endohedral clusters. In due turn, a perfect linear correlation between 

pyramidalization of the carbon atoms and a chemical shift was established. Figure 4.1 shows 

that the same reasoning applies also to CeM2N@C80. 

 

 

Figure 4.2 The variable-temperature 13C NMR spectra of CeY2N@C80 (I) in the 

temperature range of 268-308 K. 
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Figure 4.3 The variable-temperature 13C NMR spectra of CeSc2N@C80 (I) in the 

temperature range of 268-308 K. 

 
In the range of 268-308 K, the variable-temperature 13C NMR studies of CeY2N@C80 (I) 

and CeSc2N@C80 (I) were for the first time performed to understand the effect of the size of 

different CeM2N (see Figure 4.2 and 4.3). Similar to CeLu2N@C80 (I), hyperfine chemical 

shifts in paramagnetic molecule in solution could be expressed as Fermi contact (δfc) and 

pseudo-contact (δpc) shifts, which scale with temperature as T−1 and T−2 (here T is the absolute 

temperature), respectively. Since the contact term δfc is negligible based on the former studies 

of Ce-based endohedral fullerenes, the chemical shift can be expressed as δ = δdia + cpc·T
−2. 

The diamagnetic term (δdia) can be estimated by extrapolating the δ dependence to T−2=0, 

while the cpc is determined as an increment of the linear dependence δ vs T−2. In Figure 4.4, 

extrapolation to T−2=0 gave δdia (cpc) values of 145.38/140.92 ppm (-0.17×106 K2/-0.24×106 

K2) for CeY2N@C80 (I) and 145.29/137.93 ppm (-0.22×106 K2/-0.17×106 K2) for 

CeSc2N@C80 (I) respectively, and those are comparable to the CeLu2N@C80 (I) value 

(145.12/139.93 ppm, -0.19×106 K2/-0.28×106 K2). The extrapolated δdia chemical shifts are in 

the range of the values found for diamagnetic M3N@C80 NCFs thus confirming the 

prevalence of the pseudocontact term. The cpc constants are all near -0.20×106 K2 which is 

comparable to the values in Ce2@C80-Ih with freely circulating Ce atoms and are significantly 

smaller than cpc constants in Ce-EMFs with more restricted motion (Ce2@C80-D5h) or 

localized position of Ce atoms (Ce2@C72 or Ce2@C78).  

 

 
Figure 4.4 The line-fitting plots for 13C NMR chemical shift δ vs. T-2 are shown for 

CeY2N@C80 (I) (red), CeLu2N@C80 (I) (black) and CeSc2N@C80 (I) (blue). 
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Figure 4.5 The variable-temperature 13C NMR spectra of PrSc2N@C80 (I) in the 

temperature range of 268-308 K. 

 
Figure 4.6 The variable-temperature 13C NMR spectra of NdSc2N@C80 (I) in the 

temperature range of 268-308 K. 

 
In Figure 4.5 and 4.6, the variable-temperature 13C NMR studies of PrSc2N@C80 (I) and 

NdSc2N@C80 (I) were performed to measure the effect of Pr3+ and Nd3+ in 13C NMR 

characterization. Extrapolation to T−2=0 gave δdia (cpc) values of PrSc2N@C80 (I) are 145.14 

and 134.95 ppm (-0.21×106 K2 and -0.27×106 K2). However, the extrapolated values of 

NdSc2N@C80 (I) are 143.58 and 135.24 ppm (-0.07×106 K2 and -0.44×106 K2) which behave 

different compare to CeSc2N@C80 (I) and PrSc2N@C80 (I). 
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Figure 4.7 The line-fitting plots for 13C chemical shift δ vs. T−2 are shown for 

CeSc2N@C80 (I) (black), PrSc2N@C80 (I) (blue) and NdSc2N@C80 (I) (brown).  

 
The 125 MHz 13C NMR spectra of HoxSc3-xN@C80 (I; x= 1-2) obtained at room 

temperature exhibit two broad peaks with chemical shift of 119 and 74 ppm (HoSc2N@C80), 

and 77 and 2 ppm (Ho2ScN@C80), respectively (Figure 4.8). The paramagnetic shift of the 
13C NMR lines induced by each Sc-to-Ho substitution is 25 - 40 ppm for the more intense 

peak and 60-70 ppm for the second peak. For comparison, the shift of the 13C lines in 

CeM2N@C80 (M = Sc, Lu, Y) in comparison to Sc3N@C80 they did not exceed 2 ppm. Such a 

large difference in the lanthanide-induced shift obviously originates form the much higher 

effective magnetic moment of 4f10-Ho3+ (10.6 µB)51 than 4f1-Ce3+ (2.54 µB)2. A complete 

interpretation of the paramagnetic chemical shift can be achieved only by the combination of 

two factors, local instantaneous paramagnetic shifts of carbon atoms induced by Ho3+ and the 

internal motion of the encapsulated metal nitride cluster which averages these interactions on 

the NMR time scale. Replacing the HoxSc3-xN cluster with HoxLu3-xN and HoxY3-xN resulted 

in varying the geometry of Ho-based endohedral cluster and the interaction between the 

encaged Ho ion and the neighboring carbon atoms.  
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Figure 4.8 13C NMR spectra of HoxSc3-xN@C80 (I; x= 0-2) CS2/d6-acetone at the room 

temperature. An asterisk denotes the signal of the solvent. 

 
The 13C NMR spectra of HoM2N@C80 and Ho2MN@C80 (I; M= Sc, Lu and Y) are shown 

in Figure 4.9. For HoM2N@C80 and Ho2MN@C80 (I; M= Sc, Lu and Y), all of these Ho-

containing structures exhibited roughly two peaks in the ratio of 3:1, which is characteristic 

for C80-based NCFs with the Ih symmetry. Based on our studies on CeM2N@C80 (I; M= Sc, 

Lu and Y) in section 4.1, the 13C NMR chemical shifts could be induced by geometrical factor 

of encaged cluster and by paramagnetic contribution from encaged lanthanide metal 

respectively. It could be expected that substituting the metal atom(s) from Sc to Lu and Y in 

HoM2N@C80 and Ho2MN@C80 influence the geometry of the encaged nitride cluster which 

supported by vibrational spectroscopic studies as introduced in the Chapter 3. Switching Ho-

based cluster from HoSc2N to HoLu2N and further to HoY2N leads to two broad peaks with 

chemical shift of 107 and 66 ppm (HoLu2N@C80), and 101 and 76 ppm (HoY2N@C80), 

respectively (see Figure 4.9). Similarly, after substituting the cluster from Ho2ScN to Ho2LuN 

and Ho2YN, two broader peaks with 66 and 2 ppm for Ho2LuN@C80 and 59 and 5 ppm for 

Ho2YN@C80 were obtained respectively. Different to former studies on CeM2N@C80 (I; M= 

Sc, Lu, Y) structures, the chemical shift of PHHJs and THJs, in HoxM3-xN@C80 (I; M= Sc, Lu, 

Y), is definitely dominated by the paramagnetic contribution from Ho3+. However, it should 

be pointed out that the geometrical factors still play an important role in inducing the 

chemical shift. For instance, the chemical shift of THJs of HoY2N@C80 and Ho2YN@C80 are 

smaller than HoxSc3-xN@C80 and HoxLu3-xN@C80. This indicates that two factors influence 

the chemical shift simultaneously. Full analysis of these factors is still underway. 
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Figure 4.9 13C NMR spectra of HoM2N@C80 and Ho2MN@C80 (I; M= Sc, Lu and Y) 

CS2/d6-acetone at the room temperature. Black dots denote Lu3N@C80 (I) in a). 

Asterisks denote the signal of the solvent.  
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4.2 45Sc NMR spectroscopic study of MMNCFs 
  

The NMR studies of magnetic properties of endohedral fullerenes are limited to the Ce-

containing structures (Ce@C2n, Ce2@C2n and CeSc2N@C80 (I)). To explore the influence 

caused by other lanthanide metals, it is quiet necessary to extend this field. Compared to Ce-

containing endohedral fullerenes, Pr-containing structures could be regarded as the good 

candidate not only due to one more 4f-electron but similar ionic radius to Ce3+ as well. 

