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Chapter 1

Introduction

The  efficient  testing  of  the  mechanical  properties  of  materials  has  a  long 

tradition  in  science  and  materials  research.  Conventional  testing  is  mostly 

based  on  standardized  tensile  tests,  rheology  or  indentation  techniques.[1-4] 

These  methods  are  usually  destructive  techniques  and/or  require  large 

amounts of  material or significant efforts in sample preparation, which limit 

their routine applicability, in particular for a fast screening or high-throughput 

experimentation approach. The mechanical properties of materials depend on a 

large  variety  of  parameters  which  have  a  tremendous  influence  on  the 

material’s characteristics. This holds, in particular, for polymer materials, which 

can be tuned to cover a broad range of mechanical materials properties,[5-9] 

e.g.,  by  the  introduction  of  side  chain  functionalization,  fine-tuning  of  the 

degree of crystallinity or by varying the composition of copolymers[10] and blend 

systems.[11,  12] The investigation of  structure-property relationships to predict 

the resulting materials  properties  has therefore gained strong interest,[13] in 

particular, as significant improvements in the synthesis of polymer materials 

have been made due to the introduction of controlled and living polymerization 

techniques.[14] These permit  the  synthesis  of  well-defined  polymers  and  co-

polymers  with  low  polydispersity  index  (PDI)  values.  Thus,  it  is  nowadays 

possible to correlate the molecular properties and the influences of the polymer 

architecture independently of uncertainties which arise from the variation of 

the molar masses within the sample system. However, frequently the synthesis 

of  such  polymer  systems  is  in  the  first  instance  performed  in  lab-scale 

quantities, i.e., the available material for mechanical testing is small (typically 

100  to  500  mg).  While  traditionally  employed  characterization  techniques 

require  rather  large  amounts  of  sample  material,  e.g.,  dog-bone  shaped 

samples for tensile testing, alternative characterization tools are highly desired 

which require only small quantities of material. 
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Depth-sensing  indentation  (DSI)  was  introduced  in  the  1970s[15] and  was 

developed as a measurement technique for small volumes of material, but it 

was  not  until  the  ground-breaking  publication  by  Oliver  and  Pharr  that  it 

became commonly used.[16] The authors developed an analysis  method that 

allows,  under  certain  assumptions,  the  simultaneous  measurement  of  the 

elastic modulus and hardness of small samples with the same device setup. 

The elastic modulus is regarded as a true material property which enables the 

direct  comparison of  the tested materials  independent of  the measurement 

parameters.  Thus,  the  contribution  by  Oliver  and  Pharr  is  regarded  as  a 

milestone for the development of indentation analysis which opened the field 

of  indentation  to  the  wide  range  of  materials  testing  applications,  mainly 

because of the low requirements towards the test specimens. In this respect 

depth-sensing indentation (DSI) is a non-destructive, high-throughput capable 

testing method, that requires only very small quantities of material (for soluble 

materials, usually a few tens of milligrams are sufficient). However, it is still not 

a  routinely  employed  method  as  no  standardized  testing  conditions  exist. 

Furthermore,  it  was  originally  designed  for  hard  materials,  like  metals  or 

ceramics, and the developed models for the material's behavior are frequently 

not directly applicable for polymers and other soft (bio-)materials.[17]

The  goal  of  this  thesis  is  to  determine  the  critical  parameters  for  the 

investigation of soft polymer samples by DSI and complementary techniques, 

the correlation  of  molecular  architectures  and intermolecular  interactions  to 

develop structure-property relationships as well as to evaluate the applicability 

of  DSI  for  the  monitoring  of  kinetic  processes  and  the  high-throughput 

characterization  of  polymer  libraries.  These  investigations  include  first  an 

introduction  to  the  investigation  of  soft  (bio-)materials  with  an  in-depth 

discussion  of  the  uncertainties  which  arise  for  soft  sample  systems.  In  the 

course of this discussion the verification of key parameters of the commonly 

utilized  analysis  model  by  Oliver  and  Pharr  for  the  investigation  of  soft 

polymers is introduced (Chapter 2). This study defines a set of measurement 

conditions which can be applied for the investigation of soft sample systems, in 
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particular,  of  poly(2-oxazoline)s.  This  polymer  class  has  recently  received 

