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1 Introduction 

After the developments of the first synthetic polymer by Baakeland at the beginning of the 
20th century (phenol formaldehyde resins, “Bakelite”) the research field of synthetic 
polymers started.[1, 2] At this time the macromolecular structure of polymers was not known 
but several polymers based on modified natural products were established for industrial 
applications. In 1920s Staudinger proved the existence of large covalent chain 
macromolecules and established the concept of macromolecular chemistry (primary-valence 
chain systems).[3-5]  
Today a large number of industrial used synthetic polymers are produced by chain growth 
polymerizations that were developed in the 1930s to 1960s. The chemistry of vinylic/acrylic 
monomers was at this time still a new field, where e.g. poly(methyl methacrylate) (PMMA, 
Plexiglas) was developed in 1933 by the pioneering work of Otto Röhm.[6] Two further 
representative examples are the Ziegler-Natta polymerization and the anionic polymerization 
by Szwarc.[7, 8] After these developments an exponential grow of new polymeric materials 
occurred, although very few new industrial polymers were introduced in recent decades. 
Nowadays the interests of (academic) polymer scientist are more focused on controlling the 
molecular architecture and structure of macromolecules. The aim is the understanding of 
structure-properties relationships regarding polymer chain length, composition and 
architecture (Figure 1). In this context modern controlled radical polymerization (CRP) 
techniques[9, 10] provide the possibility to control the macromolecular chain structure, the 
polymer architecture, the molar mass and the functionalization (side and endgroup). The 
most applied techniques up today for this controlled design are the reversible addition-
fragmentation chain transfer (RAFT)[11, 12] polymerization, the atom transfer radical 
polymerization (ATRP)[13, 14] and the nitroxide-mediated polymerization (NMP)[15, 16] method. 
The unique features of the RAFT polymerization are the good tolerance to several 
functional groups and the possibility to polymerize a wide range of different monomers. 
 
The scope of this thesis is the development and design of new copolymer systems with 
advanced macromolecular structure with a focus on the controlled construction of polymer 
chains including functionalities and block segments. The conception is based on the RAFT 
polymerization method for the synthesis of polymeric material, which allows this 
“microstructural” constitution. More specifically, this thesis aims to investigate structure-
property relationships thereby focusing on the incorporation of functional groups and its 
applications. The functionalities include dyes with sensing/”antenna” structures for 
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diagnostics as well as responsive block copolymers for controlled stimuli-induced self-
assembly. These advanced polymeric structure strongly influence the properties, like the 
phase separation morphologies, self-assembly or stimuli-responsive behavior of the 
corresponding copolymer (Figure 1). 

 
Figure 1 Correlation between molecular structures and macroscopic properties. 

A comprehensive overview about the design of polymer architectures by RAFT 
polymerization including the incorporation of different functionalized monomers can be 
found in Chapter 2.1 of this thesis. Therein the RAFT polymerization method and its 
mechanism is further discussed in detail. The implementation of functionalities (e.g. dyes) 
in combination with the thermo-responsive phase separation of copolymers opens a window 
for applications in sensor systems or in diagnostics. Chapter 2.2 provides an overview of 
the research that guided the way from fundamental studies of the thermo-responsive phase 
separation of aqueous polymer solutions to polymeric sensor systems. 
The incorpotation of functional groups into polymer chains, in particular the use of light-
emitting or light absorbing dyes is an appealing design criterion and represents an 
important challenge. Light-emitting or absorbing copolymers reveal high potential for 
applications in various fields, like in förster resonance energy transfer (FRET) pairs for 
diagnostics.[17-19] An essential requirement for these constructs is the incorporation of 
chromophores into the polymer without changes in their optical properties, e.g. the 
quantum yield. Polymerization strategies which open avenues to fulfill this requirement are 
provided by the RAFT method, which was applied for several dye-functionalized 
methacrylates and styrene derivates (Chapter 3). The preparation of multifunctional and 
well-defined macromolecules via the RAFT process is also demonstrated. Additionally the 
proof for the controlled/living polymerization is provided based on a kinetic analysis. 
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Besides the investigations of controlled polymerization of functional monomers the interest 
of many researchers was attracted towards the constructions of more complex structures, 
like block or comb copolymers. In this research field the morphologies, self-organization 
towards polymersomes and advanced stimuli-responsive behavior, e.g. phase separation in 
response to an external stimulus, are of great interest.[20-28] Such “responsive” materials can 
act in response to changes in environmental parameters like temperature, pH value or light. 
In this context the preparation of amphiphilic block copolymers, which undergo a thermo-
sensitive self-organization, in particular the formation of micelles or vesicular structures is of 
great interest. The polymer architecture plays a key role for this self-organization and has 
to be carefully designed. For this purpose a library of double thermo-responsive block 
copolymers with different ratio between both segments were synthesized by RAFT 
polymerization. The characteristics regarding the thermo induced self-assembly depending 
on the block length is part of Chapter 4. Moreover, this chapter provides the synthesis and 
characterization of dual hydrophilic statistical and block copolymers of acrylic monomers.  
Next to the exploration of self-assembled structures of block copolymers an additional 
procedure was investigated to generate tailor-made nano-objects. The design of labeled 
polymeric nanostructures with tailored properties has attracted great attention not only in 
chemistry, but also in other disciplines like biology. The combination of chromophores and 
advanced polymer structure opened up opportunities for preparation of labeled polymeric 
nanoparticles (NP). Chapter 5  contains analysis of the polymeric NP systems with respect 
to their corresponding NP size, used chromophores and stability. Furthermore, such 
fluorescent polymeric NPs have been studied in cellular uptake in terms of potential 
diagnostic devices. In this final chapter well-defined and differently sized NPs, prepared by 
nanoprecipitation of dye-functionalized PMMA derivatives, are presented. 
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2 Modern polymerization techniques towards stimuli-
responsive properties 

Parts of this chapter have been published: P1) U. Mansfeld, C. Pietsch, R. Hoogenboom, C. R. 
Becer, U. S. Schubert, Polym. Chem. 2010, 1, 1560–1598; P2) C. Pietsch, U. S. Schubert, R. 
Hoogenboom, Chem. Commun. 2011, 47, 8750–8765. 
 
 
The investigation of structure-property relationship of macromolecules represents an 
intensive research field in polymer chemistry. In fact, the molecular structure of the polymer 
determines the macroscopic properties, e.g. the morphologies, the self-assembling or the 
stimuli-responsive behavior in aqueous solutions.[20-23, 29] Therefore an important aspect is the 
construction of advanced polymer architectures to study the corresponding polymer 
properties. In this context modern controlled radical polymerization (CRP) techniques 
represent suitable methods to construct well-defined copolymer structures with stimuli-
responsive behaviors. Also the combination of thermo-responsiveness with a second response 
towards other environmental parameters, like changes in the pH value, within one polymer 
chain, is achievable. These modern controlled polymerization platforms represent suitable 
synthetic tools for their construction, whereby the functionalization of the polymer and the 
control over the polymer chain length as well as composition is provided. In detail the 
controlled incorporation of dyes or other functional groups can be generated by using 
functional monomers or initiators. Within this polymerization method the study of thermo-
responsive phase separation and dye based polymeric sensor systems could be realized and 
investigated in detail regarding the development of structure-property relationships. 
 

2.1 Controlled radical polymerization techniques 

The synthesis of well-defined polymers has been the ultimate challenge of polymer chemists 
in the last decades. The development of anionic polymerization by Szwarc et al. in 1956 
opened new avenues and a new field of materials research.[8, 30] Besides, polymeric materials 
have improved the quality of our lives in all areas from engineering to electronics and even 
medical applications.[29, 31, 32] Following the invention of anionic polymerization, other 
possible types of living and/or controlled radical polymerizations have been intensively 
studied.[16, 33-35] One of the most significant CRP techniques to date is the reversible 
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addition-fragmentation chain transfer (RAFT) polymerization.[11, 12, 36, 37] This polymerization 
method requires the usage of a dedicated compound or chain transfer agent (CTA) to gain 
control over the polymerization of various monomeric structures.  
The unique features of the RAFT polymerization are the good tolerance to several 
functionalities (e.g., incorporation of dyes or functional groups for click chemistry) [38, 39] and 
the possibility to construct a wide range of different architectures, e.g., comb, block, 
gradient and star copolymers, respectively.[40] A good control over the molar mass and 
polydispersity index (PDI) can be obtained by this type of controlled radical polymerization 
technique. The RAFT polymerization was developed in 1998 by the Commonwealth 
Scientific and Industrial Research Organization (CSIRO) in Australia, using sulfur based 
compounds as chain transfer agent.[11] These CTA’s are based on thiocarbonylthio (S=CS) 
compounds, providing effective and versatile control of the radical polymerization process. 
The CTA’s can be divided in four classes of RAFT agents: dithioesters, trithiocarbonates, 
xanthates and dithiocarbamates.[41, 42] Schematic representation of different CTA agents 
used in this work are shown in Figure 2.  
 

 
Figure 2 Schematic representation of the CTA agents used in the controlled radical polymerization 
(CTA1: Benzyl (diethoxyphosphoryl)dithioformate, CTA2: 2-(Butylthiocarbonothioylthio) propanoic 

acid, CPDB: 2-Cyano-2-propyl dithiobenzoate CTA3: 4-Cyano-4-[(dodecylsulfanylthiocarbonyl) 
sulfanyl]pentanoic acid). 

The concept of the RAFT method is based on a degenerative chain control, which induces 
an equilibrium between propagating macroradical-chains and dormant polymeric RAFT 
agents bearing the thiocarbonylthio moieties at the end of the polymer chain.[12, 40] A rapid 
exchange via a reversible deactivation process between the dormant and the active radical is 
required to obtain control over the polymerization process. The main equilibrium of the 
mechanism of the RAFT process is illustrated in Figure 3. In the ideal case the radicals 
start growing at the same time and have equal opportunities for growth, resulting in a 
linear increase of chain length with monomer conversion and a narrow molar mass 
distribution. 
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Figure 3 Schematic representation of the main equilibrium of the RAFT mechanism (kp represents 

the polymerization rate, M the monomer and Pn,m polymer chains). 

It is possible to polymerize a wide range of monomers, e.g. methacrylates, acrylates, 
styrenes, acrylamides and vinyl esters with the RAFT technique. Also a large variety of 
functional groups can be polymerized utilizing the RAFT process; important functionalities 
are carboxylic acids, alcohols, amines, triple bonds, epoxides, sulfates and azides.  
The selective functionalization of macromolecules is one of the ultimate challenges for 
polymer chemists, while the synthesis of tailor-made polymer architectures represents 
another important goal. The preparation of such multifunctional and well-defined 
macromolecules requires a smart selection of the controlled polymerization procedure in 
combination with appropriate functionalization reactions. The synthesis of end- or side-
functional macromolecules could be achieved by using functional initiators, monomers or 
end capping techniques. However, these specific functional groups might have enormous 
effects on the polymerization rate, control over the polydispersity index and the composition 
of the copolymers. 
Fortunately, a decade ago, the “click” chemistry concept was introduced by Sharpless et al. 
that stimulated the development of a wide range of efficient coupling reactions that enable 
nowadays the preparation of not only telechelic polymers but also of side-group 
functionalized polymers using clickable initiators, monomers and polymers.[43-46] Sharpless 
and coworkers drew attention to several highly efficient organic reactions and called them 
“click” reaction.[47, 48] Several other efficient organic reactions have since then been claimed 
to be ‘‘click’’ reactions since they fulfilled all or most of the click chemistry criteria, which 
can be listed as modular and wide in scope, high efficiency and high yields, no or inoffensive 
byproducts, readily available starting materials and reagents, no solvent or a benign solvent, 
and simple purification techniques (no chromatographic procedures).[46] 
The concept of “click” chemistry combined with the concept of controlled radical 
polymerizations represents an ideal pair for the preparation of tailor-made macromolecular 
architectures. The striking advantage of this combination can be clearly seen by the variety 
of “clicked” architectures that become within reach by using clickable polymers as building 
blocks. These clickable polymers act as basic modules for further functionalization reactions 
to engineer more complex architectures or to tune the properties of the polymeric material. 
(Figure 4).   
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Figure 4 Schematic representation for the construction of different functional polymer architectures. 

An example for the post modification of polymers represents the cleavage of the chain 
transfer agent leading to thiol-terminated polymers, which can easily be prepared by RAFT 
polymerization. These thiol-terminated polymers can subsequently be clicked not only to 
unsaturated double bonds but also to alkyne and para-fluoro groups making the 
combination of RAFT polymerizations with thio-click chemistry a powerful method.[49, 50] 
Another advantage of this “click” approach is the possible functionalization of polymers 
with fluorescence dyes (e.g. pyrene), where the degree of functionalization (in the side 
groups) can be varied, or the simultaneous incorporation of several dyes to explore energy 
transfer applications. 
The combination of controlled radical polymerization techniques and click reactions has 
become a unique synthetic route for preparing highly functional tailor-made 
macromolecules. The preparation of new well-defined functional polymers has, thus, become 
accessible to develop novel polymer structures or properties. 
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2.2 Stimuli-responsive properties for polymeric sensor application 

The determination of the temperature is one of the most important analytical methods in 
chemical laboratories. Among chemical,[51-56] pH,[57, 58] chemomechanical[59] and calorimetric 
sensors, optical temperature[60] sensors play an important role in polymer science. A new 
class of optical temperature sensors has been therefore developed and received significant 
attention for the development of sensory materials in the last years. The here discussed 
sensors are based on stimuli-responsive polymers[25, 26, 61-63] that sharply respond with a phase 
transition to environmental parameter changes such as the temperature, pH value, UV/Vis 
light or chemical changes. Stimuli-responsive polymer systems can be polymers in solutions, 
hydrogels, self-assembled aggregates and nanoparticles.[25-27, 57, 60-65] The access and the 
possibility to control the polymer properties[29] (e.g. architecture) and the flexibility of 
processing in combination with a tunable solubility (e.g. ratio of hydrophobic/hydrophilic 
monomers) make them very promising and advantageous for sensor materials. For sensing 
purposes, the polymer phase transition can be translated into a sensory signal by 
incorporation of solvatochromic dyes[56, 66] that specifically change their optical or emissive 
properties upon changing the environmental parameters (Figure 5). 
The sensing approach based on the combination of a responsive polymer phase transition 
and a solvatochromic dye allows simple and fast detection of, e.g., the temperature by 
measuring the absorbance or fluorescence of the solution. The high sensitivities arise from 
the incorporated solvatochromic dye molecules, which respond to minor local environmental 
changes that occur upon the temperature induced polymer phase transition. For 
temperature-sensing in aqueous solution, the most important polymer phase transition is 
the so-called lower critical solution temperature (LCST), i.e. the polymer is dissolved at 
lower temperatures and precipitates upon increasing the temperature. 

 
Figure 5 Schematic representation of the polymeric sensors based on polymer phase transitions  

(coil-to-globule) and solvatochromic dyes. 
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The driving force for the study of polymeric temperature sensors in the last 20 years is 
twofold: (i) the development of new functional (temperature) sensor systems utilizing 
stimuli-responsive polymers and (ii) to gain an in-depth understanding of polymer chain 
conformations and/or phase transitions in solution. Widely used experimental techniques[25] 
for the determination of these coil-to-globule/LCST transitions are (i) calorimetry[67-69] 
(thermodynamics of phase separation), (ii) viscosity determination[67] (hydrodynamic 
consequences), (iii) light scattering measurements[70-73] (size of the coil or globule), (iv) 
UV/Vis or fluorescence spectroscopy[74-77] (molecular resolution of the thermo-reversible 
phase separation) and additionally, (v) IR[78] and NMR spectroscopy.  
These techniques are used for fundamental research on stimuli-responsive polymers 
providing novel insights into the elementary mechanism like the equilibrium transition states 
or the kinetic/thermodynamic processes of the phase separation and the structure of 
individual polymer coils as well as the effects of various specific/non-specific interactions 
(hydrogen bonding, electrostatic, hydrophobic/hydrophilic interactions) between the 
polymer chains, side/end-groups and/or the solvent.  
Additional information can be obtained with polymeric fluorescent sensors, because 
numerous parameters like fluorescence decay times, fluorescence intensity, quenching 
efficiency, energy transfer and fluorescence polarization can be determined. The most 
challenging problems of optical sensors are the reversibility over a long time, the signal 
stability and photobleaching of the chromophore. Nonetheless, covalently embedding the 
chromophore into a polymer backbone or in a nanoparticle/hydrogel protects the 
chromophore making the combination very promising. 
The temperature-induced polymer phase separation (demixing) in solution is called LCST 
transition and can be described by the Flory–Huggins theory.[79] During these coil-to globule 
transitions the polymer chains change from a fully dissolved, hydrated state (hydrophilic) 
into a collapsed non-hydrated state (hydrophobic). This sharp entropy-driven collapse has a 
strong influence on the microenvironment of the repeating units of the polymer. The 
(majority of) water molecules are released into the bulk water during this transition and, 
therefore, a hydrophilic–hydrophobic (polarity) change occurs in the microenvironment of 
the polymer. By attaching a solvatochromic chromophore to the polymer chain, this 
microenvironmental polarity change during the temperature induced polymer phase 
transition can be translated into a colorimetric or fluorescent sensing signal. 
The majority of such sensor designs are based on dye functionalized stimuli-responsive 
poly(N-iso-propylacrylamide), PNIPAM,[25, 67] while more recently polymers based on 
poly(ethyleneglycol) (PEG) functionalized methacrylates,[80-82] i.e. POEGMA, became 
popular alternatives too. The poly(di(ethylene glycol) methyl ether methacrylate), 
PDEGMA (two units of EG), has a LCST around 27 °C. The popularity of PNIPAM is 
largely based on its LCST of 32 °C,[25] which is close to the human body temperature.  
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Besides these polymers other alternatives are known, showing a LCST behavior in aqueous 
solution, namely poly(2-dimethylaminoethyl methacrylate), PDMAEMA, poly(vinyl methyl 
ether), PVME, poly(ethyleneglycol), PEG and poly(2-ethyl-2-oxazoline), POx, as depicted 
in Figure 6. 

 
Figure 6 Schematic representation of the chemical structures of polymers with a LCST behavior in 

water. 

The LCST of these thermo-responsive polymers strongly depends on the hydrophilic-
hydrophobic character of the repeating unit. In addition, the LCST temperature range of 
these copolymers can be tuned over the full temperature range of ambient water by 
controlling the hydrophilic/hydrophobic balance of the polymer by copolymerization. Some 
thermo-responsive polymers, e.g. PNIPAM or POEGMA, show a sharp phase transition and 
a good reversibility in water, which is crucial for accurate and reliable sensors applications. 
The syntheses of responsive copolymers are usually performed by radical polymerization 
techniques. The most commonly used technique is free radical polymerization (FRP) in bulk 
or solution. However, controlled radical polymerization methods are preferred due to the 
possibility to control the polymer architecture, composition and chain length. The RAFT 
polymerization has been mostly used for the construction of these polymeric sensors due to 
the good tolerance to functional groups.  
The synthesis of the desired dye functional macromolecules as well as the preparation of 
different architectures and their wide range of applications, such as temperature or pH 
sensors, drug delivery systems and light harvesting antennas are discussed in the next 
chapter. Also detailed insights into the temperature-induced polymer phase transitions of a 
polymeric sensor will be provided.  
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3 Controlled radical polymerization of functional monomers 

Parts of this chapter have been / will be published: P3) R. Menzel, A. Breul, C. Pietsch, J. Schäfer, 
C. Friebe, E. Taeuscher, D. Weiß, B. Dietzek, J. Popp, R. Beckert, U. S. Schubert, Macromol. 
Chem. Phys. 2011, 212, 840–848; P4) A. M. Breul, C. Pietsch, R. Menzel, J. Schäfer, A. Teichler, 
M. D. Hager, J. Popp, B. Dietzek, R. Beckert, U. S. Schubert, Eur. Polym. J. 2012, 48, 1339–
1347; P5) C. Pietsch, J. Schäfer, R. Menzel, R. Beckert, J. Popp, B. Dietzek, U. S. Schubert, J. 
Polym. Sci., Part A: Polym. Chem. 2013, 51, 4765–4773; P6) C. Pietsch, A. Vollrath, R. 
Hoogenboom, U. S. Schubert, Sensors 2010, 10, 7979–7990; P7) D. Heine, C. Pietsch, U. S. 
Schubert, W. Weigand, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2171–2180. 
 
 
The incorporation of functional groups into copolymer chains, in particular the 
incorporation of light-emitting chromophores or light absorbing dye’s, is an important 
design criterion for the construction of advanced polymeric materials. These light-emitting 
copolymers are the subject of intense research due to their potential applications in various 
fields. In general, they have been successfully applied in organic light-emitting diodes 
(OLEDs),[83, 84] as sensor systems in biochemical and environmental applications,[60, 85] in dye-
sensitized solar cells (DSSCs)[86, 87] and for the construction of antenna systems mimicking 
light-harvesting photosynthetic proteins in plants by incorporating donor and acceptor dye-
units to allow förster resonance energy transfer (FRET).[88, 89] 
There are three major synthetic pathways to prepare dye-functionalized polymers: (i) the 
use of a dye functionalized monomer, (ii) using a functionalized initiator or chain transfer 
agent and (iii) application of efficient post-polymerization reactions. The post 
functionalization method has to fulfill some important criterion for a successful 
incorporation, e.g., using an activated ester monomer or an efficient ‘‘click’’ reaction. On 
the other hand functional monomers can be used to synthesize pendant functionalized 
polymers, whereby the functionalized monomer can be homopolymerized or copolymerized 
to obtain versatile random-, block- or comb copolymers. The chosen controlled radical 
polymerization processes in this work is the RAFT polymerization method. The RAFT 
technique was applied for polymerization of dye-functionalized methacrylates and styrene 
derivates. The functionalities of these monomers are based on light-emitting chromophores, 
i.e. the 4-hydroxy-1,3-thiazole dye (1 to 4), pyrene dye (7) or even more complex structure 
like the [2Fe2S] clusters (5 and 6 based on a [FeFe]-hydrogenase model) as depicted in 
Figure 7. The synthesis of the dye-functionalized methacrylates is straightforward, whereby 
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the used synthetic route involved the esterification of methacryloyl chloride with the 
corresponding alcohol functionalized dye. The styrene based monomers were synthesized via 
a substitution reaction using vinylbenzyl chloride and the corresponding alcohol 
functionalized dye. 

 
Figure 7 Schematic representation of the used dye-functionalized methacrylates and  

styrene monomers as well as the [FeFe] functionalized styrenes. 

The polymerization of the dye functionalized monomers can be limited in case if reactive 
groups are present, which interfere with the radical polymerization process. This limitation 
is in particular given for the polymerization of metal containing monomers, e.g. for the 
styrene derivates 5 and 6, where the metal and the CO groups are known for interactions 
with the propagating radical.[90-92] 
The selection of the chromophore should be carefully made not only from a synthetic point 
of view, but also for their fluorescence and absorption properties. Usually, classic 
chromophores like coumarines, naphthalenes and quinolines have low quantum yields, 
strong solvent dependency of their electronic properties, excimer formation,[93] and a low 
photostability. To overcome these restrictions a novel non-classical fluorescence emitter has 
been developed: the 4-hydroxy-1,3-thiazole dye. The thiazole chromophores generally show 
very-high room-temperature fluorescence and quantum yields ranging from 0.7 up to unity, 
in combination with a large Stokes shift, making them very promising for light harvesting 
polymers.[94, 95] These mentioned points are essential for an efficient FRET in a 
donor/acceptor based copolymer. 
The RAFT polymerization was chosen as an efficient method for the polymerization of the 
thiazole-functionalized methacrylates (1a, 1b). The reaction temperature was set to 70 °C 
with a reaction time of 16 h in order to ensure an optimal value of conversion combined 
with low PDI values. The two obtained copolymers revealed a narrow molar-mass 
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distribution with PDI values below 1.2 (see TABLE 1) as well as a statistical distribution of 
the dye units along the copolymer chain, as indicated by similar conversion of both 
monomers. This observation indicates also similar reactivity of both the dye functionalized 
monomer and MMA. The targeted dye content of 3% was nearly reached for both 
copolymers P1 and P2 (calculated from the integration of the 1H NMR spectra). 
 

TABLE 1 Selected characterization data for the obtained copolymers P1 and P2. 

Entry 
 

[MMA]/ 
[dye] 

[M]/[CPDB]/ 
Initiator] 

MMA/dye 
conv [%][a] 

t 
(h) 

Mn 
[g/mol][b] PDI[b] DP  Dye 

[mol%][c] 

P1 MMA/1a 97/3:1:0.25 60 / 65 16 7 400 1.17 71 2 

P2 MMA/1b 97/3:1:0.25 67 / 67 16 8 400 1.19 77 2 

[a] Calculated from GC peak integrals, and the UV UV-detector peak areas: Apolymer/(Apolymer + Amonomer). 
[b] Calculated from SEC (CHCl3/triethylamine/iso-propanol = 94/4/2) using PMMA calibration. [c] Calculated 
from 1H NMR spectra using the integrated areas of aromatic dye signals and the -OCH3 MMA signals. 

 
 
The proof of the controlled radical polymerization of these thiazole monomers was provided 
by kinetic investigations, using semi-logarithmic plot of ln([M]0/[M]t) versus time and 
plotting molar masses against monomer conversion. In detail, the polymerization kinetics 
were determined for the copolymerization of styrene and 3 in toluene with 2-
(butylthiocarbonothioylthio)propanoic acid, CTA2, and a [M]/[CTA2] ratio of 250. The 
polymerization kinetics for the RAFT polymerizations have been investigated by 
determination of the styrene conversion using 1H NMR spectroscopy (the styrene signals 
were overlapping with the thiazole styrene vinyl signals, therefore, estimation of the total 
conversion), and the molar masses as well as polydispersity indices by size exclusion 
chromatography (SEC). A linear slope of ln([M]0/[M]t) could be observed for styrene of 
nearly 7 h, followed by a decrease in the slope (Figure 8). Such a decrease in ln([M]0/[M]t) 
is commonly observed due to either the occurrence of termination reactions (for styrene 
mostly recombination reactions) or a decrease in initiator concentration, which results from 
a steadily decreasing concentration of the radical source (AIBN).[96] The decrease in radical 
concentration for the RAFT polymerization of styrene is described in literature by a 
recombination of the growing radical chains or by recombination of AIBN-derived 
cyanoisopropyl radicals.[97] 
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Figure 8 A) Kinetic analysis of the monomer conversion of styrene and 1,3-thiazole functionalized 
styrene 3 during the RAFT polymerization at 80 °C in toluene. B) Mn values and polydispersity 

indices versus monomer conversion for the copolymerization. 

The linear increase of Mn values with monomer conversion in combination with low 
polydispersity indices (under 1.20) evidences that the RAFT polymerization of styrene and 
thiazole styrene proceeded in a controlled manner (Figure 8b). The linear fit demonstrates 
clearly that the molar mass of the copolymers can be tuned in a well-defined manner.  
In a next step artificial light-harvesting systems based on polymeric structures to mimic 
natural light-harvesting systems have been designed and characterized using 2-(pyridine-2-
yl) 4-hydroxy-1,3-thiazole dyes 2a and 2b. The design strategy was to incorporate the 
monomeric dye units into a linear copolymer for optimal energy transfer between them. The 
thiazole dyes 2a and 2b were constructed for the usage as energy donor and acceptor dye 
for this FRET investigation. 
In detail a series of statistical donor-acceptor copolymers (in total five copolymers) based 
on a PMMA backbone was synthesized using the RAFT polymerization technique. Within 
this series, the ratios of donor to acceptor were varied (Figure 9) starting from the donor 
copolymer (PD) following by an increasing amount of acceptor (PDA1-3) ending by the 
acceptor copolymer (PA). The thiazole donor (2a) and acceptor monomers (2b) were 
explicitly synthesized to construct donor-acceptor systems along a polymer chain (Figure 9). 
In doing so the thiazole structure of 2a was expanded with an electron donating 
dimethylamino group at the phenyl ring in order to increase the charge transfer character 
(the pyridine acts as the electron acceptor) of the longest-wavelength π-π* transition. This 
induces a red shift of the absorption and emission. The monomer 2a exhibits a 
bathochromically shifted absorption (416 nm, Δ = 40 nm) and emission spectra (526 nm, 
Δ = 77 nm) together with a reduced quantum yield (ΦF = 61%) compared to 2a in 
chloroform. 
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Figure 9 Schematic representation of the RAFT polymerization of MMA with 2a and 2b using the 
CTA CPDB and the radical initiator AIBN. Right: Illustration of the functionalized donor-acceptor 

copolymers PD, PDA1-3 and PA. 

The polymerizations were carried out using 2-cyano-2-propyl dithiobenzoate, CPDB, as 
CTA and 2,2’-azobis(iso-butyronitrile), AIBN, as radical initiator. The polymerizations of 
the monomers were performed in toluene with a monomer concentration of 2.0 mol L–1. 
The polydispersity index values measured by SEC are below 1.3, demonstrating a good 
control over the copolymer characteristics (TABLE 2). The monomer conversions of the 
MMA units were estimated by 1H NMR spectroscopy via the signals of the protons of the 
corresponding double bonds. The conversion of all methyl methacrylate units was around 65 
to 80% after 13 h of polymerization time.  
The emission spectrum of 2a shows a distinct overlap with the absorption of 2b resulting in 
a large overlap integral. From the steady state spectra the Förster distance was calculated 
to be R0 = 39 Å. The polymers PDA1-3 have statistically distributed donor and acceptor 
molecules with calculated donor/acceptor ratios (mol%) of 10.5/1.5, 4.7/3.5 and 1.6/4.8, 
respectively. 

TABLE 2 Overview of the synthesized donor-acceptor copolymers by RAFT polymerization. 

Entry 
 

[MMA]/[2a] 
/[2b] 

Mn 
[g/mol][a] 

PDI[a] 
 

DPSEC 
 

Mn 
[g/mol][b] 

PDI[b] 

 
ratio 1NMR %[c] 

[MMA]/[2a]/[2b] 

PD 95/ 5/ 0 7 000 1.21 57 n/a n/a 92.1/ 7.9/ 0 

PDA1 94/ 5/ 1 10 600 1.20 76 8 900 1.18 87.7/ 10.8/ 1.5 

PDA2 94/ 3/ 3 11 100 1.26 87 9 100 1.25 91.8/ 4.7/ 3.5 

PDA3 94/ 1/ 5 12 400 1.26 102 9 800 1.30 83.6/ 1.6/ 4.8 

PA 95/ 0/ 5 7 000 1.22 58 n/a n/a 93.2/ 0/ 6.8 

[a] Calculated from SEC (DMAc) using PMMA calibration. [b] Calculated from SEC (CHCl3) using PMMA 
calibration. [c] Calculated from integrated areas of (CH3)2N- signals the ester CH2-O-, and the CH3- side-group 
signals.  
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Figure 10 A) Absorption spectra and B) normalized emission spectra of PDA1 (solid line), PDA2 

(dashed line) and PDA3 (dotted lines) measured in chloroform at room temperature. The 
excitation wavelength was λEx = 376 nm. 

The distances between the chromophores within the copolymers PDA1-3 are 
heterogeneous distributed. This leads to three cases of donor-acceptor copolymers: (i) 
donor dominated copolymer, (ii) acceptor dominated copolymer and (iii) a copolymer with 
a balanced donor-acceptor ratio. This general classification is experimentally derivable from 
steady-state absorption and emission spectra (Figure 10). The spectra resemble the donor 
or acceptor spectra depending on the donor-acceptor ratio.  
In a next step the energy transfer efficiencies for PDA1-3 were calculated with reference to 
the fluorescence intensity of PD. The transfer efficiency increases from 0.35 to 0.74 and 
0.87 for PDA1, PDA2 and PDA3, respectively. The transfer rates for the D/A 
copolymers increased as a function of acceptor dye units. The present study shows the 
strong interplay of the ratio between the donor and acceptor chromophore along the 
polymer chain for the energy transfer. The shown copolymers can act as antenna structures 
for light harvesting systems. 
 
After having studied the light-emitting properties of several thiazole based copolymers it 
was desirable to broaden the range of polymerizable functions to open a new window for 
more applications. Such potential application is e.g. the production of hydrogen. Nature 
provides a highly efficient tool for hydrogen evolution and uptake, the enzyme 
hydrogenase.[98, 99] Hydrogenases are proteins that are able to convert protons catalytically 
into hydrogen in a reversible two electron redox process.[100-102] The embedding of such 
active “core structures” into an appropriate copolymer might be very useful to develop 
synthetic analogues. For this purpose, copolymers with defined superstructures could be the 
ultimate goal. The first controlled radical polymerization of styrene-based models of the 
active site of the [FeFe]-hydrogenase could be performed using the RAFT polymerization 
technique. 
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Figure 11 A) SEC trace of the synthesized copolymers (UV/VIS detector at 490 nm) and B) IR 

spectra of different [FeFe] cluster copolymers and styrene monomer 6. 

Different model complexes based on styrene were prepared including a propanedithiolato-
bridged (5) and a bifunctional styrene iron complex (6), see Figure 7. These model 
complexes were copolymerized with styrene using free radical (P3) and the RAFT 
polymerization process (P4 to P7, TABLE 3). The polymerization behavior of the 
hydrogenase models was analyzed in detail. It could be shown that the model complex can 
be incorporated into copolymers; the obtained copolymers exhibited narrow molar mass 
distributions (PDI values below 1.3, TABLE 3). The UV absorption of the copolymer on 
the SEC profile (Figure 11A) indicates the presence of the [FeFe]-core[103] in the obtained 
copolymers. Another confirmation for the successful incorporation of the cluster into the 
copolymer could be provided by IR spectroscopy (Figure 11B). The copolymers exhibited 
strong signals for the CO vibration in the IR-region at 2 067, 2 033 and 1 987 cm-1, 
respectively. The signals correspond to these of the monomeric models (6). 

TABLE 3 Overview of reaction conditions and characterization data of the obtained 
copolymers via RAFT copolymerization. 

Entry 
 

M/Mdye/CTA 
 

[M/Mdye]: 
[CTA]:[Init.] 

T 
(°C) 

Conc. 
(mol/L) 

t 
(h) 

Mn 
[g/mol][a] 

PDI[a] 
 

Conv. 
 

P4 St/ 6/ -- 245/5:--:1 70 2.0 13 28 400[b] 5.4[b] n/a 

P5 St/ 5/ CTA1 199/1:1:0.25 70 4.0 18 7 400 1.23 n/a 

P6 St/ 6/ CTA2 248/2:1:0.25 80 4.0 14 9 700 1.24 32 

P7 St/ 6/ CPDB 98/2:1:0.25 70 2.0 24 2 800 1.18 n/a 

P7re St/ 6/ CPDB 98/2:1:0.25 70 2.0 26 6 000 1.6 n/a 

P8 DEGMA/ 7/ CPDB 95/5:1:0.25 70 2.0 12 29 000 1.20 n/a 

[a] Calculated from SEC (CHCl3/triethylamine/iso-propanol = 94/4/2) using PS calibration. [b] Calculated from 
SEC (DMAc, LiCl) using PS calibration. 
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The presence of the [FeFe]-hydrogenase models were also proven by AAS and NMR 
spectroscopy as well as with cyclovoltammetric measurements. It could be shown that the 
[FeFe]-hydrogenase mimic copolymers, as well as the monomeric originating complexes 
exhibit electrocatalytic proton reduction at a low potential of –2.2 V. 
The manifold possibilities to incorporate chromophores into the polymer backbone may 
provide a platform for applications as polymeric sensor systems. Thermoresponsive polymers 
that undergo such a solubility transition by variation of temperature represent important 
materials for the development of “smart” systems as already described in Chapter 2.2.  
In this content it would be advantageous to construct a fluorescent thermometer based on 
a dye-labeled thermoresponsive polymer. To translate the LCST transition of a copolymer 
into a fluorescent response, the polymer was functionalized with pyrene resulting in a 
variation of the emission based on the pyrene microenvironment change from hydrophilic to 
hydrophobic during the LCST transition.  
For this purpose, a well-defined fluorescent copolymer based on PDEGMA functionalized 
with pyrene units (P8) was synthesized by RAFT polymerization. It was demonstrated by 
temperature controlled fluorescence investigations that this polymer acts as a soluble 
fluorescent temperature sensor in water (Figure 12A). At temperatures below the polymer 
phase transition, the polymer chains are hydrated as demonstrated by DLS (Figure 12B) 
and, thus, the pyrene molecules are exposed to the polar aqueous environment driving 
excimer formation. Above the LCST phase transition of the polymer, the polymer chains are 
dehydrated and demix from the aqueous solution providing a less polar environment for the 
pyrene inside the polymer aggregates.  

  
Figure 12 A) Normalized fluorescence intensity (377 nm) at 5 °C (purple) and 30 °C (green) of a 
solution of pyrene-labeled copolymer P8 in water. B) The ratio of excimer (467 nm) to monomer 
(395 nm) emission intensities (IE/IM, black squares) and the hydrodynamic radius of the polymer 

globules (DLS, open red circles) as function of temperature. 
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During the phase transition, a gradual decrease in the normalized ratio of excimer emission 
to monomer emission intensities (IE/IM) ratio could be observed (Figure 12), which can be 
used to detect the temperature of the solution in between 11 and 21 °C, i.e., the 
temperature sensing regime. Interpretation of the IE/IM ratio as sensing signal is believed to 
make the sensor more robust compared to looking at individual emission intensities since it 
will be less dependent on the polymer concentration. Turbidimetry and DLS demonstrated 
that the polymer phase transition also occurred in the observed temperature sensing regime 
confirming that indeed the polymer phase transition induces the change in IE/IM ratio of the 
attached pyrene molecules. 
The temperature responsive behavior of PDEGMA copolymers is widely tunable by 
incorporation of hydrophobic or hydrophilic monomers, which opens new avenues towards 
biomedical, sensor or drug delivery applications. The incorporation of a second temperature 
responsive monomer in a block copolymer structure can lead to a thermo-induced self-
assembly behavior and will be in the focus of the next chapter. 
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4 Responsive block copolymers: Well-defined synthesis, 
characterization and self-assembly 

Parts of this chapter have been published: P8) C. Pietsch, U. Mansfeld, C. Guerrero-Sanchez, S. 
Hoeppener, A. Vollrath, M. Wagner, R. Hoogenboom, S. Saubern, S. H. Thang, C. R. Becer, J. 
Chiefari, U. S. Schubert, Macromolecules, 2012, 45, 9292–9302. P9) A. Krieg, C. Pietsch, A. 
Baumgaertel, M.D. Hager, C. R Becer, U. S. Schubert, Polym. Chem. 2010, 1, 1669–1676. 
 
 
Stimuli-responsive polymers, which undergo phase transitions in response to an external 
stimulus, have gained the interest of many researchers in the past decade.[25-28] Such 
“smart” materials can act with a property change in response to changes in temperature, 
pH value, light, or magnetic field.[60, 104] The area of stimuli-responsive polymers represents 
nowadays a strongly growing area in polymer research and, in particular, the investigation 
regarding lower critical solution temperature behavior has attracted significant interest. 
Particular attention in this context has been paid to the thermo-sensitive self-organization 
of amphiphilic block copolymers, especially on the formation of micelles or vesicular 
structures in aqueous solution. Numerous reports described the micellization of diblock 
copolymers containing thermosensitive block segments.[104-108] The formed vesicles or 
polymersomes are usually spherical shell structures with a hydrophobic core-layer and a 
hydrophilic internal and external corona, which are made from amphiphilic block 
copolymers.[22, 23, 109] Polymer vesicles, which respond to external stimuli such as a change in 
temperature or the pH value, represent attractive candidates for applications in 
encapsulation or drug delivery systems.[27, 110, 111] 
LCST polymers are soluble below a certain temperature because of the formation of 
hydrogen bonds between water molecules of the hydration shell and the polymer chains. By 
passing the cloud point temperature (TCP), the polymer starts to precipitate due to 
weakening of these hydrogen bonds and due to hydrophobic polymer−polymer interactions 
because the entropy term becomes dominant in the Gibbs equation. Another factor is the 
release of water molecules during this transition. 
A number of PEG functionalized poly(meth)acrylates have been reported to exhibit a LCST 
behavior.[80, 112, 113] In particular, different oligo(ethylene glycol) methyl ether methacrylate 
(OEGMA)-based polymers received significant attention as temperature sensitive materials. 
By variation of the side chain length, the TCP of these copolymers can be tuned, which 
makes them very attractive systems.[80, 82, 114] The homopolymer of DEGMA has a TCP 
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around 27 °C, which can be increased by copolymerizing with a more hydrophilic 
monomer.[80, 112, 114, 115] Acidic monomers like acrylic acid (AA) and methacrylic acid (MAA) 
were chosen as such hydrophilic comonomers, resulting in pH- and temperature-responsive 
polymeric material.  
In a first step the synthesis and characterization of dual hydrophilic analogues of statistical 
and block copolymers of acrylic acid or methacrylic acid with oligo(ethylene glycol) 
acrylates (OEGA) via controlled radical polymerization techniques were designed in order to 
extend the scope of these interesting properties. These kind of polymers with various 
architectures are of great interest in the field of polymer science due to their wide range of 
possible applications, e.g. in drug-delivery systems, dispersing agents and absorbent 
materials.[23, 116-118] To obtain block, comb and statistical copolymers, two synthetic routes 
were used, namely using macromonomers and/or macro chain transfer agents (macroCTA) 
to prepare the targeted polymeric structures. An overview of the applied polymerization 
route and the resulting copolymer structures is given in Figure 13. 

 
Figure 13 Schematic representation of the used monomers and the resulting macromolecular 

architectures obtained by the applied RAFT polymerization procedure. 

In the present study, the macromonomer approach was applied to obtain statistical and 
block comb copolymers based on AA and OEGA. The synthesis of polymers based on AA or 
MAA via CRP techniques can be challenging due to the acidic nature of the free carboxylic 
acid. The RAFT polymerization method allows the use of acidic monomers and also the 
application of polar solvents like ethanol or water. As a consequence this technique is the 
most widely employed CRP method to prepare water soluble polymers.[119] 
The block copolymers of AA and OEGA were prepared in a sequential monomer addition 
process using the RAFT method, whereby AA was polymerized first resulting in a 
macroCTA. Afterwards OEGA was added and the polymerization solution was further 
heated (P9 – P11). The statistical copolymers based on AA and OEGA were synthesized 
under similar conditions (P12 – P14). An overview of the molecular characteristics of these 
copolymers is given in TABLE 4. Well-defined dual hydrophilic linear and comb based 
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copolymers of acrylic acid and poly(ethylene glycol) acrylate could be prepared as indicated 
by the mono-modal SEC elugramms and the low PDI values. The polymers were 
characterized in detail by 1H NMR spectroscopy and matrix assisted laser desorption 
ionization time of flight (MALDI-TOF) mass spectrometry. Further investigation of the 
water uptake behavior of some selected copolymers showed an interesting water absorbing 
behavior of the block copolymer. 

TABLE 4 Overview of selected characteristics of the prepared statistical (s) and block (b) 
copolymers of OEGA and AA. 

Entry 
 

Feed 
AA/OEGA 

Mn (theo) 
[g/mol][a] 

Mn (SEC) 
[g/mol][b] 

PDI[b] 

 
Ratio 1H NMR [%] 
AA:OEGA[c] 

PPOEGA 30/8 3 800 3 000 1.15 100:100 
PP9  (b) 35/5 4 800 6 000 1.20 187:13 
PP10  (b) 45/5 5 700 6 600 1.25    --- 
PP111 (b) 70/5 7 700 11 000 1.20 193:07 
PP12  (s) 35/5 4 800 6 400 1.28 181:19 
PP113  (s) 45/5 5 700 7 100 1.21    --- 
PP114  (s) 70/5 7 700 8 100 1.38 191:09 
[a] Calculated according to formula (Mn(theo.) = ([M]/[CTA] × conv. × MMonomer) + MCTA). [b] Calculated from 
SEC (DMAc, LiCl) using PS calibration. [c] Calculated from integrated areas of OEGA signals and AA signals. 

 
Block copolymers can be responsive to two different stimuli at the same time, such as 
temperature and the pH value, as demonstrated for block copolymers of poly(N-iso-
propylacrylamide-block-acrylic acid), (PNIPAM-b-PAA)[120] and poly(dimethylaminoethyl 
methacrylate-block-methyl methacrylate), (PDMAEMA-b-PMMA).[121] The thermo-
responsive self-organization of amphiphilic block copolymers in aqueous solution has been 
described in the literature for several systems.[104, 106-108, 122-124] Besides OEG based monomers, 
DMAEMA can be used as a comonomer, which results in a pH- and temperature-responsive 
copolymer, too.[125] Various TCP's of PDMAEMA have been reported in literature ranging 
from 20 to 80 °C, which is an indication that the LCST strongly depends on the molar 
masses and the used pH value due to partial (de)protonation of the basic nitrogen atoms of 
DMAEMA.[125-129] However, the thermo-induced self-assembly of poly(DMAEMA-b-DEGMA) 
was, to the best of our knowledge, not yet reported.  
A library of double thermo-responsive poly(DMAEMA-b-DEGMA) copolymers was 
synthesized using the RAFT polymerization technique in a sequential monomer addition 
approach. Within this series, the ratios of DMAEMA and DEGMA were varied ranging from 
100% DMAEMA to 100% DEGMA with composition changes in 20% steps. The 
polymerizations were carried out using a trithiocarbonate (CTA3) as CTA and VAZO-88 as 
radical initiator (see Figure 14).  



Responsive block copolymers: Well-defined synthesis, characterization and self-assembly 

32 

 
Figure 14 Schematic representation of the poly(DMAEMA-b-DEGMA) synthesis using the RAFT 

polymerization with CTA3 and radical initiator VAZO-88. 

The first block segment was polymerized in DMF followed by the polymerization of 
DEGMA. In TABLE 5 the molar masses and polydispersity indices measured by SEC are 
summarized demonstrating good control over the first blocks (PDI < 1.23) and relatively 
good control for most block copolymers (PDI < 1.35, except B4). 
The conversion of DMAEMA (by 1H NMR spectroscopy) was around 70 to 80% after 10 
hours of polymerization. Then the polymerization was stopped to retain a high RAFT end-
group functionality. A clear molar mass shift could be observed for the block copolymers in 
the SEC analysis. For the final copolymers, the ratio between both block segments were 
determined by 1H NMR spectroscopy using the integrated areas of DMAEMA signals 
((CH3)2N- at 2.26 ppm) and the DEGMA (CH2-O- at 3.54 to 3.66 ppm) ethylene glycol 
side-group signals 

TABLE 5 Overview of the composition of the obtained block copolymers of 
poly(DMAEMA-b-DEGMA) with increasing ratio of DEGMA. 

Entry 
 

Mn (SEC1) 
[g/mol][a] 

PDI[a] 
 

Mn (SEC2) 
[g/mol][b] 

PDI[b] 

 
Mn (SEC3) 
 [g/mol][c] 

PDI[c] 
 

Ratio 1H NMR [%] 
DMAEMA:DEGMA[d] 

HH4 (h) 15 200 1.21 13 500 1.43 28 700 1.22 100:100 
BB11 (q) 20 800 1.29 24 700 1.44 29 700 1.36 194:106 
BB2 (q) 21 800 1.25 24 100 1.41 30 200 1.34 187:113 
BB3 (b) 26 900 1.27 27 400 1.52 --- [e] -- [e] 166:134 
BB4 (b) 35 100 1.54 36 600 1.48 --- [e] -- [e] 164:136 
BB5 (q) 39 700 1.35 24 000 1.70 --- [e] -- [e] 151:149 
BB6 (b) 26 600 1.32 27 100 1.33 33 500 1.24 120:180 
HH6 (h) 23 600 1.23 23 700 1.29 27 800 1.20 100:100 
Copolymer structure: h = homopolymer, q = quasi diblock copolymer, b = diblock copolymer. [a] Calculated from 
SEC (DMF, LiBr) using PS calibration. [b] Calculated from SEC (DMAc, LiCl) using PS calibration. [c] Calculated 
from SEC (CHCl3/triethylamine/iso-propanol = 94/4/2) using PS calibration. [d] Calculated from integrated areas 
of DMAEMA signals ((CH3)2N-) and the DEGMA (CH2-O-) side-group signals. [e] Block copolymer reached the 
exclusion limit of the SEC. 
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The thermoresponsive properties of this library of poly(DMAEMA-b-DEGMA) were firstly 
studied by heating the polymer solutions in deionized water. This induces a LCST 
transition, i.e. the solutions become turbid above the characteristic TCP indicating the 
collapse of the polymer chains (two phase system). The TCP’s of the homo- and block 
copolymers were determined by turbidimetry measurements in deionized water at different 
concentrations. All TCP transitions from the turbidimetry measurement of the block 
copolymers are plotted in Figure 15 against the molar ratio of PDMAEMA to provide a 
better overview. A roughly linear behavior of the TCP transitions with increasing amount of 
mol% DMAEMA in the block copolymers could be observed. Two TCP values were observed 
for B5 (ratio 50/50 mol%) indicating the double thermo-responsive behavior in aqueous 
solution. The turbidimetry curve of this copolymer shows a weak transition at 33 °C 
followed by a rearrangement and, therefore, a second transition at 49 °C. 
In order to evaluate the aggregation behavior of the chosen copolymer, B5 was investigated 
in further detail by DLS. The distribution of the block copolymer assemblies at 
temperatures below and above the phase transition is illustrated in Figure 15. Below the 
cloud point at 25 °C the polymer chains are fully soluble and, therefore, a hydrodynamic 
diameter smaller than 10 nm was obtained, corresponding most probably to individual 
hydrated polymer chains, taking into account also the molecular dimensions of the block 
copolymers. An increase in temperature results in an increase in the diameter of the 
polymer aggregates to ~100 nm (Figure 15 state 2), indicating the temperature-induced 
aggregation of the polymer chains. The first transition of the polymer solution is observed 
at a temperature of 31 °C, i.e., when the collapse of the PDEGMA takes place.  

    
Figure 15 A) Cloud points of the studied block copolymers of poly(DMAEMA-b-DEGMA) at 5.0 

and 10.0 mg mL–1; B) The hydrodynamic diameter (volume distribution) of the B5 block copolymer 
chains (1) and globules (2,3), showing two distributions (black and red points) at 1.0 mg mL−1 as a 

function of temperature. 
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By further increasing the temperature, a rearrangement is observed, which is reflected in 
the appearance of a second distribution. Above 36 °C two distributions are formed with a 
hydrodynamic diameter of 65 and 240 nm, respectively (Figure 15 state 3). The formed 
structures appear to be stable in solution, as the aggregate size remains constant even at 
further elevated temperatures. 
The temperature induced phase transition of the selected block copolymer B5 was further 
investigated by temperature dependent 1H NMR spectroscopy to obtain a deeper insight 
into the aggregation behavior. The 1H NMR spectrum of the block copolymer at 25 °C 
shows the characteristic signals of poly(DMAEMA-b-DEGMA); the corresponding 
temperature series is plotted in Figure 16a. In the 1H NMR spectra, the signals at 3.3 to 
3.9 ppm represent the groups of poly(DEGMA) and the signals at 2.3 ppm (CH3-N-) 
represent the poly(DMAEMA) block. It is observable that the DEGMA signals at 3.5 to 
3.9 ppm decrease significantly, denoting the collapse of the DEGMA block by increasing the 
temperature from 25 to 40 °C. Also all other signals (backbone and DMAEMA) decrease by 
increasing temperature leading to broad signals due to the reduced flexibility of the polymer 
chains. The PDMAEMA block is still visible at 45 °C (CH3-N- at 2.2 ppm) as it is supposed 
that it forms a kind of corona around the hydrophobic PDEGMA aggregates. Unexpectedly, 
further increasing the temperature from 50 to 65 °C is accompanied by an increase for 
some signals corresponding to DMAEMA and to DEGMA, respectively (Figure 16a). The 
shifted signals indicate a different microenvironment of (at least parts of) the DMAEMA 
and DEGMA groups and are supposed to correlate to the corresponding rearrangement of 
the block copolymer. This second assembly might be induced by the collapse of the 
DMAEMA block (at 49 °C). The transformation of the PDMAEMA block is indicated by 
the high-field shift of the DMAEMA signal.

   
Figure 16 a) Temperature dependent 1H NMR spectra in D2O: b,c) Cryo-TEM images of B5 block 
copolymer solution at ~33 and 50 °C in H2O (preheated, 5.0 mg mL–1) showing the formation of 

multilamellar and unilamellar vesicles. 

c (50 °C)b (33 °C)
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The double responsive behavior of poly(DMAEMA-b-DEGMA) motivated the utilization of 
cryo-TEM to visualize the associated structures.The cryo-TEM images of solutions which 
were vitrified at a blotting temperature of approximately 33 °C are depicted in Figure 16b. 
At this temperature, which is above the TCP of PDEGMA and below the TCP of 
PDMAEMA, the presence of large multilamellar vesicles (MLV) with a diameter of 
approximately 200 nm and unilamellar vesicles (ULV), which are significantly smaller (40 to 
90 nm), can be observed. The cryo-TEM micrograph shows that the MLVs have a layered 
structure with comparable distance between the individual lamellae and represent an onion-
like form. In this case a molecular arrangement of the copolymer can be assumed that 
resembles the structure depicted in Figure 16b (PDEGMA dark; PDMAEMA light). The 
formation of MLV is based on the one hand on the hydrophilic-hydrophobic character of the 
block copolymers and on the other hand on the volume fractions of the individual blocks, 
respectively. For thermo-sensitive block copolymers the individual blocks show a selective, 
thermally driven solubility and, therefore, the overall hydrophilic-hydrophobic character can 
be changed by temperature variations. 
The block copolymer was subsequently heated to a temperature above the TCP of 
DMEAEMA (above 47 °C, Figure 16c) and the resulting structures were investigated by 
cryo-TEM. In contrast to the sample which was investigated at 33 °C the formation of 
preferentially unilamellar, large vesicles could be observed.  
The thermo-responsive behavior of the selected block copolymer B5 was further 
investigated by temperature variable zeta potential (also known as electrokinetic potential) 
measurements to gain a deeper insight in the polyelectrolyte nature of the block copolymer 
during the polymer phase transitions (Figure 17A). The zeta-potential measurements reveal 
that two reversible thermo-induced transitions are present without showing any hysteresis 
behavior in the graph (Figure 17A, black squares). 

  
Figure 17 A) Temperature variable zeta potential measurements (black squares) of block copolymer 

B5 solution (2.5 mg mL–1) and B) of homopolymer H6 (2.5 mg mL–1). 
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Figure 18 Proposed model for the aggregation of the double responsive transition of the block 

copolymer (green cycles DEGMA and purple cycles DMAEMA units). 

The first transition takes place at around 30 °C and the second transition around 55 to 
60 °C, whereby a strong decrease in the zeta potential is observed. 
Based on these experimental observations a model for the aggregation of the double 
responsive transition of the block copolymer structures at different temperatures was 
developed which is schematically illustrated in Figure 18. In this configuration the PDEGMA 
block (negatively charged based on the zeta-potential measurements as shown in Figure 17) 
became insoluble at the first LCST transition temperature and is collapsed in the lamellar 
structure. The still soluble PDMAEMA block (positively charged) stabilizes the individual 
shells by a layer-by-layer assembly and promotes the preferential formation of multilamellar 
onion-like vesicles. With further increasing temperature also the solubility of the 
PDMAEMA decreases. As a result, the volume of the hydrophobic part of the copolymer 
increases and the inter-bilayer energy changes. Simultaneously, the decreasing size of the 
hydrophilic corona block is seen as an additional driving force for the modified aggregation 
behavior due to altered volume-fraction and space requirements. This effect was, e.g., 
already observed for PS-b-PAA aggregates,[24] where shorter corona fractions generally 
resulted in the formation of larger structures.[130] Additionally, the altered charge balance 
within the structures favors the formation of larger and unilamellar vesicles. 
It can be concluded that variable temperature 1H NMR spectroscopy, zeta potential and 
cryo-TEM investigations revealed the temperature induced formation of MLV structures at 
elevated temperatures which convert into ULV at higher temperatures. This transition could 
be assigned to the changes of the volume ratios as well as to the ionic interplay between 
the block copolymers at different temperatures. In particular the ionic contributions of the 
negatively charged PDEGMA block and the positively charged PDMAEMA block are 
supposed to support the layer-by-layer assembly at 33 °C, which favors the formation of 
MLV vesicles. Further increase of the temperature changes again the volume ratio between 
the blocks as the solubility of the second block occurs, furthermore the second LCST 
transition is associated with a changed electrostatic balance between the blocks. This 
results in the preferential transition of MLVs to ULVs. The present study assumes a facile 
interplay of the volume ratio and the changes of the ionic interactions. 
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5 Poly(methyl methacrylate) based nanoparticles for cellular 
uptake 

Parts of this chapter have been published: P10) I. Y. Perevyazko, A. Vollrath, C. Pietsch, S. 
Schubert, G. M. Pavlov, U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2906–
2913; P11) A. Vollrath, D. Pretzel, C. Pietsch, I. Y. Perevyazko, R. Menzel, S. Schubert, G. M. 
Pavlov, D. Weiß, R. Beckert, U. S. Schubert Macromol. Rapid Commun. 2012, 33, 1791−1797; 
P12) A. Vollrath, A. Schallon, C. Pietsch, S. Schubert, T. Nomoto, Y. Matsumoto, K. Kataoka, U. 
S. Schubert, Soft Matter, 2013, 9, 99−108. 
 
 
Polymeric nanoparticles (NP) have been extensively studied in the last decades as potential 
drug or gene delivery vehicles.[131, 132] NP formation using the nanoprecipitation method[133] is 
nowadays a commonly used technique.[134] Among numerous other manufacturing methods 
(e.g. emulsion polymerization), it is a very simple and convenient way for the production of 
NPs with desired sizes and defined surfaces.[135, 136] A variety of different polymers can be 
used for nanoprecipitation, such as poly(lactide-co-glycolide),[137] poly(ε-caprolactone),[138] 
acetalated dextran,[139] poly(styrene), poly(methyl methacrylates)[140, 141] and its different 
copolymers. The nanoprecipitation or solvent evaporation process represents a process 
based on the diffusion of the organic solution (i.e., polymer solvent) into an aqueous phase 
leading to the precipitation of the polymer into small colloidal particles.  
The first aim of this investigation focused on the influence of the polymer molar mass and 
the polymer-solvent interactions (e.g. polymer concentration) on the formation of NP using 
the nanoprecipitation method. For this purpose, a homologous series of poly(methyl 
methacrylate)s (PMMA) with varying degrees of polymerization (DP) of 50 up to 2 000 
was developed. 
Subsequently, nanoprecipitation was performed in an automated and systematic manner to 
vary different initial concentrations of polymer and solvent/non-solvent ratios. The NP 
formulations were examined in terms of particle size and size distribution as well as zeta-
potential values. The conditions for the preparation of stable and uniform NP regarding the 
molar mass and polymer concentration were determined. 
For this purpose, a range of PMMA samples were synthesized using the RAFT 
polymerization technique using AIBN as radical initiator, ethanol as solvent, and CPDB as 
CTA. The monomer concentration, the polymerization time and the [M]:[CTA] ratio were 
varied in order to obtain the desired molar mass of PMMA. In TABLE 6 the chosen 
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conditions for the MMA polymerization are shown. To reach molar masses (Mn) over 
100 000 g mol-1 long polymerization times are not preferred due to possible termination 
reactions (e.g. coupling of the polymer chains). Instead the monomer concentration was 
increased up to 7.03 mol L-1 as well as the [M]:[CTA] ratio.  

TABLE 6 Selected polymerization and characterization data of polymers PMMA 1 to 5. 

Entry 
 

[M]/[CTA]/ 
[AIBN] 

Conc 
[mol L-1] 

Time, 
h 

Mn (SEC) 
 [g/mol][a] 

Mw (SEC) 
 [g/mol][a] 

PDI[a] 
 

DPSEC 
 

PMMA 1 1,240/1/0.25 2.0 13 6 800 7 700 1.13 66 
PMMA 2 1,200/1/0.25 2.0 13 17 200 20 200 1.17 170 
PMMA 3 1,400/1/0.25 2.0 20.5 31 500 39 700 1.26 312 
PMMA 4 1 200/1/0.25 7.03 16 85 000 106 000 1.25 846 
PMMA 5 4 000/1/0.25 7.03 16 204 000 274 000 1.34 2 035 
[a] Calculated from SEC (DMAc, LiCl) using PMMA calibration. 

 
A homologous series of PMMAs with molar masses ranging from Mn = 6 800 g mol-1 up to 
high molar masses of Mn = 204 000 g mol-1 could be realized via the RAFT process. All 
PMMA samples are well-defined, indicated by a mono-modal molar mass distribution as 
well as by low PDI values ranging from 1.13 to 1.34. The SEC chromatographs of the 
different PMMA samples are depicted in Figure 19A. To study the influence of the polymer 
molar mass on the NP formation via nanoprecipitation, it is crucial to maintain the same 
initial conditions for each nanoprecipitation process. It could be shown that the particle size 
is strongly affected by the initial polymer concentration: Higher concentrations lead to an 
increasing number of molecules per volume of the solvent which, in turn, leads to the 
formation of larger particles. However, equality of the initial polymer concentration will not 
reflect the same conditions for the nanoprecipitation process in case of polymers with 
various molar mass, since macromolecular coils will occupy different volumes owing to the 
different length of a polymer chain. Therefore the same “degree of dilution” was used, 
which is represented by the Debye parameter (c [µ]). A SEM image and the corresponding 
size-distribution of nanoparticles prepared from PMMA 3 are shown in Figure 19B.  
In conclusion, the investigation has shown that it is crucial to work with highly diluted 
polymer solutions to obtain well-defined particles on the basis of a certain polymer. It is an 
interplay of polymer molar mass, hydrodynamic volume and solvent quality for the 
formation of stable NP suspensions. Primarily the key factor for the particle preparation is 
the volume fraction occupied by the macromolecular polymer coil in the solution instead of 
the polymer concentration. 
Recent progress in the area of nanosciences enabled the development of various NP devices 
as powerful tools in the pharmaceutical area for drug delivery systems, but also in other 
scientific fields, like diagnostics and nanotechnology.[132, 142, 143] 
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Figure 19 A) SEC chromatograms of the obtained PMMA polymers; B) SEM image and 

corresponding size-distribution of NPs prepared from PMMA 3 solutions in THF. 

In particular for diagnostic applications, like live cell imaging, the investigation of labeled 
NP (1 to 1 000 nm) is rapidly expanding.[144-147] The use of fluorescent polymeric NP 
represents a suitable alternative to avoid potential toxicity of metal-based NP (e.g. 
quantum dots).[143, 148] The covalent incorporation of dyes into the polymer backbone and 
the subsequent NP preparation provides a protection against external influences; a defined 
dye-particle ratio and, therefore, more defined fluorescent NPs. Moreover, the fluorescence 
properties of the dye are maintained, which is essential for the subsequent analysis of 
particle–cell interactions, e.g. via confocal laser scanning microscopy (CLSM). For the 
preparation of dye labeled NP systems two approaches can be explored, namely using a 
dye-functionalized monomer or a post functionalization of the copolymer with an activated 
dye. Both synthetic routes are schematically presented in Figure 20. 
For the design of the labeled NP’s, a yellow light-emitting thiazole-dye was attached to the 
methacrylate monomer by an esterification reaction (2b). The non-classical thiazole dye is 
similar in structure to the luciferin dye of fireflies and shows excellent fluorescent 
properties.[94, 95] The resulting dye-functionalized methacrylate (2b) was statistically 
copolymerized with MMA using the RAFT polymerization methodology (Figure 20). The 
reaction was carried out using AIBN as a radical initiator and CPDB as a chain transfer 
agent. The ratio of non-functionalized MMA to the dye-functionalized monomer was 138:2, 
leading to a final conversion rate of 70% of the copolymers with a DP of 100. The dye-
functionalized methacrylates were statistically distributed in the polymer backbone due to 
the same reactivity of both monomers. The low degree of labeling (1 to 3%) ensured the 
preservation of the properties of the PMMA homopolymer. As determined by SEC, the final 
copolymer (P15) revealed a molar mass of Mn = 8 500 g mol-1 with a polydispersity index 
value of 1.19. 

B
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Figure 20 Schematic representation of the two synthetic routes to dye labeled polymeric NPs. 

Similar molar mass distributions recorded by both RI and UV detector clearly demonstrate 
that the thiazole dye was incorporated into the copolymer (Figure 21). The ratio of the 
MMA units and the thiazole dye in the copolymer (P15) was determined to be 2.9 mol% 
by 1H NMR spectroscopy. 
Nanoprecipitation was used as suitable tool for preparation of differently sized NPs.[133, 141] 
The final particle size was tuned by variation of the initial polymer concentration in the 
organic phase and/or by changing the dropping method (polymer solution into water or 
water into polymer solution).[149] The particle sizes and distribution were examined by DLS. 
The diameter of the NP suspensions were determined to be d = 120 nm for small NPs and 
d = 600 nm for the large ones, respectively. The resulting size distributions were 
monomodal with PDIparticle values between 0.03 and 0.26.  
In a further study the dye labeled PMMA copolymers were chosen as a model system to 
investigate the diagnostic applications of the corresponding NPs such as imaging of cells 
taking up particles. An important criterion for this investigation represents the 
biocompatibility of these PMMA nanospheres. Therefore, the biocompatibility of the 
particle suspensions was proven by cytotoxicity assay and microscopic evaluation of viability 
using a live/dead staining. In order to prove the efficient internalization of the particles into 
cells, mouse fibroblasts L929 were incubated with 120 and 600 nm sized nanosuspensions. 
The internalization of NPs into cells were monitored by CLSM and representative 
micrographs are shown in Figure 21B. On the basis of the relative size distribution of their 
corresponding fluorescence signal, a differentiation of small and large particles was possible. 
It is known that PMMA particles are taken up by cells and it can be assumed that this 
cellular uptake of PMMA particles in the studied size range is mediated in a similar fashion 
via an endocytotic or phagocytotic pathway.[150] 
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  small NP         large NP 

 

Figure 21 A) SEC elugram of poly(MMA-stat-2b) P15; B) confocal fluorescence images of L929 
(scale bar indicates 10 µm). 

After studying the influence of molar mass on the NP sizes and the potential to produce 
non-toxic particle suspensions with tailor-made size and good biocompatibility, it was 
desirable to investigate the pathway of the particles into the cells. For such a study well-
defined NPs in size, shape, surface functionalities and dye label are beneficial.  
Within the last decade, the cellular uptake of NPs with respect to various physical, 
chemical, and biological parameters have been studied by several groups.[151-153] For this 
purpose, different NPs based on organic as well as inorganic substances were used, what 
implicate a variation in surface charge, structure, aggregation behavior in cell media, and 
density next to size. This hampers general statements concerning an “optimal” particle size. 
Nevertheless, the size of the NPs was found to play a key role in the final particle–cell 
interaction and uptake.[154, 155] In addition, the internalization of particles into cells is further 
influenced by their surface charge: An increased positive charge leads to a higher cellular 
uptake due to electrostatic interactions with the negatively charged cell membrane.[156] 
The present study focused on the investigations of cell interaction of polymeric NPs with 
well-defined characteristics based on PMMA derivatives. To provide the possibility of 
functionalization, carboxylic acid groups were introduced into the PMMA chain (Figure 20). 
For this purpose, MMA was copolymerized with MAA using the RAFT polymerization 
method (P16), reaching a final conversion of 87% (both monomers). MMA and MAA are 
statistically distributed in the polymer backbone due to the same reactivity of both.[157] The 
calculated ratio of 91 to 9% of MMA to MAA by 1H NMR spectroscopy fits well to the 
calculated theoretical value of 90 to 10% in the copolymer. A molar mass of Mn = 16 000 
g mol-1 with a polydispersity index of 1.15 was determined by SEC. Afterwards, the 
methacrylic acid units of P16 were labeled with various dyes (Dy495 (green excitation, 
P17), Dy547 (orange excitation, P18) and Dy647 (red excitation, P19) for tracking the 
NPs (see Figure 20, P17 to P19).[158] 

B
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Figure 22 A) Representative SEM image of large particles of poly(MMA-stat-MAdye) copolymer; B) 
confocal microscope images of HeLa cells incubated with two different particle suspensions. Overlay 
of stained lysosomes (LysoTracker, green) and large NPred (left) and overlay (right) of large NPred 
(red), medium NPorange (blue), lysosomes (green) and cell nuclei (white, Hoechst 33342). The scale 

bars indicate 20 µm. 

Differently labeled copolymers were formulated into differently sized NPs with narrow size 
distribution (small NP, d = 80 nm; medium NP, d = 170 nm and large NP d = 360 nm) 
under appropriate conditions of nanoprecipitation and were subsequently characterized by 
DLS and SEM (Figure 22A). Additionally, the zeta potential of the NP was measured in 
water (pH 6), resulting in values of ~ 30 mV (positive due to cationic amine groups of the 
dyes) for all nanoparticle suspensions. Zeta potential values larger than 20 mV indicate high 
repulsion forces and colloidal stability of the NPs in suspension.[159] Mixtures of the 
differently sized and labeled NPs were applied for internalization studies using monolayer 
cultured HeLa cells. For this purpose, the intracellular distribution of the NPs after 
incubation was studied in living cells by CLSM (Figure 22B). A strong co-localization was 
observed between small and medium sized NPs, whereas for large NPs only a marginal co-
localization was detected. Further investigation regarding the cellular fate of the differently 
sized NPs showed that medium sized nanoparticles were detected in the late 
endosomes/lysosomes, whereas the large nanoparticles exhibit little co-localization with 
LysoTracker (Figure 22B). To identify different uptake mechanism depending on particle 
size, different inhibitors were used. It was shown that nanoparticles with d < 200 nm (small 
NP) were internalized via clathrin-dependent endocytosis, whereas those with d > 300 nm 
(large NP) were uptaken via macropinocytosis. 
In conclusion a detailed size dependent uptake of well-defined nanoparticles prepared by 
nanoprecipitation of dye-functionalized PMMA derivatives was presented. With this 
approach a detailed study of possible pathways into cells and the cellular uptake mechanism 
was possible. 
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Summary 

Modern polymerization techniques based on controlled radical polymerization (CRP) 
procedures have drawn significant scientific interest in the last decades based on the 
possibility to prepare complex polymer architectures. In this context the reversible addition-
fragmentation chain transfer (RAFT) polymerization represents one of the most versatile 
and robust technique in the toolbox of CRP polymerizations, since it is applicable for a wide 
range of monomers and functionalities. RAFT polymerization as the key methodology in 
this work facilitates the preparation of (multi)functional polymeric material under 
conventional conditions.  
The presented thesis provides an overview of the defined synthesis procedures of polymers 
with tailored structures and functionalities with the ability to form nanostructures via self-
assembly or nanoprecipitation. A variety of strategies for the preparation of functional 
polymers are explored, namely incorporation of functionalized monomers and the 
construction of block copolymer segments. In detail the research in this thesis focused on 
the defined synthesis of polymers with tailored photophysical properties and stimuli-
responsive assembly behavior (Figure 23). 
 

 
Figure 23 Overview about polymers with tailored structures and functionalities illustrated by cover 

images of publications included in this thesis: Chem. Commun. (Chapter 2), Macromol. Chem. 
Phys. (Chapters 3 and 5), J. Polym. Sci., Part A: Polym. Chem. (Chapter 3) and Macromolecules 

(Chapter 4). 
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It could be demonstrated that various 4-hydroxythiazole, pyrene and [2Fe2S] cluster units 
functionalized to monomers can be (co)polymerized using the RAFT technique. 
Furthermore it could be shown that these monomers can be copolymerized in a controlled 
manner. The polymers containing derivatives of 4-hydroxythiazoles were studied as new 
light-harvesting systems and blue-fluorescing chromophores were compiled. In a further step 
the combination of energy donor and acceptor thiazole dyes were explored regarding the 
investigation of an energy transfer (FRET) between them along the polymer chain. In the 
D/A copolymer high energy transfer efficiencies were observed by optimization of the D/A 
ratio and these copolymer can act as antenna structures for light harvesting systems.  
After the examination of the light-emitting properties of several thiazole based copolymers 
it was desirable to broaden the range of functional monomers to open new windows for 
other applications including the production of hydrogen. For this purpose, [FeFe]-
hydrogenase styrene models were developed and the first controlled radical polymerization 
of these models is described. It could be shown that the biomimetic metal centers keep 
their activity and redox behavior after polymerization and inclusion into the copolymer 
chain.  
The manifold possibilities to incorporate chromophores into copolymer backbones enables 
the possibility for applications as polymeric sensor systems. In this context, thermo-
responsive polymers that undergo a lower critical solution temperature transition by 
variation of the temperature are important systems for the development of smart materials. 
A well-defined fluorescent copolymer based on PDEGMA functionalized with pyrene side-
chain units was synthesized by RAFT polymerization. Temperature dependent fluorescence 
measurements demonstrated that this polymer acts as a soluble fluorescent temperature 
sensor. 
Investigations of the LCST behavior have attracted significant interest in polymer research. 
Particular attention in this regard has been paid to the thermo-sensitive self-organization of 
amphiphilic block copolymers, especially on the formation of micelles or vesicular structures. 
The RAFT polymerization method was used for the preparation of a library of double 
thermo-responsive diblock copolymers, namely poly(DMAEMA-b-DEGMA) block 
copolymers. The phase transitions of these block copolymers in aqueous solutions were 
studied in detail. Within this library of block copolymers, a block ratio of 50:50 resulted in a 
double responsive LCST behavior. This block copolymer was further investigated to 
elucidate the self-assembly behavior. Variable temperature 1H NMR spectroscopy, zeta 
potential, and cryo-TEM investigations revealed the temperature induced formation of 
multilamellar vesicular (MLV) structures and subsequent transition in large unilamellar 
(ULV) structures. 
Besides the investigation of self-assembled block copolymer structures, another approach for 
the generation of nanostructures was explored. The nanoprecipitation process was utilized 
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to generate nano-sized colloidal particles. Fine-tuning of the NPs was investigated and it 
could be shown that the corresponding NP size, incorporation of chromophores and stability 
can be controlled. The influence of the molar mass and polymer concentration on the NPs 
size was demonstrated. Furthermore, possible applications of fluorescent polymeric 
nanoparticles in cellular uptake as diagnostic tools were illustrated and the cellular uptake 
mechanism was revealed. 
In conclusion, this thesis presented the preparation of new functional smart polymeric 
materials. The embedding of several dyes in polymer backbones, thermo-responsive block 
copolymer system and tailored nanoparticles are highlighted and represent an important 
contribution to actual research fields. The gained knowledge will be the fundament for new 
developments and investigations. Future research will be directed towards the design and 
self-assembly of block copolymers and nanoparticles as new tools for delivery vehicles or 
nanocontainers (e.g. for therapies), whereby specific attention will be focused on the 
encapsulation and transport of guest molecules. In combination with chromophores the 
advanced nanostructure can be used not only in diagnostic application (e.g. as sensor) but 
also to better understand the formed morphologies and self-assembled architectures. 
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Zusammenfassung 

Moderne Polymerisationstechniken, basierend auf kontrollierten radikalischen 
Polymerisationsprozessen (CRP), führten in den letzten Jahrzehnten zu einem 
beeindruckenden wissenschaftlichen Interesse. Ein Grund für die zunehmende Bedeutung 
dieser Technik ist die Möglichkeit der Synthese vielfältiger und komplexer 
Polymerarchitekturen. Die reversible Additions-Fragmentierungs-Kettentransfer (RAFT) 
Polymerisation ist in diesem Zusammenhang eine der leistungsstärksten und robustesten 
Varianten im „Werkzeugkasten“ der CRP-Polymerisationen. Diese Methode ermöglicht es, 
auf eine große Auswahl maßgeschneiderter Monomere und Funktionalitäten für 
zielgerichtete Anwendungen zurückzugreifen. Die RAFT-Technik, auf die sich die 
vorliegende Arbeit fokussiert, stellt folglich ein Schlüsselelement für die Synthese von 
(multi)funktionalen Polymermaterialien unter konventionellen Polymerisationsbedingungen 
dar. 
Die vorliegende Dissertation behandelt die definierte Makromolekülsynthese 
maßgeschneiderter Strukturen und Funktionalitäten, sowie die Möglichkeit der Präparation 
von Nanostrukturen durch Selbstorganisation oder Nanofällung. In diesem Zusammenhang 
wurden verschiedene Strategien zum Aufbau solcher Makromoleküle intensiv untersucht. 
Neben dem Einbau funktionaler Monomere in das Polymerrückgrat, erfolgte die Synthese 
von Blockcopolymersegmenten unterschiedlicher Blocklänge. 
Die vorliegende Forschungsarbeit behandelt im speziellen die RAFT-(Co)Polymerisation von 
Methacrylaten und Styrol-Bausteinen für den Aufbau hochfunktionalisierter Polymere mit 
definierten photophysikalischen Eigenschaften bzw. „stimuli-responsivem“ Verhalten (Figure 
24). 
In diesem Zusammenhang wurden verschiedene 4-Hydroxythiazole, Pyrene und [2Fe2S]-
Cluster funktionalisierte Monomere (co)polymerisiert. Es konnte ebenfalls gezeigt werden, 
dass die Polymerisation dieser Monomere kontrolliert („quasi-lebend“) verläuft. 
Insbesondere Makromoleküle, basierend auf 4-Hydroxythiazolen, stellten sich als moderne 
Lichtsammeleinheiten mit einer zusätzlichen Fluoreszenz im blauen Bereich des 
elektromagnetischen Spektrums heraus. Des Weiteren wurde, durch Kombination aus einem 
Donor- (D) und einem Akzeptorfarbstoff (A), der Energietransfer zwischen beiden 
Chromophoren entlang des Polymerrückgrats untersucht. Die Optimierung der D/A 
Verhältnisse führte zu hohen Energietransferraten, welches die Anwendung dieser Systeme 
als sogenannte „Antennenstrukturen“ für Lichtsammeleinheiten, ermöglicht. 
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Figure 24 Übersicht maßgeschneiderter Polymerarchitekturen, welche durch Titelblätter 

ausgewählter Publikationen der Dissertation illustriert sind: Chem. Commun. (Kapitel 2), Macromol. 
Chem. Phys. (Kapitel 3 und 5), J. Polym. Sci., Part A: Polym. Chem. (Kapitel 3) und 

Macromolecules (Kapitel 4). 