Figures 4.10-4.13 display the 125 MHz 45Sc NMR spectra of PrSc2N@C80 (I) obtained in the 

temperature range of 268-308 K. The single and symmetric peak indicates the dynamic 

behavior of the Sc atoms encaged in the carbon cage. For 45Sc NMR, the extrapolation to 

T−2=0 gave cpc values of 12.05×106 ppm·K2 for PrSc2N@C80 (I), and this is comparable to the 

CeSc2N@C80 (I) (6.60×106 ppm·K2)52 and NdSc2N@C80 (I) (4.37×106 ppm·K2). These results 

agree well with the theory of Lanthanide-induced pseudocontact shifts with variable crystal 

field parameters. In principle, the observed pseudocontact contribution to 13C and 45Sc NMR 

shifts for lanthanide-containing endohedral fullerenes in solution is originated from the 

anisotropy in the susceptibility. To understand the role of lanthanide metal in the studies of 
13C and 45Sc NMR chemical shifts, we performed 45Sc NMR on MSc2N@C80 (I) with 

variation of the encaged cluster composition (from Ce to Pr and Nd). From the comparison of 

the 45Sc NMR spectra of MSc2N@C80, the lanthanide-induced NMR chemical shifts do not 

only rely on the number of 4f-electron(s) and/or the magnetic moment of Ln3+ but the 

anisotropy in the susceptibility as well. In principle, the magnetic moment of Nd3+ (3.62 µB) is 

larger than Pr3+ (3.58 µB) and Ce3+ (2.54 µB) because Nd has one more unpaired 4f electron 

than Pr3+, but the 45Sc NMR chemical shifts of PrSc2N@C80 (I) (455 ppm) is much stronger 

than CeSc2N@C80 (I) (280 ppm) and NdSc2N@C80 (I) (361 ppm).  

 
  
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4 Magnetic Properties of Mixed Metal Nitride Clusterfullerenes 

 81 

 
Figure 4.10 The variable-temperature 45Sc NMR spectra of PrSc2N@C80 (I) in the 

temperature range of 268-308 K. 

 

 
Figure 4.11 The line-fitting plots for 45Sc NMR chemical shift δ vs. T−2 are shown for 

PrSc2N@C80 (I).  
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Figure 4.12 The variable-temperature 45Sc NMR spectra of NdSc2N@C80 (I) in the 

temperature range of 268-308 K. 

 

 
Figure 4.13 The line-fitting plots for 45Sc NMR chemical shift δ vs. T−2 are shown for 

NdSc2N@C80 (I).  

 
Large temperature-dependent paramagnetic shifts were also observed in the 45Sc NMR 

spectra of HoSc2N@C80 (I, II) shown in Figure 4.14-4.15. In the temperature range from 268 

K to 308 K in the CS2 solution, both compounds exhibited single 45Sc NMR peak, showing 

that two Sc atoms are averaged by the cluster dynamics. In comparison to the 45Sc signals in 

Sc3N@C80 (δ = 199.5 ppm for Ih and 211.7 ppm for D5h isomers), 45Sc chemical shifts of 

HoSc2N@C80 are shifted downfield by ca 900 ppm for the Ih-cage (δ = 1178-956 ppm) and 
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700 ppm for the D5h-cage (δ = 950-786 ppm), while the line is ca 1.5 times broader (note that 

the 45Sc lines are intrinsically broadened because of the quadruple moment of Sc). 

Importantly, for the same compound, paramagnetic shift of the 45Sc signal is much higher 

than that in the 13C NMR spectrum, which can be explained by a dynamic nature of the 13C 

NMR. In 13C NMR, the measured signal is averaged for all carbon atoms of a given type (and 

hence it has contribution both from the atoms which are far away from the Ho ion and have 

small instant paramagnetic contribution and from those which are close to Ho). On the 

contrary, the HoSc2N cluster has rigid geometry with constant Sc–Ho distances. As a result, 
45Sc NMR is a more sensitive probe of the paramagnetic effect of Ho atom. 

 

 
Figure 4.14 45Sc NMR spectra of (a) HoSc2N@C80 (I) and (b) HoSc2N@C80 (II) 

measured at the different temperature. 
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The main contributions to paramagnetic сhemical shifts in solution are Fermi contact (δfc) 

and pseudo-contact (δpc) shifts, which scale with temperature as T−1 and T−2 (here T is 

absolute temperature), respectively. For Ce-based mono- or dimetallofullerenes and 

MMNCFs, the temperature-dependent NMR studies revealed that the contact term δfc is 

negligible, and the chemical shift can be simply expressed as δ = δdia + cpc·T
−2. For 

HoSc2N@C80, the diamagnetic term (δdia) can be estimated by extrapolating δ dependence to 

T−2=0, while the cpc is determined as an increment of the linear dependence δ vs T−2. If the 

assumption that pseudocontact shift is the dominant term is correct, δdia should be close to the 
45Sc chemical shift of Sc3N@C80 isomers (δ = 200-212 ppm).8,34 For both isomers, 

extrapolation to T−2=0 yielded δdia = 271 ppm. For comparison, extrapolation to T−1=0 gave 

δdia values of −531 and −319 ppm for Ih and D5h isomers, respectively, which is substantially 

further from the Sc3N@C80 value. Thus, the prevalence of the pseudocontact term is 

confirmed for HoSc2N@C80. At the same time, the difference between extrapolated δdia values 

and experimental value for Sc3N@C80 is rather large which indicates that the contact term is 

probably not negligible. Precise estimation of the contact term contribution to lanthanide 

paramagnetic shift is not possible at this moment and requires a study of a series of 

MSc2N@C80 MMNCFs with different lanthanides. 
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Figure 4.15 The line-fitting plots for chemical shift δ vs. T−2 are shown for a) 

HoSc2N@C80 (I) and HoSc2N@C80 (II).  

 
Interestingly, although δdia values for the two isomers of HoSc2N@C80 are identical, their 

cpc values determined from the linear fitting of experimental data by the δdia + cpc·T
−2 function 

are substantially different: for the Ih isomer, the fitting gives cpc = 66±3 ppm·K2, while cpc of 

the D5h isomer is found to be 49±0.5 ppm·K2. The reason for such a significant variation is 

not clear at this moment; possibly, the difference of cpc constants partially reflects the 

difference in the geometrical structure of the HoSc2N cluster inside different carbon cages 

(note that cpc scales with the distance R between paramagnetic center and the atom of interest 

as R−3).80 FTIR spectroscopy (see above) demonstrated that the frequencies of the metal-

nitrogen modes in HoSc2N@C80 (II) are ca. 10 cm−1 lower than in HoSc2N@C80 (I), which 

means that corresponding bond lengths in the D5h isomer are somewhat longer. Besides, 
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single-crystal X-ray studies of M3N@C80-D5h (M = Sc, Tb, Tm) also show that the nitride 

cluster inside the C80-D5h cage tends to be somewhat more distorted from the trigonal 

symmetry than in the Ih isomers. In addition to the geometrical changes, distortion of the 

cluster may also change the crystal-field splitting parameters and hence also affect the cpc 

values.  

It is also instructive to compare pseudocontact shifts in MMNCFs with different 

lanthanides. Variable-temperature 45Sc chemical shifts of MSc2N@C80-Ih (M= Ce - Nd) 

described above give cpc values of 4.4 -.12.05 ppm·K2, which is an order of magnitude 

smaller than found in this work for HoSc2N@C80-Ih. A ten-fold increase of the cpc value for 

HoSc2N@C80 is reasonable taking into account a higher magnetic moment of Ho3+ when 

compared to that of Ce3+. In particular, in the framework of Bleaney theory, if the difference 

in geometrical and crystal-field parameters for CeSc2N@C80 and HoSc2N@C80 are neglected, 

the ratio of pseudocontact shifts induced by Ce3+ and Ho3+ at room temperature is expected to 

be −6.3/−39.0,81 which is close to the experimentally determined ratio of cpc values for 45Sc. 
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4.3 The analysis of NMR spectroscopy of LnSc 2N@C80  
 

 
Figure 4.15 The scheme of lanthanide-induced paramagnetic shifts in LnSc2N@C80. 

 
The pseudocontact contribution to the NMR shifts for lanthanide complexes in solution is 

derived from the anisotropy in the susceptibility. Lanthanide-induced 13C and 45Sc NMR 

shifts in MMNCFs are illustrated in Figure 4.15. The paramagnetic chemical shifts originate 

from the contribution of Pseudocontact (δ
PC) and Fermi contact (δcon) terms which provide 

valuable information. For C80-based metal nitride clusterfullerenes, it could be considered as a 

good chance to compare their paramagnetic NMR chemical shifts of LnSc2N@C80 (I) due to 

their relatively high yield, similar metal ionic radius and identical electronic properties of the 

carbon cage but encaging switchable lanthanide metals with different magnetic properties. 