significant  attention  for  biomedical  applications[18-20] due  to  their  structural 

similarities  with  polypeptides,  their  high  biocompatibility  and  thermo-

responsiveness which make them ideal compounds for potential drug delivery 

and biotechnological applications,[7, 21] where the mechanical properties are of 

importance, e.g., to stimulate cell devision in cell culturing, etc..[22-24] A library 

of  poly(2-oxazoline)s,  which  are  facilitated  with  different  side  chains  was 

chosen and was utilized to study the influence of the molecular architecture of 

the polymers  on the mechanical  properties.  The introduction of  side chains 

manipulates  the  mechanical  properties  and  fundamental  structure-property 

relationships  could  be  elucidated  by  combining  depth-sensing  indentation, 

DSC, FT-IR and TGA measurements (Chapter 3). Finally, the implementation of 

DSI  for  the  investigation  of  the  time-dependent  crosslinking  of 

polystyrene/polybutadiene  (PS/PB)  and  the  high-throughput  analysis  of  the 

mechanical  properties  of  semi-industrially  synthesized  polyurethane 

elastomers (PUE) was performed (Chapter 4).

As such, the presented studies evaluate the applicability of DSI as a valuable, 

easily  accessible  and  fast  analysis  tool  in  polymer  science.  The  individual 

contributions are summarized in Figure 1-1 and highlight the significance of the 

individual studies in the context of this thesis; ranging from the determination 

of fundamental parameters up to the integration of DSI in a high-throughput 

experimentation approach of industrially relevant polymer formulations.

7



Figure 1-1: Applications of depth-sensing indentation as discussed within this 
thesis.
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Chapter 2

Depth-sensing indentation: Examples, theory and limitations 

Parts of this chapter have been or will be published: P1) E. F.-J. Rettler, S. Hoeppener,  
B. W. Sigusch, U. S. Schubert, “Mapping the mechanical properties of biomaterials on 
different length scales: Depth sensing indentation and AFM based nanoindentation”, J.  
Mater. Chem. B 2013, 1, 2789-2806. P2) E. Rettler, J. M. Kranenburg, S. Hoeppener, R. 
Hoogenboom,  U.  S.  Schubert,  “Verification  of  key  assumptions  for  the  analysis  of 
depth-sensing indentation data”, Macromol. Mater. Eng. 2013, 298, 88–89.

Originally, depth-sensing indentation techniques have been developed for the 

investigation  of  the  mechanical  properties  of  hard  materials  like  metals  or 

ceramics, which behave either fully plastic or elastic.[25, 26] While data analysis 

for hard samples is well understood and reliable models have been developed, 

the  situation  becomes  more  complex  if  soft  samples,  i.e.,  polymers  and 

biological materials, are measured. As a main criterion for the applicability of 

DSI on soft materials the development of consistent analysis models is required 

that take into account the specific characteristics of this class of samples. In 

practice, the classical models for the materials behavior start to fail if, e.g., the 

investigated materials become too soft for indentation measurements or show 

unexpected behavior during the experiment, i.e., viscoelastic creep or adhesion 

or  the  material  becomes  inhomogeneous,  which  is  frequently  observed  for 

biological  samples  as  well  as  for  polymers.[27] Such  materials  cover  a  wide 

range of mechanical properties from brittle to viscous and, therefore, show a 

different  behavior  under  the  application  of  load  compared  to  metals  or 

ceramics. There are examples where depth-sensing indentation is utilized to 

directly investigate the viscoelastic and viscoplastic behavior, e.g., to study the 

response of biomaterials. In such experiments long loading times have been 

applied to investigate the creep behavior to determine the properties of, e.g., 

human enamel.[28] As a result the indentation creep rate sensitivity could be 

determined  and  it  can  be  demonstrated  that  a  similar  viscoelastic  and 

viscoplastic behavior of enamel as well as of bone are observed.[29] The analysis 
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of  the  indentation  creep  at  maximum load  and  the  creep  recovery  at  the 

minimum load are in this case measured and fitted to a double-exponential 

function which can be compared to classic viscoelastic models. These results 

can explain the excellent wear and crack resistance of natural tooth structures. 