Nach Untersuchung der Licht-emittierenden Eigenschaften verschiedener Thiazol-basierter 
Copolymere, stand die Erweiterung der Auswahl von Monomerfunktionalitäten im 
Mittelpunkt. Dabei lag der Fokus auf der Untersuchung neuartiger Anwendungen, wie z.B. 
moderne Systeme der Wasserstoffentwicklung. Darauf aufbauend wurden Styrol-Modelle der 
[FeFe]-Hydrogenase entwickelt und ihre kontrollierte radikalische (Co)Polymerisation 
erstmalig beschrieben. Es konnte gezeigt werden, dass die Aktivität und das Redoxverhalten 
des biomimetischen Metallzentrums der [FeFe]-Hydrogenase nach dem Einbau in die 
Polymerkette erhalten bleibt. 
Daneben ermöglichen die vielfältigen Variationen des Einbaus von Chromophoren in 
polymere Strukturen eine Anwendung als Polymer-basierte Sensoren. In diesem Kontext 
spielt das Phasenverhalten von Polymeren mit unterer kritischer Lösungstemperatur (LCST) 
eine entscheidende Rolle. Mittels RAFT-Polymerisation konnte ein solches Polymer, 
bestehend aus PDEGMA mit zusätzlich fluoreszierenden Pyrene-basierten Seitengruppen, 
gezielt synthetisiert werden. Fluoreszenzuntersuchungen zeigten, dass dieses Copolymer als 
Temperatursensor in Lösung agieren kann. 
Des Weiteren ist das Auftreten von Mischungslücken bei Temperaturerhöhung (hydrophil zu 
hydrophob) von Polymerlösungen in den letzten Jahrzehnten Gegenstand intensiver 
Forschung, u. a. bezüglich der thermosensitiven Selbstorganisation von amphiphilen 
Blockcopolymern zu mizellaren bzw. vesikulären Strukturen. Für die Synthese einer 
entsprechenden Polymerbibliothek wurde die RAFT-Methode genutzt, um Poly(DMAEMA-
b-DEGMA) Blockcopolymere herzustellen. Die detaillierte Charakterisierung der erhaltenen 
Verbindungen in Lösung zeigte ein doppelt ansprechbares LCST Verhalten für 
Blockcopolymere mit gleichen Blocklängen. 



Zusammenfassung 

49 

Durch temperaturabhängige Untersuchungen mittels 1H NMR Spektroskopie, 
elektrophoretischer Lichtstreuung und cryo-Transmissions-Elektronenmikroskopie 
(cryoTEM) konnte hierbei die Bildung multilamellarer, vesikulärer Strukturen, welche bei 
Temperaturerhöhung in größere unilamellare Strukturen übergehen, gezeigt werden.  
Neben der Charakterisierung selbstorganisierender Blockcopolymere wurde der Prozess der 
Nanofällung, als eine weitere Variante zur Generierung von Nanopartikeln, untersucht. In 
diesem Zusammenhang konnte der Einfluss der Molmasse und der Polymerkonzentration 
auf die Partikelgröße und die Stabilität, sowie der Einbau von Farbstoffen, untersucht 
werden. Des Weiteren wurden Studien zur Zellaufnahme von fluoreszierenden Nanopartikeln 
durchgeführt, welche sich anschließend als mögliches Werkzeug im diagnostischen Bereich 
etablieren ließen. 
Zusammenfassend präsentiert die vorliegende Dissertation die Synthese neuartiger, 
funktionaler Polymermaterialien. Der Einbau verschiedener Farbstoffe in Makromoleküle, 
das thermosensitive Verhalten von Blockcopolymeren und die Präparation definierter 
Nanopartikelsysteme wurden aufgezeigt und liefern einen wertvollen Beitrag zu aktuellen 
Forschungsthemen. Die gewonnenen Erkenntnisse werden in das zukünftige Design und den 
Aufbau selbstorganisierender Blockcopolymerstrukturen und nanopartikulärer Systeme 
einfließen, um neuartige Transportvehikel oder Nanocontainer (z.B. für Therapiezwecke) zu 
entwickeln. Besonderes Augenmerk liegt auf dem Einschluss und dem Transport von 
niedermolekularen Substanzen (Gastmolekülen). In der Kombination mit Farbstoffen können 
diese Nanostrukturen im diagnostischen Bereich Anwendungen finden (z.B. als Sensor) oder 
dazu genutzt werden, ein besseres Verständnis der gebildeten Morphologien und 
selbstorganisierenden Architekturen zu erhalten. 
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Preparation of multifunctional and well-defined macromolecules requires a smart selection of the most

suitable controlled polymerization technique in combination with appropriate click reactions. In this

review, we provide an overview on the use of various ‘‘clickable’’ initiators and monomers as well as on

the postpolymerization modifications that have been widely used to construct clickable

macromolecules. As such, this contribution will aid polymer chemists to select a suitable combination

of CRP and click methodologies to design the target structures.

1. Introduction

The synthesis of well-defined polymers has been the ultimate

challenge of polymer chemists in the last decades. The develop-

ment of anionic polymerization by Szwarc et al. opened new

avenues and a new field of materials research.1,2 Besides, poly-

meric materials have improved the quality of our lives in all areas

from engineering to electronics and medical applications.3–5

Following the invention of anionic polymerization, other

possible types of living and/or controlled polymerizations,

cationic and radical, have been widely studied.6–9 The most

significant controlled radical polymerization (CRP) techniques

to date could be listed as atom transfer radical polymerization

(ATRP),6–8 nitroxide-mediated radical polymerization (NMP)9,10

and reversible addition-fragmentation chain transfer polymeri-

zation (RAFT).11,12 Each of these techniques requires the use of

a dedicated metal/ligand complex, chain transfer agent (CTA) or

nitroxide mediator to gain control over the polymerization of

various monomeric structures. All these parameters have been

extensively investigated in detail and reported by numerous

research groups. Consequently, nowadays well-defined polymers

can be successfully synthesized and characterized by performing

these techniques under specific conditions.

After significant advances in the controlled/‘‘living’’ radical

polymerization techniques over the last years, functionalization

of the macromolecules has been the following challenge for

polymer chemists. Synthesis of end- or side-functional macro-

molecules has been achieved by using functional initiators,

monomers or end capping techniques. However, these specific

functional groups might have enormous effects on the poly-

merization rate, control over the polydispersity index and the

composition of the polymers. Fortunately, a decade ago, the

click chemistry concept was introduced by Sharpless et al. that

enables nowadays the preparation of not only telechelic polymers

but also side-group functionalized polymers using clickable

initiators, monomers or polymers.13–21 Sharpless and coworkers
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drew attention to several highly efficient organic reactions, such

as the copper-catalyzed [3 + 2] Huisgen cycloaddition reaction

(CuAAC), which has developed into the most widely employed

click reaction.22,23 This reaction requires a copper salt and

a ligand as catalysts but proceeds very rapidly and selectively at

room temperature.24 Several other efficient organic reactions

have been claimed to be ‘‘click’’ reactions since they fulfilled all or

some of the click chemistry criteria, which can be listed as

modular and wide in scope, high efficiency and high yields, no or

inoffensive byproducts, stereospecific, readily available starting

materials and reagents, no solvent or a benign solvent, and

simple purification techniques.17

Metal-free click reactions have attracted the greatest attention

in recent years since they eliminate the main disadvantage of

CuAAC click reactions: the use of a copper catalyst.17,25 This

opens new avenues to rapid and efficient reactions that can be

employed in, e.g., living organisms.26 Several types of metal-free

click-like reactions have been developed and the most prominent

ones are thiol-ene,19,27,28 thiol-yne,29,30 thiol-para-fluoro,31,32 nitrile

oxide-alkyne cycloaddition,33 pyridyl disulfide exchange,34–36 and

Diels–Alder reactions.37–39 These reactions have pros and cons in

comparison to each other. Each of them can be used for certain

monomers, initiators or polymerization techniques. Therefore, one

should carefully design the synthetic route to prepare the desired

functional polymer.

The aim of this review is to provide an insight on the selection

of the most suitable CRP technique and click reaction for the

synthesis of the desired tailor-made macromolecule. The range of

functional initiators and monomers are listed in tables for each

CRP technique. Hereby, click reactions performed before

(‘‘preclick’’) and after (‘‘postclick’’) the polymerization initiated

by a functional initiator or propagated with a functional

monomer are discussed. The special focus will be on the

combinations of CRP and click chemistry techniques rather than

discussing each of them in details.

2. Overview on click reactions used in combination
with controlled radical polymerization techniques

In the following section the click reactions that have been used in

combination with CRP are briefly summarized while referring to

the original literature (Scheme 1).

The most widely applied click reaction has been the copper-

catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) as

shown in Scheme 1.40 Sharpless et al. defined this type of cyclo-

addition as the ideal click reaction and the reaction principle has

been employed in various fields of synthetic chemistry, i.e.

medicinal chemistry, polymer chemistry, material chemistry,

inorganic chemistry and, in particular, organic chemistry.13 This

reaction proceeds very rapidly in aqueous medium and even

under ambient conditions. The major drawback of this reaction
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is the necessity of using a copper salt, which requires a purifica-

tion step following the click reaction.41

Nevertheless, this drawback can be overcome by choosing

alkynes with higher reactivity. For instance, cyclooctyne deriv-

atives can undergo strain-promoted azide-alkyne click reactions

in biological environments.42 Similarly, electron-deficient

alkynes and activated alkynes also provide highly efficient reac-

tions.43 Apparently, alkyne compounds play a crucial role in

many different click-like reactions. As an example, Tunca and

Hizal et al. demonstrated the synthesis of A2-B2 4-miktoarm star

copolymers using the Glaser coupling as an alkyne-alkyne

homocoupling reaction (AAC),44 which is a copper-catalyzed

reaction that reaches completion at room temperature in three

days.45 Recently, Lutz and Heaney et al. reported the cycload-

dition of alkynes with nitrile oxides (NOAC)46 in combination

with CRP as a potential click reaction.33 This reaction proceeds

at room temperature, in polar medium, in the absence of tran-

sition metal catalyst, in high yields and is highly regiospecific.

Besides alkynes, also nitriles can react with azides in a zinc-

catalyzed cycloaddition47 and can be used in combination with

CRP.48

Alkynes do not only react with azides49 or its own kind but also

react with thiols, known as thiol-yne click reaction.29,30 This

represents a very efficient reaction and results in addition of two

thiol compounds per alkyne molecule, which can be either added

by a base-catalyzed Michael addition or by a photo-initiated

Scheme 1 Schematic representation of the click reactions that have been used in combination with controlled radical polymerization techniques.
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Anti-Markovnikov-addition.29,50 Thiol compounds have been in

the focus of click reactions in the last couple of years due to their

high reactivity towards common functional groups, i.e. alkene,

alkyne, isocyanate and pentafluorophenyl.51 The thiol-ene click

reaction has been utilized by several groups for the synthesis of

dendrimers, the side-chain functionalization of well-defined

backbones and for the synthesis of block copolymers.19,28,52

Advantages and disadvantages of this type of click reaction have

been discussed in several review articles.10,53 Other thiol-based

click reactions can be counted as thiol-maleimide addition

(MAdd),28 thiol-isocyanate addition54 and pyridyl disulfide

exchange (PySS).36 Thiol-terminated polymers can be easily

obtained by RAFT polymerization of a wide range of monomers

and a subsequent cleavage of the chain transfer agent. However,

hetero Diels–Alder (HDA) reaction using a dedicated chain

transfer agent can been employed without a transformation of

the RAFT agent to prepare AB block copolymers.55 Commonly,

the Diels–Alder reaction (DA) has been employed to construct

miktoarm star polymers56 or to engineer self-healing polymers by

reversible crosslinking.57

A frequently used reaction for bioconjugation is the oxime

formation (Oxim) that has been applied in the conjunction of

carbonyl-functionalized proteins and aminoxy-functionalized

polymers.58 Furthermore, the ring-opening reaction of epoxides

as a well-known spring-loaded reaction13 is used in combination

with the CRP of glycidyl methacrylate mostly to introduce other

clickable functionalities59 or for attachment on surfaces.60

In practice, some combinations of click reactions and CRP

techniques are most commonly applied which will be discussed in

detail in the following sections.

3. Strategies towards clicked polymer architectures

There are at least four common ways to combine controlled

radical polymerization techniques and click chemistry to

construct various clicked polymeric architectures. Thereby, each

approach has its inherent drawbacks and amenities. The strate-

gies are summarized in Scheme 2 and will be discussed in

a general way in the following.

3.1 Postclick strategy

By using functional initiators or monomers with clickable

moieties for controlled radical polymerizations, clickable poly-

mers can be achieved to construct various architectures by

clicking post to the polymerization.

As a limitation, the clickable functionality must not interfere

with the polymerization process or has to be protected to gain

control over the polymerization and, thus, yielding well-defined

polymers with high functional group fidelity up to sufficient

monomer conversions. Moreover, most functional monomers or

initiators are not commercially available and have to be

synthesized prior to the polymerization.

The clickable polymer represents a platform for versatile click

functionalization, while retaining the polymer characteristics i.e.

chain length, monomer composition and molar mass dispersity.

Herein, the approach has a wide scope by means of construction

flexibility, in contrast to the preclick approach (see below), since

different functional polymers can be prepared from a single

batch of a clickable macromolecule. Furthermore, the same

molar mass and its distribution allow for a better comparison of

changes related to the functionality.

The postclick approach offers high functional group fidelity

compared to the postmodification approach. In particular, for

the polymerization of clickable monomers each repeating unit of

the resultant polymer bears the clickable unit in contrast to a

prefunctional homopolymer that have to be modified with the

clickable moiety after polymerization. Accordingly, using a-

functionalized initiators each chain is monoterminal-functional-

ized, while end-group functionalization via the postmodification

are limited by the yield of the final modification step.

3.2 Preclick strategy

Clicked polymeric architectures can be also obtained by using

functional initiators or monomers with clickable moieties that

are clicked prior to the polymerization in a so-called ‘‘preclick’’

route. This method is predominantly used if the clickable units

interfere with the radical process or the temperature of the

polymerization and can not be sufficiently protected.

As a limitation, the clicked moiety must be stable under the

applied polymerization conditions. It should be mentioned that

Diels–Alder adducts tend to undergo retro Diels–Alder reactions

at elevated temperatures and, hence, are not in principle

amenable for this strategy. However, the stability range of the

Diels–Alder adducts is strongly system dependent.61,62 Recently,

some literature examples discussed the polymerizability and

stability of related clicked initiators and monomers. Maleimide

functionalities are often protected by the reversible Diels–Alder

reaction with furan to make it more compatible with radical

polymerization processes, which was demonstrated by Sanyal and

coworkers using a furan-maleimide methacrylate. This monomer

was polymerized by a free radical polymerization procedure at

65 �C and deprotected via retro-DA at 125 �C.63 Syrett et al.

reported an ATRP reaction with a clicked initiator linked via the

maleimide-furan adduct, where the polymerization was success-

fully performed at 50–60 �C and the retro Diels–Alder reaction

occurred at 120 �C.64 By using a clicked initiator with the mal-

eimide-anthracene adduct significantly higher thermal stability

was observed upon the retro Diels–Alder reaction. In addition,

Barner-Kowollik et al. investigated a hetero Diels–Alder cyclo-

adduct of a dithioester and cyclopentadiene that was rapidly

formed at room temperature and cleaved above 80 �C.65 By

contrast, the Huisgen 1,3-dipolar cycloaddition of alkynes with

azides represents a prominent reaction for this strategy, since the

triazole ring is stable under the typically applied polymerization

conditions. Furthermore, the bulkiness of the clicked unit should

Scheme 2 Schematic representation of the strategies towards clicked

architectures.
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not disturb the polymerization process by causing slow propaga-

tion or deactivating of the catalytic system.

In case the clicked monomers can be successfully polymerized

via CRP, this procedure provides the highest control over the

incorporation of the clicked functionality into polymeric archi-

tectures, while having the lowest scope by means of construction

flexibility:

On the one hand, the click reaction has been performed with

small molecules (monomers or initiators) that can be easily

purified and analyzed. Hereon, subsequent polymerization is

carried out with less reactive material leading to high functional-

group fidelity, whereby no further functionalization is required.

However, in order to obtain clicked architectures with different

clicked functionalities, the click reaction as well as the poly-

merization has to be carried out for each clicked architecture.

This method has been successfully employed for the preparation

of comb-shaped polymers with almost quantitative functionali-

zation of each repeating unit.66,67

3.3 Simultaneous/one pot strategy

In many cases the catalyst used in the ATRP polymerization, i.e.

CuBr/PMDETA (N,N,N0,N0 0,N00 pentamethyldiethylene tri-

amine), is the same as for the click reaction that allows a simul-

taneous/one-pot process of polymerization and click reaction.

The combination of the Cu(I)-catalyzed Huisgen cycloaddition

and a CRP process allows the one-pot synthesis of a wide range

of products, i.e. a-functional- (clickable initiator), grafted-

(clickable monomer), star-shaped polymers and polymeric

networks, respectively. The simultaneous process means that

CRP and click reaction occur at the same time during the poly-

mer synthesis. In contrast to a one-pot process, whereas at first

the polymerization and then the click reaction are performed or

vice versa (subsequent addition of the second compound). The

advantage of this strategy in contrast to the ‘‘preclick’’ or

‘‘postclick’’ way is that for clicked polymeric architectures only

one synthesis step and one purification step is required. However,

it should be noted that the click reaction generally proceeds much

faster than the ATRP and, thus, most click coupling reactions

will occur during the initial stages of the polymerization.

The first example of this combined route was demonstrated by

Haddleton et al. in 2005 using an azide-functionalized ATRP

initiator for the polymerization of methyl methacrylate as indi-

cated by a linear relationship of the first order kinetic plot. The

efficiency of the click reaction was investigated in the presence of

alkyne-functional dyes.68 Another example of simultaneous click

and CRP with an unprotected propargyl methacrylate was also

reported by Haddleton et al. It was shown that the copper-cata-

lyzed azide-alkyne click reaction proceeds much faster compared

to the ATRP.69 The authors could also show that the ratio of rate

constants for the polymerization and the click process can be

controlled by varying the solvent, the temperature or the concen-

tration of the catalyst. Thus, it was demonstrated that the rate of

CuAAC in DMSO is slower than the polymerization, whereas in

DMF or toluene the click reaction is faster than the polymeriza-

tion. The measured PDI values of the synthesized copolymers were

found to be below 1.3.69 As a limitation, the clickable functionality

must be used without a protection group to allow the Huisgen

cycloaddition and, hence, side reactions can occur.

Also the one-pot/tandem process is often used for the prepa-

ration of clicked polymeric architectures by using ATRP poly-

merization and CuAAC. This approach uses the same catalytic

system for both the click reaction as well as ATRP, but

sequentially. Thereby, both ways are possible: At first the click

reaction followed by the polymerization or vice versa (in the

manner that the second compound was added later). In contrast,

if all components are added at once, the click reaction can be

performed at room temperature, while after full conversion, the

temperature was raised to initiate the polymerization.70 In all

cases well-defined copolymers were obtained. Dubois et al. dis-

cussed these different routes and showed that both the preclick as

well as the one-pot route give similar results in molar mass and

PDI values, whereby the postclick route leads to an increase of

the polydispersity index from 1.3 to 1.5.70

3.4 Postmodification strategy

Prefunctional polymers with latent groups prepared by CRP can

be modified with clickable moieties to obtain clickable polymers.

The modification reaction must be efficient, since it correlates to

the fidelity of functional groups in the modified polymer. Mostly,

purification steps are necessary, since even efficient modification

reactions are not quantitative. In this case, modification as well

as clicking are carried out at the polymer, which might compli-

cate in principle the purification and analysis. In particular,

incomplete modification is critical for pendant functional poly-

mers, since the unreacted functionalities are attached to the same

polymer backbone as the converted ones and, thus, can not be

separated as it can be done for endgroup-modified polymers.

As an advantage, the starting materials by means of initiators

and monomers are in most cases commercially available or can

be easily synthesized allowing for large scale experiments. This

approach can be used for terminal and pendant functionalized

polymers, except for comb-shaped polymers, since electronic and

steric effects may hinder full transformation. This method is in

particular suitable for clicked architectures where the clickable as

well as the clicked moiety interfere with the polymerization

process.

It should be noted that in a narrower sense the described

reactions are defined as click reactions for the conjunction of

small molecules, since they feature among other characteristics

a high efficiency and selectivity allowing for the equimolar usage

of the click counterparts. However, the conjunction of polymers

using these reactions leads not always to full conversion probably

due to sterical hindrance or affected diffusion of the polymer

chains.53 To drive the reaction to completion, an excess of one

clickable polymer can be used. If the click reaction is completed,

the typical problems of purification due to the equal solubility

behavior of both product and educt polymer can be overcome by

adding a click-functionalized resin containing the click counter-

part related to the excess one.71,72 The subsequent purification of

the desired clicked architecture can be then easily performed by

filtration of the clicked resin.

4. Clickable initiators

The use of functional initiators in controlled radical polymeri-

zation processes lead to terminal-functionalized polymers in one
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step. Thereby, two possible routes can be employed using clickable

initiators. As illustrated in Scheme 3, click reactions can be per-

formed either after the polymerization (postclick) or prior to the

polymerization (preclick). For ATRP initiators only a-clickable

polymers are inherently possible in one step.With the ability of the

synthesis of initiators/transfer agents for NMP and RAFT with

functional groups on both the initiating as well as on themediating

fragment the toolbox expands and u-clickable polymers as well as

a,u-clickable polymers are accessible in a one step procedure. The

advantage of the clickable initiator approach compared to the

clickable monomer route is the lower concentration of the click-

able unit. Hence, side reactions are reduced and protection is not

strictly necessary while leading to a controlled polymerization with

a high degree of functionalization of the clickable moiety. In the

following, an overview of potential clickable initiators is given and

is summarized in Tables 1 to 7. Possible combinations and the

restrictions of CRP and click reactions are discussed. Unless

otherwise noted, all selected initiators belong to the postclick

approach.

4.1 Atom transfer radical polymerization (ATRP)

ATRP is the most widely employed CRP technique using the

clickable initiator approach because of the easy preparation of

functional initiators. Different types of initiators are discussed in

the following subsections (Tables 1–3).

Alkyne-functionalized initiators. The first report on the

combination of click chemistry and a controlled radical poly-

merization technique was published by van Hest et al. in 2005

showing the facile approach towards block copolymers via the

azide-alkyne cycloaddition.73 By using propargyl 2-bromoisobu-

tyrate (Entry 1) as clickable initiator terminal alkyne-functional-

ized polystyrenes and polyacrylates were synthesized. The initiator

is based on a common ATRP initiator group, which is an a–halo

ester. The terminal alkyne was protected with a trimethylsilyl

group (TMS) to prevent possible side reactions under the poly-

merization conditions: (i) Complexation with the copper cata-

lyst,73–75 (ii) subsequent homocoupling of alkynes,44 (iii) chain

transfer by hydrogen abstraction from the alkyne76 and interfer-

ence with propagating radicals leading to crosslinking.77

Nevertheless, the TMS group was found to be instable under the

polymerization conditions using CuBr/PMDETA as catalyst that

leads to a loss of protecting group up to 70%.78 The loss was

ascribed to a nucleophilic attack to the TMS group by one of the

nitrogen atoms of PMDETA. As a consequence, the less nucleo-

philic ligand bipyridine (bpy) was chosen to reduce the depro-

tection although it is not the optimum catalyst for ATRP reactions

and does not avoid the decomposition completely.78 Another

strategy uses the more stable triisopropylsilyl group (TIPS) instead

of TMS revealing no loss during the polymerization.78 This might

be due to the bulky character of the protecting group that hinders

the nucleophilic attack of the metal/ligand complex. The alkyne-

functionalized initiators bearing either a chlorine or a bromine

atom as an initiating moiety were frequently reported for the

polymerization of styrene, acrylates, methacrylates and N-iso-

propylacrylamide, whereby in some cases the terminal alkyne was

protected with TMS33,44,76,79,80 or not protected.81–86 Haddleton

and coworkers used the unprotected alkyne initiator depicted in

Entry 1 for the random copolymerization of methyl methacrylate

(MMA) and hostasol methacrylate (HMA) (Mn¼ 15 000 g mol�1,

PDI¼ 1.2–1.3).82 The a-functionalized fluorescent copolymer was

clicked onto cotton and bothWang andMerrifield resins using the

Huisgen [2 + 3] cycloaddition. Recently, Tunca and coworkers

used the protected initiator (Entry 1) for the preparation of block

copolymers of styrene and divinylbenzene to form multiarm star

polymers with terminal alkyne groups.87–89 At first, styrene was

polymerized to obtain linear alkyne-functional PS (up to Mn ¼
6 000 g mol�1, PDI ¼ 1.1). Subsequently, the prepared PS was

used as macroinitiator in the polymerization of divinylbenzene

leading to a crosslinked second block that form the core of the

multiarm star polymer (up toMw ¼ 250 000 g mol�1, PDI ¼ 1.2).

Besides the initiator depicted in Entry 1, its analogue prop-

argyl 2-halopropionate (Entry 2) was also used as clickable

initiator for the polymerization of acrylates and NIPAMwithout

any protection.90,91

In most cases of the unprotected initiators, good control over

the polymerization was achieved yielding alkyne-functional

polymers with low PDI values. In these cases, the undesired chain

transfer and termination reactions are suppressed to a negligible

amount by decreasing the reaction time84 and keeping the poly-

merization at low conversions to reduce the termination reac-

tions at the u-end of the chain. The bromine atom is often

substituted in a postmodification reaction with sodium azide to

yield heterotelechelic polymers bearing an alkyne and an azide

end group, respectively. Furthermore, side reactions involving

the alkyne functionality were suppressed by using low alkyne

concentrations according to a high monomer-to-initiator ratio92

or by using relatively low temperatures,85,91 i.e. 40 �C for the

polymerization of tBMA85 or NIPAM.91 In contrast, the poly-

merization of styrene was conducted for 6 h at 90 �C with the

initiator depicted in Entry 1 as nonprotected alkyne initiator

revealing significant termination reactions as indicated by SEC

measurements.86 It should be noted that direct polymerization

throughout the triple bond is hindered, because radical transfer

reactions from the styrene or methacrylate radical are suppressed

by their low reactivity (Q-values, r-values).

Most of the alkyne-functionalized ATRP initiators are based on

the a-halo isobutyrate group. This class of alkyl halides possesses

high activation rates due to the suitable radical-stabilization

Scheme 3 Schematic representation of the strategies using clickable

initiators.
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effects of the tertiary carbon and the vicinal ester group resulting

in a high initiation efficiency, which is required to control molar

masses and molar mass distributions.93 In most of the present

cases, this type of initiator is used for ATRP regardless of the

polymerized monomer class, e.g. styrenes, acrylates or methacry-

lates. However, normally the initiator structure is carefully chosen

for each given monomer and its reactivity.6,93 Therefore, special

focus appear not to be on the optimal initiator structure for

Table 1 Alkyne-containing initiators for ATRP (poC ¼ postclick, prC ¼ preclick, simult ¼ simultaneous)

Entry Structure Click CRP Monomer Strategy Ref
(Abbr./Entry)

1

CuAAC ATRP St, MA, OEGA tBA,
NIPAM, tBMA,
DEAEMA, HMA

poC 73,76,78–81,
83–89,103,104

AAC ATRP St poC 44
NOAC ATRP St poC 33

2 CuAAC ATRP NIPAM, EEA poC 90,91

3 CuAAC ATRP NIPAM, 46, 53 prC 95

4 CuAAC ATRP St, tBA, MMA simult 96

5 CuAAC ATREP St, VBA, 50 simult 83

6 CuAAC ATRP St poC 97

7 CuAAC ATRP St poC 98

8 CuAAC ATRP MMA prC 99

9

CuAAC ATRP St, MMA, tBA poC 71,94,100
ROP DMAEMA,

NIPAM
ATRP St prC 101
ROP

10 CuAAC ATRP tBA poC 102
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control, but on the accessibility of an alkyne-functionalized one.

Practically, a-bromoisobutyryl bromide is commercial available

and is mostly functionalized via esterificiation reaction with

propargyl alcohol.

The most widely employed catalytic system is CuBr and

PMDETA again regardless of the initiator or monomer type.

Besides, other catalytic systems, e.g. CuCl/tris(2-(dimethyla-

mino)-ethyl)amine (Me6TREN) for the polymerization of

NIPAM91,94 or 1,1,4,7,10,10-hexamethyltriethylenetetramine

(HMTETA),44 could provide better control over the polymeri-

zations. The catalytic activity of the metal complex and, hence,

the ability to control the polymerization can be correlated to the

ability to stabilize the Cu(II) oxidation state, thus forming

a reducing Cu(I) complex.93 The polymerization can proceed

relatively fast even at low temperatures when a catalyst with

a high activity is used.6 PMDETA is a good ligand for Cu(I) with

moderate activity between the less active bpy (two magnitudes

lower in activation rate) and the more active Me6TREN (two

magnitudes higher in activation rate) and, therefore, can be used

for a wide range of monomers.93

Besides the attachment of propargyl alcohol, the alkyne

moiety can also be incorporated onto an ATRP initiator by the

reaction of propargyl amine with a-haloisobutyryl halides. An

example is shown in Entry 3.95 Hereby, a combination of the pre-

and the postclick approach was utilized. The initiator was clicked

prior to the polymerization with azide-functionalized dansyl as

a fluorescent label. By using this compound as initiator in ATRP

different random copolymers of alkyne- or azide-functionalized

acrylamides were obtained: Poly(NIPAM-r-propargylacrylamide)

(Mn ¼ 20 000 g mol�1, PDI ¼ 1.3) and poly[NIPAM-r-(3-azido-

propylacrylamide)] (Mn ¼ 10 000 g mol�1, PDI ¼ 1.2). The

pendant clickable polymers were attached onto an azide-func-

tionalized silica particle in an elegant layer-by-layer click approach

to yield thermoresponsivemicrocapsules after removal of the silica

template.95

In Entry 4 an initiator is shown where the alkyne is linked to

the mediating bromide via an o-nitrobenzyl ester as a photo-

cleavable group.96 The initiator was used in a one-pot click-CRP

reaction for the polymerization of either St, tBA or MMA in the

presence of azide-functionalized PEO or PS to prepare photo-

cleavable block copolymers as clicked structures with the

labile group between the polymer blocks: PEO-b-PS (Mn ¼
38 000 g mol�1, PDI ¼ 1.2), PEO-b-PtBA (Mn ¼ 63 000 g mol�1,

PDI ¼ 1.2), PS-b-PMMA (Mn ¼ 38 000 g mol�1, PDI ¼ 1.2–1.3).

Table 2 Azide-containing initiators for ATRP (poC ¼ postclick, prC ¼ preclick, simult ¼ simultaneous)

Entry Structure Click CRP Monomer Strategy Ref

11 CuAAC ATRP DMAEMA, St poC 92,106,107

12

CuAAC ATRP MMA,
DEAEMA,
HEMA,
KSPMA,
HMA,
NIPAM,
DMAEMA,
DEAM, St

poC, simult 68,82,94,109–112

13 CuAAC ATRP NIPAM poC 113

14 CuAAC ATRP NIPAM poC 110

15 CuAAC ATRP St, nBMA poC, prC 114

16 CuAAC ATRP DEGMA poC 104
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The initiator can bear more than one alkyne functionality.

Multifunctional initiators can be used to create two or three

dimensional architectures such as star polymers or networks.

The initiator depicted in Entry 5 contains two bromoiso-

butyrate groups as well as two propargyl groups (unprotected

alkynes) and is used in atom transfer radical emulsion poly-

merization in water to synthesize crosslinked nanoparticles of

styrene and vinylbenzyl azide.83 An example that can be

better analyzed by means of molar mass and its poly-

dispersity index is described for the initiator depicted in Entry

6 bearing both two alkyne and two bromoisobutyrate groups.

The polymerization of styrene was carried out for 2 h at

110 �C without the protection of the terminal alkyne groups

(Mn ¼ 4 000 g mol�1, PDI ¼ 1.1–1.2), while the subsequent

alkyne-azide cycloaddition leads to figure-of-eight-shaped

polymers.97

Another alkyne-functionalized initiator (Entry 7) is function-

alized with one bromoisobutyrate as well as two propargyl

groups.98 Thereby, one alkyne moiety was clicked with an azide-

functionalized poly(ethyleneglycol) (PEG) and was subsequently

utilized in the polymerization of styrene without protecting the

second alkyne moiety that resulted in a ‘‘tadpole-shaped’’

architecture after the second click reaction.98

In addition, a trialkyne-functionalized initiator (Entry 8)

was synthesized by the substitution reaction of propargyl

bromide with pentaerythritol followed by the attachment

of a-bromoisobutyryl bromide on the remaining alcohol

groups.99 The initiator was used in a preclick approach: First,

azido-PS prepared by RAFT (Mn ¼ 2 500 g mol�1, PDI ¼
1.1) was clicked onto the initiator. Thereby, the molar mass

distribution increased to 1.2 due to the presence of small

amounts of macroinitiator, where only two PS-chains were

attached. Subsequently, the PS-macroinitiator was used in

the polymerization of MMA to yield 4-arm stars (Mn ¼
34 000 g mol�1, PDI ¼ 1.3–1.4). The high polydispersity was

assigned to a lack of control in the initial stages of the

polymerization.

Furthermore, alkyne-functionalized initiators were combined

with other polymerization techniques or methods by incorpo-

rating, e.g., alcohol groups for ring-opening polymerization

(ROP) (Entry 9), whereby the polymerization techniques do not

interfere with each other and can be applied simultaneously100 or

subsequently.101 Besides the incorporation of a-haloisobutanoyl

halides (halide ¼ Cl, Br) into small molecules they can also be

incorporated into alcohol-functionalized polymers to form

ATRP macroinitiators as shown in Entry 10.102 In this example,

polystyrene was synthesized via anionic polymerization and

functionalized with propargyl bromide and a-bromoisobutanoyl

bromide to provide an alkyne-functionalized ATRP macro-

initiator. Polymerization of tBA yielded mid-chain alkyne-

Table 3 Other click-functionalized initiators for ATRP (poC ¼ postclick, prC ¼ preclick)

Entry Structure Click CRP Monomer (Abbr./Entry) Strategy Ref

17 DA ATRP tBA, MMA poC 115,117,120,121,125
prC 64MAdd ATRP OEGMA, 45, SMA
poC 66,122,123

18 MAdd ATRP NIPAM prC 35,58

19 DA ATRP St, MMA poC 87,89,121,124,125

20 DA ATRP St – 126

21 Thiol-ene ATRP St, MMA poC 127

22 PySS ATRP St, tBMA, MMA poC 34,128,129
prC 35,58

23 Oxim ATRP NIPAM, HEMA, OEGMA poC 131,132

1568 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010

D
ow

nl
oa

de
d 

on
 0

9 
N

ov
em

be
r 2

01
0

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 2
01

0 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

0P
Y

00
16

8F

View Online



functionalized PS-b-PtBA block copolymers (Mn ¼ 15 000 g

mol�1, PDI ¼ 1.2–1.3).

Azide-functionalized initiators. The cycloaddition counterparts

to the alkyne-functionalized initiators are azide-functionalized

ones. The common procedure for their syntheses is the func-

tionalization of a basic framework with (i) an azide via substi-

tution reaction of an alkyl halide with sodium azide and (ii) with

a-haloisobutyrate as the ATRP initiating fragment via esterifi-

cation of an amine or alcohol function.

One can mistrust the requirement of azide-functionalized

initiators, since the azide functionality can be easily and effi-

ciently introduced by substitution of the mediating halide with

sodium azide. However, the degree of azide functionalization

that can be reached with the initiator approach is higher

compared to the postmodification route. The reason lies in the

nature of controlled radical polymerizations: Termination reac-

tions always occur and, hence, not all polymer chains retain the

halide at the u-terminus which is the bottleneck for the degree of

functionalization that can be reached via postmodification. In

contrast, using functional initiators, every chain that is initiated

by the initiator bears the azide moiety at the a-terminus inde-

pendently from termination reactions.

The azide moiety is used without protection during polymer-

ization, although some side reactions were described: (i) Cycli-

zation reactions between the azide and the propagating radical

that causes low initiator efficiency,68,92 (ii) 1,3-cycloaddition of

azides with the double bond of the monomer occurs in the

absence of a catalyst at high temperatures and long reaction

times, at which the amount decreases in the order of acrylates >

acrylamides [ methacrylates > styrenes.105

To reduce the side reactions to a negligible amount, short

reaction times92,106 and low temperatures92,107 are preferably

used. It was shown that the polymerization at room temperature

completely suppressed side reactions involving the azide.108

Hence, monomer classes are favored that can be polymerized at

moderate temperatures.

In contrast, it was shown that the azide group does not act as

an initiating species itself as indicated by controlled polymeri-

zations with an azide-containing initiator.92

The initiator structure depicted in Entry 11 (top) was used

for the polymerization of N,N-dimethylamino-2-ethyl meth-

acrylate (DMAEMA)92,106 in THF with CuBr/HMTETA at

60 �C in a controlled way (PDI ¼ 1.1–1.3). However, the

initiator efficiency was low (f ¼ 0.4) due to intramolecular

cyclization at the early stages of the polymerization involving

the azide and the propagating radical.92 Therefore, the ‘‘pre-

click’’ method was utilized to circumvent these side reactions as

the azide-functionalized initiator was ‘‘clicked’’ onto an alkyne-

functionalized poly(3-caprolactone) (PCL). As expected, an

increase in the initiation efficiency to f¼ 0.85 could be observed

when using the ‘‘clicked’’ PCL macroinitiator.92 This is a good

example where the preclick method is used since the postclick

route failed in parts due to side reactions involving the clickable

unit.

The initiator structure depicted in Entry 11 (bottom) con-

taining a cleavable p-alkoxybenzyl ester was used in bulk poly-

merization of styrene at 90 �C, whereby no termination reactions

were observed (Mn ¼ 4 000 g mol�1, PDI ¼ 1.1–1.2).107

The spacer between the initiating fragment and the azide

function seems to have a significant influence on the initiation

efficiency in terms of intramolecular cyclization: The initiator

depicted in Entry 12 shows, despite a controlled polymerization

of MMA (Mn ¼ 6 000 g mol�1, PDI ¼ 1.2–1.3), a reduced initi-

ation efficiency for the hexyl spacer (70 to 80%) compared to

the propyl spacer (100%).68 Hence, the initiator efficiency can

be optimized by choosing an initiator structure by means of

a spacer that prevents cyclization in the early stages of the

polymerization.

In Table 2, 3-azidopropyl 2-bromoisobutyrate (APBIB) has

been the most widely used azide-functionalized initiator (Entry

12, n ¼ 1). Controlled polymerization of St (Mn ¼ 4 500 g mol�1,

PDI ¼ 1.3),109 NIPAM (Mn ¼ 10 000 g mol�1, PDI ¼ 1.1–1.2),110

and DMAEMA (Mn¼ 10 000 g mol�1, PDI¼ 1.1–1.2) have been

reported.111

Moreover, Haddleton and coworkers used the azide-func-

tionalized initiator depicted in Entry 12 for the random copoly-

merization of MMA and hostasol methacrylate (HMA) (Mn ¼
8 000 g mol�1, PDI ¼ 1.2).82 The a-functionalized fluorescent

copolymer was clicked onto cotton and both Wang and Merri-

field resins using Huisgen [2 + 3] cycloaddition.

In addition, Topham and coworkers have polymerized a

number of acrylates and methacrylates (MA) in a controlled way

using APBIB as initiator:112 2-Aminoethyl methacrylate hydro-

chloride (Mn ¼ 7 000 g mol�1, PDI ¼ 1.1–1.2), 2-(diethyl-

amino)ethyl methacrylate (DEAEMA) (Mn ¼ 21 000 g mol�1,

PDI ¼ 1.3), DMAEMA (Mn ¼ 7 000 g mol�1, PDI ¼ 1.3),

2-hydroxyethyl methacrylate (HEMA) (Mn ¼ 7 000 g mol�1,

PDI ¼ 1.3), 2-hydroxypropyl methacrylate (HPMA) (Mn ¼
5 000 g mol�1, PDI ¼ 1.2), 2-(methacryloyloxy)ethyl phosphoryl-

choline (Mn ¼ 15 000 g mol�1, PDI ¼ 1.2), glycerol mono-

methacrylate (Mn ¼ 11 000 g mol�1, PDI ¼ 1.2), potassium

3-sulfopropyl methacrylate (KSPMA) (Mn ¼ 20 000 g mol�1,

PDI ¼ 1.2), and methyl chloride-quaternized 2-(dimethylamino)-

ethyl methacrylate (Mn ¼ 5 000 g mol�1, PDI ¼ 1.2).

Furthermore, 2-chloropropionamide linked with an ethyl

spacer to the azide moiety (Entry 13) was utilized in the

controlled polymerization of NIPAM (Mn ¼ 12 000 g mol�1,

PDI ¼ 1.3).113 The N,N-diazido-2-chloropropionamide

(Entry 14) was used in the polymerization of NIPAM to

incorporate two azide functionalities on the same chain end

(Mn ¼ 10 000 g mol�1, PDI ¼ 1.1)110 In this way, 3-arm star

polymers can be prepared.

Besides the initiators discussed above, there are also azide-

functionalized macroinitiators available. An elegant example

of a multi-clickable initiator that is attached to a carbon

nanotube (CNT) is shown in Entry 15.114 Poly(glycidyl

methacrylate) (PGMA) is functionalized in a ring-opening

reaction with sodium azide and subsequently reacted with

2-bromoisobutyryl bromide to yield a multi-clickable poly-

meric macroinitiator. This multiazide-functionalized polymer

was clicked onto a multialkyne-functionalized CNT, whereby

the excess of azide functions over the alkyne ones preserve

free azides on the surface of the carbon nanotube. This coated

CNT was used to click PEG in a grafting-onto approach as

well as to polymerize St or nBMA in a grafting-from

approach to yield amphiphilic polymer brushes on carbon

nanotubes.
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A similar macroinitiator was prepared from a copolymer

(PEG-b-PGMA), whereby the poly(glycidyl methacrylate) was

functionalized in a ring-opening reaction with sodium azide and

subsequently reacted with 2-bromoisobutyryl bromide to yield

a multi-clickable polymeric macroinitiator (Entry 16).104 Poly-

merization of DEGMA yielded azide-functionalized PEO-b-

[PGMA-g-(N3)(PDEGMA)] (Mn ¼ 52 000 g mol�1, PDI ¼ 1.2).

In a grafting-onto approach alkyne-functionalized PDEAEMA

was attached via click reaction to obtain coil-rod double

hydrophilic diblock copolymers.

Maleimide-functionalized initiators. Another frequently used

click reaction is the Diels–Alder reaction that becomes more and

more prominent in combination with controlled radical poly-

merizations in the field of material science.57,115–121

A widely used example is the [4 + 2] cycloaddition of

maleimide and anthracene, whereby both moieties can be used as

clickable functions attached to common ATRP initiators. The

maleimide function must be protected, since it can act as a

polymerizable monomer leading to crosslinking and a significant

decrease of clickable fidelity after polymerization.122 Therefore,

the maleimide is protected prior to the polymerization via Diels–

Alder reaction with furan that can be easily cleaved after the

polymerization in a retro Diels–Alder reaction by heating the

protected polymer. Besides, the maleimide can also undergo

Michael addition with thiols as a Michael acceptor (Entry 17,

18).35,58,66,122,123

An often used maleimido initiator is depicted in Entry 17. In

general, the maleimide was attached to 2-bromoisobutyrate in

a stepwise fashion. At first, maleic anhydride reacts with furan to

protect the double bond. Subsequently, the imide was formed

with ethanolamine under reflux and as the last step commercially

available 2-bromoisobutyryl bromide was reacted.122 This pro-

tected initiator was utilized via the postclick approach in

the homopolymerization of MMA115,117,120,121 (up to Mn ¼
3 000 g mol�1, PDI ¼ 1.1–1.2), OEGMA (up to Mn ¼
32 000 g mol�1, PDI ¼ 1.2),122 (2,2-dimethyl-1,3-dioxolan-4-

yl)methyl methacrylate (up to Mn ¼ 35 000 g mol�1, PDI ¼
1.2),122 t-butyl acrylate (tBA)115 (up to Mn ¼ 3 000 g mol�1,

PDI ¼ 1.2) and the random copolymerization of different

methacrylates66,123 containing protected alkyne, ketosol and

hostasol or rhodamineBas fluorescent dyes (Mn¼ 10 000 gmol�1,

PDI¼ 1.2). In none of these cases, side reactions were observed or

discussed. Furthermore, this initiator was used in preclick

approaches by Haddleton and coworkers for the polymerization

ofMMAat 50 �C (up to 55 000 gmol�1, PDI<1.2).64Thereby, the

alcohol-functionalized maleimide was clicked via DA reaction

with an alcohol-functionalized furan or anthracene moiety and

was subsequently reacted with 2-bromoisobutyryl bromide to

obtain clicked dual-initiators with ATRP-mediating moieties on

both click counterparts.

The anthracene-functionalized initiator depicted in Entry 19

was synthesized from commercially available 9-anthraceneme-

thanol and 2-bromoisobutyryl bromide124 and was utilized in the

homopolymerization of MMA87,124 (up to Mn ¼ 30 000 g mol�1,

PDI ¼ 1.1) and styrene121 (Mn ¼ 5 000 g mol�1, PDI ¼ 1.1).

Tunca and coworkers used the initiator shown in Entry 19 for

the preparation of block copolymers of styrene and divinylben-

zene to form multiarm star polymers with terminal anthracene

groups.125 At first, styrene was polymerized to obtain linear

anthracene-functional PS (up toMn ¼ 6 000 g mol�1, PDI ¼ 1.1).

Subsequently, the prepared PS was used as macroinitiator in the

polymerization of divinylbenzene leading to a crosslinked second

block that form the core of the multiarm star polymer (up toMw¼
75 000 g mol�1, PDI ¼ 1.5). Furthermore, anthracene functional

PS (prepared with the initiator shown in Entry 19) as well as

alkyne functional PS (prepared with the initiator shown in Entry

1) were used as macroinitiators for the ATRP of divinylbenzene

yielding multiarm star polymers with terminal alkyne and

anthracene groups (Mw ¼ 250 000 g mol�1).89 The orthogonality

of the two clickable groups were utilized in a sequential double

click reaction to selectively attach azide-functionalized PtBA and

maleimide-functionalized PMMA.

In addition, commercially available 9-chloromethylan-

thracene was applied as initiator in the polymerization of

styrene (Mn ¼ 4 500 g mol�1, PDI ¼ 1.2) using CuCl/bpy as

catalytic system in THF (Entry 20).126 Although the prepared

polymers were not yet applied in a Diels–Alder reaction, the

terminal anthracene moiety represents a potential group for

this click reaction.

Ene-functionalized initiators. Since the thiol-ene reaction is

a rather new type of click reaction, only one example of an ATRP

initiator was published so far to the best of our knowledge (Entry

21).127 Hawker and coworkers reported an alkene-containing

a-bromoisobutyrate type of initiator. The polymerization of St

and MMA was carried out yielding terminal alkene-functional-

ized polymers. In a postmodification reaction with sodium azide,

the u-bromide could be easily exchanged with an azide moiety to

form a heterotelechelic clickable polymer. The orthogonality of

the subsequent thiol-ene and CuAAC click reaction was proven

by stepwise ‘‘clicking’’, whereby the thermal thiol-ene reaction

was preferred due to possible side reactions of the alkyne during

UV-light exposure.

Pyridyl-disulfide-functionalized initiators. Another click-like

reaction that is used in combination with ATRP is the pyridyl

disulfide exchange which is important in particular in bio-

conjugation.128,129 It is a metal-free reaction and can be

considered as a click reaction in a broader sense. The reaction

is not an oxidative radical coupling reaction of thiols but

a nucleophilic exchange reaction, whereby the formed thiolate

must be a good leaving group. It is reported that pyridyl

disulfides are known to undergo direct coupling with free

thiols under ambient conditions in bioconjugation, whereby

2-pyridinethione is released as a good leaving group.34 The

pyridyl disulfide moiety can be considered as a protected thiol

and can be used in radical polymerizations. However, side

reactions in terms of chain coupling and transfer involving the

disulfide were observed at high conversions and at high

amounts of catalyst (catalyst to initiator ratio of 1 : 1). Side

reactions could be reduced by using less catalyst130 (catalyst to

initiator ratio of 1 : 0.2) or by changing the catalytic system

from CuBr/bpy to CuCl/bpy34 which decreases the amount of

free radicals.

An ATRP initiator with a pyridyl disulfide moiety is depicted

in Entry 22 and was introduced by Maynard and coworkers.34

It was used for the homopolymerization of MMA (Mn ¼
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10 000 g mol�1, PDI ¼ 1.2), N-acetyl-D-glucosamine-function-

alized methacrylate128 (Mn ¼ 13 000 g mol�1, PDI ¼ 1.1),

N-hydroxysuccinimidyl methacrylate129 (Mn ¼ 10 000 g mol�1,

PDI ¼ 1.3), 2-THP-protected HEMA129 (Mn ¼ 10 000 g mol�1,

PDI¼ 1.3), t-butyl methacrylate (tBMA)129 (Mn¼ 5 000 g mol�1,

PDI¼ 1.5), HEMA34 (Mn ¼ 16 000 g mol�1, PDI¼ 1.2–1.3), and

St129 (Mn ¼ 13 000 g mol�1, PDI ¼ 1.2).

In contrast to these postclick approaches for bioconjugation

also the preclick approaches are conducted with retention of the

bioactivity.35 As advantages of the grafting-from approach

the following issues can be pointed out: (i) The purification of the

bioconjugate from catalyst and monomer is simplified compared

to the purification from the polymer in the grafting-onto

approach and (ii) the placement of the polymer is predetermined

facilitating the synthesis and characterization.58 Herein, 2-bro-

moisobutyrate as an ATRP initiator functionalized with either

pyridyl disulfide (Entry 22) or maleimide (Entry 18) was clicked

prior to the polymerization onto the free cystein of a protein

(Bovine Serum Albumin or T4 lysozyme). Using these protein

macroinitiators NIPAM could be polymerized in situ (PDI ¼
1.3).35,58

Initiators for oxime formation. A well-known reaction in bio-

conjugation is the oxime formation of aminooxy-functionalized

compounds with carbonyl-containing proteins. Due to the

tolerance of functional groups in controlled radical polymeri-

zations, a-functionalized polymers could be synthesized using

t-butoxycarbonyl-protected (Boc) aminooxy-initiators for ATRP

as shown by Maynard and coworkers.131,132 Thereby, no termi-

nation reactions occurred during the polymerization induced by

the protected aminooxy functionalization. After polymerization

the aminooxy group can be easily deprotected with trifluoroacetic

acid. As depicted in Entry 23, the aminooxy moiety was linked via

a tetra(ethylene glycol) spacer to either 2-bromoisobutyrate for the

polymerization of methacrylates or 2-chloropropionate for the

polymerization of acrylamides. In this way, a-functionalized

polymerswereobtainedwithNIPAM(Mn¼ 16 000gmol�1, PDI¼
1.1), HEMA (Mn¼ 40 000 gmol�1, PDI¼ 1.2), and oligo(ethylene

glycol)methacrylate (OEGMA) (Mn¼ 23 000 gmol�1, PDI¼ 1.2–

1.3).131,132

4.2 Reversible addition fragmentation chain transfer (RAFT)

In principle, all types of monomers which can be polymerized

by free radical polymerization can also be polymerized by

RAFT using the appropriate type of RAFT agents, i.e.

dithiobenzoates, trithiocarbonates and xanthates.11,12 AIBN

has been the most widely used initiator for RAFT polymeri-

zation. In general, clickable moieties are attached to the

initiating fragment (R group) of the chain transfer agents. The

advantage of the R group compared to the mediating group

(Z group) is the high end-group fidelity of the resulting

polymer. The related clickable CTAs are depicted in Tables 4

to 6.

Alkyne-functionalized CTAs. Alkyne-containing CTAs are

mostly prepared by an esterification of propargyl alcohol with an

activated acid on the RAFT agent. The alternative route is using

a halogen alkyne compound and the potassium salt of the

dithioester or trithiocarbonate via a nucleophilic substitution.

The first report on click chemistry and the RAFT process for

the preparation of diblock copolymers of styrene and vinyl

acetate via polymer-polymer conjugation was provided by

Barner-Kowollik and coworkers (Mn ¼ 12 100 g mol�1, PDI ¼
1.1–1.2).133

Another combination of click chemistry and the RAFT process

was published by Hawker et al. in 2006 showing the facile

formation of clickable micelles from block copolymers of protected

acrylic acid and styrene polymerized with an alkyne-functionalized

RAFT agent (Entry 24). Azide-alkyne cycloaddition is possible

with the terminal alkyne-functionalized block copolymers.

Protection of the terminal alkyne with the trimethylsilyl group was

not necessary in this case.134

Furthermore, a similar approach to well-defined block

copolymers was reported using a TMS-protected alkyne dithio-

benzoate as shown in Entry 24. Terminal alkyne-functionalized

Table 4 Alkyne-containing chain transfer agents for RAFT (poC ¼ postclick, prC ¼ preclick)

EntryStructure Click CRP Monomer StrategyRef

24 CuAAC RAFT MA, THPA, St, NIPAM poC 133–136,143,144

25 CuAAC RAFT AM, St, MA, 4VP, NIPAM, MMA poC 137–140,145,146
prC 147

26 CuAAC RAFT St, nBA prC 142
Thiol–yne RAFT NIPAM poC 141

27 CuAAC RAFT VAc, NVP, St, nBA prC 142
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poly(styrene) was synthesized at 60 �C in a controlled way (Mn ¼
8 200 g mol�1, PDI ¼ 1.1) and it was shown that the molar mass

linearly increased with monomer conversion.133 The same RAFT

agent was used for the polymerization of an O-methacryloyl

mannose monomer resulting in an alkyne-functionalized glyco-

polymer (Mn¼ 4 300 g mol�1 and PDI¼ 1.1–1.2).135 Similarly, an

alkyne-functionalized RAFT agent bearing an unprotected

alkyne group was used for the polymerization of styrene and

Table 5 Azide-containing chain transfer agents for RAFT (poC ¼ postclick, prC ¼ preclick)

Entry Structure Click CRP Monomer Strategy Ref

28 CuAAC RAFT St, VAc, DMA poC 99,133,148

29 CuAAC RAFT St, DMA, NIPAM,
nBA, OEGA

poC 148–152,156

30 CuAAC RAFT NIPAM, DMA poC 105,157,158

31 CuAAC RAFT VAc poC, prC 135,144,153–155

Table 6 Other click-functionalized chain transfer agents for RAFT (poC ¼ postclick, prC ¼ preclick)

Entry Structure Click CRP Monomer Strategy Ref

32 CuAAC RAFT HPMAM, MMA, St,
OEGA, NIPAM

poC 159

33 PySS RAFT nBA, OEGA poC 162,36,163
NIPAM prC 160,161

34 PySS RAFT OEGA, St poC 164

35 HDA RAFT St, iBoA poC 38,39,55,165–170

36 MAdd RAFT NIPAM prC 171
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NIPAM at 70 to 80 �C. Different homopolymers were synthe-

sized in a molar mass range between 2 700 to 3 700 g mol�1 for

poly(styrene) and 4 900 to 11 000 g mol�1 for poly(NIPAM).136

Also a terminal alkyne-functionalized trithiocarbonate (Entry

25) has been used for the RAFT polymerization of different

monomers by Brittain.137,138 For example, surface-mediated

RAFT polymerization of styrene and methyl acrylate resulted in

poly(St-b-MA) with a molar mass of Mn ¼ 34 000 g mol�1.137

Furthermore, the same group reported on the modification of

silica nanoparticles using the tandem approach of RAFT poly-

merization of styrene and click chemistry.138

The chain transfer agent as shown in Entry 25 was clicked to

azido end-functionalized poly(isobutylene) and was subse-

quently used as a clicked macro-RAFT agent for the polymeri-

zation of NIPAM (Mn¼ 24 800–53 200 g mol�1, PDI < 1.1). First

order kinetic plots for the polymerization of NIPAM were

obtained and revealed that this monomer polymerizes in

a controlled way.139

The alkyne-functionalized chain transfer agent depicted in

Entry 25 was reported by another research group for the poly-

merization of 4-vinylpyridine (NVP) initiated with AIBN at

80 �C resulting in a polymer with a molar mass of 13 600 g mol�1

with a PDI value of 1.4.140

Hyperbranched polymers were prepared by thiol-yne click

chemistry by Perrier et al. using the alkyne-terminated transfer

agent shown in Entry 26. After a postmodification step to cleave

the RAFT agent into a thiol it was clicked (by UV light at room

temperature with yields over 95%) to form a styrene hyper-

branched polymer.141 Furthermore, a xanthate type of RAFT

agent (Entry 27) containing an alkyne group has been used for

the polymerization of VAc and NVP by Klumperman.142 In all

cases, xanthates were first clicked and then used as functionalized

RAFT agents in the polymerization of VAc (Mn ¼ 3 900 g mol�1,

PDI ¼ 1.2–1.3), NVP (Mn ¼ 5 400 g mol�1, PDI ¼ 1.1–1.2),

St (Mn ¼ 7 500 g mol�1, PDI ¼ 1.1–1.2) and nBA (Mn ¼
10 000 g mol�1, PDI ¼ 1.1).142 Semi-logarithmic kinetic plots

indicated controlled polymerizations using these RAFT agents.

It seems that the protection of the alkyne group is not strictly

necessary. As shown above, there are examples for both pro-

tected and unprotected CTAs demonstrating that polymers with

high end-group fidelity (> 90%) can be prepared. The tempera-

ture and the ratio between the alkyne terminated RAFT agent

and the monomer play an import role to achieve a sufficient

control over the polymerization.

Azide-functionalized CTAs. The common procedure for the

synthesis of azide-containing CTAs is the esterification of 2-

azidoethanol and an activated acid of the RAFT agent. The two

largest classes of RAFT agents (dithiobenzoates and trithiocar-

bonates) have been mostly used as azido-functionalized chain

transfer agents.

The azide moiety is used without protection during the poly-

merization, although some side reactions were described. To

decrease the amount of side reactions, low temperatures and/or

low conversions are favored thatwill be discussed in the following.

The dithiobenzoate RAFT agents depicted in Entry 28 were

used for the bulk polymerization of styrene at 60 �C and provide

a good control over the polymerization (Mn ¼ 1 900 to

5 300 g mol�1, PDI ¼ 1.1143 and Mn ¼ 3 200 to 11 000 g mol�1,

PDI ¼ 1.1133). Moreover, Sumerlin et al. using the initiator listed

in Entry 28 for the polymerization of St and DMA resulting in

azido functional PS (Mn ¼ 5 500 to 12 000 g mol�1, PDI ¼ 1.1–

1.3) and poly(DMA) (Mn ¼ 10 800 to 21 800 g mol�1, PDI ¼
1.30).148 A thionaphthoyl RAFT agent containing the azide

functionality (Entry 28) was also used for the polymerization of

styrene in bulk at 80 �C (Mn¼ 2 400 g mol�1, PDI¼ 1.1). A linear

relationship in the semi-logarithmic kinetic plot was reported

indicating that the concentration of propagating chains are

almost constant throughout the reaction.99

Among the azide-functionalized RAFT agents belonging to the

class of the trithiocarbonates, the CTA with a C12-side chain is

frequently used for the RAFT polymerization of acrylamides

(Entry 29): First order kinetic plots for this CTA indicate a

constant concentration of propagating chains.148,149 In addition,

Gondi et al. used the initiator depicted in Entry 29 with AIBN

for the controlled polymerization of styrene (Mn ¼ 5 100–

8 600 g mol�1, PDI ¼ 1.1–1.2) and DMA (Mn ¼ 5 000–

10 000 g mol�1, PDI ¼ 1.1–1.2).148 Furthermore, the same group

reported on the synthesis of poly(DMA-b-NIPAM) using this

azido-RAFT agent. In this way, telechelic polymers were synthe-

sized: PNIPAM (Mn ¼ 2 700 g mol�1, PDI ¼ 1.1–1.2), PDMA

(Mn ¼ 4 200 g mol�1, PDI ¼ 1.1) and poly(DMA-b-NIPAM)

(Mn ¼ 6 000 g mol�1, PDI ¼ 1.15).149 In addition, NIPAM was

polymerized with the initiator shown in Entry 29 at 60 �C in

a controlled way resulting in azido end-functionalized polymers

(Mn ¼ 16 300 g mol�1, PDI ¼ 1.1), which were further used for

protein coupling by the copper-catalyzed azide-alkyne cycloaddi-

tion.150 The RAFT agent depicted in Entry 29 was also applied for

the preparation of 3-miktoarm star polymers by using a combina-

tion of RAFT, ring-opening polymerization and click chemistry.

After the polymerization at 70 �C of nBA (Mn ¼ 3 500 g mol�1,

PDI ¼ 1.1), OEGA (Mn ¼ 4 800 g mol�1, PDI ¼ 1.1) or NIPAM

(Mn ¼ 4 600 g mol�1, PDI ¼ 1.1) propargyl diol was clicked to the

azide.151 Furthermore, an azide-functionalized CTA (Entry 29)

was used for the preparation of hyperbranched polymers. For this

purpose, a propagyl acrylate was clicked onto the CTA and

subsequently copolymerized with St or NIPAM.152 Perrier et al.

used a trithiocarbonate (Entry 30) for the RAFTpolymerization of

NIPAM (Mn ¼ 2 600–10 600 g mol�1, PDI ¼ 1.1), but side reac-

tions involving the azido moiety occurred such as 1,3-dipolar

cycloaddition with electron-deficient olefins, i.e. NIPAM.105 The

cycloadditions to the triazoline or to the pyrazoline (by a second

addition of NIPAM) were confirmed by high resolution mass

spectrometry.105

As depicted in Entry 31, an azide-functionalized xanthate has

been used for the polymerization of VAc (Mn ¼ 6 800 g mol�1,

PDI ¼ 1.15)135 as well as for grafting to an alkyne side-chain

functional copolymer.153 A xanthate-terminated dextran was

prepared by using click chemistry of an azido RAFT agent shown

in Entry 31. The resulting macro-CTA was used for the bulk

polymerization of VAc resulting in a block copolymer. The molar

mass linearly increased by conversion, although the polydispersity

index was increasing.154 A similar xanthate was used for the bulk

polymerization of VAc at 80 �C resulting in a broader molar mass

distribution at higher monomer conversion (PDI > 1.4).155

Heterodifunctional CTAs for orthogonal click chemistry. A

difunctional CTA with clickable moieties on both the initiating
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as well as on the mediating side was described by Stenzel and

Barner-Kowollik et al. using a RAFT agent that combines click-

able units for dipolar cycloaddition and pyridyl disulfide exchange

as two orthogonal click reactions (Entry 32). The reported RAFT

agent bears an azide and a dithiopyridine group at the R and Z

fragments, respectively. St, NIPAM, and OEGAwere polymerized

in a controlled way as indicated by kinetic investigations. In

contrast, the polymerizations of HPMAMandMMA could not be

performed in a controlled manner, since the trithiocarbonate CTA

is less suitable for methacrylates. Well-defined heterotelechelic

polymers were observed for St (Mn¼ 5 000–14 000 gmol�1, PDI¼
1.1), NIPAM (Mn ¼ 3 200–16 200 g mol�1, PDI ¼ 1.12 to 1.14)

and OEGA (Mn ¼ 7 500–12 500 g mol�1, PDI ¼ 1.1).159

Pyridyl-disulfide-containing CTAs. The chain transfer agent

depicted in Entry 33 (top) was used by Davis and coworkers for

the homopolymerization of OEGA.36 The PDI values of the

OEGA homopolymers (Mn ¼ 12 000–34 000 g mol�1) were

smaller than 1.20 for all samples and for one sample of the block

copolymerization with nBA (by increasing the conversion the

molar mass distribution broadened). The high end-group fidelity

of the pyridyl disulfide groups was indicated by 1H NMR spec-

troscopy. Furthermore, the same RAFT agent (Entry 33) was

used byDavis et al. for the polymerization ofNIPAMandOEGA

resulting in different molar masses and polydispersity

indices:160–163 POEGA (Mn ¼ 15 500–23 000 g mol�1, PDI ¼ 1.2–

1.3) and PNIPAM (Mn ¼ 5 100–18 000 g mol�1, PDI ¼ 1.2–

1.5).163 The PySS end group is often used for the preparation of

polymer bioconjugates, e.g. with BSA via the free thiol group.

Semilogarithmic kinetic plots are reported for the RAFT poly-

merization of OEGA and NIPAMwith the CTA pictured in Entry

33 (top) byBulmusandDavis showing a linear relationshipbetween

ln[[M]0/[M]t] and reaction time, which indicates a constant level of

radical concentration during the polymerization.163 The symmetric

trithiocarbonate RAFT agents depicted in Entry 34 were used for

the polymerization of OEGA at 70 �C and provide a good control

over the polymerization (Mn ¼ 4 600–23 400 g mol�1, PDI ¼ 1.2–

1.3).With these homopolymers a chain extension using styrene was

performed resulting in block copolymers of type ABA (Mn ¼
19 100–37 900 g mol�1, PDI ¼ 1.2–1.3).164

Functional CTAs for hetero Diels–Alder reactions. Besides an

alkyne or an azide moiety on the RAFT agent, the C]S double

bond (dienophile) was directly used as a clickable group for hetero

Diels–Alder reactions with dienes (Scheme 1, HDA). This

approach represents a straightforward pathway to block copoly-

mers without an additional synthesis step for a postmodification or

any other preparation step. The first study on this approach was

reported by Barner-Kowollik, Stenzel and coworkers in 2008. The

authors prepared polymer conjugates of PS polymerized by RAFT

and a diene-terminated poly(3-caprolactone). The use of these

electron-deficient dithioesters (Entry 35) allow the polymerization

of styrene in a controlled manner (Mn ¼ 2 200–2 800 g mol�1,

PDI ¼ 1.1).38 This class of RAFT agents was also used for the

polymerizations of St and isobornyl acrylate (iBoA) with different

molar masses (stopped at low monomer conversion to ensure high

end-group fidelity). All obtained polymers were well-defined and

have low polydispersity indices. The prepared polymers were

clicked via the HDA with cyclopentadienyl- or 2,4-hexadiene-

endcapped polymers.38,39,55,165–170

Functional CTAs for Michael addition. A functional CTA for

Michael addition was described by Sumerlin et al. using a RAFT

agent with a maleimide end group (Entry 36). After the modifi-

cation with BSA the RAFT polymerization of NIPAM was

performed resulting in polymer-protein conjugation with a molar

mass of 240 000 g mol�1.171

4.3 Nitroxide-mediated radical polymerization (NMP)

For nitroxide-mediated polymerizations very few examples of

clickable initiators were described up to now. In comparison to

ATRP and RAFT polymerizations, usually higher reaction

temperatures are necessary for NMP. This decreases the number

of suitable click functionalities that can be used during the

polymerization without exceeding acceptable amounts of side

reactions.

It was shown that unimolecular initiators such as phenylethyl-

alkylated 2,2,6,6-tetramethylpiperidinylnitroxide (TEMPO) and

2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) can

be functionalized without influencing the control over the poly-

merization.172–174 Thereby, the functionalization can be per-

formed in principle at the initiating as well as at the mediating

fragment of the alkoxyamine. Until now, clickable moieties are

only attached to the initiating fragment. The advantage of this

side compared to the mediating side is the high end-group fidelity

of the resulting polymer. This is caused by the nature of the NMP

process: The incorporation of a functional group at the initiating

chain end is done in one step, whereas the incorporation of

a certain functionality at the mediating chain end contains many

reaction steps until the final polymer is formed, which increases

the probability of side reactions.

The general synthetic strategy towards a functional unim-

olecular initiator is the radical coupling reaction of TIPNO or of

the commercially available TEMPO with a functionalized vinyl

compound activated by a manganese(III) salen complex

(Jacobsen’s reagent).175 The related clickable initiators for NMP

are shown in Table 7.

Alkyne-functionalized initiators. In Entry 37 an alkyne-func-

tionalized alkoxyamine based on PhEt-TIPNO is shown that was

synthesized according to the general radical coupling of TIPNO

and 4-(trimethylsilylethynyl)styrene that was obtained by

Sonogashira reaction of 2-bromostyrene and trimethylsilyl

acetylene.176

The alkyne was protected with the TMS group to reduce the

possible side reactions under polymerization conditions: (i) chain

transfer by hydrogen abstraction from the alkyne as well as

polymerization along the triple bond leading to cross-

linking76,77,176,177 and (ii) addition of nitroxide radicals to the triple

bond.178 It can be noted that even a small loss of nitroxide during

polymerization has a large impact on the controlled character of

the polymerization, since it shifts the equilibrium towards the free

propagating radical resulting in a significant increase in termina-

tion and transfer reactions in particular at higher conversions.

The protected initiator (Entry 37) was used in the homo-

polymerization of styrene resulting in a-functionalized clickable

PS (Mn ¼ 24 000 g mol�1, PDI ¼ 1.1) after deprotection with

tetrabutylammonium fluoride (TBAF). In contrast to ATRP, no

uncontrolled deprotection of the TMS-alkyne was noticed

1574 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010
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during the polymerization. Furthermore, a combination of

ATRP and NMP with the same initiator is possible as demon-

strated by Tunca and Hizal et al.45,179–181 Although both tech-

niques are radical polymerizations and, hence, might interfere

with each other, they can be applied subsequently: (i) NMP of

styrene can be conducted without affecting the ATRP initiator in

the absence of any metal catalyst45,180,181 and (ii) ATRP of

methacrylate can be conducted at lower temperature (60 �C) at
which the nitroxide is still inactive and not able to mediate

radical propagation.179 Entry 38 shows such an alkyne-func-

tionalized multifunctional initiator for ATRP and NMP.45,179–181

The structure contains (i) 2-bromoisobutyrate as mediator for

the ATRP polymerization of MMA, (ii) TEMPO as mediator for

NMP polymerization of styrene and an unprotected alkyne,

whereas the fragments are linked via ester groups.

The unprotected alkyne is thermally stable up to 125 �C and

the TEMPO-mediated polymerization of styrene seems not to

interfere with the unprotected alkyne. Apparently, even after

17 h at 125 �C the polymerization was controlled and no

significant loss of alkyne was observed for the resulting PS-

macroinitiator (Mn¼ 10 000 g mol�1, PDI¼ 1.2) as judged by 1H

NMR spectroscopy and SEC measurements of the subsequent

clicked structure.181 By contrast, the ATRP of MMA was kept

short in every case (30 min at 60 �C) to prevent significant

amounts of side reaction with the catalytic system resulting in

PMMA macroinitiator (Mn ¼ 6 000 g mol�1, PDI ¼ 1.2).179

Table 7 Clickable initiators for NMP (poC ¼ postclick, prC ¼ preclick)

Entry Structure Click CRP Monomer (Abbr./Entry) Strategy Ref

37 CuAAC NMP St poC 176

38 CuAAC NMP St poC 179–181
ATRP MMA

AAC NMP St poC 45
ATRP MMA

39 CuAAC NMP St poC 182–184
ROP 3-CL

AAC NMP St poC 45
ROP 3-CL

40 CuAAC NMP – – 185

41 CuAAC NMP – – 175

42 CuAAC NMP St, tBA poC 174
NMP St, NIPAM, nBA prC 176,188

43 DA NMP St poC 118
ATRP tBA
NMP St prC 119,190
ATRP tBA
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However, the amount of side reactions is negligible in most cases

due to the low concentration of alkyne-containing initiator.

Furthermore, alkyne-functionalized NMP initiators are

combined with other controlled polymerization techniques by the

incorporation of, e.g., alcohol groups for the ring-opening poly-

merization of 3-caprolactone (Entry 39). These polymerization

techniques do not interfere with each other and can be applied

simultaneously182,183 or subsequently.45,184 For the consecutive

procedure, first the ROP of 3-CL with the initiator depicted in

Entry 39was conducted at 110 �C for 2 h using Sn(Oct)2 as catalyst

(Mn ¼ 4 000 g mol�1, PDI ¼ 1.1) followed by NMP of styrene at

125 �C for 15 h (Mn ¼ 19 000 g mol�1, PDI ¼ 1.3).45,184 On the

other hand, in a simultaneous one-pot approach St and 3-CL were

heated with Sn(Oct)2 for 22 h at 120 �C (Mn ¼ 12 000 g mol�1,

PDI ¼ 1.1).182 For all examples, copolymers of PCL-b-PS with an

alkyne as clickable function at the junction point were achieved,

whereby the alkyne was not protected even in the polymerization

at 120 �C for 22 h. Hence, the alkyne must be stable under the

applied polymerization conditions of NMP and ROP.

In addition, since both polymerization techniques do not

interfere with the azide-alkyne cycloaddition, 3-miktoarm star

terpolymers can be constructed by conducting ROP of 3-CL

(with Sn(Oct)2), NMP of St (with initiator shown in Entry 39)

and either simultaneously (one-pot/one-step) or subsequently

(one-pot/two-step) clicking an azide-functionalized polymer with

CuBr/PMDETA as catalyst.183 Thereby, 3-arm stars of PEG-

PCL-PS (Mn ¼ 14 000 g mol�1, PDI ¼ 1.3) and PMMA-PCL-PS

(Mn ¼ 14 500 g mol�1, PDI ¼ 1.2) with the one-pot/one-step

technique and stars of PtBA-PCL-PS (Mn ¼ 16 000 g mol�1,

PDI ¼ 1.1) and PEG-PCL-PS (Mn ¼ 15 000 g mol�1, PDI ¼ 1.1)

in the one pot/two step approach could be synthesized, respec-

tively.183

Another type of an alkyne-functionalized macroinitiator

(Mn ¼ 7 700 g mol�1, PDI ¼ 1.1–1.2) is depicted in Entry 40,

whereas PiBoA is attached on both the initiating and the medi-

ating fragment of the alkoxyamine.185 The macroinitiator was

obtained by a nitrone-mediated radical coupling reaction of

activated ATRP-made PiBoA (Mn ¼ 4 300 g mol�1, PDI ¼ 1.2)

in the presence of an alkyne-functionalized nitrone. To the best

of our knowledge, this macroalkoxyamine had not yet been used

as initiator in NMP. Nevertheless, it seems to be a potential

candidate, since in a similar approach polystyrene midchain-

functionalized with a parent alkoxyamine (not including the

alkyne moiety) was used as initiator in NMP of St, n-BA

and NIPAM for the chain extension towards ABA triblock

copolymers.186,187

Azide-functionalized initiators. One of the first azide-func-

tionalized structures that is capable for a controlled radical

polymerization was published in 1998 by Hawker and

coworkers.175 In the common procedure (manganese-catalyzed

radical coupling of nitroxides with styrenics for the synthesis of

alkoxyamines) p-chloromethyl styrene was trapped with the

commercial available TEMPO radical after radical activation

and was subsequently reacted with sodium azide to yield an

azide-functionalized initiator (Entry 41). However, this initiator

was up to now to the best of our knowledge neither used in

polymerizations nor used in combination with alkyne-azide

cycloadditions. In this particular case, the azide was used to gain

an amino-functionalization by reduction with lithium aluminium

hydride.

In a similar approach the p-(azidomethyl)phenylethyl-TIPNO

was synthesized, whereby the p-chloromethyl styrene was func-

tionalized with the azide prior to the radical coupling with

TIPNO (Entry 42). The initiator was used in the polymerization

of styrene (Mn ¼ 9 000 g mol�1, PDI ¼ 1.1 after 3 h, 120 �C) and
n-butylacrylate (Mn ¼ 6 500 g mol�1, PDI ¼ 1.2–1.3 after 13 h at

120 �C), whereby the polymerization was controlled and no side

reactions of the azide were discussed.174

In contrast, Voit et al. discussed that the polymerization of

styrene with the azido-functionalized initiator depicted in Entry

42 failed due to the side reactions that were assigned to the

cyclization of the azide with the vinylic double bond of the

monomer.176 Since the azide group is not thermally stable,49

either postmodification or preclick approaches could be

successfully utilized to prepare the a-functionalized polymers. In

the postmodification, p-(chloromethyl)phenylethyl-TIPNO was

used in the polymerization of styrene and the chloro group was

subsequently converted with sodium azide into azide (N3-PS:

Mn ¼ 8 000 g mol�1, PDI ¼ 1.2). Following the preclick

approach, an alkyne-functionalized moiety (Cbz-protected

adenine derivative) was clicked onto the azide prior to the

polymerization of styrene resulting in a-functionalized PS (Mn ¼
52 000 g mol�1, PDI ¼ 1.2).176

To study the steric and electronic influence of the triazole

moiety for the initiation quality of the alkoxyamine shown in

Entry 42, two different alkoxyamines were synthesized starting

from 4-(chloromethyl)phenylethyl-TIPNO, whereby the chloro

group was substituted either by azide or by 4-azidobenzoate

to vary the distance of the azide to the alkoxyamine skel-

eton.188 Polymerization of NIPAM using these azido-func-

tionalized alkoxyamines as initiators failed in both cases.