However, MMNCFs are strikingly different to the organic metallic complex. Moreover, the 

lanthanide metal-containing encaged cluster substantially complicates the analysis of the 

paramagnetic chemical shifts due to the free rotating cluster inside carbon cage, which 

different from organic metallic complexes with rigid structures.  
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Figure 4.16 13C NMR spectra of LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Tb, Dy, Ho and Lu) 

CS2/d6-acetonve at 288 K. 
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Figure 4.17 Plots of ∆∆∆∆δ / <Sz>Ln vs. CLn / <Sz>Ln for 13C NMR chemical shifts of 

LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Tb, Dy, Ho and Lu).  
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 Ce Pr Nd Ho Tb Dy 
CLn 

[a] -6.48 -11.41 -4.46 -39.25 -96.84 -100.00 
<Sz> 0.98 2.97 4.49 -22.63 -31.82 -28.54 
δ

PC  -1.92 -3.38 -1.32 -11.64 -25.75 -29.65 
δ

con 0.53 1.60 2.41 -12.17 -17.11 -15.34 
Table 4.2 The list of CLn, <Sz>, δPC and δcon. [a]The values of CLn and <Sz> are fundamental 
parameters of given lanthanide ions.  

 

The paramagnetic chemical shift δ
para can be defined as the difference between δ

obs 

observed shift from paramagnetic compound and δ
dia obtained from diamagnetic reference 

compound. For of LnSc2N@C80 (I), La3+, Y3+ or Lu3+ is regarded as suitable standards. In our 

system, LuSc2N@C80 (I) is chosen and compared with Ce-, Pr-, Nd-, Ho-, Tb- and Dy-

involved structures. The 13C NMR spectra of LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Tb, Dy, Ho 

and Lu) are obtained at 288K and presented in Figure 4.16. As introduced by Reilley and co-

workers,82 the separation of δPC and δcon from δpara can be achieved via Equations 4.1 - 4.4. 

δ
con can be attributed to the unpaired electron delocalization from the Ln3+ onto the nucleus i 

and influence neighboring atom(s) through chemical bonds. But, as increasing number of 

bonds between Ln and i, its influences become marginally small. δ
con is proportional to the 

expectation values of Sz for that Ln3+. In Equation 4.1, F(i) is a proportionality constant which 

specially depends on the specific nucleus i. However, δPC includes geometric information of 

the target compound. Based on Bleaney’s theory and further developed by Mironov et al, the 

δ
PC could be simply described as the contribution of the sum of CLn and B·G(i). Particularly, 

B·G(i) cover the parameters comprising of the magnetic anisotropy and the corresponding 

crystal field. Since LnC  and LnzS 〉〈  are known, the plotting of )(ipara
Lnδ / LnzS 〉〈  vs.  LnC / LnzS 〉〈  

covering Ce, Pr, Ho, Tb and Dy yields intercept ()(iF ) and slope ( )(iGB ⋅ ) value 

simultaneously. After those mathematical treatments, δpara and δcon could be written in the 

form of Equation 4.3 and 4.4. The values of δ
con and δPC computed this way are listed in the 

Table 4.2. By comparing δcon and δPC, it should be noted that the good linear fitting (R2= 0.99) 

can be obtained without considering Nd which suggested that for NdSc2N@C80 requires 

further studies. Moreover, the 45Sc NMR characterization of LnSc2N@C80 pointed out that the 

unique behavior of NdSc2N@C80 as well, see Figure 4.18.   
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Figure 4.18 45Sc NMR spectra of LnSc2N@C80 (I; M= Ce, Pr, Nd, Tb, Ho and Lu) 

CS2/d6-acetone at 288 K.  
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4.4 Conclusion 
 

In summary, we performed 13C and 45Sc NMR study of a series of lanthanide-involved 

MMNCFs. Variable temperature 13C NMR study of CeM2N@C80 (M= Sc, Lu, Y) reveals that 

paramagnetic 13C NMR chemical shifts originate from the unpaired 4f-electron on Ce3+ in 

CeM2N cluster. The single 4f electron located on the encaged Ce3+ induces the weakly 

paramagnetic up-field chemical shifts which combined with the down-field chemical shifts 

induce the pyramidal CeY2N. Strikingly different to CeSc2N@C80, PrSc2N@C80 and 

NdSc2N@C80, 4f10-Ho3+ results in a remarkable broadness of the NMR peaks and 

extraordinary paramagnetic chemical shifts in the 13C and 45Sc NMR spectra. The variable-

temperature 45Sc NMR spectroscopic study demonstrated that the Ho-induced paramagnetic 

shift is dominated by the pseudocontact term. As the first successful and comprehensive 

report on the 13C and 45Sc NMR with more than the unpaired 4f-electron on the encaged 

nitride cluster with different cage symmetry, the study of HoSc2N@C80 (I and II) shows the 

possibilities for further detailed studies of the state of paramagnetic metal atoms in MMNCFs. 

Due to the well-known fact that lanthanide contraction, the primary 13C and 45Sc NMR 

analysis of LnSc2N@C80 (I) was achieved which could be improved in with considering the 

slight changes in the crystal field parameters based on the combination of theoretical 

calculations and the confirmation of their single crystal structures in the future. The good 

linear fitting (R2= 0.99) could be obtained by considering the encapsulating LnSc2N cluster 

(Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) inside C80:Ih cage which indicated the fantastic nature of  

magnetic anisotropy of lanthanide metals. The potential application of single molecular 

magnet could be expected.  
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Chapter 5 Electrochemical Study of Ce-based Mixed Metal 

Nitride Clusterfullerenes 

 
The electrochemical properties of MMNCFs are naturally dependent on the carbon cage 

and encaged species.45,83 The extensive experimental and theoretical studies demonstrated that 

all of the lanthanide involved C80-based (Ih) homogeneous metal NCFs had similar redox 

behaviors and the M3N cluster plays a marginal part in the contribution to the LUMO of the 

endohedral fullerenes, except for Sc3N. The knowledge about the electrochemical properties 

is that the oxidation or reduction of metal NCFs occurs by changing the charge state of the 

carbon cage.84,85 For M3N@C80 (except for M= Sc), the spin state of the cation and anion can 

be described as mostly locating on the carbon cage, whereas the inner cluster remains redox-

inert. Although the great progress in synthesis of new class of endohedral fullerenes has been 

already achieved, seeking new strategies to activate the metal nitride cluster inside the carbon 

cage and further tune the electronic properties of metal NCFs becomes a big challenge. Our 

group recently reported the electrochemical study of MMNCFs which enlightened us how to 

influence and manipulate the electronic state of NCFs. As revealed from previous studies, it is 

well known that MMNCFs inherit the electronic properties of metal NCFs and take the 

advantage of their relatively higher yield. To tune the electronic properties of NCFs, mixed 

metal nitride cluster template provides a convenient platform to achieve this goal. By 

selectively encapsulating the redox-active metal, the oxidation behaviors of NCFs could be 

tuned by endohedral species rather than be dominated by the charge transfer on the carbon 

cage. For instance, both of TiM2N@C80 (M = Sc, Y)45,56,86 proceed through a change of the 

valence state of the Ti atom. Redox behaviour of endohedral Ce is another exquisite example 

of the special role of the mixed-metal nitride cluster. Whereas the valence state of CeIII  in 

Ce2@C2n (2n= 72, 78, 80), Ce@C82, or Ce3N@C2n (2n= 88, 92, 96) remains unaffected by the 

electrochemical oxidation of the EMF molecules, an unprecedented negative shift of the 

oxidation potential of CeLu2N@C80 in comparison to the standard values of M3N@C80 NCFs 

was discovered and tentatively assigned to the endohedral oxidation of CeIII  to CeIV. 

Remarkably, examples of the CeIV/CeIII  redox couple in organolanthanide chemistry are rather 

scarce (e.g., Ce(C8H8)2,
87 Ce(Cp)3(O-i-Pr),88 Ce(octaethylporphyrin)2,

89 a recent work on the 
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Ce complexes in the Shibasaki's heterobimetallic framework),90 and finding of such couple in 

EMF opens a new dimension in organocerium chemistry.91-98 In this chapter, we exhibit that 

the redox potential of the CeIV/CeIII  couple in the CeM2N and Ce2MN cluster systematically 

varies with the radius of the second metal and the size of the carbon cage (from C80 to C88). 