However,  when testing polymer  materials,  these effects  may invalidate the 

measurements of the mechanical properties, e.g., of the hardness and Young’s 

modulus.  For  softer  materials  the tip/sample adhesion can also result  in  an 

additional load, pulling the indenter probe onto the material, as described for 

various conditions by the Derjaguin-Muller-Topov model or the Johnson-Kendall-

Roberts model.[30, 31] Moreover, the adhesion may result in friction, which may 

also influence the load-displacement response obtained by indentation.[3, 32] Ito 

et al.[33] also showed the dependence of the mechanical properties of dental 

resins on the hydrophilicity of the respective materials. Thus, different models 

and analysis techniques are required to be applied for the characterization of 

such materials.[34]

In  standard  polymer  analysis,  the  classical  Oliver  and  Pharr  model  is 

conventionally applied, which is based on three key assumptions: 

1. the  unloading  is  predominantly  elastic  (which  implies  that  the  time-

dependent displacement  of  the  tip  into  the  sample  material  due  to  

creep is small),

2. the  tip/sample  adhesion  and  friction  are  so  small  that  they  do  not 

influence the load-displacement response,

3. no cracks are formed around the indent or at the indent corners.

The  verification  of  these  key  assumptions  represents  an  important  step  to 

ensure  reliable  data  analysis  as  well  as  to  define  suitable  measurement 

parameters for polymeric samples. Validation tests were performed on poly(2-

oxazoline)s to determine the limitations of the Oliver and Pharr model and to 

optimize the investigation conditions for this special class of polymers.
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The first and the second assumption listed above have been investigated using 

copolymers of 2-ethyl-2-oxazoline (Et) and 2-(3-ethylheptyl)-2-oxazoline (EHe). 

It was shown that amorphous, non-crosslinked polymers of relatively low molar 

mass close to their glass transition may give rise to unreliable results when the 

unloading responses are analyzed using the protocol proposed by Oliver and 

Pharr. Due to substantial time-dependent deformation, the assumption that the 

unloading is predominantly elastic can be violated. Increasing the unloading 

rate improved the reliability of the analysis results. It could be demonstrated 

that an unloading displacement rate exceeding the creep rate by a factor of 

five is suitable to minimize the influence of creep on the obtained reliable  Ei 

values.  Moreover,  the pull-off  force,  where  the indenter  probe breaks  loose 

from the sample surface, indicates that the extent of adhesion is no longer 

negligible for materials close to their glass transition. Therefore, apart from the 

creep,  also  the  increased  adhesion  and  tip-sample  friction  reduces  the 

accuracy of the analysis results for such copolymers tested very close to, or 

above, their Tg. The second assumption is usually met for glassy polymers, like 

polycarbonate (PC) or polymethylmethacrylate (PMMA), as evidenced by the 

good agreement between modeling and experimental results ignoring adhesion 

and friction.[35]
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Figure  2-1:  Representative  indentation  curves  of  experiments  with  a 
loading/unloading/reloading  pattern  on  copolymers  with  different  2-(3-
ethylheptyl)-2-oxazoline  (EHe)  content.  Material  creep  is  visualized  by  the 
continuing penetration of the tip into the material during the hold period and 
adhesion by the negative force on the tip at the end of the unloading segment.

Compliance with the third assumption can be ensured by imaging some of the 

indents on materials that may behave brittle. For indentation depths well in the 

micrometer  range,  optical  imaging  can  be  applied,[36] while  for  shallower 

indents,  topographic  imaging  is  most  suitable.  As  polystyrene  (PS)  is  well-

known for its (macroscopic) brittleness, compliance with the last assumption 

was investigated using polystyrene. The PS sample was subjected to several 

heating/cooling cycles to increase its brittleness for this study. 

Cracks could be visualized by imaging with a Berkovich tip even though the 

cracks resulted in only modest changes in the load-displacement response. 
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Figure  2-2:  In-situ  imaging  with  the  (Berkovich)  indenter  tip  after  making 
indents in polystyrene at high force. a) Severe cracking occurred at the corners 
of the indent. b) Only minor cracks are found.