Therefore, the azido group was functionalized via 1,3 dipolar

cycloaddition with either a 1,2-dihydroxyalkyl moiety, a bar-

bituric acid moiety or a phenyl moiety. The initiators where

the triazole was directly bound to the alkoxyamine group

showed poor initiation. In contrast, the alkoxyamine with

a rigid spacer revealed good control over the polymerization

of NIPAM (Mn ¼ 5 000 g mol�1, PDI ¼ 1.2) and n-BA

(Mn ¼ 6 000 g mol�1, PDI ¼ 1.2). The poor initiation effi-

ciency in the first case was partly ascribed to an electronic

influence but mostly to intramolecular hydrogen bonding

between the propagating radical and the barbituric acid that

hindered propagation. This was sterically prevented with the

rigid spacer in the second case. In these preclick cases the

azide moiety of the initiator described in Entry 42 opens

the field towards versatile functionalized initiators via the

facile incorporation of functional groups.

Functional initiators for Diels–Alder reactions. Besides an

alkyne moiety also anthracene or furan-protected maleimide

were attached to ATRP-NMP initiators as clickable groups for

Diels–Alder reactions (Entry 43). The synthesis of these mikto-

functional initiator starts from 2,2-bis(hydroxymethyl)propionic

acid as the basic framework,189 where the ATRP-initiating

fragment (2-bromoisobutyrate), the NMP fragment (TEMPO)

and the clickable moiety (protected maleimide or anthracene)

were incorporated by esterification reactions.118,119,190
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The anthracene-functionalized mikto-initiator depicted in

Entry 43 was only used in the preclick approach, whereby the

Diels–Alder reaction was conducted prior to the NMP of styrene

followed by ATRP of tBA. With this strategy, different block

copolymers were obtained: (i) H-shaped terpolymers119

(PS)(PtBA)-PEO-(PtBA)(PS) (Mn ¼ 18 000 g mol�1, PDI ¼ 1.3)

and (PS)(PtBA)-PPO-(PtBA)(PS) (Mn ¼ 31 000 g mol�1, PDI ¼
1.3) and (ii) 3-miktoarm star polymer190 PEG-PS-PtBA (Mn ¼
18 000 g mol�1, PDI ¼ 1.3). The protected maleimide-function-

alized miktoinitiator described in Entry 43 was initially used in

the ATRP of tBA (Mn ¼ 4 000 g mol�1, PDI ¼ 1.3) and subse-

quently ‘‘clicked’’ with anthracene-functionalized PCL prior to

the NMP of styrene to obtain a 3-miktoarm terpolymer (PCL-

PtBA-PS) (Mn ¼ 40 000 g mol�1, PDI ¼ 1.7).118 The high poly-

dispersity index was ascribed to a loss of TEMPO during the

Diels–Alder reaction at 100 �C, indicated by a shoulder in the

SEC trace at lower molar masses.

The preclick approach for the anthracene or maleimide moiety

in combination with NMP should be used, since the maleimide

and anthracene moieties cause side reactions under the poly-

merization conditions of NMP. Hence, to the best of our

knowledge no example for the postclick approach is yet reported.

5. Clickable monomers

Clickable monomers can be used to synthesize pendant func-

tionalized polymers (Scheme 4) that can be easily modified in

a grafting-onto approach via click chemistry. Thereby, the

clickable monomer can be homopolymerized or copolymerized

to obtain versatile random-, block- or comb polymers. Most

widely used in controlled radical polymerization processes are

MMA and St derivates.

The polymerization of these click-functionalized monomers

represents often a synthetic challenge, because the clickable unit

as a reactive group is frequently in conflict with the radical

polymerization conditions. In contrast to the initiator approach

a higher amount of side reactions involving the clickable func-

tionality is expected, which is caused by the higher concentration

of the monomer used during the polymerization process

compared to the initiator. This fact is in particularly pronounced

for bulk polymerizations or for side reactions involving besides

the clickable unit other parts of the monomer, e.g. the vinyl

group of azide-containing monomers, where cycloaddition

between the double bond and the azide can occur. To circumvent

such side reactions, either the clickable unit has to be protected,

or polymerization time or temperature have to be reduced.

However, the degree of functionalization is much higher in this

approach compared to the initiator one. Clickable initiators

would provide polymers only with terminal functionalities,

which would be one or two for linear polymers and equal the

number of arms for star-shaped polymers. In contrast, homo-

polymerization of a clickable monomer would yield a polymer

with functionalities as many as the number of repeating units.

The degree of functionality can be decreased by copolymeriza-

tion, which also decreases possible side reactions that are caused

by the clickable monomers. In this section we discuss clickable

monomers according to the functional groups, i.e. alkyne, azide,

diene, thiol, para-fluoro and others. An overview over the

clickable and clicked monomers is given in Tables 8–10.

5.1 Alkyne-containing monomers

The synthesis of alkyne-functionalized monomers is straight-

forward, whereby most synthetic routes involve the esterification

of (meth)acryloyl chloride with propargyl alcohol or propargyl

amine for (meth)acrylates3,66,153,191,192 and acrylamides,95,193

respectively. The propargyl derivatives can be protected by the

reaction with trimethylsilyl chloride and 1,8-dia-

zabicyclo[5.4.0]undec-7-ene catalyzed by silver chloride. The

synthesis of alkyne-functionalized styrene is often accomplished

via the Sonogashira reaction of 4-bromostyrene with (trime-

thylsilyl)acetylene.60,193–195

The protection of acetylene-functionalized monomers by the

alkylsilyl group is of prime importance, because the terminal

alkyne is known to be chemically196 and thermally197 not stable

under the polymerization conditions required for the CRP

techniques.194 However, some researchers have used unprotected

alkynes and indeed demonstrated that the terminal alkyne

undergoes side reactions such as (i) radical addition to the triple

bond,193 (ii) chain transfer,198 (iii) complexation of the terminal

triple bond to copper-based ATRP catalysts and insertion reac-

tions leading to insoluble crosslinked networks.77,193,199,200 In one

of these reports, Matyjaszewski and coworkers reported that the

ATRP of unprotected propargyl methacrylate was hardly

controllable (PDI values > 3), due to the involvement of the

acetylene moiety during the catalyzed radical process.77

Styrenes. The first report on alkyne-functionalized styrene was

reported in 2005 by Hawker and coworkers using protected 4-

(trimethylsilylethynyl)styrene (St-C^C-TMS) (Entry 44) in

nitroxide-mediated polymerizations for the preparation of co-

and terpolymers.193 By utilizing the PhEt-TIPNO alkoxyamine

as unimolecular initiator, poly(St-co-St-C^CH) (Mn ¼
47 000 g mol�1, PDI ¼ 1.2), poly(St-C^CH-co-DMAM) (Mn ¼
40 000 g mol�1, PDI ¼ 1.2) and poly(St-r-St-C^CH-r-HEMA)

(Mn ¼ 32 000 g mol�1, PDI ¼ 1.2) could be prepared in

a controlled manner, whereby the alkyne monomer was incor-

porated into the polymers up to 10%. Without TMS-protection,

significant amounts of crosslinked polymers at a higher content

of alkyne-functionalized monomer or at high conversion were
Scheme 4 Schematic representation of the strategies via clickable

monomers.
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observed. The efficiency and the orthogonality of the alkyne-

azide click reaction were proven by one-pot functionalization

either in a cascade or in a simultaneous approach. In related

work, Voit et al. synthesized poly(St-r-St-C^CH-r-GMA) (Mn

¼ 30 000 g mol�1, PDI ¼ 1.3) random terpolymers via NMP

using the TMS-protected alkyne monomer. The deprotection

with TBAF was performed without affecting the glycidyl moiety

resulting in a pendant functionalized terpolymer bearing two

orthogonal clickable moieties.60

Furthermore, St-C^CH was used for the preparation of

poly(tBOSt-b-[St-co-St-C^CH]) (Mn ¼ 60 000 g mol�1, PDI ¼
1.3–1.4) and poly(pHSt-b-[St-co-St-C^CH]) (Mn ¼ 26 000 g

mol�1, PDI ¼ 1.2) diblock terpolymers which were applied in

block copolymer lithography.195,201

In addition, St-C^C-TMS was used in the synthesis of

amphiphilic diblock terpolymers consisting of a hydrophilic

poly(acrylic acid) block and a hydrophobic copolymer poly(St-co-

St-C^CH).194 Since acrylic acid can not be directly polymerized in

a sufficiently controlled way with NMP202 – due to decomposition

of the nitroxide under acidic condition – one can use the protec-

tion/deprotection strategy. First, a PtBA-macroinitiator was

applied in the nitroxide-mediated polymerization of St and St-

C^C-TMS leading to poly(tBA-b-[St-co-StC^CTMS]) (Mn ¼
32 000 g mol�1, PDI ¼ 1.2–1.3). However, deprotection of the

PtBA block to PAA leads to a significant loss of alkyne func-

tionality even of the protected one. Therefore, tetrahydropyran

acrylate (THPA) was used which can be deprotected under milder

conditions, but this compound was not stable under the temper-

ature required for NMP. The P(THPA) macroinitiator could be

polymerized via RAFT at 70 �C and was used in the copolymer-

ization of styrene and 4-(trimethylsilylethynyl)styrene. Following

the deprotection amphiphilic block copolymers PAA-b-[PS-co-

PSC^CH] (Mn ¼ 16 000 g mol�1, PDI ¼ 1.2) were obtained that

are capable to form micelles with a clickable hydrophobic

core.194,203

In the discussed cases protected St-C^CH was incorporated

up to 20% in a statistical copolymerization with styrene. This

might be sufficient for the specific attachment of functional

groups by clicking, but for the tailoring of macroscopic proper-

ties homopolymers with pendant alkyne groups seem to be more

promising. Voit and coworkers showed that by increasing the

amount of protected 4-ethynylstyrene the control of nitroxide-

mediated polymerization with PhEt-TIPNO as unimolecular

initiator is lost indicated by polydispersity indices around 1.9 and

large differences of the calculated molar masses to the observed

ones for the homopolymer of poly(St-C^C-TMS).195 The authors

assigned the loss of control to a shift of the active-dormant species

equilibrium towards the active side caused by sterical hindrance

and also to the recombination of the nitroxide and the TMS group

of the propagating 4-(trimethylsilylethynyl) styrene radical. This

assumption is supported by the fact that a controlled polymeri-

zation is obtained if an excess of free nitroxide is added to the

polymerization medium. This shifts the equilibrium back to the

dormant side and results in the synthesis of well-defined poly(St-

C^C-TMS) (Mn ¼ 3 500 g mol�1, PDI ¼ 1.2).195

To circumvent the sterical hindrance during the polymerization

as well as to provide enhanced accessibility to the alkyne for the

postmodification, 4-(30-trimethylsilyl-ethynylmethoxy)styrene (St-

OMe-C^CTMS) containing a methoxy group as a flexible spacer

was investigated (Entry 45). The synthesis of the monomer was

performed by a substitution reaction of 4-hydroxystyrene with

propargyl bromide and subsequent protection with TMS. The

homopolymerization proceeded in a controlled manner without

the necessity of any free nitroxide (poly(St-OMe-C^CTMS):

Mn ¼ 6 000 g mol�1, PDI ¼ 1.2–1.3). Besides, the TMS group is

labile under basic and acidic conditions prohibiting the use of

acetic acid as a polymerization enhancer. Moreover, the TMS

group is thermally labile and a partial loss of the protecting group

was observed for the reaction at 120 �C. Unfortunately, the more

stable t-butyldimethyl-silyl (TBDMS) or triisopropylsilyl (TIPS)

protected monomers could not be synthesized. With St-OMe-

C^CTMS as monomer in hand the following diblock

copolymers were synthesized: poly(tBOSt-b-St-OMe-C^CH)

(Mn ¼ 52 000 g mol�1, PDI ¼ 1.2), poly(AcOSt-b-St-OMe-

C^CH) (Mn¼ 21 000 g mol�1, PDI¼ 1.4) as well as poly(pHSt-b-

St-OMe-C^CH) (Mn ¼ 16 000 g mol�1, PDI ¼ 1.2).195,201

Not only nitroxide-mediated polymerization but also the

RAFT polymerization technique was used for the preparation of

diblock copolymers poly(St-b-St-OMe-C^CH) with a trithio-

carbonate RAFT agent.201 Although alkyne-functionalized

ATRP initiators are widely used for the polymerization of styrene,

no alkyne-functionalized styrene derivative was polymerized via

ATRP so far. A reason for that might be the higher polymeriza-

tion temperature for the ATRP of styrene compared to other

monomer classes promoting side reactions. It can be noted that the

partial loss of the trimethylsilyl-protecting group at elevated

temperatures leads to a higher amount of terminal acetylene

compared to the initiator approach, which might cause a signifi-

cant loss of control due to interference with the copper catalyst.

Acrylates. There are only a few examples using propargyl

acrylates in CRP. A possible reason for that is the less control-

lable polymerization of acrylate monomers which can undergo

some side reactions due to the formation of mid-chain radicals in

poly(acrylates) (intermolecular transfer of radicals) resulting in

branching and scission.204The triple bond at the monomer makes

it even more difficult to gain contol over the molecular structure.

The unprotected propargyl acrylate depicted in Entry 46 was

copolymerized with acrylic acid at 60 �C by Caruso et al. using

the RAFT method with a trithiocarbonate CTA resulting in

a broad molar mass distribution (Mw¼ 86 000 g mol�1 and a PDI

value of 2.2).205 In addition, a similar copolymer was prepared

using a trithiocarbonate CTA yielding a copolymer with a molar

mass of Mn ¼ 53 000 g mol�1 and a polydispersity index of 1.9.

The broad mass distribution is attributed to branching of the

unprotected alkyne-functionalized monomer.206

Furthermore, TMS-protected propargyl acrylate was

randomly copolymerized with tBA using PhEt-TIPNO as initi-

ator for NMP by Malkoch and coworkers, but no detailed

discussion was provided regarding the obtained molar masses

and polydispersity of the isolated polymers.193

Methacrylates. The TMS-protected propargyl methacrylate

(Entry 47) can be polymerized under usual polymerization

conditions for CRP (60–85 �C).3,153,191,192,207,208 This type of

monomer was mostly polymerized by ATRP or RAFT. In the

case of RAFT polymerization a dithiobenzoate as chain transfer

agent and AIBN as radical source was used. It is reported that for
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the homopolymers molar masses up to 10 000 g mol�1 are

achievable.153 The polymerizations were carried out for 3 to 16 h

with protection of the terminal alkyne group resulting in well-

defined polymers (PDI < 1.3). Also some block and random

copolymers were prepared with different comonomers (MMA,

OEGMA).208 A kinetic study for propargyl methacrylate (Entry

47), including semilogarithmic kinetic plots of the RAFT poly-

merization of the propargyl methacrylate and the silyl-protected

monomer was reported by Barner-Kowollik and coworkers. The

authors demonstrated that the protected monomer polymerizes

at a much lower rate than the nonprotected monomer.153,191

Another RAFT copolymerization of the unprotected methacry-

late (Entry 47) and MMA or GMA showed that the PDI values

increase (PDI ¼ 1.6–2.0, Mn ¼ 15 000–25 000 g mol�1) and that

under these polymerization conditions side reactions such as

transfer and insertion reactions occur.199

TMS-protected propargyl methacrylate was also polymerized

by ATRP. The first contribution was reported by Haddleton and

coworkers using CuBr/N-ethyl-2-pyridylmethanimine as cata-

lytic system. Kinetic studies indicated a living process and SEC

measurements of the resulting polymers revealed a good control

over the polymerization (PDI < 1.3).3 This monomer is also used

for the synthesis of block copolymers with poly(3-caprolactone)

as macroinitiator. A block copolymer (Mn ¼ 14 100 g mol�1,

PDI ¼ 1.2) was obtained after the deprotection with TBAF and

followed by the alkyne-azide cycloaddition leading to a func-

tional graft copolymer.192

Drockenmuller et al. reported an in situ approach of ATRP

polymerization and copper-catalyzed azide-alkyne click reaction

using propagyl methacrylate as clickable monomer. The resulting

functionalized copolymers revealed a broader molar mass

distribution (PDI ¼ 1.3–2.1) due to the use of unprotected

alkyne.209

Acrylamides. The protected alkyne-functionalized acryla-

mide shown in Entry 48 is polymerized by ATRP using

CuBr/Me6TREN as catalytic system and dansyl-bromide as

initiator at 0 �C with NIPAM as comonomer (Mn ¼ 13 900–

19 600 g mol�1, PDI ¼ 1.2–1.3).95

Additionally, the protected acrylamide was copolymerized

with (N,N-dimethyl)acrylamide and TMS-protected 2-(hydroxy-

ethyl)methacrylate via NMP using PhEt-TIPNO as initiator to

prepare water-soluble random terpolymers.193

Acrylonitrile. The acrylonitrile monomer (AN) can be used

without further functionalization for click reactions (Entry 49)

since it contains nitrile groups which can be used for 1,3 dipolar

cycloadditions with azides. Since this cycloaddition belongs to

the list of reactions defined as click reaction by Sharpless and

coworkers,13 acrylonitrile can be in principle considered as

a clickable monomer.

Acrylonitrile was polymerized via ATRP using 2-bromopro-

pionitrile as initiator and CuBr/bpy as catalytic system by Du

Prez and Matyjaszewski. The initiator contains the monomer

group as initiating fragment that posses equal radical reactivity

as the monomer itself providing fast initiation.48 Thereby,

poly(acrylonitrile) PAN (Mn¼ 40 000 gmol�1, PDI¼ 1.1) as well

as poly(AN-b-St) (PDI ¼ 1.1) and poly(AN-r-St) (Mn ¼
8 500 g mol�1, PDI ¼ 1.1) were prepared. For the block

copolymer, first a PAN-macroinitiator was prepared followed by

the polymerization of styrene as the second block to ensure high

initiating rates and, hence, a narrow molar mass distribution.48

In addition, acrylonitrile was polymerized via NMP using

TEMPO/dibenzoylperoxide (BPO) as bimolecular initiator for

the polymerization of the random copolymer poly(St-r-AN)

(Mn ¼ 10 000 g mol�1, PDI ¼ 1.3–1.4) and the diblock polymer

poly(St-b-[St-r-AN]) (Mn ¼ 87 000 g mol�1, PDI ¼ 1.2) that was

initiated with a PS-macroinitiator.210 Thereby the control

increases with the content of acrylonitrile in the acrylonitrile/

styrene feed.

Regarding possible postmodifications, it should be noted that

the pendant nitrile group in polymeric materials is up to now

efficiently modified only to the corresponding tetrazole ring using

the reaction with sodium azide and zinc chloride as catalyst in

DMF 120 �C for 40–50 h.48,210 Herewith, the nitrile-azide

cycloaddition is used to modify macroscopic properties rather

than to place functional groups or to attach polymeric side

chains.

The reason for this limitation lies within the nature of the ring

formation of the tetrazoles: To allow an efficient ring formation

under mild conditions, the azide should not be sterically hindered

(which limits the use of polymeric azides), while the nitrile group

has to be electron-poor (e.g. tosylnitrile), which is not sufficiently

fulfilled for the nitrile group along the backbone of (poly)-

acrylonitrile.49,211,212

However, with the efficient modification to the corresponding

tetrazole ring the macroscopic properties of the prepared diblock

copolymers changes: (i) solubility and swellability in protic

solvents increase, (ii) the morphology changes, since the tetrazole

formation increases the incompatibility between the blocks210

and (iii) the temperature stability for the tetrazole-modified

material significantly decreases (by 60–120 �C) compared to the

nitrile-based polymer.48

Vinylacetylene. The TMS-protected vinylacetylene (Entry 50)

was polymerized using the ATRP process by Matyjaszewski.213

This monomer was copolymerized with MMA using CuBr/2,20-
bipyridine catalyst and ethyl 2-bromoisobutyrate as initiator in

anisole. Different environmental parameters such as temperature,

time or ratio of copper to ligand to initiator were varied resulting

in different polymers (Mn ¼ 5 000–12 000 g mol�1, PDI ¼
1.1–1.5).213

Alkyne-functionalized maleimide (Entry 51) will be discussed

in Section 6.1.2.7.

5.2 Azide-containing monomers

Azide-containing monomers based on (meth)acrylates or

(meth)acrylamides are prepared by an esterification of 2-azi-

doethanol or 3-azidopropylamine with a (meth)acryloyl chloride

or an activated acid of (meth)acrylic acid.77,90,108,217–220 In addition,

the route starting from the 2-hydroxyethyl methacrylate to the

corresponding azide via the Mitsunobu reaction is described.221 In

the case of azide-functionalized styrene, the alkyne functionality is

incorporated via substitution reaction of 4-vinylbenzyl chloride

with sodium azide.83

1580 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010
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The used temperature represents an important criterion for the

controlled polymerization of these monomers. The instability of

the azide group at elevated temperatures is described, resulting in

(i) the decomposition with evolution of nitrogen to form reactive

nitrenes that undergo insertion reactions49,217,222–225 or (ii) cyclo-

addition with the monomer to form triazolines.49,105,108,226,227

Both side reactions result in the formation of a crosslinked

polymer. The higher concentration of azide groups in the

Table 9 Azide-containing clickable monomers (poC ¼ postclick, simult ¼ simultaneous)

Entry Structure Click Strategy CRP Initiator/CTA (Abbr./Entry) Comonomers Ref

52 CuAAC simult ATREP 5 St 83

53 CuAAC poC ATRP EBiB, TosCl, MMA, DMAEMA, tBMA 77,90,209,220,221
RAFT CDB, CBDN, CPADB MMA 108,207,219,221

54 CuAAC poC RAFT BICDT, CPDB MMA, MA, St 217

55 CuAAC poC ATRP 3 NIPAM 95
RAFT CPADB NIPAM, DMA 218

Table 10 Other click-functionalized monomers (poC ¼ postclick)

Entry Structure Click Strategy CRP Initiator/CTA Comonomers Ref

56 DA poC RAFT BDAT St 228

57 DA poC ATRP EBiB, BBiBE MMA, EHA 57,229–232

58 Thiol ene poC RAFT MCPMDB St 127

59 Thiol ene poC RAFT CPADB – 234

60 Thiol ene poC ATRP EBiB MMA 127

61 Thiol para-fluoro, Amine para-
fluoro

poC NMP Blocbuilder�, PhEt-TIPNO St 31,32

62 Thiol para-fluoro poC ATRP PEB St 216

63 PySS poC RAFT CPADB HPMAM 235,236

64 RO poC NMP

TIPNO

St, MA 9,60
RO poC ATRP EBiB tBMA, MMA 59,114,244
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polymerization solution (1–2 M or bulk) compared to the initi-

ator approach constrains the polymerization conditions of CRP

to lower temperatures to gain sufficient control over the poly-

merization.77,90,95,108,217,219,220 Nonetheless, there are also two

reports published using normal ATRP conditions (65–70 �C)
claiming that the polymerization proceeded in a controlled

manner.207,218 Regarding the orthogonality of ATRP and azide-

containing monomers, it is known for azides to undergo the

Staudinger reaction, i.e. reduction to amines, in the presence of

phosphines that are typically used as ligand for iron complexes as

the ‘‘new generation’’ catalytic systems in ATRP.6,15,49

Styrenes. One example for the simultaneous click chemistry

and atom transfer radical emulsion polymerization (ATREP) is

known for 4-vinylbenzyl azide (Entry 52).83 This method allows

the preparation of crosslinked PS nanoparticles by copolymeri-

zation of 4-vinylbenzyl azide and styrene and an alkyne-con-

taining ATRP initiator with CuBr/PMDETA as the catalytic

system.

Methacrylates. A kinetic study, including semi-logarithmic

kinetic plots of the RAFT polymerization of an azide methac-

rylate derivative (Entry 53) is reported by Benicewicz at different

temperatures and at different monomer conversions. The pseudo-

first-order kinetic plots are reported for 40 �C as well as 30 �C
showing a linear relationship between ln[([M]0/[M]t)] and time,

which indicates a constant level of radical concentration during

the polymerization. At higher temperature (50 �C) a shoulder at

higher molar masses could be observed which was caused by

coupling or branching of the polymer chains. At 30 �C it was

shown that the azide monomer can be polymerized by RAFT with

a dithionaphthalate RAFT agent (Mn ¼ 21 500 g mol�1, PDI ¼
1.1).108 Benicewicz and coworkers also reported that the RAFT

polymerization of 6-azidohexyl methacrylate showed a linear

pseudo-first-order kinetic plot at 30 �C. It was noted that with

higher monomer conversion (25%) a high molar mass shoulder

was observed by SEC measurements.219 2-Azidoethyl methacryl-

ate (Entry 53) was used for the copolymerization with MMA via

ATRP or RAFT. The copolymer prepared by ATRP had a molar

mass of Mn ¼ 5 400 g mol�1 and a PDI value of 1.2, whereas the

copolymer prepared by RAFT had a molar mass of Mn ¼
7 100 g mol�1 and a PDI value of 1.4. These copolymers were used

for further functionalization with cyclooctyne derivatives (copper-

free clicking).221The 4-azidophenyl methacrylate (Entry 54) can be

copolymerized with different monomers in a controlled manner at

room temperature by using a carbodithioate or a dithiobenzoate

as initiator. Methyl acrylate, methyl methacrylate and styrene

have been used as comonomers. The resulting copolymers were

well-defined (PDI < 1.3) and in a molar mass (Mn) range between

3 000 and 16 000 g mol�1.217

With the azide-functionalized monomer depicted in Entry 53

also a tandem click chemistry/ATRP procedure was applied by

Drockenmuller et al. using CuBr/bpy as the catalytic system and

TosCl as the initiator. Different copolymers with MMA were

prepared (Mn < 22 400 g mol�1, PDI ¼ 1.5).209

Acrylamides. There have been two reports published on the

controlled radical polymerization of azido acrylamides (Entry 55).

The first one is reported by Chang et al. for ATRP with a dansyl-

labeled initiator and CuBr/Me6TREN as catalyst. The polymeri-

zation was performed with NIPAM as comonomer at 0 �C to

avoid side reactions (Mn ¼ 9 500–13 300 g mol�1, PDI ¼ 1.2).95 In

another study, the authors polymerized 3-azidopropylacrylamide

by RAFT with DMAM and NIPAM, where 4-cyanopentanoic

acid dithiobenzoate was used as CTA and 4,40-azobis(4-cyano-
pentanoic acid) as initiator to yield random copolymers (Mn ¼
14 700 g mol�1, PDI ¼ 1.2).218

5.3 Monomers for Diels–Alder reactions

There are only a few examples for clickable monomers (dien-

ophile or diene containing ones) that are suitable for Diels–Alder

reactions. The furfuryl methacrylate is commercially available

and therefore accessible for the controlled polymerization

without further functionalization.

Acrylates. One report was published by Barner-Kowollik and

Stenzel et al. using a hexa-2,4-dienyl acrylate (Entry 56), which

was polymerized by RAFT using a trithiocarbonate chain

transfer agent and styrene as comonomer (Mn ¼ 5 000–

6 000 g mol�1, PDI ¼ 1.2–1.4).228

Methacrylates. Singha et al. polymerized furfuryl methacrylate

(FMA) (Entry 57) by ATRP (catalyst: CuCl/HMTETA, initi-

ator: EBiB) at 90 �C. Moderate levels of monomer conversions

(�60%) could be achieved during the homopolymerization of

this type of monomer. Surprisingly, the polymers did not gel and

preserved their low PDI values, which indicated no or negligible

amounts of side reactions involving the addition of radicals to the

furfuryl functionality. Semi-logarithmic kinetic plots revealed that

the polydispersity decreased by increasing conversion.229 None-

theless, well-defined homopolymers (Mn ¼ 6 500 g mol�1, PDI ¼
1.3) and copolymers withMMA (Mn¼ 10 000 gmol�1, PDI¼ 1.3)

were obtained.57,229–231 Furthermore, FMA was successfully used

in the preparation of block copolymers with 2-ethylhexyl acrylate

(EHA) and 1,2-bis(bromoisobutyryloxy)ethane (BBiBE) as initi-

ator.232 The ATRP reaction was conducted at 90 �C using CuCl/

HMTETA as catalytic system. The obtained PFMA-b-PEHA-b-

PFMA (up to Mn ¼ 51 000 g mol�1, PDI ¼ 1.3) was crosslinked

with a bismaleimide to yield materials with self-healing properties.

5.4 Monomers for thiol-ene clicking

In the last years, the thiol-ene click reaction has attracted

significant attention in the field of polymer science. These robust

and efficient reactions have enormous advantages for the

construction of polymeric structures. Recently, several reviews

summarized the power of thiol-ene chemistry.19,28,53,233

Since thiol groups readily undergo side reactions under radical

polymerization conditions, preferably ene-functionalized mono-

mers were synthesized and used as clickable monomers. (Meth)-

acrylates containing a terminal double bond are prepared by an

esterification of an alcohol (e.g. ethylene glycol vinyl ether or 3-

butene-1-ol) with an acid chloride or an anhydride of (meth)ac-

rylate acid.127,234 Styrenes containing a terminal double bond are

synthesized by substitution of a chloride group (e.g. from 4-

vinylbenzyl chloride, using 3-butene-1-ol).127 The controlled

polymerization of this class of monomers is easily possible due to

1582 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010
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the rather low reactivity of the unconjugated alkene group. Thus,

no or less crosslinking occurs during the polymerization.127

Styrenes. There is only one report published for the polymer-

ization of the ene-functionalized styrene derivative depicted in

Entry 58. Hawker et al. reported a RAFT copolymerization to

obtain alkene backbone-functionalized copolymers. The poly-

merization was performed with a dithiobenzoate as CTA at 75 �C
resulting in a copolymer with St of a molar mass of Mn ¼
14 000 g mol�1 and a PDI value of 1.1.127

Methacrylates. Vinyloxyethyl methacrylate (Entry 59) was

polymerized by the RAFT process using a photoinitiator and a

dithiobenzoate RAFT agent reported by Bulmus and

coworkers.234 Monomodal molar mass distributions were

obtained at low monomer conversions (�25%) that broadened by

increasing the polymerization time resulting in a hyperbranched

polymer due to the incorporation of the vinyl ether group (PDI ¼
1.3–2.0).234 Controlled polymerization of another alkene methac-

rylate (Entry 60) was described by Hawker and coworkers. The

authors reported on the ATRP of but-3-enyl methacrylate. The

copolymerization with MMA was initiated by ethyl 2-bromoiso-

butyrate and catalyzed by CuBr/PMDETA (Mn¼ 17 000 g mol�1,

PDI ¼ 1.2).127

5.5 Monomers for para-fluoro substitution

Styrenes. The commercially available pentafluorostyrene

(Entry 61) can be used as a clickable monomer as recently shown

by Schubert and coworkers. Thereby, the para-fluoro atom can be

substituted in a postmodification by functionalized amines or thiols

under mild conditions (see Section 2).31,32 Pentafluorostyrene (PFS)

was polymerized using the commercial available b-phosphonylated

alkoxyamine (MMA-SG1: ‘‘BlocBuilder’’) as unimolecular initiator

for NMP polymerization at 110 �C. Thereby, homopolymer

poly(PFS) (Mn ¼ 3 500 g mol�1, PDI ¼ 1.1), random copolymer

poly(PFS-r-PS) (Mn ¼ 9 000 g mol�1, PDI ¼ 1.1) and diblock

copolymers poly(PFS-b-PS) (Mn ¼ 17 000 g mol�1, PDI ¼ 1.2)

could be prepared, where either a PFS- or a PS-macroinitiator was

used.32 Terpyridine-functionalized PhEt-TIPNO alkoxyamine as

unimolecular initiator was also used for the NMP of PFS at 120 �C
to yield poly(PFS) (Mn ¼ 4 500 g mol�1, PDI¼ 1.1) and poly(PFS-

b-PS) (Mn ¼ 10 000 g mol�1, PDI ¼ 1.2).31

The pentafluorophenyl-functionalized maleimide (Entry 62)

will be discussed in Section 6.1.2.7.

5.6 Monomers for pyridyl disulfide exchange

In entry 63 a monomer is shown, where the pyridyl disulfide

moiety is linked to methacrylate. The PySS group can be

exchanged in a postmodification or premodification step by thiol

functional compounds under mild reaction conditions, because

of the facile leaving character of the 2-pyridinethione. The release

of 2-pyridinethione allows the monitoring of the PySS exchange

by UV/vis spectroscopy. This procedure is often used for the

preparation of polymer bioconjugates (e.g. with oligopeptide) or

for anticancer drugs, such as doxorubicin linked via the free thiol

group.235,236

The monomer was used in RAFT polymerization with

CPADB as CTA. These polymers were used as macro CTAs for

the preparation of block copolymer of HPMAM resulting in

different block segments with different molar mass (Mn ¼
13 400–49 000 g mol�1, PDI ¼ 1.2–1.3). These block copolymers

were further crosslinked as micelles.235

Moreover, homopolymers of the PySS monomer were

prepared by using the RAFT method by Bulmus et al. Different

semilogarithmic plots are examined for this monomer indicating

the controlled character of the polymerization. Numerous

homopolymers were synthesized as basis for further bio-

functionalization (Mn¼ 8 000–12 600 g mol�1, PDI¼ 1.1–1.4).236

5.7 Monomers for ring-opening reactions

Ring-opening reaction of strained heterocycles are considered as

a click reaction based on the spring-loaded character towards

nucleophiles by Sharpless and coworkers.13 For this purpose,

glycidyl methacrylate (GMA) is a commercially available

monomer, and thus can be used as a clickable monomer without

further modification (Entry 64). CRP of GMA has been well

studied by NMP,9 RAFT237 and ATRP.238–243 For ATRP of

GMA it is important to note that the epoxide might react with

free ligand, which leads to unwanted branching. Thus, the

catalyst has to be preformed before the addition of the mono-

mer.59 Moreover, any strong nucleophile should be avoided

during polymerization. Apart from that, the epoxide is stable

under the polymerization conditions even at elevated tempera-

tures typically required for NMP.

With the ‘‘boom’’ of click chemistry in polymer science, the

ring opening of epoxides with nucleophiles as a click-type reac-

tion experienced also a revival in the last few years, but rather to

introduce azides or alkynes than as a click reaction itself (Scheme

1, Entry 89). Why modifying towards another clickable func-

tionality although the ring-opening reaction is an efficient click

reaction itself? This is caused by the poor selectivity of epoxides.

In contrast, the orthogonality is strongly increased for, e.g., the

azide-alkyne click reaction allowing the orthogonal functionali-

zation in one-pot, simultaneous or cascade reactions.193

Various polymers containing glycidyl methacrylate were

synthesized as basis for further click reactions: Poly(St-r-(C^C-

CH2-St)-r-GMA) was prepared via NMP with TIPNO as medi-

ating nitroxide (Mn ¼ 30 000 g mol�1, PDI ¼ 1.3).60 By ATRP the

homopolymer as well as the random copolymers were synthesized

(Entry 64): poly(GMA) with Mn ¼ 27 000 g mol�1 and PDI ¼
1.3,114 poly(GMA-r-tBMA) with Mn ¼ 8 000 g mol�1 and PDI ¼
1.2244 as well as poly(GMA-r-MMA) with Mn ¼ 20 000 g mol�1

and PDI ¼ 1.2 to 1.5,59 whereby the polydispersity index for the

latter increases by increasing the fraction of GMAused in the feed.

5.8 Clicked monomers

Clicked monomers are formed by the azide–alkyne 1,3-dipolar

cycloaddition and contain the triazole ring which is linked to the

polymerizable vinyl group. There are only few examples of

clicked monomers. Hawker et al. have described the RAFT

polymerization of a series of 4-vinyl-1,2,3-triazoles (Entry 50).

Different (co)polymers were prepared in a controlled manner

using a dithioester.67 Sumerlin et al. used propargyl acrylate
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(Entry 46) that was clicked onto an azide-containing trithiocar-

bonate (Entry 29) for the RAFT polymerization of branched

poly(N-isopropylacrylamide) (PDI ¼ 1.5–2.1).156 Also the chain

extension of this macro-CTA with DMA was performed. 1-(30-
Aminopropyl)-4-acrylamido-1,2,3-triazole hydrochloride (Entry

48) was polymerized by the RAFT using a poly(NIPAM) macro-

RAFT agent resulting in block copolymers (Mn ¼ 19 600 g mol�1,

PDI ¼ 1.2).215 Propargyl methacrylate (Entry 47) was clicked by

a Cu-catalyzed 1,3-dipolar cycloaddition with 3-azido-7-dieth-

ylaminochromen-2-one and subsequently copolymerized with

MMA by RAFT using 2-cyanoprop-2-yl dithiobenzoate (CPDB)

as chain transfer agent (Mn ¼ 10 200 g mol�1, PDI ¼ 1.2).214

6. Postmodification

Postmodification reactions are used to transform latent func-

tional groups into clickable units, whereby the polymer can be

modified either at pendant or at terminal positions (Scheme 5).

For the terminal modification the initiating side, the mediating

side or both can be modified. An overview of the end-group

modification approaches are depicted in Tables 11 and 12 and the

side-group modifications are shown in Table 13, which will be

discussed in the following.

6.1 End-group modification

Linear polymers prepared by controlled radical processes

contain two functional end groups, one on the initiating end and

the other one on the mediating end. Therefore, a polymer can be

further functionalized on the a- and/or the u-terminus. In

particularly for the u-terminus, unavoidable radical termination

reactions during the polymerization such as recombination as

well as disproportionation occur and, thus, parts of its func-

tionality are lost to a certain amount. Assuming an efficient

postmodification reaction, these side reactions for the prefunc-

tional polymer can be considered as the bottleneck for the degree

of functionalization that can be reached for u-functionalized

polymers via the postmodification strategy.

6.1.1 Modification on the a–terminus. The a-terminus of the

polymer is more preferred for modification in comparison to the

u-terminus due to a higher end-group fidelity.

6.1.1.1 RAFT – Modification towards alkyne functionality.

An a-endgroup modification of the initiating group was reported

by Bertozzi et al., where a pentafluorophenyl ester as a labile

ester group (Entry 75) was attached to the initiating fragment.

After polymerization the labile ester was cleaved with diisopro-

pylethylamine in the presence of propargyl amine resulting in an

a-terminated alkyne polymer. Apparently, the trithiocarbonate

was not attacked by the amine and, therefore, a defined polymer

could be obtained.245

6.1.1.2 NMP – Modification towards azide functionality.

Despite the versatility of functional groups that can be intro-

duced as an initiating fragment on the a-functionalized polymers

prepared by NMP with functional alkoxyamines,175 there is only

one synthetic route reported for the transformation into a click-

able moiety: The modification of the benzylic chloro group into

an azide via a nucleophilic substitution with sodium azide (Entry

78, 79).

Initially, Hawker et al. described the postmodification from

chloride into azide a-functionalized polystyrene in 2004.246

Thereby, the sodium azide was activated by the addition of

catalytic amounts of 18-crown-6 ether while an excess of sodium

azide was used. This postmodification was also utilized by Voit

et al. using acetone as solvent and three equivalence of sodium

azide at room temperature to achieve full conversion after several

hours.176 In 2008, Braslau et al. obtained azide-functionalized

polystyrene by the reaction of the chloride counterpart in DMF

with sodium azide (3 eq.) at 50 �C in the absence of crown ethers to

almost full conversion.247 Furthermore, the transformation was

applied by O’Reilly et al. for the preparation of azido-function-

alized poly(acrylic acid-b-styrene) (N3CH2-PhEt-PAA-b-PS) as

clickable amphiphilic diblock copolymers. The postmodification

of the benzylic chloro group attached to the PAA block was

conducted in water at room temperature using a 5-fold excess of

sodium azide to yield clickable micelles in water with azide groups

on the outer shell.134

6.1.2 Modification on the u-terminus. The efficiency of the

u-terminal modification depends on the stability of the medi-

ating fragment of the polymer chain that is affected through side

reactions inherent for controlled radical polymerization

processes. In general, polymerizations intended for u-post-

modification were kept at low conversions in order to avoid

a significant loss of functionality.

6.1.2.1 ATRP – Modification towards azide functionality.

The most prominent postmodification reaction towards a click-

able functionality of ATRP-prepared polymers is the substitution

of halides such as bromide against azide, since the halide is

inherently present at the u-chain end after the ATRP process

(Entry 65). The reaction is very efficient with sodium azide in

DMFat room temperature, allowing for a specific transformation

in the presence of distinct labile groups. In this context, it is

important to note that Matyjaszewski and coworkers developed

the method for this nucleophilic substitution in 1997/1998 for

polystyrenes and polyacrylates to allow an easy access to amines

over the azide via a reduction248 or via the Staudinger process.249

The authors also studied the rate constant for the substitution of

selected model halogen compounds with sodium azide.250Scheme 5 Schematic representation of the postmodification strategies.
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Up to now a lot of different polymers were postmodified via

this azidation method. Poly(styrenes), poly(acrylates),

poly(methacrylates) and their copolymers at different molar

masses have been reported.59,78–80,90,97,98,102,114,251–261 It should be

noted that the azidation of poly(methacrylates) is significantly

slower compared to poly(acrylates) and poly(styrenes) due to the

tertiary bromine.262 The modification can be used, e.g., in

combination with multifunctional initiators bearing functional

termini for NMP or ROP (Entry 80). The multifunctional initi-

ator was used in NMP of styrene, ROP of 3-caprolactone as well

as ATRP of tBA followed by the quantitative substitution of the

bromine against azide, while the molar masses and the poly-

dispersity indices retained.71,72

6.1.2.2 ATRP – Modification towards alkyne functionality.

Only a few examples are described for polymers prepared by

ATRP dealing with the exchange of the bromine end group

against alkyne-functionalized groups.185,263 Low molar masses

and conversions are targeted by preparing the polymers to assure

a high end-group fidelity of the u-terminating bromide.

Monteiro and coworkers used the high reactivity of PS

towards cleavage of the bromine end group in the presence of

Table 12 Postmodification – end group (continued)

Entry Modification Click CRP Type Monomer Ref

74 PySS RAFT Aminolysis, Substitution NIPAM 267

75 CuAAC RAFT Ester cleavage OPA 245

76 CuAAC NMP Oxidative cleavage St 284

77 CuAAC NMP Radical exchange St 247

78 CuAAC NMP i) Substitution St 247
ii) Oxidative cleavage

79 CuAAC NMP Substitution St, tBA 134,176,247

80 CuAAC NMP Substitution St 71,72
ROP 3-CL
ATRP tBA

81 CuAAC NMP Radical exchange, Substitution 285

1586 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010
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Cu(I)Br, Me6TREN and DMSO promoting a single electron

transfer (SET) via the formation of nascent Cu(0).263The emerging

carbon-centered radical was trapped by an alkyne-functionalized

nitroxide (2,2,6,6-tetramethyl-4-(prop-2-ynyloxy)piperidin-1-

yloxyl)264 to result in alkyne-terminated PS with near quantitative

yields within 10 min at room temperature (Entry 66). A unique

feature of the nitroxide radical coupling (NRC) as a selective and

highly efficient reaction is the reversible formation of the C–O

bond of the alkoxyamine that undergoes homolytical cleavage

upon heating. In this fashion, the coupled nitroxide can be

substituted by an excess of other functional nitroxides (10-fold

excess) at elevated temperatures.

Table 13 Postmodification – side group

Entry Modification Click CRP Type Comonomers Initiator Ref

82 CuAAC ATRP Quaternization DMAEMA,
DEGMA,
DEAEMA

EBiB 288

83 CuAAC ATRP Esterification — EBiB 289

84 CuAAC NMP i) Hydrolysis St PhEt-TIPNO 291
ii) Substitution

85 CuAAC NMP i) Acidolysis St PhEt-TIPNO 292,295
ii) Amidation

86 CuAAC NMP Amidation St, tBA, AM PhEt-TIPNO 193

87 CuAAC NMP Substitution St, tBA PhEt-TEMPO 117,292–294

88 CuAAC RAFT Substitution AA BPIT, PEDT 205,206

89 CuAAC ATRP Ring opening MMA, tBMA EBiB 59,104,114,244,290

90 DA NMP Etherification St PhEt-TEMPO 117,120
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Recently, Barner-Kowollik and coworkers established a new

approach towards midchain-functionalized polymers by using

nitrones in a dual radical capturing process.185,265 Nitrones can

rapidly react with carbon-centered radicals to form nitroxides

that further trap radicals to form alkoxyamines. As such,

nitrones can be used for efficient polymer conjugation by medi-

ating the radical coupling reactions of macroradicals. The

authors activated ATRP-made PiBoA with Cu(0)/PMDETA in

toluene at 60 �C in the presence of an alkyne-functionalized

nitrone (2-fold excess), while the alkyne was protected with

TMS.185 In this vein, midchain alkyne-functionalized polymers as

depicted in Entry 67 can be prepared in high yields as indicated

by 1H NMR spectroscopy (�90%). The midchain functional

PiBoA was clicked after deprotection with either PS-N3 or

PiBoA-N3 to form 3-arm star polymers.

As an additional feature, the prepared polymers bear an

alkoxyamine functionality in the backbone that could in prin-

ciple be used as a macroinitiator in a nitroxide-mediated poly-

merization for the insertion of another polymer block towards

triblock copolymers. Hence, the present approach can also be

considered as a preparation of clickable or clicked macro-

initiators for NMP (Entry 40; Section 4.3).

6.1.2.3 ATRP – Modification toward diene functionality for

Diels–Alder reactions. In Entry 68 a nucleophilic substitution of

a bromo-terminated polymer with cyclopentadienyl as reported

by Barner-Kowollik is described. This strategy allows the direct

access to dienes which can be used for catalyst-free click reac-

tions, i.e.Diels–Alder reaction. The reaction was performed with

sodium cyclopentadienide (NaCp) or nickelocene (NiCp2) as the

substituting agent at ambient temperature. It should be

mentioned that side reactions can occur during the substitution

with the more reactive NaCp, in particular for PMMA-Br,

PiBoA-Br and PMA-Br, but not for PS-Br. It could be shown

that the use of NiCp2 using tributylphosphine and sodium iodide

as promoters eliminates these side reactions. In this manner,

cyclopentadienyl-functionalized polymers of PMMA, PiBoA,

PMA and PS are reported (PDI < 1.3).39,266

6.1.2.4 RAFT – Modification towards thiol functionality. In

recent years, an alternative click strategy has been established in

polymer research for the design of complex macromolecular

architectures. This strategy is based on the special chemical

nature of thiol compounds that can be used for radical coupling

processes in thiol-ene and thiol-yne reactions, as well as for

nucleophilic addition reactions such as thiol-isocyanate addition

or Michael addition. The radical-mediated addition of a thiol to

an yne is a ‘‘sister’’ reaction to the radical thiol-ene reaction,

whereby two thiols can be added (two-step process). All these

reactions can be performed under mild conditions.

The u-end of the polymer chains prepared by the RAFT

polymerization can be easily modified to generate a reactive thiol

group. In most of the reports a trithiocarbonate (Entry 69) or

a dithiobenzoate (Entry 70) have been used as chain transfer

agents for RAFT. These group can be easily modified into thiol

groups. There are two synthetic pathways towards thiols: (i)

Aminolysis with a primary amine50,54,141,245,267–275 and (ii) reduc-

tion with NaBH4.
276–278 Care should be taken in this post-

modification to prevent the coupling of two chains to form

a disulfide bridge, which are often visible by a shoulder at lower

elution volumes in the SECmeasurements. However, coupling of

thiols can be easily reversed by addition of a reducing agent, e.g.

phosphine derivatives.50,54,116,268,271,273,276 Limitations of the thiol-

ene reaction for polymer-polymer conjugation were recently

described by Du Prez et al.53

In some cases, further purification of the u-thiol functional

polymers is necessary and dialysis or precipitation are the

preferred techniques. A calorimetric method for the determination

of the free thiol concentration was developed by Ellman.279 Ell-

man’s reagent converts a thiol into a 5,50-dithiobis(2-nitrobenzoic
acid) derivative, which has a strong absorption and therefore the

degree of functionalization can be determined.267,269,270,273,275

Alternatively, this can be indirectly estimated by clicking a fluo-

rescence dye (e.g. pyrene).274,276 The degree of functionalization

can be varied from 60% up to 99.5%. Often short polymer chains

are used for the modification to provide high end-group fidelity on

the mediating side (Mn < 10 000 g mol�1). Different polymers were

used for the modification towards thiols, i.e. acrylate-, methacry-

late- and acrylamide derivatives.

An elegant example for the orthogonality of the Michael

addition as nucleophilic thiol-ene reaction to the radical thiol-ene

was recently described by Lowe et al.50 By using the fact that the

nucleophilic reaction of the thiols is selective for double bonds

conjugated with electron-withdrawing groups (e.g. a,b-unsatu-

rated carbonyl compounds), a consecutive reaction of a hetero-

functional polymer with different thiols, first reacted via Michael

addition and followed by the radical thiol-ene or thiol-yne reaction

could be shown. The reverse case leads to the loss of orthogonality

due to the unselective nature of the radical coupling.

6.1.2.5 RAFT – Modification towards alkyne functionality.

An elegant approach to generate u-end group functionalized

triple bonds, which can be used for the Cu(I)-catalyzed cyclo-

addition, was reported by Theato and coworkers using butynyl

methane thiosulfonate (Entry 71). Five different acetylene-

terminated polymers (MMA, DEGMA, LMA, St, NIPAM)

could be clicked to an azide.280 Another approach towards

alkyne-terminated polymer chains is the cleavage of the RAFT

agent by a radical process (Entry 72).143 Thereby, an excess of

alkyne-modified initiator is used, which decomposes while

generating radicals that react with the C ¼ S of the thio-

carbonylthio moiety in the polymer chain. Higher temperatures

(80 �C) and a large excess of the initiator are necessary and it

should be taken into account that side reactions during end-

group modification can occur by means of recombination during

insertion.143 ABCD 4-miktoarm star polymers could be prepared

by RAFT polymerization of styrene followed by an insertion

reaction applying a large excess of 2-hydroxyethyl-3-(4-(prop-2-

ynyloxy)phenyl) acrylate to stop the polymerization at 110 �C.
Hence, a unprotected triple bond attached at the end of the

polymer chain could be obtained (Entry 73). The reaction is not

very efficient, because a large amount of unreacted macro-

initiator is present after the diblock copolymerization.281

6.1.2.6 RAFT – Modification towards pyridyl disulfide func-

tionality. Chemical modification of the u-endgroup by

aminolysis in the presence of 2,20-dithiodipyridine was reported

to generate a pyridyl-disulfide-terminated polymer chain (Entry

1588 | Polym. Chem., 2010, 1, 1560–1598 This journal is ª The Royal Society of Chemistry 2010
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74). The pyridyl disulfide end groups allowed straightforward

conjugation with oligonucleotides and peptides.267

6.1.2.7 NMP – Conventional modification and possibilities.

Only a few examples are described dealing with the exchange of

the nitroxide moiety on the polymer. The first study was con-

ducted by Rizzardo, reducing the TEMPO to a hydroxy group

with a mixture of zinc/acetic acid.282 A radical-cleavage approach

towards more versatile functional end groups was presented by

Hawker and coworkers. Thereby, the propagating radical was

trapped at the polymerization temperature by N-functionalized

maleimides as non-self-polymerizing monomers, while the

TIPNO nitroxide decomposed at elevated temperatures resulting

in the maleimide-functionalized polymer.283 The transformation

yield for polystyrene, polyisoprene and poly(n-butylacrylate) was

typically 90 to 95%, while no changes in molar masses and the

polydispersity indices were observed.

This approach offers the possibility to introduce clickable

units at the u-terminus by using functionalized maleimides.

Following this strategy, Lutz and coworkers synthesized

a library of functional maleimides and used them in the

copolymerization with styrene via ATRP, while the maleimide

was incorporated at a specific place in the polymer chain.216

Among those, N-pentafluorophenyl maleimide or N-propargyl

maleimide could be incorporated into the polymer, while the

latter one had to be protected due to pronounced side reactions

(Entry 51, 62). In principle, clickable u-functionalized polymers

should be accessible using these monomers in the radical-

cleavage procedure by Hawker as well.

6.1.2.8 NMP – Modification towards alkyne functionality. In

contrast to the thermal cleavage of the alkoxyamine-terminated

polymer, oxidative cleavage under much milder thermal condi-

tions can be achieved by single electron oxidation with ceric

ammonium nitrate (CAN).247,284 After the oxidation the alkox-

amine cleaves heterolytically into a nitroxide and the cation-

terminated polymer that can be trapped by nucleophiles. Braslau

and coworkers treated TIPNO-terminated polystyrene with

CAN and propargyl alcohol as nucleophile at room temperature

under anhydrous conditions to obtain alkyne-functionalized PS

(Entry 76) with an end-group fidelity of 65% as determined by

UV-vis experiments.247 Investigating PhEt-TEMPO as a model

compound for TEMPO-terminated polymers, a heterolytic

cleavage similar to the TIPNO counterpart was obtained. It

could be shown that this method can also be used for TEMPO-

terminated polymers. In contrast, polyacrylates terminated with

TIPNO or TEMPO also undergo oxidative cleavage, but the

cation-terminated polymer interferes with CAN by forming

nitrate ester and prohibit further attachment of functional

groups via the addition of nucleophiles.284

The modification of polystyrene that was prepared by NMP

with commercially available b-phosphonylated alkoxyamine

BlocBuilder� cannot be performed via the described oxidative

cleavage with CAN due to the electronic and steric nature of

SG1.285

6.1.2.9 NMP – Modification towards azide functionality.

Terminal azide-functionalized polystyrene could be obtained

starting from the nitroxide-terminated polymer through the

reactionwith ethanesulfonyl azide (EtSO2N3) thatwas introduced

by Renaud and Ollivier286 as an azidation method for carbon

radicals. Braslau and coworkers showed that polystyrene

prepared by NMP reacts in the presence of an excess of EtSO2N3

inN-methyl-2-pyrrolidinone at 120 �C to the azido-functionalized

PS (Entry 77), although the azidationwas incomplete as judged by

labelling experiments with an alkyne-functionalized dye analyzed

via UV-vis experiments.247 Using PhEt-TIPNO as a model

compound, the treatmentwithEtSO2N3 led to less than 30%of the

desired transformation.247 This was explained by the weak elec-

trophilic character of the styryl radical, since only electron-rich

radicals can efficiently add onto EtSO2N3.
287 This also explains

why polyacrylates could not be modified with this method.

The azidation reaction of nitroxide-terminated polystyrene

was further studied by Bertin and coworkers for polystyrenes

prepared with the commercial available BlocBuilder�.285

Thereby, a one-step as well as a two-step approach towards the

terminal azido-functionalized polymer were performed (Entry 81).

In the one-step approach EtSO2N3 was used under optimized

reaction conditions using a large excess (50 eq.) at 90 �C. In the

two-step approach the alkoxyamine was reacted at 75 �C in

a radical exchange reaction with 2-bromoisobutyrate as solvent as

well as the bromination agent to obtain the exchange of the

nitroxide by bromine. Furthermore, this bromo-functionalized

polymer was reacted with sodium azide following the well-known

ATRP postmodification procedure at room temperature in DMF.

For both approaches the azide-functionalization degree was

around 70%.

6.1.3 Heteromodification on both termini

6.1.3.1 NMP. Since the azide group is stable against the mild

conditions of the oxidative exchange of the nitroxide against

propargyl alcohol by ceric ammonium nitrate (Section 4.1.1),

alkyne-azide-functionalized heterotelechelic polystyrene could

be efficiently synthesized in a two step synthesis as demonstrated

by Braslau et al. (Entry 78).247 At first the chloro group of the

a-functionalized polystyrene prepared by NMP was transformed

into the azide followed by the oxidative cleavage reaction with

CAN at room temperature and the in situ nucleophilic addition

of propargyl alcohol.

6.2 Side-group modification

In contrast to the terminal functionalization, the modification of

pendant groups is more influenced by steric or electronic effects,

in particular for homopolymers, where every repeating unit has

to be modified. Nonetheless, this method represents a convenient

alternative route to multiple click-functionalized polymers, if the

direct polymerization of these monomers is relatively more

difficult and/or side reactions occur during the polymerization.

6.2.1 ATRP

Modification towards alkyne functionality. In Entry 82 the

alkyne moiety could be selectively introduced by quaternization of

the amine of 2-(dimethylamino)ethyl methacrylate (DMAEMA)

with propargyl bromide at room temperature (Menschutkin

reaction).288 Due to sterical hindrance, the DMAEMA is more

reactive towards quaternization than DEAEMA allowing for the

selective modification of a terpolymer containing DEGMA,
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DMAEMAandDEAEMA.288The purification of the quaternized

copolymer was achieved simply by precipitation. The extent of

quaternization of the DMAEMAunits was evaluated by 1HNMR

spectroscopy to be 35%.

Alkynyl side groups were introduced into polymeric back-

bones of a linear poly(2-hydroxyethyl methacrylate) by an

esterification reaction between the hydroxyl groups and 4-pen-

tynoic acid that was activated by N,N0-dicyclohexylcarbodiimide

(Entry 83). The degree of functionalization was estimated by 1H

NMR spectroscopy to be close to 100%. No change of the

apparent molar masses and PDI values occurred.289

Modification towards azide functionality. An efficient and

convenient synthesis route to azides is the ring-opening reaction

of epoxides as shown in Entry 89. The oxirane ring is often

opened with sodium azide in the presence of ammonium chloride

to yield the corresponding 1-hydroxy-2-azido compounds. The

reactions can be followed by IR spectroscopy of the character-

istic vibration bands of the azide (2104 cm�1) and the epoxide

ring (909 cm�1). This click reaction was applied for the prepa-

ration of copolymers with multiple azide groups, whereby

different methacrylates are used, resulting in defined copoly-

mers.59,104,114,244,290

6.2.2 RAFT

Modification towards azide functionality. In Entry 88, a nucle-

ophilic substitution of a pendant chloro group against azide was

performed for a poly(3-chloropropyl acrylate-co-acrylic acid).

The reaction was conducted with sodium azide at 80 �C and the

final product was subsequently dialyzed. High molar mass

copolymers were obtained: Mn ¼ 86 000 and 135 000 g mol�1

with polydispersity indices of 2.2 and 1.4, respectively.205,206

6.2.3 NMP

Modification towards either alkyne or azide functionality. A

substitution reaction was carried out as pendant postmodification

for the random copolymer poly[styrene-r-(4-acetoxystyrene)]

(Entry 84).291 The acetyl group was used as a protection for the

phenolic hydroxy group that cannot be polymerized directly, since

it acts as an radical scavenger. Deprotection was accomplished by

using hydrazine monohydrate as a base for hydrolysis at room

temperature to yield poly[styrene-r-(4-hydroxystyrene)]. The

hydroxy group was further reacted with propargyl bromide under

basic conditions in a Williamson ether synthesis to yield the

clickable styrenic copolymer while retaining molar mass and

polydispersity indices of the protected copolymer.291

Another postmodification strategy towards clickable side

groups is the carbodiimide-mediated condensation which was

demonstrated for the block copolymer poly(tBA-b-St) by Woo-

ley and Hawker (Entry 85).292 First, the t-butyl group, acting as

a protecting group, was cleaved using trifluoroacetic acid at

room temperature. The resulting amphiphilic diblock polymer

poly(acrylic acid-b-styrene] was assembled into micelles in water

and partly functionalized with either 3-azidopropylamine or

propargyl amine in a condensation reaction at room temperature

using 1-[30-(dimethylamino)propyl]-3-ethylcarbodiimide methio-

dide to activate the acid. The residual acid groups were crosslinked

to obtain nanoparticles with azides or alkynemoieties on the outer

shell.

Another postmodification strategy uses succinimide-function-

alized acrylates as active ester for the condensation with amines

under mild conditions.193 The active ester is stable under the

applied polymerization conditions and can be polymerized in

a controlled way, while in contrast to alkyl acrylates no depro-

tection for further modification is required. Hereon, Malkoch

et al. showed the preparation of random copolymers of

N-(acryloyloxy)succinimide with either styrene, t-butylacrylate or

acrylamide followed by a successful condensation reaction with

propargyl amine or 1-amino-11-azido-3,6,9-trioxoundecane at

50 �C (Entry 86). In addition, the amidation reaction does not

interfere with the click reaction and can be used in a one-pot

cascade reaction or simultaneously.193

Scheme 6 Schematic representation of clickable polymers: ¼ polymer chain; , ¼ orthogonal click functionalities, ¼ block segments.
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Scheme 7 Schematic representation of selected clicked architectures: ( ¼ polymer chain; ¼ block segments; ¼ crosslinked polymer, ,

, ¼ different clicked functions, ¼ multifunctional core.
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A facile approach towards pendant azide-functionalized

polymers via postmodification is the reaction of benzylic chloride

with sodium azide in a nucleophilic substitution reaction (Entry

87). The reaction is efficient at room temperature in DMF.

Following this procedure, a random copolymer consisting of

4-(chloromethyl)styrene and styrene was transformed with

sodium azide.293 Furthermore, a random terpolymer consisting

of 4-(chloromethyl)styrene, styrene as well as 40-(anthracene-
methyloxymethyl)styrene was efficiently modified to the pendant

azido- and anthracene-containing derivative.117 O’Reilly et al.

modified the amphiphilic diblock copolymer poly[(acrylic acid)-

b-styrene-r-4-chloromethylstyrene] via the described procedure

to obtain, after crosslinking, nanoparticles with azide-function-

alized cores.292 In 2009, Ting et al. transformed homopolymers of

4-(chloromethyl)styrene as well as random and block copolymers

with styrene at 60 �C in a mixture of DMSO/THF to the pendant

azide-functionalized polymers.294

Modification towards diene functionality for Diels–Alder reac-

tion. The pendant benzylic chloro group in 4-(chloromethyl)styr-

ene containing polymers were also modified by the etherification

reaction with 9-(oxymethyl)anthracene (Entry 90). Thereby, an

excess of 9-(oxymethyl)anthracene was activated with sodium

hydride to react with poly(styrene-r-4-chloromethylstyrene) to the

anthracene-functionalized polymer at room temperature,117

although the conversion only went to completion by using higher

temperatures.120

7. Applications of clickable polymers

The concept of click chemistry combined with the concept of

controlled radical polymerizations represent an ideal pair for the

preparation of tailor-made macromolecular architectures.

The striking advantage of this combination can be clearly seen

by the variety of clicked architectures that become possible by

using clickable polymers as building blocks (Schemes 6 and 7).

The schemes should provide an overview over the clickable and

clicked architectures, while assigning assorted references. The

origin for the large variety of architectures is the overcoming of

limitations inherent for other techniques, which allows the design

of new architectures prepared in high yields and with a wide

range of accessible molar masses and constitutions. In this way,

some block combinations become possible, which were not

directly polymerizable due to disparate reactivities. An example

for such an architecture is the block copolymer of styrene and

ethylene glycol (EG) using the 1,3-dipolar cycloaddition of azides

and acetylene of the respective end groups.

Utilizing the different approaches (clickable initiator, clickable

monomer and postmodification) different types of highly func-

tional polymers are accessible and can act as building blocks for

the preparation of more complex structures. Several clickable

polymers can be prepared: (i) End functional polymers on one or

on both sites, (ii) mid-chain functional polymers, (iii) side-chain

functional polymers and (iv) combinations of them (Scheme 6).

These clickable polymers act as basic modules for further func-

tionalization reactions to engineer more complex architectures

(Scheme 7). Hereon, different linear block copolymers such as

di-, ter- or quarterpolymers were prepared. The synthesis of

different cyclic polymers such as eight-shaped or tadpole

polymers, which are limited for other non-click methods, has

been realized using the click concept. These building blocks were

also often used for the preparation of star-shaped polymers with

3 up to 12 arms as well as H-shaped or miktoarm star polymers.

In this respect, two strategies arise for the synthesis of star-like

polymers by clicking: (i) Using mid-chain functional polymers or

(ii) end functional polymers onto a multifunctional core.

Furthermore, several dendrimers and hyperbranched architec-

tures were also realized by combining CRP and click chemistry.

An elegant example represents the thiol-yne reaction for the

preparation of hyperbranched polymers.

Another focus of polymer research is the grafting approach of

side-chain functional polymers, which can be prepared by using

the clickable monomer approach or the postmodification

approach of pendant groups. The main advantage for this

strategy is the facile tuning of polymer properties for a specific

application. One clickable polymer backbone can act as building

block for a variety of functionalization reactions (Scheme 6).

Moreover, surface patterning is also of interest in material

science. Polymers were clicked via CuAAC to different surfaces

such as carbon nanotubes or nanoparticles (Si, Au). Also the

construction of multilayer systems (layer-by-layer approach) are

possible by using the 1,3-dipolar cycloaddition and CRP.

The interest in polymer-functionalized biomaterials strongly

increased in the last years due to the facile access by using click

chemistry for efficient conjugation and CRPs for tailoring the

polymeric architectures. In this vein, different functional poly-

mers were coupled with several proteins and siRNA.

8. Conclusion and outlook

In summary, it is clearly demonstrated in recent years that the

combination of controlled/‘‘living’’ radical polymerization

(CRP) techniques and click reactions has become an inevitable

route for preparing highly functional tailor-made macromole-

cules. This combination has been tremendously advanced since

the introduction of the concept of click chemistry in 2001 by the

cumulative efforts of a large number of research groups all over

the globe. These developments on the preparation of new well-

defined clickable polymers enabled straightforward access to

demanding polymer structures such as cyclic and miktoarm star

polymers.

Two combinations of CRP with click chemistry seem to be the

perfect match: ATRP in combination with azide cycloaddition

and RAFT with thio-click chemistry. Halogen-terminated

polymers are directly obtained by ATRP and can be transformed

to azide-terminated polymers using a simple azidation proce-

dure. As a limitation, this combination may not be suitable for

the preparation of clickable polymers of high molar masses, since

a high end-group fidelity of the halogen-terminated polymers is

only assured for lowmolar masses and low conversions. Even the

most efficient postmodification reaction will not overcome this

inherent problem. Nevertheless, ATRP and azide-alkyne click

reactions are one of the most prominent combinations to prepare

functional materials. Alternatively, thiol-terminated polymers

are easily accessible from polymers prepared using the RAFT

technique by reduction of the CTA end group. It has been

demonstrated that these thiol-terminated polymers can be

clicked not only to unsaturated double bonds but also to alkynes,
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bromo, and para-fluoro groups making the combination of

RAFT polymerizations with thio-click chemistry a powerful

method. It should be noted that certain kinds of radical thiol-ene

reactions do not fulfill the click criterion of a high reaction effi-

ciency if they are applied for polymer-polymer conjugation.

We are confident that the combination of CRP and click

chemistry methods will continue flourishing in the near future

leading to new functional polymeric materials. Eventually, this

will lead to a further establishment of CRP in combination with

click chemistry as a scientific tool rather than being a separate

research topic. Furthermore, it is evident that new trends in click

chemistry, e.g. the development of advanced metal-free click

reactions employing more reactive clickable units such as

cyclooctynes as click counterparts to nitrones or nitrile oxides,

will be combined with CRP methods in the near future, which

will further expand the potential field of applications.

Abbreviations

AcOSt 4-acetoxystyrene

AA acrylic acid

AIBN azoisobutyronitrile

AM acrylamide

AN acrylonitrile

APBIB 3-azidopropyl 2-bromoisobutyrate

ATRP atom transfer radical polymerization

ATREP atom transfer radical emulsion polymerization

BBiBE 1,2-bis(bromoisobutyryloxy)ethane

BDAT S,S0-bis(a,a0-dimethyl-a0 0-acetic acid)
trithiocarbonate

BDB benzyl dithiobenzoate

BETP benzyl 2-(ethylthiocarbonothioylthio)

propanoate

BICDT benzyl 1H-imidazole-1-carbodithioate

bpy 2,20-bipyridine
BlocBuilder� N-(2-methylpropyl)-N-(1-diethylphosphono-

2,2-dimethylpropyl)-O-(2-carboxylprop-2-yl)

hydroxylamine

BMP 2-bromo-2-methyl-propionate

BMPA 2-bromo-2-methyl-propionamide

BMPABE 2-bromo-2-methyl-propionic acid benzyl ester

BPIT butyl phthalimidomethyl trithiocarbonate

BPN 2-brompropionnitrile

BPO dibenzoylperoxide

BSPA 3-benzylsulfanyl-thiocarbonylsulfanyl

propionic acid

CAN ceric ammonium nitrate

CBDB 2-cyano-2-butyl dithiobenzoate

CBDN a-cyanobenzyl dithionaphthalate

CDB 2-phenylpropan-2-yl dithiobenzoate (cumyl

dithiobenzoate)

CNT carbon nanotube

3–CL 3–caprolactone

CPADB (4-cyanopentanoic acid) dithiobenzoate

CPDB (2-(2-cyano-propyl)) dithiobenzoate

CTA chain transfer agent

CRP controlled radical polymerization

DDAT S-1-dodecyl-S0-(a,a0-dimethyl-a00-acetic acid)

trithiocarbonate

DDET S-1-dodecyl-S0-(a,a0-dimethyl-a00-ethyl
acetate) trithiocarbonate

DEGMA di(ethylene glycol) methylether methacrylate

DIPEA S-dodecyl-S0-(a,a-dimethylpentafluorophenyl

acetate) trithiocarbonate

DMAM N,N-dimethylacrylamide

DEAM N,N-diethylacrylamide

DEAEMA 2-(diethylamino) ethyl methacrylate

DMAEMA 2-(dimethylamino) ethyl methacrylate

EBiB ethyl 2-bromoisobutyrate

EA ethyl acrylate

EEA 1-ethoxyethyl acrylate

EHA 2-ethylhexyl acrylate

EtSO2N3 ethanesulfonyl azide

FMA furfuryl methacrylate

GMA glycidyl methacrylate

HEA 2-hydroxyethyl acrylate

HEMA 2-hydroxyethyl methacrylate

HMA hostasol methacrylate

HMTETA 1,1,4,7,10,10-hexamethyl triethylenetetramine

HPMA 2-hydroxypropyl methacrylate

HPMAM 2-hydroxypropyl methacrylamide

iBoA i-bornyl acrylate

pHSt 4-hydroxystyrene

KSPMA potassium 3-sulfopropyl methacrylate

LMA lauryl methacrylate

MA methyl acrylate

MAA methacrylic acid

MCPMDB (S)-methoxycarbonylphenylmethyl

dithiobenzoate

Me6TREN tris(2-(dimethylamino)-ethyl) amine

MMA methyl methacrylate

mPEG linear methoxy poly(ethylene glycol)

MPPCTTA methyl 2-phenyl-2-(phenylcarbonothioylthio)

acetate

NaCp cyclopentadienide

nBA n-butyl acrylate

nBMA n-butyl methacrylate

NIPAM N-isopropylacrylamide

NiCp2 nickelocene

NMP nitroxide-mediated radical polymerization

NP nanoparticle

NVP N-vinylpyrrolidone

OEGA oligo(ethylene glycol) methylether acrylate

OEGMA oligo(ethylene glycol) methylether

methacrylate

OPA (2-oxopropyl)acrylate

PBP propargyl 2-bromopropionate

PDB 1-phenylethyl dithiobenzoate

PEB 1-phenylethylbromide

PEDT S-1-phenylethyl-S0-dodecyl-trithiocarbonate
PFPPCV pentafluorophenyl-(4-phenylthiocarbonylthio-

4-cyanovalerate)

PFS pentafluorostyrene

PMDETA N,N,N0,N0 0,N0 0-pentamethyldiethylene-

triamine
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poC postclick

prC preclick

RAFT reversible addition-fragmentation chain

transfer polymerization

ROP ring-opening polymerization

SG1 N-(2-methylpropyl)-N-(1-diethylphosphono-

2,2-dimethylpropyl)-N-oxyl

SMA solketal methacrylate

St styrene

tBA t-butyl acrylate

tBMA t-butyl methacrylate

TBAF tetrabutylammonium fluoride

tBOSt 4-t-butyloxystyrene

TBDMS t-butyldimethyl-silyl

TEMPO 2,2,6,6-tetramethylpiperidinylnitroxide

THPA tetrahydropyran acrylate

TIPNO 2,2,5-trimethyl-4-phenyl-3-azahexane-3-

nitroxide

TIPS triisopropylsilyl

TMS trimethylsilyl

TosCl p-toluenesulfonyl chloride

VAc vinylacetate

VBA vinylbenzyl azide

4VP 4-vinylpyridine.

Polymer abbreviations are formed by adding the suffix ‘P’ or

‘poly’ to the corresponding monomer abbreviation. The only

exception is styrene, where the monomer is represented by St and

the polymer by PS.
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This feature article provides, for the first time, an overview of the research that guided the way

from fundamental studies of the thermo-responsive phase separation of aqueous polymer

solutions to polymeric sensor systems. The incorporation of solvatochromic dyes into

thermoresponsive polymers as well as the concepts of polymeric sensors are presented and

discussed in detail.

1. Introduction and motivation

The determination of the temperature is one of the most

important analytical methods in chemical laboratories. Among

chemical,1–6 pH,7,8 chemomechanical9 and calorimetric sensors,

optical temperature10 sensors play an important role in polymer

science. A new class of optical temperature sensors has been

developing since nearly 20 years and has received significant

attention for the development of sensory materials in the

last years. These optical temperature sensors are supported by

polymer chains or polymeric hydrogels that are responsible for

sensing, which differentiate them from molecular optical sensors.

Even though polymers already played an important role in

sensor application as polymeric supporter or as polymeric matrix

for the sensing dye units,1–13 the here discussed relatively new

class of sensors are based on stimuli-responsive polymers14–18 that

sharply respond with a solution phase transition to environ-

mental parameter changes such as the temperature, pH value,

UV/Vis light or chemical changes. Stimuli-responsive polymer

systems can be polymers in solutions, hydro- or microgels, self-

assembled aggregates and nanoparticles.7,10,14–21 The access and

the possibility to control the polymer properties22 (e.g. molar

mass or polymer architecture) and the flexibility of processing

(e.g. coating or formation of nanoparticles) in combination

with tunable solubility (e.g. ratio of hydrophobic/hydrophilic
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monomers) make them very promising and advantageous for

sensor materials.

For sensing purposes, the polymer phase transition can be

translated into a sensory signal by incorporation of solvato-

chromic dyes6,23 that specifically change their optical or

emissive properties upon changing environmental parameters

or by reaction with analytes (Fig. 1). The high number of

‘‘indicator’’ dyes and the possibility of functionalization in

combination with the tuneable polymer properties theoretically

allow the specific detection of nearly every molecule or

environmental parameter. Nevertheless, for an optimal

performance the sensor system has to be very sensitive and

selective for the response parameters. The optical signal

transmission has some advantages over other methods; (i)

the measurement can be performed without contact to the

sample and therefore the analyte will be not destroyed during

analysis and (ii) possibly even more important is that a

continuous analyte/environmental parameter detection is

possible if the polymeric sensor is reversible. Such continuous

monitoring is quite difficult to realize, but necessary for on-line

measurements.

The sensing approach based on combination of a responsive

polymer phase transition and a solvatochromic dye allows

simple and fast detection of, e.g., the temperature by measuring

the absorbance or fluorescence of the solution. The high

sensitivities arise from the incorporated solvatochromic dye

molecules, which respond to minor local environmental

changes that occur upon the temperature induced polymer

phase transition. For temperature-sensing in aqueous solution,

the most important polymer phase transition is the so-called

lower critical solution temperature (LCST), i.e. the polymer is

dissolved at lower temperatures and precipitates upon increasing

the temperature.

The driving force for the study of polymeric temperature

sensors in the last 20 years is twofold: (i) the development

of new functional (temperature) sensor systems utilizing stimuli-

responsive polymers and (ii) to gain in depth understanding of

polymer chain conformations and/or phase transitions in

solution. Widely used experimental techniques14 for the

determination of these coil-to-globule/LCST transitions are

(i) calorimetry24–26 (thermodynamics of phase separation), (ii)

viscosity determination24 (hydrodynamic consequences), (iii)

light scattering measurements27–30 (size of the coil or globule),

(iv) UV/Vis or fluorescence spectroscopy31–34 (molecular

resolution of the thermo-reversible phase separation) and

additionally, (v) IR35 and NMR spectroscopy.

These techniques are used for fundamental research on

stimuli-responsive polymers providing novel insights into the

elementary mechanism like the equilibrium transition states or

the kinetic/thermodynamic processes of the phase separation

and the structure of individual polymer coils as well as the

effects of various specific/non-specific interactions (hydrogen-

bonding, electrostatic, hydrophobic/hydrophilic interactions)

between the polymer chains, side/end-groups and/or the solvent.

At the end of the eighties, the first reports appeared on the

combination of thermoresponsive polymers with (solvatochromic)

chromophores as indicator dyes as a new method to study

polymer phase transitions. Irie and Kungwatchakun36 studied

azobenzene containing poly(N-isopropylacrylamide) (PNIPAM)

copolymers as photoresponsive systems and Binkert et al.31

reported a fluorescein labeled PNIPAM to investigate the local

mobility of the polymer chains during the phase transition by

fluorescence spectroscopy. Fundamental studies on fluoro-

phores as indicators for stimuli-responsive polymers were

reported by the Winnik group32,37 in 1990 and shortly after

by a research team led by Schild and Tirrell38 based on

PNIPAM in combination with the solvatochromic pyrene

dye. Both groups used the non-radiative energy transfer

between donor and acceptor chain labels to explore the inter-

polymer interactions and the changes of the chain dimensions

(hydrodynamic radius) during the coil-to-globule transition.

Since 2003 a large number of polymeric fluorescent/solvato-

chromic temperature sensors have been developed based on

these initially reported concepts to study coil to globule

transitions. These polymeric thermometers represent important

alternatives for conventional thermometers when, e.g., the

electromagnetic field or the ionic strengths are too strong for

a conventional thermometer.