5.1 Electrochemical study of CeY 2N@C80  
 

The electrochemical studies of CeM2N@C80 (I; M= Sc, Lu and Y) and PrSc2N@C80 were 

performed in o-DCB solution with TBAPF4 as supporting electrolyte at room temperature 

which are shown in Figure 5.1 and summarized in Table 5.1. In the cathodic range, 

CeY2N@C80 exhibits two electrochemically irreversible reduction steps with half-wave 

potentials (Ep) at -1.36 V and -1.88 V (all potentials hereafter are vs. Fc(Cp)2
+/0). Variation of 

the Ep values with different cluster composition of CeM2N did not exceed 0.10 V. This 

behavior is typical for M3N@C80 NCFs and is consistent with the carbon cage-based 

reductions. In the anodic range, CeY2N@C80 exhibits one electrochemically reversible 

reduction step with half-wave potential at -0.07 V. It should be noted that the electrochemical 

oxidation behavior of PrSc2N@C80 is similar to those of M3N@C80 (M= Sc, Y or lanthanide 

metal). However, the oxidation behavior of the CeM2N@C80 is significantly different from 

that of PrSc2N@C80 or other M3N@C80. Significantly, the E1/2 difference between 

CeSc2N@C80 and PrSc2N@C80 is 0.31 V. Furthermore, the substantial negative shifts could 

be induced by enlarging the size of the encaged cluster in the order of CeSc2N@C80 (0.33 V) 

→ CeLu2N@C80 (0.01 V) → CeY2N@C80 (-0.07 V). Thus, enlarging the size of the encaged 

CeM2N cluster induces substantial negative shift (up to 0.40 V) of the oxidation potential. It 

could be found that the electrochemical energy gaps of Ce-based MMNCFs are mainly 

dependent on the oxidation potential rather than reduction potential.  
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Figure 5.1 Cyclic voltammograms of CeM2N@C80 (M= Sc, Lu and Y) and PrSc2N@C80 

measured at room temperature in o-DCB solution with TBABF4 as supporting 

electrolyte, scan rate 100 mV/s. 

 
Compound method E1/2(ox) Ep(red-I) Ep(red-II)  gapEC 

CeY2N@C80 CV −0.07 −1.36 −1.88 1.30 
 SWV −0.06 −1.32 −1.83 1.25 

CeLu2N@C80 CV 0.01 −1.43 −1.92 1.44 
 SWV 0.01 −1.39 −1.88 1.40 

CeSc2N@C80 CV 0.33 −1.34 −1.87 1.67 
 SWV 0.33 −1.31 −1.83 1.64 

PrSc2N@C80 CV 0.64 −1.32 −1.91 1.96 
 SWV 0.64 −1.26 −1.83 1.91 

Table 5.1 Redox potentials of CeM2N@C80-Ih(7) and PrSc2N@C80-Ih(7). (a) All values in V 

versus Fe(Cp)2
+/0 couple; (b) CV denotes cyclic voltammetry, SWV denotes square-wave 

voltammetry, E1/2 is half-wave potential (for CV), and Ep is a peak potential. 

 
The large difference between the oxidation potentials of CeLu2N@C80 and other M3N@C80 

NCFs (E1/2~0.6–0.7 V) served as a first indication of the Ce-based redox process in 

CeLu2N@C80. Likewise, the endohedral oxidation of Ce can be postulated for CeY2N@C80 

studied in this work. Significantly more positive oxidation potential of CeSc2N@C80 raises 

the question whether it can be assigned to the endohedral CeIV/CeIII  couple as well, or whether 
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an oxidation of the carbon cage takes place. For comparison, we have studied redox properties 

of PrSc2N@C80 as the closest analogue of CeSc2N@C80 with a similar size of the nitride 

cluster. Reversible oxidation of PrSc2N@C80 is found at +0.64 V, in close similarity to many 

other M3N@C80 molecules. The E1/2(ox) difference of 0.31 V between CeSc2N@C80 and 

PrSc2N@C80 indicates that oxidation of CeSc2N@C80 is a Ce-based process. 

 

 
Figure 5.2 (a) 13C NMR spectra of paramagnetic CeIII M2N@C80 (M= Sc, Lu, Y) and 

their oxidized diamagnetic counterparts [CeIV Y2N@C80]+ measured in o-d4-DCB at 288 

K; (b) 45Sc NMR spectra of CeSc2N@C80 and [CeSc2N@C80]
+. 

 
A compelling evidence of the endohedral oxidation of CeIII  in all studied CeM2N@C80 

NCFs is obtained by 13C NMR spectroscopy. If the oxidation of CeM2N@C80 is a fullerene-

based process, their radical cations are expected to give no measureable NMR spectra, 

whereas an endohedral CeIII
→CeIV oxidation should produce diamagnetic cations accessible 

by 13C NMR spectroscopy without a paramagnetic shift. [CeM2N@C80]
+ cations were 

obtained in o-DCB solution by reacting NCFs with [Fe(Cp)2]
+[BF4]

− (M = Y) or Ag+[PF6]
− 

(M = Sc, Lu). The spectra measured after addition of the oxidation agent (Figure 5.2a) show a 

two-line pattern similar to CeM2N@C80, but the peaks are shifted to the lower field, close to 

the chemical shifts of diamagnetic M3N@C80 NCFs and δdia values determined for 

CeM2N@C80 in the VT-NMR studies (Table 5.2). Furthermore, the peak at δ = 280 ppm in 

the 45Sc NMR spectrum of CeSc2N@C80 is shifted to 175 ppm in [CeSc2N@C80]
+[PF6]

−, 
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which is close to the value of δ(45Sc) = 190 ppm measured for Sc3N@C80 in o-DCB (Figure 

5.2b). Thus, NMR spectroscopy unambiguously proves that diamagnetic [CeIVM2N@C80]
+ 

cations are produced.  

 
CeM2N@C80 q = 0 [a]   q = +1 

 δ cpc,
[b]

 ××××106 K2  δdia δ 

CeSc2N@C80 142.69 −0.22 145.29 144.02 

 135.74 −0.17 137.93 135.08 

CeLu2N@C80 142.79 −0.20 144.85 144.24 

 136.72 −0.23 139.06 136.59 

CeY2N@C80 143.22 −0.17 145.38 144.27 

 138.00 −0.24 140.92 137.31 

Table 5.2 13C NMR chemical shifts (δ, ppm) in CeM2N@C80-Ih(7); [a] The data are given for 

a neutral state (q= 0) and the cationic state (q= +1); [b] cpc and δdia are obtained in CS2 

solution in the 268-208 K range. 

 
As far as the endohedral oxidation of CeIII  is confirmed, the question to be considered is 

why the oxidation potential of the CeIII  in the CeM2N cluster depends so strongly on the 

second cluster metal, M, which is not involved in the redox process? To address this problem 

we have performed DFT calculations of the CeM2N@C80 and M3N@C80 molecules in the 

neutral and charged states. Table 5.3 lists the ionization potentials (IP) of the molecules under 

study. Two ionization pathways, CeIII
→ CeIV (IPCe) and oxidation of the fullerene cage 

(IPcage), were analyzed. The former was modeled by the singlet state of the [CeM2N@C80]
+ 

cation, whereas the latter was addressed by studying the triplet state of [CeM2N@C80]
+. 

 
molecule[a] IPCe IPcage dM–N (0→+1)[b] dCe–N (0→+1) 

CeY2N@C80 6.34 6.96 2.052→2.117 2.100→1.956 

Y3N@C80  6.95 2.048  

CeLu2N@C80 6.50 6.95 2.012→2.090 2.108→1.994 

Lu3N@C80  6.93 2.043  

CeSc2N@C80 6.85 6.96 1.946→2.047 2.192→2.051 

Sc3N@C80  6.90 2.025  

Table 5.3 DFT-computed IP and bond lengths in CeM2N@C80 and M3N@C80 (M = Sc, Lu, 

Y). [a] IP values in eV, bond length in Å; [b] M–N bonds are slightly different in CeM2N 

clusters (within 0.01 Å), the mean values are listed. 
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Computed IPs of M3N@C80 NCFs and IPcage values of CeM2N@C80 are all within the range 

of 6.90–6.96 eV (Table 5.3). Hence, if oxidation of CeM2N@C80 molecules were a cage-

based process, similar oxidation potentials could be expected. However, in perfect agreement 

with electrochemical data, computation shows that removal of the 4f1 electron from CeIII  is 

more energetically favourable, i.e. IPCe is lower than IPcage for all CeM2N@C80. Furthermore, 

IPCe values show noticeable variation with the second metal (from 6.34 eV in CeY2N@C80 to 

6.85 eV in CeSc2N@C80) and follow the same trend as found in oxidation potentials. Thus, 

there is a qualitative agreement with experimental electrochemical data and hence the results 

of calculations can be used for a more detailed analysis of the role of the second cluster metal. 