It shall be noted that no cracking was observed in any other of the investigated 

systems within this thesis. 

These  fundamental  studies  of  the  key  assumption  verification  represent 

important  tests  of  the  polymer  systems,  which  have  been  studied  in  the 

following investigations, and essentially define the parameters which can be 

applied  during  the  depth-sensing  indentation  measurements.  For  all 

subsequent studies data analysis could be performed utilizing the Oliver and 

Pharr method taking into account the parameters determined in the validation 

study.
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Chapter 3

Mechanical properties and water uptake behavior of polyoxazolines

Parts of this chapter have been or will be published: P3) K. Kempe, E. F.-J. Rettler, R. M.  
Paulus, A. Kuse, R. Hoogenboom, U. S. Schubert, “A systematic investigation of the 
effect of side chain branching on the glass transition temperature and mechanical 
properties of aliphatic (co-)poly(2-oxazoline)s”,  Polymer 2013,  54,  2036-2042. P4) E. 
F.-J. Rettler, M. V. Unger, R. Hoogenboom, H. W. Siesler, U. S. Schubert, “Water uptake 
of  poly(2-N-alkyl-2-oxazoline)s:  Temperature-dependent  FTIR  spectroscopy  and two-
dimensional correlation analysis”,  Appl. Spectrosc. 2012,  10, 1145–1155. P6) E. F.-J. 
Rettler, H. M. L. Lambermont-Thijs, J. M. Kranenburg, R. Hoogenboom, M. V. Unger, H. 
W. Siesler, U. S. Schubert, “Water uptake of poly(2-N-alkyl-2-oxazoline)s: Influence of 
crystallinity  and  hydrogen-bonding  on  the  mechanical  properties”,  J.  Mater.  Chem. 
2011,  21, 17331–17337. P8) E. F.-J. Rettler, J. M. Kranenburg, H. M. L. Lambermont-
Thijs, R. Hoogenboom, U. S. Schubert, “Thermal, mechanical, and surface properties of 
poly(2-N-alkyl-2-oxazoline)s”, Macromol. Chem. Phys. 2010, 211, 2443–2448.

Poly(2-oxazoline)s  have  been  chosen  as  a  suitable  system  to  investigate 

structure-property  relationships  in  systematically  varied  polymer  libraries 

because their synthesis via a living cationic polymerization method allows a 

good control over the main chain length and the introduction of side groups.[13] 

Earlier work on 2-oxazoline copolymers showed that the mechanical properties 

strongly depend in particular on the side chains;[37] e.g., the type of side chain 

governs  the  glass  transition  temperature  of  the  polymer,[P8] as  well  as  the 

presence  of  crystallinity,  and,  therefore,  the  modulus  of  elasticity  of  the 

resulting material.[38-42] Furthermore, the mechanical properties also depend on 

the humidity of the surrounding atmosphere.[P6, 43] For some poly(2-oxazoline)s, 

small  amounts of  water still  present in the samples at low humidity induce 

hydrogen  bonding  and/or  polar  interactions  between  the  polymer  chains, 

resulting in relatively high elastic moduli.

To  investigate  these influences  in  more  detail  the  thermal,  mechanical  and 

water-uptake  behavior  was  investigated  for  a  library  of  poly(2-oxazoline)s, 

where the linear side chains have been systematically varied.  Two different 

series prepared with monomer over initiator (M/I) ratios of 60 and 100 were 

investigated.

15



This  investigation has been extended on copolymers with different ratios of 

poly(2-ethyloxazoline)  (EtOx)  content  to  obtain  information  on  the  effect  of 

branching in the side chain functionalization. Investigations were performed in 

a high-throughput fashion and only small amounts of sample material of ~50 

mg were utilized to complete the studies.

Table  3-1:  Schematic  representation  of  the  chemical  structures  of  the 
investigated poly(2-oxazoline) homopolymers and their abbreviations used in 
the text.