Additional information can be obtained with polymeric

fluorescent sensors, because numerous parameters like

fluorescence decay times, fluorescence intensity, quenching

Fig. 1 Schematic representation of the polymeric sensors based

on polymer phase transitions (coil-to-globule) and solvatochromic

dyes.
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efficiency, energy transfer and fluorescence polarization can be

determined. The most challenging problems of optical sensors

are the reversibility over a long time, the signal

stability and photobleaching of the chromophore. Nonetheless,

embedding the chromophore into a polymer backbone or in a

nanoparticle/hydrogel protects the chromophore making the

combination very promising. Additionally, potential fluctuations

in signal intensity can be reduced by using ratiometric

measurements.

The aim of this feature article is to provide a historical

overview as well as detailed insights of aqueous polymeric

sensors based on temperature-induced polymer phase transitions

and solvatochromic dyes. The synthesis of the desired dye-

functional macromolecules and the wide range of applications,

such as temperature, pH value or ion sensors, biosensors,

logical gates and drug delivery systems are discussed. The large

variety of reported dye-functionalized polymeric materials and

their optical behavior have been summarized in tables and will

also be discussed briefly. For a more general application

directed overview of responsive polymer sensors, the reader

is referred to a recent perspective article.10

2. Incorporation of solvatochromic dyes in polymer

backbones

The syntheses of responsive copolymers or hydrogels are

mostly performed by radical polymerization techniques. The

most commonly used technique is the free radical polymerization

(FRP) in bulk or solution. Also radical emulsion polymerization is

used to generate nanoparticles. In the last years controlled

radical polymerization methods (CRP) are preferred due to the

possibility to control the polymer architecture, composition and

chain length. Atom transfer radical polymerization39 (ATRP)

or reversible addition–fragmentation chain transfer polymer-

ization40 (RAFT) have been mostly used for the construction

of these polymeric sensors. Also living ionic or ring-opening

polymerization are sometimes chosen as synthetic pathways to

obtain dye-functionalized copolymers. Each of these techniques

requires the use of a dedicated initiator or chain transfer

agent/metal–ligand system to gain control over the polymer-

ization. Several architectures like block, graft, statistical or

star structures can be realized by these methods.

There are two major synthetic pathways to prepare

dye-functionalized sensoric polymers: (i) the use of a dye-

functionalized monomer or an initiator/chain transfer

agent41 or (ii) the functionalization of the polymer by post-

polymerization modification42,43 using e.g. an activated ester

or an efficient ‘‘click’’ reaction,44–47 which was successfully

demonstrated for several functionalization strategies as well as

for the preparation of different architectures. The advantage

of the first strategy is that, it is relatively simple to control the

ratio between the monomers (degree of functionalization). As

a limitation, the dye-functional monomer must be compatible

with the polymerization method. The main advantage of

the post-polymerization modification approach is that the

‘‘activated copolymer’’ represents a universal scaffold for

versatile dye functionalization (e.g. two different chromophores

for FRET) allowing easy evaluation and comparison of the

optical properties. In this post-polymerization modification

approach, reactive polymeric precursors are required, which

can be activated esters,43 like the pentafluorophenyl (meth)-

acrylate or N-[(meth)acryloxy] succinimide, or ‘clickable’

groups, such as acetylene or azide. A frequently applied

synthetic pathway for the preparation of dye-functionalized

monomers is the esterification of an alcohol or amine functio-

nalized dye with a monomer comprising an activated acid, e.g.

the acid chloride or anhydride of (meth)acrylic acid. Both

the copolymerization and post-polymerization modification

methods are very well suited for the preparation of dye-

functionalized copolymers. Additionally, polymers bearing

dyes at the chain termini can be prepared using functional

initiators or terminating agents as well as by post-polymerization

modification.

The degree of labelling, i.e. the amount of incorporated dye

molecules, should be kept low independent of the preparation

method to avoid a strong influence of the dye on the phase

separation behavior, e.g. modification of the cloud point

temperature, and to avoid self quenching effects caused by

too high loading of fluorescence dyes.

3. Classification of LCST based polymeric

temperature sensors

3.1 General concept of LCST based polymeric sensors

The concept of LCST based polymeric temperature sensors

depends on the combination of polymer phase transitions and

solvatochromic dyes. The temperature-induced polymer phase

separation (demixing) in solution is called LCST and can be

described by the Flory–Huggins theory.48 During the coil-to-

globule transitions the polymer chains change from a fully

dissolved, hydrated state (hydrophilic) into a collapsed

non-hydrated state (hydrophobic). This sharp entropy-driven

collapse has a strong influence on the microenvironment of the

repeating units of the polymer. The (majority of) water

molecules are released into the bulk water during this transition

and, therefore, a hydrophilic–hydrophobic (polarity) change

occurs in the microenvironment of the polymer. By attaching

a solvatochromic chromophore to the polymer chain, this

microenvironmental polarity change during the temperature

induced polymer phase transition can be translated into a

colorimetric or fluorescent sensing signal.

The majority of such sensor designs are based on dye-

functionalized stimuli-responsive PNIPAM14,24 while more

recently polymers based on poly(ethyleneglycol) (PEG)

functionalized methacrylates,49–52 i.e. POEGMA, became

popular alternatives too. The popularity of PNIPAM is largely

based on its LCST of 32 1C,14 which is close to the human

body temperature. In addition, the phase transition temperature is

relatively insensitive to changes in concentration and pH

making it rather robust. However, the phase transition does

show slight hysteresis between heating and cooling due to

vitrification of the precipitated polymer phase, which is related

to the high glass transition temperature (Tg) of PNIPAM.

Since POEGMA has a very low Tg it shows excellent reversibility

without hysteresis.51,52 In addition, the phase transition

temperature can easily be tuned by copolymerization of

different OEGMA monomers and POEGMA shows superb
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biocompatibility making it very well suited for biomedical

applications, similar to PNIPAM.53,54 As a limitation, the

temperature sensing regime of LCST-based sensors is often

limited to a narrow temperature range (around 10 to 20 1C)
due to the sharp LCST phase transition. Nonetheless, the

temperature range can be tuned over the full temperature

range of ambient water (0 to 100 1C) by controlling

the hydrophilic/hydrophobic balance of the polymer by

copolymerization. Additionally, thermo-responsive polymers,

e.g. PNIPAM or POEGMA, show a sharp phase transition

and a good reversibility in water, which is crucial for accurate

and reliable sensors.52

The chromophore, a fluorescence or visible solvatochromic

dye, is of great importance for the performance of the

temperature sensors. The chromophore should change its

absorbance or emission behavior upon variation of the

polymer microenvironment from exposure to water to exposure

to the still relatively polar collapsed polymer globules. Dyes

with negative solvatochromism reveal a hypsochromic shift

with increasing solvent polarity and vice versa positive

solvatochromic dyes exhibit a bathochromic shift. The effect

is based on the different stabilization of the ground and/or

excited state (by e.g. the polar water molecules) or interaction

between the solvent/polymer and the chromophore.55

Even though the general LCST based sensor concept is

based on an incorporated solvatochromic dye that directly

translates the polarity change into a fluorescent or visible

signal, different dye-based mechanisms can be exploited to

translate the changes in polymer microenvironment during the

LCST phase transition into a fluorescent or visible signal.

These (complex) environmental parameters are, e.g., viscosity

changes, conformational changes or proton transfer.55 The

various dye sensing concepts can be categorized as follows:

(i) fluorescence enhancement, (ii) fluorescence quenching, (iii)

photoinduced electron transfer (PET), (iv) resonance energy

transfer (RET), in particular the Förster resonance energy

transfer (FRET), (v) excimer formation, (vi) batho/hypsochromic

shift of emission or absorbance and (vii) photoisomerization.

Polymeric temperature sensors can be divided into two main

classes: fluorescent and visible (absorbance) sensors. This

classification not only divides the sensors according to the

basic working principle, but also distinguishes the different

detection methods by fluorescence and absorbance measurements

and, accordingly, the resulting requirements for the sensors.

From a synthetic point of view this classification provides a

design criterion for choosing the right chromophore for a

certain application, independent of the polymer properties.

The different chromophores as well as their different sensing

mechanisms in combination with various thermoresponsive

polymers are discussed in the following subsections.

3.2 Fluorescence based temperature sensors

Fluorescent temperature sensors are discussed based on

chromophores that show an emission, i.e. fluorophores, and

are covalently attached to thermoresponsive polymers. In the

following the fluorescent based temperature sensors are classified

into chromophores that respond to temperature changes by

(i) fluorescence enhancement, (ii) fluorescence quenching and

(iii) a batho/hypsochromic shift of emission. These different

types of fluorescent temperature sensors are discussed in

the following subsections together with other investigated

simultaneous response factors. All the combinations of thermo-

responsive polymers with chromophores, the temperature

sensing regime and other investigated stimuli are summarized

in Table 1.

3.2.1 Temperature induced fluorescence enhancement. Since

2003 Uchiyama and Iwai et al.56–62 reported on fluorescent

thermometers, shown in entry 1, based on polarity sensitive

benzofurazan derivates (weakly fluorescent in hydrophilic and

strongly fluorescent in hydrophobic microenvironment) in

combination with thermoresponsive acrylamide copolymers

(NIPAM, NNPAM and NIPMAM, Fig. 2).

A 13-fold increase of fluorescence intensity was demon-

strated by increasing the temperature above the critical

demixing point of the aqueous dye-functionalized polymer

solution. The basic working principle of this sensor concept

is based on the stronger fluorescence of the dye in a less polar

environment, which is achieved upon temperature-induced

demixing of the polymer solution. The authors studied the

effect of different copolymer compositions on the response of

the chromophore.58 A similar increase of fluorescence intensity

was observed for the different copolymers and it was shown

that the standard deviation in fluorescence intensity for

10 repeating cycles is rather low (0.4–1.0%). Furthermore,

microgels of these copolymers were reported by Iwai et al.59

showing similar fluorescence behavior as the linear polymer

chains, albeit the increase in fluorescence intensity is a

bit lower (10 fold). By using a pH sensitive backbone, N,N-

dimethylaminopropyl acrylamide, DMAPAM, in combination

with N-tert-butylacrylamide NTBAM, the resulting copolymer

exhibits both pH and temperature responsiveness.60 This

copolymer was studied with regard to logic gate applications

with both pH value and temperature as input. Additionally,

ionic components, 3-sulfopropyl acrylate (SPA) and (3-acryl-

amidopropyl) trimethylammonium salt (APTMA), were

introduced to the polymer backbone by Uchiyama and

coworkers61 to expand the temperature range and to improve

the temperature resolution. Several copolymers with different

compositions were synthesized and studied. Incorporation of

the benzofurazan moiety into PNIPAM nanogels resulted

in enhanced fluorescence intensity above the cloud point

temperature. These nanogels showed a sharper response in

the presence of KCl ions and could be successfully used for

intracellular thermometry.62

Porphyrin (entry 2, shown in Fig. 3) labeled NIPAM

copolymers were studied by Avlasevich et al.66–69 Different

PNIPAM chain lengths and different porphyrin contents with

and without metal complexation (Zn2+) were investigated. It

could be shown that the fluorescence of porphyrin is quenched

in cold water (i.e. by interchromophore interaction) and

increasing the temperature above the cloud point temperature

enhances the fluorescence intensity and quantum yield

(B6 fold) caused by an increased rigidity and the formation

of hydrophobic micro-domains in the globules. Porphyrin was

also used by Yusa et al.70 as the inner core of a 4-arm

star-shaped poly(diethylacrylamide) (PDEAM) synthesized
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Table 1 Fluorescence based temperature sensors

Entry Dye Polymer
Stimuli
[T-range 1C]

Wavelength
range (emission) Repeat Type Ref.

1 Benzofurazan NIPAM, NNPAM,
NIPMAM, DMAPAM,
NTBAM, SPA, APTMA,
MPAM, DEAPAM, AA,
NTAAM, NBCAM,
NDMPAM

4–66 pH, K+,
SO4

2�
Em: 520–573 nm 10� Microenvironmental

polarity change
56–65

2 Porphyrin NIPAM 28–38, Zn2+ Em: 660 nm,
723 nm

— Microenvironmental
polarity change

66–70

3 Rhodamine NIPAM,NNPAM,
NIPMAM

10–50, pH, Hg2+ Em: 571 nm 2� Selective fluorescence
enhancement, micro-
environmental polarity
change and micellar
complexes and
complexation of Hg2+

71, 72, 73

PEO-b-NIPAM Em: 584 nm 10�

4 Tetraphenylethylene NIPAM 25–50 Em: 468 nm — Aggregation-induced
emission

74

5 Hemicyanine NIPAM 20–40 Em: 572 nm 10� Microenvironmental
polarity change and
tautomerism

75

6 BODIPY NIPAM, DMAEMA,
DEGMA, OEGMA

20–45 Em: 525 nm–575 nm 10� Viscosity increase
(rotation restricted),
formation of H-dimers
(H-aggregates) and
quenching by AuNP

76–79

7 Naphthalimide NIPAM 24–40, Hg2+ Em: 528 nm — Microenvironmental
polarity change and Hg2+

complexation

80

8 Fluorene NIPAM 22–40 Em: 388 nm — Microenvironmental
polarity change and
quenching

81, 82
Fluorene-b-NIPAM 15–40 Em: 430 nm

9 4H-Pyrane based
dye (polymethine)

NIPAM, NIPMAM 30–60 Em: 570–600 nm — Microenvironmental
polarity change and
quenching by Cu2+

83, 84
35–40, Cu2+ Em: 620 nm

10 Carbazole NIPAM, St-b-NIPAM 25–45 Em: 360 nm 3� Rotation restricted in the
globule and excimer
formation

38, 85, 86

11 Anthracene NIPAM 15–40, pH Em: 420 nm — PET with aggregation 87
12 Phenanthroline NIPAM 20–40, Cu2+,

pH
Em: 452 nm — Quenching by Cu2+,

micellar formation
88, 89

13 Dansyl dye NIPAM 20–45, Cu2+ Em: 490 nm — Quenching by Cu2+ 90
14 Pyrene NIPAM, N-alkylAM,

MMA Hydroxypropyl
cellulose

10–60 Em: 375,
396 nm - 480 nm

— Change of excimer/
monomer fluorescence
and quenching by
fullerene

32, 34, 37,
38, 91–105

N-VinylCLA-co-PEO,
DEGMA,
OEGMA-b-pyrene

15 Cy5.5 PEO-b-PPO-b-PEO 1–80 Em: 695 nm — Quenching in the micelle
aggregation

106

16 2H-Benzo[g]-
chromen -2-one

NNPAM, NIPAM,
NIPMAM,DMAPAM,

5–50 Em: 471 nm -
500 nm

— Microenvironmental
polarity change

107

17 Amino-phenyl-
phenanthrene

NIPAM, MMA,
NIPMAM MAA,
DMAM, NNPAM,

20–60 Em: 481 nm -
434 nm

10� Microenvironmental
polarity change

63, 108–110

18 3-Hydroxyflavone NIPAM 33–41 Em: 440 nm -
540 nm

10� Tautomerism 111

19 6-Aminoquinoxaline NIPAM, DMAM 30–40 Em: 515 nm -
497 nm

— Microenvironmental
polarity change

112

20 Alizarin red S NIPAM-co-VPBA 20–40, diol Em: 578 nm,
660 nm

— Diol-boronic acid
complex

113, 114

21 Benzoxazole NIPAM 28–40, pH, Zn2+ Em: 425 nm -
500 nm

— Keto–enol tautomerism
and zinc complexation

115

22 Fluorescein NIPAM, HEMA 28–33, pH Em: 515 nm — pH change, micellar
formation

89, 116, 117

23 Acridine AM 2–50 Em: 491 nm — Tautomerism (pH change) 118
24 Aminoacetophenone

thiosemicarbazone
NIPAM 15–35, pH Em: 393 nm — Tautomerism (pH change) 119
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by RAFT polymerization of a tetra functionalized porphyrin.

The authors observed a reverse sensing behavior. Increasing

the temperature above the cloud point led to a decrease

in fluorescence intensity, which is caused by the different

environment around the porphyrin core.

Rhodamine based PNIPAM copolymers, shown in entry 3,

were synthesized by Hirai and coworkers.71,72 These fluorescent

thermometers showed a selective and reversible emission

enhancement at a specific temperature range. This on/off

emission response occurs only in acidic environment due to

protonation of the nitrogen atoms in combination with a

change from a spirocylic to an open structure of 3. Below

25 1C the copolymer is non-fluorescent, between 25 and 35 1C
the globule particle is fluorescent and above temperatures of

35 1C the emission is lost (Fig. 4). The authors discuss that the

emission depends on the size of the globular particles, whereby

the hydrophobicity in the globular particles is higher leading

to emission enhancement. However, further increasing the

temperature leads to further aggregation into very large

particles (4200 mm) that scatter the incident light before it

reaches the dye, resulting in a decrease in emission. A series of

different acrylamide copolymers (NIPAM, NNPAM and

NIPMAM) were functionalized with rhodamine to study the

influence of the monomer composition and the polymer

concentration on the sensing behavior in solution.72 These

copolymers show similar fluorescence enhancement behavior

at a specific temperature interval in water.

A different type of fluorescent thermometer was designed by

using the aggregation-induced emission effect of a tetraphenyl-

ethylene dye, entry 4, covalently attached to PNIPAM.74 The

fluorescence of this chromophore was studied during the

coil-to-globule (aggregation of polymer chains) transition

and the authors could show a strong increase in emission at

a specific temperature range. Entry 5 depicts a chromophore

based on the cyanine family, a hemicyanine dye, which was

attached to PNIPAM by Hirai et al.75 The authors exploited

the tautomerism of this chromophore, which has a benzenoid

(nonfluorescent) and a quinoid (fluorescent) structure, for

sensing since the equilibrium is shifted towards the quinoid

form upon the temperature-induced polymer collapse. Based

on this mechanism the fluorescence enhancement at 40 1C
is 20-fold compared to the intensity at 25 1C. BODIPY

(boron-dipyrromethene, entry 6, Fig. 3) labeled PNIPAM

copolymers were prepared by Shiraishi et al.76 via a pyridinium

salt. These copolymers revealed a fluorescence enhancement

based on the formation of viscous microdomains in the

collapsed polymer globule. It is proposed that the higher

viscosity restricts the rotation of the meso-pyridinium moiety,

which suppresses the excited state of the BODIPY units.

Additionally, a BODIPY monomer was copolymerized with

N,N-dimethylaminoethyl methacrylate (DMAEMA) by the

RAFT process revealing a fluorescence enhancement during

the thermo-induced phase separation. The authors describe

that the formation of dimers in the aggregates (H-dimer) is

responsible for the strong increase in fluorescence intensity.77

A BODIPY functionalized monomer (entry 6) was copolymerized

with DEGMA and OEGMA to make random and block

copolymers by Liras et al.78 Increased fluorescence intensities

and quantum yields were observed during the temperature-

induced phase transition.

A responsive nanogel with naphthalimide units (entry 7) for

the detection of temperature and Hg2+ was created by Liu

and coworkers.80 Upon heating above the phase separation

temperature, the fluorescence intensity underwent a 3.4-fold

increase due to hydrophobic microenvironment changes. In

the presence of Hg2+ ions a 10 fold and 57 fold increase in

fluorescence emission intensity was achieved at 25 and 40 1C,
respectively. The strong increase in fluorescence emission is

due to the Hg2+ induced transformation of naphthalimide–

thiourea to naphthalimide–imidazole derivates of the

chromophore. Chen et al.81 labeled PNIPAM with fluorene

(entry 8) derivates. At pH values above 7 increasing temperature

led to aggregation of the copolymer resulting in enhanced

fluorescence intensity due to microenvironmental polarity

change of PNIPAM, while at pH values below 7 the sidechain

of the fluorene moieties is protonated and remains in solution.

A push–pull chromophore based on 4H-pyrane and diphenyl

amino structures (polymethine dye, entry 9) was attached to a

hydrogel by Kim et al.83 Again a fluorescence enhancement

was observed by increasing the temperature above the LCST

of PNIPAM ascribed to the polarity change. Another example

of a fluorescence enhancement sensor was constructed from

miktoarm star copolymers of PNIPAM3-(N-vinylcarbazole),

entry 10.85 The authors describe an increase of the fluorescence

by a rotational restriction of carbazole (Fig. 3) in the

precipitated globular state.

Fig. 2 Schematic representation of the structures of acrylamides and

the benzofurazan dye.58,61

Fig. 3 Schematic representation of the structures of BODIPY,

carbazole and porphyrin dyes.

Fig. 4 Schematic representation of the structures of rhodamine based

PNIPAM (left) and the emission enhancement at a specific temperature

range (right). Reprinted with permission from ref. 71. Copyright r

2007 American Chemical Society.
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3.2.2 Sensors based on fluorescence quenching. Another

strategy for the construction of fluorescent temperature

sensors employs quenching processes.

Shiraishi et al.87 reported a temperature-driven on/off

fluorescent indicator based on 9-aminomethylanthracene

(entry 11) and PNIPAM. The temperature induced demixing

of the copolymer was studied in water at different pH values.

The observed temperature-driven fluorescence quenching is

based on the photoinduced electron transfer (PET) process,

where interaction between the cationic amino group and the p
electron-system of anthracene occurs.

Another approach was reported based on a poly-

(St-b-NIPAM) block copolymer micelles labeled with a

carbazole dye (Fig. 3) in between the two block segments.86

The authors showed a decrease of the fluorescence intensity

(less excimer species) above the LCST by collapse of the

PNIPAM block segments, while at low temperatures strong

fluorescence is recorded due to the formation of more excimer

species.

Tian et al.84 reported a thermoresponsive polymer sensor

labeled with dicyanomethylene-4H-pyrane moieties (entry 10)

based on a fluorescence quenching mechanism (intramolecular

charge transfer). The sensor shows multiple responsiveness to

external stimuli, including pH value, Cu2+ ions and temperature

in ethanol–water mixtures, and was also used for the

construction of logic gates. It should be noted that the

fluorescence quenching was observed only in neutral and

acidic conditions. The authors suggest that the loss of the

quenching is due to lower sensitivity of the copolymer to

temperature (LCST behavior) in alkaline environments.

Another example of selective Cu2+ ion recognition with a

temperature sensor was reported by Liu et al.88 using a

microgel labeled with 1,10-phenanthroline (entry 12). Different

metal-ions were investigated regarding the quenching process

and only efficient quenching was observed for Cu2+ ions.

Another example of a chemo- and temperature responsive

hydrogel for detection of both temperature and Cu2+ ions was

prepared by Liu et al.90 Ametal-chelating acceptor, picolineamine,

and a fluorescent reporter, a dansyl-chromophore (5-(dimethyl-

amino)naphthalene-1-sulfonyl dye, entry 13) were incorporated

into PNIPAM. In the swollen state of the hydrogel, Cu2+ is

selectively captured leading to emission quenching.

In a recent example, both pyrene (entry 14) and fullerene

were covalently attached to the chain termini of PNIPAM

(Fig. 5) and, alternatively, fullerene was attached on the

side-chains of a pyrene end-functionalized PNIPAM.98 In both

cases, the pyrene fluorescence was quenched by increasing the

temperature over the cloud point of PNIPAM due to the

closer proximity of the pyrene and fullerene groups.

Water-soluble conjugated poly(fluorene)-b-poly(N-isopro-

pylacrylamide) diblock copolymers were investigated by Liu

and Wang et al.82 showing self-assembly in aqueous solutions

above the cloud point temperature of PNIPAM resulting in

polyfluorene emission quenching.

Kim and Choi et al.106 labeled the chain ends of a

Pluronics triblock copolymer consisting of ethylene oxide

and propylene oxide with a Cy5.5 near-infrared fluorescent

dye (entry 15). The copolymer exhibits temperature-induced

aggregation behavior based on the LCST behavior of the

poly(propylene oxide) block covering a broad temperature

interval from 0 to 80 1C. Accordingly, the near-infrared emission

linearly decreases from 0 to 80 1C due to the transition from

dissolved polymer chains to intermediate micelles (semi-quenched)

to large aggregates (quenched).

A BODIPY (entry 6, Fig. 3) functionalized RAFT agent

was used for the polymerization of NIPAM, followed by

aminolysis to obtain a thiol end-group, which was used for

the binding to gold nanoparticles.79 By heating the copolymer

over the cloud point temperature, the BODIPY fluorescence

was quenched by the close proximity of these gold nano-

particles.

3.2.3 Sensors based on batho/hypsochromic emission shifts.

One of the most studied solvatochromic fluorescent dyes in

chemistry is pyrene.120 Pyrene is e.g. used in polymer science as

a fluorescent probe for the determination of critical micelle

concentrations (CMC) of block copolymers based on the

sensitivity of the pyrene emission to the polarity of the

solubilizing medium.121,122 This special behavior of the fluorescent

dye and the formation of excimers make the chromophore

very useful for the investigation of the heat-induced phase

transition to gain a molecular insight into the thermo-reversible

phase separation. In the early nineties Winnik et al.32,34,37,91–93

studied the phase transition of pyrene (entry 14) functionalized

PNIPAM in water. The authors showed that the polymer

phase transition has an influence on the pyrene excimer

emission, i.e. a change in the ratio of excimer to monomer

fluorescence from 375 and 396 nm (single pyrene emission)

to B480 nm of pyrene excimer emission (Fig. 6). Several

parameters were investigated, like the effect of hydrophobically

modified PNIPAM,91 the excimer formation between

naphthalene and pyrene moieties,34,95 spin labeling93,94 (stable

radical of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, TEMPO

derivate) and the influence of molar mass and pyrene content

of the copolymer.

The non-radiative energy transfer between pyrene/

naphthalene32 or pyrene/carbazole38 chain labels of PNIPAM

was used to explore the interpolymer and polymer–solvent

interactions by, e.g., energy transfer efficiencies, which depend

on the polymer chain dimensions (distance of chromophores).

Several fundamental mechanisms of the polymer transition could

be understood, including that for dilute solutions individual

polymer chains are present below the LCST transition (no inter-

polymeric interactions) and that the macroscopic phase separation

is caused by conformation changes triggered by temperature

Fig. 5 Temperature-induced quenching mechanism for both pyrene

and fullerene end-group functionalized PNIPAM above the cloud

point temperature (here denoted as LCST). Reprinted with permission

from ref. 98. Copyright r 2009 American Chemical Society.
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of polymer–water interactions (loss of hydrogen bonds) of

PNIPAM. The phase separation is initiated by a gradual

shrinking of the solvated polymer chain into a collapsed stated

followed by aggregation of individual chains into larger

particles.

Hydroxy propyl cellulose, which exhibits a LCST transition

at 42 1C, was also labeled with pyrene.96,97 Under the phase

separation temperature two types of excimer formation could

be observed (one center vs. sandwich type) from ordered

copolymer assemblies, but by increasing temperature the

sandwich type predominates in the globule. In addition,

pyrene-labeled poly(N-vinylcaprolactam) and PEO graft

copolymers were investigated by Winnik et al.99,100 to study

the influence of the polymer phase transition on the pyrene

excimer formation. PNIPAM with chain terminal pyrene

groups was additionally investigated with regard to the LCST

transition and excimer formation by several workgroups.103,104

More recently, Hoogenboom et al.102 reported a di(ethylene

glycol) methyl ether methacrylate (DEGMA) copolymer labeled

with pyrene as a fluorescent thermometer. Higher pyrene

excimer emission was observed below the demixing temperature

due to high polarity of the aqueous environment. In addition,

the increased microviscosity in the collapsed polymer globules

might hinder the excimer formation above the phase transition

temperature. A block copolymer of poly(OEGMA-b-pyrene-

methacrylate) was synthesized by Zhao et al.105 revealing

aqueous self-assembly into micelles and a temperature-

induced change in the excimer/monomer fluorescence of pyrene.

The opposite polymer demixing transition in solution,

namely the upper critical solution temperature (UCST), was

investigated for the development of a fluorescent temperature

sensor. Poly(methyl methacrylate), PMMA, with covalently

attached pyrene groups was reported by Hoogenboom et al.101

This UCST-type sensor revealed a broader temperature

sensing range in aqueous ethanol (10 to 40 1C) compared to

similar LCST based sensors. Uchiyama and Ohwada et al.107

attached an environmentally sensitive 2H-benzo[g]chromen-2-

one fluorophore (entry 16), which is nonfluorescent in aprotic

solvents and strongly fluorescent in protic solvents, to

PNIPAM. As expected a stronger fluorescence was observed

for temperatures below the cloud point temperature and by

increasing the temperature above the demixing point a blue

shift of the maximum emission wavelength was observed

together with a decrease in intensity due to the release of

water molecules from the polymer chains.

Several copolymers and hydrogels of NIPAM with MMA,

MAA, DMAM, NNPAM, and NIPMAM were prepared with

9-(4-N,N-dimethylamino-phenyl-phenanthrene derivate (entry 17)

as covalently attached molecular fluorescent probe by Iwai

et al. (Fig. 7).63,108–110 The amount of comonomers incorporated

in PNIPAM influences the LCST temperature (hydrophobic

comonomers lower the LCST and hydrophilic comonomers

increase it) and, therefore, a broader and tuneable temperature

sensing range could be achieved. The amino-phenyl-

phenanthrene dye exhibits intramolecular charge-transfer

and shows a strong solvatochromism. When the PNIPAM

precipitates upon heating, the maximum emission wavelength

changes from 481 nm to 434 nm as shown in Fig. 7. This blue-

shift was also observed for the various copolymers and is

based on the change of the polarity of microenvironment.

A ratiometric thermometer was created by functionalizing a

PNIPAM hyrogel with a 3-hydroxyflavone dye (entry 18).111

The dye shows a dual-band emission associated with an excited

state intramolecular charge transfer (green fluorescence) and a

tautomer excited state intramolecular proton transfer (blue

fluorescence), which depend on the polarity and the protic

properties of the solvents. By heating the polymer solution

over the cloud point a shift from blue emission to green

emission was observed, which can be used for a ratiometric

readout of the temperature. Matsumura and Katoh112 used

6-aminoquinoxaline derivates (entry 19) as chromophores for

the copolymerization with NIPAM. The dye is used as a

fluorescent probe for the phase separation by a change in

the maximum emission wavelength (lmax) from 515 nm to

497 nm. In a final example, the alizarin red S dye (entry 20)

was covalently linked to PNIPAM via diol–boronic acid

complex formation and was investigated for logical operations114

as well as for diol sensing113 in combination with the aqueous

temperature induced phase separation of PNIPAM.

3.2.4 pH detection by fluorescence emission shift/enhancement

during temperature induced phase separation. Dye-labeled

copolymer temperature sensors based on aqueous polymer

phase transitions can also be used for the detection of the pH

value since often a pH dependent emission shift is observed

next to the temperature induced changes.

Recently Uchiyama and Ohwada et al.64,65 synthesized

several stimuli-responsive acrylamide copolymers with polarity

sensitive benzofurazan dyes (entry 1). The sensor is based on

the benzofurazan as indicator dye and several comonomers as

Fig. 6 Pyrene labeled PNIPAM (left) and the effect of temperature

on the monomer/excimer fluorescence by passing the cloud point

temperature (right). Reprinted with permission from ref. 37. Copy-

right r 1990 American Chemical Society.

Fig. 7 Phenanthrene labeled PNIPAM (left) and (right) the effect of

temperature on the maximum emission wavelength (lmax). Reprinted

with permission from ref. 109. Copyright r 2000 Elsevier B.V.
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receptor units for ion recognition, e.g.K+ ions by crown ether

complexation, sulfate ion detection by tris(3-aminopropyl)-

amine units or H+ ion detection by DMAPAM. Multiple

sensing of target ions (H+ or K+) in combination with

temperature could be realized by suitable combinations of

the different comonomers. A digital (on–off) fluorescent pH

sensor was successfully created using this concept comprising

an indicator dye and a receptor unit.64

A benzoxazole (entry 21) containing PNIPAM was used as

a sensor for the pH value, zinc ion concentration and/or the

temperature.115 The dye shows a keto–enol tautomerism and

can complex zinc ions under basic conditions resulting in an

emission shift from 425 nm to 500 nm.

Fluorescein (entry 22) is a well-known fluorescent tracer in

biology and is used for many applications. The fluorescence of

fluorescein depends strongly on the pH value due to an

equilibrium between the di-anion, mono-anion and neutral

forms of the dye. Binkert et al.31 investigated the local mobility

of fluorescein labeled PNIPAM polymer chains with fluorescence

spectroscopy (time resolved fluorescence depolarization). They

observed a reduction of the label mobility and an enhancement

of non-radiative transfer due to the coil (flexible) to globule

transition.

A dual temperature and pH responsive PNIPAM copolymer

was reported by Kanazawa et al.116 based on fluorescein. The

copolymer showed enhanced fluorescence intensity for low

temperature, when the copolymer is in solution, which

decreased by increasing the temperature. Similar to the parent

fluorescein the copolymer revealed a pH depend fluorescence,

where the highest values are achieved at alkaline conditions,

while at acidic pH values the fluorescence is nearly lost.

Additionally, cellular uptake of the copolymer was studied.

A fluorescein based radical initiator was used for the ATRP of

NIPAM and DMAM by Meng et al.117 The LCST behaviors

of the different copolymers were studied at different pH values

by fluorescence spectroscopy showing an increase of fluorescence

intensity for increasing pH values. Temperature and pH

sensitive micellar complexes of poly(NIPAM-co-HEMA)-b-

poly(4VP) labeled with fluorescein and poly(NIPAM-co-

phenanthroline europium complex)-b-poly(4HSt) (Fig. 8) were

synthesized by Zhang et al.89 The size of the self-assembled

structures changed during the LCST transition resulting in an

aggregation of the micelles due to the collapse of PNIPAM.

The self-assembly and fluorescent properties were found to be

strongly dependent on the temperature and the pH value. The

emission of fluorescein depends strongly on the pH value and,

therefore, a shift in emission is observed. The temperature

induced emission shift of the phenanthroline europium

complex is due to a change from hydrophilic to hydrophobic

of PNIPAM chains during the LCST transition.

Acridine-9-N-acrylamide (entry 23) was homo- and copoly-

merized with acrylamide (AM) by Su and coworkers118 for the

construction of temperature/pH sensors. The copolymer

shows a linear relationship between the temperature and the

fluorescence intensity and additionally a pH induced shift

of the emission maximum due to the protonation of the

nitrogen (tautomerism). A multifunctional fluorescent sensor

was developed for the detection of the pH value and Hg2+

ions by Liu et al.73 using a rhodamine B derivate (entry 3).

The detection sensitivity for both could be increased if the

poly(ethylene glycol)-b-(NIPAM) copolymer is collapsed into

micellar structures at elevated temperatures.

A pH and thermo sensitive polymeric material was realized

by combining a p-aminoacetophenone thiosemicarbazone unit

(entry 24) and a PNIPAM polymer chain. The fluorescence

intensity could be significantly influenced by the addition of a

base (tautomerism of thiosemicarbazone) resulting in emission

decrease.119

3.3 FRET based sensors

The fluorescence resonance energy transfer (FRET) has also

been exploited for the construction of polymeric sensors based

on thermoresponsive polymers. The FRET energy transfer

occurs between a donor molecule in the excited state and an

acceptor (A) chromophore in the ground state, whereby the

donor chromophores emit at wavelengths that overlap with

the absorption spectrum of the acceptor, resulting in acceptor

emission. The FRET process is a result of the long-range

dipole–dipole interactions between the donor and acceptor.123

FRET depends strongly on the distance between the donor

and acceptor and allows the determination of this distance

based on the efficiency of energy transfer. During the coil-to-

globule transition of a thermoresponsive polymer, the inter-

chain distances of the polymer coil are changing and therefore

the FRET efficiency is influenced, which can be used to

determine these interchain distances. The Winnik research

group (entry 25)32 as well as Schild and Tirrell (entry 26)38

exploited the non-radiative energy transfer between donor and

acceptor chain labels to study LCST polymer phase transitions

for two cases: (i) the donor and acceptor are attached to the

same polymer chain and (ii) a mixture of donor functionalized

polymer chains with acceptor functionalized polymer chains.

The FRET process was used to explore the interpolymer

interactions and the mechanism of the coil-to-globule transition.

The energy transfer efficiency was found to be higher above

the LCST transition and the authors concluded that the

mechanism of the phase separation is initiated by a gradual

shrinking of the solvated polymer chain into a collapsed state

followed by aggregation of individual chains into larger

particles.32 All the reported combinations of thermoresponsive

polymers with, respectively, FRET pairs and the temperature

sensing regime are summarized in Table 2.

Fig. 8 Poly(NIPAM-co-HEMA) labeled with fluorescein and a

phenanthroline europium complex for pH and temperature detection.

Reprinted with permission from ref. 89. Copyright r 2009

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Cyanine dyes (entry 27) were attached to PNIPAM core/

shell microgels by Lyon et al.124 in 2004 to study the structure–

function relationship between the core and shell components.

The swelling and thermoresponsive behavior of these

microgels was investigated in detail via the FRET process.

Investigations of the core swelling behavior in the presence of

a shell allowed a geometric thickness determination.

Liu and Cheng et al.125 demonstrated three-state switching of

fluorescence emission of a stimuli-responsive poly(St-b-NIPAM)

block copolymer based on three chromophores (2 FRET pairs).

These three chromophores give rise to two independent FRET

processes based on benzofurazan/rhodamine and benzofurazan/

spiropyran pairs (entry 28), which can be stimulated by the pH

value, the temperature, and light irradiation. The reported diblock

copolymer micelles act as a sensitive ratiometric fluorescent sensor

for pH value and temperature.

Liu et al. recently developed thermo and light sensitive

microgels based on the benzofurazan/rhodamine FRET pair

(entry 29).126,127 One type of microgel was designed to show

temperature and light regulated FRET efficiencies, whereby

the collapse of the microgels leads to an enhanced FRET

efficiency due to the closer distance of the dyes. The authors

incorporated a photocleavable 2-nitrobenzyl moiety, which

could be used to change the optical properties of the microgel

resulting in a less efficient FRET process.126 In a second type

of microgels (see also Section 4) Liu and coworkers introduced

a crown-ether for the recognition of potassium ions as a

ratiometric fluorescent probe. Also for this microgel the FRET

process is enhanced by temperatures above the LCST, but in

the presence of K+ ions the re-swelling of the gel (larger

volume) leads to less efficient FRET.127

Hybrid silica nanoparticles with PNIPAM brushes labeled

with the benzofurazan/spiropyran FRET pair (entry 30) were

reported by Liu et al. as temperature and UV/Vis light sensors

(Fig. 9).128 The spirobenzopyran shows two tautomeric

structures, which can be switched by UV/Vis light (see

Section 3.4.1) and, as a result, the FRET process could be

turned off by irradiation with visible light. By passing the

LCST transition the fluorescence ratio (FRET efficiency) of

the dyes changed.

3.4 Absorbance based visible temperature sensors

In comparison to fluorescence based temperature sensors, only

a small number of reports appeared on absorbance based

temperature sensors; again PNIPAM based copolymers are

primarily investigated. The majority of the absorbance based

temperature sensors are based on chromophores that translate

the polymer phase transition into a batho/hypso-chromic shift

of absorbance. Nonetheless, this process can be a result of

various mechanisms, like photoisomerization, tautomerism,

photocrosslinking or complexation of the chromophore. The

different types of reported absorbance temperature sensors are

summarized in Table 3 and will be discussed in the following.

3.4.1 Sensors based on batho/hypsochromic absorbance

shifts. Spiropyran (entry 31) is an often used photoresponsive

dye since it can be switched by UV/Vis light between a colored

open-ring structure (merocyanine) and a colorless spiro form

with a closed-ring structure (Fig. 10). Both structures can be

additionally protonated. Sumaru et al.129–134 discussed the

effects of irradiation with visible light on the absorption of

PNIPAM functionalized with spiropyran during pH and/or

temperature induced phase transitions. It was shown that

the absorbance of spiropyran abruptly changed during the

polymer phase transition, useful for logic gate operations.

Based on this approach Sumaru and coworkers prepared a

photo- and thermoresponsive gate membrane of a sipropyran

functionalized PNIPAM hydrogel attached to a surface.132

Garcia and Hu et al.135 also used a PNIPAM hydrogel labeled

with a spiropyran dye for photo-, thermo- and pH responsive

sensing. In addition, complexation of Pb2+ ions by the open

Table 2 FRET based temperature sensors

Entry FRET pair (D/A) Polymer Stimuli [T-range 1C] Wavelength range (D/A emission) Type Ref.

25 Naphthalene/pyrene NIPAM 4–40 Em: 323 nm - 376, 480 nm Chain length change
(LCST)

32

26 Carbazole/pyrene NIPAM 25–35 Em: 305 nm - 377 nm Chain length change
(LCST)

38

27 Cy5/Cy5.5 (Cyanine dyes) NIPAM 23–43 Em: 674 nm - 697 nm Chain length change
(LCST)

124

28 Benzofurazan/rhodamine
Benzofurazan/spiropyran

St-b-NIPAM 25–36, pH, UV/Vis Em: 518 nm - 580 nm Photoisomerization and
pH value change

125

29 Benzofurazan/rhodamine NIPAM 25–50, UV, K+ Em: 527 nm - 588 nm Chain length change
(LCST) and swelling by
UV light or K+ ions

126, 127

30 Benzofurazan/spiropyran NIPAM 20–35, UV/Vis Em: 550 nm - 620 nm Photoisomerization 128

Fig. 9 Hybrid silica nanoparticles with PNIPAM brushes showing an

on/off FRET process. Reprinted with permission from ref. 128.

Copyright r 2009 American Chemical Society.
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form of spiropyran was studied by Suzuki et al.136 showing a

colour shift by complexation.

A colorimetric thermometer with a linear and reversible

batho/hypsochromic shift of the absorption spectrum of the

attached spiropyran moieties in a temperature range of

10 to 34 1C was reported by Shiraishi et al.137 In addition,

a thermoresponsive poly(DEGMA-b-spiropyran) diblock

copolymer was synthesized revealing double responsive

micellization in aqueous solution.138 The core of the micelles

could be switched between both segments by temperature and

UV/Vis light.

Brooker’s merocyanine dye (4-[(1-methyl-4(1H)-pyridinyl-

idene)ethylidene]-2,5-cyclohexadien-1-one, entry 32, shows a

strong negative solvatochromic effect in solution due to the

presence of two tautomeric forms, a quinone and a zwitterion

structure. This dye was covalently attached to PNIPAM via

nitrogen quaternization (Fig. 11) by Ritter and Koopmans to

act as an optical sensor in solution with a color shift for

the temperature at different pH values.139 Additionally,

host–guest interactions with b-cyclodextrin were studied

resulting in an absorbance shift of the dye.

In a recent example, a dual-sensing metalloporphyrin (entry

33) containing poly(NIPAM-b-HEMA-b-MAA) copolymer

was demonstrated to act as a metal ion detector and sensitive

thermometer.141 The sensor exhibits a full-color tunable

behavior and is based on different metal ion complexation

by the porphyrin. These copolymers with different metal

ions all revealed thermochromic properties by passing the

LCST transition. Recently, a dual sensor that simultaneously

senses the temperature and the pH value was developed

by combination of a poly(DEGMA) copolymer with a pH

Table 3 Absorbance based temperature sensors

Entry Dye Polymer
Stimuli
[T-range 1C]

Wavelength range
(absorbance) Repeat Type Ref.

31 Spiropyran NIPAM, DEGMA,
DMAM

10–50, pH
UV/Vis, Pb2+

Abs: 519 - 546 nm
Abs: 580 nm

— Photoisomerization and
microenvironmental
polarity change,
complexation

129–138,
140

32 Brooker’s
merocyanine

NIPAM 30–40, pH Abs: 460 - 385 nm — Tautomerism,
cyclodextrin complexation

139

33 Metalloporphyrin NIPAM, HEMA, MAA 35–65, metal ions Abs: 420 - 560 nm for
different metal ions

8� Different metal complexes
and microenvironmental
polarity change

141

34 Disperse red 1 DEGMA 10–25, pH Abs: 487 - 532 nm — Tautomerism of azo-dye 142
DEGMA-co-OEGMA 86–96

35 Azobenzene NIPAM, DMAM,
DMAEMA, NIPAM-b-
PEO, DEGMA, OEGMA

20–60, UV/Vis Abs: 320–365 nm and
425 nm

— Photoisomerization
(cis/trans)

36, 140,
143–156

36 Cupper
chlorophyllin

NIPAM 25–40, UV/Vis — — Heat-transfer by
radiationless transition

157

37 Malachite green NIPAM 25–35 Abs: 620 nm — Heat-transfer by
radiationless transition

158

38 Naphthalene
CBPQT4+

NIPAM 26–36 Abs: 450 nm 3� Complexation 159

39 Leuco dye NIPAM 25–35, UV/Vis — — Halochromism 160
40 Fulgimide NIPAM 26–36, UV/Vis Abs: 325 -525 nm — Photoisomerization 151

Fig. 10 Absorbance spectra of spirobenzopyran chromophore in

PNIPAM by heating over the LCST at pH 4 and the photoisomerization

and protonation. Reprinted with permission from ref. 130.

Copyright r 2007 Elsevier B.V.

Fig. 11 PNIPAM functionalized with Brooker’s merocyanine.139
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responsive solvatochromic dye, namely disperse red 1

(entry 34).142 At low pH values, the polymer undergoes a

color change from 487 to 532 nm during the temperature-

induced phase separation, while at neutral or basic conditions

this shift is lost.

An interesting property of azobenzene derivates (entry 35) is

the photoisomerization of the trans- to the cis-isomer by

irradiation with UV/Vis light (Fig. 12). During this photo-

isomerization the p* ’ p and p* ’ n transitions of the

chromophore are affected resulting in a shift of the absorption

band. This property of the azobenzene derivate can be used for

photo sensor systems.

Azo-dyes were randomly incorporated in the polymer

backbone by several working-groups by copolymerization of

the dye-functionalized monomer with different monomers

like NIPAM,36,140,143,145,147,149–152 DMAM,140,144,146,153

DMAEMA148,154 and OEGMA.140,155,156 The azobenzene

copolymers were studied as light and thermo-sensitive materials.

Additionally the effect of the pH value to the LCST154 as well

as the complexation of a-cyclodextrin153 were investigated.

Suzuki and Tanaka157 reported about a phase transition of

copper chlorophyllin labeled (entry 36) PNIPAM gels induced

by visible light and by temperature, which can be used as

switches or as light sensors.

Another example for a photoresponsive microgel is based

on PNIPAM and a malachite green dye (entry 37) for

photomodulated material.158 Irradiation of a malachite green

containing hydrogel increases the temperature due to rapid

nonradiative decay resulting in the collapse of the gel.

A naphthalene functionalized PNIPAM copolymer was

used as a tool for the complexation of cyclophane

cyclobis(paraquat-p-phenylene) (CBPQT4+), entry 38.159

During the LCST-mediated transition of NIPAM a reversible

decomplexation process occurs causing a large color shift due

to the disassembly of the donor–acceptor complex, which

shows great potential for the development of temperature

sensors. A photo-induced phase transition of a PNIPAM

hydrogel labeled with a bis(4-(dimethylamino)phenyl)

(4-vinylphenyl)methyl leucocyanide (entry 39) dye, which

shows a halochromism, was developed by Tanaka and Irie

et al.160 Equilibrium swelling curves of the gel were recorded as

a function of temperature and UV light. The gel shows a very

fast photoinduced transition and can be used in optical

devices. Another photo-isomerizable chromophore represents

the fulgimide dye (entry 40), which reveals an absorption band

at 530 nm after UV irradiation. A series of thermo-responsive

PNIPAM copolymers containing different amounts of

fulgimide moieties has been synthesized and studied as

molecular logic gates.151

4. Applications of thermoresponsive polymeric

sensors

In this section, the application potential of thermoresponsive

polymeric sensors is highlighted based on selected examples.

Not all design principles will be discussed in full detail, but the

most important creative strategies and concepts will be

explained. As is evident from the previous sections, a wide

range of sensors for temperature, pH, UV/Vis light and ions

have been developed by the combination of a polymer LCST

transition with solvatochromic dyes. The large number of

different chromophores and indicator dyes as well as the wide

variety of available thermoresponsive (co)polymers provide

almost unlimitied potential for tailor-made sensors. In addition,

recent studies demonstrate the extension of this concept towards

biosensors, logic gates, microvalves or simultaneous dual

sensors, which will be discussed in the following.

Logic gates that can (simultaneously) treat multiple inputs

are extremely interesting for material science to develop

molecular memory systems. In 2004, Uchiyama and Iwai

et al.60 developed a fluorescent polymeric logic gate with both

temperature and pH as input values. The logic gate operation

is based on the following concept (Fig. 13): the N-alkylacryl-

amide polymer backbone senses the changes in temperature by

undergoing a LCST transition while the ionizable tertiary

amine moieties in the polymer respond with a solubility

change to the pH value. The incorporated polarity-sensitive

benzofurazan dye records the accompanying changes in the

microenvironmental polarity with a fluorescence signal as output.

Another very appealing application example is the development

of a fluorescent nanogel as a thermometer for living cells.62 A

PNIPAM nanogel was prepared with incorporated water-

sensitive benzofuran units that are quenched by contact with

water. By increasing the temperature the nanogel, which was

inside the cytoplasm of COS7 cells, showed a stronger

fluorescence signal due to the collapse of the gel (Fig. 14).

The temperature sensing accuracy was within 0.5 1C inside the

living cells.

A dual sensor that simultaneously senses the temperature

and the pH value was synthesized by Hoogenboom et al. as

illustrated in Fig. 15.142 The sensor is based on a thermo-

responsive PDEGMA copolymer bearing disperse red 1 as a

solvatochromic dye. The dual sensitive copolymer shows

temperature responsiveness in the range from 10 to 20 1C

Fig. 12 Photoisomerization of azobenzene.144

Fig. 13 Logic gates which can simultaneously treat multiple inputs.

Reprinted with permission from ref. 60. Copyright r 2004 American

Chemical Society.
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due to the phase separation of the PDEGMA and the

chromophore exhibits a color change from 487 to 532 nm

under acidic conditions due to protonation of the chromophore,

while at basic conditions this shift is lost. By measuring a

single absorption spectrum, the combination of absorption

maximum as well as the absorbance ratio of the disperse red

1 dye provides information of both the temperature and pH

value of the solution.

A ratiometric fluorescent K+ sensor based on a thermo-

responive PNIPAM microgel was designed by Liu et al.127

4-Acrylamidobenzo-18-crown-6 and two dyes for fluorescence

resonance energy transfer, namely the donor benzoxadiazole

and rhodamine-B as a FRET acceptor, were incorporated into

the gel. The FRET process of the microgel is enhanced by

temperatures above the LCST due to a shorter distance of the

FRET pair. In addition, the presence of K+ ions induces a

second volume phase transition (VPT) temperature leading to

an increased distance between the dye pair resulting in less

efficient FRET (Fig. 16).

Photoresponsive polymer gels based on PNIPAM

functionalized with a spirobenzopyran chromophore were

fabricated by Sumaru et al.133 These polymer gels were

exploited to develop a photoresponsive microvalve, which

can be opened by local light irradiation. Blue light irradiation

of the microgels causes a shrinkage of the PNIPAM gel

(LCST) due to ring-closure of the spirobenzopyran causing a

decrease in the cloud point temperature by its lower polarity

compared to the ring-opened form. As a result of the microgel

shrinkage the microvalves are opened (Fig. 17). Additionally,

the microvalves can be operated by temperature changes that

also control the transition between the open and closed forms

of spirobenzopyran. These microvalves facilitate non-contact,

independent, and parallel fluid manipulation in microchips

controlled by light irradiation or temperature.

A new type of multicolor fluorescent stimuli-responsive

block copolymer was demonstrated to act as a sensitive

ratiometric probe for both pH value and temperature. The

concept is based on a thermoresponsive poly(St-b-NIPAM)

diblock copolymer separately labeled with three different

chromophores in the two block segments to comprise two

FRET pairs (one type of donor dye and two types of acceptor

dyes). The FRET process can be switched (on/off fluorescence)

between the two acceptors stimulated by the pH value, or by

UV/Vis light irradiation (Fig. 18). Fluorescence intensity

changes of the micellar solution upon 5 cycles between pH 3

and pH 7 and upon UV irradiation (365 nm) and visible light

irradiation (525 nm) were demonstrated.

5. Conclusions and outlook

This feature article illustrated the historical development of

temperature-sensors based on thermoresponsive polymers in

combination with solvatochromic dyes. In the early days, the

incorporation of solvatochromic dyes was mostly exploited to

provide a deeper fundamental understanding of the temperature-

induced polymer phase transition. Only in the last decade, this

concept has been widely adapted for the development of smart

polymeric thermometers. The majority of these polymeric

Fig. 14 Fluorescent nanogel as a thermometer for living cells.

Reprinted with permission from ref. 62. Copyright r 2009 American

Chemical Society.

Fig. 15 Dual sensor for temperature and pH value. Reprinted with

permission from ref. 142. Copyright r 2009 WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim.

Fig. 16 Ratiometric fluorescent potassium sensor. Reprinted with

permission from ref. 127. Copyright r 2010 American Chemical Society.

Fig. 17 Photoresponsive polymer gel microvalves controlled by local

light irradiation. Reprinted with permission from ref. 133. Copyright r

2007 Elsevier B.V.
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temperature sensors are based on the gold standard thermo-

responsive polymer, PNIPAM, in combination with a wide

variety of fluorescent dyes with a range of sensing mechanisms,

including batho/hypsochromic shifts, fluorescence quenching/

enhancing as well as FRET. In contrast, only a relatively

small number of studies dealt with colorimetric sensors with

solvatochromic visible dyes. More recently, there is a growing

interest in using POEGMA based thermoresponsive polymers

as alternatives to PNIPAM. Moreover, well-defined polymers

with better defined phase transition temperatures became

easily accessible through the development of controlled radical

polymerization techniques. Finally, new application areas,

besides simple temperature sensing, have been explored

leading to polymers for logic gate operations, simultaneous

dual sensors as well as smart valves.

This feature provides an up to date overview of this dynamic

research field to already engaged scientists and will hopefully

stimulate interested researchers to enter this exciting field

of research that without doubt will lead to new innovative

application concepts as well as more elegant and broadly

applicable soluble polymeric thermometers in the coming years.

Specific challenges for the near future are related to establishing

the fundamental requirements for robust temperature sensors,

such as the reversibility of the LCST transition over a long time

(e.g. 1000 cycles), the signal stability and photobleaching effects

of the chromophore in the polymer backbone and the bio-

compatibility or solubility. In principle the here discussed poly-

meric sensors are reversible and have potential for continuous

sensing applications, but up to now most of the studies are limited

to proof-of-principle concepts rather than continuous operation,

which should also be addressed.

Abbreviations

AA acrylic acid,

APTMA 3-acrylamidopropyl trimethylammonium salt,

N-vinyl-CLA N-vinyl-caprolactam,
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DEAM N,N-diethylacrylamide,
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HEMA 2-hydroxyethyl methacrylate,
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MMA methyl methacrylate,
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Polymer abbreviations are formed by adding the suffix ‘P’

or ‘poly’ to the corresponding monomer
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52 J.-F. Lutz, Ö. Akdemir and A. Hoth, J. Am. Chem. Soc., 2006,

128, 13046–13047.
53 E. Wischerhoff, K. Uhlig, A. Lankenau, H. G. Börner,

A. Laschewsky, C. Duschl and J.-F. Lutz, Angew. Chem., Int. Ed.,
2008, 47, 5666–5668.

54 S. Tugulu, P. Silacci, N. Stergiopulos and H.-A. Klok,
Biomaterials, 2007, 28, 2536–2546.

55 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer,
New York, 3rd edn, 2006, pp. 205–235.

56 S. Uchiyama, Y. Matsumura, A. P. de Silva and K. Iwai, Anal.
Chem., 2003, 75, 5926–5935.

57 C. Gota, S. Uchiyama, T. Yoshihara, S. Tobita and T. Ohwada,
J. Phys. Chem. B, 2008, 112, 2829–2836.

58 S. Uchiyama, Y. Matsumura, A. P. de Silva and K. Iwai, Anal.
Chem., 2004, 76, 1793–1798.

59 K. Iwai, Y. Matsumura, S. Uchiyama and A. P. de Silva,
J. Mater. Chem., 2005, 15, 2796–2800.

60 S. Uchiyama, N. Kawai, A. P. de Silva and K. Iwai, J. Am. Chem.
Soc., 2004, 126, 3032–3033.

61 C. Gota, S. Uchiyama and T. Ohwada, Analyst, 2007, 132,
121–126.

62 C. Gota, K. Okabe, T. Funatsu, Y. Harada and S. Uchiyama,
J. Am. Chem. Soc., 2009, 131, 2766–2767.

63 Y. Matsumura and K. Iwai, J. Colloid Interface Sci., 2006, 296,
102–109.

64 S. Uchiyama and Y. Makino, Chem. Commun., 2009, 2646–2648.
65 M. Onoda, S. Uchiyama and T. Ohwada, Macromolecules, 2007,

40, 9651–9657.
66 V. N. Knyukshto, Y. S. Avlasevich, O. G. Kulinkovich and

K. N. Solovyov, J. Fluoresc., 1999, 9, 371–378.
67 Y. S. Avlasevich, T. A. Chevtchouk, V. N. Knyukshto,

O. G. Kulinkovich and K. N. Solovyov, J. Porphyrins
Phthalocyanines, 2000, 4, 579–587.

68 Y. S. Avlasevich, V. N. Knyukshto, O. G. Kulinkovich and
K. N. Solovyov, J. Appl. Spectrosc., 2000, 67, 663–669.

69 Y. S. Avlasevich, O. G. Kulinkovich, V. N. Knyukshto,
A. P. Losev and K. N. Solovyov, J. Polym. Sci., Part A: Polym.
Chem., 1997, 39, 1155–1162, Translated from Vysokomol. Soedin.
A, 1997, 1139, 1740–1748.

70 S.-I. Yusa, T. Endo and M. Ito, J. Polym. Sci., Part A: Polym.
Chem., 2009, 47, 6827–6838.

71 Y. Shiraishi, R. Miyamoto, X. Zhang and T. Hirai, Org. Lett.,
2007, 9, 3921–3924.

72 Y. Shiraishi, R. Miyamoto and T. Hirai, J. Photochem.
Photobiol., A, 2008, 200, 432–437.

73 J. Hu, C. Li and S. Liu, Langmuir, 2010, 26, 724–729.
74 L. Tang, J. K. Jin, A. J. Qin, W. Z. Yuan, Y. Mao, J. Mei,

J. Z. Sun and B. Z. Tang, Chem. Commun., 2009, 4974–4976.
75 Y. Shiraishi, R. Miyarnoto and T. Hirai, Langmuir, 2008, 24,

4273–4279.
76 D. Wang, R. Miyamoto, Y. Shiraishi and T. Hirai, Langmuir,

2009, 25, 13176–13182.
77 A. Nagai, K. Kokado, J. Miyake and Y. Cyujo, J. Polym. Sci.,

Part A: Polym. Chem., 2010, 48, 627–634.
78 R. Paris, I. Quijada-Garrido, O. Garcia and M. Liras,

Macromolecules, 2011, 44, 80–86.
79 A. Nagai, R. Yoshii, T. Otsuka, K. Kokado and Y. Chujo,

Langmuir, 2010, 26, 15644–15649.
80 C. Li and S. Liu, J. Mater. Chem., 2010, 20, 10716–10723.
81 C. C. Yang, Y. Tian, A. K. Y. Jen andW. C. Chen, J. Polym. Sci.,

Part A: Polym. Chem., 2006, 44, 5495–5504.
82 W. Z. Wang, R. Wang, C. Zhang, S. Lu and T. X. Liu, Polymer,

2009, 50, 1236–1245.
83 S.-H. Kim, I.-J. Hwang, S.-Y. Gwon and Y.-A. Son, Dyes Pigm.,

2010, 87, 84–88.
84 Z. Q. Guo, W. H. Zhu, Y. Y. Xiong and H. Tian, Macro-

molecules, 2009, 42, 1448–1453.
85 W. Zhang, Z. Zhang, Z. Cheng, Y. Tu, Y. Qiu and X. Zhu,

J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4268–4278.
86 Q. Yan, J. Y. Yuan, W. Z. Yuan, M. Zhou, Y. W. Yin and

C. Y. Pan, Chem. Commun., 2008, 6188–6190.
87 Y. Shiraishi, R. Miyamoto and T. Hirai, Tetrahedron Lett., 2007,

48, 6660–6664.
88 T. Liu, J. Hu, J. Yin, Y. Zhang, C. Li and S. Liu, Chem. Mater.,

2009, 21, 3439–3446.
89 Y. Y. Li, H. Cheng, J. L. Zhu, L. Yuan, Y. Dai, S. X. Cheng,

X. Z. Zhang and R. X. Zhuo, Adv. Mater., 2009, 21, 2402–2406.
90 J. Yin, X. F. Guan, D. Wang and S. Y. Liu, Langmuir, 2009, 25,

11367–11374.
91 H. Ringsdorf, J. Venzmer and F. M. Winnik, Macromolecules,

1991, 24, 1678–1686.
92 F. M. Winnik, H. Ringsdorf and J. Venzmer, Langmuir, 1991, 7,

912–917.
93 F. M. Winnik, M. F. Ottaviani, S. H. Bossman, W. S. Pan,

M. Garciagaribay and N. J. Turro, J. Phys. Chem., 1993, 97,
12998–13005.

94 M. F. Ottaviani, F. M. Winnik, S. H. Bossmann and N. J. Turro,
Helv. Chim. Acta, 2001, 84, 2476–2492.

D
ow

nl
oa

de
d 

by
 T

hu
rin

ge
r U

ni
ve

rs
ita

ts
 u

nd
 L

an
de

sb
ib

lio
th

ek
 Ja

na
 o

n 
26

 Ju
ly

 2
01

1
Pu

bl
is

he
d 

on
 3

1 
M

ay
 2

01
1 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
1C

C
11

94
0K

View Online



This journal is c The Royal Society of Chemistry 2011 Chem. Commun., 2011, 47, 8750–8765 8765

95 P. Kujawa, V. Aseyev, H. Tenhu and F. M. Winnik,
Macromolecules, 2006, 39, 7686–7693.

96 F. M. Winnik, N. Tamai, J. Yonezawa, Y. Nishimura and
I. Yamazaki, J. Phys. Chem., 1992, 96, 1967–1972.

97 F. M. Winnik, Macromolecules, 1989, 22, 734–742.
98 S. W. Hong, D. Y. Kim, J. U. Lee and W. H. Jo,Macromolecules,

2009, 42, 2756–2761.
99 A. Laukkanen, F. M. Winnik and H. Tenhu, Macromolecules,

2005, 38, 2439–2448.
100 A. Laukkanen, L. Valtola, F. M. Winnik and H. Tenhu, Polymer,

2005, 46, 7055–7065.
101 C. Pietsch, R. Hoogenboom and U. S. Schubert, Polym. Chem.,

2010, 1, 1005–1008.
102 C. Pietsch, A. Vollrath, R. Hoogenboom and U. S. Schubert,

Sensors, 2010, 10, 7979–7990.
103 Q. Duan, Y. Miura, A. Narumi, X. Shen, S.-I. Sato, T. Satoh and

T. Kakuchi, J. Polym. Sci., Part A: Polym. Chem., 2006, 44,
1117–1124.

104 J. Rao, J. Xu, S. Luo and S. Liu, Langmuir, 2007, 23,
11857–11865.

105 X. W. Zhang, X. M. Lian, L. Liu, J. Zhang and H. Y. Zhao,
Macromolecules, 2008, 41, 7863–7869.

106 S. Y. Lee, S. Lee, I. C. Youn, D. K. Yi, Y. T. Lim, B. H. Chung,
J. F. Leary, I. C. Kwon, K. Kim and K. Choi, Chem.–Eur. J.,
2009, 15, 6103–6106.

107 S. Uchiyama, K. Takehira, T. Yoshihara, S. Tobita and
T. Ohwada, Org. Lett., 2006, 8, 5869–5872.

108 K. Iwai, N. Matsumoto, M. Niki and M. Yamamoto,Mol. Cryst.
Liq. Cryst., 1998, 315, 53–58.

109 K. Iwai, K. Hanasaki and M. Yamamoto, J. Lumin., 2000, 87–89,
1289–1291.

110 Y. Matsumura and K. Iwai, Polymer, 2005, 46, 10027–10034.
111 C.-Y. Chen and C.-T. Chen, Chem. Commun., 2011, 47, 994–996.
112 Y. Matsumura and A. Katoh, J. Lumin., 2008, 128, 625–630.
113 B. Elmas, S. Senel and A. Tuncel, React. Funct. Polym., 2007, 67,

87–96.
114 G. Pasparakis, M. Vamvakaki, N. Krasnogor and C. Alexander,

Soft Matter, 2009, 5, 3839–3841.
115 C. C. Yang, Y. Tian, C. Y. Chen, A. K. Y. Jen and W. C. Chen,

Macromol. Rapid Commun., 2007, 28, 894–899.
116 H. Kobayashi, M. Nishikawa, C. Sakamoto, T. Nishio,

H. Kanazawa and T. Okano, Anal. Sci., 2009, 25, 1043–1047.
117 X. J. Lu, L. F. Zhang, L. Z. Meng and Y. H. Liu, Polym. Bull.,

2007, 59, 195–206.
118 X. Guan, X. Liu and Z. Su, Eur. Polym. J., 2007, 43, 3094–3105.
119 C. Li, L. Z. Meng, X. J. Lu, Z. Q. Wu, L. F. Zhang and Y. B. He,

Macromol. Chem. Phys., 2005, 206, 1870–1877.
120 F. M. Winnik, Chem. Rev., 1993, 93, 587–614.
121 C. L. Zhao, M. A. Winnik, G. Riess and M. D. Croucher,

Langmuir, 1990, 6, 514–516.
122 G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai and

K. Kataoka, Langmuir, 1993, 9, 945–949.
123 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer,

New York, 3rd edn, 2006, pp. 443–475.
124 C. D. Jones, J. G. McGrath and L. A. Lyon, J. Phys. Chem. B,

2004, 108, 12652–12657.
125 C. Li, Y. Zhang, J. Hu, J. Cheng and S. Liu, Angew. Chem., Int. Ed.,

2010, 49, 5120–5124.
126 J. Yin, H. Hu, Y. Wu and S. Liu, Polym. Chem., 2011, 2, 363–371.
127 J. Yin, C. Li, D. Wang and S. Liu, J. Phys. Chem. B, 2010, 114,

12213–12220.
128 T. Wu, G. Zou, J. M. Hu and S. Y. Liu, Chem. Mater., 2009, 21,

3788–3798.

129 M. Kameda, K. Sumaru, T. Kanamori and T. Shinbo, Langmuir,
2004, 20, 9315–9319.

130 K. Sumaru, M. Kameda, T. Kanamori and T. Shinbo, Macro-
molecules, 2004, 37, 4949–4955.

131 K. Sumaru, M. Kameda, T. Kanamori and T. Shinbo, Macro-
molecules, 2004, 37, 7854–7856.

132 K. Sumaru, K. Ohi, T. Takagi, T. Kanamori and T. Shinbo,
Langmuir, 2006, 22, 4353–4356.

133 S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi and
T. Kanamori, Sens. Actuators, A, 2007, 140, 176–184.

134 J.-I. Edahiro, K. Sumaru, T. Takagi, T. Shinbo, T. Kanamori and
M. Sudoh, Eur. Polym. J., 2008, 44, 300–307.

135 A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust,
M. Hayes, S. A. Vail and C.-D. Park, Langmuir, 2007, 23, 224–229.

136 T. Suzuki, T. Kato and H. Shinozaki, Chem. Commun., 2004,
2036–2037.

137 Y. Shiraishi, R. Miyamoto and T. Hirai, Org. Lett., 2009, 11,
1571–1574.

138 Q. Jin, G. Liu and J. Ji, J. Polym. Sci., Part A: Polym. Chem.,
2010, 48, 2855–2861.

139 C. Koopmans and H. Ritter, J. Am. Chem. Soc., 2007, 129,
3502–3503, the authors termed the dye misleadingly Reichardts
dye.

140 Y. Zhao, L. Tremblay and Y. Zhao, J. Polym. Sci., Part A:
Polym. Chem., 2010, 48, 4055–4066.

141 Q. Yan, J. Yuan, Y. Kang, Z. Cai, L. Zhou and Y. Yin, Chem.
Commun., 2010, 46, 2781–2783.

142 C. Pietsch, R. Hoogenboom and U. S. Schubert, Angew. Chem.,
Int. Ed., 2009, 48, 5653–5656.

143 M. Irie and D. Kungwatchakun, Proc. Jpn. Acad., Ser. B, Phys.
Biol. Sci., 1992, 68, 127–132.
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Blue-Emitting Polymers Based on
4-Hydroxythiazoles Incorporated in
a Methacrylate Backbone

Roberto Menzel, Alexander Breul, Christian Pietsch, Johann Schäfer,
Christian Friebe, Eric Täuscher, Dieter Weiß, Benjamin Dietzek,
Jürgen Popp,* Rainer Beckert,* Ulrich S. Schubert*

Introduction

Blue-light-emitting polymers, which have emerged from

new fluorescent monomers, are the subject of intense

research due to their potential applications in various

fields, depending on the type of chromophore used. In general, they have been successfully applied in organic

light-emitting diodes (OLEDs),[1] as one emitting species

for the construction of white polymer light-emitting

diodes (WPLEDs),[2] as sensor molecules in biochemical

and environmental applications,[3] or in dye-sensitized

solar cells (DSSCs).[4] A further important research

topic is the construction of antenna systems mimicking

light-harvesting photosynthetic proteins in plants by

incorporating donor and acceptor molecules in a polymer

backbone to allow a fluorescence resonance energy

transfer (FRET).[5] For this purpose, common p-conjugated
polymers are not suitable due to the fact that their

electronic properties strongly depend on the length of the

polymer chain. Moreover, the synthesis of polymers with

different conjugated chromophores is difficult.[6]Medintz
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The synthesis of two new monomers based on 4-hydroxythiazoles, with a non-classical
chromophore structure similar to the luciferin dye of glowworms, is presented. These dyes
are functionalized with methacrylates and copolymerized with methyl methacrylate using a
RAFT polymerization process. The obtained poly-
mers reveal PDI values below 1.2 and are charac-
terized by NMR spectroscopy, SEC including a
diode-array detector, UV-vis and fluorescence
spectroscopy. In addition, thin films of the poly-
mers are prepared by spin-coating and investi-
gated regarding their optical properties.
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et al.[7] described that a directed energy transfer is not

possible along a polymer chain because of the statistical

distribution and the alternating distances between the

dyes. However, recent publications provide examples

for a non-directed, but reasonable, energy transfer along a

polymer chain. For example, FRET was described for

polymers containing a coumarin dye as well as a Ru(II)

polypyridine complex,[8] for a linear Re(I) oligomer

and a Ru(II) complex,[9] and for short, linear arrays of

Ru(II) complexes and p-conjugated 1,4-diethynyleneben-

zene subunits.[10] In addition, tools are available

to quantitatively describe FRET in different domains

(e.g., polymers).[11]

Although a variety of blue-fluorescence (donor) mole-

cules exist, thenumberof these incorporated intopolymer

backbones is relatively small. Usually, classic chromo-

phores like coumarines, naphthalenes, pyrenes and

quinolines are included, but often suffer from low

quantum yields, strong solvent dependency of their

electronic properties, excimer formation,[12] and a low

photostability.[13] To overcome these restrictions, the

generation of polymers containing a 4-hydroxy-1,3-

thiazole unit as a non-classical fluorescence emitter has

been desired. In contrary to other, small, heterocyclic

compounds that are non- or only very-weakly fluorescent,

alkylated derivatives of 4-hydroxy-1,3-thiazoles gener-

ally show a very-high room-temperature fluorescence,

with quantum yields ranging from 0.7 up to unity, in

combination with an unusually large Stokes shift.[14] In

particular, the latter is essential for an efficient FRET in a

donor/acceptor pair. In addition, the absorption and

emission spectra of these dyes can be shifted over a wide

range depending on the nature of the substituents of the

thiazole chromophore.[15] From a synthetic point of view,

the aromatic hydroxy group offers the advantage of an

easy functionalization. Therefore, alkylation, as well as

acylation reactions, can be performed under mild condi-

tions.

Becauseof thehighlyfluorescentnatureof themolecules,

the chemical and, in comparison with other chromophores

(e.g., rhodamines or fluoresceins), better photochemical

stability, combined with an easy access and simple

functionalization possibilities, 4-hydroxy-1-3-thiazoles

are consideredaspromising candidates for the construction

of functionalized luminescent materials.

Reversible addition-fragmentation chain transfer

(RAFT) polymerization was chosen as an efficient method

for the polymerization of dye-functionalized methacry-

lates.[16] RAFT allows good control over the characteristics

of the accessible polymers, combined with a narrow

molar-mass distributionand randomlydistributedmono-

mers. Furthermore, a large variety of different architec-

tures can be produced, for example, blocks, combs and

stars.[17]

Experimental Part

Materials and Instrumentation

All reagents were purchased from commercial sources (Biosolve,

Fluka, Aldrich, Alfa Aesar and Acros Organics) and used directly

without further purification. All solvents were of reagent grade,

purified using common methods and distilled prior to use. Methyl

methacrylate (MMA) was passed over a short neutral aluminum

oxide column directly before use to remove the stabilizer. 2,20-
Azoisobutyronitrile (AIBN)wasrecrystallized frommethanolprior to

use. All reactions were performed under an argon atmosphere in

glassware equipped with a Teflon-coated magnetic stir bar. Size-

exclusion chromatogramswere recorded using a Shimadzu SCL-10A

size-exclusion chromatography (SEC) system controller, an LC-10AD

pump, an RID-10A refractive-index (RI) detector and a PLgel 5mm

mixed-D column at 40 8C [eluent CHCl3:triethylamine (TEA):isopro-

pyl alcohol (i-PrOH)¼94:4:2; flow rate 1mL �min�1] applying linear

poly(methyl methacrylate) (PMMA) standards. Further SEC experi-

mentswere carried out using a ShimadzuSCL-10Asystemcontroller,

an LC-10AD pump, a CTO-10A VP oven, a PSS ETA-2010 viscosity

detector and a PSS SDV pre/104/102 Å column at 40 8C [eluent:

tetrahydrofuran (THF); flow rate 1mL �min�1], applying universal

calibration with polystyrene standards. 3D-SEC plots were recorded

on a Waters SEC equipped with a DG-980-50 degasser, a HPLC 1515

pump, a column heater 1500 oven, and a 2996 photo diode-array

(DAD) detector; dimthylacetamide (DMA) with 0.08% NH4PF6 was

used as solvent with a flow rate of 1mLmin�1 at 50 8C on a Waters

pre/Phenomenex Phenogel 103 Å/105 Å column. Gas-chromatogra-

phy (GC)measurementswere performedusing an InterscienceTrace

GC with a Trace Column RTX-5 connected to a PAL autosampler. A

spincoater fromLaurellTechnologiesCorporation(NorthWales,USA)

wasusedfor thepreparationof thefilms.Thesurfacetopographyand

thickness of thepolymerfilmsweremeasuredusing aWykoNT9100

optical interferometric profiler (Veeco, Mannheim, Germany). For

this purpose, each film was scratched with a scalpel in a controlled

manner. Thedepthsof thescratchesweremeasuredusingtheoptical

profiler at five different positions on thefilm: the center and the four

edges. 1H and 13C NMR spectra were recorded on a Bruker AC 250

(250MHz), 300 (300MHz) and 400 (400MHz) spectrometer at 298K.

Thechemicalshiftsarereportedinpartspermillionrelativetosignals

from the NMR solvents; coupling constants are given in Hz. The

melting points were measured using a Galen III apparatus (Boëtius

system). Reactions were monitored using thin-layer chromatogra-

phy (TLC) on 0.2mm Merck silica-gel plates (60 F254). The mass

spectra were measured either using a Finnigan MAT SSQ 710

[electron impact (EI)] or MAZ 95 XL [fast atom bombardment (FAB)]

system. Elemental analyseswere carried out on a CHN-932Automat

Leco instrument. TheUV-vis absorption and photoluminescence (PL)

emission spectrawere recordedusinganAnalytik Jena SPECORD250

and a Jasco FP-6500 spectrometer, respectively, at 298K. UV-vis and

fluorescence spectra of the films were measured using a modified

Hitachi F-4500 instrument. Absolute PL quantum yields were

evaluated at 298K using a Hamamatsu Photonic Multi-Channel

Analyzer, C 10027. For this purpose, dilute solutions (10�6 to 10�5
M,

1 cm quartz cuvette) in CHCl3 were used. As a reference, a quartz

cuvette filledwith the pristine solventwasutilized. The fluorescence

lifetimeswere obtained fromstreak-camerameasurements. For this,

a Ti:sapphire laser (Tsunami, Newport Spectra-Physics GmbH) was
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used as the light source. The repetition rate was reduced to 4kHz

using a pulse selector (Model 3980, Newport Spectra-Physics GmbH)

and afterwards the beam was frequency-doubled in a second-

harmonic generator (Newport Spectra-Physics GmbH) to create the

435nm pump beam.[18]

Synthesis of the Monomers

5-Methyl-2-(pyridin-3-yl)thiazol-4-ol (1a)

2-Mercaptopropionic acid (10mmol) and 3-pyridinecarbonitrile

(8mmol)were loaded into an argon-flushed Schlenk tube. Pyridine

(10mL) was added and the mixture was heated at 110 8C for 2 h.

After themixturewasallowed to cool downto60 8C, ethanol (EtOH,

50mL) was added and the product precipitated as yellow crystals,

which were collected by filtration, washed with EtOH and dried.

The 4-hydroxythiazole is usually pure in terms of elemental

analysis but can be recrystallized from N,N-dimethylformamide

(DMF)/EtOH.