 

 

Figure 5.3 DFT-optimized structures of (a) CeIII Y2N@C80 and (b) [CeIVY2N@C80]
+.  

 
For CeSc2N@C80, DFT predicts a planar CeSc2N cluster with the Ce–N bond length of 

2.192 Å (experimental value is 2.184 Å) in Figure 5.3 and 5.4. The Sc–N bond length is only 

1.946 Å (exp. 1.933/1.944 Å), considerably shorter than 2.025 Å in Sc3N@C80. When two Sc 

atoms in CeSc2N are replaced by Lu with the larger ionic radius, the Ce–N bond becomes 

shorter (2.108 Å), and the length of Lu–N bonds (2.012 Å) is decreased compared to 

Lu3N@C80 (2.043 Å). In CeY2N@C80 the Ce–N bond length is shortened to 2.100 Å, whereas 

the averaged Y–N bond length, 2.052 Å, is virtually identical to that in Y3N@C80, 2.048 Å. 

This analysis shows that the C80 cage provides a limited interior space, and encapsulation of 

the large Ce3+ ion within the CeM2N cluster results in a significant strain leading to the 

shortening of the M–N bonds as compared to their lengths in M3N@C80. Obviously, this 

strain is increasing with the ionic radius of M3+. Furthermore, as the Y3N cluster in Y3N@C80 

is already strongly strained the Y–N bonds cannot become shorter in CeY2N@C80. Instead, to 

increase the length of the Ce–N bond, the nitrogen atom is displaced above the CeY2 plane by 

0.408 Å and the CeY2N cluster becomes pyramidal (CeSc2N and CeLu2N clusters are planar). 

This situation is similar to that in Gd3N@C80 with pyramidal Gd3N cluster.  
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Figure 5.4 DFT-optimized bond lengths (Å) of the CeIII M2N and CeIVM2N clusters (M= 

Y, Lu and Sc) in CeM2N@C80 and [CeM2N@C80]
+, respectively.  

 
When Ce-based oxidation of CeM2N@C80 takes place, the inner strain is reduced because 

ionic radius of Ce4+ (0.85 Å) is dramatically smaller than that of Ce3+ (1.03 Å). Hence, Ce–N 

bonds in [CeIVM2N@C80]
+ cations are much shorter than in corresponding neutral molecules, 

whereas M–N bonds are longer (in fact, even longer than in M3N@C80). The effect is most 

apparent for yttrium: the Y–N bonds in [CeY2N@C80]
+, 2.117 Å, are longer than in Y3N@C80, 

2.048 Å, whereas the Ce–N bond is as short as 1.956 Å and the CeIVY2N cluster is planar. 

Based on the optimized bond lengths, we can conclude that the effective radius of CeIV in 

NCFs is comparable to that of Sc. Thus, the Ce-induced strain in the CeM2N cluster is 

released when Ce is oxidized and a substitution of one M atom in the M3N cluster by the 

"small" Ce4+ allows the release of the inner strain of the encaged clusters. 

We can thus conclude that the driving force of the CeIII  oxidation in CeM2N@C80 

molecules is the release of the inherent strain caused by the large size of the cluster and the 

limited inner space of the carbon cage. The larger the cluster, the stronger the strain and hence 

the molecule is more eager to be oxidized. An increase of the ionic radius of the second 

cluster metal in CeM2N@C80 (Sc, Lu, Y) increases the size of the cluster and hence shifts the 

oxidation potential to more negative values. In other words, the difference in the oxidation 

potentials of endohedral CeIII  ions allows the electrochemical determination of the strain 

energy in NCFs. As far as we know, this is the first discovery of a relationship between the 

redox potential of an endohedral fullerenes and the geometry of endohedral species. 
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5.2 Electrochemical study of Ce xY3-xN@C2n (2n= 84, 86, 88) 
 

Due to the inherent strain between the metal nitride cluster and carbon cage, the general 

and relative yield of NCFs is quite sensitive to the kind of entrapped metal.99 The NCFs 

experienced rapid development in recent years, most of metal nitride clusters could be 

preferably stabilized by the C80-Ih cage.100 The unique strategy of mixed metal nitride cluster 

template enhances the general yield of MMNCFs. So far, the Sc-based MMNCFs have been 

widely studied in the form of LnSc2N@C80 (Ln= La, Ce, Nd, Gd, Tb, Dy, Ho, Er, Lu, Y and 

Ti) and in the form of M2ScN@C80 (M= Nd, Gd, Dy, Ho, Er, Lu and Y). Nevertheless, for the 

cage size larger than C80 the yield of Sc-based MMNCFs strikingly declined which becomes 

the bottleneck for the extensive studies. Interestingly, Gd-based NCFs firstly exhibited that 

the most abundant product toward Gd3N@C84-88.
43 As explained by Echegoyen et al., the 

increase of the cluster size results in the shift of the major product toward Ln3N@C88-96 (Ln= 

La, Ce Pr and Nd). Therefore, the series of lanthanide-based NCFs could be divided into two 

groups by taking into account of the difference of their ionic radii regarding Gd3+ as the 

threshold: a) Group I: La, Ce, Pr and Nd; b) Group II: Gd, Tb, Dy, Ho, Er, Tm and Lu. The 

electrochemical studies of Gd3N@C2n (2n= 80-88) were performed by Echegoyen et al. which 

indicated that increasing the cage size does not significantly affect their reduction potentials, 

but considerably influences their oxidation potentials. Their further studies demonstrated 

Ln3N@C88 (Ln= Ce, Pr and Nd) behave similar to Gd3N@C88 with the first oxidation at low 

potentials (c.a. 0.06-0.08 V). As the natural obstacle of homogenous metal NCFs with 

extremely small or large metal ionic radius, in the case of Sc, no Sc3N@C2n structure with 

cage larger than C80 was confirmed; in the case of La and Ce, no Ce3N@C2n or La3N@C2n 

with cage size smaller than C88 was isolated and characterized. After the first successful 

attempt of CeM2N@C80 (M= Sc, Lu, Y), it would be a fantastic chance to wander in the 

garden of Ce-based MMNCFs with cage between C80 and C88 with the supporting of second 

metal as ‘scaffold metal’. For lanthanide metal with the ionic radius smaller than Gd3+, the 

distribution of the product is similar to that of Y3N@C2n (Ln= Tb-Lu) with the preferred 

formation of Ln3N@C80. With the radius of 0.90 Å, the geometry of the Y3N inside the C80 

cage is slightly pyramidal which could be considered as the advantage to sustain the suitable 

cluster-cage strain as in the case of CexY3-xN@C2n (2n= 84 and 86). We hypothesize that once 

combining Y with the lanthanide metal (Ln= La, Ce, Pr and Nd): a) the mixed metal nitride 

cluster LnxY3-xN could be feasibly entrapped to the cage as small as C80 due to the effective 

tailoring of the cluster size; b) the product distribution could be induced to a novel pattern 

which enhances the relative yield of the CexY3-xN@C84-88 (x= 1, 2); c) the electrochemical, 
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paramagnetic and spectroscopic properties of Ce/Y MMNCFs with cage size smaller than C88 

could be realized. 

 

 
Figure 5.5 Cyclic voltammogram of Y3N@C88, CeY2N@C88 and Ce2YN@C88 (vs. 

Fc(Cp)2
+/0) measured in o-DCB solution with 0.1 M TBABF4 as supporting electrolyte, 

scan rate is 100 mV /s.  

 
The electrochemical measurements of Ce-based MMNCFs were performed (vs. Fc(Cp)2

+/0) 

in o-dichlorobenzene (o-DCB) solution with 0.1 M TBABF4 as supporting electrolyte. The 

cyclic voltammetry (CV) and square-wave voltammetry (SWV) of Y3N@C88, CeY2N@C88 

and Ce2YN@C88 are compared in Figure 5.5 and summarized in Table 5.4. In the cathodic 

range, Y3N@C88 exhibits two electrochemically reversible reduction steps with E1/2 at -1.30 

and -1.62 V and one irreversible step with Ep near at -2.13 V. In the anodic range, two 

electrochemically reversible oxidation steps (E1/2) at 0.10 and 0.50 V are observed which 

agree well with known structures M3N@C88 (M= Ce, Pr, Nd, Gd and Y).43,101,102 Substituting 

the encaged cluster from Y3N to CeY2N or Ce2YN does not considerably influence the 

reduction behaviors of the CexY3-xN@C88 (x= 1, 2). However, the oxidation behaviors of 

CeY2N@C88 exhibited four electrochemical steps which are different to Y3N@C88 and 

Ce2YN@C88. Although the redox potentials of CexY3-xN@C88 measured in our system are 

slightly higher than previous results, their electrochemical gap (ECgap) of are almost the same 

(~1.40 V; calculated as the difference of peak potential measured by SWV). No considerable 
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contribution was observed from the presence of endohedral Ce atom(s) in CexY3-xN@C88 (x= 

1, 2).  