R=

Abbreviation

-CH3 MeOx

-C2H5 EtOx

-C3H7 PropOx

-C4H9 ButOx

-C5H11 PentOx

-C6H13 HexOx

-C7H15 HeptylOx

-C9H19 NonOx

-CH(CH3)2 i-PrOx

-CH2-CH(CH3)2 i-ButOx

As summarized in Figure 3-1, glass transition temperatures are observed for 

the MeOx up to the PentOx linear side chain functionalized samples. For ButOx 

up to the NonOx, endothermal peaks around 150 °C were found. Since these 

peaks  only  occur  within  the  polymers  with  longer  side  chains,  they  are 

attributed to side chain crystallization. While the glass transition temperatures 

constantly decrease with increasing length of  the side chain (MeOx through 
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PentOx), the melting temperatures of the semicrystalline polymers (ButOx to 

NonOx) stay constant at around 150 ± 10 °C, indicating that Tm is independent 

of  the  side chain  length.  Up to  the  PropOx sample  no melting peaks  were 

observed,  reflecting  the  fact  that  a  minimum  length  of  the  side  chain  is 

required to induce crystallization.  From these results,  it  was concluded that 

MeOx,  EtOx,  and  PropOx  side  chain  functionalized  samples  are  completely 

amorphous, while the rest of the library is semi-crystalline.

Figure 3-1: Thermal properties of the investigated poly(2-oxazoline)s with linear 

side chains prepared with M/I ratios of 60 and 100 respectively.

Water-uptake causes a swelling of the polymers, thus increasing the interchain 

volume which results in a higher flexibility of the polymer chains. As a result 

the  elastic  modulus  of  the  hygroscopic  materials  is  significantly  decreased. 

Under ambient conditions, the indentation moduli drop by almost 50% for the 

hygroscopic  materials  compared  to  the  dried  state,  while  for  the  semi-

crystalline materials,  the decrease is very small  up to negligible. As can be 

seen in Figure 3-2,  the indentation moduli  linearly  decrease with increasing 

17



length of the side chain until the Tg is below room temperature. After that the 

values  stay  more  or  less  constant.  This  trend  holds  true  for  both  testing 

conditions  at  low  and  ambient  humidity.  As  the  measurements  have  been 

performed at  room temperature,  MeOx up to  PropOx are  still  in  the glassy 

state, while the  Tg of the rest of the library is at (for ButOx) or below room 

temperature.

Figure 3-2: Indentation moduli of the investigated poly(2-oxazoline)s with linear 
side chains at ambient (~40% r.h.) and dry conditions (~5% r.h.).

For  comparison  of  the  hygroscopicity  of  the  different  polyoxazolines, 

thermogravimetric  analysis  (TGA)  has  been  performed  on  water-saturated 

samples from the M/I=60 series.  For  MeOx,  EtOx,  and  i-PrOx,  smaller  mass 

losses were observed due to the evaporation of water. This confirms earlier 

water-uptake  measurements[P6] that  also  showed  these  samples  to  be 

hygroscopic.
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Figure 3-3: TGA analysis of the water-saturated polyoxazolines prepared with a 
M/I  ratio  of  60.  The inset  shows an enlarged view of  the most hygroscopic 
samples.

Temperature-dependent IR-measurements have proven to be a more precise 

indicator  for  crystallinity  as  well  as  hygroscopicity  than  DSC  or  TGA 

measurements and were utilized to reveal the underlying molecular processes. 

The full  width at half-maximum (FWHM) values of  the C=O peak are highly 

sensitive towards changes in the material upon variation of the temperature, 

thus, crystalline behavior could even be detected for the PropOx sample, where 

neither DSC showed a melting peak, nor a water loss could be detected by 

TGA. However, the standard analysis of the spectra did not reveal water-uptake 

in  the  PropOx.  By  using  advanced  analysis  techniques  (2-dimensional 

correlation  analysis  (2DCOS)  and  perturbation-correlation  moving-window 2-

dimensional (PCMW2D) correlation) also the weak interaction of water with the 

C=O functionality  of  the  polymer  could  be  detected.  This  is  shown  by  the
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correlation of the water and polymer peaks in the synchronous as well as the 

asynchronous  spectrum  (Figure  3-4  A  and  B).  The  water  loss  can  also  be 

followed in the PCMW2D spectrum by the negative peak around ~1625 cm-1 

which  disappears  with  increasing  temperature  and  the  corresponding 

strengthening of the C=O peak at ~1660 cm-1.[P4] 