UV-vis (CH3CN): lmax (log e)¼242 (3.52), 282 (3.38), 330nm

(3.65).MS (EI):m/z¼192 (Mþ), 105 (Mþ – C3H3OS).
1HNMR (DMSO-

d6): d¼2.25 (s, 3H), 7.39 (m, 1H), 8.09 (m, 1H), 8.58 (m, 1H), 8.98

(s, 1H), 10.18 (s, 1H). 13C NMR (250MHz, DMSO-d6): d¼159.7, 155.6,

150.5, 146.3, 132.6, 129.8, 124.6, 104.6, 9.5. (C9H8N2OS) (192.2):

Calcd. C 56.23, H 4.19, N 14.57, S 16.68; Found C 56.20, H 4.23,

N 14.72, S 16.66. Yield: 50%, yellow needles.

5-Phenyl-2-(pyridin-3-yl)thiazol-4-ol (1b)

Amixture of ethyl 2-bromophenylacetate (10mmol) and pyridine-3-

carbothioamide (10mmol) was stirred in 100mL of toluene under

argon at between 100 and 110 8C for 3h. The reactionwasallowed to

cool to room temperature. EtOH (50mL) and pyridine (10mL) were

added to the brown suspension. The mixture was stirred for an

additional 30min, followed by filtration. The crude product was

recrystallized fromDMF/EtOHtoyield the thiazoleasyellowcrystals.

UV-vis (DMSO): lmax (log e)¼270 (3.85), 380nm (4.22). MS (EI):

m/z¼ 254 (Mþ), 150 (Mþ – C6H4N2), 138 (Mþ – C8H4O).
1H NMR

(DMSO-d6):d¼7.26(m,1H),7.43(t, 3J¼ 7.4Hz,2H),7.55(m,1H),7.75(d,
3J¼7.3Hz, 2H), 8.23 (m, 1H), 8.65 (d, 4J¼1.4Hz, 1H), 885 (d, 4J¼ 1.6Hz,

1H), 11.73 (s, 1H, OH). 13C NMR (250MHz, DMSO-d6): d¼159.2, 156.9,

151.2, 151.1, 146.4, 133.1, 131.9, 129.3, 126.8, 126.4, 124.7, 109.1.

(C14H10N2OS) (254.3): Calcd. C 66.12, H 3.96, N 11.02, S 12.61; Found C

66.03, H 4.09, N 10.99, S 12.81. Yield: 77%, yellow crystals.

General Procedure for the Etherification of

the 4-Hydroxythiazoles

AsolutionofK2CO3 (12mmol in5mLH2O)wasadded toamixtureof

the 4-hydroxythiazole (10mmol) in 25mL of dimethyl sulfoxide

(DMSO). The red suspension was stirred for 30min at room

temperature (RT) and 3-chloropropan-1-ol (12mmol) was added.

Stirring was continued until no starting material was detected

(indicated by TLC). The mixture was diluted with H2O (100mL) and

extractedwith CHCl3 (2 � 50mL). The organic phasewas additionally

washedwith H2O (3 � 50mL), dried overMgSO4 and concentrated in

vacuo. Thecrudeproductswerepurifiedbycolumnchromatography

(silica, CHCl3/acetone 3:1) or Kugelrohr distillation.

3-[5-Methyl-2-(pyridin-3-yl)thiazol-4-yloxy]propan-1-ol (2a)

UV-vis (CH3CN): lmax (log e)¼ 221 (3.85), 334nm (3.98). MS (EI):

m/z¼ 250 (Mþ), 192 (Mþ - C3H6O).
1H NMR (250MHz, CDCl3):

d¼ 2.00 (p, 3J¼5.9Hz, 2H), 2.29 (s, 1H), 2.87 (s, 1H, OH), 3.83 (t,
3J¼ 5.9Hz, 2H,), 4.50 (t, 3J¼5.9Hz, 1H), 7.31 (dd, 3J¼8.0Hz,
3J¼ 4.9Hz, 1H), 8.07 (m, 1H), 8.56 (dd, 3J¼ 4.8Hz, 4J¼1.6Hz, 1H),

9.00 (d, 4J¼ 1.9Hz, 1H). 13C NMR (250MHz, CDCl3): d¼ 160.28,

156.06, 150.00, 146.55, 132.38, 13.71, 123.65, 108.13, 68.05, 59.24,

32.72, 9.30. (C12H14N2O2S) (250.3): Calcd. C 57.58, H 5.64, N 11.19,

S 12.81; Found C 57.32, H 5.34, N 11.35, S 12.88. Yield: 61%, orange

solid.

3-[5-Phenyl-2-(pyridin-3-yl)thiazol-4-yloxy]propan-1-ol (2b)

UV-vis (CH3CN): lmax (log e)¼233 (4.04), 267 (3.87), 363nm (4.28).

MS (EI): m/z¼ 312 (Mþ), 254 (Mþ - C3H6O).
1H NMR (250MHz,

CDCl3): d¼2.12 (p, 3J¼ 6.0Hz, 2H), 2.65 (s, 1H), 3.89 (t, 3J¼ 5.9Hz,

2H), 4.69 (t, 3J¼ 6.0Hz, 2H), 7.27 (m, 1H), 7.37 (m, 3H), 7.73 (d,
3J¼ 7.5Hz, 2H), 8.16 (d, 3J¼ 8.0Hz, 1H), 8.62 (dd, 3J¼4.8Hz,
4J¼ 1.3Hz, 1H), 9.12 (d, 4J¼1.9Hz, 1H). 13C NMR (250MHz, CDCl3):

d¼ 159.18, 156.82, 150.435, 146.78, 132.52, 131.07, 129.50, 128.75,

126.96, 126.87, 123.67, 112.86, 67.93, 59.36, 32.73. (C17H16N2O2S)

(312.4): Calcd. C 65.36, H 5.16, N 8.97, S 10.26; Found C 65.01, H 4.83,

N 8.69, S 10.19. Yield: 50%, orange solid.

General Procedure for the Formation of the

Methacrylates

Thealkylated4-hydroxythiazole (10mmol)was added to amixture

ofTEA (5.5mL, 40mmol) in50mLofdryCH2Cl2.After5minstirring,

methacryloyl chloride (1.2mL, 12mmol, dissolved in 5mL CH2Cl2)

was added. The reactionwas stirred at RT andmonitoredusingTLC.

After the reaction was finished (typically after 24 h), 50mL

of H2O were added and the organic phase was separated. The

water phase was extracted with CH2Cl2 (3 � 20mL). The organic

phases were combined, washed with additional water, dried

over MgSO4 and evaporated to dryness at T<40 8C. The crude

product was purified by column chromatography (silica, CHCl3 to

CHCl3:acetone 3:1).

3-[5-Methyl-2-(pyridin-3-yl)thiazol-4-yloxy]propyl
methacrylate (3a)

UV-vis (CH3CN): lmax (log e)¼ 222 (3.82), 335nm (4.01). MS (EI):

m/z¼ 319 (MHþ), 127 (Mþ – C9H7N2OS).
1H NMR (400MHz, CDCl3):

d¼ 1.94 (s, 3H), 2.16 (p, 3J¼6.3Hz,2H), 2.30 (s, 3H), 4.35 (t, 3J¼ 6.4Hz,

2H), 4.47 (t, 3J¼6.2Hz, 2H), 5.55 (s, 1H), 6.11 (s, 1H), 7.31 (dd,
3J¼ 7.9Hz, J¼4.9Hz, 1H), 8.09 (ddd, 3J¼8.0Hz, 4J¼ 1.9Hz,
4J¼ 1.9Hz, 1H), 8.57 (d, 3J¼ 4.7Hz, 1H), 9.05 (d, 4J¼1.6Hz, 1H).
13C NMR (250MHz, CDCl3): d¼ 167.35, 159.96, 155.86, 149.90,

146.64, 136.31, 132.34, 129.89, 125.42, 123.53, 107.94, 66.99, 61.53,

28.95, 18.28, 9.26. (C16H18N2O3S) (318.4): Calcd. C 60.36, H 5.70,

N 8.80, S 10.07; Found C 60.01, H 5.79, N 8.67, S 9.97. Yield: 70%,

orange oil.

3-[5-Phenyl-2-(pyridin-3-yl)thiazol-4-yloxy]propyl
methacrylate (3b)

UV-vis (CH3CN): lmax (log e)¼231 (4.08), 265 (3.90), 361nm (4.30).

MS (FAB):m/z¼ 381 (Mþ). 1HNMR(250MHz,CDCl3): d¼1.93 (s, 3H),
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2.23 (p, 3J¼ 6.3Hz, 2H), 4.37 (t, 3J¼6.3Hz, 2H), 4.61 (t, 3J¼ 6.3Hz,

2H), 5.54 (s, 1H), 6.11 (s, 1H), 7.30 (m, 4H), 7.69 (m, 2H), 8.11 (m, 1H),

8.59 (d, J¼3.6Hz, 1H), 9.12 (s, 1H). 13C NMR (250MHz, CDCl3):

d¼ 167.15, 158.74, 156.47, 150.24, 146.64, 136.13, 132.35, 130.98,

129.40, 128.61, 126.74, 126.68, 125.38, 123.45, 112.59, 67.12,

61.46, 28.850, 18.17. (C21H20N2O3S) (380.5): Calcd. C 66.29, H 5.30,

N 7.36, S 8.43; Found C 66.01, H 5.33, N 7.40, S 8.40. Yield: 65%,

orange oil.

Synthesis of the Polymers

General Procedure for the RAFT Polymerization

The desired amounts of the monomers were transferred into

reaction vials (5mL closed microwave vials) and dissolved in

toluene. Thereafter, calculated volumes of stock solutions of 2-

cyanopropan-2-yl dithiobenzoate (CPDB) (0.07M) and AIBN (0.03M)

in toluenewereadded.The ratioof [CPDB] to [AIBN]wasadjusted to

4/1. The [monomer]/[initiator] ratio was always set to 100 with

solution concentrations of 2mol � L�1. Anisole (20%) was added

as the internal standard for the GC measurements. The exact

amounts of monomer, initiator, chain-transfer agent and solvent

are listed in Table 1. Before closing the vials, the reaction solutions

were purged with argon for 30min. Subsequently, the reactions

were heated in an oil bath to 70 8C for the reaction times given in

Table 1. The polymers were purified by precipitation into cold

methanol followed by drying under reduced pressure at room

temperature.

P(3a-stat-PMMA) (A)

UV-vis (CHCl3): lmax (log e per dye unit)¼337nm (3.51). 1H NMR

(CDCl3): d¼ 0.84 (b, CH3 backbone), 1.00–2.00 (b, CH2 backbone and

CH2 dye spacer, CH3 end group), 2.31 (b, CH3 dye), 3.60 (b, OCH3

methacrylate), 4.17 (b, OCH2 dye), 4.46 (b, OCH2dye), 6.92, 7.37, 7.53

(b, Ar–H dithioester end group), 7.88, 8.13, 8.59, 9.07 (b, Ar�H

pyridine substituent dye). GC: conversion¼60%. SEC (CHCl3,

PMMA standard): Mn ¼7 400g �mol�1, PDI¼1.17, DP¼ 71,

Mn; theo ¼ 6 600 g �mol�1.

P(3b-stat-PMMA) (B)

UV-vis (CHCl3): lmax (log e per dye unit)¼366nm (4.10). 1H NMR

(CDCl3): d¼ 0.84 (b, CH3 backbone), 1.00–2.30 (b, CH2 backbone and

dye spacer, CH3 end group), 3.60 (b, OCH3 methacrylate), 4.20

(b, OCH2 dye), 4.63 (b, OCH2 dye), 7.40, 7.53, 7.70, 7.88 (b, ArH

dithioester end group and phenyl substituent dye), 8.21, 8.66, 9.16

(b, Ar�H pyridine substituent dye). GC: conversion¼67%. SEC

(CHCl3, PMMA standard):Mn ¼8 400g �mol�1, PDI¼1.19, DP¼ 77,

Mn; theo ¼ 7 500 g �mol�1.

Results and Discussion

The current work describes the synthesis of blue emitters

(as possible energy donors in a FRET process) that can be

polymerized. For this purpose, the chromophore has to

be connected via a spacer unit to the polymer backbone

to gain a non-restricted arrangement of the chromophores,

being one prerequisite for FRET to an acceptor molecule.

To build up a possible acceptor, 2,20-bipyridine or 2,20;60,200-
terpyridine ligands will be introduced in the polymer

backbone to form the acceptor dye after complexation

with ruthenium. Therefore, in order to avoid complex

formation of the thiazoles with a Ru(II) precursor as

demonstrated recently,[19] compounds with the thiazole

linked in the meta-position to the pyridine moiety were

synthesized.

Scheme 1 briefly shows the synthesis of the monomers

and the polymers. The 4-hydroxy-1,3-thiazole derivatives

can be prepared using two routes that are mainly

determined by the availability of the starting materials.

In route A, pyridine-2-carbonitrile reacts with thiolactic

acid to form a 5-methyl-substituted thiazole. Route B is a

modified Hantzsch thiazole synthesis. Here, pyridine-3-

carbothioamide reacts with 2-bromo-2-phenylacetic

acid to yield a 5-phenyl-substituted thiazole. For both

routes, elevated temperatures (110 to 120 8C) and a base,

typically pyridine, are required. Since the pyridine

subunit of the thioamide can capture the hydrogen

bromide formed in the reaction, the reaction in route B

can also be carried out without an additional base, which

results in higher yields. After the reaction, pyridine must

be added to yield 1b after deprotonation. It is worth

mentioning that different thiolactic acids anda-halogeno

acids can be used to synthesize more complex structures

and to efficiently tune the optical properties of the

dyes.[20]

Table 1. Overview of selected reaction conditions used for the polymerizations at 70 8C in toluene with CPDB:AIBN¼4, [3a]¼ [3b]¼0.06M.

Sample m (monomer) m (AIBN) m (CPDB) Conc. Reaction time

mg mg mg mol � L�1 h

A 55 (3a), 2.36 13.55 2.0 16

559.2 (MMA)

B 64 (3b), 2.30 12.41 2.0 16

544.6 (MMA)
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In the second step, compounds 1a and 1b were further

functionalized by introducing the C3 spacer via a William-

son-type etherification of the hydroxy group with 3-

chloropropan-1-ol or, alternatively, with 3-bromopropan-

1-ol under mild conditions (K2CO3, room temperature). In

the last step, an esterification of the formed aliphatic

hydroxy group with methacryloyl chloride in dry CH2Cl2
with TEA was carried out to yield the two monomers: 5-

methyl-4-[3-(3-methylbuta-1,3-dien-2-yloxy)propoxy]-2-

(pyridin-3-yl)thiazole (3a) and 4-[3-(3-methylbuta-1,3-dien-

2-yloxy)propoxy]-5-phenyl-2-(pyridin-3-yl)thiazole (3b).

RAFT was selected as the polymerization method due to

its good tolerance to functional groups. Other controlled-

radical polymerization (CRP) techniques, such as nitroxide-

mediated polymerization (NMP)[21] and atom-transfer

radical polymerization (ATRP)[22] are less suitable. For ATRP

polymerization, copper is required, which is difficult to

remove and, additionally, can be complexed by the thiazole

dye leading to an inactivation of the copper. With the NMP

technique, methacrylates cannot be polymerized in a

controlled way.[21]

Hence, monomers 3a and 3b were copolymerized with

methyl methacrylate (MMA) to yield polymers A and B,

respectively. Standard conditions for the RAFT technique

were applied (Scheme 1) utilizing CPDB as the chain-

transfer agent, AIBN as the initiator and toluene as the

solvent.

According to similar systems (copolymerization of

pyrene or disperse red-1 methacrylates with MMA),[23]

the reaction temperature was set to 70 8C with a reaction

timeof 16h in order to ensure a complete polymerizationof

themonomers and to reach an optimal value of conversion

combined with a low polydispersity index (PDI). The two

obtained polymers revealed a narrowmolar-mass distribu-

Scheme 1. Schematic representations of the general synthetic routes to the monomers and polymers.
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tion with PDI values below 1.2 (A: 1.17, B: 1.19) as well as a

statistical distribution of the dye repeat units in the

polymer, as supported by the SEC plots using a diode-array

detector, depicted in Figure 1a. The ratio of dye to MMA is

2:98, as confirmed by the 1H NMR spectrum (Figure 1b). A

kinetic study of the polymerizations was not carried out.

Theapplied reaction conditions, investigatedbya synthetic

robot optimization, proved to be optimal for the RAFT

polymerization of MMA.[24] The reactivity of the dye-

functionalized monomers and MMA are similar, which is

supported by the equal conversions of both monomers

(approximately 65%, see Table 2). The proposed dye content

of 3% was nearly reached for both polymers A and B

(calculated from the integration of the 1H NMR spectra, see

Table 2). Due to the low dye content of 2%, it is valid to

assume that the hydrodynamic volume of PMMA was not

significantly affected. Thus, polymers A and B are compar-

able to linear PMMA, which was used as the calibration

standard (in SEC) to determine theMn values. The polymers

show a good correlation between the theoreticalMn values

and those measured by SEC. Nevertheless, an absolute

molar-mass detection was applied using an SEC equipped

with a viscosity detector and a universal polystyrene (PS)

calibration. The molar masses of the viscosity measure-

ments are in good agreement with the obtainedMn values

using an RI detector as well as the theoretical ones. The

results demonstrate that the monomers are well polymer-

izable and stable under RAFT conditions.

Furthermore, the polymers were tested regarding their

film-forming behavior. For this purpose, films of the two

polymers, shown for B in Figure 1c, were prepared by the

spin-coating technique with a solution of A or B in

chlorobenzene (20mg �mL�1) at 2 000 rpm for 30 s. The

obtained thin polymer films reached thicknesses of 95nm

(A) and 55nm (B), respectively.

The absorption and emission spectra of the monomers,

polymers and polymer films are shown in Figure 2 and the

electronic properties are summarized in Table 3. Unless

otherwise stated, the measurements were carried out at

room temperature with chloroform as the solvent. Com-

pounds of type 3 characteristically display an intense

absorption in the UV region at about l¼ 230nm (not

shown) due to the pyridine moiety, which is mostly

unaffected by the different thiazole cores. A second

absorption for 3b occurs at about l¼ 270nm due to the

additional phenyl substituent in the 5-position (K-band).

The most-important and strongest absorption originates

from the thiazole subunit. The maximum is located at

l¼ 342nm for 3a and is bathochromically shifted to

l¼ 368nm for 3b due to the adjacent phenyl ring, which

consequently lowers the gap between the S0 and S1 of the

transition.Theemissionof thedyes is strongly related to the

absorption and is located at l¼ 410 and 446nm for 3a and

3b, respectively.A largeStokes shift of about5 000 cm�1 can

Figure 1. a) SEC (DMA, NH4PF6, DAD detector) of B; b) 1H NMR
spectrum of B (300MHz, CHCl3); c) Confocal-microscopy image of
a spin-coated film of B (20mg �mL�1, chlorobenzene).
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be observed.Measurements of themonomers carried out in

a more-polar solvent, acetonitrile, led to similar results.

The quantum yields, and, in agreement, the fluorescence

lifetimes are slightly lower, whereas the Stokes shift

becomes higher (typical for a p-p� transition). The obtained
fluorescence lifetimes are in the normal range for such

small molecules.[25]

By comparing the absorption and emission spectra of

the monomers, polymers and films, they are found only to

vary in the range of l¼�6nm, which is basically within

the range of the measurement errors. This implies that the

optoelectronic properties of the monomers are unaffected

by polymerization and thin-film formation. This is also

consistent with the fluorescence decay curves of the

monomers and polymers, shown in Figure 3. Moreover,

no indication for an aggregation (p-stacking) of the dyes

incorporated in thepolymers,whichwould lead toa shorter

lifetime or a shift of the absorption and/or emission

maximum, can be observed. Additionally, the absorption of

the chain-transfer agent (CPDB) can be seen for the polymer

andfilmofAatapproximatelyl¼ 305nmdueto thesimilar

extinction coefficients of 3a to CPDB, which are also much

lower as compared to 3b.

Conclusion

The synthesis and evaluation of polymers containing

derivatives of 4-hydroxythiazoles as new light-harvesting

and blue-fluorescing chromophores was performed. The

electronic properties of these dyes can easily be tuned by

varying the substituents at the thiazole core. In addition,

they showed a good stability towards the applied RAFT

conditions. Due to the C3 spacer, the electronic properties

werealmostunaffectedbypolymerization.Thinfilmsof the

polymerswereprepared,whichmaybeuseful, for example,

for the construction of dye-sensitized solar cells (DSSCs),

in which the chromophores will act as light-harvesting

antennas combined with primary electron donors, which

allows charge injection into the wide-bandgap semicon-

ductor material. Furthermore, the synthesized polymers

couldbeuseful for the constructionofWPLEDs, inwhich the

Table 2. Selected characterization data for the obtained polymers.

Sample [MMA]:

[dye]

[M]:[CPDB]:

[AIBN]

MMA

conv.a)
Dye

conv.b)
Mn; theo Mn, SEC

(RI)c)
PDI SEC

(RI)c)
DP SEC

(RI)c)
Mn, SEC

(visco)d)
PDI SEC

(visco)d)
Dye

contente)

% % g �mol�1 g �mol�1 g �mol�1 %

A 97:3 100:1:0.25 60 65 6 600 7400 1.17 71 8600 1.13 2

B 97:3 100:1:0.25 67 67 7 500 8400 1.19 77 9100 1.12 2

a)Calculated from the GC peak areas; b)Calculated from SEC (CHCl3) UV-detector peak areas: Apolymer/(ApolymerþAmonomer);
c)Calculated

from SEC (CHCl3), PMMA calibration; d)Calculated from SEC (THF), visco detector and universal PS calibration; e)Calculated from integrated

areas of aromatic dye signals and the �OCH3 MMA signals.

Table 3. Absorption and fluorescence wavelengths, Stokes shifts, fluorescence lifetimes and quantum yields measured in CHCl3 at
room temperature.

Compound labs lfl Stokes shift t F

nm nm cm�1 ns %

3a 342, 334a) 410, 411a) 4 850, 5 600a) 2.2, 1.9a) 29, 30a)

3b 368, 361a) 446, 447a) 4 750, 5 300a) 1.8, 1.5a) 40, 34a)

A (polymer) 338 409 5 150 2.1 31

B (polymer) 366 448 5 000 1.7 40

A (film) 325–335b) 408 	5 300b) –

B (film) 367 444 4 700 –

a)Measured in CH3CN;
b)Superimposed with absorption from CPDB.
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presented thiazoleswould account for the blue component.

The capability of the thiazoles as FRET donors in polymers

with either Ru(II) polypyridyl complexes or other long-

wavelength-absorbing thiazoles as acceptors will be the

basis for further applications.
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a b s t r a c t

Blue emitting dyes bearing a luciferin analogous chromophore were attached to a polysty-
rene backbone. For this purpose, 4-hydroxy-1,3-thiazoles were functionalized with a sty-
rene unit and polymerized using the reversible addition–fragmentation chain transfer
(RAFT) polymerization technique. Two different chain transfer agents were investigated
and one monomer was studied in terms of its kinetic behavior. The polymerization kinetics
are presented and discussed in detail, showing a controlled polymerization behavior,
resulting in well-defined copolymers with polydispersity indices below 1.2. The obtained
polymers were characterized by size exclusion chromatography (SEC), 1H NMR, MALDI-
TOF MS and UV–vis absorption and fluorescence spectroscopy. In addition, the UV–vis
absorption and emission behavior was investigated in thin films.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fluorescent polymers derived from luminescent mono-
mers are in the focus of intense research today [1–3]. A
variety of different chromophores attracted high interest
due to potential applications in various fields, for instance,
their successful application in organic light emitting diodes
(OLEDs) [2,4,5], as one emitting species in white polymer

light emitting diodes (WPLEDs) [2,6–8], as sensor mole-
cules in biochemical and environmental applications
[3,9–11], and dye sensitized solar cells [2,12–14]. More-
over, blue emitting monomers carry the potential of mim-
icking photosynthetic proteins in plants by incorporating
the chromophores into polymers as donor molecules for
Förster resonant energy transfer (FRET) process [15–21].
Main chain p-conjugated polymers are not attractive for
this application due to the synthetic complexity and the
dependence of the optical properties from the number of
repeating units and, therefore, the distance between the
chromophores [22]. In contrast, polymers which are func-
tionalized with dye units in the side chain feature defined
and predictable optical properties, independent from the
degree of polymerization (DP) [23–26]. A homogeneous
distribution of the dye in the polymer can be achieved by
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direct polymerization of functional monomers. Moreover,
the degree of functionalization can be adjusted by the con-
centration of the labeled monomer in the overall monomer
feed of the polymerization. Such polymers are of potential
interest for a wide range of applications, e.g., in fluorescent
nanoparticles for the investigation of biological substrates,
in particular of living cells [27]. In contrast to common
postpolymerization conjugations of dyes onto preformed
particles, the direct polymerization leads to uniformly dis-
tributed dyes, resulting in an enhanced fluorescence of the
particles, which are not vulnerable to dye-leakage [28].

Despite the large number of blue emitting molecules,
e.g., coumarins [29], naphthalimides [30], pyrenes [31],
and nile blue [32], only a small part of them were incorpo-
rated into polymers so far. Moreover, many of these ‘‘con-
ventional’’ dyes feature drawbacks, which have to be
overcome; for instance, low quantum yields, strong solvent
dependency of the electronic properties, excimer forma-
tion [33], and a low photostability [34]. A promising class
of blue-emitting dyes are 1,3-thiazoles. These dyes gener-
ally feature very high room-temperature fluorescence,
with quantum yields ranging from 0.7 up to unity, in com-
bination with an unusually large Stokes shift [35,36]. Fur-
thermore, the choice of different types of substituents
strongly influences absorption and emission behavior in
the UV and visible region of the electromagnetic spectrum
[37]. In addition, the introduction of hydroxyl functional-
ities (i.e. 4-hydroxy-1,3-thiadiazoles) offers the possibility
of an easy functionalization, in particular, alkylation as
well as acylation, i.e. with styrene and methacrylate deri-
vates, respectively. The ease in synthetic access and func-
tionalization combined with high fluorescence quantum
yields, improved photostability compared to other chro-
mophores (e.g., rhodamines, fluoresceins) as well as chem-
ical stability made 4-hydroxy-1,3-thiazoles suitable for the
fabrication of luminescent polymeric materials. Previously,
it was demonstrated that 4-hydroxy-1,3-thiazoles can be
successfully incorporated into poly (methyl methacylate)
(PMMA) backbones [23] by reversible addition–fragmenta-
tion chain transfer polymerization (RAFT) [38,39]. The
advantage of RAFT is the good tolerance to functional
groups (e.g., incorporation of dyes) [40,41] and the possi-
bility to construct a wide range of different architectures,
e.g., combs, blocks, and star copolymers [42–44]. A control
over the molar mass and the polydispersity index (PDI) can
be obtained by this type of controlled radical polymeriza-
tion technique.

In comparison to methacrylates, styrene derivatives
feature a better chemical stability, in particular, a better
resistance towards hydrolysis.

In this contribution the synthesis and characterization
of statistical thiazole-functionalized styrene copolymers
are described. Two different chain transfer agents, 2-cya-
no-2-propyl dithiobenzoate (CPDB) and a trithiocarbonate
(2-(butylthiocarbonothioylthio)propanoic acid, BTTCP)
were investigated. Additionally, the copolymerization
kinetics with styrene and one thiazole functionalized
monomer were studied. Furthermore, absolute emission
quantum yields and fluorescence lifetimes of the function-
alized monomers and copolymers are determined using
stationary UV–vis and time correlated single photon

counting measurements. Finally, the optical properties be-
tween a selected copolymer and its corresponding mono-
mer unit in solution were compared to its behavior in
thin films.

2. Experimental

2.1. Materials and instrumentation

All reagents were purchased from commercial sources
(Biosolve, Fluka, Aldrich, Alfa Aesar and Acros Organics)
and were used directly without further purification. All sol-
vents were of reagent grade, purified using common meth-
ods and distilled prior to use. Styrene was passed over a
short neutral aluminum oxide column directly before use
to remove the stabilizer. 2,20-Azobis(iso-butyronitrile)
(AIBN) was recrystallized from methanol prior to use. 1a
[45] and 2a [23] were synthesized according to literature
methods. 2-Cyano-2-propyl dithiobenzoate (CPDB) was
purchased from Sigma–Aldrich and 2-(buty-
lthiocarbonothioylthio)propanoic acid (BTTCP) was kindly
provided by BASF SE. All reactions were performed under
an argon atmosphere in glassware equipped with a Teflon�

coated magnetic stirring bar. Size exclusion chromato-
grams were recorded using a SEC Shimadzu SCL-10A sys-
tem controller, a LC-10AD pump, a RID-10A refractive
index detector and a PL gel 5 lm mixed-D column at
40 �C (eluent CHCl3:TEA:i-PrOH 94:4:2; flow rate 1 mL/
min) applying linear polystyrene standards. GC measure-
ments were performed on an Interscience Trace GC with
a Trace Column RTX-5 connected to a PAL autosampler. A
spin coater from Laurell Technologies Corporation (North
Wales, USA) was used for the preparation of the films.
The surface topography and thickness of the polymer films
was measured by an optical interferometric profiler Wyko
NT9100 (Veeco, Mannheim, Germany). For this purpose,
each film was scratched with a scalpel in a controlled man-
ner. At five different positions of the film, the center and
the four edges, the depth of the scratch was measured with
the optical profiler. 1H and 13C NMR spectra were recorded
on Bruker AC 250 (250 MHz), 300 (300 MHz) and 400
(400 MHz) spectrometers at 298 K, respectively. The chem-
ical shifts are reported in parts per million (ppm, d scale)
relative to signals from the NMR solvents, coupling con-
stants are given in Hz. The melting points were measured
with a Galen III apparatus (Boëtius system). Reactions were
monitored by TLC on 0.2 mm Merck silica gel plates (60
F254). The mass spectra were measured either with a Finn-
igan MAT SSQ 710 (EI) or a MAZ 95 XL (FAB) system. Ele-
mental analyses were carried out on a CHN-932 Automat
Leco instrument.

The UV–vis absorption and PL emission spectra were re-
corded on an Analytik Jena SPECORD 250 and a Jasco FP-
6500 spectrometer, respectively, at 298 K. UV–vis and fluo-
rescence spectra of the films were measured with a modi-
fied Hitachi F-4500. For this purpose, dilute solutions
(10�6–10�5 M, 1 cm quartz cuvette) in CHCl3 were used.
As reference, a quartz cuvette filled with the pristine sol-
vent was utilized. Fluorescence lifetimes were obtained
by streak camera measurements in the time-correlated
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single-photon counting (TCSPC) mode. In the experiments
a Ti:sapphire Laser (Tsunami, Newport Spectra-Physics
GmbH) was used as light source. The pulse-to-pulse repe-
tition rate was reduced to 800 kHz by a pulse selector
(Model 3980, Newport Spectra-Physics GmbH). Afterwards
the laser frequency was tripled using a setup described in
recent publications [46]. Quantum yields measurements
were performed with a Perkin Elmer Lambda 16 UV–vis
spectrometer in perpendicular excitation–emission geom-
etry, while the absorbance in the most red-shifted absorp-
tion maximum was <0.05. A detailed description of the
respective setup is given in previous contributions [36].

2.2. Synthesis of the monomers

2.2.1. 5-Phenyl-2-(pyridin-2-yl)-4-(4-vinylbenzyloxy)thiazole
(1b)

5-Phenyl-2-(pyridin-2-yl)thiazol-4-ol 1a (2.54 g,
10 mmol) was dissolved in DMSO (20 mL) and K2CO3

(1.74 g, 13 mmol, in 2 mL H2O) was added. The resulting
orange solution was stirred for 20 min. Vinylbenzyl chlo-
ride (1.68 g, 11 mmol) was added and stirring was contin-
ued for 24 h at RT. After the reaction was finished (TLC),
H2O (300 mL) was added and the aqueous phase was ex-
tracted with CHCl3 (3 � 50 mL). The organic phase was
washed with H2O (3 � 100 mL), dried over MgSO4 and con-
centrated in vacuo at 40 �C. Flash chromatography (Silica,
CH2Cl2) yielded the pure compound as yellow solid. The
product can also be recrystallized from EtOH/CHCl3 at
�30 �C to obtain the ether as light yellow crystalline
compound.

Yield: 3.11 g (8.4 mmol), 84%; yellow, fluffy needles:
m.p. 85.5 �C; 1H NMR (250 MHz, CDCl3): d = 8.59 (d,
J = 4.1 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.83–7.76 (m, 3H),
7.51–7.21 (m, 8H), 6.79 (dd, J = 10.8 Hz, 0.8 Hz, 1H), 5.80
(d, J = 17.6 Hz, 1H), 5.59 (s, 2H), 5.28 (d, J = 10.9 Hz, 1H).
13C NMR (63 MHz, CDCl3): d = 160.51, 159.83, 151.38,
149.51, 137.26, 137.02, 136.96, 136.54, 131.62, 128.79,
128.11, 127.02, 126.83, 126.39, 124.12, 118.91, 115.02,
114.08, 71.81. MS (micro ESI): m/z (%) = 393.1 (M++Na,
100%), 371 (M++H, 15%). MS (micro ESI-HRMS): m/
z = 393.1029 [M+Na]+ requires for [C22H17N2NaOS]+ =
393.1026.

2.2.2. 5-Phenyl-2-(pyridin-3-yl)-4-(3-(4-
vinylbenzyloxy)propoxy)thiazole (2b)

NaH (77 mg, 1.92 mmol of a NaH dispersion 60% in min-
eral oil) was added to a solution of 3-(5-phenyl-2-(pyridin-
3-yl)thiazol-4-yloxy)propan-1-ol 2a (500 mg, 1.60 mmol)
in dry and degassed THF (10 mL) in a Schlenk tube under
an argon atmosphere. The yellow slurry was stirred for
60 min followed by the addition of 4-vinylbenzyl chloride
(292 mg, 1.92 mmol). Stirring was continued for 48 h. The
reaction was aborted after this time because no significant
progress was observed (TLC). The mixture was quenched
with a saturated NH4Cl solution (30 mL) and the organic
phase was washed thoroughly with H2O (3 � 20 mL) dried
over MgSO4 and concentrated in vacuo at 40 �C. Column
chromatography (silica, CH2Cl2 to CH2Cl2/EtOAc 10:1)
yielded the product as a yellow oil.

Yield: 140 mg (0.33 mmol), 20%. 1H NMR (250 MHz,
CDCl3): d = 9.15 (d, J = 1.7 Hz, 1H), 8.63 (dd, J = 4.8, 1.6 Hz,
1H), 8.25–8.11 (m, 1H), 7.74 (dd, J = 5.3, 3.4 Hz, 2H),
7.47–7.18 (m, 8H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.72
(dd, J = 17.6, 0.8 Hz, 1H), 5.23 (dd, J = 10.9, 0.7 Hz, 1H),
4.66 (t, J = 6.2 Hz, 2H), 4.52 (s, J = 14.3 Hz, 2H), 3.82–3.61
(m, 2H), 2.37–2.04 (m, 2H). 13C NMR (63 MHz, CDCl3):
d = 159.35, 156.68, 150.54, 147.02, 138.13, 137.05,
136.67, 132.68, 131.44, 129.79, 128.83, 127.92, 126.96,
126.89, 126.34, 123.74, 113.83, 112.68, 72.90, 67.91,
67.03, 30.14. MS (EI): m/z (%) = 428 (M+, 6%), 117 (100%).

2.3. General polymerization procedure

The required amounts of the monomers (i.e., styrene
and dye-functionalized styrene) were transferred into the
5 mL reaction vial and dissolved in toluene. Thereafter,
the calculated volumes of stock solutions of 2-cyano-2-
propyl dithiobenzoate (CPDB) or 2-(butyl-
thiocarbonothioylthio)propanoic acid (BTTCP) as well as
2,20-azobis(iso-butyronitrile) (AIBN) in toluene were
added. The ratio of [CTA] to [AIBN] was always 4/1. Before
closing the vial, the reaction solution was purged with a
flow of argon for 30 min. Subsequently, the reaction was
performed in an oil bath at 70 �C for CPDB and 80 �C for
BTTCP overnight (see Table 2 for exact reaction times and
[M]/[CTA] ratios). The obtained polymers were purified
by precipitation into cold methanol. The polymers were
dried under reduced pressure at 40 �C. The conversion
was measured by 1H NMR spectroscopy or by GC using ani-
sole as internal standard.

2.3.1. P(1b-stat-styrene) (A1)
1H NMR (CDCl3, 300 MHz): d = 8.61, 8.17 (Ar–H pyri-

dine), 7.85, 7.55–6.3 (Ar–H), 5.62 (OCH2), 3.29, 2.5–0.7
(backbone). SEC (CHCl3, PS standard): Mn = 3120 g/mol,
PDI = 1.13. GC: convstyrene = 26%; Mn,theo = 2900 g/mol.
UV–vis (CHCl3): kmax = 262, 370 nm.

2.3.2. P(1b-stat-styrene) (A2)
1H NMR (CDCl3, 300 MHz): d = 8.62, 8.18 (Ar–H pyri-

dine), 7.86, 7.55–6.3 (Ar–H), 5.63 (OCH2), 3.31, 2.45–0.7
(backbone). SEC (CHCl3, PS standard): Mn = 8000 g/mol,
PDI = 1.14.

2.3.3. P(2b-stat-styrene) (B)
1H NMR (CDCl3, 300 MHz): d = 0.94, 1.11, 1.45, 1.87,

2.18 (b, backbone, initiator endgroup, CH2 spacer), 3.68,
4.45 (b, OCH2 C3-spacer), 4.67 (b, OCH2 benzyl), 6.59,
7.07, 7.35, 7.75 (b, Ar–H), 8.17, 8.61, 9.16 (b, Ar–H pyri-
dine). SEC (CHCl3, PS standard): Mn = 3000 g/mol;
Mw = 3300 g/mol; PDI = 1.11. MALDI-TOF MS (DCTB ma-
trix, AgI, linear mode): Mn = 2200 g/mol; Mw = 2700 g/
mol; PDI = 1.14. GC: conv. = 23%; Mn,theo = 3100 g/mol.
UV–vis (CHCl3): kmax = 373 nm.

3. Results

This work demonstrates the synthesis and
subsequent polymerization of blue emitting 1,3-thiazole
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functionalized styrenes. For this purpose, two thiazoles (5-
phenyl-2-(pyridin-2-yl)thiazol-4-ol 1a and 3-(5-phenyl-2-
(pyridin-3-yl)thiazol-4-yloxy)propan-1-ol 2a have been
etherified in dimethylformamide and THF, respectively,
under basic conditions using K2CO3 as base for 1a and
NaH for 2a, respectively (Scheme 1). For the monomer syn-
thesis of 1b, the polymerizable styrene unit was directly
attached to the chromophore. In addition, a C3 spacer
was introduced in case of 2b in order to enable a more flex-
ible attachment of the chromophores. The structure of 1b
as chelating ligand could potentially allow complexation
of metal ions, e.g., Ru(II) ions, whereas such reactions could
be suppressed by the meta-substitution of the pyridine
moiety in 2b. Furthermore, the optical properties can be
varied by additional substituents on the thiazoles [47].

As controlled radical polymerization (CRP) technique,
the RAFT polymerization was carried out using AIBN as
radical initiator, toluene as solvent and CPDB as chain
transfer agent (CTA) for the polymerization of 2b. In case
of 1b, 2-(butylthiocarbonothioylthio)propanoic acid
(BTTCP) was utilized as CTA agent. As reaction conditions,
in particular, [M]/[CTA] ratio, reaction time as well as tem-
perature, analogous literature procedures known for the
polymerization of styrene were applied (see Fig. 1 for SECs
of A1 and A2 as well as Table 1 for the applied reaction
conditions) [39,48]. All polymers revealed narrow molar
mass distributions and an incorporation of the dyes in
the polymer backbone which was proven by the 3D-SEC
plot for polymer B in Fig. 2. Furthermore, the theoretical
molar mass is in good agreement with the measured one

for both copolymers (for selected characterization data,
see Table 2) and the targeted dye contents have been
reached (see Fig. 3 for the 1H NMR spectra of A and B).

In addition, MALDI-TOF MS has been used as absolute
characterization method in order to determine the exact
molar mass. The spectrum (Fig. 4) depicts three distribu-
tions. The main distribution shows the incorporation of
one thiazole functionalized unit in the backbone. Two min-
or distributions belong to a doubly dye-functionalized
polymer chain as well as a non-functionalized one. In order
to investigate if the non-functionalized polymer chain is
just a result of the fragmentation in MALDI process or

Scheme 1. Schematic representation of the synthesis of the discussed monomers and polymers.

Fig. 1. Size exclusion chromatograms of copolymer A1 and A2 (CHCl3).
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not, a kinetic study of a selected monomer (1b) was
performed.

The polymerization kinetics were determined for the
copolymerization of styrene and 1b in toluene with BTTCP
and a [M]/[BTTCP] ratio of 250 as depicted in Fig. 5 (for the
according characterization data, see Table 3). The polymer-
ization kinetics for the RAFT polymerizations have been
investigated by determination of the styrene conversion
using 1H NMR spectroscopy (styrene signals were overlap-
ping with the thiazole styrene vinyl signals, therefore, esti-
mation of the total conversion), and the molar masses as
well as polydispersity indices by size exclusion chromatog-
raphy (SEC). A linear slope of ln([M]0/[M]t) could be ob-
served for styrene for nearly 7 h, followed by a decrease
in the slope. Such a decrease in ln([M]0/[M]t) is commonly
monitored due to either the occurrence of termination
reactions (for styrene mostly recombination reactions) or
a decrease in initiator concentration, which results from
a steadily decreasing concentration of the radical source
(AIBN) [49]. The decrease in radical concentration for the

RAFT polymerization of styrene is described in literature
by a recombination of the growing radical chains or by
recombination of AIBN-derived cyanoisopropyl radicals

Table 1
Overview over selected reaction conditions used for the polymerizations in toluene with CTA/AIBN = 4.

Sample mmonomer (g) mAIBN (mg) mCTA (mg) Temp. (�C) Conc. (mol/L) Reaction time (h)

A1 0.396 (styrene) 1.6 9.5 (BTTCP) 70 2.0 30
0.074 (2b)

A2 1.65 (styrene) 2.6 15.3 (BTTCP) 80 4.0 Kinetic study
0.071 (2b)

B 0.245 (styrene) 1.07 5.78 (CPDB) 70 2.0 16.5
0.112 (3b)

Fig. 2. Characterization of B by SEC (CHCl3) using a DAD detector.

Table 2
Selected characterization data of the obtained polymers.

Sample [styrene]:[dye] CTA [M]:[CTA]:[AIBN] Conv.
styrenea(%)

Mn,theo

(g/mol)
Mn,SEC (RI)b

(g/mol)
PDISEC
(RI)b

DPSEC
(RI)b

Dye content
(NMR)c (%)

A1 95:5 BTTCP 100:1:0.25 26 2900 3120 1.13 28 8.5
A2 247:3 BTTCP 250:1:0.25 34 9310 7910 1.15 74 4.3
B 90:10 CPDB 100:1:0.25 23 3100 3000 1.11 22 9

a Calculated from the vinyl integrals of the 1H NMR spectra using anisole as internal standard.
b Calculated from SEC (CHCl3), PS calibration.
c Calculated from the integrated areas of an aromatic dye signals (pyridine substituent) and the aromatic PS signals.

(a)

(b)

Fig. 3. 1H NMR spectra of (a) A1 (300 MHz, CD2Cl2) and (b) B (300 MHz,
CDCl3).
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[50]. A chain coupling reaction (e.g., by a shoulder at the
high molar mass side) could not be observed in the SEC
traces for the kinetic study as shown in Fig. 6. The decreas-
ing radical concentration is also affected by the higher

temperatures of 80 �C resulting in a higher decomposition
rate kd of AIBN meaning that the t1/2 (t1/2 = ln2/kd) of AIBN
at 80 �C in toluene is 1.2 h (kd = 1.55 � 10�4), whereas the
t1/2 of AIBN is 4.8 h at 70 �C (kd = 4.0 � 10�5) [51]. The lin-
ear increase of the Mn values with the conversion in com-
bination with low polydispersity indices (PDIs) below 1.2
evidences that the RAFT polymerization of styrene and
the thiazole substituted styrene proceeded in a controlled
way.

Copolymer B has been investigated, as example, in
terms of the film forming behavior. For this purpose,
spin-coating experiments have been carried out using o-
dichlorobenzene as solvent (10 mg/mL) and a rotary speed
of 2000 rpm for 30 s. A film thickness of 70 nm was
reached using these parameters. The absorption and emis-
sion spectra have been investigated in diluted chloroform
solutions at ambient temperature unless otherwise men-
tioned. The thiazoles feature an intense absorption in the
UV region resulting from the pyridine moiety (not shown).
The absorption of the K-band of the phenyl substituent at
the 5-position can be observed at around k = 270 nm. The
strongest absorption can be assigned to the thiazole core.
In contrast to the pyridine moiety, the substituent on the
5-position strongly influences the absorption of the core.
The position of the pyridine-nitrogen slightly shifts the
location of the thiazole absorption maximum which is sit-
uated at k = 371 and 360 nm for 1b (ortho-position) and 2b
(meta-position), respectively, whereas the location of the
emission maximum is not significantly influenced in both
cases at 445 (1b) and 447 (2b) nm (Fig. 7). As depicted in
Fig. 8, the film of polymer B revealed the same absorbance
and emission behavior as the monomers and polymers,
respectively. The maxima are situated at the same wave-
lengths ±3 nm, which is tolerable due to the measurements
errors.

Stationary UV–vis and time correlated single photon
counting measurements were performed in order to obtain
absolute emission quantum yields and fluorescence life-
times of the functionalized monomers 1b and 2b as well
as the corresponding polymers A and B (Table 4). The
quantum yields and fluorescence lifetimes (see Figs. 9

Fig. 4. Characterization of B by MALDI-TOF MS (DCTB matrix, AgI).
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Fig. 5. (a) Kinetic analysis of the monomer conversion of styrene and 1,3-
thiazole functionalized styrene during the RAFT polymerization at 80 �C
in toluene with [BTTCP]:[AIBN] = 4 and [M] = 4 M. (b) Mn values and
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and 10) are reduced in both polymers compared to the
monomers. This behavior is typical for fluorescent poly-
mers synthesized by the RAFT polymerization. This finding
is related to the presence of the chain transfer agent used
in the RAFT polymerization [52]. A decrease of the quan-
tum yield and the fluorescence lifetime cannot be caused
by the introduction of the alkyl-spacer unit separating
the styrene and the thiazole, but by the formation of regioi-

somers of the pyridine substituent (ortho- and meta-posi-
tion) as it is evident from a comparison of the data for
the monomers 1b and 2b (Fig. 8). This is in agreement with
previous work [36].

Table 3
Kinetic investigations of copolymerization of styrene and thiazole-styrene
(1b).

Sample Time
(h)

Combined conv. styrene
and thiazole styrenea (%)

Mn,SEC (RI)b

(g/mol)
PDISEC
(RI)b

A2-1 1 6.0 1750 1.19
A2-2 2 12.8 3330 1.17
A2-3 3 16.5 4560 1.15
A2-4 4.5 22.6 5730 1.14
A2-5 7 29.3 7000 1.15
A2-6 10 33.8 7910 1.15

a Calculated from the vinyl signals of the 1H NMR spectroscopy using
anisole as internal standard.

b Calculated from SEC (CHCl3), PS calibration.
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Table 4
Fluorescence data measured in CH3CN at room temperature.

Compound kabs (nm)
[loge]

kfl
(nm)a

Stoke-shift
(cm�1)b

s
(ns)c

U
(%)

1b 253 [4.445],
370 [4.332]

445 4555 3.5
(3.3d)

80
(88d)

2b 250 [4.40],
361 [4.28]

447 5329 1.6 34

A1 253 (262d),
370 (380d)

445
(449d)

4555
(4044d)

3.2
(2.5d)

51
(52d)

B 250, 361 447 5329 1.4 18

a Excitation in the absorption maximum.
b Related to the maximum of the longest wave-length absorption.
c Measured by time correlated single photon counting.
d Measured in chloroform.
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4. Conclusion

The incorporation of thiazole functionalized styrenes
into PS backbones as blue emissive chromophores was
studied. For this purpose, two different polymerizable dyes
were synthesized differing in the linker unit (with and
without C3 spacer) which connects the chromophore to
the backbone. The monomers were copolymerized with
styrene in a controlled manner using the RAFT polymeriza-
tion technique leading to well-defined polymers. A kinetic
study supported a statistical incorporation of the thiazole
units into the copolymer. The obtained polymers featured
the same optical properties as the thiazoles monomers.
As expected, the emission of the polymer was quenched
by the dithioester or trithiocarbonate end-group, respec-
tively, while this effect was unaffected by the introduction
of a flexible C3 spacer moiety. Moreover, the polymers
showed good thin film formation. Future investigations

will focus on donating the energy to other dye molecules
and Ru(II) polypyridyl complexes in a FRET process.
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ABSTRACT: The F€orster resonance energy transfer (FRET) prop-

erties in poly(methyl methacrylate) copolymers containing

2-(pyridine-2-yl) thiazole dyes were studied upon systematic

variation of the donor-to-acceptor ratio. To this end, 2-(pyri-

dine-2-yl) thiazole dyes specially designed for the usage as

energy donor and acceptor molecules were incorporated within

one polymer chain. Poly(methyl methacrylate) copolymers con-

taining these donor and acceptor dyes were synthesized using

the RAFT polymerization method. Copolymers with a molar

mass (Mn) of nearly 10,000 g/mol were achieved with dispersity

index values (-D) under 1.3. The presented copolymers act as a

model system for the FRET investigation. F€orster resonance

energy transfer properties of the copolymers are characterized

by steady state as well as time resolved fluorescence spectros-

copy. The results indicate that the energy transfer rates and

the transfer efficiencies are tunable by variation of the donor-

acceptor-ratio. VC 2013 Wiley Periodicals, Inc. J. Polym. Sci.,

Part A: Polym. Chem. 2013, 51, 4765–4773

KEYWORDS: donor-acceptor systems; fluorescence; photophy-

sics; FRET; reversible addition-fragmentation chain transfer

(RAFT); thiazoles

INTRODUCTION The use of alternative energy sources has
become an important research topic as conventional organic
fuels are to decline and global warming due to the greenhouse
effect becomes increasingly recognized. A key aspect to prevent
both global warming and the long-term lack of fuels is the con-
version of sunlight into electrical and chemical energy. The
importance of this aspect is reflected in numerous recent techni-
cal developments from applications of solar cells to photocata-
lytic devices.1–7 In particular photosynthetic systems that
emerged in plants and algae over millions of years are of inter-
est in this context. Light harvesting has been perfected by evolu-
tion to a point, which is not reached until now by artificial
systems. Artificial photosynthetic systems are designed to mimic
natural photosynthetic systems in that they are made of light-
harvesting units, a photoactive center and a catalytic center.5,7–9

Hence, artificial light-harvesting systems based on polymeric
and dendritic structures mimicking natural light-harvesting

systems have been designed and characterized.10–20 Most
design strategies aim to incorporating monomeric units into
supramolecular assemblies with—ideally—only minor impact
on the electronic properties of the monomers. Here, the
dipole approximation of coulombic coupling between the
monomeric units can be used to describe the donor-acceptor
couplings, assuming temporally localized excitation within
the supramolecular assembly. In order to allow for optimal
energy transfer the spectral overlap of the donor emission
with the acceptor absorption has to be optimized, the transi-
tion dipoles of donor and acceptor units should be aligned
and the donor emission quantum yield must be high.21 No
interactions between donor and acceptor should exist, which
induce changes in the emission and absorption line shape of
the monomeric units, for example, inhomogeneous line
broadening as well as coherent energy transfer dynamics.22

These requirements can be met in nonconjugated polymers,
which are accessible by multiple synthetic routes offering
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the possibility of synthesizing a wide range of light-
harvesting polymers.23–30 A powerful polymerization tech-
nique in this context is the reversible addition-fragmentation
chain-transfer polymerization (RAFT), which can be used for
the construction of donor-acceptor copolymers with defined
length and ratio of them.31–33

In this contribution FRET in novel 1,3-thiazole based donor-
acceptor copolymers is discussed. In the copolymers at hand
the excitation band of the acceptor molecules is expanded,
making the polymers attractive to be used as light harvesting
energy donors, for example, for ruthenium dyes.29 Polymers
with high photostability shall improve the overall perform-
ance of photocatalytic systems. Furthermore, applications of
this system in dye sensitized solar cells as well as organic
light-emitting diodes are conceivable or the use in biochem-
istry/medicine for FRET-microscopy for imaging of cell com-
ponents.34,35 The here presented copolymers act as a model
system for FRET investigation. It is shown how the energy
transfer efficiency is affected by the donor-acceptor-ratio.

EXPERIMENTAL

Materials
Methyl methacrylate (MMA) was purchased from Sigma-
Aldrich and purified by stirring in the presence of an
inhibitor-remover for hydroquinone or hydroquinone mono-
methyl ether (Aldrich) for 30 min before use. The initiator
2,20-azobis(iso-butyronitrile) (AIBN) was recrystallized from
methanol before use; 2-cyano-2-propyl dithiobenzoate (CPDB)
chain transfer agent (CTA) was purchased from Sigma-Aldrich.
The donor monomer 2-(pyridine-2-yl)-1,3-thiazole MD29 and
the acceptor monomer ((4-dimethylamino)phenyl)-2-(pyri-
dine-2-yl)-1,3-thiazol MA36 were synthesized according to
literature. All analytical grade solvents were purchased from
Sigma-Aldrich or Merck KGaA.

General RAFT Polymerization Procedure
In a typical polymerization experiment, 282 mg of MMA (2.8
3 1023 mol), 57.1 mg of MD monomer (0.15 3 1023 mol)
and 12.7 mg of MA monomer (0.03 3 1023 mol), 1.23 mg of
AIBN initiator (8.0 3 1026 mol), 6.64 mg of CPDB (used as
a CTA) RAFT agent (3.0 3 1025 mol), and toluene were

mixed together in a 10 mL glass vial as follows: MMA mono-
mer, toluene followed by individual stock solutions of AIBN
(initiator), and CPDB dissolved in toluene. The ratio between
[CTA] and [AIBN] was 1:0.25 at a total monomer concentra-
tion of 2.0 mol/L. Before closing the vial, the reaction solu-
tions were degassed by sparging argon for at least 30 min
before use. Subsequently, the reaction was performed in an
oil bath at 70 �C for 13 h. After the polymerization, acetone
was added to the final mixtures, and the polymers were then
precipitated into cold methanol. The utilized reaction condi-
tions and [M]/[CTA] ratios are summarize in Table 1.

Instrumentation
Size-exclusion chromatography (SEC) was performed on an
Agilent1200 series system equipped with a G1310A pump, a
G1362A refractive index and DAD G1315D detector and both
a PSS Gram30 and a PSS Gram1000 column in series,
whereby N,N-dimethyl-acetamide (DMAc) with 5 mmol lith-
ium chloride was used as an eluent at 1 mL min21 flow rate
and the column oven was set to 40 �C. The system was cali-
brated with poly(methyl methacrylate) standards. Further
SEC experiments were performed on a Shimadzu system
equipped with a SCL-10A system controller, a LC-10AD
pump, a RID-10A refractive index detector, a UVD SPD-10AD
UV/Vis detector and a PSS SDV linear S, 5 mm column (8
mm 3 300 mm) with chloroform:triethylamine:2-propanol
(94:4:2) as eluent and the column oven was set to 40 �C. A
calibration with low polydispersity polymethylmethacrylate
standards was used. Proton nuclear magnetic resonance
(1H NMR) spectra were recorded on a Bruker AC 300 (300
MHz) spectrometer at 298 K. The chemical shifts are
reported in parts per million (ppm, d scale) relative to the
signals of the NMR solvents.

The steady-state absorption spectra were recorded using a
UV/Vis-NIR-spectrometer Varian Cary 5000. Molar extinction
coefficients (e) were obtained by measuring steady-state
absorption of solutions in a 1 3 1 cm quartz glass sample
cell. The concentration was kept below 2.5 3 1025 mol L21.
Molar extinction coefficients were calculated from the arith-
metic mean value of three measurements. Emission quantum
yields (UF) in solution were measured on a LS50

TABLE 1 Overview of the Selected Reaction Conditions used for the Copolymerizations of MMA with MD and MA

Entry

Feed ratio

[MMA]:[MD]:[MA]

Mn, SEC

g/mola -Da

DP

(SEC)

Mn, SEC

g/molb -Db

Ratio 1NMR %

[MMA]:[MD]:[MA]c
Abs. units

[MMA]:[MD]:[MA]d

PD 95:5:0 7,000 1.21 57 N/A N/A 92.1:7.9:0 52:5:0

PDA1 94:5:1 10,600 1.20 76 8,900 1.18 87.7:10.8:1.5 67:8:1

PDA2 94:3:3 11,100 1.26 87 9,100 1.25 91.8:4.7:3.5 80:4:3

PDA3 94:1:5 12,400 1.26 102 9,800 1.30 83.6:1.6:4.8 95:2:5

PA 95:0:5 7,100 1.22 58 N/A N/A 93.2:0:6.8 54:0:4

a Calculated from SEC (DMAc) using PMMA calibration.
b Calculated from SEC (CHCl3) using PMMA calibration.
c Calculated from integrated areas of (CH3)2N- signals the ester CH2-O-,

and the CH3- side-group signals.

d Rounded values.
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PerkinElmer fluorescence spectrometer by comparing the
corrected emission intensities of the compounds with the
fluorescence intensity of the standard quinine sulphate in
0.1 M sulfuric acid (UF 5 55%). The excitation wavelength
was set to the most red-shifted absorption maximum of the
donor molecule, and the extinction maximum was kept
below 0.05. A spectro-fluorometer Jasco FP 6200 was used
for measuring emission spectra. The chloroform used as sol-
vent in spectrosocopic measurements (ROTISOLVVR 
99.8%,
UV/IR-Grade) was of spectroscopic grade.

From the spectra of donor and acceptor monomers of the
classical F€orster distance (R0) can be calculated to

R0 5 0:211 � ðj2n24QD JðkÞÞ1=6 (1)

Here, the orientation factor j2 was set to 2/3, the refractive
index n of chloroform was n 5 1.445 and QD is the emission
quantum yield of the donor monomer. J(k) is the overlap
integral (see eq 2), while FD(k) refers to the donor emission
and eA(k) for the molar acceptor absorption spectrum, the
wavelength k is measured in nanometer.21

J kð Þ5
Ð1
0 FDðkÞeAðkÞk4dkÐ1

0 FDðkÞdk
(2)

Time Correlated Single Photon Counting
Fluorescence lifetime measurements were performed with a
streak camera in the time correlated single photon counting
(TCSPC) mode. The emitted light was focused on the
entrance slit of a Chromex 250IS imaging spectrograph and
imaged to the streak scope C4334 (Hamamatsu) triggered by
the C4792-01 unit. The sample was excited by a train of
sub-picosecond pulses delivered by a Ti-sapphire laser (Tsu-
nami, Newport Spectra-Physics GmbH). The fundamental of
the Ti-sapphire output was frequency doubled in order to
obtain pulses with a center wavelength of 375 nm. The repe-
tition rate of the laser was adjusted to 0.4 MHz by a pulse
selector (model 3980, Newport Spectra-Physics GmbH). All
measurements were performed under magic angle configura-

tion, that is, in perpendicular excitation emission geometry a
Glan-Thompson polarizer was placed in the detection chan-
nel under 55� with respect to the polarization direction of
the excitation pulses.

RESULTS AND DISCUSSIONS

A series of five statistical donor-acceptor copolymers based
on a PMMA was synthesized using RAFT polymerization.
Within this series the donor-acceptor-ratio was varied
(Scheme 1) starting from the donor copolymer (PD) followed
by an increasing amount of acceptor (PDA1-3) ending by the
acceptor copolymer (PA). The thiazole donor (MD) and
acceptor monomers (MA) were explicitly synthesized to con-
struct donor-acceptor systems (on flexible side-groups) along
a polymer chain (Scheme 1). In doing so the thiazole struc-
ture of MD was expanded with an electron donating dime-
thylamino group at the phenyl ring in order to increase the
charge transfer character (the pyridine acts as the electron
acceptor) of the longest-wavelength p-p* transition. This
induces a red shift of both the absorption and emission. The
monomer MA exhibits a bathochromically shifted absorption
(416 nm, D 5 40 nm (2560 cm21)) and emission spectra
(526 nm, D 5 77 nm (3260 cm21)) together with a reduced
quantum yield (UF 5 61%) compared with MD in chloro-
form (compare Table 2).

The polymerizations were carried out using 2-cyano-2-propyl
dithiobenzoate (CPDB) as CTA and AIBN as radical initiator
(see Scheme 1) by applying similar conditions as previously
described for the MMA thiazole copolymerization.25

The polymerizations of the monomers were performed in
toluene with a monomer concentration of 2.0 mol L21. The
molar masses and dispersity indices (-D) measured by SEC
are summarized in Table 1, demonstrating good control over
the copolymer characteristics (Fig. 1). The monomer conver-
sions of the MMA units were estimated by 1H NMR spectros-
copy via the signals of the protons of the corresponding
double bonds. The conversion of all MMA units was around 65
to 80% after 13 h of polymerization time. After the

TABLE 2 Absorption and emission wavelengths (kabs, kem), Stokes shift (t), fluorescence quantum yield (UF), lifetime (s), fluores-

cence rates (kfl), and nonradiative rates (knr) obtained in chloroform at room temperature

Sample

[MMA]:[MD]:[MA]

calc. rep. units kabs/nm [log E] kem/nm t (cm21) UF s/nsa kfl/ns
–1b knr/ns

–1c

MD – 376 [4.346], 272 [3.955] 449 4,324 0.81 3.42 0.24 0.22

MA – 416 [4.280], 281 [4.122] 526 4,969 0.61 3.52 0.17 0.24

PD 52.7: 4.5: – 376 [4.904], 274 [4.573] 448 4,274 0.60 2.78 0.22 0.28

PDA1 66.9: 8.2:1.1 377 449 4,253 0.46d 2.42 – –

PDA2 80.1: 4.1:3.1 386 525 6,859 – 1.86 – –

PDA3 95.1: 1.6:4.9 408 526 5,498 – 1.64 – –

PA 54.1: –:4.0 417 [4.819]. 276 [5.535] 527 5,005 0.39 2.91 0.13 0.30

a For all of the polymers the mean lifetime s�5
P

fisi is given instead of

s, with the fractional contribution of each decay component

fi5aisi=
PN
j51

ajsj , a denotes the pre-exponential factor.

b Computed as UF/s.
c knr 5 (1 – U)/s.
d Measured upon excitation at 376 nm.
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polymerization the copolymers were precipitated three times
into cold methanol to remove the unpolymerized monomers.
For the finally derived copolymers, donor-acceptor-ratios were
determined by 1H NMR spectroscopy using the integrated
areas of the proton signals of the dimethylamino group
((CH3)2N- of MA at 3.0 ppm) and of the CH2-O- signals of both
dyes at 4.2 and 4.6 ppm (see Supporting Information). The
observed ratios are in a good agreement with the monomer
feed ratio.

Concerning the absorption and emission spectra of the syn-
thesized dyes it is possible to judge the quality of the donor-
acceptor pair. From the steady state spectra the F€orster dis-
tance was calculated: The emission spectrum of MD shows a
distinct overlap with the absorption of MA (Fig. 2) and the
overlap integral for FRET (eq 2) was calculated to J 5
3.39 3 1014 M21 cm21 nm4. For instance, this value exceeds
overlap integrals, of poly(phenylene-vinylenes) regarding
homo energy transfer within a polymer chain (J 5 0.38 to
1.33 3 1014 M21 cm21 nm4).17 Increasing the overlap

integral is important for an improved energy transfer rate
kFRET (eq 3), which is proportional to J(k) (eq 2).

kFRET5
1
sD

R0

R

� �6

(3)

As a consequence of the large overlap the F€orster distance
R0 5 39 Å also exceeds the F€orster distances calculated for
homo energy transfer in poly(phenylene-vinylenes) by more
than 10 Å (assuming a statistical orientation between donor
and acceptor transition dipoles) and lies in the range of
F€orster distances calculated for blue emitting thiazoles.21

Upon energy transfer from MD (or PD) to MA (or PA)
energy is loss due to nonradiative transfer of energy and
relaxation processes (Table 2). This leads to a reduced over-
all emission quantum yield of PDA1-3 compared with a
system consisting of MD or PD alone. Hence, it is compre-
hensible that the overall emission quantum yield UF 5 46%
of PDA 1 (upon excitation at 376 nm) is reduced compared

FIGURE 1 Left: schematic representation of the RAFT polymerization of MMA with MD and MA using the CTA CPDB and the radi-

cal initiator AIBN. Right: illustration of the functionalized donor-acceptor copolymers PD, PDA1-3 and PA (triangle 5 donor, cycle

5 acceptor).

FIGURE 2 SEC traces of the synthesized donor-acceptor copolymers (PDA1-3) using a RI (solid black) and an UV detector (k 5 390

nm, dotted grey).

ARTICLE WWW.POLYMERCHEMISTRY.ORG
JOURNAL OF

POLYMER SCIENCE

4768 JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2013, 51, 4765–4773



with UF 5 60% for PD (see Table 2). Assuming no energy
transfer in PDA 1, a quantum yield close to the value
obtained for PD would be expected as—upon excitation at
376 nm—approximately 92% of the absorbance in PDA 1
stem from donor units.37 However, the measurements yield a
value comparable to the quantum yield of PA (UF 539%),
indicating energy transfer in PDA 1.

Aside from the investigation of energy transfer it is impor-
tant to know how polymerization affects the absorption and
emission properties of the individual dyes. Upon polymeriza-
tion of MD and MA to PD and PA no shift in the absorption
and emission wavelengths is induced (Table 2, Figs. 3 and
4). However, the emission quantum yield and the mean life-
time of the chromophores is decreased, when connected to
the polymer chain (Table 2). One possible deactivation path-
ways is opened by the RAFT-polymerization due to quench-
ing by the dithiobenzoate (chain transfer agent) end-group
or by self-quenching of the fluorophores.38

The influence of the polymerization on the chromophores is
analyzed more in detail by monitoring the decay of their
excited state. Here, a slight deviation from a mono-exponential
fluorescence decay is observed and a further exponential is
necessary to adequately fit the fluorescence traces from PD
and PA (Table 4, see also Supporting Information). This indi-
cates an additional rate constant, which accounts, for example,
for exciplex formation of the thiazole with the dithiobenzoate
end group. Similar effects have been reported for a coumarin
dye embedded in a polymer.38 Sometimes it is useful to charac-
terize the fluorescence decay not only using exponential func-
tions with discrete rate constants but with stretched
exponential functions of the type of eq 4. For example,
stretched exponential functions were used for measurements
of F€orster distance of dyes covalently bound to polymers.39

I tð Þ5I0 exp ½2ðt=sÞb� ð0 � b � 1Þ (4)

Here, the parameter b reflects the extent of the deviation
from a mono-exponential decay function. Data fitting using

eq 4 was applied to the fluorescence decay of MD, MA, and to
the polymers PD and PA in order to account for discrete or
non-discrete deactivation rates (Table 3). For the polymer fluo-
rescence the parameter b is reduced compared with the mono-
mers (Table 3). Thus, for the copolymers the fluorescence
decay deviates stronger from a mono-exponential compared
with the monomers. For MD b is 0.962, that is, the fluores-
cence decay nearly follows a mono-exponential decay. Copoly-
mer PA exhibits the largest deviation from a mono-exponential
decay (b 5 0.814) suggesting that in PA the acceptor fluores-
cence is more prone to be disturbed by environmental changes
compared with the donor emission in PD. From the fit parame-
ter s and b a mean lifetime <s> can be calculated according to

hsi5 s
b
C 1

b

� �
(5)

where C denotes the gamma function. The mean lifetimes
<s> are comparable to the mean experimental lifetimes sexp
obtained using exponential functions for curve fitting (Table
3). However <s> is always shorter than sexp. The original
data together with the fitting curves and the weighted resid-
uals are available in the Supporting Information.

After having detailed the fluorescence kinetics of monomers
and the donor and acceptor polymers, PD and PA, respec-
tively, now the investigation of the donor fluorescence in
donor-acceptor polymers PDA 1-3 is presented.

The distances between the chromophores within the copoly-
mer chain is changed in the copolymer series PDA 1-3 by
variation of the amount of donor to acceptor chromophores.
The series PDA 1-3 have statistically distributed donor and
acceptor molecules with calculated donor-acceptor-ratios of
8.2/1.1, 4.1/3.1 and 1.6/4.9, respectively (see Table 1). This
leads to three cases of donor-acceptor copolymers: (i)
donor-dominated copolymer, (ii) acceptor-dominated copoly-
mer, (iii) a copolymer with a balanced donor-acceptor-ratio.
This general classification is experimentally derivable from
steady-state absorption and emission spectra (Fig. 5). The
spectra resemble the spectra of either the donor or the
acceptor depending on the donor-acceptor-ratio, that is, the
absorption spectra of PDA 1-3 can be considered as linear
combinations of the spectra from PD and PA (Fig. 4). When
the contribution of each compound to the spectra is known,
it is possible to determine energy transfer efficiencies in
PDA 1-3, as detailed in the Supporting Information. Briefly,
it is assumed that the absorbance of the donor-acceptor
copolymers is a linear combination of the absorbance of PD

FIGURE 3 Absorption and emission spectra of MD (black lines)

and MA (grey lines) in chloroform at room temperature. The

dashed line represents the normalized integrand of the overlap

integral for calculating the F€orster distance.

TABLE 3 Comparison of Stretched Exponential Fitting Results

with Exponential Fit

Entry s/ns b s>/ns sexp/ns

MD 3.22 0.962 3.28 3.42

MA 3.14 0.919 3.27 3.52

PD 2.40 0.899 2.53 2.78

PA 2.13 0.814 2.38 2.91
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and PA. To determine the contributions of donor and
acceptor units to the absorption spectra of PDA 1-3 a non-
negative constraint least square fit was used. From the

results the percentage of the donor molecules to the overall
absorbance of the donor-acceptor copolymer and the trans-
fer efficiencies (shown in Table 4) are calclulated.29

FIGURE 4 Absorption spectra (solid line), excitation and emis-

sion spectra (dashed line) measured in chloroform at room

temperature. (A) For PD, the emission (excitation) wavelength

was set to kEx 5 376 nm (kEm 5 455 nm). (B) For PA the excita-

tion wavelength was kEx 5 400 nm, emission wavelength kEm
5 530 nm.

TABLE 4 Data of Energy Transfer Analysis: Donor-Acceptor-MMA-Ratio [MMA]:[MD]:[MA], Lifetime s, Energy Transfer Efficiency E,

Average Transfer Rate per Donor Chromophore kFRET

Sample [MMA]:[MD]:[MA] s/ns (fi)
a E (%)b kFRET/ns

21c kFRET�[MD]/ns21 kFRET [MD]:[MA]/ns21

PD 52.7: 4.5: – 3.055 (0.87), 1.574 (0.13) – – – –

PA 54.1: –:4.0 3.101 (0.92), 0.854 (0.08) – – – –

PDA1 66.9: 8.2:1.1 2.561 (0.94), 0.315 (0.06) 35 (50) 0.19 (0.36) 1.56 (2.95) 1.42 (2.68)

PDA2 80.1: 4.1:3.1 2.359 (0.74), 0.506 (0.21),

0.065 (0.04)

74 (76) 1.02 (1.14) 4.18 (4.67) 1.35 (1.51)

PDA3 95.1: 1.6:4.9 2.301 (0.64), 0.615 (0.23),

0.188 (0.09),0.026 (0.04)

87 (85) 2.40 (2.04) 3.84 (3.26) 0.78 (0.67)

kFRET�[MD] ([MD]/[MA] is the number of donor/acceptor molecules in a

polymer) is a measure for the overall energy transfer rate to acceptors

in a polymer chain. kFRET�[MD]:[MA] is a measure for the energy transfer

rate to an individual acceptor molecule in the polymer.
a In brackets the fractional contribution of each decay component fi5

aisi=
PN
j51

ajsj is given, the a’s denote the pre-exponential factors.

b Transfer efficiency E was calculated by E512

Ð
IDAðtÞdtÐ
ID ðtÞdt

, with IðtÞ5P
ai �

si the a’s are normalized to unity. Transfer efficiencies calculated from

the analysis of steady state spectra (see Supporting Information) are

put in brackets.
c The transfer rate kFRET is determined by using the calculated transfer

efficiency E and the mean lifetime sD of the donor reference PD:

kFRET5 E
E21

� 1
sD

In brackets the calculated transfer rate is given using

results from steady state measurements.

FIGURE 5 Absorption spectra (A) and normalized emission

spectra (B) of PDA1 (solid line), PDA2 (dashed line) and PDA3

(dotted lines) measured in chloroform at room temperature.

The excitation wavelength was kEx 5 376 nm.
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The focus of the discussion is now shifted to consider FRET
in these polymers. In this context, we shall start with a quali-
tative discussion, which is based on an inspection of the fluo-
rescence excitation spectra of the acceptor emission (Fig. 5).

The excitation spectrum of PDA 1 (see Fig. 6) resembles that
of PD reflecting the majority of donor molecules in the poly-
mer, that is, the acceptor is excited mainly by the donor mol-
ecules. The spectra of PDA 2 differs from the fluorescence
excitation spectrum of PDA 1 in that the shoulder at about
440 nm is more pronounced in the latter case. For PDA 3
only a marginal contribution from the excitation through
donor molecules is apparent, as visible by an slight blue shift
and a broadening of the excitation spectrum compared with
PA. This does not imply that no donor-acceptor energy
migration takes place, but rather that direct excitation of
acceptor molecules dominates over energy transfer. For
PDA2 both donor and acceptor contribute to the fluores-
cence excitation spectrum.

Transfer efficiencies are determined by eq 6 using the experi-
mental donor fluorescence intensities of PDA 1-3 and of the
donor reference system PD. The parameter IDA and ID (see
Supporting Information and Fig. 4) represent the intensities
of the donor fluorescence in the donor-acceptor copolymers
(PDA 1-3) and the donor reference system (PD), respectively.

E512
IDA
ID

512

Ð
IDAðtÞdtÐ
IDðtÞdt (6)

Time-resolved measurements as well as steady state meas-
urements were performed in order to determine transfer
efficiencies and transfer rates. In doing so, only the donor
fluorescence was analyzed. The acceptor fluorescence is not

taken into account for determining the transfer efficiency
from excitation spectra.40 This is done as the donor fluores-
cence spectrally overlaps with the acceptor fluorescence
thereby obscuring the transfer efficiency value. Accordingly,
the normalized fluorescence decay traces of the excited
donor in PD and PDA 1-3 were analyzed (Figs. 6 and 7).

The emissions traces of the donor-acceptor polymers show a
faster decay than that of the donor polymer PD. Further-
more, the emission decay in the series PDA 1-3 is acceler-
ated upon reducing the donor-acceptor-ratio. This indicates a
more efficient quenching of the donor molecules if more
acceptors are present. This argument is based on the
assumption that the polymers PDA 1-3 occupy the same spa-
tial volume although the degrees of polymerization are not
exactly identical (see Table 2). The donor mean lifetime of
PDA 1 (2.42 ns) almost equals that of PD (2.78 ns) (see also
Table 2). This approach to the lifetime of the reference sys-
tem PD for large donor-acceptor-ratios justifies the usage of
PD as reference, because it verifies eq 6: that is, the transfer
efficiency approaches zero for large donor-acceptor-ratios.
Therefore energy transfer efficiencies for PDA 1-3 were cal-
culated in reference to the fluorescence intensity of PD
(Table 4). The transfer efficiency increases from 0.35 to 0.74
and 0.87 for PDA1, PDA2 and PDA3, respectively.

Noteworthy, the complexity of the donor-emission decay in
PDA 1-3 depends on the donor-acceptor-ratio. When the
donor molecules are surrounded by more acceptors more
exponentials are necessary in order to fit/to account for the
experimental data (Table 4). The donor decay of PDA 3 is
described adequately by a fit using four exponentials. This
indicates that a lifetime-distribution should be favored in
describing the data as compared with a sum of discrete
rates.41 The distribution of lifetimes is physically based on
different distances between donor and acceptor molecules

FIGURE 6 Excitation spectra of donor and acceptor copolymers

PD and PA (solid) and of the donor-acceptor polymers PDA1

(dashed), PDA2 (dashed-dotted) and PDA3 (dotted) recorded by

monitoring the emission at 450 nm for PD, 525 nm for PA, and

592 nm for PDA1, PDA2, and PDA3 in chloroform at room

temperature.

FIGURE 7 Normalized photon counting decay traces of the

donor fluorescence of PD (filled squares—topmost curve), PDA

1 (open circles—second curve from top), PDA 2 (crosses), and

PDA 3 (filled triangles—fastest decay, i.e. bottom curve), meas-

ured in chloroform at room temperature.
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within the polymers, differently oriented donor and acceptor
dipoles and potentially alterations in the chain-mobility,
which cause different transfer rates for individual donor flu-
orophores in the copolymer. As none of the before men-
tioned effects causes discrete modes of emission but rather
affects the distribution of emission lifetimes, an average
transfer rate per donor molecule is calculated using the
experimentally accessible transfer efficiencies. The absolute
transfer rates in the copolymer depend on the number of
donor molecules bound to the polymer chain and on the cal-
culated average transfer rate per donor molecule. Thus, a
weighting of the average transfer rates was performed by
multiplying the respective values with the number of donor
molecules of the polymer backbone – as determined by NMR
spectroscopy (Table 4). Thus, the estimates for the absolute
transfer rates show a strong dependence on the donor-
acceptor-ratio. For PDA 1 the absolute transfer rate suffers
from a small number of acceptor molecules within the poly-
mer chain, which could receive the electronic energy from
donor molecules. The situation is differently for PDA 3 in
which the donor molecules transfer most of the absorbed
energy to acceptors. However, due to the low content of
donors in the copolymer the absorption cross section of the
polymer chain is reduced. As a consequence, the absolute
energy transfer rate in PDA 2 exceeds the rate estimates for
PDA 1 and PDA 3, indicating that a balanced donor-
acceptor-ratio in copolymers of the type PDA yields a maxi-
mum energy flow to acceptor dyes. This is of interest for the
preparation of dye sensitized solar cells (DSSC) with incorpo-
rated energy relay dyes.3 In particular in solid-state DSSC
with restricted thickness of a few micrometers, where not all
the incoming light is absorbed, polymers like PDA2 enhance
the light-harvesting efficiency.