 
Compounds method ox-II ox-I red-I red-II ECgap 

       
Y3N@C88 CV 0.50 0.10 −1.30 [−1.62] 1.40 

 SW 0.51 0.10 −1.29 −1.62/−1.83 1.39 
CeY2N@C88 CV 0.53 0.10 −1.29 [−1.62/−1.70] 1.39 

 SW 0.53 0.10 −1.28 −1.60 1.38 
Ce2YN@C88 CV 0.55 0.13 −1.25 [−1.56/−1.69] 1.38 

 SW 0.55 0.13 −1.25 −1.62 1.37 
       

Y3N@C88 CV 0.43 0.03 [−1.43] [−1.70] 1.46 
Gd3N@C88 CV 0.45 0.05 [−1.39] [−1.71] 1.44 
Gd3N@C88 CV 0.49 0.06 [−1.43] [−1.74] 1.49 
Nd3N@C88 CV 0.53 0.07 [−1.36] [−1.75] 1.43 
Pr3N@C88 CV 0.54 0.09 [−1.34] [−1.72] 1.43 
Ce3N@C88 CV 0.63 0.08 [−1.30] [−1.57] 1.38 

       
Y3N@C86 CV [0.87] 0.36 [−1.33] [−1.73] 1.69 

 SW 0.78 0.36 −1.28 −1.68 1.65 
CeY2N@C86 CV 0.82 0.27 [−1.38] [−1.76] 1.65 

 SW 0.83 0.27 −1.34 −1.73 1.61 
Ce2YN@C86 CV  0.17 [−1.35] [−1.75] 1.52 

 SW  0.16 −1.32 −1.71 1.48 
       

Gd3N@C86 CV  0.33 [−1.39] [−1.72] 1.72 
Nd3N@C86 CV  0.36 [−1.46] [−1.79] 1.82 
Pr3N@C86 CV  0.31 [−1.48] [−1.80] 1.79 

       
Y3N@C84 CV 0.75 0.34 [−1.35] [−1.78] 1.69 

 SW 0.75 0.34 −1.30 −1.73 1.64 
CeY2N@C84 CV 0.81 0.22 [−1.36] [−1.81] 1.58 

 SW 0.82 0.23 −1.29 −1.75 1.52 
       

Nd3N@C84 CV  0.31 [−1.44]  1.75 
Gd3N@C84 CV  0.32 [−1.37] [−1.76] 1.69 

Table 5.4 Redox potential of CexM3-xN@C2n (2n= 84, 86, 88) compared with M3N@C2n, (a) 

All values in V versus Fe(Cp)2
+/0 couple; (b) CV denotes cyclic voltammetry, SWV denotes 

square-wave voltammetry, E1/2 is half-wave potential (for CV), and Ep is a peak potential; [] - 

peak potentials for irreversible steps.  
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Figure 5.6 Cyclic voltammogram of Y3N@C86, CeY2N@C86 and the mixture of 

Ce2YN@C86 and Y3N@C86 measured in o-DCB solution with 0.1 M TBABF4 as 

supporting electrolyte, scan rate is 100 mV /s. 

 
As aforementioned, with slight shrinking of cage size from C88 to C86, Ce3N@C86 could be 

determined from mass spectrum but no pure structure has been isolated. Therefore, typical 

metal NCFs including Gd3N@C86, Nd3N@C86 and Pr3N@C86 were employed as references 

for the electrochemical study of CexY3-xN@C86 (x= 0-2), see Table 5.4. Due to the retention 

time of Ce2YN@C86 and Y3N@C86 is very close, these two compounds were collected in the 

same fraction but no other structure is detected from mass spectrum characterization. The 

reduction potentials for CexY3-xN@C86 are in good agreement with reported results, see 

Figure 5.6. It should be noted that replacing one Y with Ce, the oxidation potentials of 

CeY2N@C86 (E1/2= 0.27 V) is slightly lower than Y3N@C86 (E1/2= 0.36 V) and other 

M3N@C86 systems (Gd: 0.33 V, Nd: 0.36 V and Pr: 0.31 V).43 It became more convincing 

that Ce2YN cluster encaged into C86 cage results in its first oxidation potential lower to 0.17 

V. The second reversible oxidation behavior could be unambiguously assigned to the minor 

structure Y3N@C86 in this fraction due to its E1/2 (~0.36 V). Hence, the electrochemical gaps 

of CexY3-xN@C86 are dependent on the endohedral Ce atom(s) and distinguished with 

previous known MMNCFs with C86 cage.  
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Figure 5.7 Cyclic voltammogram of Y3N@C84 and CeY2N@C84 measured in o-DCB 

solution with 0.1 M TBABF4 as supporting electrolyte, scan rate is 100 mV /s. 

 
To further investigate Ce-induced the electrochemical oxidation potential shifts, Y3N@C84 

and CeY2N@C84 were studied in the same process, see Figure 5.7. For Y3N@C84, it is the 

first time to observe the two reversible electrochemical oxidation steps among the presence of 

metal NCFs with C84-Cs cage. The first oxidation step of Y3N@C84-Cs at E1/2= 0.34 V agrees 

well with Gd3N@C84-Cs and Nd3N@C84-Cs reported by Echegoyen et al.43 Switching the 

cluster from Y3N to CeY2N conducts unanticipated fact that the first electrochemical 

oxidation step of CeY2N@C84 becomes irreversible but the second step remains reversible. 

Once increasing the scan rate from 0.1 to 1.0 V s-1, the reversibility of the oxidation step 

could be gradually improved, see Figure 5.8. The reduction behaviors of CeY2N@C84 and 

Y3N@C84 are almost identical, the electrochemical gap of CeY2N@C84 strongly correlated to 

the size of the encaged cluster which is consistent with our recent report on CeM2N@C80.  
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Figure 5.8 CV scan rate study of the first reduction wave of CeY2N@C84. Scan rates of 

0.10, 0.25, 0.50, 1.00 V/s.  

 
compound[a] IPCe IPcage ∆IP[b] E1/2 (ox) dCe–N 

[c] 
dY–N  

Y3N@C88  6.22  0.10  2.185 

CeY2N@C88-a 6.80 6.23 -0.57 0.10 2.231 2.161 

CeY2N@C88-b 6.49 6.22 -0.27 0.10 2.230 2.164 

Ce2YN@C88 -a 6.57 6.22 -0.35 0.13 2.220 2.130 

Ce2YN@C88 -b 6.60 6.22 -0.38 0.13 2.218 2.122 

Ce2YN@C88 -c 6.62 6.22 -0.40 0.13 2.219 2.122 

Ce3N@C88 6.41 6.26 -0.15    

       

Y3N@C86  6.56  0.36  2.161 

CeY2N@C86 6.78 6.55 -0.23 0.27 2.200 2.137 

Ce2YN@C86 6.50 6.54 0.04 0.17 2.192 2.099 

Ce3N@C86 6.32 6.58 0.26    

       

Y3N@C84  6.51  0.34  2.145 

CeY2N@C84-a 6.46 6.53 0.07 0.22 2.211 2.109 

CeY2N@C84-b 6.59 6.54 -0.05 0.22 2.166 2.127 

Table 5.5 DFT-computed IP and bond lengths in CexM3-xN@C2n and Y3N@C2n (x=1, 2; 2n= 

84-88). [a] IP values in eV; [b] ∆IP= IPcage - IPCe. [c] The mean values of M–N bonds are 

listed. 
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Table 5.5 shows that computed IPCe values of CexY3-xN@C88 (x= 0-3) is higher than IPcage. 