Figure  3-4:  A)  Synchronous  and  B)  asynchronous  correlation  spectra  of  the 
PropOx  ν(C=O) region calculated from the FT-IR spectra  in  the temperature 
range  30  to  170  °C.  C)  Synchronous  PCMW2D correlation  spectrum in  the 
temperature  range  30  to  200  °C.  Red  color  indicates  positive,  blue  color 
indicates negative peak intensities.
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At  ambient  conditions,  the  water-saturated samples  exhibit  lower  moduli  in 

depth-sensing indentation than under dry conditions due to a plasticising effect 

of the incorporated water.[44] The water molecules are hydrogen-bonded to the 

polymer as shown by FTIR-spectroscopy, thus increasing the interchain volume. 

Furthermore,  crystalline  behavior  of  the  carbonyl-band  was  observed  for 

poly(2-oxazoline)s with a linear side chain of at least three carbon atoms in 

length. Both effects can be studied by the observation of the C=O stretching 

vibration which is the dominant feature of the spectrum and represents the 

‘‘junction  point’’  between  the  side  chains  and  the  polymer  backbone. 

Therefore, it can be concluded that the crystalline behavior found for the C=O 

vibration results from side chain crystallization for ButOx and longer side chains 

(which correlates with the melting peaks found in the DSC), whereas for shorter 

side  chains,  the  crystalline  behavior  is  dominated  by  an  alignment  of  the 

polymer backbones. 

Next to poly(2-oxazoline)s which are functionalized with linear side chains also 

branched side chains can be introduced into the polymers.[45-46] As industrially 

produced  polymers  usually  exhibit  branching,  this  effect  is  of  significant 

importance  for  practical  applications.  As  shown  above,  the  homo  poly(2-

oxazoline)s  with  longer  side  chains  (allowing  branching)  all  exhibit  glass 

transition temperatures below room temperature, aggravating the mechanical 

characterization  and  comparison  of  samples  with  each  other.  Therefore, 

copolymers of different branched poly(2-oxazoline)s with decremental amounts 

of EtOx have been investigated. Figure 3-5 shows the schematic representation 

of these copolymer systems and the resulting moduli. These copolymers can be 

seen as hard/soft composite materials, where the EtOx always represents the 

“hard” component. The thermal properties of the homopolymers as well as of 

the  copolymer  series  were  determined  by  DSC  and  were  compared  to  the 

known PEHOx and P(EHOx-r-EtOx) system. PEPOx and P3EPOx exhibit the same 

number of carbon atoms in the side chain and the same branching group but 

different branching positions. Both polymers were found to be amorphous, i.e., 
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revealing only a glass transition and no melting point. In a similar fashion as for 

the  PEHOx homopolymer  the  crystallinity  of  the  polymers  is  suppressed  in 

comparison to their linear analogs with the same number of carbon atoms in 

the side chain. Thus, the incorporation of branching points in the side chain 

changes  the  thermal  behavior  from  semi-crystalline  to  amorphous. 

Furthermore,  the position of  the branching point and the length of the side 

chain influence the Tg values significantly. 

Figure  3-5:  Indentation  moduli  of  the  different  copolymer  systems  with 
decreasing EtOx content.

Within each library, the moduli linearly decrease with increasing comonomer 

content  as  reflected  by  the  linear  decrease  in  the  glass  transitions.  When 

comparing  the  different  libraries  with  each  other,  it  is  observed  that  upon 

changing the position of the ethyl-group in the side chain from the 1- to the 3-

position, the effect on the mechanical properties is more prominent than upon 

elongation of the main side chain by another ethyl-unit as it is also observed in 

the Tg values. As a possible reason for this behavior the steric hindrance of the 

branched side chain structure can be assumed. Considering the number of stiff 

‘junction’  points  per  repeating  unit,  the  P(EPOx-stat-EtOx)  only  has  one 

connection point between the main chain and the two side chains (considering 

one ethyl- and one butyl-side chain starting from the branching point), while 
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the P(3EPOx-stat-EtOx) has two junction points, one between main and side 

chain and one where the side chain branches. 