In addition, energy focusing is very important, that is, con-
centrating energy transfer to a single acceptor, for example, a
reaction center. In order to provide a measure of the energy
focusing in the polymers the absolute energy transfer rate—
discussed before—was divided by the number of acceptors
in a polymer chain (Table 4).

The resulting values point to the dependence of energy
focusing on the donor-acceptor-ratio: PDA 1 exhibits the
largest value (1.42) indicating that high donor-acceptor-ratio
leads to a better energy focusing. Thus, in systems demand-
ing efficient energy focusing, that is, artificial photosynthetic
systems, the copolymer PDA 1 is more favorable compared
with copolymers PDA 2-3.7

CONCLUSIONS

PMMA-based copolymers containing thiazole donor and thia-
zole acceptor dyes were synthesized using the RAFT poly-
merization method. A series of statistical donor-acceptor
copolymers have been prepared, with compositions changes
from donor copolymer to acceptor copolymer. These donor-
acceptor macromolecules were used as a model system for
the investigation regarding an antenna structure for light-
harvesting systems. The polymerization of these thiazole

dyes into the polymer backbone leads only to minor changes
in their photophysical properties of the individual dyes in
solution. Fluorescence excitation spectrum decay curves as
well as life time measurements showed that energy was
transferred from the donor to the acceptor moiety along the
copolymer chain, that is, due to small spacing of the donor/
acceptor dyes or due to the formation of a random coil,
which brings the fluorophores in close proximity.

The fluorescence of the incorporated donor dyes is highly
quenched by acceptor molecules due to the energy transfer
with an efficiency up to 87%. This study shows the strong
influence of the ratio between the donor and acceptor chro-
mophore for the energy transfer. The copolymers presented
in this study can act as antenna structures for light harvest-
ing systems. For the first time, it was shown that a balanced
donor-acceptor-ratio leads to the most effective energy
transfer while a high acceptor content leads to an efficient
energy focusing.
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Abstract: Thermoresponsive polymers that undergo a solubility transition by variation of 
the temperature are important materials for the development of ‘smart’ materials. In this 
contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol 
methacrylate), which is accompanied by a transition from hydrophilic to hydrophobic, for 
the development of a fluorescent thermometer. To translate the polymer phase transition 
into a fluorescent response, the polymer was functionalized with pyrene resulting in a 
change of the emission based on the microenvironment. This approach led to a soluble 
polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The 
polymer phase transition that occurs during sensing is studied in detail by dynamic  
light scattering. 
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1. Introduction 

In recent years, dye-functionalization of thermoresponsive polymers has received significant 
attention for the development of sensory materials [1-12]. This approach allows simple and fast 
detection of the temperature by measuring the absorbance or fluorescence of a polymer solution. The 
high sensitivities arise from the incorporated solvatochromic dye molecules [13,14], which respond to 
minor local environmental changes that occur upon the temperature induced polymer phase transition. 
Such optical thermometers are desirable for remote sensing of the temperature based on the reversible 
temperature induced polymer phase transition. These thermometers can be used if the electromagnetic 
field or the ionic strengths are too strong for a conventional thermometer. A variety of optical 
polymeric thermometers have been reported as sensing materials. Hirai and co-workers classified these 
types of responsive polymers in three classes [5,9]: (i) heat-induced fluorescence enhancement,  
(ii) heat-induced fluorescence quenching, and (iii) selective emission enhancement at a specific 
temperature range. A further class is based on (iv) a temperature-dependent batho-chromic/hypso-
chromic shift of the absorption or emission wavelengths [3,6,11,15,16]. Such solvatochromic dyes 
change color in response to changes of the solvent polarity. Recently, it was reported that combining a 
solvatochromic dye with a temperature-responsive polymer leads to a color change upon changing the 
temperature, as in the dissolved state the dye is in contact with water while in the collapsed state the 
dye is dissolved in the less polar precipitated polymer globule. Such optical polymeric sensors can be 
used for a wide range of applications, such as biosensors [2], drug delivery [17,18], logic 
gates [4,10,19,20], and optical sensing [1,5-9,11,12]. 

The majority of these sensor materials are based on stimuli-responsive polymers, exhibiting a lower 
critical solution temperature (LCST) in solution, sometimes also called coil-to-globule transition. Such 
LCST polymers are water-soluble at low temperatures and undergo a sharp entropy-driven collapse 
with increasing temperature. As a result the temperature sensing regime of LCST-based sensors is 
often limited to the detection of a narrow temperature range (around 10 °C). The LCST behavior of 
polymers in solution can be described by the Flory-Huggins theory [21]. 

Besides the most commonly studied poly(N-isopropylacrylamide) (PNIPAM) [17,22], a number of 
poly(ethyleneglycol) (PEG) based polymers have been reported to exhibit LCST behavior. In 
particular, ethyleneglycol methyl ether methacrylate-based polymers have attracted attention as 
thermoresponsive materials and as alternatives to PNIPAM [23-27]. It has been demonstrated that 
oligoethylene glycol methyl ether methacrylate-based polymers exhibit similar desirable 
thermoresponsive properties in water as PNIPAM while showing less hysteresis between heating  
and cooling.  

The strong interest in PEG base methacrylates is based on the easy preparation of well-defined 
structures by controlled radical polymerization (CRP) techniques. In this work we used the reversible 
addition fragmentation chain transfer (RAFT) technique as polymerization method [28,29]. In 
particular, we used di(ethylene glycol) methyl ether methacrylate (DEGMA) copolymers, which have 
a low LCST of around 25 °C and this class of polymers has superb biocompatibility [30,31]. 

The fluorescent dye pyrene is a very hydrophobic molecule and has limited solubility in polar 
solvents like water. Pyrene is one of the most studied fluorescent dyes in chemistry. In the early 
nineties Winnik and co-workers studied the heat-induced phase transition in water of a pyrene 
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functionalized poly(NIPAM) [32,33]. It could be shown that the phase transition has an influence on 
the pyrene eximer emission. Pyrene is also used in polymer chemistry as fluorescent probe to 
determine the critical micelle concentration of block copolymers based on the sensitivity of the pyrene 
emission to the polarity of the solubilizing medium [34,35]. It could be shown that the ratio of the 
intensity of the pyrene monomer emission (in total five vibronic bands) of the first (I1 at 373 nm) and 
third peak (I3 at 384 nm) represents a sensitive parameter, which is characteristic for the polarity of the 
environment [36]. Also the relative intensity of the first and the fifth peak can be used as sensitive 
parameter for the polarity of the medium (I5 at 393 nm). In addition, pyrene shows a second emission 
band at higher concentration corresponding to an excited dimer (excimer fluorescence > 450 nm). This 
excimer fluorescence band appears at higher wavelengths in comparison to the emission band of the 
monomer fluorescence (red shift) [37]. 

In the current work, we developed an optical fluorescent temperature sensors with a temperature 
sensing regime based on the LCST transition of pyrene functionalized poly(DEGMA) in water. The 
synthesis and characterization of this copolymer are reported. In addition, the temperature sensing 
ability of the copolymer is discussed based on fluorescence spectroscopy and dynamic light  
scattering (DLS). 

2. Results and Discussion 

The synthesis route of the pyrene-labeled copolymer poly(DEGMA-stat-PyMMA) (5), is depicted 
in Scheme 1. The polymerization was performed using the RAFT process [28,29] to ensure the 
preparation of well-defined copolymers allowing a straightforward interpretation of the sensing results. 
As a first step the polymerizable pyrene dye methacrylate monomer (PyMMA, 3) was synthesized by 
an esterification reaction of the hydroxyl group of pyrene-1-methanol (1) with methacryloyl  
chloride (2) [12]. In a further step, PyMMA (3) was statistically copolymerized with di(ethylene 
glycol) methylether methacrylate (DEGMA, 4) by RAFT polymerization. 2-Cyano-2-butyl 
dithiobenzoate (CBDB) was used as chain transfer agent and azoisobutyronitrile (AIBN) as radical 
initiator (Scheme 1). The synthesis was performed at 70 °C for 12 hours with toluene as solvent. The 
monomer to RAFT agent ratio was 100 using 5% of dye-functionalized monomer, aiming for a degree 
of polymerization of 100. 

Scheme 1. Schematic representation of the synthesis of the pyrene-functionalized 
monomer and the subsequent RAFT copolymerization with DEGMA. 
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The size exclusion chromatograms display a narrow molar mass distribution with low PDI values 
(PDI < 1.20). The chromatograms were recorded with both a RI (black line) and a UV detector (red 
line) revealing nearly the same distribution clearly demonstrating that the pyrene dye is incorporated in 
the copolymer since PDEGMA does not absorb at 290 nm (Figure 1).  

Figure 1. Size exclusion chromatograms of copolymer 5. 

 

The shift in the retention time between the RI and UV detector is due to the placement of the 
detectors in series, i.e., the eluent first passes the UV-detector and then the RI detector. The molar 
mass of copolymer 5 was determined to be 29,000 g/mol, with a polydispersity index of 1.20 
calculated for the RI-trace with poly(styrene) standards. A broader molar mass distribution is obtained 
with the UV detector, which is due to the different sensitivities of both detectors, i.e., higher sensitivity 
of the UV detector, especially in the oligomer region. In addition, the RI detector detects all repeat 
units while the UV detector only detects the incorporate pyrene molecules. As such, low molar mass 
oligomers will not be substantially detected by the RI detector, but when a few of these are dye-labeled 
they will appear in the UV-detector. 

The ratio between the DEGMA units and the pyrene side groups in the copolymer chain was 
determined to be 4.5 mol% using 1H-NMR spectroscopy based on the respective aromatic pyrene 
signals and the backbone or side-chain signals of the polymer. In addition, the pyrene content was 
found to be 5.0 mol% based on the UV-vis extinction coefficient of the copolymer. These two values 
are in good agreement and are within the experimental error of the two applied techniques. 

The temperature induced phase transition of the poly(DEGMA-stat-PyMMA) copolymer 5 was 
explored by turbidimetry. Figure 2 shows the change in turbidity (determined at 500 nm) of  
copolymer 5 in water at a concentration of 2.5 mg/mL. This concentration was chosen since at lower 
concentration the cloud point is more difficult to detect, because less polymer chains will aggregate 
during the phase transition at lower concentrations resulting in the formation of smaller precipitated 
particles that scatter less light. Figure 2 clearly demonstrates that at low temperatures the polymer 
solution has close to 100% transmittance indicative of a clear polymer solution. Upon increasing the 
temperature, the polymer chains precipitate resulting in the formation of large aggregates that scatter 
away the light as indicated by 0% transmittance. The difference in the turbidity curves during first and 
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second cooling are due to the influence of the history of the solid polymer particles that is still present 
in the first cooling run while this history is erased during complete dissolution in the first heating run. 
The temperature at 50% transmission represents the cloud point (CP) of the polymer solution, which is 
18.3 °C for both heating runs. During these heating runs, the solubility of the polymer at temperatures 
below the CP is based on the formation of a large number of hydrogen bonds between the repeating 
units of the polymer chain (ethylene glycol units) and water molecules that form a hydration shell. 
Upon increasing the temperature the hydrogen bonds are weakened and finally broken resulting in the 
loss of the hydration shell leaving the non-hydrated hydrophobic polymer chains behind. At the CP, 
the polymer chain collapses and the water is released into the bulk water. This polymer phase 
transition is driven by the increase of entropy of releasing the water molecules into the bulk water. 
Below the CP, the polymers are well solvated and, thus, are exposed to the polar aqueous environment 
while in the precipitated state above the CP the polymer globule is less polar. This polarity transition 
around the polymer chains is the basis for the sensing ability of the poly(DEGMA-stat-PyMMA) 
copolymer 5 that will be discussed in the following. 

Figure 2. Turbidity versus temperature plot for an aqueous solution of copolymer 5 (2.5 mg mL−1). 

 

The temperature sensing ability of the pyrene-labeled copolymer 5 in aqueous solution was 
investigated by temperature controlled fluorescence spectroscopy at a polymer concentration  
of 1 mg/mL. Figure 3a shows the resulting waterfall plot of the fluorescence spectra recorded in  
between 5 °C to 30 °C (λexc = 342 nm; one spectra per degree). Three characteristic pyrene emission 
bands are observed at 467 nm (broad), 377 nm and 395 nm, which are assigned to the excimer 
emission (IE > 450 nm) and the individual pyrene molecule emission (I1 at 377 nm and I5 at 395 nm) of 
the pyrene units in the copolymer. This 3D representation clearly demonstrates that the intensity of IE 
at 467 nm increases with decreasing temperature, along with a small red shift of the excimer emission 
from 462 to 471 nm (Figure 3b). 

The stronger excimer emission at lower temperatures can be related to the high polarity of the 
aqueous environment, which enhances the hydrophobic association of individual pyrene molecules. 
This association is further facilitated by the high mobility of the hydrated polymer chains in solution. 
At higher temperatures, in the precipitated state, the polarity around the pyrene molecules is lower 
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compared to the hydrated state lowering the formation of excimers. In addition, the increased 
microviscosity in the collapsed polymer globules might also hinder the excimer formation.  

The ratio of I5/I1 (I5 at 395 nm and I1 at 377 nm) is 1.07 at 5 °C, which is quite similar to the value 
in ethanol of 1.06 indicating that the pyrene molecules are not fully exposed to the solvent, i.e., they 
apparently form hydrophobic clusters as is also indicated by the excimer emission. This I5/I1 ratio is 
linearly decreasing during the polymer phase transition upon heating and finally reaches a value  
of 0.94 at 30 °C, which is similar to the value of acidic acid of 0.95 [36], surprisingly indicating a more 
polar environment in the precipitated state. This increased polarity is most likely due to breaking of the 
hydrophobic pyrene clusters and, therefore, the pyrene groups can interact (e.g., dipole-dipole) with 
the polar ethylene oxide side chains of the polymer chain. 

Figure 3. (a) Waterfall plot of the fluorescence spectra as a function of temperature 
(excitation wavelength 342 nm) and (b) normalized fluorescence intensity (377 nm) at 5 °C 
(red) and 30 °C (black) of a solution of pyrene-labeled copolymer 5 in water at 1.0 mg mL−1. 

     

To quantify the sensing ability of the pyrene-labeled copolymer 5, the normalized ratio of excimer 
emission to monomer emission intensities (IE/IM) versus temperature was investigated since this ratio 
is expected to be independent from fluctuations in polymer concentration making the read-out of the 
sensor more robust (Figure 4a). Three distinct regimes are present in IE/IM versus temperature plot. 
Below 10 °C when the polymer is fully soluble in aqueous solution, the IE/IM ratio is constant. A 
strong decrease in IE/IM is observed upon increasing the temperature from 11 °C and 21 °C, which can 
be regarded as the temperature sensing regime of copolymer 5. Finally, above 21 °C the IE/IM ratio 
only shows a minor decrease, which might be attributed to increased chain mobility within the 
precipitated polymer globules rather than a polymer phase transition. The close similarity of the IE/IM 
ratio and the turbidimetry results clearly demonstrates that indeed the polymer phase transition can be 
employed for the development of a fluorescent thermometer. 

The temperature induced phase transition of copolymer 5 was investigated in further detail by 
dynamic light scattering as a function of temperature (DLS; Figure 4). Representative size distributions 
of the polymer globules at temperatures below and above the phase transition are illustrated in Figure 4b 
(CONTIN analysis). Below the CP at 10 °C the polymer globule has a hydrodynamic radius of 7 nm 
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corresponding to individual hydrated polymer chains. Above the CP at 30 °C where polymer chains are 
precipitated, larger aggregates with a hydrodynamic radius of 183 nm are observed. Apparently, the 
polymer concentration is low enough to prevent further aggregation into micrometer sized particles. It 
is rather surprising that the precipitated polymer aggregates have a narrow size distribution with a 
PDIparticle value of 0.060 (obtained from the Cumulants analysis).  

The hydrodynamic radius of the polymer globules is plotted as a function of temperature in  
Figure 4a, revealing a very similar temperature transition as previously observed by turbidimetry 
investigations as well as the IE/IM ratio. From 10 to 14 °C the particle size is constant around 7 nm, 
indicating the presence of individual hydrated polymer chains in solution. A further increase in 
temperature results in a strong increase in the diameter of the polymer globules indicative of a 
temperature induced aggregation. The demixing point of the polymer solution might be regarded to  
be 15 °C where the Z average diameter of the aggregates is already 78 nm with a PDIparticle of 0.222 
(Cumulant analysis). In between 16 and 20 °C the polymer chains are further dehydrated making them 
more hydrophobic resulting in further aggregation of the initial aggregates as evidenced by the 
increase of the hydrodynamic radius. Heating beyond the polymer phase transition, i.e., above 21 °C, 
does not further affect the size of the aggregates. These DLS results are in very good agreement with 
the sensing behavior of the copolymer confirming that the change in pyrene emission is based on the 
temperature induced polymer phase transition. 

Figure 4. (a) The ratio of excimer (467 nm) to monomer (395 nm) emission intensities 
(IE/IM, black squares) and the hydrodynamic radius of the polymer globules (DLS, open 
circles) of copolymer 5 at 1.0 mg mL−1 as function of temperature. (b) The hydrodynamic 
radius of the polymer globules at 5 °C (black) and 30 °C (red) as determined by DLS  
at 1.0 mg mL−1 (CONTIN routine). 

  
3. Experimental Section 

3.1. Materials 

Di(ethylene glycol) methylether methacrylate (DEGMA) was purchased from Sigma-Aldrich and 
was purified with an inhibitor-remover before use. Pyrene-1-methanol was purchased from  
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Sigma-Aldrich and was used without purification. Azobis(isobutyronitrile) (AIBN, Aldrich) was 
recrystallized from methanol prior to use. 2-Cyano-2-butyl dithiobenzoate (CBDB) [38] was prepared 
according to a literature procedure for a related compound. All analytical grade solvents were 
purchased from Biosolve Ltd. or Fluka. The deuterated solvents (CDCl3 or CD2Cl2) for NMR 
spectroscopy were obtained from Cambridge Isotope Laboratories. 

3.2. Instrumentation 

Size-exclusion chromatography (SEC) was performed on a Shimadzu system equipped with a  
SCL-10A system controller, a LC-10AD pump, a RID-10A refractive index detector, a SPD-10A UV 
detector at 290 nm and a PSS SDV column with chloroform-triethylamine-2-propanol (94:4:2) as 
eluent and the column oven was set to 50 °C (polystyrene calibration). Poly(styrene) (PS) samples 
were used as calibration standards.  

Nuclear magnetic resonance spectra were recorded on a Varian Mercury 400 MHz spectrometer  
at 298 K. Chemical shifts are reported in parts per million (ppm) calibrated to an internal standard, 
tetramethylsilane (TMS) in deuterated solvents (CDCl3 or CD2Cl2).  

UV/vis spectra were recorded on a Perkin-Elmer Lamda-45 UV/vis spectrophotometer. For 
fluorescence measurements a Perkin-Elmer Luminescence Spectrometer LS 50B with a PTP-1 Peltier 
Temperature Programmer were used. For the temperature measurements on these spectrophotometers a 
temperature profile with a temperature rate of 0.5 °C/min was used.  

Elemental analyses were carried out on a EuroVector EuroEA300 elemental analyzer for CHNSO. 
The cloud point measurements for the identification of the LCST behavior were performed by heating 
the polymer (2.5 mg/mL) in water from 0 to 105 °C with a heating rate of 1.0 °C per minute followed 
by cooling to 0 °C at a cooling rate of 1.0 °C per minute after keeping it 10 minutes at 105 °C. This 
cycle was repeated two times. During these controlled cycles the transmission through the solutions 
was monitored in a Crystal16™ from Avantium Technologies. The cloud points are reported as  
the 50% transmittance temperature in the second heating run. 

Dynamic light scattering (DLS) measurements were carried out on a Zetasizer Nano ZS (Malvern 
Instruments, Malvern, U.K.) operating with a laser beam at 633 nm and a scattering angle of 173°. The 
polymer was dissolved in water (1.0 mg/mL) and transferred into a quartz cuvette. The DLS 
measurements were performed between 10 and 30 °C using steps of 1 °C and an equilibrium time  
of 120 seconds. The solution was measured three times for 60 seconds at every temperature. The mean 
particle size was approximated as the effective (Z average) diameter and the width of the distribution 
as the polydispersity index (PDIparticle) that was obtained by the Cumulants method assuming a 
spherical shape. Furthermore, the particle size distribution was calculated applying the NNLS mode 
(CONTIN routine). 

3.3. Synthesis of pyrene-1-ylmethyl-methacrylate (PyMMA) monomer (3) 

To a solution of triethylamine (1.80 mL, 12.8 mmol) in anhydrous THF (50 mL),  
pyrene-1-ylmethanol (1.0 g, 4.3 mmol) was added. Methacryloyl chloride (1.24 mL, 12.8 mmol) was 
added dropwise to this clear solution at 0 °C. The reaction was then stirred at room temperature 
overnight (24 hours total reaction time). Subsequently, the reaction medium was filtered and the 
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solvent was evaporated under reduced pressure. Afterwards the solid residue was dissolved in diethyl 
ether and washed with water. After evaporation of the diethyl ether, the crude monomer was purified 
by recrystallization from ethanol at 40 °C. Yield: 40%. GC-MS: m/z (%) = 300 (38) [M+], 215 (100) 
[M+ –C4H5O2], 203 (9) [C6H10+ H+], 189 (8), 107 (5), 94 (9), 41 (10) [all aromatic fragmentation].  
1H-NMR (400 MHz, CDCl3): � = 8.32–8.00 (m, 9H, aromatic H2–10), 6.16 (s, 1H, H12), 5.91 (s, 2H, 
H11), 5.57 (s, 1H, H12), 1.98 (s, 3H, H13) ppm. 13C-NMR (100 MHz, CDCl3): � = 167.4 (C=O), 136.2, 
131.7, 131.2, 130.7, 129.5, 129.0, 128.1, 127.8, 127.6, 127.3, 126.1, 126.0, 125.5, 125.4, 124.9, 124.6, 
124.5, 122.9 (16 aromatic C and –C=CH2), 65.0 (–CH2-O), 18.4 (–CH3) ppm. Elemental analysis: 
C21H16O2 (300.35): cal.: C 83.98% H 5.37%; found: C 84.08% H 5.64%. UV/vis (n-heptane): �max/nm 
(�/(M−1·cm−1): 201 (16,120), 233 (26,060), 242 (46,680), 265 (16,350), 276 (31,270), 312 (7,760),  
326 (20,210), 342 (32,520). Fluorescence (THF): �max/nm: 377, 394, 416 (shoulder), 435 (shoulder). 

3.4. Synthesis of poly(DEGMA-stat-PyMMA) copolymer 5 

Poly(MMA-stat-PyMMA) was prepared in a closed reaction vessel with a [DEGMA]:[PyMMA]: 
[CBDB]:[AIBN] ratio of 95:5:1:0.25. AIBN (1.64 mg, 0.01 mmol), PyMMA (60.1 mg, 0.2 mmol) and 
CBDB (9.41 mg, 0.04 mmol) were dissolved in a solution of DEGMA (0.70 mL, 3.8 mmol)  
and toluene (1.30 mL). Before the polymerization, the solution was degassed with argon for 30 min. 
The reaction mixture was heated to 70 °C for 12 hours. Afterwards the polymer mixture was diluted 
with dichloromethane and precipitated twice in n-hexane resulting in a pink viscous oil. 1H-NMR 
(400 MHz, CD2Cl2): � = 8.51–8.02 (m, 46H, H pyrene), 7.89 (m, 1H, H RAFT-agent), 7.56 (m, 1H, H 
RAFT-agent), 7.39 (m, 2H, H RAFT-agent), 5.76 (s, 8H, –CH2-O–), 4.10 (s, 175H, –CH2-O–), 3.67, 
3.61 and 3.53 (s, 568H, –CH2-CH2–), 3.36 (s, 297H, –O-CH3), 1.98–0.88 (m, 500H, -CH2– and -CH3) 
ppm. UV/vis (1,4-dioxane): �max/nm [�/(M-1·cm−1)]: 244 (369,580), 266 (183,240), 277 (337,030), 314 
(90,630), 328 (214,340), 342 (316,000). Fluorescence (H2O): �max/nm: 377, 395, 467. Select 
characterization and composition data are given in Tables 1 and 2. 

Table 1. Selected characterization data of the precipitated poly(DEGMA-stat-PyMMA). 

Sample Ratio n/m Yield [mg] Mn [g/mol]a  PDIa

5 95/5 551 29,000 1.20 
a Obtained from SEC (RI) using CHCl3 eluent and PS standards. 

Table 2. Composition of poly(DEGMA-stat-PyMMA). 

Sample
Theo. ratio 
DEGMA/PyMMA
n/m

Compositiona

1H-NMR
signal [%] 

Compositionb

UV/vis
pyrene [%] 

5 95/5 4.5 5.0 
a Obtained from the proton integrals of the pyrene and backbone using 1H-NMR spectroscopy;  
b Obtained from the � of the UV/vis spectrum using the Lambert-Beer-Law and Mn of SEC. 
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4. Conclusions 

A well-defined fluorescent thermoresponsive copolymer based on poly(DEGMA) side-chain 
functionalized with pyrene has been synthesized by RAFT polymerization. It could demonstrated by 
temperature controlled fluorescence investigations that this polymer acts as a soluble fluorescent 
temperature sensor in water. At temperatures below the polymer phase transition, the polymer chains 
are hydrated as demonstrated by DLS and, thus, the pyrene molecules are exposed to the polar aqueous 
environment driving excimer formation. Above the LCST phase transition of the polymer, the polymer 
chains are dehydrated and demix from the aqueous solution providing a less polar environment for the 
pyrene inside the polymer aggregates. During the phase transition, a gradual decrease in IE/IM ratio is 
observed, which can be used to detect the temperature of the solution in between 11 °C and 21 °C, i.e., 
the temperature sensing regime. Interpretation of the IE/IM ratio as sensing signal is believed to make 
the sensor more robust compared to looking at individual emission intensities since it will be less 
dependent on polymer concentration. Turbidimetry and DLS demonstrated that the polymer phase 
transition also occurred in the observed temperature sensing regime confirming that indeed the 
polymer phase transition induces the change in IE/IM ratio of the attached pyrene molecules.  
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ABSTRACT: Within this study, we report on the first controlled

radical polymerization of styrene-based models of the active

site of the [FeFe]-hydrogenase. Three different model com-

plexes based on styrene were prepared including pro-

panedithiolato-bridged, 2-azapropanedithiolato-bridged, and

bifunctional styrene iron complex. These model complexes

were copolymerized with styrene using free radical and the re-

versible addition-fragmentation chain transfer polymerization

method. The polymerization behavior of the hydrogenase

models is discussed and analyzed in detail. It could be shown

that the model complex can be incorporated into copolymers.

The obtained copolymers exhibit narrow molar mass distribu-

tions. The presence of the [FeFe]-hydrogenase models were

proven by atomic absorption spectrometry, NMR and IR spec-

troscopy as well as cyclovoltammetric measurements. It could

be shown that the [FeFe]-hydrogenase mimic copolymers, as

well as the monomeric originating complexes exhibit electro-

catalytic proton reduction at a low potential of –2.2 V. VC 2013

Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.

2013, 51, 2171–2180

KEYWORDS: biomimetic; electrochemistry; hydrogenase models;

metal-polymer complexes; organometallic catalysts; reversible

addition fragmentation chain transfer

INTRODUCTION Hydrogen plays a crucial role in metabolism
as well as in the energy balance of different microorganisms,
like bacteria or algae. Nature provides a highly efficient tool
for hydrogen evolution and uptake, the enzyme hydrogen-
ase.1,2 Hydrogenases—proteins that are able to convert pro-
tons catalytically into hydrogen in a reversible two electron
redox process—are key elements of this hydrogen-based me-
tabolism.3 Thereby the [FeFe]-hydrogenases are seen as the
main enzymes for proton reduction. As the structural discov-
ery of the active center,4,5 numerous attempts have been
commenced to synthesize biomimetic models of this so-
called ‘‘H-Cluster’’, showing comparable catalytic efficiency to
the enzyme6–10 (Fig. 1). However, it is obvious, that the effi-
cient performance of the natural enzyme is based on the
supporting effect of the surrounding protein environment.

The embedding of active ‘‘core structures’’ into an appropri-
ate polymer might be a suitable substitution of these protein
environments. An artificial polymeric structure could provide
some of the cavities and proton access channels that are

highly important for the stability and efficiency of the
enzyme, like it is in its native environments.11 For this pur-
pose, block copolymers with defined superstructures could
be the ultimate goal. Preferable tools for this synthetic chal-
lenge are controlled radical polymerization techniques. Up to
now, only few attempts were established to incorporate the
subsite of the so-called ‘‘H-Cluster’’ into oligomeric or poly-
meric materials. It has been reported that models of the
active site of the [FeFe]-hydrogenase could successfully be
incorporated into electropolymer films12,13 and tentagel
resin beads.11 Direct polymerization of an alkynyl containing
[FeFe]-hydrogenase model could be achieved using Rh, WCl6,
and SnPh4 as catalysts.14,15 Another strategy uses ‘‘click’’
chemistry namely aromatic diazides to incorporate the model
complexes in polymers.16,17 In contrast to these approaches
the radical polymerization method is without question one
of the most common techniques for the preparation of poly-
mers. However, no radical polymerization of a model com-
plex of the active site of the [FeFe]-hydrogenase has been
reported previously. In this contribution, we describe the
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syntheses of styrene based hydrogenase models and their
incorporation into different copolymers by controlled living
radical polymerization techniques. The advantage of con-
trolled radical polymerization methods is the simple control
over the molar mass, the molar mass distribution, the ratio
between the monomers and the possibility to synthesize
block copolymers with different functionality. A series of
poly(styrene)-based copolymers containing a [FeFe] cluster
were synthesized by reversible addition-fragmentation chain
transfer (RAFT) polymerization.18,19 The focus of this contri-
bution is the development and polymerization of [FeFe]-
hydrogenase models, its characterization and the proof of
incorporation of the clusters into the copolymers.

EXPERIMENTAL

Materials
Styrene (St) was purchased from Sigma-Aldrich and purified
by stirring in the presence of inhibitor-remover for hydroqui-
none or hydroquinone monomethyl ether (Aldrich) for 30
min prior to use. 2,20-Azobis(iso-butyronitrile) (AIBN) was
recrystallized from methanol prior to use. 2-Cyano-2-propyl
dithiobenzoate (CPDB) was purchased from Sigma-Aldrich
and 2-(butylthiocarbonothioylthio)propanoic acid (CTA2)
was a kind gift from BASF SE and used as received. All other
solvents and reagents were purchased from commercial
sources. Chemical syntheses were performed under argon
atmosphere, using general schlenk techniques.

Instrumentation
Mass spectra were recorded on a MAT SSQ 710 (Finnigan)
and a MAT 95 XL (Finnigan), NMR spectra were recorded on
Avance 200, AC 300, Avance 400, and Avance 600 NMR spec-
trometers (Bruker). Elemental analysis were performed on a
Vario EL III CHNS (Elementar Analysensysteme) and IR Spec-
tra on a 2000 FT-IR spectrometer (Perkin-Elmer). Size-exclu-
sion chromatography (SEC) was performed on a Shimadzu
system equipped with a SCL-10A system controller, a LC-
10AD pump, a RID-10A refractive index detector, a SPD-
10AD VP UV/VIS detector and a PSS SDV linear S, 5-lm col-
umn (8 � 300 mm2) with chloroform:triethylamine:2-propa-
nol (94:4:2) as eluent and the column oven was set to 40 �C.
A calibration with low polydispersity polystyrene (Mn from
376 to 128,000 g mol�1) standards was used. In addition,

further SEC experiments were carried out using an Agi-
lent1200 series system, a G1310A pump, a G1362A refrac-
tive index detector and both a PSS Gram30 and a PSS
Gram1000 column in series, whereby N,N-dimethylacetamide
with 5 mmol lithium chloride was used as an eluent at
1 mL min�1 flow rate and the column oven was set to
40 �C. The system was calibrated with polystyrene (Mn from
374 to 1,040,000 g mol�1) standards. A triple detection
including viscosity, light scattering and RI measurements
were performed on a Shimadzu SEC system, equipped with a
system controller SCL-10A, a LC-10AD pump, a RID-10A re-
fractive index detector, a UV/VIS detector SPD-10A, a PSS
ETA-2010 differential viscometer, a PSS SLD 7000 (BIC)
MALS detector (at k ¼ 635 nm), a degasser DGU-14A and a
CTO-10A column oven and two PSS SDV linear M columns
utilizing THF as eluent with a flow rate of 1 mL min�1. A
universal calibration with low polydispersity polystyrene (Mn

from 374 to 1,040,000 g mol�1) standards was used.

Measurements of cyclic voltammograms were accomplished
using a PGSTAT 30 (Metrohm) and a 663 VA STAND (Met-
rohm) with a glassy carbon working electrode, a Ag/Agþ ref-
erence electrode and a platinum counter electrode.
[nBu4N][PF6] was used as supporting electrolyte. All solu-
tions were purged with nitrogen for 10 min prior to use.
Potentials are given against Fc/Fcþ. Differential scanning cal-
orimetry (DSC) was performed on a Netzsch DSC 204 F1
Phoenix under nitrogen atmosphere with a heating rate of
10 K min�1 from –20 to 180 �C. A nova400 (Analytik Jena,
Germany) flame atomic absorption spectrometer equipped
with an iron hollow cathode lamp (operating at 248.3 nm,
Analytik Jena, Germany) was used for the analyses of the
amount of iron. The instrumental parameters were adjusted
according the manufacturer‘s recommendation. Fe was deter-
mined in aqueous medium between 0.1 and 2.0 mg L�1. The
complexes and polymers were decomposited to release iron
with conc. nitric acid and hydrogen peroxide at 180 �C and
10 bar for 15 min.

Monomer Synthesis
Diethyl 2-(4-vinylbenzyl) Malonate 2
To a solution of diethyl malonate (9 mL, 59.4 mmol) in dry
THF (50 mL) sodium hydride (60% in mineral oil, 2.38 g,
59.4 mmol) was slowly added. The reaction mixture was
treated with a solution of 4-vinylbenzyl chloride 1 (9.05 g,
59.4 mmol) in dry THF (10 mL) and stirred at room temper-
ature for 17 h. The slightly yellow solution was concentrated
under reduced pressure and water (15 mL) was added. The
mixture was extracted with dichloromethane (3 � 15 mL)
and the combined organic layers were dried (Na2SO4) and
concentrated in vacuo. The crude product was purified by
column chromatography (gradient elution n-hexane—
dichloromethane) over silica gel to give 9.64 g of compound
2 as a colorless, viscous oil. Yield: 91% (based on recovered
starting material). Bp 48 �C (7.6 10�1 mbar).

1H NMR (200 MHz; CDCl3, d, ppm): 7.21 [m, 4H]; 6.64 [dd,
1H; Jtrans ¼ 17.6; Jcis ¼ 10.9 Hz]; 5.67 [d, 1H, Jtrans ¼ 17.6
Hz]; 5.17 [d, 1H, Jcis ¼ 10.9 Hz]; 4.13 [q, 4H, J ¼ 7.1 Hz];

FIGURE 1 Schematic representation of the active site of [FeFe]-

hydrogenase, the H-Cluster.
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3.61 [t, 1H, J ¼ 7.8 Hz]; 3.17 [d, 2H; J ¼ 7.8 Hz]; 1.18 [t,
6H), J ¼ 7.1 HZ]. 13C NMR (50 MHz; CDCl3, d, ppm): 168.6
(C¼¼O); 137.4 (ArC); 136.3 (CH¼¼CH2); 136.0 (ArC); 128.9 (2
ArC); 126.2 (2 ArC); 113.3 (CH¼¼CH2); 61.3 (CH2CH3); 53.6
(CH2CH(CO)2); 34.2 (CH2CH(CO)2); 13.8 (CH2CH3). IR: m ¼
1750 (C¼¼O); 1629 (C¼¼C) cm�1. EIMS [m/z (%)]: 276
([M]þ); 202 ([M�74]þ). Anal. calcd for C16H20O4: C 69.54, H
7.30; found: C 70.82, H 7.89.

2-(4-Vinylbenzyl)propane-1,3-diol 3
Lithium aluminum hydride (3.26 g, 85.8 mmol) was dis-
solved in dry diethyl ether (20 mL). To the stirred suspen-
sion was slowly added diethyl 2-(4-vinylbenzyl) malonate 2
(4.23 g, 15.3 mmol) in dry diethyl ether and the reaction
mixture was stirred at room temperature for 40 h. After-
wards the reaction was quenched by addition of ice. Hydro-
chloric acid (2 M) was added until the precipitation disap-
peared. The layers were separated and the aqueous layer
was extracted with diethyl ether (2 � 20 mL). Purification
by column chromatography (n-hexane/ethyl acetate ¼ 1/3)
gave product 3 (1.05 g) as white solid. Yield: 36%. mp
39.4 �C.
1H NMR (400 MHz; CDCl3, d, ppm): 7.20 [m, 4H,]; 6.67 [dd,
1H, Jtrans ¼ 17.8 Hz, Jcis ¼ 10.9 Hz]; 5.70 [d, 1H, Jtrans ¼
17.8]; 5.20 [d, 1H, Jcis ¼ 10.9]; 3.72 [s, 2H]; 3.62 [m, 4H];
2.55 [d, 2H, J ¼ 7.4 Hz]; 1.96 [m, 1H]. 13C NMR (100 MHz;
CDCl3, d, ppm): 139.5 (ArC); 136.4 (CH¼¼CH2); 135.3 (ArC);
129.0 (2 ArC); 126.1 (2 ArC); 113.0 (CH¼¼CH2); 64.1
(CH2OH); 43.8 (CH(CH2OH)2); 33.8 (CH2CH(CH)2). IR m ¼
3307 (OH); 1629 (C¼¼C) cm�1. EIMS [m/z (%)]: 192 ([M]þ);
174 ([M�18]þ); 156 ([M-36]þ), 143 ([M�18�31]þ). Anal.
calcd for C12H16O2: C 74.97, H 8.39; found: C 74.31, H 8.42.

2-(4-Vinylbenzyl)propane-1,3-diyl bis(4-methylbenzenesul-
fonate) 3a
To a cooled solution (0 �C) of 2-(4-vinylbenzyl)propane-1,3-
diol 3 (130 mg, 0.68 mmol) in pyridine (2 mL) was added
4-toluene-sulfonyl chloride (260 mg, 1.36 mmol) and the
suspension was stirred at room temperature for 18 h. After-
wards the mixture was given into ice water and the aqueous
solution was extracted with dichloromethane (3 � 5 mL).
The combined organic layers were washed with water, dried
(Na2SO4) and concentrated in vacuo. Purification by column
chromatography over silica gel (dichloromethane) gave 222
mg of a white solid. Yield: 66%. Mp 119.5 �C.
1H NMR (400 MHz; CDCl3, d, ppm): 7.51 [m, 8H,]; 7.05 [m,
4H]; 6.64 [dd, 1H, Jtrans ¼ 17.6 Hz, Jcis ¼ 10.9 Hz]; 5.68 [d,
1H, Jtrans ¼ 17.6]; 5.21 [d, 1H, Jcis ¼ 10.9]; 3.91 [m, 4H]; 2.55
[d, 2H, J ¼ 7.5 Hz]; 2.44 [s, 6H]; 2.22 [m, 1H]. 13C NMR (100
MHz; CDCl3 d, ppm): 145.1 (2 ArC); 136.9 (ArC); 136.3
(CH¼¼CH2); 136.1 (ArC); 132.4 (2 ArC); 129.9 (4 ArC); 129.0
(2 ArC); 127.9 (4 ArC); 126.4 (2 ArC); 113.7 (CH¼¼CH2);
68.2 (CH2O); 40.0 (CH(CH2O)2); 32.9 (CH2CH(CH2)2); 21.6 (2
CH3). IR: m ¼ 1665 (C¼¼C); 1178 (S¼¼O) cm�1. FAB-MS [m/z
(nba)]: 501 ([MþH]þ). EIMS [m/z (%)]: 328 ([M�172]þ);
156 ([M�2 � 172]þ). Anal. calcd for C26H28O6S2: C 62.38, H
5.64, S 12.81; found: C 62.27, H 5.36, S 12.57.

[Fe2((SCH2)2CH(CH2C6H4CHCH2))(CO)6)] 4
To a cooled solution (–78 �C) of [Fe2S2(CO)6] (57 mg,
0.17 mmol) in dry THF (3 mL) a 1 M solution of LiEt3BH
(0.34 mL, 34 mmol) was added. After stirring for 15 min 3a
(70 mg, 0.14 mmol) in dry THF was added and the solution
was allowed to warm to room temperature. After 16 h stir-
ring the mixture was concentrated under reduced pressure
and the crude product was purified by column chromatogra-
phy (n-hexane) over silica gel to give 29.5 mg of a red solid.
Yield: 40%.

1H NMR (200 MHz; CDCl3, d, ppm): 7.14 [m, 4H]; 6.67 [dd,
1H, Jtrans ¼ 17.6 Hz, Jcis ¼ 10.7 Hz]; 5.70 [d, 1H, Jtrans ¼ 17.6
Hz]; 5.21 [d, 1H, Jcis ¼ 10.7 Hz]; 2.55 [d, 2H, J ¼ 11.4 Hz];
2.43 [d, 2H, J ¼ 5.4 Hz]; 1.53 [m, 1H]; 1.37 [m, 2H]. 13C
NMR (100 MHz; CDCl3, d, ppm): 207.5 (CO); 207.1 (CO);
136.6 (ArC); 135.9 (CH¼¼CH2); 135.8 (ArC); 128.5 (2 ArC);
126.2 (2 ArC); 113.4 (CH¼¼CH2); 45.0 (CH(CH2S)2); 42.5
(CH2CH(CH2)2); 28.4 (CH2S). IR: m ¼ 2073, 2033, 2003 and
1989 (CO) cm�1. EIMS [m/z (%)]: 502 ([M]þ); 334 ([M�6 �
28]þ). Anal. calcd for C18H14Fe2O6S2 � 0.3 C6H14: C 45.04, H
3.47, S 12.15; found: C 45.69, H 3.42, S 12.71.

2-(4-Vinylbenzyl)isoindoline-1,3-dione 5
The compound was prepared according to a literature proce-
dure,20 using 5 g (32.8 mmol) of 4-vinylbenzyl chloride 1. In
total 8.49 g (32 mmol) of 2-(4-vinylbenzyl)isoindoline-1,3-
dione 5 was obtained. Yield: 98% mp 119.5 �C.
1H NMR (200 MHz, CDCl3, d, ppm): 7.76 [m, 4H]; 7.35 [m,
4H]; 6.65 [dd, 1H; Jtrans ¼ 17.6 Hz, Jcis ¼ 10.9 Hz]; 5.69 [d,
1H, Jtrans ¼ 17.6 Hz]; 5.2 [d, 1H, Jcis ¼ 10.9 Hz]; 4.81 [s, 2H].

4-(Methylamino) Styrene 6
The synthesis of 6 was performed via hydrazinolysis of 5.20

By using 2 g (7.6 mmol) of 5, 0.98 g (7.4 mmol) of 6 could
be obtained. Yield: 97%.

1H NMR (200 MHz; CDCl3, d, ppm): 7.30 [m, 4H]; 6.69 [dd,
1H; Jtrans ¼ 17.6 Hz, Jcis ¼ 10.9 Hz]; 5.71 [d, 1H, Jtrans ¼ 17.6
Hz]; 5.20 [d, 1H, Jcis ¼ 10.9 Hz]; 3.83 [s, 2H]; 1.58 [s, 2H].

[Fe2((SCH2)2N(CH2C6H4CHCH2))(CO)6) 7
4-Methylamino styrene (280 mg, 2.1 mmol) was added to
paraformaldehyde (130 mg, 4.3 mmol) in dry THF and
stirred at room temperature for 5 h to give the aminomethy-
lation mixture. To a cooled solution (�78 �C) of [Fe2S2(CO)6]
(72 mg, 0.21 mmol) in dry THF (5 mL) was slowly given a
1 M solution of LiEt3BH (0.42 mL, 42 mmol). After stirring
for 15 min trifluoroacetic acid was added (50 lL) and after
another 15 min the deep red solution was given to the pre-
cooled (–78 �C) aminomethylation mixture. The solution was
slowly allowed to warm to room temperature followed stir-
ring for additional 17 h. The solvent was removed at
reduced pressure and the crude product was isolated by col-
umn chromatography (n-hexane/dichloromethane ¼ 10:1),
resulting in 49 mg of a red solid. Yield: 46%.

1H NMR (200 MHz; CDCl3, d, ppm): 7.20 [m, 4H]; 6.67 [m,
1H]; 5.71 [d, 1H, Jtrans ¼ 17.8 Hz]; 5.23 [d, 1H, Jcis ¼ 11.1
Hz]; 3.64 [s, 2H]; 3.28 [s, 4H]. 13C NMR (100 MHz; CDCl3, d,
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ppm): 207.8 (CO); 137.3 (ArC); 136.3 (CH¼¼CH2); 135.4
(ArC); 128.9 (2 ArC); 126.5 (2 ArC); 114.2 (CH¼¼CH2); 61.7
(CH2N(CH2)2); 52.4 (CH2S). IR: v ¼ 2073, 2032, and 1994
(CO) cm�1. EIMS [m/z (%)]: 503 ([M]þ); 335 ([M�6 �
28]þ). Anal. calcd for C17H13Fe2NO6S2 � 0.3 C6H14: C 42.70,
H 3.28, N 2.65, S 12.10; found: C 41.14, H 3.32, N 2.24,
S 12.43.

[Fe2(l-SCH2)2(C6H4CHCH2)2(CO)6] 8
To a cooled solution (–78 �C) of Fe2S2(CO)6 (100 mg; 0.29
mmol) in dry THF (5 mL) was slowly given 1 M LiEt3BH
(0.6 mL; 0.6 mmol). After 15 minutes 1 (150 mg; 1
mmol) was added. The solution was slowly allowed to
warm to temperature, resulting in a red colored solution.
Afterwards, the solvent was removed under reduced
pressure and the crude product was purified by column
chromatography (n-hexane) to give 69 mg of a red solid.
Yield: 41%.

1H NMR (200 MHz; CDCl3, d, ppm): 7.22 [m, 8H]; 6.69 [m,
2H]; 5.74 [m, 2H]; 5.25 [m, 2H]; 3.60 [s, 2H]; 3.19 [s, 2H].
13C NMR (100 MHz; CDCl3, d, ppm): 208.5 (CO); 138.4,
138.0, 137.2, 136.9 (4 ArC); 136.3 (2 CH¼¼CH2); 129.5,
128.7, 126.7, 126.5 (8 ArCH), 114.3 (CH¼¼C1H2), 114.1
(CH¼¼C2H2), 42.8 (C1H2) 28.4 (C2H2). IR: v ¼ 2070; 2034 and
1989 (CO) cm�1. EIMS [m/z (%)]: 578 ([M]þ); 410 ([M�6 �
28]þ). Anal. calcd for C24H18O6Fe2S2�0,5C6H14: C 52.19, H
4.06, S 10.32; found: C 52.20; H 3.73, S 10.06.

Benzyl (diethoxyphosphoryl)dithioformate (CTA1)
The compound was prepared according to a literature proce-
dure.21 Yield: 72%.
1H NMR (300 MHz, CDCl3, d, ppm): 7.36 [s, 5H]; 4.42 [s, 2H,
SCH2Ph]; 4.25 [m, 4H, POCH2]; 1.36 [d, 6H, J ¼ 7.1 Hz]. 13C
NMR (75.5 MHz; CDCl3, d, ppm): 228.2 (PCSS); 133.9, 129.3,
128.8, 127.9 (4 ArC); 64.7 (d, JCP ¼ 6.9 Hz, POCH2); 40.6 (d,
JCP ¼ 2.7 Hz, SCH2Ph); 16.2 (d, JCP ¼ 6.2 Hz, CH3).

General Procedure for RAFT Copolymerization
In a typical RAFT copolymerization experiment, 1.24 g of sty-
rene (11.9 mmol), 55.5 mg of 8 (0.096 mmol), 1.97 mg of
AIBN initiator (0.012 mmol), 11.44 mg of 2-(butylthio-car-
bonothioylthio)propanoic acid (CTA2) RAFT agent (0.048
mmol) and toluene (1.34 mL) were mixed together in a reac-
tion vial as follows. Both styrene and 8, toluene as solvent,
anisole (0.3 mL) as internal standard and individual stock
solutions of AIBN (initiator) and CTA2 dissolved in toluene
were added. The monomer concentration was kept at
4.0 mol L�1 for the polymerization experiment. The vials
were closed and degassed by sparging argon for at least
30 min prior to use. Subsequently, the reaction solution was
placed in a preheated oil bath at 80 �C for 12 h. The copoly-
mers were purified by precipitation into a large volume of
cold methanol and dried under reduced pressure. Conversion
was measured by 1H NMR spectroscopy using anisole as in-
ternal standard. For more experimental details see Table 1.

Free Radical Polymerization
The same protocol as for the RAFT polymerization, with the
exception of the addition of the CTA agent, was used. For
more experimental details see Table 1.

RESULTS AND DISCUSSION

Syntheses of [FeFe]-Hydrogenase Monomers
The first objective of our work was to synthesize polymeriz-
able [FeFe]-hydrogenase models. For this purpose, we choose
styrene based models due to the synthesis access and the
high monomer stability against hydrolysis. The [FeFe] cluster
is connected to the styrene unit via a bridged configuration.
Because of the uncertainty of the bridgehead atom, which is
represented in nature by nitrogen or carbon atoms, synthetic
models of the [FeFe]-hydrogenase mostly include either a
propanedithiolato or an 2-aza-1,3-propanedithiolato subunit.
This led us to the intention to design polymerizable systems

TABLE 1 Overview of Reaction Conditions and Characterization Data of the Obtained Copolymers Via RAFT

Copolymerization

Sample

[M]/[FeFe]/

CTAa Initiator

[M]/[FeFe]:

[CTA]:[Initiator]a T (�C)
Cmonomer

(mol L�1) T (h)

Mn

[g mol�1]b PDIb Conv.

09 St/8/– AIBN 245/5:–:1 70 2.0 13 28,400c 5.4c n/a

10 St/4/CTA1 AIBN 199/1:1:0.25 70 4.0 18 7,400 1.23 n/a

11 St/8/CTA2 AIBN 248/2:1:0.25 80 4.0 14 9,700 1.24 32

12 St/7/CTA2 AIBN 95/5: 1:0.25 80 2.0 10 –d –d 0

13 St/–/CTA2 VAZO88 100/0: :0.25 80 4.37 15 5,000 1.08 33

14 St/8/CTA2 VAZO88 96/4:1:0.25 80 4.37 28 3,100 1.31 n/a

15 AA/8/CTA2 AIBN 98/2:1:0.25 70 2.0 6 (7; 6) –d –d 0

16 St/–/CPDB AIBN 100/0: :0.25 70 2.0 16 4,500 1.11 35

17 St/8/CPDB AIBN 98/2:1:0.25 70 2.0 24 2,800 1.18 n/a

17re St/8/CPDB AIBN 98/2:1:0.25 70 2.0 26 6,000 1.6 n/a

a M ¼ monomer, [FeFe] ¼ [FeFe]-hydrogenase mimic, CTA ¼ chain transfer agent; molar feed ratios.
b Calculated from SEC (CHCl3) using PS calibration.
c Calculated from SEC (DMAc) using PS calibration.
d No polymer obtained.
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related to the active site of the [FeFe]-hydrogenase, that
matches both prospects, namely an N or a C bridgehead
atom (7 vs. 4).

The synthesis of the propanedithiolato-bridged model 4 was
established by reacting 4-vinylbenzyl chloride 1 with diethyl
malonate under the presence of sodium hydride (Fig. 2).

The resulting diethyl 2-(4-vinylbenzyl) malonate 2 was
reduced with lithium aluminum hydride to diol 3. The intro-
duction of a tosylate as leaving group was accomplished by
the reaction with 4-toluenesulfonyl chloride. Reaction with
the reduced cluster Fe2S2(CO)2�6 at –78 �C resulted in the
formation of the styrene-based [FeFe]-hydrogenase model 4.
Contrary, the synthesis of the 2-aza-1,3-propanedithiolato-
bridged model 7 was established by condensation reaction
of 4-methylamino styrene 6 with 2 equivalents of formalde-
hyde and diiron carbonyl sulfide. Amine 6 was synthesized,
following a literature procedure reported by Bertini.20 Beside
both the bridged model complexes 4 and 7 we also focused
on a monomer that has an easier synthesis access (1 step
procedure, Fig. 2). For this purpose we synthesized complex
8 from the reaction of 4-vinylbenzylchloride and the Fe2S2
(CO)2�6 cluster after reduction with LiEt3BH. In addition com-
plex 8 is able to form cross-linked copolymer systems.

Polymerization of Styrene [FeFe]-Hydrogenase Models
Literature reports based on polymerization of metal contain-
ing monomers indicate a considerable difference concerning
certain polymerization parameters. The behavior of metallo-
cence derivatives in radical polymerizations were extensively
studied, in particular in the case of vinyl ferrocene.22–27 On
the one hand iron containing monomers like vinyl ferrocene
or ferrocenyl (meth)acrylates are already known for interac-
tions with the propagating radical. The reported difficulties

in the polymerization behavior are based on a termination
reaction via an electron transfer from the ferrocene nucleus
to the radical.25,27,28 This termination reaction would cause
the polymerization to slow down or even completely inhibit
the polymerization. Also, H-abstraction of the methylene
group in a-position by a radical may occur, which leads to
chain transfer side reactions.28 On the other hand the tem-
peratures, which are required in radical polymerization, play
an important role due to possible decomposition of the
metal complex. Literature reports about styrene monomers
containing metal clusters and their polymerization are quite
rare. Pitman and Withers report about a tricobalt nonacar-
bonyl styrene complex and both groups observed a partially
decomposition during the polymerization.26,29 Contrary,
Pomogailo et al.30–34 reported about the preparation and
copolymerization (styrene or acrylonitrile) of osmium, iron
and rhodium- based trinuclear cluster monomers. The
authors described that all attempts to homopolymerize these
cluster type monomers have not been successful.34

The styrene derivative 8 provides a good starting point for
free radical polymerization experiments. In a first experi-
ment, [FeFe]-hydrogenase model 8 could be successfully
polymerized using AIBN as radical initiator with a ratio 8/
styrene of 5/245 at 70 �C in toluene. The copolymer exhibits
very strong signals for the CO vibration in the IR-region at
2067, 2033, and 1987 cm�1. The signals are not differing
strongly to these of the monomeric model 8. Because of the
possibility of cross-linking, copolymer 9 features a molar
mass of Mn ¼ 28.400 g/mol and a PDI value of 5.4. This
experiment proves the stability and the possibility to copo-
lymerize the [2Fe2S]-core under classical conditions of a free
radical polymerization. In the next step we tried to use the
RAFT polymerization18,19,35,36 technique for the controlled

FIGURE 2 Schematic representation of the syntheses of styrene-based [FeFe]-hydrogenase models. (a) diethyl malonate, NaH; (b)

LiAlH4; (c) 4-toluenesulfonyl chloride, pyridine; (d) Fe2S2(CO)6, LiEt3BH; (e) potassium phthalimide, DMF; (f) hydrazine hydrate; (g)

I: HCHO II: Fe2(SH)2(CO)6.
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radical polymerization of these [FeFe]-hydrogenase models.
We have chosen the RAFT process to obtain well-defined
copolymers due to several reasons. The RAFT process toler-
ates a wide range of monomers and functional groups and
was already used for the polymerization of ferrocenyl
(meth)acrylates.28 The RAFT polymerization method was
performed using AIBN as radical starter and different chain
transfer agents (CTA) for styrene derivatives were investi-
gated to obtain good control over the polymerization
(Fig. 3). Within this series, the ratios of [FeFe]-hydrogenase
models to styrene were varied.

The addition of RAFT agent benzyl (diethoxyphosphoryl)
dithioformate (CTA1) led to a controlled copolymerization of
4 and styrene as shown by the data in Table 1 and the SEC
trace in Figure 4(a). The obtained copolymer 10 has a molar
mass of 7400 g mol�1 with a PDI value of 1.23. Still, the ra-
tio between the [FeFe] cluster and styrene is low (1/199),
but for this reason ensures isolated catalytic centers. Three
weak signals in the IR-region at 2079, 2044, and 1987 cm�1

[Fig. 4(b)] as well as the absorption of the copolymer on the
SEC profile [Fig. 4(a)] indicates the presence of the [FeFe]-
core in the obtained copolymer 10. Model complexes of the
[FeFe]-hydrogenase bearing a propandithiolato-bridge have
been described to show a strong absorbance in the near-UV
region and in the region around 460 nm (charge transfer
transitions).37 The measurement of the UV absorbance of the
polymer should, therefore, be a suitable tool to monitor qual-
itatively the incorporation of the intact [FeFe]-core unit.

Using a mixture of complex 8/styrene with a ratio of 2:248
in the presence of 2-(((butylsulfanyl) carbonothioyl) sulfanyl)
propanoic acid (CTA2) at 80 �C leads to the formation of a
copolymer (11) with a molar mass (Mn) of 9700 g/mol. The
signals of the CO-vibration of 11 in the IR-spectrum are
present at 2033 and 1986 cm�1 [Fig. 4(b)]. The low PDI
value of 1.24, the nearly monomodal distribution in the SEC
profile [Fig. 4(a)] and the remaining signal of one proton of
the alkenyl-group in the 1H NMR-spectrum of copolymer 11
indicates that most of the [2Fe2S]-centers are linked to the
polymer backbone by only one out of two possible connect-
ing groups. Therefore, we assume that the amount of cross-
linking is decreased to a minimum due to the higher CTA
content and the low monomer conversion.

However, the polymerization of hydrogenase model 7 under
RAFT-conditions failed (12, Table 1), leading to a black-col-
ored solution that did not show any polymer. Although
severe problems are reported for the RAFT polymerization
of primary amines, the RAFT polymerization of tertiary
amines should not be challenging.19 The reason may be the
aminolysis of the CTA agent and this is mainly based on pri-
mary or secondary amines.38–40

Another reason might be the decomposition of the [FeFe]
model 7 under the RAFT conditions due to the different
bridgehead atom in the cluster (N atom, Fig. 2). An evidence
for decomposition of the iron cluster is the color change of
the solution after the polymerization into black.

In addition to the critical polymerization of hydrogenase
model 7, two RAFT polymerizations with and without hydro-
genase model 8 were performed to investigate a possible in-
terference of the iron cluster with the propagating radical.
The RAFT polymerization of styrene at 80 �C with 1,10-azo-
bis(cyclohexanecarbonitrile) (VAZO88) initiator results in a
polystyrene (13) with a molar mass (Mn) of 5000 g mol�1

and a PDI value of 1.08. A conversion of styrene of 33%
was reached after 15 h. The same procedure was used for
the polymerization of the hydrogenase model 8 with a ratio
St/8 of 96/4. After 28 h polymerization time a copolymer

FIGURE 4 (a) SEC trace of the synthesized copolymers (UV/VIS detector at 490 nm) and (b): IR spectra of different [FeFe] cluster

copolymers and styrene monomer 8.

FIGURE 3 Schematic representation of the CTA agents used in

the controlled radical polymerization of the [FeFe]-hydrogenase

models.
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(14, Table 1) with Mn ¼ 3100 g mol�1 and a PDI value of
1.31 was obtained. The copolymerization of the iron–cluster
complex is slower than the homopolymerization of styrene,
which could be an indication for inhibition and/or possible
interference with the radicals that would slow down the po-
lymerization rate. The iron center could catch the radical
(termination step), as it was already observed for different
iron containing monomers.25,27,28 As a consequence the radi-
cal concentration inside the solution is reduced, leading to a
decreased polymerization rate. Conversely, this observation
might simply be deduced to a slower polymerization rate of
the para-alkylstyrene moiety which shows a reduced reactiv-
ity in radical polymerizations in comparison to styrenes.
This effect was already reported, for example, for 4-methyl-
styrene41 and for 4-ethylstyrene.42

We further sought for a possible RAFT copolymerization of
acrylic acid and complex 8 (Table 1, 15) in ethanol. Unfortu-
nately, no polymers were visible in the SEC trace after 7 h
polymerization time. Even after some re-initiation with AIBN
(same and double amount of AIBN), no polymer could be
observed. We assumed therefore a strong interaction of the
acrylic acid monomers and the iron clusters inhibiting com-
pletely the polymerization.

Another CTA (2-cyanopropyl-dithiobenzoat, CPDB) was used
for the copolymerization of monomer 8 to investigate if this
CTA is another suitable initiator for the copolymerization. Af-
ter 24 h polymerization time copolymer 17 with a molar

mass (Mn) of 2800 g/mol and a narrow mass distribution
[Fig. 4(a)] was observed. For this approach the bis(styre-
ne)iron complex 8 was used together with styrene in a ratio
of 98/2.

As a result, a considerably slower polymerization rate was
observed. After 16 h the RAFT polymerization of styrene
results in a polymer (16) with a molar mass (Mn) of 4500
g mol�1 (PDI 1.11). However, when using hydrogenase
model 8 nearly half the molar mass (Mn ¼ 2800 g mol�1,
PDI 1.18) was only obtained (Table 1). It should also be
noted that due to the low conversion and the large St/FeFe
feed ratio it might be possible that not all copolymer chains
are functionalized with the iron cluster. A reinitiation for fur-
ther polymerization of copolymer 17 with AIBN was per-
formed to investigate the ‘‘living’’ character of the copolymer.
Indeed, a chain extension could be observed, but on the
other hand it results in a broader molar mass distribution of
polymer 17re with a PDI value of 1.6 and a molar mass of
6000 g mol�1, due to the possibility of cross-linking and low
amounts of incomplete chain extension.

A molar mass calculation was performed for selected sam-
ples using a triple detection including a RI, a viscosity and a
MALS detector (Table 2). For this estimation three individual
measurements were performed showing a monomodal distri-
bution for copolymer 11 and 17re. The results confirmed
the molar masses as obtained by the conventional calcula-
tion, besides the Mw by MALS detection, where the signal to

TABLE 2 Molar Mass Comparison of Selected Copolymers

Sample

Mn (RI)

[g mol�1]a PDIa
Mn (RI)

[g mol�1]b PDIb
Mv (visco)

[g mol�1]b PDIb
Mw (MALS)

[g mol�1]b PDIb

11 9,700 1.24 8,400 1.38 10,100 1.32 13,300 1.56

17re 6,000 1.6 4,500 1.80 9,200 1.86 10,700 2.01

a Calculated from SEC (CHCl3) using PS calibration.
b Average value of three individual measurements, calculated from SEC (THF) using universal PS calibration.

FIGURE 5 (a): Cyclic voltammogram under addition of acetic acid (AcOH) of monomer 8 and (b): Cyclic voltammogram under

addition of acetic acid (AcOH) of copolymer 17re.
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noise ratio is too poor due to the low molar mass of the ana-
lyzed samples.

Cyclovoltammetric, AAS, and NMR Measurements
The electrochemical properties of the model compounds
were examined by cyclic voltammetry. Monomer clusters 4
and 7 show a quasi-reversible signal of the first reduction
event at –1.64 and –1.72 V [Fig. 5(a)], which turns into a re-
versible signals under elevation of the scan rate to 1 V s�1.
By contrast, compound 8 exhibits an irreversible signal in
this region, which appears at –1.73 V. This might be
explained by a decreased stability of the complex after
reduction. Oxidation occurs in a less similar range, starting
with compound 7 at 0.44 V. All synthesized styrene based
complexes showing an electrocatalytic proton reduction after
addition of acetic acid due to a rising signal at the second
reduction event.

The electrochemical investigation of polymers is often quite
challenging due to low solubility or in general broader sig-
nals. Nevertheless, we were able to observe all expected sig-
nals without major difficulties. In general larger amounts of
the copolymers are necessary. The cyclovoltammetric investi-
gation of the copolymers 9-11 and 17re revealed a redox
behavior comparable to these of the related monomeric com-
pounds [Fig. 5(b)].

All copolymers of monomer 8 show an increased first and
second reduction event at around –1.7 and –2.2 V, respec-
tively. However, copolymer 10 divers from these values being
reduced rather early starting with a first reduction event
emerging at –1.58 V and a second reduction event at –1.85.
The reduction is obviously performed at a milder potential
compared to that of the polymers 9 and 11, which are
derived from styrene-based monomer 8.

Addition of acetic acid led to a rising second reduction signal
which, therefore, indicates an electrocatalytic proton reduc-
tion in acidic solution. Taken together, the cyclovoltammetric
examinations implicate that the incorporation of the [FeFe]-
hydrogenase model into a large polymer does not inhibit the
catalytic ability of the model complexes 4 and 8. The per-

formance of the [2Fe2S]-clusters is therefore still active in
the polymer chain.

The amount of [2Fe2S]-clusters incorporated into the poly-
mer correlates most likely with the ratio of iron present in
the polymeric material. Therefore, we considered atomic
absorption spectrometry (AAS) as possible tool to gain
insights into the degree of [FeFe] clusters incorporated. As
all polymers are insoluble in water, a chemical extraction
under strong acidic condition prior to the measurements
was performed. The theoretical amount of iron in the poly-
meric samples is in good agreement with the experimental
ones (Table 3). Measurement errors of the AAS investigation
are probably related to the pre-treatment and the chemical
extraction of the polymeric material. In addition the assigned
amounts of incorporated iron clusters were supported by
calculations using 1H NMR spectroscopy. All calculated
amounts are in a good agreement with the theoretical values
and are shown in Table 3.

Representative DSC traces are shown in Figure 6. A glass
transition temperature (Tg) of homo polystyrene 13 was

TABLE 3 Characterization of Monomeric and Polymeric Styrene-Based [FeFe]-Hydrogenase Models

Sample IR-Signal (cm�1)

Epc/V
a

(Fe1Fe1/Fe0Fe1)

Epc/V
a

(Fe0Fe1/Fe0Fe0)

Epa/V
a

(Fe1Fe1/Fe1Fe2)

St/[FeFe] Ratiob

1H NMR (mol %)

FeTheo

(mass %)c
FeExp

(mass %)d

4 2,073, 2,033, 1,989 �1.64 �2.28 0.85 � n/a n/a

7 2,073, 2,032, 1,994 �1.72 �2.25 0.44 � n/a n/a

8 2,070, 2,034, 1989, �1.73 �2.26 0.62 � 19.3 17.5

9 2,067, 2,033, 1,987 �1.72 �2.20 n/a 89/11 1.97 1.59

10 2,079, 2,044, 1987, �1.58 �1.85 0.81 98.8/1.2 0.53 n/a

11 2,033, 1,986 �1.75 �2.22 0.47 98.2/1.8 0.83 0.39

17re 2,069, 2,033, 1,986 �1.75 �2.21 0.26 95.6/4.4 1.97 3.5

a Performed in dichloromethane or DMF, supporting electrolyte: [nBu4N][PF6], scan rate: 0.1 V s�1 against Fc/Fcþ (Fc ¼ ferrocene).
b Calculated from the integral of the ACH2AAr signal of the [FeFe]-bridge and that of the backbone polystyrene signals in the 1H NMR spectra,

whereby St means styrene and [FeFe] the [FeFe]-hydrogenase mimic.
c Calculated according to formula: FeTheo (mass %) ¼ 2 m � MFe/(n � MSt þ m � M[FeFe]) using the feed ratio to estimate the n and m values.
d Determined by AAS spectrometry.

FIGURE 6 DSC response (third heating cycle) of the investi-

gated [FeFe] cluster polystyrene copolymers.
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observed at 86 �C. The Tg of the iron-cluster copolymers
vary in a temperature range from 86.3 to 105.3 �C (with a
heat capacity (DCp) of about 0.35 Jg�1 K�1) probably due to
a different content of [2Fe2S] clusters. On the one hand this
behavior can be explained by the decreased chain mobility
in cases of higher contents of the bulky cluster. On the other
hand differences may be deduced to a higher ‘‘crosslinking’’
of the bis(styrene) complex containing copolymers. Finally
one cannot exclude that the observed variations in the DSC
traces may also arise from differences in the molar mass of
the copolymers.

CONCLUSIONS

Three different styrene-based monomers connected to a
model of the active site of the [FeFe]-hydrogenase were syn-
thesized. The modified styrene derivatives with a carbon
bridgehead atom could be successfully copolymerized by a
controlled radical polymerization technique. In contrast to
that, the nitrogen bridged complex could not be copolymer-
ized despite several attempts. All functional copolymers
show a moderate to even strong absorbance in the area of
the carbonyl-vibration in the IR-region, indicating the incor-
poration of the [2Fe2S]-hexacarbonyl-cluster. It could be
shown that the biomimetic metal centers keep their activity
and redox behavior after polymerization and inclusion into
the copolymer chain. Furthermore, electrocatalytic proton
reduction could be proven. The content of catalytic [2Fe2S]-
clusters could be determined using ASS-measurements and
1H NMR spectroscopy. With this work, we contribute to
efforts in immobilizing [FeFe]-hydrogenase mimics to readily
processable copolymers. We are convinced that our work
will support future developments in the field of polymer-
bound metallorganic catalysts, able to produce hydrogen in a
highly efficient manner.
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ABSTRACT: A series of thermoresponsive diblock copolymers of
poly[2-(dimethylamino)ethyl methacrylate-block-di(ethyleneglycol)
methyl ether methacrylate], poly(DMAEMA-b-DEGMA), were synthe-
sized by reversible addition−fragmentation chain transfer (RAFT)
polymerizations. The series consist of diblock and quasi diblock
copolymers. Sequential monomer addition was used for the quasi
diblock copolymer synthesis and the macro-chain transfer approach was
utilized for the block copolymer synthesis. The focus of this
contribution is the controlled variation of the ratios of DMAEMA to
DEGMA in the copolymer composition, resulting in a systematic
polymer library. One of the investigated block copolymer systems
showed double lower critical solution temperature (LCST) behavior in water and was further investigated. The phase transitions
of this block copolymer were studied in aqueous solutions by turbidimetry, dynamic light scattering (DLS), variable temperature
proton nuclear magnetic resonance (1H NMR) spectroscopy, zeta potential, and cryo transmission electron microscopy (cryo-
TEM). The block copolymer undergoes a two-step thermo-induced self-assembly, which results in the formation of multilamellar
vesicles after the first LCST temperature and to unilamellar vesicles above the second LCST transition. An interplay of ionic
interactions as well as the change of the corresponding volume fraction during the LCST transitions were identified as the driving
force for the double responsive behavior.

■ INTRODUCTION

Stimuli-responsive polymers, which undergo phase transitions
in response to an external stimulus, have gained the interest of
many researchers in the past decade.1−5 Such “smart” materials
can act with a property change in response to changes in
temperature, pH value, electric potential, light, or magnetic
field.6−10 The area of stimuli-responsive polymers represents
nowadays a strongly growing field in polymer research, in
particular the investigation regarding lower critical solution
temperature behavior has attracted significant interest. Partic-
ular attention in this context has been paid to the
thermosensitive self-organization of amphiphilic block copoly-
mers, especially on the formation of micelles or vesicular
structures in aqueous solution. Numerous reports on the
micellization of diblock copolymers containing thermosensitive
block segments are described.4,6,7,11−13 The formed vesicles or

polymersomes are usually spherical shell structures with a
hydrophobic core-layer and a hydrophilic internal and external
corona made from amphiphilic block copolymers.14−16 Polymer
vesicles, which respond to external stimuli such as a change in
temperature or the pH value, represent attractive candidates for
applications in encapsulation or drug delivery systems.3,17,18

LCST polymers are soluble below a certain temperature
because of the formation of hydrogen bonds between water
molecules of the hydration shell and the polymer chains. By
passing the cloud point temperature (TCP), the polymer starts
to precipitate due to the breaking of hydrogen bonds and due
to hydrophobic polymer−polymer interactions because the
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entropy term becomes dominant in the Gibbs equation. Besides
the gold standard poly(N-isopropylacrylamide) (poly-
(NIPAM)) with a LCST of 32 °C,1 a number of poly-
(ethyleneglycol) functionalized (meth)acrylates have been
reported to exhibit LCST behavior.19−21 In particular, different
oligo(ethylene glycol) methyl ether methacrylate (OEGMA)-
based polymers received significant attention as temperature
sensitive materials. The large interest is fueled by the easy
preparation of well-defined OEGMA-based copolymers by
reversible deactivation radical polymerization (RDRP) techni-
ques such as reversible addition−fragmentation chain transfer
(RAFT) polymerizations.22−24 By variation of the side chain
length, the TCP of these copolymers can be tuned, which makes
them very attractive systems.19,25,26 The homopolymer of
di(ethylene glycol) methyl ether methacrylate (DEGMA) (two
repeating units of ethylene glycol) has a TCP around 27 °C,
which can be increased by copolymerizing with a more
hydrophilic monomer.19,20,26,27 2-(Dimethylamino)ethyl meth-
acrylate (DMAEMA) has been used as such a comonomer,
resulting in a pH- and temperature-responsive copolymer.28

Poly(DMAEMA) is used in various applications, e.g., in gene
delivery systems of transfection agents.29−31 Various TCP's of
poly(DMAEMA) have been reported in literature ranging from
20 to 80 °C, which is an indication that the LCST strongly
depends on the used molar masses.28,32−38 Furthermore, the
TCP strongly depends on variations in the pH value due to
partial (de)protonation of the basic nitrogen atoms of
DMAEMA.28,35−39

Block copolymers can be responsive to two different stimuli
at the same time, such as temperature and the pH value, as
demonstrated for block copolymers of (poly(NIPAM-b-AA))40

and poly(DMAEMA-b-MMA).41 Furthermore, different co-
polymer brushes of DMAEMA with DEGMA and tert-butyl
methacrylate (tBMA), investigated by Matyjaszewski et al.,
showed dual responsive properties.38 The pH and temperature
responsive properties were also investigated for different
poly(DMAEMA-co-DEGMA) hydrogels.37 Poly(DMAEMA-b-
DEGMA) block copolymers were recently used to control the
self-assembly of virus particles.42

The thermoresponsive self-organization of amphiphilic block
copolymers in aqueous solution has been described in the
literature for several systems.6,7,11−13,43−47 For example, the
self-assembly of double thermoresponsive block copolymers of
poly(N-n-propylacrylamide-b-N-ethylacrylamide) was re-
ported.48 Furthermore, the thermo-induced micellization
transition of the block copolymer solution of poly(tri(ethylene
glycol) methyl ether acrylate)-b-poly(4-vinylbenzyl
methoxytris(oxyethylene) ether) was described.49 The for-
mation of double hydrophilic diblock copolymers to vesicle and
micelle structures have been studied in detail by Lecomman-

doux and co-workers using poly((dimethylamino)ethyl meth-
acrylate-b-glutamic acid).50 However, the thermo-induced self-
assembly of poly(DMAEMA-b-DEGMA) is, to the best of our
knowledge, not yet reported.

In this contribution, a series of thermoresponsive diblock
copolymers of poly(DMAEMA-b-DEGMA) was synthesized by
RAFT polymerization ranging from pure block to gradient
block copolymer (quasi diblock) structures. The macro-chain
transfer approach was used for the preparation of these block
copolymers. The ratios of DMAEMA to DEGMA were
systematically varied, while the degree of polymerization was
kept constant. The self-assembly behavior as well as the LCST
of the responsive polymers were measured by turbidimetry.
Within this series of block copolymers, a double-responsive
behavior was observed for one particular composition and the
self-assembly characteristic was further investigated by dynamic
light scattering, temperature-dependent 1H NMR spectroscopy,
zeta potential analysis, and cryogenic transmission electron
microscopy. The formation of spherical structures, like
multilamellar and unilamellar vesicles at elevated temperatures,
was observed and a model for the formation of these structures
was developed.

■ EXPERIMENTAL SECTION
Materials. Di(ethylene glycol) methyl ether methacrylate

(DEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA)
were purchased from Sigma-Aldrich and purified by stirring in the
presence of inhibitor-remover for hydroquinone or hydroquinone
monomethyl ether (Aldrich) for 30 min prior to use. The initiator,
1,1′-azobis(cyclohexane carbonitrile) (VAZO-88), was obtained from
DuPont. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic
acid (DTTCP) chain transfer agent (CTA) was prepared according to
a literature procedure.23,51 All analytical grade solvents were purchased
from Sigma-Aldrich or Merck KGaA.