Consequently, the oxidation of Ce2YN@C88 and CeY2N@C88 molecules is a cage-based 

process due to their first reduction and oxidation potentials are similar to Gd3N@C88 and 

Y3N@C88. Our calculations point out that even Ce3N inside the C88 cage, the IPcage is still 

lower than the IPCe which is consistent with the electrochemical studies that all of CexY3-

xN@C88 (x= 0-3) which behave similar to Gd3N@C88, Nd3N@C88 and Pr3N@C88. Computed 

∆IP (the difference between IPcage and IPCe) of CexY3-xN@C2n (x=1, 2; 2n= 84, 86) MMNCFs 

are smaller than the case of CeM2N@C80 (M= Sc, Lu, Y). The DFT-optimized structure of 

CexY3-xN@C2n (2n=84-88) are presented in Figure 5.9 - 5.12. Based on our current results, it 

could be presumed that the different position of CeY2N and CeY2N cluster inside the carbon 

cage (from C84 to C88) play an essential role in the ionization potentials of C84- and C86- 

compounds. For CeY2N@C88-(a, b) and Ce2YN@C88-(a, b, c), each of CexY3-xN unit is planar 

in the flattened carbon cage. The positions of the Ce atom(s) do not influence their 

electrochemical behaviors. Shrinking the cage size from C88 to C86 and further to C84 results 

in the increasing of the inner strain between the encaged cluster and carbon cage which 

decreasing the Ce-N bond length and driving the Ce-induced oxidation potential negatively 

shift. Secondly, the primary calculations suggest that the IPCe could be lower than the IPcage by 

comparing the conformer CeY2N@C84-a and CeY2N@C84-b. In the C84-Cs cage, the single Ce 

atom locating at the pentagon/pentagon pair is more energy favorable than the case of Y atom 

which is good agreement with the negative shifts of oxidation potential. However, the 

theoretical calculations underestimate the energy level of ionized Ce in Ce2YN@C86 and 

CeY2N@C86.  
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Figure 5.9 DFT-optimized structures of (a) CeY2N@C88-a and (b) CeY2N@C88-b.  

 
 
 

 

 
Figure 5.10 DFT-optimized structures of (a) Ce2YN@C88-a, (b) Ce2YN@C88-b and (c) 

Ce2YN@C88-c.  
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Figure 5.11 DFT-optimized structures of (a) CeY2N@C86 and (b) Ce2YN@C86. 

 
 
 
 

 

Figure 5.12 DFT-optimized structures of (a) CeY2N@C84-a and (b) CeY2N@C84-b.  
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5.3 Conclusion 
 

In summary, we performed electrochemical study of a series of Ce-based compounds, 

CexY3-xN@C2n (x=1, 2; 2n=84, 86, 88). We have found that electrochemical oxidation of 

CeY2N@C80 is an endohedral redox process with the oxidation of CeIII  to CeIV state in CeY2N. 

The unambiguous proof is provided by 13C NMR spectroscopy of the [CeM2N@C80]
+ cations. 

Although the second cluster metal M (M= Sc, Lu and Y) is not involved in the redox process, 

the oxidation potential of CeM2N@C80 was found to be a function of the ionic radius of this 

metal covering the range of 0.4 V; more negative values were found for larger metal ions 

(Y3+). This phenomenon is explained by the inherent strain in the CeIIIM2N@C80 fullerenes 

caused by the large size of the CeIIIM2N cluster and the release of this strain when CeIV with 

small ionic radius is formed. In the case of yttrium, this causes a change of the cluster 

geometry from pyramidal in the neutral CeY2N@C80 to planar in the cation. Expanding from 

carbon cage from C80 to C86, the decrease of the strain between encage 

 CeY2N cluster and C2n cage was revealed by the electrochemical studies of their redox 

potentials. Based on the systematical electrochemical studies of CexY3-xN@C2n (2n= 84-88; 

x= 0-2), it could be concluded that the oxidation potential of Ce-based MMNCFs: a) for the 

C88 cage, there is no significant contribution coming from the encaged Ce atom(s) which is 

considered as the cage-dominated process; b) for CexY3-xN@C86, changing the number of 

entrapped Ce atom significantly induced the negative shift of the oxidation potential which 

was regarded as the Ce-based process; c) for CexY3-xN@C2n (x=1, 2; 2n=80-88), preserving 

the endohedral cluster but increasing the size of carbon cage from C80 to C88 results in the 

releasing the inherent strain between the entrapped cluster and carbon cage.  
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Conclusion of Thesis 

In this thesis, Ce-, Pr-, Ho-based and Sc-, Lu- and Y-involved mixed metal nitride 

clusterfullerenes (MMNCFs) were synthesized by “reactive gas atmosphere” or “selective 

organic solid” route. Metal nitride cluster template (M3N) provides a convenient platform for 

the construction of rare-earth containing endohedral fullerenes in the form of mixed metal 

nitride cluster fullerenes (LnxM3-xN@C2n; Ln=lanthanide metal). Different metals and carbon 

cages can be regarded as the infinite building blocks for the endohedral fullerenes family. Sc, 

Lu and Y are employed as the second metal (M) to tune: (a) the size and the geometry of 

entrapped mixed metal nitride cluster; (b) the inherent strain between encaged species and 

carbon cage; (c) the paramagnetic contribution from Ln3+ (LnxM3-xN@C80) to 13C and 45Sc 

NMR chemical shifts; (d) the electrochemical oxidation potential of CexY3-xN@C2n. The 

isolation of (a) C80-based MMNCFs which including HoxSc3-xN@C80 (I, II; x= 1, 2), HoxLu3-

xN@C80 (I; x= 1, 2), HoxY3-xN@C80 (I; x= 1, 2), CeY2N@C80 (I), CeSc2N@C80 (II) and 

PrSc2N@C80 (I, II) was accomplished by multi-step HPLC. Moreover, Ce-based MMNCFs 

with cage size larger than C80 were isolated which include CeY2N@C84, CeY2N@C86, 

Ce2YN@C86, Ce2YN@C88 and CeY2N@C88. The purity of above-mentioned MMNCFs was 

confirmed by LDI-TOF mass spectroscopy.  

The UV-vis-NIR absorption spectra of above-mentioned LnxM3-xN@C2n (I, II; x= 1, 2; 

Ln= Ce, Pr, Ho; M= Sc, Lu, Y; 2n=80-88) measured in toluene are similar and exhibit only 

subtle shifts of the bands' wavelengths. These spectra are also comparable to those of many 

other M3N@C80 NCFs with the Ih(7) carbon cage and show that (a) electronic properties of 

CeM2N@C80 (I; M= Sc, Lu, Y), HoxM3-xN@C80 (I; M= Sc, Lu, Y), LnSc2N@C80 (I, II; Ln= 

Ce and Pr) are not significantly altered by switching the second metal; (b) the characteristic 

absorption feature of CexY3-xN@C2n (x= 0-2; 2n= 84, 86, 88) is essentially dependent on the 

carbon cage and (c) Ce has seemingly no contribution to the frontier orbital compared to other 

lanthanide metals.  

The vibrational spectroscopy is employed to reveal the structure information on endohedral 

fullerenes due to its high structural sensitivity. On the one hand, FTIR spectra own its 

advantages for the analyzing the antisymmetric metal-nitrogen stretching vibrational modes 

(νM-N) of LnxM3-xN@C80 (I, II; x= 0-3), which are assigned to the most intense low-energy IR 

lines in the 600-800 cm-1 range and which are sensitively dependent on the composition of the 
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encaged LnxM3-xN cluster. It could be concluded that (a) for carbon cage with the same 

symmetry (Ih or D5h), the splitting of νM-N in M2ScN@C80 is stronger than in MSc2N@C80; (b) 

for Ln2ScN@C80 and LnSc2N@C80, the splitting of νM-N in Ln2ScN@C80 is stronger than in 

LnSc2N@C80 due to the inherent strain between the encapsulated cluster and carbon cage; (c) 

the good linearity based on νSc-N from Lu to Ce for LnSc2N@C80 (I) could be obtained and (d) 

for the encaged metal with similar metal ionic radii (e.g. Ho3+ and Y3+), it is different to 

distinguish νM-N modes. On the other hand, Raman spectra could provide critical information 

on the interaction between the entrapped metal nitride cluster and the C80 cage. The low-

energy Raman spectra of Ho-based MMNCFs (HoxM3-xN@C80, M= Sc, Lu and Y) are 

interpreted as the big difference in the term of their mass makes noteworthy distinction. 