When comparing the P(3EPOx-stat-EtOx) with the P(EHOx-r-EtOx), the moduli 

do  not  significantly  differ,  contrary  to  the  difference in  the  glass  transition 

temperatures.  As  the  steric  hindrance  is  already  high  due  to  the  second 

junction  point,  an  increase  in  one  of  the  secondary  side  chains  does  not 

significantly  increase  the  interchain  distance  any  further.  The  unexpectedly 

lower modulus of the pure EtOx is thus a result of the hygroscopicity of that 

particular sample as discussed above.

By  utilization  of  a  combination  of  DSI,  TGA,  DSC  and  advanced  FT-IR 

spectroscopic  techniques  it  was  possible  to  relate  the  changes  of  the 

mechanical  properties  within  libraries  of  systematically  varied  poly(2-

oxazoline)s  to  intermolecular  processes,  such  as  crystallization  and 

hygroscopicity. It could be explained how water incorporated in the material 

decreases the mechanical properties. Furthermore it was shown that branching 

also has a strong effect on the mechanical properties and that changing the 

branching point from the 1- to the 3-position has a stronger effect than the 

elongation of the branched chain.
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Chapter 4

Application of depth-sensing indentation to crosslinking studies and 
industrial polymers

Parts of this chapter have been published: P5) E. Rettler, T. Rudolph, A. Hanisch, S. 
Hoeppener, M. Retsch, U. S. Schubert, F. H. Schacher: “UV-induced crosslinking of the 
polybutadiene domains in lamellar polystyrene-block-polybutadiene block copolymer 
films  –  An  in-depth  study”,  Polymer 2012,  53,  5641–5648.  P7)  L.  I.  Majoros,  B. 
Dekeyser,  N.  Haucourt,  P.  Castelein,  J.  Paul,  J.  M.  Kranenburg,  E.  F.-J.  Rettler,  R. 
Hoogenboom, U.  S.  Schubert,  “Preparation of  polyurethane elastomers (PUEs)  in  a 
high-throughput workflow”, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 301–313.

The main advantages of depth-sensing indentation (DSI) investigations are in 

particular  the  low  amount  of  material  and  the  fact  that  essentially  no 

demanding  sample  preparation  is  required.  These  features  make  DSI 

interesting not only for kinetic but also for screening applications.

The possibility to investigate time-dependent processes, i.e., polymerizations, 

crosslinking and vulcanization processes, was demonstrated on a polystyrene / 

polybutadiene (PS /  PB)  50:50 copolymer,  where the  crosslinking of  the  PB 

domains  was  triggered  by  UV  light  irradiation  in  the  presence  of  different 

amounts of a crosslinking initiator (Scheme 4-1). 
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Scheme 4-1: Schematic representation of the crosslinking of the PB domains in 
films of  PS51-b-PB49

73.3 induced via photolysis  of  an UV-photoinitiator,  Lucirin-
TPO®.

The  phase  separation  observed  in  this  system  exhibits  a  periodicity  of 

approximately 50 nm, which is far smaller than the typical indentation size, 

thus,  it  is  validated  that  a  combined  elastic  modulus  for  the  material  is 

obtained.[47] Moreover, the system permits to follow the crosslinking process 

not only by DSI, as mechanical hardening of the samples will occur, but can be 

also spectroscopically monitored by Raman spectroscopy, analyzing the ratio of 

the  C=C  stretching  vibrations  and  the  aromatic  C-H  signals.  Both 

measurements were performed in an ex-situ, step-wise fashion in time intervals 
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of 1 h. Exemplarily DSC measurements were added into the analysis cycle for 

20 wt% initiator  addition.  Figure  4.1  depicts  the DSI  data  for  systems with 

different initiator concentrations.

Figure  4-1:  Development  of  the  crosslinking  process  over  time  followed  by 
depth-sensing indentation for different amounts of crosslinking agents.