Polymerization in an Automated Parallel Synthesizer. The
quasi block copolymerizations were performed in a Chemspeed
Accelerator SLT automated synthesizer using the sequential monomer
addition and following similar experimental procedures as reported
elsewhere.52−54 In a typical polymerization experiment, 864 mg of
DMAEMA monomer (5.5 × 10−3 mol), 0.73 mg of VAZO-88 initiator
(3.0 × 10−6 mol), 24.1 mg of DTTCP (used as a CTA) RAFT agent
(6.00 × 10−5 mol), and N,N-dimethylformamide (DMF) were mixed
together in a 13 mL glass reactor of an automated parallel synthesizer
as follows: DMAEMA monomer, DMF solvent reservoir, and
individual stock solutions of VAZO-88 (initiator) and DTTCP
(CTA) dissolved in DMF were degassed by sparging nitrogen for at
least 15 min prior to use. All these reagents were added and combined
into one of the reactors of the parallel synthesizer using its automated
liquid handling system in order to reach the aforementioned amounts
and a monomer concentration of 3.0 M; the ratio of RAFT agent to
initiator was 1:0.05. Trioxane dissolved in the DMAEMA monomer
was utilized, at a concentration of 5 mg mL−1 of total reaction mixture,
as internal standard to determine the monomer conversion by 1H

Table 1. Overview of the Selected Reaction Conditions Used for the Polymerizations of DMAEMA and DEGMA Using an
Automated Parallel Synthesizer

sample structure
ratio 1st polym

DMAEMA/CTAa
ratio 2nd polym

DEGMA/macroCTAa
concn

[mol/L]
polym time

[h]

H1 homo 90:1 3.0 10.0
B1 quasi 10:1 2.0 6.0
H2 homo 80:1 3.0 10.0
B2 quasi 20:1 2.0 6.0
H5 homo 45:1 3.0 10.0
B5 quasi 55:1 2.0 6.0

aMolar ratios of the reaction solution.
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NMR measurements in deuterated chloroform (CDCl3). Once in the
reactor, the reaction mixture was subjected to three freeze−pump−
thaw cycles between −70 and −10 °C (5 mbar vacuum for 2 min each
cycle) in the parallel synthesizer.53 Thereafter, the reaction mixtures
were heated up to 90 °C and vortexed at 600 rpm for 10 h; the
coldfinger reflux condensers were set to 7 °C during the reaction. After
the polymerization, samples of 75 μL were withdrawn with the liquid
handling system of the apparatus and transferred into NMR tubes and
size exclusion chromatography (SEC) vials, which were filled with
their corresponding solvent for analysis. The first polymerization step
proceeded up to a certain conversion, which resulted in a
poly(DMAEMA) macro-chain transfer agents (macro-CTAs). There-
after, the polymers were chain extended with DEGMA using similar
conditions as described above. The DEGMA concentration was kept at
2.0 mol L−1 for each polymerization experiment. Table 1 summarizes
the utilized reaction conditions and [M]/[CTA] ratios. After
completion of the polymerization, dichloromethane (CH2Cl2) was
added to the final mixtures and the polymers were then manually
precipitated into n-hexane (with adding CH2Cl2, DMF is soluble in n-
hexane). Afterward, the copolymers were dried in a vacuum oven at 40
°C.
Polymerization via Classical Conditions. Block copolymers

were also synthesized using the macro-CTA approach with a
precipitation step in between to obtain pure block segments. The
desired amounts of the monomer (e.g., 2.36 g, 15.0 mmol of
DMAEMA) were transferred into Schlenk type reactors and were
diluted with DMF. Thereafter, the calculated volumes of stock
solutions of CTA (DTTCP, 0.15 mmol, 60.55 mg) as well as the
initiator (VAZO-88, 0.008 mmol, 1.83 mg) were added. The ratio
between [CTA] and [VAZO-88] was 1:0.05. The prepared solutions
were degassed using four freeze−pump−thaw cycles. Subsequently,
the reaction was performed in an oil bath at 90 °C for 10 h. After the
polymerization, CH2Cl2 was added to the final mixtures and the
polymers were then manually precipitated into n-hexane (with adding
CH2Cl2, DMF is soluble in n-hexane). Afterward, the polymers were
dried in a vacuum oven at 40 °C. The final poly(DMAEMA)s were
used as a macro-CTA and chain extended with DEGMA using similar
conditions as described above. The utilized reaction conditions and
[M]/[CTA] ratios are summarize in Table 2. All monomer
conversions were measured by 1H NMR spectroscopy using trioxane
as internal standard. The molar masses of the obtained polymers were
measured by SEC.
Instrumentation. Size-exclusion chromatography (SEC) was

performed on a system comprising a Waters 590 HPLC pump and
a Waters 410 refractive index detector equipped with three Waters
Styragel columns (HT2, HT3, HT4, each 300 mm × 7.8 mm,
providing an effective molar mass range of 100−600000 g mol−1). The

eluent was DMF (containing 0.45% w/v LiBr) at 80 °C with a flow
rate of 1 mL min−1. Number (Mn) and weight-average (Mw) molar
masses were evaluated using Waters Millennium software. A
polynomial was used to fit the log M vs time calibration curve,
which was linear across the molar mass ranges. The SEC columns were
calibrated with low polydispersity polystyrene standards (Polymer
Laboratories) ranging from Mn 3100 to 650000 g mol−1. Further SEC
experiments were performed on a Shimadzu system equipped with a
SCL-10A system controller, a LC-10AD pump, a RID-10A refractive
index detector, and a PSS SDV linear S, 5 μm column (8 mm × 300
mm) with chloroform/triethylamine/2-propanol (94:4:2) as eluent,
and the column oven was set to 40 °C. A calibration with low
polydispersity polystyrene standards (ranging Mn from 376 to 128000
g mol−1) was used. In addition, further SEC experiments were carried
out using an Agilent1200 series system, a G1310A pump, a G1362A
refractive index detector, and both a PSS Gram30 and a PSS
Gram1000 column in series, whereby N,N-dimethylacetamide
(DMAc) with 5 mmol lithium chloride was used as an eluent at 1
mL min−1

flow rate, and the column oven was set to 40 °C. The
system was calibrated with polystyrene (Mn from 374 g mol−1 to
1040000 g mol−1) standards. Proton nuclear magnetic resonance (1H
NMR) spectra were recorded on a Bruker AC 300 (300 MHz) and
400 (400 MHz) spectrometer at 298 K. The chemical shifts are
reported in parts per million (ppm, δ scale) relative to the signals from
the NMR solvents. The temperature variable 1H NMR spectroscopy
was recorded on a Bruker AC 400 (400 MHz) spectrometer in
deuterium oxide (D2O) at a polymer concentration of 5.0 mg mL−1.
At each temperature step (5 °C) from 25 to 65 °C, the polymer
solution was equilibrated for 3 min. Conversions were calculated from
1H NMR spectra using 1,3,5-trioxane as an internal standard. The
cloud point measurements for the identification of the LCST behavior
were performed by heating the polymer (1.0, 2.5, 5.0, and 10.0 mg
mL−1, respectively) in deionized water from 0 to 105 °C with a heating
rate of 1.0 °C min−1 followed by cooling to 0 °C at a cooling rate of
1.0 °C min−1 after keeping it 10 min at 105 °C. This cycle was
repeated three times. During these controlled cycles, the transmission
through the solutions was monitored in a Crystal16 from Avantium
Technologies. The cloud points are reported as the 50% transmittance
temperature in the second heating run.

High-throughput dynamic light scattering (HT-DLS) measure-
ments were performed on the DynaPro Plate Reader Plus (Wyatt
Technology Corporation, Santa Barbara, CA) equipped with a 60 mV
linearly polarized gallium arsenide (GaAs) laser of λ = 832.5 nm and
operating at an angle of 156°. The samples were heated from 25 to 65
°C in a 96-well plate using 10 °C heating steps, and after 5 min
equilibration time, each well was measured collecting five acquisitions.
The data were analyzed with the Dynamics software version 6.20 by
the method of cumulants.55 The percent of polydispersity is given by
%Pd = 100(μ2)/μ1

2, where μ1 and μ2 are the first- and the second-order
cumulant, respectively. The level of homogeneity is considered high
when the percent polydispersity is less than 15%. If the level of
homogeneity is low (percent polydispersity larger than 30%), the
particle population can be considered as being polydisperse. DLS
measurements were also carried out on a Zetasizer Nano ZS (Malvern
Instruments, Malvern, UK) operating with a laser beam at 633 nm and
a scattering angle of 173°. The sample was heated in a quartz cuvette
from 25 up to 65 °C in 1 °C steps. At each temperature step, the
sample was equilibrated for 120 s and then measured three times
including three runs for 30 s. The intensity and the volume
distribution of the particle size were calculated applying the NNLS
mode.

Electrophoretic light scattering was used to measure the electro-
kinetic potential, also known as zeta potential. The measurements
were performed using a Zetasizer Nano ZS (Malvern Instruments) by
applying laser Doppler velocimetry. For each measurement, 20 runs
were carried out using the slow-field reversal and fast-field reversal
mode at 150 V. Each experiment was performed in triplicate from 25
to 65 °C in 5 °C steps. The zeta potential (ζ) was calculated from the
electrophoretic mobility (μ) according to the Henry equation. The
Henry coefficient f(ka) was calculated according to Oshima.56

Table 2. Overview of the Selected Reaction Conditions Used
for the Polymerizations of DMAEMA and DEGMA via the
Schlenk Technique

sample structure

ratio feed 1st
polym

monomer/
CTAa

ratio feed 2nd
polym

monomer/
macroCTAa

concn
[mol/L]

polym
time
[h]

H3 homo (DMAEMA)
100:1

2.0 10.0

B3 block (DEGMA)
100:1

1.0 7.5

H4 homo (DMAEMA)
100:1

3.0 8.0

B4 block (DEGMA)
100:1

1.0 6.0

H6 homo (DEGMA)
100:1

2.0 8.0

B6 block (DMAEMA)
50:1

1.0 6.0

aMolar ratios of the reaction solution.
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Cryogenic transmission electron microscopy (cryo-TEM) measure-
ments were performed on a Philips CM120 operating at an
acceleration voltage of 120 kV. Images were recorded with a bottom
mounted 1 k × 1 k CCD camera. The samples for TEM investigations
were prepared and stored at room temperature prior to the
investigation (5 mg mL−1). For the temperature-dependent inves-
tigation, the samples were preheated under frequent agitation for at
least 30 min in a water bath at 35 and 50 °C, respectively. A drop of
the polymer solution (5 μL) was rapidly placed with a preheated
microliter pipet on a perforated carbon grid (Quantifoil R2/2) within
an in-house-built controlled environment vitrification system (CEVS)
with a saturated water atmosphere. The temperature within the CEVS
was adjusted to 38 and 55 °C to ensure that the sample is investigated
above the corresponding cloud point temperatures. Prior to the
blotting, the liquid was allowed to equilibrate on the grids for at least 2
min to avoid preparation artifacts. The controlled saturated humidity
and defined temperature minimizes temperature alterations of the
sample due to evaporation effects. The samples were rapidly blotted
and plunged into a cryogen reservoir containing liquid ethane. After
preparation, the samples were stored and measured at a temperature
below −176 °C to avoid the formation of crystalline ice layers. To
avoid further preparation artifacts, similar blotting times were used at
different temperatures.

■ RESULTS AND DISCUSSION
Synthesis of the Poly(DMAEMA-b-DEGMA) Library. A

library of double thermoresponsive poly(DMAEMA-b-

DEGMA) diblock copolymers was synthesized using the
RAFT polymerization technique in a sequential monomer
addition approach. Within this series, the ratios of DMAEMA
and DEGMA were varied ranging from 100% DMAEMA to
100% DEGMA with composition changes in 20% steps. Two
possibilities of the macro-chain transfer approach were
explored, namely with and without a precipitation step after
the first polymerization. Using a parallel robot platform, the
second DEGMA monomer was added before the full
conversion of DMAEMA was reached, resulting in quasi
diblock structures. The polymerizations were carried out using
4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl]pentanoic
acid (DTTCP) as CTA and VAZO-88 as radical initiator
(see Scheme 1), applying similar conditions as previously
described for the MMA polymerization,57 namely 90 °C with a
ratio of DTTCP to VAZO-88 of 20:1.

The quasi diblock copolymers were synthesized in a
Chemspeed Accelerator SLT106 automated platform and the
diblock copolymers under classical conditions (Schlenk
technique) using the same polymerization conditions. The
first block segment was polymerized in DMF at a concentration
of 3.0 mol L−1, followed by the polymerization of DEGMA with
a monomer concentration of 2.0 mol L−1. For B6, this order
was reversed, meaning that first DEGMA was polymerized and

Scheme 1. Schematic Representation of the Poly(DMAEMA-b-DEGMA) Formation Using RAFT Polymerization with the CTA
DTTCP and the Radical Initiator VAZO-88

Table 3. Composition of the Block Copolymers of Poly(DMAEMA-b-DEGMA) from SEC and 1H NMR Spectroscopy with
Increasing Ratio of DEGMA Starting from DMAEMA Homopolymer

SEC (DMF)b SEC (DMAc)c SEC (CHCl3)
d

samplea Mn [g/mol] PDI Mn [g/mol] PDI Mn [g/mol] PDI conv.e [%] Mn,theo
f [g/mol] ratio [%] 1H NMRg DMAEMA/DEGMA

H1 (h) 18600 1.16 81 (M1) 10200 100:0
H2 (h) 15200 1.17 62 (M1) 6200 100:0
H3 (h) 17600 1.22 80 (M1) 13000 100:0
H4 (h) 15200 1.21 13500 1.43 28700 1.22 83 (M1) 13300 100:0
H5 (h) 8800 1.16 75 (M1) 5400 100:0
B1 (q) 20800 1.29 24700 1.44 29700 1.36 39 (M2) 12600 94:6
B2 (q) 21800 1.25 24100 1.41 30200 1.34 70 (M2) 10900 87:13
B3 (b) 26900 1.27 27400 1.52 h h 65 (M2) 25400 66:34
B4 (b) 35100 1.54 36600 1.48 h h 53 (M2) 23300 64:36
B5 (q) 39700 1.35 24000 1.70 h h 85 (M2) 15300 51:49
B6 (b) 26600 1.32 27100 1.33 33500 1.24 40 (M1) 20800 20:80
H6 (h) 23600 1.23 23700 1.29 27800 1.20 76 (M2) 14500 0:100

aCopolymer structure: h = homopolymer, q = quasi diblock copolymer, b = diblock copolymer. bCalculated from SEC (DMF) using PS calibration.
cCalculated from SEC (DMAc) using PS calibration. dCalculated from SEC (CHCl3/triethylamine/2-propanol = 94/4/2) using PS calibration.
eCalculated from vinyl integrals of 1H NMR spectra using trioxane as internal standard, M1 = DMAEMA and M2 = DEGMA. fCalculated according
to formula (Mn,t heo = ([M]/[CTA] × conv × Mmonomer) + MCTA), besides for block copolymers where MCTA is MmacroCTA. gCalculated from
integrated areas of DMAEMA signals ((CH3)2N−) and the DEGMA (CH2−O−) side-group signals. hBlock copolymer reached the exclusion limit
of the SEC.
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then the corresponding DMAEMA block. In Table 3, the molar
masses and polydispersity indices (PDI) measured by SEC are
summarized, demonstrating good control over the first blocks
(PDI < 1.23) and relatively good control for most block
copolymers (PDI < 1.35, except B4). The obtained diblock
copolymers were characterized by SEC in DMF, DMAc, and
chloroform as eluent, using a refractive index detector (see
Supporting Information (SI)). The hydrodynamic volume of
poly(DMAEMA) depends strongly on the solvent and,
additionally, it is known that interactions with the column
material58 occur due to the basic nitrogen atoms, therefore,
different SEC systems were used to characterize the block
copolymers. Nevertheless, the obtained values should be
handled with care because of both the calibration with
polystyrene and the possibility of column interactions.59

The monomer conversions of DMAEMA and DEGMA were
estimated by 1H NMR spectroscopy. The conversion of
DMAEMA was around 70−80% after 10 h of polymerization.
Then the polymerization was stopped to retain high RAFT
end-group functionality. A clear molar mass shift could be
observed for the block copolymers in the SEC analysis. For the
final copolymers, the ratio between both block segments were
determined by 1H NMR spectroscopy using the integrated
areas of DMAEMA signals ((CH3)2N− at 2.26 ppm) and the
DEGMA (CH2−O− at 3.54−3.66 ppm) ethylene glycol side-
group signals (Figure S6, SI). The observed ratios are in a good
agreement with the monomer feed ratio.
Thermoresponsive Properties of Poly(DMAEMA-b-

DEGMA). Heating solutions of the polymers in deionized
water induces a LCST transition, i.e., the solutions become
turbid above the characteristic TCP, indicating the collapse of
the polymer chains (two-phase system). The TCP's of the
homo- and block copolymers were determined by turbidimetry
measurements in deionized water at four different concen-
trations (1.0, 2.5, 5.0, and 10.0 mg mL−1) and are listed in
Table 4. All thermo-induced transitions of the copolymers were
found to be fully reversible (SI, Figure S7).

The TCP of the homopolymer poly(DEGMA), H6, is 25.9 °C
at 5.0 mg mL−1, which correspond well with the literature value
of 27 °C.19,20,27 With increasing amount of DMAEMA, the
observed demixing points increase and the highest TCP is
observed for the homopolymer of poly(DMAEMA), H4,
namely 46.7 °C at 5.0 mg mL−1 (see also Figure 1). This
observed effect is due to the increased hydrophilicity of the
“end-group” by the incorporation of the PDMAEMA block. In
some cases, namely for B3 and B4, the solutions showed only
weak transitions, presumably due to the formation of mainly
smaller aggregates. All TCP transitions from the turbidimetry
measurement of the block copolymers are plotted in Figure 1
against the molar ratio of PDMAEMA to provide a better

overview. A roughly linear behavior of the TCP transitions with
increasing amount of mol% DMAEMA in the block copolymers
could be observed. Differences between the pure and the quasi
diblock copolymer were not observed in the turbidimetry
measurements; apparently the gradient is too small to have an
influence. For all samples, a lower TCP is observed with higher
concentration due to the statistical influence during the
aggregation behavior. Two TCP values were observed for B5
(see Table 4 and Figure 1), indicating the double thermo-
responsive behavior in aqueous solution. The turbidimetry
curve of this copolymer shows a weak transition at 33 °C
followed by a rearrangement and, therefore, a second transition
at 49 °C (see also Figure S8 SI).

Due to its double-responsive behavior, the B5 block
copolymer was selected for detailed structural analysis, as it
shows the most interesting thermoresponsive behavior of the
tested copolymers.

The LCST transition was further investigated in detail by
DLS measurements as function of temperature for B5. To
efficiently characterize different concentrations of this block
copolymer, a high-throughput DLS plate reader setup was used.
The demixing values were estimated by this DLS setup in
deionized water at four different concentrations (1.0, 2.5, 5.0,
and 10.0 mg mL−1) starting from 25 °C and heating up to 65
°C in 10 °C steps. The temperature induced collapse of the
quasi diblock copolymer B5 (∼50% of each block segment)
resulted in the appearance of two size distributions (Figure 2),
one with a diameter of 40 nm and a second of around 300 nm.
The size of the agglomerates of B5 is nearly constant also by
further increasing the temperature. In addition, the polymer
concentration has no significant influence on the size of the
self-assembled structures of the block copolymer. The self-
assembled structures might be micelles (ca. 40 nm) and larger
vesicular structures (300−400 nm), although no conclusive
assignment can be made based on the DLS results alone. To

Table 4. Cloud Point Temperatures from Turbidimetry Measurement of the Homo and Block Copolymers

cloud points by turbidimetry (2nd heating run) in °Ca

sample
DMAEMA/DEGMA [%]

H4
100:0

B1
94:6

B2
87:13

B3
66:34

B4
64:36

B5c

51:49
B6

20:80
H6

0:100

10 mg mL−1 45.4 43.6 40.7 mb mb 32.5:48.0 29.4 25.1
5.0 mg mL−1 46.7 44.5 41.7 mb mb 33:∼49 30.0 25.9

32:∼48d

2.5 mg mL−1 49.0 46.0 43.2 mb mb 34:∼46 30.5 28.0
1.0 mg mL−1 57.4 48.2 45.3 mb mb ∼41 31.5 36.4

aEstimated in deionized water at 50% transmission for the second heating run. bNo clear phase separation transition. cEstimated at the local
maximum at the half %value of transmission. dEstimated in D2O.

Figure 1. Cloud points (TCP) of the studied block copolymers of
poly(DMAEMA-b-DEGMA) at 5.0 and 10.0 mg mL−1.
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evaluate the aggregation behavior of the chosen copolymer, B5
was investigated in further detail using a DLS Zetasizer
(Malvern).

The experiment was performed in deionized water at a
concentration of 1.0 mg mL−1, and the temperature run was set
up between 25 and 50 °C, with heating in 1 °C steps to have a
closer look at the phase transitions. A repeated temperature run
ranging from 25 to 65 °C is plotted in the SI (Figure S10),
showing a similar size distribution of the observed self-
assembled aggregates. No changes in the size above 50 °C
are observed. The distribution of the block copolymer
assemblies at temperatures below and above the phase

transition is illustrated in Figure 3 (volume distribution;
intensity distribution is plotted in the SI, Figure S10). Below
the cloud point at 25 °C, the polymer chains are fully soluble
and, therefore, a hydrodynamic diameter smaller than 10 nm
was obtained, corresponding most probably to individual
hydrated polymer chains, taking into account also the molecular
dimensions of the block copolymers. An increase in temper-
ature results in an increase in the diameter of the polymer
aggregates to ∼100 nm, indicating the temperature-induced
aggregation of the polymer chains. The first transition of the
polymer solution is observed at a temperature of 31 °C, i.e.,
when the collapse of the PDEGMA takes place.

The hydrodynamic diameter of these aggregates is around
100 nm as displayed in Figure 3. By further increasing the
temperature, a rearrangement is observed, which is reflected in
the appearance of a second distribution. Above 36 °C, two
distributions are formed with a hydrodynamic diameter of 65
and 240 nm, respectively. The formed structures appear to be
thermodynamically stable in solution, as the aggregate size
remains constant even at further increased temperatures.

The temperature induced phase transition of the selected
block copolymer B5 was further investigated by temperature
dependent 1H NMR spectroscopy to obtain a deeper insight
into the aggregation behavior. The phase transition was
investigated in D2O at a concentration of 5.0 mg mL−1. At
each temperature step (5 °C), the polymer solution was
equilibrated for 3 min (it should be noted here that the time
scale of the temperature induced formation of micellar
structures and larger aggregates is faster than the typical
acquisition times required by the NMR spectrometer). The 1H
NMR spectrum of the block copolymer at 25 °C shows the
characteristic signals of poly(DMAEMA-b-DEGMA); the
corresponding temperature series is plotted in Figure 4. In
the 1H NMR spectra, the signals at 3.3−3.9 ppm represent the
ethylene glycol and −OCH3 groups (EG) of poly(DEGMA)

Figure 2. Hydrodynamic diameters of the copolymer coils and
globules of B5 (showing two distribution) at different concentration as
function of temperature.

Figure 3. The hydrodynamic diameter (volume distribution, average value of three estimations) of the block copolymer chains and globules of B5 at
1.0 mg mL−1 is plotted as a function of temperature. (A−C) Hydrodynamic size distribution (three measurements) at the respective temperature.
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and the signals at 2.3 ppm (CH3−N−) represent the
poly(DMAEMA) block. The position of the small DMF
signals, which are left after the precipitation and drying
processes, were used as reference signal (adjustment of changes
due to the temperature increase, whereby the DMF is
unaffected) and all spectra were normalized in intensity to
the D2O signal. It is observable (Figure 4) that the DEGMA
signals at 3.5−3.9 ppm decrease significantly, denoting the
collapse of the DEGMA block which is induced by the
temperature increase from 25 to 40 °C. Also, all other signals
(backbone at 0.8−1.5 ppm and DMAEMA at 2.3 and 2.8 ppm)
decrease by increasing temperature, leading to broad signals
due to the reduced flexibility of the polymer chains (see Figure
4). The PDMAEMA block is still visible at 45 °C (CH3−N− at
2.2 ppm) as it is supposed that it forms a kind of corona around
the hydrophobic PDEGMA aggregates.

Unexpectedly, further increasing the temperature from 50 to
65 °C is accompanied by an increase for some signals
corresponding to DMAEMA and to DEGMA (Figure 4b),
respectively. These signals are visible for the DMAEMA group
(CH3−N−) at 2.2 ppm, for the EG groups of DEGMA at 3.6
and 3.7 ppm as well as for the −OCH3 group at 3.3 ppm. The
shifted signals indicate a different microenvironment of (at least
parts of) the DMAEMA and DEGMA groups and are supposed
to correlate to the corresponding rearrangement of the block
copolymer. This second assembly might be induced by the
collapse of the DMAEMA block (at 49 °C vs the homopolymer
of poly(DMAEMA) at 47 °C as listed in Table 4 for a
concentration of 5.0 mg mL−1), which appears to be at these
temperatures more hydrophobic than in the previous
configuration (hydrophilic corona), thus resulting in a
structural change. The transformation of the PDMAEMA
block is indicated by the high-field shift of the DMAEMA
signal, which provides a higher electron density at the methyl
groups (CH3−N−) caused by the breaking of the H-bonds.

There might also be a migration of the more polar DEGMA
groups (higher amount of oxygen atoms in the structure) to the
surface of the collapsed structures to stabilize them in aqueous
solution. This migration could lead then to a partial hydration
of the DEGMA chains, which causes the reappearance of the

corresponding signals in the NMR spectra (Figure 4a at 3.6−
3.7 ppm).

Self-Assembly of Poly(DMAEMA-b-DEGMA). The dou-
ble responsive behavior of poly(DMAEMA-b-DEGMA)
motivated the utilization of cryo-TEM to visualize the
associated structures. The sample preparation was performed
at different temperatures, and the samples were instantaneously
vitrified after an equilibration time of ∼2 min to preserve the
aggregate structure at the blotting temperature. The cryo-TEM
images of solutions which were vitrified at a blotting
temperature of approximately 33 °C are depicted in Figure 5.

At this temperature, which is above the TCP of PDEGMA and
below the TCP of PDMAEMA, the presence of large
multilamellar vesicles (MLV) with a diameter of approximately
200 nm and unilamellar vesicles (ULV), which are observed to
be significantly smaller (40 to 90 nm), is observed. The cryo-
TEM micrograph shows that the MLVs have a layered structure
with comparable distance between the individual lamellae and
represent an onion-like form. In this case, a molecular
arrangement of the copolymer can be assumed that resembles
the structure depicted in Figure 5 (PDEGMA dark;
PDMAEMA light).

The formation of MLV is based on one hand on the
hydrophilic−hydrophobic character of the block copolymers

Figure 4. Temperature dependent 1H NMR spectra (a) in D2O of B5 (5 mg mL−1) showing the evolution of the −CH2− and CH3− signals of
poly(DEGMA) block at 3.3 ppm and 3.5−3.9 ppm, and the −CH2- and CH3-resonance of the poly(DMAEMA) block segment at 2.7 and 2.3 ppm
as well as the polymer backbone in a temperature range from 25 to 65 °C. On the right side (b), the integrals of the block copolymer signals are
plotted against the temperature (MLV = multilamellar vesicles and ULV = unilamellar vesicles, see also Figures 5 and 6).

Figure 5. Cryo-TEM images (a,b) of B5 block copolymer solution at
∼33 °C in H2O (preheated, 5.0 mg mL−1) showing the formation of
multilamellar vesicles and additionally unilamellar vesicles.
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and on the other hand on the volume fractions of the individual
blocks, respectively. The self-assembly of amphiphiles into well-
defined structures, such as vesicles, derives from the hydro-
phobic attraction at the hydrocarbon−water interface, which
induces the molecules to associate, and the hydrophilic part
that remain in contact with water.60 For thermosensitive block
copolymers, the individual blocks shows a selective, thermally
driven solubility and, therefore, the overall hydrophilic−
hydrophobic character can be changed by temperature. At 33
°C, the PDEGMA block is collapsed and therefore hydro-
phobic, while the PDMAEMA block is hydrophilic and is still in
solution due to the fact that the blotting temperature remains
below the TCP of PDMAEMA.

The formation of micelles or vesicle structures depends for
block copolymers on their ratio between both hydrophobic and
hydrophilic segments.6,7,45,60 Classically, the “critical packing
parameter” is used to define the morphology of the resultant
self-assembled structure. The ratio of DMAEMA to DEGMA in
the block copolymer B5 is 51% to 49%. With this composition,
the formation of micelles or vesicles can be expected.6,45 In the
present case, the block copolymers revealed a tendency for the
formation of multilamellar vesicles. The number of shells in
these MLVs is up to nine layers for the block copolymer with a
significant size distribution of the formed MLVs. The measured
size of the different vesicles is between 225 nm (Figure 5a) and
325 nm (Figure 5b), which is in the same size range as obtained
by the DLS measurements (approximately 220 nm). The shell
thickness of the MLV of PDMAEMA block (Figure 5a) is
approximately 5−8 nm. This value is significantly smaller and
can be correlated to the polymer chain length (DMAEMA
block has DP of ∼45, which equals the length of 11.5 nm when
completely stretched) to an interdigitated, very compact
arrangement of the PDMAEMA chains.60 This observation is
also supported by the NMR investigations, which show reduced
signals of the PDMAEMA block at this temperature. The
precipitated PDEGMA core is approximately 6 nm in thickness,
which suggests very densely packed chains, which is also
supported by the strong dark contrast which is found in the
cryo-TEM images.

The polymer was subsequently heated to a temperature
above the TCP of DMEAEMA, and the resulting structures were
investigated by means of cryo-TEM in the same fashion as
described above. In contrast to the sample which was
investigated at 33 °C, the formation of preferentially
unilamellar, large vesicles is observed. MLVs with a large
number of shells are not observed anymore. In Figure 6, the
cryo-TEM images of B5 block copolymer solution acquired at
∼50 °C (a,b) showed the formation of large unilamellar vesicles
in aqueous solution.

The thermoresponsive behavior of the selected block
copolymer B5 was further investigated by temperature variable
zeta potential (also known as electrokinetic potential) measure-
ments to gain a deeper insight in the polyelectrolyte nature of
the block copolymer during the polymer phase transitions
(Figure 7). The phase transition was investigated in water at a
concentration of 2.5 mg mL−1 in the temperature range from
25 to 65 °C during both heating and cooling with temperature
steps of 5 °C. The conductivity (red cycles, Figure 7) of the
copolymer solution was also measured, indicating a small
increase of charge carrier mobility or concentration with
increasing temperature, i.e., caused by the increased autodisso-
ciation of water. After the cooling cycle, the conductivity of the
solution reaches nearly the starting value at 25 °C. The zeta

potential measurements show that two reversible thermo-
induced transitions are present without showing any hysteresis
behavior in the graph (Figure 7, black squares). The first
transition takes place at around 30 °C and the second transition
around 55−60 °C, whereby a strong decrease in the zeta
potential is observed. Over the measured temperature range
from 25 to 65 °C, a positive potential was measured due to the
cationically charged protonated DMAEMA groups. The high
value of the zeta potential indicates stable aggregates (usually a
potential >25 mV indicates a stable system), which cannot
further assemble together due to repulsion forces. In contrast,
the pure PDEGMA homopolymer H6 revealed a negative
potential (partially negative charges due to oxygen atoms and
carboxylic acid end groups) over the complete temperature
range (see SI, Figure S11). On the basis of these results, it can
be assumed that the collapse of the PDEGMA block at 30 °C is
associated with an enhancement of the negative charges on the
surface of the collapsed aggregates (SI, Figure S11), which
support the formation of MLVs. The assembly is promoted by
electrostatic interactions between the positive charged
PDMAEMA block (corona) and the negatively charged
collapsed PDEGMA block. This layer-by-layer assembly
above the first transition temperature lowers the overall zeta
potential of the aggregates. The charge compensation by the
layer-by-layer assembly in MLV structures represents an
important thermodynamic contribution to the stability of the
self-assembled structures. If the temperature is raised above 50
°C, the DMAEMA block starts to collapse. During this collapse,
a migration of the DMAEMA chains to the hydrophobic surface
of the PDEGMA layer might occur as observed by 1H NMR.
This effect changes the electrostatic balance of the MLV
structures, i.e., the charge compensation, and ultimately leads to
the preferential formation of ULV structures. This change of
the charge balance is reflected in the corresponding zeta
potential values (Figure 7).

On the basis of these experimental observations, a model for
the aggregation of the double responsive transition of the block
copolymer structures at different temperatures was developed,
which is schematically illustrated in Figure 8. In this
configuration, the PDEGMA block (negatively charged)
becomes insoluble at the first LCST transition temperature
and is collapsed in the lamellar structure. The still-soluble
PDMAEMA block (positively charged) stabilizes the individual
shells by a layer-by-layer assembly and promotes the
preferential formation of multilamellar onion-like vesicles.
With further increasing temperature also the solubility of the
PDMAEMA decreases. As a result, the volume of the

Figure 6. Cryo-TEM image (a,b) of B5 block copolymer solution at
∼50 °C in H2O (preheated, 5.0 mg mL−1) showing the formation of
large unilamellar vesicles.

Macromolecules Article

dx.doi.org/10.1021/ma301867h | Macromolecules 2012, 45, 9292−93029299



hydrophobic part of the copolymer increases and the
interbilayer energy changes. Simultaneously, the decreasing
size of the hydrophilic corona block is seen as an additional
driving force for the modified aggregation behavior due to
altered volume fraction and space requirements.

This effect was, e.g., observed for PS-b-PAA aggregates,61

where shorter corona fractions generally resulted in the
formation of larger structures.62 Additionally, the altered charge
balance within the structures favors the formation of larger and
unilamellar vesicles.

This structural transitions explain also the 1H NMR
observations showing that after the first transition the
respective poly(DEGMA) signals disappeared. This could be
a direct consequence of the narrow environment, which is
formed in the multilamellar vesicle system. As observed from
the cryo-TEM images, it can be assumed that above 50 °C a
structural transition toward unilamellar vesicles takes place. In
this configuration, the packing density of the macromolecules
becomes less pronounced, which could be a possible
explanation of the reappearance of the poly(DMAEMA) signal
in the 1H NMR spectrum.

■ CONCLUSION
The RAFT polymerization method was used for the
preparation of a library of double thermoresponsive diblock
copolymers, namely poly(DMAEMA-b-DEGMA). A series of
poly(DMAEMA-b-DEGMA) copolymers have been prepared,

with compositions ranging from PDMAEMA to PDEGMA in
steps of 20 mol%. The phase transitions of these block
copolymers in aqueous solutions were studied in detail by
turbidimetry. Higher cloud points of the poly(DMAEMA-b-
DEGMA) with increasing amount of mol% DMAEMA in the
block copolymer were observed. Within this series of block
copolymers, a block ratio of 50:50 resulted in a double-
responsive LCST behavior. This block copolymer was further
investigated to elucidate the self-assembly behavior in detail.
Variable temperature 1H NMR spectroscopy, zeta potential,
and cryo-TEM investigations revealed the temperature induced
formation of multilamellar vesicular structures at elevated
temperature which convert into unilamellar vesicles at higher
temperatures. On the basis of the measurements, an illustrative
model for the reversible temperature-induced self-assembly is
given based on the initial formation of multilamellar vesicular
(MLV) aggregates that further assemble into unilamellar vesicle
(ULV) structures. This transition could be assigned to the
changes of the volume ratios as well as to the ionic interplay
between the block copolymers at different temperatures. In
particular, the ionic contributions of the negatively charged
PDEGMA block and the positively charged PDMAEMA block
are supposed to support the layer-by-layer assembly at 33 °C,
which favors the formation of multilamellar vesicles (MLV).
Further increase of the temperature changes again the volume
ratio between the blocks as the solubility of the second block
occurs, furthermore the second LCST transition is associated
with a changed electrostatic balance between the blocks. This
results in the preferential transition of MLVs to ULVs. The
present study assumes a facile interplay of the volume ratio and
the changes of the ionic interactions. However, both
contributions cannot be separated by the investigation of
only one polymer. In further studies, the formation of self-
assembled structures of different block copolymers and at
different pH values will be investigated to gain a deeper
understanding of the aggregation process.

The design and self-assembly of such thermoresponsive
migrating block copolymers will provide new possibilities for
delivery vehicles (for therapies), e.g., temperature-controlled

Figure 7. Temperature variable zeta potential measurements (black squares, average value of five estimations) of block copolymer B5 solution at 2.5
mg mL−1 showing two reversible temperature-induced transitions. Also the conductivity (red cycles) of the copolymer solution was measured.

Figure 8. Proposed model for the aggregation of the double
responsive transition of the block copolymer. In the figure, represent
red cycles DEGMA and green cycles DMAEMA units.
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release of drugs, and will provide important deeper insights into
the LCST transition and the formation of MLVs.
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Synthesis and characterization of dual hydrophilic random and block copolymers of acrylic acid (AA)

or methacrylic acid (MAA) with poly(ethylene glycol) (PEG) via different controlled radical

polymerization techniques are discussed. Initially, reversible addition fragmentation chain transfer

(RAFT) polymerization was employed to synthesize homo, random and block copolymers of AA and

MAA in ethanol. The polymers were characterized in detail by means of size exclusion chromatography

(SEC), 1H NMR spectroscopy, matrix assisted laser desorption ionization time of flight (MALDI-

TOF) mass spectrometry as well as MALDI-TOF MS coupled with collision induced dissociation

(CID) to identify the end groups and the repeating units. Following that, atom transfer radical

polymerization (ATRP) and RAFT polymerization were employed for the preparation of block

copolymers using a PEG macroinitiator and a PEG macro chain transfer agent. Moreover, graft

copolymers that contain oligo(ethyleneglycol) pendant groups and AA or MAA have been prepared

using the RAFT polymerization process. Additionally, selected homo or block copolymers were tested

for their water-uptake properties using a thermal gravimetrical analyzer with a controlled humidity

chamber. An advantageous behavior of the copolymers compared to the related homopolymers was

reached with the obtained ability to absorb moisture over the complete humidity range as well as to

a very high absolute water uptake.

Introduction

Water-soluble polymers with various architectures are of great

interest in the field of polymer science due to their wide range of

possible applications, i.e. in drug-delivery systems, dispersing

agents and absorbent materials.1–4 The most widely used struc-

tures to construct dual hydrophilic polymers are based on acrylic

acid (AA), methacrylic acid (MAA) and poly(ethylene glycol)

(PEG). AA and MAA can be polymerized by controlled radical

polymerization techniques whereas PEG can be obtained by

ionic polymerization.5–7 Various polymeric architectures can be

constructed using these monomers or polymers. However, the

synthesis and characterization of well-defined water soluble

polymers requires not only dedicated reaction conditions and

catalysts but also suitable analytical instruments to precisely

assign their structures.

There are two main approaches which are possible for

obtaining polymers of desired architectures. The first possibility

is the reaction of end group or side group functionalized poly-

mers with the second block or functional side group to form

block or graft copolymers, respectively. The reactions which are

nowadays employed in this route are mainly found among the so

called ‘‘click’’ reactions.8–10 The other possibility is the

construction of the desired compositions and architectures

directly by the polymerization process itself. Therefore, macro-

initiators, macromonomers or macro chain transfer agents

(macro-CTA) have to be prepared according to the targeted

polymeric structures.11 In the present study, the latter approach

was applied to obtain linear as well as graft block and random

copolymers.

Controlled radical polymerization (CRP) techniques provide

enormous possibilities for synthesizing well-defined polymers

with controlled architectures and molar masses. For instance,

reversible addition fragmentation chain transfer (RAFT) poly-

merization allows the use of acidic monomers and also the use of

polar solvents like ethanol. Therefore, this technique is the most

widely employed method to prepare water soluble polymers.12

However, the CTA has to be carefully selected depending on the

nature of the monomer.13–15

Alternatively, transition metal-catalyzed controlled radical

polymerization techniques provide good control over the poly-

merization of several monomers.16 Unfortunately, these tech-

niques, namely atom transfer radical polymerization (ATRP)

and single electron transfer controlled radical polymerization

(SET-LRP), are based on the oxidation reduction equilibrium of

the transition metal and ligand complex which can be disturbed

in the presence of acidic monomers.17–19 As a consequence, pro-

tected monomers have to be used during the polymerization.

While actual studies are, for example, investigating the

morphology of dual hydrophilic copolymers, e.g. P(AA-co-EG)

aLaboratory of Organic and Macromolecular Chemistry,
Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743 Jena,
Germany. E-mail: ulrich.schubert@uni-jena.de
bLaboratory of Macromolecular Chemistry and Nanoscience, Eindhoven
University of Technology, PO Box 513, 5600, MB, Eindhoven, The
Netherland. E-mail: c.r.becer@warwick.ac.uk
cDutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612, AB,
Eindhoven, The Netherlands

† Electronic supplementary information (ESI) available: Comparison of
measured and calculated isotopic patterns for MS-MS spectra. See DOI:
10.1039/c0py00156b

This journal is ª The Royal Society of Chemistry 2010 Polym. Chem., 2010, 1, 1669–1676 | 1669

PAPER www.rsc.org/polymers | Polymer Chemistry

D
ow

nl
oa

de
d 

on
 2

7 
N

ov
em

be
r 2

01
2

Pu
bl

is
he

d 
on

 0
8 

Se
pt

em
be

r 2
01

0 
on

 h
ttp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

0P
Y

00
15

6B

View Article Online / Journal Homepage / Table of Contents for this issue



nanofibers, like recently reported by Charleux et al.,20 the present

contribution focuses on structural investigation and the study of

the water uptake behavior.

Water uptake properties of polymers are relatively rarely

investigated, but represent a very important polymer character-

istic and play a crucial role in several applications of polymers

such as personal care products,21–23 coatings, composite

materials, cement,24 membranes and sensors,25 agriculture

products,26–30 biomedical materials,31–33 insulation of underwater

cables34 or recreational activities (e.g. artificial snow).

Researchers have focused on the modification and optimization

of polymers in terms of water absorbency, absorption–desorp-

tion rates and gel strength (in cross-linked systems).35 Moisture

uptake can be measured directly from water or from a humid

atmosphere. However, most of the reported research has focused

on the investigation of cross-linked polymer systems (super

absorbent polymers) in direct contact with water. Other

measurements require the use of conditioned desiccators and

several days to weeks of measurement time until the samples are

saturated with water molecules. Alternatively, water uptake

properties of polymeric materials can be measured by a thermal

gravimetric analyzer with a controlled humidity chamber. This

technique requires a very small amount of sample (a few milli-

grams) and the measurement can be performed in any form, such

as in powder, liquid or crosslinked gel.

Different strategies to synthesize dual hydrophilic polymers in

various architectures were studied, as illustrated in Scheme 1.

Homopolymers, block and random copolymers of AA andMAA

have been prepared using RAFT polymerization. Moreover,

graft copolymers were prepared using oligo(ethylene glycol)

acrylate (OEGA) and AA orMAA. Furthermore, macroinitiator

and macro chain transfer agents were synthesized in order to use

those in the block copolymerization. ATRP and RAFT poly-

merization were employed to synthesize PEG-b-AA and PEG-b-

MAA block copolymers. Finally, these polymers are tested for

their water uptake properties.

Experimental section

Materials

Poly(ethylene glycol) monomethyl ether (mPEG1k: CH3-PEG22-

OH,Mn ¼ 1000 g mol�1, PDI ¼ 1.07 and mPEG2k: CH3-PEG44-

OH, Mn ¼ 2000 g mol�1, PDI ¼ 1.08) were purchased from

Sigma-Aldrich. The monomers acrylic acid (AA), methacrylic

acid (MAA), tert-butyl acrylate (tBuA) and oligo(ethylene

glycol) acrylate (Mn ¼ 480 g mol�1) (OEGA480) were purchased

from Sigma-Aldrich and passed through a column with inhibitor

remover by Sigma-Aldrich before using. CuBr, N,N0,N0,N00,N0 0-
pentamethyl diethylene triamine (PMDETA) and ethyl 2-bromo-

isobutyrate (EtBriB) were purchased from Sigma-Aldrich and

used as received without further purification. 2-(Butylthio-

carbonothioylthio) propanoic acid (BPTC) and 2-cyano-2-

butyldithiobenzoate (CBDB) were synthesized according to the

literature and used without further purification.36,37 Azobis(iso-

butyronitrile) (AIBN) was received from Sigma-Aldrich and

recrystallized from methanol before using. Other solvents and

reagents were used as received without further purification.

Instrumentation

1H NMR spectra were recorded in CDCl3 or DMSO-d6 on

a Bruker AC 300MHz using the residual solvent resonance as an

internal standard. Size exclusion chromatography (SEC) was

performed on a Shimadzu system equipped with a SCL-10A

system controller, a LC-10AD pump, a RID-10A refractive

index detector and both a PSS Gram30 and a PSS Gram1000

column in series, whereby N,N-dimethylacetamide (DMAc) with

5 mmol lithium chloride (LiCl) was used as an eluent at

1 mL min�1 flow rate and the column oven was set to 60 �C. The
system was calibrated with polystyrene (370 g mol�1–

67 500 g mol�1) and poly(methyl methacrylate) (2000 g mol�1–

88 000 g mol�1) standards, respectively. For the measurement of

the matrix assisted laser desorption/ionization (MALDI) spectra

an Ultraflex III TOF/TOF (Bruker Daltonics, Bremen,

Germany) instrument was used. The instrument was equipped

with a Nd:YAG laser and a collision cell. All spectra were

measured in the positive reflector or linear mode. The instrument

was calibrated prior to each measurement with an external

PMMA standard from PSS Polymer Standards Services GmbH

(Mainz, Germany). Monomer conversions were determined by

gas chromatography (GC) using anisole as internal standard.

The number-average molar mass (Mn) and the polydispersity

index (PDI) were determined by size-exclusion chromatography

(SEC) using chloroform or N,N-dimethyl acetamide (DMAc) as

solvents depending on the solubility behavior of the samples. The

water-uptake measurements of the polymers were investigated

on a Q5000 SA thermogravimetric analyzer from TA Instru-

ments containing a microbalance in which the sample and

reference pans were enclosed in a humidity and temperature

controlled chamber. The temperature in the Q5000 SA was

controlled by Peltier elements. Dried N2 gas flow (200 mL min�1)

was split into two parts, of which one part was wetted by passing

it through a water-saturated chamber. The desired relative

humidity (RH) for the measurements could subsequently be

obtained by mixing proper proportions (regulated by mass-flow

controllers) of dry and wet stream.

Synthesis

Homopolymerization of AA and MAA via RAFT. AA

and MAA were homopolymerized separately by RAFT

Scheme 1 A schematic representation of the monomers used and the

block and random copolymer architectures obtained by different

synthetic approaches.
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polymerization. The general procedure was introduced as

follows. A mixture 288 mg AA or 344 mg MAA (4 mmol) with

6.6 mg AIBN (0.04 mmol) and 38 mg CTA (0.16 mmol BPTC for

PAA or 0.16 mmol CBDB for PMAA) was dissolved in 1.5 mL

absolute ethanol and 0.2 mL anisole in a capped vial leading to

a final monomer concentration of 2 mol L�1. The reaction

mixture was bubbled with argon for half an hour and the

t0-sample was withdrawn for the subsequent GC measurements.

The reaction solution was placed in a preheated oil bath at 70 �C.
After the desired period of time the mixture was cooled to

ambient temperature and a tend-sample for GC was taken. The

solution was diluted by adding 2 mL ethanol and precipitated

into 75 mL ethyl acetate. The solid polymer obtained was dried,

washed with diethyl ether and dried again until the mass of the

polymer was constant.

Block copolymerization of MAA and AA via RAFT. The

PMAA homopolymer was synthesized by RAFT polymerization

as described above. To 0.288 mg AA (4 mmol) the prepared

PMAAmacro-CTA was added to such an extent that the desired

monomer/CTA ratio was reached. Furthermore, 0.25 eq. AIBN

relative to the PMAA macro-CTA (1 eq.) were added, and the

whole mixture was diluted in 3.3 mL ethanol and 0.4 mL anisole

leading to a final AA concentration of 1 mol L�1. The reaction

mixture was bubbled with argon for half an hour, and the

t0-sample was withdrawn for the subsequent GC measurements.

The reaction solution was placed in a preheated oil bath at 70 �C.
After the desired period of time, the mixture was cooled to

ambient temperature and a tend-sample for GC was taken. The

solution was precipitated into 75 mL ethyl acetate. The solid

polymer obtained was dried, washed with diethyl ether and dried

again until the mass of the polymer was constant.

Random copolymerization of MAA and AA via RAFT. The

P(MAA-r-AA) random copolymers were prepared by RAFT

polymerization according to the general procedure as follows.

AA and MAA were mixed in a desired ratio leading to a final

total amount of monomer of 4 mmol. With 3.3 mg AIBN

(0.02 mmol) and 16 mg CBDB (0.08 mmol), the monomers were

dissolved in 1.5 mL absolute ethanol and 0.2 mL anisole in

a capped vial leading to a final total monomer concentration of

2 mol L�1. The reaction mixture was bubbled with argon for half

an hour and the t0-sample was withdrawn for the subsequent GC

measurements. The reaction solution was placed in a preheated

oil bath at 70 �C. After the desired period of time, the mixture

was cooled to ambient temperature, and a tend-sample for GC

was taken. The solution was diluted by adding 2 mL ethanol and

precipitated into 75 mL ethyl acetate. The solid polymer

obtained was dried, washed with diethyl ether and dried again

until the mass of the polymer was constant.

Homopolymerization of OEGA480 via RAFT. OEGA was

polymerized by RAFT polymerization. A mixture of 480 mg

OEGA480 (1 mmol), 29.8 mg BPTC (0.125 mmol) and 2 mg

AIBN (0.013 mmol) were dissolved in 2 mL absolute ethanol in

a capped vial leading to a final monomer concentration of

0.5 mol L�1. The reaction mixture was bubbled with argon for

half an hour and the t0-sample was withdrawn for the subsequent

SEC measurements. The reaction solution was placed in

a preheated oil bath at 70 �C. After 5 h, the mixture was cooled to

ambient temperature and a tend-sample for GPC was taken. The

solution was precipitated into cold diethyl ether.

Random copolymerization of AA and OEGA480 via RAFT. A

mixture of AA (35 or 70 eq.), OEGA480 (5 eq.), BPTC (1 eq.) and

AIBN (0.25 eq.) was dissolved in absolute ethanol with a total

monomer concentration of 4 mol L�1. The reaction solution was

purged with argon for 60 min and placed in a preheated oil bath

(70 �C). After 6 h the reaction was stopped and the solution was

precipitated into cold ethyl acetate. The final polymer was

obtained after washing with cold diethyl ether to remove ethyl

acetate residues. It was dried until the mass of the polymer was

constant. The determination of the conversion were done by GC

using anisole as internal standard.

Block copolymerization of AA and OEGA480 via RAFT. These

block copolymers were prepared in a sequential monomer

addition process using the RAFT method, whereby AA was

polymerized at first resulting in a macro chain transfer agent. To

a mixture of BPTC (1 eq.) and AIBN (0.25 eq.) AA (35 or 70 eq.)

was added and the mixture was dissolved in absolute ethanol in

a capped vial with a total monomer concentration of 3.5 mol L�1.

The reaction solution was purged with argon for 60 min and

placed in a preheated oil bath (70 �C). After 5 h OEGA480

([OEGA480]0 ¼ 0.5 mol L�1) was added via a syringe to this

capped vial (OEGA480 : PAA : AIBN ¼ 5 : 1 : 0.25) and the

solution was further heated for 6 h. The polymer was isolated by

precipitation into cold ethyl acetate and washed with diethyl

ether to remove the residual monomer and solvent. The polymer

was dried until the mass of the sample was constant.

Synthesis of PEG macroinitiator for ATRP (PEG-EBriB). 2-

Bromo-2-methyl-propionate end-functionalized mPEG1k was

synthesized by reacting 2-bromo-2-methyl-propionyl bromide

and mPEG1k in the presence of triethylamine at room tempera-

ture in dry THF.
1H NMR (300 MHz, CDCl3) d ¼ 4.31 (m, CH2–OCO), 3.63

(m, O–CH2), 3.36 (m, CH3–O), 1.92 (s, (CH3)2CBr) ppm.

Synthesis of PEG macro chain transfer agent for RAFT (PEG-

BPTC). mPEG2k end-functionalized with BPTC was synthesized

by reacting 2-(butylthiocarbonothioylthio) propanoyl benzo-

triazolid and mPEG2k in the presence of triethylamine in dry

THF.
1H NMR (300 MHz, CDCl3) d ¼ 4.73 (CH–SCS2), 4.20 (CH2–

OCO), 3.55 (CH2–O), 3.28 (CH3–O), 3.26 (CH2–SCS2), 1.59

(CH2(CH2)2), 1.50 (CH3–CH), 1.33 (CH2–CH3), 0.84 (CH2–

CH3) ppm.

Synthesis of PEG-b-AA via ATRP. Poly(ethylene glycol-block-

tert-butyl acrylate) (P(EG-b-tBA)) was synthesized by ATRP.

0.058 mL PMDETA (48 mg, 0.28 mmol) and 40 mg CuBr

(0.28 mmol) were dissolved in 2.5 mL anisole and flushed with

argon. After the formation of the complex 200 mg (0.2 mmol)

PEG1k-EBriB (Mn ¼ 1040 g mol�1 according to MALDI-TOF

MS) and 1.45 mL tBuA (1.28 g, 10 mmol) were added. The

reaction mixture was further degassed with argon, and a t0-sam-

ple for GC was taken via syringe. The closed vial was placed in

This journal is ª The Royal Society of Chemistry 2010 Polym. Chem., 2010, 1, 1669–1676 | 1671
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a preheated oil bath at 90 �C and reacted for 4 h. Afterwards,

a tend-sample for GC was withdrawn and the mixture was passed

over a short Al2O3 column to remove the copper catalyst and

precipitated into a methanol–water mixture. The dried polymer

was stirred with 5 equivalence of trifluoroacetic acid relative to

the tert-butyl functionalities for 24 h to cleave the tert-butyl

groups that will finally yield P(EG-b-AA).

Synthesis of P(EG-b-AA) via RAFT. Poly(ethylene glycol-

block-acrylic acid) (P(EG-b-AA)) was synthesized by RAFT

polymerization. In a capped vial, a mixture of 200 mg PEG2k-

CTA (0.1 mmol) (Mn¼ 2000 g mol�1 according toMALDI-TOF

MS), 343 mL AA (360 mg, 5 mmol) and 3.3 mg AIBN

(0.02 mmol) was dissolved in 0.250 mL anisole and 1.9 mL

ethanol. After flushing the solution with argon for 30 min,

a t0-sample for GC was taken and the mixture was placed in

a preheated oil bath at 70 �C and reacted for 5 h. The reaction

solution was cooled to ambient temperature, and a tend-sample

for GC was withdrawn. Subsequently, 2.5 mL ethanol were

added and the solution was precipitated into cold diethyl ether.

Results and discussion

The synthesis of polymers based on AA or MAA via CRP

techniques can be challenging due to the acidic nature, as

described previously. Therefore, the RAFT polymerization was

preferred over ATRP to obtain the desired polymers. However,

a dedicated CTA is necessary to successfully polymerize both

acrylic and also methacrylic monomers. CBDB is an adequate

CTA to reach control in the present case and allowed the prep-

aration of the desired random and block copolymers of AA and

MAA. The obtained SEC results of homopolymers, random-

and block copolymers of AA and MAA are shown in Fig. 1.

The relatively similar structures of AA and MAA raise the

question about the possibilities to determine the compositions of

the obtained polymers. An indirect approach is the calculation of

molar mass and polymer composition in correlation to the

monomer conversion during the polymerization which can be

determined by GC. On the other hand, 1H NMR spectroscopy

allows to distinguish between both compounds in the final

polymer; thereby a selective and quantitative analysis of the real

polymer composition can be performed (Fig. 2).

The conversion of the monomers were calculated using both

GC and 1H NMR spectroscopy. This allows the direct calcula-

tion of the polymer composition. The comparison of the

obtained values using both approaches shows a rather good

agreement in most cases. It has to be considered that possible

solvent residues, in particular those with alkyl functionalities,

can lead to an overestimation of the MAA content using the 1H

NMR technique.

The versatility of the RAFT technique allowed the synthesis of

various polymers with different compositions. A comparison of

the prepared polymers including their characteristic data

obtained by several analytical techniques, i.e. GC, SEC, and 1H

NMR spectroscopy, is provided in Table 1.

SEC is a widely used technique in polymer analysis. The

obvious discrepancy between the theoretical molar masses and

the experimental values in the current case is caused by the

significantly larger hydrodynamic volume of the polymers

prepared in comparison to the polymer standards used for the

calibration of the SEC (PS calibration). A route to circumvent

this problem is the use of a direct molar mass determination

technique, i.e. MALDI-TOF mass spectrometry. Since the exact

determination of polymeric structures is one of the most

important goals in polymer research, this technique represents

a very powerful tool. The combination of a mass spectrometric

analysis of a polymer, providing a molar mass distribution, with

the subsequent fragmentation of single and distinct macro-

molecules offers a great possibility to analyze polymers down to

their precise structure and composition. The prerequisite for such

a tandem mass spectrometric analysis is the selective admittance

of already desorbed and ionized molecules into a gas filled

collision cell. Further fragmentation occurs inside, which is

kinetically induced by the collision gas (argon or nitrogen). Fig. 3

shows the analysis of the selected polymers byMALDI-TOFMS

and tandem-MS technique. However, besides the stated advan-

tages, one should be aware of potential disadvantages of the

MALDI-TOF MS technique. Due to its rather harsh ionization

method, fragmentations can occur during the measurement

process itself leading to fragments not representing the real

polymer structure. Furthermore, possible ionization biases can

make an accurate molar mass determination difficult. MS
Fig. 1 SEC traces of PAA (top left), P(MAA-r-AA) (top right) and

P(MAA-b-AA) (bottom left).

Fig. 2 1H NMR spectra (300 MHz, CDCl3) of P(MAA) (top) and

P(MAA-co-AA) (bottom) with the corresponding schematic represent-

ation of the polymer structures.
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techniques applying softer ionization methods, e.g. electron

spray ionization (ESI), can add further insights.38

The MALDI-TOF mass spectrum of the homopolymer

allows the assignment of molecular structures corresponding

to the obtained distributions. The distance between the signals

of each distribution corresponds to the molar mass of the

monomer unit. The main distribution represents the expected

structure plus the charge carrying sodium ion. The three

minor signal distributions are probably caused by fragmen-

tations during the MALDI measurement itself. One of these

fractions can for example be assigned to the expected struc-

ture after the loss of the n-butyl substituent from the end-

group.

Furthermore, tandem mass spectrometry is possible providing

an even deeper insight into the polymeric structure. The major

signals in the high molar mass region can be assigned to the

desired structure after losing H2O (�18) and CO2 (�44) due to

anhydrite formation, decarboxylation reactions and combina-

tions of both.39 The two important signals marked as �I and �E

represent the polymer after loss of the initiator group (�I) or the

chain transfer agent end group (�E). The D72 distribution in the

middle mass region represents the different chain lengths, which

can be formed by fragmentation of different amounts of

repeating units of AA.

The clear structure of the homopolymer mass spectra is lost in

the case of the random and block copolymers. The large amount

of possible monomer combinations and, thereby, the wide range

of resulting molar masses leads to complex spectra. Single signal

assignments are no longer possible.

The resulting Mn values correspond to the expected molar

masses calculated from the monomer. In case of the block

copolymer, residual homopolymer of the unconverted first block

is visible on the low molar mass shoulder of the distribution.

However, it is not possible to draw any quantitative conclusions

concerning the amount of remaining homopolymer from the

MALDI-TOF mass spectra.

Dual hydrophilic block copolymers composed of EG and AA

are a versatile polymer class suitable for many applications, e.g.

to control structure and size of mineral particles.40 The synthetic

approach mainly utilized towards these polymers up to now is

the synthesis of a macro-initiator suitable for ATRP by an

esterification reaction. Subsequently a protected acrylic mono-

mer, e.g. t-butyl acrylate (t-BuA), is polymerized onto this

macroinitiator, providing the desired poly(EG-b-AA) after

a deprotection step.

A second possibility, with the advantage of avoiding the

deprotection step, is the synthesis of a macro chain transfer agent

applicable for a RAFT polymerization of acrylic acid. A visu-

alization of both synthetic approaches is provided in Scheme 2.

In the present study, both methods were applied to obtain P(EO-

b-AA) block copolymers. In Table 2, the characteristic data for

all polymers prepared using both approaches are summarized.

The macroinitiator synthesis as well as the polymerization and

deprotection steps could be followed via MALDI-TOF mass

spectrometry. The resulting spectra including the assigned

structures are provided exemplarily for the ATRP approach in

Fig. 4.

The main distribution could be assigned to the desired product

plus a sodium ion. Also the second largest distribution represents

an acceptable product with the only difference being a hydroxyl

end-group at the second chain-end of the macroinitiator. Only

a very small educt specific distribution is observed. An overlay of

the MALDI-TOF mass spectra of the macroinitiator and its

block copolymer with tBuA before and AA after deprotection

illustrates the controlled synthesis of the block copolymer as well

as its subsequent deprotection.

The approach via the RAFT-polymerization enabled

the synthesis of comparably well-defined polymers. The

Table 1 Representative data of homopolymers (H), random (R) and block (B) copolymers of AA and MAA synthesized via RAFT polymerization

Run MAA AA MAAa AAa Mn,theo
b Mn,SEC

c PDIc MAA : AA MAA : AAd

(feed) (feed) (conv.) (conv.) /g mol�1 /g mol�1 (GC) (1H NMR)

H1 — 30 — 0.84 2053 4300 1.19 0 : 1 0 : 1
H2 25 — 0.54 — 1396 3600 1.31 1 : 0 1 : 0
R1 20 48 0.96 0.60 3960 7900 1.26 0.39 : 0.61 0.40 : 0.60
R2 25 25 0.87 0.55 3099 6400 1.25 0.61 : 0.39 0.60 : 0.40
R3 11 67 0.88 0.43 3146 6900 1.21 0.26 : 0.74 0.33 : 0.67
B1 18 35 0.99 0.50 3027 6000 1.34 0.50 : 0.50 0.71 : 0.29
B2 20 25 0.95 0.45 2679 4300 1.39 0.63 : 0.37 0.67 : 0.33
B3 20 60 0.96 0.3 3182 7300 1.28 0.53 : 0.47 0.55 : 0.44

a Conversion values were determined by GC. b Calculated according to formula (Mn(theo.) ¼ ([M]/[CTA]� conv. �MMonomer) +MCTA).
c Calculated

according to PS standards. d The ratios were calculated from the corresponding peaks shown in Fig. 2.

Fig. 3 Representative MALDI-TOF mass spectra of PAA (H1) (top

left), P(MAA-r-AA) (R3) (bottom left) and P(MAA-b-AA) (B3) (bottom

right). Tandem MS spectrum of PAA (top right).

This journal is ª The Royal Society of Chemistry 2010 Polym. Chem., 2010, 1, 1669–1676 | 1673
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MALDI-TOF mass spectra are provided in Fig. 5. The starting

material and product resulted in the same molar mass and are

thereby not distinguishable by MALDI-TOF/MS. Nevertheless,

the desired structure could be proven by tandem MS analysis

leading to a MS spectrum of the product which is different to

mPEG-OH.

The SEC analysis revealed once more the difference in

hydrodynamic volume between polymers containing acrylic acid

and the usual standard polymers used to calibrate the SEC. Fig. 6

visualizes the SEC results obtained for the P(EG-b-AA) poly-

mers in comparison to their precursors prepared by the ATRP

and the RAFT approach. To obtain comparable results PS-

calibrations were used to calculate molar masses and PDI values.

Nevertheless nearly quantitative conversions between different

states of the block copolymer synthesis could be observed using

SEC analysis.

The routes described led to linear block copolymers P(EG-b-

AA). The copolymerization of AA and oligo(ethylene glycol)

Table 2 Characteristic data of the polymers which were included in the
synthesis of P(EG-b-AA) via the ATRP or the RAFT route, respectively

Type Mn
a PDIa Mp

b Mn
c Comp.d

/g mol�1 /g mol�1 /g mol�1 EG : A.

mPEG1k 1700 1.06 1000 — —
mPEG-Br 2100 1.07 1040 — 1 : 0
P(EG-b-tBuA) 4100 1.09 5050 5250 0.32 : 0.68
P(EG-b-AA) 8500 1.22 3100 3390 0.33 : 0.67
mPEG2k 1950 1 : 0
mPEG-CTA 2900 1.08 2000 2130 1 : 0
P(EG-b-AA) 12 000 1.27 5300 5480 0.49 : 0.51

a Determined by SEC analysis according to PS standards. b Determined
byMALDI-TOF/MS analysis. c Determined by 1HNMRmeasurements.
d The ratios were calculated from the corresponding peaks.

Fig. 4 MALDI-TOF mass spectrum of the PEG macroinitiator (top

left), its magnification (bottom left) and an overlay of the MALDI-TOF

mass spectra of macro-initiator, P(EG-b-tBuA) and P(EG-b-AA)

(bottom right) with a schematic representation of the assigned structures

(top right).

Scheme 2 A schematic representation of the ATRP macroinitiator approach (top) and the RAFT macro chain transfer agent approach (bottom)

towards P(EG-b-AA) block copolymers.

Fig. 5 MALDI-TOF mass spectrum of the mPEG macro-CTA (top

left), magnification of the main distribution (bottom left) and an overlay

of the MALDI-TOF mass spectra of the macro chain transfer agent and

the prepared P(EG-b-AA) (bottom right) with a schematic representation

of the assigned structures (top right).
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acrylate (Mn ¼ 480 g mol�1) (OEGA480) will lead to graft block

and random copolymers. The chosen technique to obtain these

polymers was the RAFT polymerization using BPTC as CTA

and AIBN as radical source.

The resulting polymers including characterizing data obtained

by SEC and 1H NMR measurements are summarized in Table 3.

The specific separated signals obtained by 1H NMR spec-

troscopy enabled the determination of the relative and even the

absolute polymer composition as seen in Fig. 7. The accuracy of

the determination of the absolute composition is of course

dependent on a quantitative end-group functionalization.

Analysis via SEC revealed narrow molar mass distributions

which led to different molar mass values due to the discrepancy

in the hydrodynamic volume relative to the polystyrene stand-

ards used for calibration.

To investigate the water uptake behavior of the prepared

polymers, thermogravimetric analysis of dried polymer samples

were performed under changing humidity. In previous studies the

water uptake of several linear polymers including PEG, PAA and

poly(sodium acrylate) was investigated and reported.4 These

measurements showed the remarkable difference of the absorp-

tion behavior of pure PAA and the sodium salt of PAA as well as

PEG. The highest water uptake at 90% relative humidity was

observed for the PAA sodium salt (88%) and PEG (73%) whereas

pure PAA could take up only 33%. In difference to the other two

polymers, PAA absorbs water during the whole range of air

humidity (10 to 90%) while PEG and PAA sodium salt do not

absorb relevant amounts of water before a humidity level of at

least 40% (PAA sodium salt) or even 70% (PEG) is reached.

In the present work the water uptake of P(MAA-b-AA)

copolymers and P(EG-b-AA) was investigated. The results are

shown in Fig. 8. While the ratio of MAA and AA in the

corresponding block copolymers seems to have only a small

influence, the total water uptake is surprisingly high in particular

for B3 (59% at 90% humidity).

An interesting result was observed in case of the P(EG40-b-

AA42) block copolymer. The high water uptake of PEG at high

humidity levels could be combined with the early starting uptake

of water of PAA at lower humidity levels. Therefore, the

resulting combined water uptake behavior could overcome the

disadvantages of each homopolymer leading to the ability to

absorb moisture over the complete humidity range as well as to

a very high absolute water uptake level.

Conclusions

Dual hydrophilic copolymers consisting of acrylic acid and

methacrylic acid could be synthesized successfully. Random as

well as block copolymers were prepared by controlled radical

polymerization, i.e. the RAFT technique. The materials obtained

were characterized by multiple analytical techniques like SEC,

MALDI-TOF mass spectrometry, 1H NMR spectroscopy, and

water uptake measurements.

Well-defined dual hydrophilic linear and graft block copoly-

mers based on acrylic acid and poly(ethylene glycol) could be

prepared by RAFT and ATRP. The synthesized precursors, i.e.

Fig. 6 Overlay of SEC traces of polymers obtained from the ATRP

approach (P(EG-b-AA) (——), P(EG-b-tBuA) ( ), mPEG macroinitiator

( )) (left) and the ones obtained during the RAFT approach (P(EG-b-

AA) (——) and mPEG macro-CTA ( )) (right).

Table 3 Characteristic data of the block (B) and random (R) copoly-
mers of AA and OEGA480

Sample Feed Mn (theor.)
a Mn

b (SEC) PDIb Comp.c

/g mol�1 /g mol�1 (SEC) (1H NMR)

POEGA480 0/8 3800 3000 1.15 —
R4 35/5 4800 6400 1.28 0.81 : 0.19
R5 45/5 5700 7100 1.21 —
R6 70/5 7700 8100 1.38 0.91 : 0.09
B4 35/5 4800 6000 1.20 0.87 : 0.13
B5 45/5 5700 6600 1.25 —
B6 70/5 7700 11 000 1.20 0.93 : 0.07

a Calculated according to formula (Mn(theor.) ¼ ([M]/[CTA] � conv. �
MMonomer) + MCTA).

b Calculated according to PS standards. c The
ratios were calculated from the corresponding peaks shown in Fig. 7.

Fig. 7 1H NMR spectrum for P(AA-co-OEGA480) with the corres-

ponding schematic representation of the structure and the signal

assignments (300 MHz, DMSO-d6).

Fig. 8 Water uptake measurements of P(MAA-b-AA) with varying

composition and P(EG-b-AA).
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macroinitiator and macro chain transfer agent, and the final

block copolymers were characterized by SEC analysis, 1H NMR

spectroscopy, and MALDI-TOF mass spectrometry. Addition-

ally, the successful synthesis of well-defined block and random

copolymers consisting of acrylic acid and oligo(ethylene glycol)

acrylate led to dual hydrophilic copolymers of branched archi-

tecture. The synthesized polymers were characterized by 1H

NMR spectroscopy and size exclusion chromatography (SEC).

During further investigations of the water uptake behavior of

several selected polymers, an interesting water absorbing hybrid

behavior could be observed for the P(EG-b-AA) block

copolymer. The disadvantage of PEG, which is not able to

absorb moisture below 70% humidity in a larger amount, could

be overcome while keeping the final absolute water uptake at

a high level of above 70%.
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ABSTRACT: The current investigation describes in detail the

influence of the polymer molar mass as well as polymer-sol-

vent interactions on the formation of nanoparticles using the

nanoprecipitation methodology. For this purpose, a homolo-

gous series of poly(methyl methacrylate)s with molar masses

ranging from 7,700 to 274,000 g mol�1 was prepared. Subse-

quently nanoprecipitation was performed in an automated and

systematic manner using liquid handling robots and a variation

of different initial concentrations of the polymers and solvent/

nonsolvent ratios. To elucidate information about the polymer

behavior in the solvents used for the nanoprecipitation proce-

dure (acetone, tetrahydrofuran), intrinsic viscosity measure-

ments were performed. The nanoparticle formulations were

examined in terms of particle size and size distribution, particle

shape as well as zeta-potential. The conditions for the prepara-

tion of stable and uniform nanoparticles, regardless of molar

mass and hydrodynamic volume of the initial polymer, were

determined. VC 2012 Wiley Periodicals, Inc. J Polym Sci Part A:

Polym Chem 50: 2906–2913, 2012

KEYWORDS: nanoparticles; nanoprecipitation; molar mass; PMMA;

synthetic polymers; ultracentrifugation; viscosity

INTRODUCTION Polymeric nanoparticles have been exten-
sively studied in the last decades as potential drug delivery
devices. Nanoparticle formation using the nanoprecipitation
method1 is nowadays a commonly used technique. Among
the numerous other manufacturing methods, it is known to
be a very simple and convenient way for the production of
polymeric nanoparticles with desired sizes.2,3 A variety of
different polymers can be used, such as poly(lactide-co-glyco-
lide),4 poly(e-caprolactone),5 poly(acrylics), poly(styrene),
poly(methyl methacrylat) (PMMA), and its different copoly-
mers as well as various amphiphilic block copolymers.6–9

Nanoprecipitation represents a process based on the diffu-
sion of the organic solution (i.e., polymer solvent) into an
aqueous phase leading to the precipitation of the polymer
into small colloidal particles. The formation of nanoparticles
by the process complies with the nucleation theory and con-
sists of several steps like particle nucleation, molecular
growing, and aggregation.10,11 Stable nanoparticle suspen-
sions are only formed applying specific conditions, which
promote a supersaturation of polymer molecules in a ternary
polymer/solvent/nonsolvent system and shifts it into a
metastable region (Ouzo region).9,11–13 This region is located

between the binodal (miscibility limit curve) and spinodal
(stability limit curve) on a three component phase diagram
based on the hydrophobic solute, the solvent, and the non-
solvent. The resulting properties of the particles primarily
depend on the polymer behavior in the organic phase but
also on the nature and ratio of the external phase as well as
on concentration and nature of the used surfactants.14–18 It
could be shown repeatedly that the particle size is strongly
affected by the initial polymer concentration: higher concen-
trations lead to an increasing number of molecules per vol-
ume of the solvent, which, in turn, leads to the formation of
larger particles. At the same time, the ratio between solvent
and nonsolvent was found to have a more complex, nonlin-
ear influence on the size of the particles.9,18,19 Thorough
investigation of the molar mass influence on the production
of biodegradable nanoparticles based on poly(lactic acid)
was first presented by Legrand et al.16 This study was
designed to determine in detail and to extend the under-
standing of the effect of the polymer characteristics, in par-
ticular the molar mass, on the nanoprecipitation results of
synthetic polymers. For this purpose, PMMA samples were
investigated in a wide range of molar masses (between Mw

VC 2012 Wiley Periodicals, Inc.
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¼ 7,700 and 274,000 g mol�1) to obtain information about
the polymer-solvent interactions and the size of the particles
formed. The investigations were carried out in two solvents,
namely acetone and tetrahydrofuran (THF). Nanoparticles
were prepared in a reproducible and systematic manner by
using a liquid handling robot.19 All formulations were subse-
quently characterized using dynamic light scattering (DLS)
for a fast size determination. In addition, selected samples
were studied by analytical ultracentrifugation (AUC) and
scanning electron microscopy (SEM).

EXPERIMENTAL

Synthesis of the PMMA Polymers
Methyl methacrylate (MMA) and 2-cyano-2-propyl dithioben-
zoate (CPDB) were purchased from Sigma-Aldrich. MMA was
purified by treating the monomer with inhibitor-remover
(Aldrich). The initiator 2,20-azobisisobutyronitrile (AIBN)
was recrystallized from methanol prior to use. All analytical
grade solvents were purchased from commercial sources
(Fluka, Aldrich, Alfa Caesar and Acros Organics).

The following procedure illustrates the standard conditions
for the reversible addition-fragmentation chain transfer
(RAFT) polymerization of MMA.20,21 The desired amount of
MMA (3.0 mL, 28.12 mmol) was transferred into a reaction
vial and dissolved in ethanol (1 mL). Thereafter, the calcu-
lated volumes of stock solutions of CPDB (5.19 mg, 0.023
mmol) as well as AIBN (1.92 mg, 0.012 mmol) in ethanol
were added. Before closing the vial, the reaction solution
was purged with a flow of argon for at least 30 min. Subse-
quently, the reaction was performed in an oil bath at 70 �C
(see Table 1 for exact reaction times, MMA concentration
and [M]/[chain transfer agent, CTA] ratios). After the poly-
merization, acetone was added to the final mixtures, and the
polymers were then manually precipitated in cold methanol.
The polymers were dried under reduced pressure at 40 �C.

Size-Exclusion Chromatography
Size-exclusion chromatography (SEC) was performed using
an Agilent1200 series system, a G1310A pump, a G1362A re-
fractive index detector and both a PSS Gram30 and a PSS
Gram1000 column in series, whereby N,N-dimethylacetamide
with 5 mmol lithium chloride was used as an eluent at 1 mL
min�1 flow rate. The column oven was set to 40 �C. The sys-
tem was calibrated with PMMA standards of narrow
dispersity.

Sedimentation Velocity Experiments
Sedimentation velocity experiments were performed with a
ProteomeLab XLI Protein Characterization System analytical
ultracentrifuge (Beckman Coulter, Brea, CA), using conven-
tional double-sector Epon centerpieces of 12-mm optical
path length and a four hole rotor. Rotor speed was 3,000 to
20,000 rpm, depending on the sample. Cells were filled with
420 lL of nanoparticle suspension at the initial concentra-
tion and 440 lL of solvent (H2O). The nanoparticle suspen-
sions were used without further purification. Before the run,
the rotor was equilibrated for �2 h at 20 �C in the centri-
fuge. Sedimentation profiles were obtained every 15 s by in-

terference optics. For the analysis of the particle size distri-
bution, the sedimentation velocity data were treated by ls-
g*(s) analysis with a Tikhonov–Phillips regularization proce-
dure (confidence level of 0.9 was used) implemented into
the Sedfit program. This method is based on a boundary
modeling of a superposition of sedimentation profiles of
ideal nondiffusing particles.22 For the appropriate size deter-
mination by sedimentation velocity, the knowledge of the
partial specific volume is essential. A value of m ¼ 0.78 6
0.01 cm3 g�1 was used, which was determined previously
for PMMA and its copolymers.8

DLS and Zeta Potential
DLS was performed on the DynaPro Plate Reader Plus
(Wyatt Technology Corporation, Santa Barbara, CA) equipped
with a 60 mV linearly polarized gallium arsenide (GaAs)
laser at 832.5 nm and operating at an angle of 156�. The
data were analyzed with the Dynamics software ver. 6.10 by
the method of cumulants. The percent of polydispersity is
given by,

% Pd ¼ 100
l2
l21

(1)

where l1 and l2 are the first and the second order cumu-
lant, respectively.