To understand and tune magnetic properties of the MMNCFs, Ce, Pr and Ho are chosen 

due to their strikingly different metal ionic radii, the different number of 4f-electron and 

magnetic moment. Meanwhile, Sc, Lu and Y are selected as second metal (M) to change the 

size of LnxM3-xN and inner strain between encaged cluster and carbon cage. In this thesis, 

those endohedral fullerenes are compared in the form of CeM2N@C80 (I; M= Sc, Lu, Y), 

HoxM3-xN@C80 (I; M= Sc, Lu, Y) and LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Tb, Dy, Ho and Lu) 

based on the same carbon cage symmetry which containing different encaged cluster or the 

same encapsulated cluster in different carbon cage. The 4f electron(s) located on the encaged 

lanthanide metals (e.g. 4f1-Ce3+, 4f2-Pr3+ and 4f10-Ho3+) results in remarkable 13C NMR 

paramagnetic chemical shifts. Considering two Sc atoms have no significant influence to the 
13C NMR spetra, those paramagnetic chemical shifts could be clearly assigned as contribution 

from the corresponding Lanthanide metals in the LnSc2N cluster. Reviewing the MMNCFs in 

the form of LnSc2N@C80 (I; Ln= Ce, Pr, Nd, Tb, Dy, Ho and Lu), the encaged metal with 

different magnetic moment could result in the two broad peaks in the 13C NMR spectra. 

Particularly, the THJs carbon atoms of the C80:Ih demonstrated lanthanide metal dependent 

paramagnetic chemical shifts. According to the Bleaney’s theory and Reilley method, the 

paramagnetic chemical shift could be deducted which provide valuable parameters 

comprising of the magnetic anisotropy and the corresponding crystal field. By selectively 

choosing the same scaffold metals M (M= Sc, Lu, Y), the 13C NMR chemical shifts of PHHJs 

and THJs in CeM3-xN@C80 and HoxM3-xN@C80 (I; M= Sc, Lu, Y) are remarkably different. 

For Ho-based MMNCFs, it could be expected that chemical shifts definitely were dominated 

by the paramagnetic contribution from encaged 4f10-Ho3+. However, it should be pointed out 

that the geometrical factors still play an important role in inducing the chemical shifts.  
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The temperature-dependent 45Sc NMR spectroscopic study demonstrated that lanthanide 

metal-induced paramagnetic chemical shifts are co-influenced by the component of nitride 

cluster and the geometry of mixed metal nitride cluster and carbon cage. The free rotation of 

encapsulated cluster inside carbon cage complicated the interpretation of the 45Sc NMR 

behaviors and the isolation separation of the contribution of Pseudocontact (δPC) and Fermi 

contact (δcon) terms. 

The convincing proofs of the strain-driven endohedral redox couple CeIV/CeIII  in mixed 

metal nitride clusterfullerenes CeM2N@C80 (M= Sc, Lu, Y) were presented by the 

characterization of cyclic voltammtry and 13C NMR spectroscopy. The neutral state 13C NMR 

spectra of CeIIIM2N@C80 and their cationic form ([CeIVM2N@C80]
+) which produced by the 

addition of the oxidation agent were compared and interpreted. The two-line pattern of 13C 

NMR spectrum and weakly paramagnetic shifts agreed well with previous reports on the 

M3N@C80 (M= Sc, Lu, Y). It should be highlighted that the 45Sc NMR spectrum of 

CeSc2N@C80 with δ(45Sc)= 280 ppm in neutral state is found to shift to 175 ppm in 

[CeSc2N@C80]
+[PF6]

−, which is close to the value of δ(45Sc)= 190 ppm measured for 

Sc3N@C80 in o-DCB. Therefore, the 13C and 45Sc NMR spectroscopy definitely confirmed 

that diamagnetic [CeIVM2N@C80]
+ cations are produced.  

Based on the systematic studies of their electrochemical behaviors, it could be concluded 

that the oxidation potentials of Ce/Y-involved MMNCFs: (a) the substantial shifts of the 

oxidation potential of CeM2N@C80 (M= Sc, Lu, Y) which induced by enlarging the size of 

the CeM2N cluster could be up to 0.40 V in the order of CeSc2N@C80 (0.33 V) → 

CeLu2N@C80 (0.01 V) → CeY2N@C80 (-0.07 V). The electrochemical energy gaps of Ce-

based MMNCFs are mainly dependent on the oxidation potential rather than reduction 

potential; (b) for the CexY3-xN@C88 cage, it could be confirmed as cage dominated process 

due to switching the encaged cluster from Y3N to CeY2N or Ce2YN does not induce the 

oxidation potential shifts; (c) for C86-concerned Ce-containing compounds, the oxidation 

potential negatively shifted which was regarded as the Ce-based process changing the number 

of entrapped Ce in the case of CeY2N and Ce2YN cluster inside of C86 cage; (d) the 

comparison of the electrochemical oxidation behaviors of CeY2N@C84 and Y3N@C84 

revealed that the negative oxidation potential shift actually is a Ce-based process which 

influenced by the inherent strain between the CeY2N cluster and C84 cage.  
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Appendix: Experimental details 

1. Synthesis and Extraction 
 

As mentioned in Figure 1.1, the sketch of the apparatus for synthesizing endohedral 

metallofullerenes (EMFs) is demonstrated. Before DC-arc discharging, two core-drilled 

graphite rods were filled with the mixture of metal/graphite or metal oxide/graphite. In 

general, for the productions of NCFs or MMNCFs, two kinds of nitrogen source were 

commonly used in our group including ammonia (NH3) as reactive gas and guanidine 

thiocyanate as the solid state source as described previously. Pumping the generator is a quite 

necessary step for enhancing the yield of metal NCFs and depressing the yield of empty 

fullerenes by removing the air in the generator. In the presence of 50 mbar He atmosphere, 15 

A current is applied for the preheating of the graphite rods around 20 minutes. For the 

“reactive gas atmosphere” method, the 20 mbar NH3 and 200 mbar He are filled into the 

generator after the preheating process which described in the section of the synthesis of 

HoxSc3-xN@C80 (I, II; x=1, 2). For “selective organic solid” (SOS) route, guanidine 

thiocyanate (GT) which mixed with metal oxide (CeO2, Pr6O11, Ho2O3, Lu2O3, Sc2O3, Y2O3) 

and graphite powder is filled into the core-drilled rods as well. The molar ratio of Ln/M/GT/C 

is 1:1:2.5:15 (Ln= lanthanide metal; M= Sc, Y). By applying 100 A current, two metal oxide 

containing graphite rods are fixed as anode and cathode. Switching connection with the DC 

apparatus, the rods on both sides could be regarded as anode alternatively during the 

evaporation. The distance between anode and cathode is about 1 cm by moving the two rods 

forward as the conduction of the evaporation. After DC-arc discharging, the soot was 

collected and pre-extracted by acetone for 1 hour and further Soxhlet-extracted by CS2 for 20 

hours. The extraction solution was dried with the protection of N2 flow and the crude 

fullerenes containing mixture is dissolved in toluene solution for the isolation in the next step.  

 

2. HPLC isolation 
 

In general, the isolation of metal NCFs and MMNCFs is performed by multi-step HPLC 

with toluene as the eluent. The first step running in a Hewlett-Packard instrument (series 

1100), a combination of two analytical 4.6×250 mm Buckyprep columns (Nacalai Tesque, 
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Japan) was applied. The second- and third-step isolation were performed by a recycling 

HPLC (Sunchrom, Germany) using a Buckyprep column or a Buckyclutcher column (Nacalai 

Tesque, Japan) and toluene as the eluent. The UV detector set to 320 nm was employed for 

fullerenes detection for all steps.  

3. Spectroscopic and electrochemical characterizati ons 
 

The purity of the isolated MMNCFs compounds was checked by laser desorption/ionization 

time-of-flight (LDI-TOF) MS analysis running in both and positive and negative ion modes 

(Biflex III, Bruker, Germany). UV-Vis-NIR spectra of isolated MMNCFs structures dissolved 

in toluene were recorded by using a UV-Vis-NIR MPC-3100 spectrometer (Shimadzu, Japan) 

at 1 nm resolution, and a quartz cell of 1 mm path length. For FTIR and Raman 

characterization of MMNCFs, the drops of solution state sample was dried on the surface of 

KBr single crystal disk which recorded by using an IFS 66v spectrometer (Bruker, Germany) 

at room temperature. The 125 MHz 13C NMR and 121.5 MHz 45Sc NMR spectroscopic 

measurements were performed at in a multiprobe head PH 1152Z on an Avance 500 

spectrometer (Bruker, Germany) at room temperature in carbon disulfide solution with d6-

acetone as a lock or o-d4-DCB solution. Cyclic voltammetric experiments were conducted 

with a PAR 273 potentiostat at room temperature in the glove box. A standard three-electrode 

system contains a Platinum wires and a silver wire served as the working, counter, and 

pseudoreference electrodes, respectively. The distilled o-DCB solvent is used. The supporting 

electrolyte is TBABF4 (0.1 M). The potentials were measured against the Fe(Cp)2
+/0 couple 

which regarded as the internal standard. 
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