For selected samples, the determination of the particles size
and zeta potential measurements was performed using a
Zetasizer Nano ZS (Malvern instruments, Malvern, UK). In
these measurements, a laser beam at 633 nm was used and
a scattering angle of 173�. Each sample was measured in
triplicate at 25 �C for 30 s in a low volume polycarbonate
cell. For this purpose, 20 lL nanoparticle suspensions were
diluted with 1 mL demineralized, filtered water. The mean
particle size was approximated as the effective (Z average)
diameter obtained by the cumulant method.

SEM
The nanoparticle suspensions were diluted with filtered,
deionized water to a final concentration of 1 mg mL�1. They
were characterized using a LEO-1450 VP SEM (Leo, Oberko-
chen, Germany), operating at 10 kV. One droplet (15–20 lL)
of the suspension was placed on a mica surface and lyophi-
lized for 3 h. Finally, the sample was coated with platinum,

TABLE 1 Selected Characterization Data of the Obtained PMMA

Polymers

Sample

[M]:[CTA]:

[AIBN]

Conc.

mol L�1

Time,

h

Mw, SEC

g mol�1 PDISEC DPSEC

1 40:1:0.25 2.0 13 7,700 1.13 66

2 200:1:0.25 2.0 13 20,200 1.17 170

3 400:1:0.25 2.0 20.5 39,700 1.26 312

4 1,200:1:0.5 7.03 16 106,000 1.25 846

5 4,000:1:0.5 7.03 16 274,000 1.34 2,035
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using a BAL-TEC SCD005 sputtering device (Balzers, Lichten-
stein) and applying a current of 60 mA for 80 s.

Viscosity Measurements
Viscosity measurements were conducted using a AMVn
(Anton Paar, Graz, Austria) rolling ball viscometer with a
manually filled capillary with an internal diameter of 0.9
mm. The viscosities of the solution, g, and of the solvent, g0,
were obtained from the rolling times of the steel ball, meas-
ured at three inclination angles (30�, 50�, and 70�) of the
capillary. The viscosity of each solution was calculated from
the average of six measurements; the measurements were
conducted at 20 �C.

Preparation of the Nanoparticle Suspensions
Nanoparticles were prepared by the nanoprecipitation
method from a stock polymer solution in acetone or THF at
different concentrations of the polymers. The initial polymer
solutions were filtered via a 0.45 lm filter. To formulate the
particles in a 96-well microtiter plate, a pipetting robot (Fas-
Trans, Analytik Jena GmbH, Jena, Germany) was used. Nano-
precipitation was performed in an automated way by the
fast injection of the polymer solution into a well containing
different amounts of water depending on the solvent/nonsol-
vent ratio. The effective final volume of the well was 300 lL.
The nanosuspension formed was then mixed three times by
aspiration and release of a volume of 200 lL. Subsequently,
the plate was placed in a fume hood, where the organic
solvent was completely removed from the suspension by
evaporation.

RESULTS AND DISCUSSION

Synthesis and Characterization of the Polymers
A range of PMMA samples were synthesized using the RAFT
polymerization technique. The RAFT polymerization was car-
ried out using AIBN as radical initiator, ethanol as solvent,

and CPDB as CTA. Different molar masses of PMMA were
obtained by changing the polymerization time, the MMA con-
centration and the [M]:[CTA] ratio (see Table 1 for detailed
reaction conditions). High molar masses up to Mw ¼
274,000 g mol�1 could be realized via the RAFT process. All
PMMA samples are well-defined with polydispersity indices
ranging from 1.13 to 1.34. The SEC chromatographs of the
different PMMAs are depicted in Figure 1.

Intrinsic Viscosity Measurements
Prior to compare the influence of various PMMA samples on
the nanoparticle formation, intrinsic viscosity measurements
of polymer solutions were performed. The knowledge of the
intrinsic viscosity is essential to evaluate the interaction
between the polymer and solvent molecules at various poly-
mer molar masses. The intrinsic viscosities were obtained by
applying Huggins extrapolation to zero concentration proce-
dure:

gsp
c

¼ ½g� þ k0½g�2cþ � � � (2)

where [g] and gsp are the intrinsic and specific viscosity
respectively, k’ is the Huggins dimensionless parameter
(interaction parameter), and c is the polymer concentration.
The resulting plot of the reduced viscosity and the concen-
tration for the samples investigated in acetone and THF is
presented in Figure 2. As expected, solutions of PMMA in ac-
etone have a lower viscosity in comparison to THF. Accord-
ing to Flory’s equation,23 this can indicate that the volume of
the polymer coil in acetone is lower than in THF solutions.
The corresponding values of the intrinsic viscosity are listed
in Table 2. It is also well known that for a homologous series
of macromolecules the intrinsic viscosity can be related to
the molar mass through scaling relations of the Kuhn-Mark-
Houwink-Sakurada type (KMHS relations):23

½g� ¼ Kg �Ma (3)

FIGURE 1 SEC chromatograms of the obtained PMMA poly-

mers used. 1 – (Mw ¼ 7,700 g mol�1), 2 – (Mw ¼ 20,200 g

mol�1), 3 – (Mw ¼ 39,700 g mol�1), 4 � (Mw ¼ 106,000 g

mol�1), and 5 � (Mw ¼ 274,000 g mol�1).

FIGURE 2 Dependence of the reduced viscosity on the polymer

concentration for PMMA samples in acetone (A) and THF (B),

respectively. Lines represent linear fitting procedures.

ARTICLE WWW.POLYMERCHEMISTRY.ORG
JOURNAL OF

POLYMER SCIENCE

2908 JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 2906–2913



The parameters of this equation are characteristic for the
polymer-solvent system. They can be evaluated from the log-
log dependence of the [g] versus Mw. The exponent in the
KMHS equation varies in the range of 0.5 < a < 0.85 for
random coils. A value of 0.5 is indicating theta solvent condi-
tions, which means that the polymer coil behaves as an
undisturbed Gaussian coil. In this study, the following values:
Kg ¼ 1.33�10�2, a ¼ 0.63 and Kg ¼ 0.70�10�2, a ¼ 0.74
were found for the polymer solution in acetone and THF,
respectively. This, in turn, testifies a good affinity of the poly-
mer to the solvents. However, according to the collected data
THF seems to be a thermodynamically better solvent for the
PMMA than acetone.

Nanoparticle Formation
To study the influence of the polymer molar mass on the
nanoparticle formation via nanoprecipitation, it is crucial to
maintain the same initial conditions for each nanoprecipita-
tion process. The characteristic ‘‘degree of dilution’’ assesses
the contribution of the different intrinsic viscosities of poly-
mer solutions, which were introduced and represented by
the Debye parameter: c�[g], where c is the polymer concen-
tration and [g] is the intrinsic viscosity of the polymer. The
degree of dilution evaluates the volume fraction of the mac-
romolecular coils in the solution. If the value of c�[g] << 1,
the solution can be considered as diluted, and no overlap-
ping of the macromolecular coils occurs.

In detail, the nanoparticles were precipitated from 12 differ-
ent initial polymer solutions with concentrations (logarithmi-
cally scattered) corresponding to the following range of c�[g]
values: 0.004–0.120. Each solution was then combined with
eight different proportions of water in a way that the sol-
vent/nonsolvent ratio was ranged from 0.1 to 0.5 (again
scattered logarithmically) representing in total 96 different
populations of nanoparticles. The same procedure was
applied for each PMMA sample. After preparation, one can
notice a visually observable trend in appearance following
the changes made in the nanoprecipitation process. At the
lowest concentrations, a faintly opalescent suspension was
obtained; with increasing concentration, the opalescence
became more apparent. The particles suspensions were ana-
lyzed after complete evaporation of acetone or THF, respec-
tively. Initially, the DLS plate reader was used for the particle
characterization. Figure 3 shows a size distribution as a
function of initial polymer concentration and solvent/nonsol-
vent ratio of nanoparticles based on PMMA 1. The size of
the particles is increasing from around 70 to 180 nm

depending on the concentration (degree of dilution) and sol-
vent/nonsolvent ratio. The polydispersity of the nanopar-
ticles based on PMMA 1 to PMMA 3 increases from 5 6 2%
to 20 6 5% for the lowest and highest concentration,
respectively. In the case of particles based on PMMA 4 and
PMMA 5, the nanoparticle suspensions were found to be
more polydisperse; the polydispersity constitutes 12 6 3%
and 30 6 16% for the lowest and highest concentration,
respectively.

Morphology Study
In Figure 4, the SEM micrographs and the corresponding
size-distributions, determined by ImageJ analysis, are shown
for nanoparticles based on PMMA 1, 3, and 5 prepared in
acetone and THF, respectively, at a degree of dilution c[g] ¼
0.01 and a solvent/nonsolvent ratio of 0.1. The sizes of the
particles of PMMA 1, 3, and 5 were virtually the same. The
calculated weight average particle size constitutes 74 6 4
nm for the preparation procedure in acetone and 100 6 20
nm for the THF preparations. However, particles prepared
from acetone solution are only uniform and spherically
shaped for the low molar mass PMMA 1 (Mw ¼ 7,700 g
mol�1), whereas with increasing molar mass less spherical
particles with rough surfaces appeared. In contrast, particles
prepared from THF solution are spherical and uniform
within the whole molar mass range.

Sedimentation Velocity Experiments
Sedimentation velocity analyses were performed for various
nanoparticle suspensions in water to gain detailed informa-
tion about the size distribution of the particles. In Figure
5(A) typical size-distributions obtained by AUC are shown
for PMMA 1 and PMMA 5 particles. The differential distribu-
tion of sedimentation coefficients were subsequently

TABLE 2 Intrinsic Viscosity Data for the PMMA Polymers

Sample [g]acetone, cm
3 g�1 [g]THF, cm

3 g�1

1 4.1 6 0.5 6 6 1

2 6.2 6 0.6 10.6 6 0.5

3 9.2 6 0.6 16.3 6 0.6

4 19 6 1 33.2 6 0.5

5 37 6 1 71.8 6 0.5

FIGURE 3 3D representation of the nanoprecipitation experi-

ment using a PMMA with Mw ¼ 7,700 g mol�1: an average par-

ticle size (Z-axis) as function of initial polymer concentration

(X-axis) and solvent/nonsolvent ratio (Y-axis). Sizes were

obtained by DLS measurements. The nanoparticles were pre-

pared by dropping a polymer acetone solution into water.
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FIGURE 4 SEM images and corresponding size-distributions of nanoparticles prepared from polymer solutions of PMMA with dif-

ferent molar masses in acetone and THF. The particles were prepared by dropping a polymer solution into water. The initial poly-

mer concentration was adjusted to obtain the same degree of dilution (c[g] ¼ 0.01) of all polymer solutions. Solvent/nonsolvent

ratio was kept constant at 0.1.

FIGURE 5 A: Comparison of normalized size-distributions obtained by sedimentation velocity experiment for the nanoparticles

based on PMMA 1 (Mw ¼ 7,700 g mol�1) and PMMA 5 (Mw ¼ 274,000 g mol�1) in acetone and THF. The initial polymer concentra-

tion corresponds to the degree of dilution c[g] ¼ 0.01 at a solvent/nonsolvent ratio of 0.1. B: Example of sedimentation velocity

experiments for nanoparticles based on PMMA 1 in acetone. The experiment was carried out at 3,000 rpm, scans were collected

every 15 s. Top panel: superposition of sedimentation profiles obtained with interference optics at 20 �C. Middle: corresponding

residual plots. Bottom: differential distribution ls–g(s) of the sedimentation coefficients. The distributions were obtained with a reg-

ularization procedure at a confidence level of 0.9.
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transformed into the size distribution, and an average diame-
ter was calculated according to the Stokes-Einstein equation
assuming a spherical shape of the particles. Particles pre-
pared from acetone solution are slightly smaller comparing
to the THF preparation. The majority of the particles pre-
pared from the different molar mass samples at similar
degree of dilution c[g] ¼ 0.01 have virtually the same sizes:
74 6 5 nm and 100 6 20 nm for the particles prepared
from acetone and THF polymer solution, respectively. How-
ever, it should be noted that the distributions of high molar
mass samples are slightly shifted to larger diameters.

Zeta-Potential Measurements
The surface charge of particles represents an additional im-
portant parameter for the characteristics of nanoparticles
besides size and shape. In particular, the stability of nano-
particle suspensions as well as the cellular uptake are
strongly affected by the zeta-potential. The correlation
between zeta-potential and initial polymer molar mass is
presented in Figure 6. The magnitude of the zeta-potential
decreases with increasing molar mass of the initial polymer.
The maximum value was observed for the nanoparticles
based on PMMA 1 and constitutes �33 and �37 mV for the
acetone and THF preparations, respectively. The minimum
values were observed for the particles based on PMMA 3,
which do not change significantly at larger molar mass:
�(13 6 1) mV and �(20 6 3) mV for the acetone and THF
preparations, respectively.

DISCUSSION

Many factors have to be taken into account to obtain stable
nanoparticle suspension with desired size and properties
during the nanoprecipitation process. It was shown before
that one of the key-factors, which define the particle size, is
the initial polymer concentration: the higher the concentra-
tion of the polymer in the organic phase, the lower the ve-
locity of diffusion owing to the increasing viscosity of the
polymer solution; consequently, more polymer molecules per
unit volume of solvent are present, and the resulting par-
ticles will have a larger size.13,15,16 However, equality of the
initial polymer concentration will not reflect the same condi-
tions for the nanoprecipitation process in case of polymers
with various molar mass or different chemical structure,
since macromolecular coils will occupy different volumes
owing to the different length of a polymer chain. Further-
more, the volume of the macromolecular coil of a polymer
depends on the equilibrium rigidity of the chain and on the
nature of the polymer-solvent interaction. A physical quan-
tity, which reflects the volume occupied by the polymer mol-
ecule, is the intrinsic viscosity.

½g� ¼ /
ðh2Þ3=2

M
(4)

where <h2> is the mean square end-to-end distance of the
coil, F is the Flory hydrodynamic parameter, and M is the
molar mass of the polymer. The product of the intrinsic vis-
cosity [g] and the concentration of the solution (Debye pa-

rameter) represents a good approximation of the volume
fraction of the macromolecular coils in the solution u and
can be specified as follows:

u 
 nv

V
¼ mvNA

VM
¼ c� 0:36 < h2 >3=2 NA

M

¼ 0:36NA

/

� �
c½g� 	 c½g� (5)

v ¼ 0:36 < h2 >3=2 (6)

Therein, m is the volume occupied by the macromolecular
coil in solution, m is the mass of the polymer in volume V,
NA is the Avogadro number. If c[g] << 1, the polymer solu-
tion can be considered as diluted-then, no overlapping of
macromolecular coils occurs.

Based on these data, nanoparticle suspensions were pre-
pared with a degree of dilution from 0.004 < c[g] < 0.12. In
Figure 7, the size of the nanoparticles as a function of the
Debye parameter is presented in a double logarithmic scale.
A comparison is made for particles prepared from the poly-
mer solutions of PMMA 1 and PMMA 5 in acetone and THF,
respectively. As expected, the particles size increases as the
solution becomes more concentrated-corresponding to the
higher values of the Debye parameter. However, the slopes of
the regression lines (0.20 and 0.32 for PMMA 1 and PMMA
5, respectively) show that the size increases more rapidly for
the nanoparticles on the basis of high molar mass polymer.
It is further obvious that higher molar mass polymers lead
to the formation of the particles with larger diameters,
which actually contradicts data obtained from SEM and AUC.
Such a difference in sizes can be related to the fact that, in
accordance with the measured values of zeta-potential, nano-
particles on the basis of high molar mass polymers (PMMA

FIGURE 6 Zeta-potential of the nanoparticles as a function of

initial polymer molar mass. The nanoparticles were obtained

by nanoprecipitation of polymers dissolved in acetone and

THF. The initial polymer concentration corresponds to the

degree of dilution c[g] ¼ 0.01 at a solvent/nonsolvent ratio

of 0.1.
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4, PMMA 5) were found to have low values of surface
charge. This, in turn, can provoke formation of agglomerates,
which will influence the final particle distribution. The
resulting comparison of the particles sizes (an average from
the AUC, DLS, and SEM data) as a function of the polymer
molar mass is presented in Figure 8(A). Indeed, a slight
increase of the particle sizes with the molar mass is noticea-
ble. This effect is more evident when the particles were
nanoprecipitated from the polymer solution in acetone. It
can also be concluded that, regardless to the solvent used,
the increase in particle size is followed by a plateau. A maxi-
mum size could be observed for the particles based on
PMMA 2 with Mw ¼ 20,200 g mol�1. Figure 8(B) represents
the semi logarithmic dependence of the particle size on the

product of molar mass M on the intrinsic viscosity [g] for
two values of c[g]: 1, 2 � 0.01 and 3, 4 � 0.1. Since this
work was generally performed using dilute polymer solu-
tions, the parameter M[g] will reflect the volume of the mac-
romolecular coils in the initial solution. It is clear that in
both cases an increase of the volume of the macromolecular
coil leads to the formation of nanoparticles with larger sizes.
The magnitude of the particle size increases �2.5–3 times
compared to the first data point. With further increase of the
macromolecular volume, the size of the nanoparticles
remains constant within the experimental error. It is also
clear that in case of more concentrated solutions (c[g] ¼
0.1) the final nanoparticle size is larger. It was generally
observed that stable nanoparticle suspensions were only
produced when c[g] � 0.1. Applying concentrations corre-
sponding to the values of c[g] > 0.1, nanoparticle suspen-
sions were found to be highly polydisperse, with diameters
larger than 500 nm. Such a behavior may testify to the shift
beyond the Ouzo region. Regardless to concentration and
molar mass, the particles obtained from the polymer solution
in acetone are relatively smaller than those prepared from
THF solution. This size difference can simply be related to
the lower viscosity of the acetone polymer solution in com-
parison to THF. SEM micrographs showed the formation of
more uniform nanoparticles if THF was used as solvent. This
is in agreement with the viscosity data, which show higher
values of the exponent in the KMHS equation for the poly-
mer in THF solution resulting in the higher affinity of the
polymer to the solvent. When acetone was used as solvent,
uniform nanoparticles with smooth surfaces were only
observed in case of PMMA 1 based nanoparticles.

CONCLUSION

To obtain well-defined particles on the basis of a certain
polymer, it is crucial to work with highly diluted polymer
solutions. Regardless to the polymer molar mass,

FIGURE 7 Double logarithmic dependence of the particle diam-

eters on the degree of dilution (Debay parameter) obtained by

DLS measurements. Nanoparticles based on PMMA 1 (Mw ¼
7,700 g mol�1) and PMMA 5 (Mw ¼ 274,000 g mol�1) in acetone

and THF.

FIGURE 8 A: Dependence of the resulting weight average sizes on the initial polymer molar mass for the nanoparticles obtained

by nanoprecipitation of polymers dissolved in acetone and THF. Initial polymer concentrations correspond to the degree of dilu-

tion c[g] ¼ 0.01. B: Semi logarithmic dependence of the particle size on the product of polymer molar mass and intrinsic viscosity.

Initial polymer concentrations correspond to the degree of dilution c[g] ¼ 0.01 and c[g] ¼ 0.1 in acetone and THF. Deviations are

related to the difference in the nanoparticle sizes obtained from various characterization techniques (AUC, DLS, and SEM).
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hydrodynamic volume and solvent quality, the formation of
stable nanoparticle suspensions could only be observed at a
Debye parameter c[g] << 0.1. According to this, it could be
shown that the key factor during the particle preparation is
the volume fraction occupied by the polymer macromolecular
coil in the initial solution instead of the polymer concentration.
The morphology of the nanoparticles depends on the affinity
of the polymer molecules to the solvent. It appeared that
‘‘good’’ solvents are preferable to formulate uniform nanopar-
ticles with smooth surfaces. Taking together these findings, it
can be concluded that knowledge of the hydrodynamic proper-
ties of the initial polymer solution is essential for tuning and
optimizing conditions for the nanoprecipitation process.
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  1. Introduction 

 Recent progress in the area of nanosciences enabled the 
development of various nanoparticle (NP) devices as pow-
erful tools in the pharmaceutical area for drug delivery 

systems, but also in other scientifi c fi elds, for example, 
chemistry, biology, and electronics. [  1–3  ]  In particular for 
diagnostic applications, like live cell imaging, the inves-
tigation of labeled nanosystems (1 to 1000 nm) is rapidly 
expanding. [  4–8  ]  Such nanodevices can consist of various 
materials, such as silica, carbon, metal oxides, pure metals, 
and polymers. [  6  ,  9,10  ]  In particular, quantum dots have revo-
lutionized the biological research with their fascinating 
light-emitting properties, though still having safety issues 
due to the liberation of heavy metals. [  2  ,  11  ]  The use of fl uo-
rescent polymeric NP represents a suitable alternative 
to avoid the obstacle of the potential toxicity of metal-
based NP. A diversity of biocompatible polymers, such as 
poly(lactide- co -glycolide) and poly(  ε  -caprolactone), are used 
for formulation. [  12–14  ]  The incorporation of dyes into the 
polymer shell during NP preparation or the use of labeled 
polymer systems provides a protection against external 
infl uences while keeping their spectral properties, which 
are essential for the subsequent analysis of particle–cell 
interactions via confocal laser scanning microscopy. [  7  ,  13  ,  15  ]  
A further benefi t of polymeric NP is the variety of formu-
lation techniques such as emulsifi cation–solvent diffusion, 

 Methacrylate monomers were functionalized with a 4-hydroxythiazole chromophore and copo-
lymerized with methyl methacrylate via RAFT. Nanoparticles of 120 and 500 nm in size were 
prepared without using stabilizers/surfactants. For comparative studies, preparative ultracen-
trifugation was applied for the separation into small and large 
particle fractions. All suspensions were characterized by DLS, 
AUC, and SEM and tested regarding their stability during cen-
trifugation and re-suspension, autoclavation, and incubation 
in cell culture media. In vitro studies with mouse fi broblast 
cell line and differently sized NP showed a particle uptake into 
cells. Biocompatibility, non-toxicity, and hemocompatibility 
were demonstrated using a XTT assay, a live/dead staining, 
and an erythrocyte aggregation and hemolysis assay. 
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all suspensions were characterized comprehensively by 
dynamic light scattering (DLS), scanning electron micro-
scopy (SEM), and analytical ultracentrifugation (AUC) to 
allow a detailed characterization of the NPs. [  43  ]  The sta-
bility of the resulting nanosuspensions after long-time 
storage, autoclavation, and incubation in cell culture 
media was studied by measurements of size and zeta 
potential. The internalization of the differently sized nan-
oparticles into adherent cells was monitored by confocal 
laser scanning microscopy (CLSM). The biocompatibility 
of the particle suspensions in terms of their non-toxicity 
was proven by XTT cytotoxicity assay and microscopic 
evaluation of viability after a live/dead staining. Compat-
ibility with blood was analyzed by checking the induction 
of hemolysis and aggregation of erythrocytes.   

 2. Results and Discussion  

 2.1. Synthesis of P(MMA- stat -MA Y ) 

 The yellow light-emitting thiazole-dye 3-((5-(4-(dimethyl-
amino)phenyl)-2-(pyridin-3-yl)thiazol-4-yl)oxy)propan-1-ol 
was attached to the methacrylate monomer by an esteri-
fi cation reaction. The non-classical 4-hydroxy-1,3-thiazole 
chromophore structure is similar to the luciferin dye of 
fi refl ies and shows excellent fl uorescent properties. [  44  ]  The 
resulting dye-functionalized methacrylate MA y  was copo-
lymerized statistically with MMAs using the RAFT polym-
erization methodology (Scheme  1 ). [  31–33  ]  The reaction was 
carried out using AIBN as a radical initiator, toluene as a 
solvent, and 2-cyano-2-propyl dithiobenzoate (CPDB) as 
a chain transfer agent. The ratio of MMA to the dye-func-
tionalized monomers was 69:1, leading to a fi nal conver-
sion rate of 70% of the copolymers with a DP of 100. The 
dye-functionalized methacrylates were statistically distrib-
uted in the polymer backbone due to the same reactivity 
of both monomers. [  29  ]  The low degree of labeling (1 to 3%) 
ensured the preservation of the properties of the PMMA 

nanoprecipitation, spray drying, salting out, and milling 
processes. [  16–18  ]  By using the appropriate conditions for 
formulation, specifi c drugs can be encapsulated resulting 
in labeled drug carriers of desired sizes and with suitable 
charges. [  16  ,  18,19  ]  

 In the herein presented study, polymethylmethacrylate 
(PMMA) copolymers were chosen as a model system to 
demonstrate that functional PMMA-based nanoparticles 
are well suitable for diagnostic applications such as the 
imaging of cells. The biocompatibility of PMMA micro-
spheres enables their use in many biomedical applica-
tions, for example, as injectable dermal fi llers, as PMMA-
based NPs for in vitro gene delivery approaches, and also 
for orthopedic bone reconstruction. [  20–28  ]  For the design 
of labeled nanosystems, a luciferin-based 4-hydrox-
ythiazole derivative was incorporated into the PMMA 
polymer backbone, showing benefi ts as high fl uores-
cence at room temperature with high quantum yields, 
easy adjustment of the fl uorescent properties, and excel-
lent stability. [  29,30  ]  For this purpose, methacrylates were 
functionalized with the thiazole chromophore (MA y ) and 
then copolymerized with methyl methacrylate (MMA) 
using the reversible addition–fragmentation chain 
transfer (RAFT) polymerization technique. [  29  ,  31–33  ]  For the 
NP preparation, nanoprecipitation (solvent-evaporation) 
was chosen as a simple, fast, reliable, and cost-effective 
method. [  34–36  ]  Different particle sizes were obtained by 
varying the initial conditions of the formulation. Addi-
tionally, preparative ultracentrifugation (pUC) was uti-
lized for the fractionation of particles into discretely 
sized NP suspensions. It provides another dimension of 
physical control of the size distribution of particles on 
the nanoscale. [  14  ,  37–39  ]  

 Since the size strongly infl uences the biodistribution 
of NPs and the way of internalization into target cells, it 
is imperative to have well-defi ned particles with narrow 
size distributions. Unfortunately, it is a matter of fact 
that in literature the accuracy of particle size determina-
tion is disputable. [  40–42  ]  Consequently, in this distribution, 

    Scheme  1 .     Schematic representation of the synthesis of p(MMA- stat -MA y ).  
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suspension with a broad size distribution was separated by 
pUC into fractions  S2  and  L2 . DLS and AUC measurements 
indicated particle sizes of  d  S2   =  120 nm (PDI P   =  0.29) and  d  L2   =  
600 nm (PDI P   =  0.19, Table  1 ). The small increase of the 
PDI P  values of  S2  and  L2  compared with  S1  and  L1  might 
be caused by a slight agglomeration of the NP during the 
pUC treatment. The zeta potential of all suspensions were 
in the same range (  ζ    =   − 32 to  − 36 mV) and thereby testifi ed 
a good stability of the NP in suspension. SEM investiga-
tions were performed to obtain further information about 
the size and shape of the particles (Figure  1 ). The small 
particles  S1  and  S2  revealed more irregular shapes than 
the larger ones ( L1  and  L2 ), which might be caused by the 
preparation technique, that is, dropping acetone in water, 
which is characterized by the fast exchange of the solvent 
against the non-solvent environment. [  34,35  ]  For the small 
particles, the calculated diameters were in good agreement 
with the DLS results ( d  S1   =  111 nm,  d  S2   =  131 nm), whereas 
the large particle samples were characterized by slightly 
increased sizes in the particle fractions ( d  L1   =  696 nm,  d  L2   =  
502 nm, Table  1 ). Complementary, the analysis of the sam-
ples by AUC revealed diameters of  d  S1   =  120 nm and  d  L1   =  
503 nm as well as  d  S2   =  97 nm and  d  L2   =  381 nm, respec-
tively. In order to exclude the occurrence of bulk precipita-
tion and Ostwald ripening even over a long period of time, 
the nanosuspensions were stored at 5  ° C for 6 months and 
examined again regarding their zeta potential and size dis-
tribution. No signs of instability of the initial nanosuspen-
sions were found in terms of agglomeration or creaming 
up. It should be mentioned that no surfactants were added 
to inhibit particle aggregation. In addition, samples of the 
initial NP suspension were analyzed by DLS and SEM after 
centrifugation at 24.650 g for 20 min, autoclavation, lyophi-
lization, and subsequent resuspension. Neither the size 
distributions nor the zeta potential values changed, which 
ensured the high stability of the p(MMA- stat -MA y ) nano-
particles. The absorption and emission spectra of the nano-
suspensions in comparison to the monomer were equal 
within the range of the measurement errors ( ± 5 nm). This 
implies that the fl uorescence properties of the monomers 
were unaffected by polymerization and NP formation.     

 2.3. Biological Experiments 

 In order to prove the effi cient internalization of the par-
ticles into cells, mouse fi broblasts L929 were incubated 
with 120 and 500 nm sized nanosuspensions prepared 
by nanoprecipitation and pUC separation, respectively. 
The internalization of the NP into the cells was moni-
tored by CLSM (representative micrographs are shown in 
Figure  2 ). On the basis of the relative size distribution of 
their corresponding fl uorescence signal, a clear discrimi-
nation of small and large particles was possible. Further-
more, a concentration-dependent internalization of all 

homopolymer. As determined by SEC, the fi nal p(MMA-
 stat -MA y ) revealed a molar mass (  M—   n ) of 8500 g mol  − 1  with 
a polydispersity index value of 1.19 (Table S1, Supporting 
Information). Similar molar mass distributions recorded by 
both RI and UV detector clearly demonstrate that the thia-
zole dye was incorporated into the copolymer. The ratio of 
the MMA units and the thiazole dye in the copolymer was 
determined to be 2.9 mol% by  1 H NMR spectroscopy. The 
fi nal copolymer showed the same absorbance and emis-
sion behavior like the monomeric thiazole chromophore 
(solvent acetonitrile;   λ   Abs   =  413 nm,   λ   Em   =  557 nm, Stoke-
shift 6259 cm  − 1 , Figure S1, Supporting Information) with a 
quantum yield of   Φ   PL   =  0.29.    

 2.2. Nanoparticle Preparation and Characterization 

 The so-called nanoprecipitation or solvent evaporation 
process was found to be a suitable method for the prepa-
ration of differently sized NPs. Therefore, this simple, fast, 
and cost effective technique was applied for the prepara-
tion of p(MMA- stat -MA y ) NPs. [  34  ,  45  ]  The fi nal particle size 
was tuned by variation of the initial polymer concentra-
tion in the organic phase and/or by changing the drop-
ping method (polymer solution into water or water into 
polymer solution). [  46  ]  In order to obtain small particles ( S1 ), 
a polymer solution with a concentration of 4 mg mL  − 1  was 
dropped into water. For larger particles ( L1 ), water was 
dropped into the polymer solution with a concentration 
of 3 mg mL  − 1 . In general, a solvent/non-solvent ratio of 
0.25 was used and continuous stirring was applied. After 
evaporation of the acetone, the particle sizes were exam-
ined by DLS. The Z-average diameter for the nanoparticles 
suspensions  S1  and  L1  was determined to be  d  S1   =  118 nm 
(PDI P   =  0.10) and  d  L1   =  488 nm (PDI P   =  0.03), respectively 
(Table  1 ). The resulting size distributions were monomodal 
(Figure  1 ). In addition to nanoprecipitation, preparative 
ultracentrifugation (pUC) [  47  ]  in a density gradient was used 
for the separation of defi ned NP. For pUC, a thin layer of 
a particle suspension to be fractionated is layered on the 
top of a solution containing the density gradient. When a 
centrifugal fi eld is applied, the various components move 
through the gradient at different rates depending on their 
sizes, densities, and shapes. [  37–39  ,  48  ]  In this respect, a particle 

   Table  1.     Summary of the size distributions of the nanoparticles 
based on p(MMA- stat -MA y ). 

Sample  d  DLS  
[nm]

PDI particle   d  SEM  
[nm]

 d  AUC  
[nm]

 ξ  
[mV]

 S1 118 0.10 111 120  − 36

 L1 488 0.03 696 503  − 35

 S2 120 0.26 131 97  − 32

 L2 597 0.19 502 381  − 33
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 It is known that PMMA particles are phagocytosable 
and it can be assumed that the cellular uptake of PMMA 
particles in the size range studied is presumable medi-
ated in a similar fashion via an endocytotic pathway. [  27  ]  
The negative surface charge of the PMMA NP does not 
alter the cellular uptake and most probably yields to a 
reduction of the non specifi c binding of anionic proteins 
present in the cell culture medium and also in the body 
fl uid, for example, in the blood, thus rendering opportuni-
ties for in vivo administration of NP. [  26  ]  

 For diagnostic applications, the biocompatibility and 
non-toxicity of the nanosuspensions are important 

fl uorescent NP into the cytoplasm in the range of  c   =  
0.1 to 10  μ g mL  − 1  was observed. The more particles added 
for incubation with adherent cells, the more particles 
were consequently found in the cytoplasm. It was further 
obvious that the pUC prepared samples  S2  and  L2  were 
internalized to a higher degree than the particles  S1  and 
 L1 . This might be due to traces of sucrose attached to the 
particle surface. As described in literature, carbohydrate 
moieties can act as ligands for diverse receptors. Hence, 
their appearance on the particle surface could lead to an 
enhanced cellular recognition and internalization of the 
particle  S2  and  L2 . [  49–51  ]   

    Figure  1 .     Size distributions of the particles in water ( c   =  0. 5 mg mL  − 1 ) obtained by DLS and AUC as well as SEM images of the particle 
suspensions.  
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of FDA in cytoplasm) (Figure S3, Supporting Informa-
tion). In addition, the interaction of NP suspensions with 
blood cells was investigated in terms of their potential 
to induce hemolysis (membrane damage and cell dis-
ruption) and/or aggregation of erythrocytes, one of the 
major cellular blood components. Whereas the treatment 
of erythrocytes with 1% Triton X-100 as positive control 
led to a complete disruption of the erythrocytes and sub-
sequent release of the incorporated hemoglobin, none of 
the NP suspensions nor the PBS-treated negative control 
showed any hemolytic activity, indicating the absence of 
any harmful effect on the erythrocyte membrane integ-
rity (Figure S4, Supporting Information). Furthermore, 

prerequisites. The in vitro cytotoxicity experiment was 
performed on the basis of the XTT assay using L929 mouse 
fi broblasts, according to the German standard institution 
guideline DIN ISO 10993-5 as a reference for biomaterial 
testing. After 24 h of incubation with different NP concen-
trations ( c   =  0.1–10  μ g mL  − 1 ), the metabolic activity of cells 
treated with test-samples was found to be on the level of 
untreated controls, which proves the absence of a toxic 
effect mediated by the NPs (Figure S2, Supporting Infor-
mation). A detailed live/dead microscopy study of cells 
that were treated with NP confi rmed the cell-membrane 
integrity (exclusion of red fl uorescent PI from cell nuclei) 
and their excellent viability (strong green fl uorescence 

    Figure  2 .     Confocal fl uorescence images of L929 cells after 24 h incubation with polymeric p(MMA- stat -MA y ) nanoparticles. Cells 
incubated with polymer free culture medium served as control (not shown). All images were obtained with identical instrument settings 
(scale bars 10  μ m).  
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PMMA particles surface, also a specifi c binding to biomol-
ecules can be mediated, thereby enabling approaches like 
specifi c cell targeting. [  55  ]    

 Supporting Information 

 Supporting Information is available from the Wiley Online Library 
or from the author.  
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the capability of NP suspensions to induce a formation 
of erythrocyte aggregates as an unwanted sign of blood 
incompatibility was studied microscopically and photo-
metrically. None of the NP suspensions induced any red 
blood cell aggregation, even at the highest concentration 
of 10  μ g mL  − 1  (Figure S5 and S6, Supporting Information). 
In contrast, the treatment with 25 kDa bPEI as positive 
control caused the clear formation of aggregates, whereas 
PBS-treated samples used as negative control did not 
yield in any aggregate formation. This observed absence 
of any nanoparticle-mediated blood incompatibility is 
in line with clinical evaluations of PMMA membranes 
dedicated for the use in blood dialysis. [  26  ]  It is reported 
that due to their relatively hydrophobic and anionic sur-
face PMMA particles show less nonspecifi c protein and 
peptide binding, and, thereby reduce the initial steps of 
opsonization leading to cell recognition/binding and pos-
sible immunological reactions. [  52  ]  It is known that PMMA 
NP may be ingested and most probably can pass through 
the epithelial barrier and will likely end up in the blood-
stream. Large particles are usually trapped by the liver, [  53  ]  
while smaller pass on and are captured by the kidneys. [  54  ]  
However, because of the very low toxicity documented for 
PMMA NPs, even in view of a chronic/continuous disease 
treatment in,vivo, the possibility of obtaining sustain-
able effects by using PMMA NPs is presumably realistic. 
In addition, the good stability of the nanoparticles during 
autoclavation, centrifugation, and lyophilization/resus-
pension is basic requirements for the possible adminis-
tration of lyophilized, resuspended/reconstituted, and 
autoclaved particles.    

 3. Conclusion 

 Consequently, the 4-hydroxythiazole-functionalized PMMA 
NPs are suitable for fl uorescence-based long-term studies of 
biological processes at the molecular level. On the contrary 
to traditional fl uorophores, the PMMA NPs combine small 
size and high photostability, and, in contrast to widely used 
quantum dots, they do not contain hazardous components, 
which need to be shielded by protective layers. The bio-
analytical applications based on functionalized polymeric 
PMMA NPs are of emerging interest and provide oppor-
tunities like minimal-invasive intracellular monitoring 
of key components like pH value and oxygen content as 
well as ions like calcium, potassium or sodium. They can 
be combined with state-of-the-art imaging techniques 
like fl ow cytometry, fl uorescence microscopy, and sophis-
ticated imaging approaches, such as confocal imaging 
providing the opportunity for 3D analysis. In combination 
with dyes emitting in the near-infrared wavelength range, 
it offers an optical window for in vivo tissue imaging into 
several mm depth. By the immobilization of ligands to the 
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DOI: 10.1002/marc.201300030

DOI: 10.1002/marc.201200329

The authors regret that there were important omissions in the above article. The synthesis of the yellow light-emitting 
thiazole-dye 3-((5-(4-(dimethylamino) phenyl)-2-(pyridin-3-yl)thiazol-4-yl)oxy)propan-1-ol as well as the corresponding 
methacrylate monomer was not described in reference 29 of the manuscript or in reference 1 of the Supporting Informa-
tion (in this publication only the related blue emitting monomer is described). The resulting yellow and blue polymers 
were both investigated – however, due to the non-visibility of the blue polymer only the yellow one was continued in the 
published study. In order to allow an exact reproduction of the monomer synthesis, a detailed description has been added 
as Supporting Information of this Correction.

In the original version of the above article, three co-authors’ names (Roberto Menzel, Dieter Weiß, and Rainer Beckert) 
were missing from the byline and affi liation. The correct author byline is as follows:

Antje Vollrath, David Pretzel, Christian Pietsch, Igor Perevyazko, 
Roberto Menzel, Stephanie Schubert, George M. Pavlov, Dieter Weiß, 
Rainer Beckert, Ulrich S. Schubert*
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A toolbox of differently sized and labeled PMMA
nanoparticles for cellular uptake investigations†

Antje Vollrath,ab Anja Schallon,ab Christian Pietsch,ab Stephanie Schubert,bc

Takahiro Nomoto,d Yu Matsumoto,e Kazunori Kataoka*defg and Ulrich S. Schubert*ab

The cellular internalization of defined PMMA nanoparticles was investigated. For this purpose, the

biocompatible copolymer p(MMA-stat-MAA)0.91:0.09 was synthesized by RAFT polymerization and

labeled with three different fluorescent dyes (lEx ¼ 493, 557, and 653 nm). Nanoparticles were

formulated from the differently labeled copolymers into samples with relatively narrow size distribution

(diameter d < 100 nm, 100 to 200 nm, >300 nm) under appropriate conditions of nanoprecipitation and

were subsequently characterized by DLS and SEM. Mixtures of the differently sized nanoparticle samples

were applied for internalization studies using monolayer cultured HeLa cells. The localization of the

nanoparticles was detected after certain time points up to 24 h by CLSM, using LysoTracker as a marker

for late endosomes and lysosomes. In investigations by flow cytometry, a fast uptake of medium sized

nanoparticles was found, whereas the large and small nanoparticles exhibited a slower internalization.

However, small and medium sized nanoparticles were detected in the late endosomes/lysosomes,

whereas the large nanoparticles exhibit little co-localization with LysoTracker. Moreover, it could be

shown by using different inhibitors for clathrin-dependent (chlorpromazine), caveolin-dependent (filipin

III) endocytosis and macropinocytosis (EIPA) that nanoparticles with d < 200 nm were internalized via

clathrin-dependent endocytosis, whereas those with d > 300 nm were internalized via macropinocytosis.

Introduction

Polymeric nanoparticles (NPs) can provide manifold opportu-
nities for drug and gene delivery,1,2 because molecules and
particles at the nanometer scale offer important benets like an
enhanced permeability and retention effect (EPR), resulting in
an improved bioavailability and fewer side effects. In addition,
NPs offer the possibility of delivering nucleic acids (siRNA,
DNA), proteins or other active substances into targeted organs
or cells.1–6 However, many points in the eld of nanotechnology

still need to be considered very carefully with regard to
unknown long-time consequences such as the accumulation of
the particles in the vessels/liver, the uptake through skin and
lungs, and the removal by the reticuloendothelial system.7

Hence, a detailed understanding of the interaction of NPs with
their environment is essential for the development of dened
drug delivery systems as well as for specic diagnostic
applications.

Since the last decade, a number of studies have been pub-
lished investigating the cellular uptake mechanisms of NPs
with respect to various physical, chemical, and biological
parameters.8–13 The size of the NPs was found to play the key role
in the nal particle–cell interaction.14–16 In detail, depending on
their size, particles can enter cells either by phagocytosis or
pinocytosis; the latter mechanism can be further subdivided
into clathrin- and caveolin-dependent endocytosis as well as
clathrin/caveolin-independent endocytosis such as macro-
pinocytosis.17–20 Phagocytosis and macropinocytosis are
processes to engulf large particles up to the range of 10 mm,
whereas the clathrin- and caveolin-dependent endocytosis are
the main processes for the internalization of smaller particles
below 500 nm.18 In addition, the shape of the NPs signicantly
inuences uptake of NPs by phagocytosis. Rod-like and oblate
ellipsoidal NPs with a high aspect ratio were taken up more
efficiently in comparison to their spherical counterparts, due to
their higher surface area and, therefore, a better attachment to
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the cell membrane.13,16,21,22 In addition, the internalization of
particles into the cells is inuenced by their surface charge: an
increased positive charge leads to a higher cellular uptake due
to electrostatic interactions with the negatively charged cell
membrane.23 As the surface of NPs can be further functional-
ized with different reactive groups (COOH and NH2), amino
acids, sugar units, antibodies, or peptides, cellular uptake of
NPs can be inhibited or advanced.24–26 Nevertheless, no nal
conclusion can be drawn about the size, shape and charge
dependency of cellular uptake of NPs, as the studies published
so far are all based on different materials. Inorganic (gold,27,28

silica particles,29,30 and quantum dots31) and organic (poly-
(lactic-co-glycolic acid) (PLGA),15 polystyrene (PS),32,33 and chi-
tosan34,35) materials were studied and many contradictory
results were reported by different investigators.36 Furthermore,
cell internalization studies frequently used NP beads with non-
dened surfaces because conventional preparation techniques
(e.g. the emulsion technique) require the use of surfactants,
which also inuence cellular uptake.37 Hence, further studies
on NP–cell-interactions with well-dened NPs, in the absence of
any surfactants, would be helpful to gain a better insight into
the involved parameters and structure–property relationships.

The present study aims at investigating the cell interaction of
polymeric NPs with well-dened characteristics based on poly-
(methyl methacrylate) (PMMA) derivatives, poly(methyl methac-
rylate)-stat-poly(methacrylic acid) (p(MMA-stat-MAA)) copolymer.
Thep(MMA-stat-MAA) copolymer isbasedon the samemonomers
as the pharmaceutically important coating material EUDRAGIT�
S100, which is applied for pH-dependent drug release.31 Recently,
it has been demonstrated that PMMA systems are suitable for
diagnostic applications in cell imagingandasa genecarrier due to
their non-toxicity and good biocompatibility.38–41 Here, the poly-
(methacrylic acid) segment of p(MMA-stat-MAA) was labeled with
various dyes (DY-495 (green), DY-547 (orange), and DY-647 (red))
for tracking of the NPs.42 NPs of the labeled p(MMA-stat-MAA)
copolymers (p(MMA-stat-MAdye (green, orange, or red))) were prepared
by the solvent-evaporation (nanoprecipitation) method43 and
characterized comprehensively by dynamic light scattering (DLS)
andscanningelectronmicroscopy (SEM).44Thestability of theNPs
was demonstrated by DLS measurements aer autoclave treat-
ment, aer incubation in cell culture media, and during pH
titration studies, respectively. Cytotoxicity assays were performed
to prove the biocompatibility and non-toxicity of the NPs. The
cellular uptake studies usedHeLa cells and three differently sized
and individually labeled NPs. Flow cytometry was applied for
studies on time- and concentration-dependent cellular uptake
and confocal laser scanning microscopy (CLSM) for cellular
distribution and co-localization studies. In addition, cellular
internalization was investigated by inhibitors of clathrin- and
caveolin-dependent endocytosis as well as of macropinocytosis.

Experimental
Materials

All reagents were purchased from commercial sources (Fluka
and Sigma Aldrich). MMA andMAA were purchased from Sigma
Aldrich and puried with an inhibitor-remover before use. 2,20-

Azobis(iso-butyronitrile) (AIBN) was recrystallized from meth-
anol prior to use. 2-Cyano-2-propyl dithiobenzoate (CPDB) was
purchased from Sigma Aldrich. Puried N,N-dimethylaceta-
mide (DMA) and dimethylformamide (DMF) were obtained
from VWR. The uorescent dyes l ¼ 495 nm (DY-495), l ¼ 557
nm (DY-547), and l ¼ 653 nm (DY-647) were purchased from
DYOMICS GmbH. AlamarBlue, LysoTracker Green, and Opti-
MEM were obtained from Life Technologies. Hoechst 33342,
5-(N-ethyl-N-isopropyl)amiloride (EIPA), lipin III, and chlor-
promazine were purchased from Sigma Aldrich. Cell culture
materials were received from Greiner Bio One, cell culture
media and solutions from Biochrome, Greiner, and PAA. Unless
otherwise stated, the chemicals were used without further
purication.

Synthesis of p(MMA-stat-MAA)

P(MMA-stat-MAA) was prepared by copolymerization of MMA
with MAA using the reversible addition–fragmentation chain
transfer (RAFT) polymerization method.37,38 In a typical RAFT
copolymerization experiment, 4.325 g of MMA monomer (43.2 �
10�3 mol), 0.413 g of MAAmonomer (4.8� 10�3 mol), 19.7 mg of
AIBN initiator (0.12 � 10�3 mol), 106.3 mg of CPDB RAFT agent
(0.48 � 10�3 mol) and 5.8 mL of ethanol were mixed together
with anisole as the internal standard (1.2 mL) in a 25 mL reaction
vial. The monomer concentration was kept at 4 mol L�1. Subse-
quently, the reaction solution was placed in a preheated oil bath
at 70 �C for 10 hours. The copolymer was puried by precipitation
into a large volume of cold diethyl ether and dried under reduced
pressure. Conversion was measured by 1H NMR spectroscopy
using anisole as the internal standard. 1H NMR (DMSO-d6, 300
MHz): d ¼ 12.5 (–OH), 7.83, 7.64, and 6.46 (Ar–H, CPDB), 3.55
(OCH3), 2.25–0.3 (backbone) ppm. SEC (DMA, LiCl, and PMMA
standard): Mn ¼ 16 000 g mol�1 and PDI ¼ 1.19. Elemental
analysis: p(MMA-stat-MAA) C: 58.18 and H: 7.91%.

Labeling of p(MMA-stat-MAA)

500 mg of the p(MMA-stat-MAA) polymer (3.1 � 10�4 mol) were
dissolved in 2 mL of dried DMF, and 50 mL (3.0 � 10�4 mol) of
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was added
as well as 500 mL of a stock solution (c ¼ 0.1 mg mL�1 in DMF) of
the desired dye DY-495 (green, 8.5 � 10�8 mol), DY-547 (orange,
7.5 � 10�8 mol), or DY-647 (red, 7.1 � 10�8 mol). The labeled
polymers were puried by repeated precipitation in water and
extensive dialysis aerwards. The products were obtained by
freeze drying in 70% overall yield. SEC (DMA, LiCl, and PMMA
standard): p(MMA-stat-MAgreen): Mn ¼ 23 500 g mol�1 and PDI ¼
1.21; p(MMA-stat-MAorange):Mn ¼ 21 800 g mol�1 and PDI¼ 1.22;
p(MMA-stat-MAred): Mn ¼ 23 800 g mol�1 and PDI ¼ 1.22;
elemental analysis: p(MMA-stat-MAgreen) C: 56.85, H: 8.18, and
N: 2.43; p(MMA-stat-MAorange) C: 58.51, H: 8.12, and N: 2.40;
p(MMA-stat-MAred) C: 58.17, H: 8.08, and N: 2.46.

Preparation of the NP suspension

NPs were prepared by nanoprecipitation with subsequent
solvent evaporation. For this purpose, the polymers were dis-
solved in acetone and ltered through a 2 mm lter prior to use.

100 | Soft Matter, 2013, 9, 99–108 This journal is ª The Royal Society of Chemistry 2013
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NP suspensions with different sizes were prepared by variation
of the initial conditions of the formulation. For the small
(diameter d < 100 nm) and medium (100 to 200 nm) sized NPs,
the acetone solution was dropped into deionized water (AW)
with a concentration of 1 mg mL�1 and 10 mg mL�1, respec-
tively. By dropping water to the polymer solution (WA) with a
concentration of 4 mg mL�1, large NPs (d > 300 nm) were
prepared. For all suspensions, the acetone–water ratio was
chosen to be 0.25. Furthermore, the dropping speed was
approximately 50 mL per second, and the stirring speed was set
to 1000 rpm (Magnetic Stirrer MR Hei-Standard). Aerwards,
the acetone was evaporated from the solution by stirring over-
night at room temperature, the suspensions were ltered
using a lter paper and diluted to a nal concentration of
0.5 mg mL�1. The suspensions were stored in a fridge at 4 �C
and before further usage they were vortexed to ensure a
homogenous particle suspension.

Dynamic light scattering (DLS) and zeta potential
measurements

For DLS investigations, a Zetasizer Nano ZS (Malvern Instru-
ments, Malvern, UK) operating with a laser beam at 633 nm and
a scattering angle of 173� was used. Each sample was analyzed
in triplicate at 25 �C in a polycarbonate zeta cell. For size
measurements, three runs were applied for 30 s; for the zeta
potential measurements, three runs were applied for 10 s. The
intensity, volume and number distribution of the NPs were
calculated applying the NNLS mode.

Scanning electron microscopy (SEM)

SEM images were obtained using a LEO-1450 VP, Leo Elek-
tronenmikroskopie GmbH, Oberkochen, Germany. The sputter
coating device BAL-TEC SCD005 (Balzers, Liechtenstein; 60 mA,
80 s) was used. The system was operated from 8 to 10 kV.

Cell lines and culture conditions

The HeLa (CCL-2, ATCC) and L929 (CCL-1, ATCC) cell lines used
in the uptake and cytotoxicity experiments were maintained in
suitable cell culture media supplemented with 10% fetal calf
serum (FCS), 100 mgmL�1 streptomycin, 100 IUmL�1 penicillin,
and 2 mM L-glutamine (4 mM for L929). The cells were cultured
at 37 �C in a humidied 5% CO2 atmosphere.

Flow cytometry analysis

For the determination of cellular uptake of NPs via ow
cytometry, 105 cells per well were seeded in 12-well plates and
incubated for 24 h. Thirty minutes prior to the incubation with
the NPs, the cells were rinsed with PBS and supplemented with
OptiMEM. The NPs were added to the cells and the plates were
incubated for the indicated time. Aerwards, the cells were
harvested by trypsinization and resuspended in PBS supple-
mented with 10% FCS. To determine the relative uptake of NPs,
10 000 cells were quantied by ow cytometry using a Cytomics
FC 500 (Beckman Coulter).

Microscopy studies

HeLa cells were cultured on 35 mm glass dishes (Iwaki, Japan)
at 2 � 105 cells per dish. Aer 24 h, the medium was exchanged
with OptiMEM, and the cells were incubated for 30 min before
the addition of the NP suspensions. The nuclei and the late
endosomes/lysosomes were stained with Hoechst 33342 and
LysoTracker Green, respectively, before CLSM imaging. CLSM
images were acquired 24 h aer the administration of NPs,
using a Zeiss LSM 780 (Carl Zeiss). Excitation wavelengths were
405 nm, 488 nm, 561 nm and 633 nm for Hoechst 33342,
LysoTracker Green or DY-495 stained NPs, DY-547 stained NPs,
and DY-647 stained NPs, respectively. Co-localization was
quantied, using Imaris soware (Bitplane AG, Zurich,
Switzerland).

Inhibition of endosomal pathways

The cells were seeded as described before. The growth media
were changed to OptiMEM and incubated for 30 min before
10 mg mL�1 chlorpromazine, 1 mg mL�1

lipin III, or 100 mM
EIPA were added and incubated for a further 30 min. Aer-
wards, the NPs were added, and the cells were incubated for the
indicated time.

Cell viability

For L929 cells, the cytotoxicity assay was performed according to
ISO10993-5. In detail, the cells were seeded at 10 000 cells per
well in a 96-well plate and incubated for 24 h. No cells were
seeded in the outer wells. The growth media were replaced by
OptiMEM. Aerwards, NP dilutions in the concentration range
from 78 to 254 mg mL�1 were added, and the cells were incu-
bated at 37 �C for further 24 h. Subsequently, the medium was
replaced by DPBS and AlamarBlue, as recommended by the
supplier. Aer incubation for 4 h, the uorescence was
measured at Ex 570/Em 610 nm in a microplate reader (Genios
Pro, Tecan GmbH), with untreated cells serving as controls.

Results and discussions
Polymer preparation and characterization

To provide the possibility of functionalization aer the poly-
merization, carboxylic acid groups were introduced into the
PMMA chain. Therefore, MMA was copolymerized with MAA
using the RAFT polymerization method.37,38 This technique
allows the synthesis of tailored polymers with control over
molar mass and the composition of the copolymer, i.e., the ratio
between MAA and MMA.

In the copolymerization reaction, a nal conversion of 87%
(both monomers) was reached. MMA and MAA are statistically
distributed in the polymer backbone due to the same reactivity
ratio of the MMA andMAA units.45 The ratio between both MMA
and MAA in p(MMA-stat-MAA) was determined by 1H NMR
spectroscopy. The observed ratio of 91 to 9% agrees well with
the theoretical value of 90 to 10%. The low content of MAA
ensures the stability at pH > 7 of the NPs and seems to be
benecial for a well-dened NP formation in aqueous systems.
A molar mass of Mn ¼ 16 000 g mol�1 with a polydispersity

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 99–108 | 101
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index of 1.15 (DMA, LiCl) was determined by size exclusion
chromatography (SEC) for the nal copolymer p(MMA-stat-
MAA)0.91:0.09 (Table 1).

In order to obtain differently labeled polymers, three
different dyes (DY-495, DY-547 and DY-647) were chosen,
because the dyes provide high quantum yields, good photo-
stability, and are available with different functional groups
(Scheme 1).42 The labeling procedure was performed by the
reaction of the COOH groups with the NH2-functionalized dyes
using EDC as the coupling reagent. The absence of free dye was
proven by uorescence measurements of the washing water
aer purication. The uorescence emission spectra of the
labeled copolymers p(MMA-stat-MAgreen), p(MMA-stat-MAorange),
and p(MMA-stat-MAred) are displayed in the ESI, Fig. S1.† All
the copolymers show distinct peaks at 525 nm, 568 nm, and
668 nm, respectively. In comparison to the initial emission of
the pure dyes, no signicant change in the uorescence
behavior was obtained even aer conjugation into the
copolymer segments. A comparison of the SEC graphs of the
unmodied p(MMA-stat-MAA) and the labeled copolymers
revealed a slight change in the elution volume, indicating
that the molar mass slightly increased due to dye conjuga-
tion and that the polymer was not degraded or cross-linked
during the labeling procedure. The overlay of the diode array
detector (DAD) and refractive index (RI) traces of the labeled
samples conrm the covalent attachment of the dyes (ESI,
Fig. S2†). Furthermore, the elemental analysis revealed an
increase in the nitrogen content, which also indicates the
attachment of the dyes in the polymer backbone.

Preparation and characterization of NPs

Differently sized NPs were prepared by nanoprecipitation with
subsequent solvent evaporation, a technique, which is not only
simple and cost-effective but also fast and easy.43 By variation of
the initial conditions of the formulation, such as the solvent/
non-solvent ratio and the concentration of the polymer solu-
tion, well-dened NPs with different sizes can be prepared. In
comparison to other procedures commonly used, e.g., the
emulsication technique, no surfactants are necessary for the
NP preparation. This represents an important benet of the
nanoprecipitation technique. It was proven that surfactants
signicantly affect the interaction of NPs with cells as well as
their cellular uptake.37 Using nanoprecipitation, it is known that
the nal NP sizes can be tuned from 50 nm up to 1 mm by
varying the initial polymer concentration in the organic phase
and/or by changing the dropping method (polymer solution
into water or water into polymer solution). In order to yield
small (S; d < 100 nm), medium (M; d between 100 and 200 nm),
and large (L, d > 300 nm) NPs, different nanoprecipitation
conditions were applied. By dropping the acetone–polymer
solution into water, smaller NPs were obtained in comparison
to the reverse technique. For the preparation of the small NPs,
polymer acetone solutions with a concentration of 1 mg mL�1

were dropped into water. For the medium sized NPs the same
procedure with an increased concentration of 10 mg mL�1 was
used. The large NPs were generated by dropping water into
polymer solutions with a concentration of 4 mg mL�1. For all
suspensions, a solvent/non-solvent ratio of 0.25 and no surfac-
tants were used. Aer subsequent removal of the acetone by
overnight evaporation, the NPs were ltered, diluted to a
concentration of 0.5 mg mL�1, and characterized by DLS and
SEM. These complementary techniques give sufficient infor-
mation about the size, shape, and surface characteristics of the
particle systems.44 For the small NPs, a size of 80 (�10) nm was
measured by DLS in water. The medium NPs revealed a size of
150 (�10) nm, whereas for the large NPs a size of 400 (�50) nm
was obtained. Low PDIP values conrm a narrow size distribu-
tion of the NPs, which was further veried by the SEM investi-
gations. A detailed analysis of a representative small, medium
and large NP batch is displayed in Fig. 1. As the major focus of
this research was set on the inuence of the size on the cell
internalization, a charge effect needs to be excluded. Thus, only
a low degree of labeling was performed in order to keep the
charge density similar. The zeta potential of the NP was
measured in water (pH ¼ 6), resulting in comparable values
with 30 � 10 mV for all nanoparticle suspensions. The zeta
potential values larger than 20 mV further indicate high repul-
sion forces and colloidal stability of the NPs in suspension.
However, the stability of the NPs should also be conrmed
under different conditions, and, therefore, a NP suspension
with medium sized NPs was investigated inmore detail. For this
purpose, all NPs were centrifuged at 15 000 rpm for 20 min,
autoclaved, or incubated in PBS or cell culture media as well as
titrated in the pH range of 4 to 10. The resulting suspensions
were analyzed again by DLS and SEM. Neither the size distri-
bution nor the zeta potential value changed, which proves the

Table 1 Selected characterization data of the p(MMA-stat-MAA)0.91:0.09 poly-
mer and the fluorescent labeled p(MMA-stat-MAdye) copolymers

Sample
Mn

a

[g mol�1]
PDISEC
(RI)a C [%] H [%] N [%]

P(MMA-stat-MAA)0.91:0.09 16 000 1.15 58.18 7.91 —
P(MMA-stat-MAgreen) 23 500 1.21 56.85 8.18 2.43
P(MMA-stat-MAorange) 21 800 1.22 58.51 8.12 2.40
P(MMA-stat-MAred) 23 800 1.22 58.17 8.08 2.46

a Calculated from SEC (DMA and LiCl) and PMMA calibration.

Scheme 1 Schematic representation of the reaction of p(MMA-stat-
MAA)0.91:0.09 with the DY-495, DY-547, and DY-647 using EDC as a coupling
reagent.
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high stability of the p(MMA-stat-MAdye) NPs (ESI, Fig. S3†). In
combination with the easily tunable NP size, the absence of
surfactants, and the variety on possible modications/labels of
the original polymers, the NPs represent excellent and well-
dened materials for further cell internalization experiments.

Cytotoxicity of the polymers in L929 cells

To evaluate the cytotoxicity of the NPs, we used L929 cells, because
they were commonly used for the investigation of cytotoxicity, as
they are sensitive and recommended by ISO10993-5. For the cell
experiments, the NPs (which originally were in distilled water)
were buffered with DPBS before being added to the cells. In
preliminary experiments, cytotoxicity tests with AlamarBlue were
performed for 24 h, to evaluate the metabolic activity of L929 cells
exposed to the NPs. Small (<100 nm) and large (>300 nm) labeled
NPs were investigated. As shown in Fig. S4 (ESI†), all types of NPs
did not cause a signicant cytotoxicity aer 24 h of incubation at
the investigated concentrations up to 260 mg NPs per mL (p > 0.01;
ANOVA). Moreover, neither size nor labeling of the NPs showed an
inuence on the cytotoxicity. This is in agreement with studies of
other groups using EUDRAGIT S100.38–40 Thus, the NPs used here
are not toxic even at the maximum concentration of 150 mg mL�1.

Validation of cellular uptake measurement by ow cytometry
via uorescence and side scatter

To investigate cellular uptake of the NPs into HeLa cells by ow
cytometry, we rst conrmed the validation of cellular uptake
measurement by ow cytometry. The uorescence channel as
well as the side scatter (SSC) and forward scatter (FSC) channels
were used. The SSC is directly related to the cell granularity and
was used as an indicator of cellular uptake.46 On the other hand,
the FSC is correlated with the cell size and was used as an
additional factor. Aer overnight incubation with the NPs, the
cells showed a high cellular uptake that was detected by the

uorescence intensity measurements. This result was also
conrmed by an increase in the SSC channel (ESI, Fig. S5†): the
SSC signal increased with the increase of the incubation time,
whereas the FSC signal did not change. Moreover, a strong
correlation between uorescence and SSC was detected when
HeLa cells were incubated with increasing sizes of DY-547
labeled NPs. To exclude a high inuence of NPs on the cell
surface, the outer uorescence was quenched with trypan. No
differences in the non-quenched ones could be observed.
Therefore, the uptake of NPs can be detected by uorescence
and SSC measurements.

Dependency of cellular uptake on the NP concentration

A concentration-dependent cellular uptake was investigated
aer 24 h using four different NP concentrations (25, 50, 100,
and 150 mg mL�1, respectively). The cellular uptake was quan-
tied using ow cytometry. It should be noted that larger NPs
contain a higher content of labeled polymers leading to an
increased uorescence signal compared to smaller NPs. To
suppress the inuence of the cell size on granularity, the SSC
was measured relative to the FSC as the cofactor. For analysis,
the uorescence (mean uorescence intensity ¼ MFI) and SSC/
FSC of the treated cells were plotted relative to untreated cells
(Fig. 2). It was observed that higher NP concentrations lead to
an increase in MFI and SSC/FSC (Fig. 2A). In particular, for the
medium and large sized NPs, a clear concentration-dependent
cellular uptake was observed. In detail, for incubation with 150
mg mL�1, a three times higher relative SSC/FSC value was
obtained for the medium and large sized NPs (3.4 � 0.2 and 3�
0.4, respectively) in comparison to the control cells. For the
small NPs only a relative SSC/FSC value of 2.6 � 0.4 was
detected. The uorescence measurement also conrmed these
results, but is inuenced by the amount of uorescent polymer
per particle. The number of “positive cells” (cells that

Fig. 1 Representative SEM images and DLS intensity size distribution with corresponding Z average value and polydispersity PDIP of the small, medium and large
particles of the p(MMA-stat-MAdye) copolymer.
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internalize NPs) was increased with higher NP concentration:
95% positive cells were found for c ¼ 150 mg mL�1 and 75% for
50 mg mL�1, respectively (data not shown). Furthermore, the
relative SSC/FSC as well as the relative MFI showed no signi-
cant differences between small, medium and large NPs at 50
mg mL�1 (p > 0.05). It could be shown that all NPs were taken up
by HeLa cells at the used concentrations.

Cultivation conditions – inuence on the NP uptake by HeLa
cells

The majority of experiments were performed with serum-reduced
media (OptiMEM), but additionally the cellular uptake of NPs was
further investigated in growth media to exclude an inuence of
serum proteins on the uptake. No signicant differences could be
obtained between serum-reduced and serum-containing (growth
media) conditions for 50 mg mL�1 small and large NPs. In all
cases, 60% to 70% of positive cells and an increased SSC/FSC
signal could be detected aer 24 h. The results indicate that the
used media have no inuence on the cellular uptake.

Dependency of cellular uptake on the incubation time

The size of the NPs showed no inuence on the cytotoxicity and
cellular uptake aer 24 h incubation at a NP concentration of
50 mg mL�1 as described above. To gain a deeper understanding

of the cellular uptake, a time-dependent cellular uptake was
evaluated. In these experiments, HeLa cells were incubated with
p(MMA-stat-MAorange) NPs for 30 min up to 24 h, and MFI as
well as SSC/FSC were analyzed by ow cytometry. In Fig. 2B, the
cellular uptake is presented as relative MFI and SSC/FSC of
treated cells to non-treated cells. It could be observed that all
the NPs were taken up by the cells in a time-dependent manner.
In detail, small NPs < 100 nm reached a relative MFI of around 4
and an increase of SSC/FSC of around 2 aer 24 h at 50 mgmL�1.
This is in agreement with the results observed by the concen-
tration-dependent uptake in Fig. 2A. A signicant increase (p <
0.01) in granularity (relative SSC/FSC) was detectable aer 4 h
incubation. The highest relative SSC/FSC was found aer 12 h
incubation. This was also the case for medium and large sized
NPs (medium NP: MFI 8.5, SSC/FSC 3.5; large NP: MFI 7.5–8,
SSC/FSC 3.5). Furthermore, no signicant differences were
detected between medium and large NPs aer 4 to 24 h incu-
bation (p > 0.05). The internalization of all NPs reached a
plateau aer 8 h, as indicated by the lack of further signicant
increase in uorescence and granularity (p > 0.05). A difference
in the cellular uptake of the differently sized NPs was, however,
observed at early time points. In detail, small NPs < 100 nm and
large NPs > 300 nm showed no increase in granularity for 2 h
and 1 h, respectively (p > 0.05). In contrast to this, an increase in
granularity was detectable with medium sized NPs (p < 0.01),

Fig. 2 Cellular uptake of NPs into HeLa cells measured by flow cytometry: the cells were seeded at a concentration of 105 cells per mL 24 h before particle incubation
with NPs. The uptake of NPs was investigated in serum-reduced media and measured by two methods: the relative change of fluorescence (MFI) and granularity (SSC/
FSC) compared to non-treated cells. (A) Different concentrations of differently sized particles were analyzed after 24 h of incubation. (B) Time-dependent uptake of 50
mg NPs per mL. Data represent mean � SD, n $ 3.
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which can be due to different reasons. First of all, the effect may
be caused by different endosomal pathways. The delayed
cellular uptake of small NPs can also be explained by a slower
sedimentation of the NPs compared to the larger ones. This
could lead to a later contact between the membrane of cells and
NPs, and an eventual delayed cellular uptake. Besides, a
decrease in relative SSC/FSC was observed at 24 h compared to
that at 12 h in particular with medium and large sized NPs. This
could not be observed by uorescence. The reason for this
decrease in granularity is not understood by now and requires
further investigations.

In conclusion, medium NPs of 100 to 200 nm were found to
have the fastest cellular uptake in HeLa cells compared to
smaller and larger ones. A fast cellular uptake of medium sized
NPs could be due to fast sedimentation and fast internalization
into cells, indicating an endosomal pathway. Large NPs were
taken up very slowly despite fast sedimentation, indicating a
macropinocytotic uptake, because endosomal pathways like
clathrin- or caveolin-dependent endocytosis are faster
compared to macropinocytosis.47

Intracellular localization study of differently sized NPs

The cellular uptake mechanisms of HeLa cells were investigated
by CLSM. For this purpose, the intracellular distribution of NPs
aer 24 h incubation was studied in living cells. Small NPgreen,
medium NPorange and large NPred suspensions were used at
50 mg mL�1 each. The nuclei of the cells were stained with
Hoechst 33342. A representative NP distribution in HeLa cells is
presented in Fig. 3. Cells containing NPs of different sizes are
plotted separately (Fig. 3A–C) as well as the corresponding cell
nuclei (Fig. 3D). In addition, two overlays are presented. The
overlay of all channels is presented in Fig. 3F. No NPs could be
observed in the cell nuclei. The intracellular distribution of
small and medium sized NPs is comparable. In detail, a peri-
nuclear localization was observed (compare Fig. 3A and B) in the
cytoplasm. Hence, a strong co-localization was found with NPs
below 200 nm. In contrast, the intracellular localization of small
and large NPs is different, as presented in Fig. 3A and C, and
merged in Fig. 3E. Co-localizations between small and large
sized NPs would be indicated by yellow signals. Here, only a few
yellow signals were detectable indicating only some co-locali-
zation. This could also be observed in Fig. 3F, where the
observed cyan staining indicates a co-localization of small and
medium sized NPs, whereas only a few purple (co-localization of
medium and large NPs) and yellow signals could be found.
Furthermore the co-localization was quantied by Pearson’s
correlation coefficient (PCC) (Fig. 3G). The PCC between the
small and medium sized NPs showed the highest value, sug-
gesting that the small and medium sized NPs might have a
similar cellular uptake pathway. To exclude the possibility that
this cellular distribution is caused by the dye, other NPs with
comparable sizes but different dyes were investigated (e.g. small
NPorange and large NPgreen). This combination of NPs was also
incubated with HeLa cells and treated as described before.
Thereby, the intracellular distribution shows no dependency on
the dye and, thus, indicates no inuence of the chemical nature

of dyes used on the uptake behavior of HeLa cells. Additionally,
HeLa cells incubated with small, medium, and large NPs at 4 �C
revealed no uorescence inside the cells (ESI, Fig. S6†). This
indicates anactive cellular uptakemechanismof all sizedNPs via
endocytosis. Hence, a different intracellular distribution of large
NPs (>300 nm) compared to small (<100nm) andmedium (100 to
200 nm) sized NPs was clearly proven. This indicates a different
internalization of NPs below 200 nm compared to larger ones.
Furthermore, the microscopy data support the results observed
by ow cytometry, where differences in time-dependent uptake

Fig. 3 Confocal microscope images of HeLa cells incubated with NPs. Cells were
seeded at a density of 105 cells per mL for 24 h in medium before particle incu-
bation. NPs with different sizes and labels (A: small NPgreen; B: mediumNPorange; C:
large NPred) were added at 50 mgmL�1 simultaneously and incubated for 24 h. (D)
Cell nuclei were stained with Hoechst 33342. (E) Overlay of small NPgreen and
large NPred. (F) Overlay image of labeled NPs and cell nuclei. (G) Pearson’s
correlation coefficient of labeled NPs. The scale bars indicate 20 mm.
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could be found with regard to the NP size. Although, medium
and large sized NPs sediment faster onto the cells, the large NPs
were not internalized within the rst hour, whereas medium
sized NPs were detected in cells aer 30 min.

Investigation of cellular pathways

The intracellular localization and the cellular uptake kinetics of
NPs showed strong dependency on size (Fig. 2B and 3). To
further elucidate this observation, the intracellular localization
was investigated by using LysoTracker, a well known substance
for staining acidic late endosomes and lysosomes. As NPs
<200 nm showed the same cellular localization in all experi-
ments, only medium (100 to 200 nm) NPs are presented here.
They show a stronger uorescence signal and could be detected
more easily compared to small NPs, due to more labeled poly-
mers inside theNPs. In Fig. 4, the stained lysosomes (A),medium
NPs (B), large NPs (C), and cell nuclei (D) are presented. More-
over, the overlay of lysosomes and largeNPs (E) and the overlay of
all dyes used (F) are shown. Again, no NPs were found in the
nuclei. It should be noted that almost allmedium sizedNPswere
detected in the late endosomes or lysosomes indicated by a high
PCC of 0.61 and a cyan staining in Fig. 4F due to the merging of
medium sized NPorange (plotted in blue) with LysoTracker (A). An
adverse intracellular localization was found by using large NPs

showing little co-localization with medium sized NPs and a PCC
of 0.19, as described before. Furthermore, little co-localization
was observed with late endosomes or lysosomes, indicated by
slight yellow signals in Fig. 4E and a PCC of only 0.15.

The large NPs were taken up by the cells, but the internali-
zation or the cellular pathway seems to be different to the
medium ones. Whereas smaller NPs revealed a fate in late
endosomes or lysosomes, the cellular uptake mechanism of
larger NPs is not fully understood. It can be postulated that NPs
smaller than 200 nm were internalized via endocytosis and
ended up in the late endosomes or lysosomes. The missing co-
localization of larger NPs > 300 nm with late endosomes or
lysosomes indicates an uptake mechanism that does not end in
the lysosomes at the investigated time points, as a release of
NPs into the cytoplasm is not supported.

Inhibition of endocytic pathways

To investigate the cellular uptake mechanism of differently sized
NPs, internalization routes were inhibited. Chlorpromazine was
used for inhibition of clathrin-dependent and lipin III for inhi-
bition of caveolin-dependent endocytosis. It was described in the
literature that NPs < 200 nm are predominantly taken up by these
pathways.18,48 In contrast to smaller NPs, larger NPs can be taken
up by macropinocytosis or phagocytosis and were inhibited by

Fig. 4 Confocal microscope images of HeLa cells incubated with particles. Cells were seeded at a density of 105 cells per mL for 24 h. The medium was changed and
incubated for 30 min. NPs at different sizes and labels (B: medium NPorange; C: large NPred) were added at 50 mg mL�1 simultaneously and incubated for 24 h. (A)
LysoTracker Greenwas added 10min before microscopic analysis and incubated at 37 �C to stain acidic late endosomes and lysosomes. (D) Cell nuclei were stained with
Hoechst 33342. (E) Overlay of stained lysosomes and large NPred. (F) Overlay image of labeled NPs, lysosomes and cell nuclei. The scale bars indicate 20 mm.
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EIPA.18,48 The NP internalization was analyzed by ow cytometry
(ESI, Fig. S7†). Inhibition of cellular uptake was investigated with
small and large sized NPs, as it was shown that the intracellular
localization of small and medium sized NPs is comparable. As
mentioned above, the MFI and the SSC/FSC showed no strong
increase aer 2 h (Fig. 2), because the NP concentration in cells
has an inuence on the signal intensity of SSC/FSC and MFI. As
the cells internalize only a few NPs aer 2 hours, the SSC/FSC and
MFI could not be used in this case. Therefore, the percentage of
cells taking up NPs was used (ESI, Fig. S7†). In the case of using
small NPs and the three different inhibitors, it was found that NPs
< 200 nm were excluded not by lipin III and EIPA but by chlor-
promazine, indicating an uptake via clathrin-dependent endocy-
tosis. To prove this result, CLSM studies were also performed. In
Fig. S8 (ESI†), medium sized NPs (green) were not detectable in
cells incubated with chlorpromazine (A) but detectable in cells
incubated with lipin III. As controls, polystyrene (PS) beads of
150 nm were used (blue emission). These PS beads could be
excluded by lipin III, indicating an uptake via caveolin-depen-
dent endocytosis, as also conrmed in the literature.18 This
suggests that surfactants, which are usually necessary to prepare
commercial NPs, have an inuence on the uptake in cells. By
using inhibitors, it can be assumed that NPs < 200 nm internalize
via clathrin-dependent endocytosis, in particular the 100 nm NPs
used in this study. In the case of internalization of large NPs, an
exclusion could be observed by using EIPA, but not when chlor-
promazine and lipin III are used (ESI, Fig. S7†), indicating an
uptake of larger NPs via macropinocytosis. As already reported in
the literature,49 EIPA caused also a weak inhibition of small sized
NPs. These blocking study of differently sized NPs showed that
dened small p(MMA-stat-MAA) NPs were predominantly taken
up by clathrin-dependent endocytosis, whereas larger ones were
predominantly taken up by macropinocytosis.

Conclusion

The preparation of a differently labeled p(MMA-stat-MAA)
copolymer and its nanoprecipitation into dened NPs with
various sizes (<100 nm, 100 to 200 nm, and >300 nm) without
the usage of surfactants were demonstrated. These tailor-made
NPs are promising for studying the inuence of the surface,
charge or size of the NPs on their internalization into cells, as
no stabilizers were used, which have an inuence on cellular
uptake. We showed that the size itself of the NPs has a strong
inuence on the uptake in HeLa cells. This is further inuenced
by the concentration used and incubation time. The medium
sized NPs were taken up faster compared to small and large
ones. All NPs were found inside the cells, whereas small and
medium sized NPs showed the same cellular distribution and
were detectable in lysosomes. In contrast, large NPs showed less
co-localization with smaller NPs and were not detectable in the
lysosomes. By using inhibitors, we have shown that clathrin-
dependent endocytosis is the predominant pathway for smaller
NPs < 200 nm, whereas macropinocytosis is responsible for
larger NPs. In further studies, the inuence of the zeta potential
and of the additional functional groups on the particle surface
will be studied, again in the absence of surfactants.
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