For low initiator concentrations a slow crosslinking is found which reflects the 

formation of  radicals in the initial stage of irradiation. However, no essential 

change of the mechanical properties of the polymer is observed.[48-50] After the 

initiation period,  the material  undergoes a transition in which crosslinks are 

formed. The radicals then migrate until they react with a double bond in one of 

the polymer chains, forming a larger macro-radical. These macro-radicals can 

either  undergo  recombination  reactions  or  lead  to  intra-  or  interchain 

crosslinking.  In  this  stage  changes  of  the  mechanical  properties  can  be 

observed, which are mainly attributed to interchain crosslinking, as a dense 

polymer network with lower degrees of  freedom is  formed.  This  model was 

confirmed by the in-depth investigation of a 20 wt% initiator system, which is 

depicted in Figure 4-2. 
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Figure 4-2: The crosslinking process of a sample containing 20 wt.% crosslinker 

followed by DSI, Raman spectroscopy and DSC.

Raman and Tg data indicate the start of the crosslinking after 1 h, whereas the 

mechanical hardening can be observed only after 3 h of UV-irradiation until 

after 8 hours a complete crosslinking of the polymer is observed. Thus, it could 

be demonstrated that the time-dependent investigation of the crosslinking of 

PS-PB  copolymer  could  in  principle  be  easily  analyzed  in  a  time-resolved 

fashion with a low amount of  material  as well  as without excessive sample 

preparation.  The  combination  with  complementary  investigation  techniques, 

moreover, confirmed the underlying network formation.
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The  ease  of  analysis  represents  moreover  an  attractive  feature  for  the 

integration  of  depth-sensing  indentation  into  high-throughput  workflow 

schemes. Also the amount of material which is required is much lower as it 

would be necessary for, e.g., tensile testing, where the samples have to be cut 

into  standardized  shapes  of  defined  size.  An  example  for  such  a  high-

throughput  characterization  approach  was  implemented  on  semi-industrially 

produced  PUEs  which  were  synthesized  in  a  high-throughput  synthesis 

approach (see Scheme 4-2). 

Scheme  4-2:  Implementation  of  depth-sensing  indentation  into  a  high-
throughput experimentation workflow.

A set of 40 PUEs with different compositions was synthesized. The final goal 

was here to implement DSI as a high-throughput characterization tool to allow 

the  efficient  screening  of  structure-property  relationships  as  well  of  an 

economic way of integrating quality control.
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The sample preparation for the indentation as well as the measurement itself 

could be carried out in 12 h in an automated fashion for all 40 PUEs prepared in 

the  workflow,  demonstrating  that  such  mechanical  tests  will  not  be  a 

bottleneck in the complete high-throughput workflow. 

Figure 4-3: Comparison of mechanical properties determined by conventional 
mechanical analysis and depth-sensing indentation.

First of all it is observed that values differ by an order of magnitude from those 

measured by the conventional testing method (see also Figure 4-3).  In general, 

the values obtained from indentation experiments were found to be higher than 

those obtained from bending tests. This is probably due to material creep and 

to pile-up around the indent. 

The  reduced  modulus  is  calculated  from the  unloading  stiffness  S and  the 

contact area A (which is a function of the contact depth hc) via:

Er=
√π
2β

⋅
S

√A (hc )
, (4.1)

where β is a coefficient for the indenter geometry with a value slightly larger 

than 1.
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Creep  results  in  an  overestimated  stiffness  obtained  from  the  unloading 

response  of  the  indenter,  while  pile-up  additionally  results  in  an  increased 

contact area. As the values for the contact area are used from a reference 

material, the values obtained from a measurement where pile-up occurs will 

always  underestimate  the  contact  area.  Therefore,  the  resulting  reduced 

modulus  is  overestimated.  These obstacles  in  the analysis  routine  limit  the 

significance of the quantitative values of the obtained material properties. In 

addition,  the  surface  roughness  might  influence  the  results.  Careful 

optimization of the sample surface is not compatible with the targeted high-

throughput experimentation approach, thus, only a qualitative screening was 

obtained.  However,  the  uncertainties  in  data  analysis  do  not  obscure  the 

observed trends. In general, the indentation data represented the same trends 

as the results obtained by conventional physical testing for the modulus. Even 

small  deviations  in  the macroscopic  properties,  for  example,  PUE2  vs PUE4 

could be detected with this technique. Therefore, it could be demonstrated that 

for a qualitative evaluation of structure property relationships depth-sensing 

indentation can be integrated into high-throughput experimentation workflows 

as an additional high-value investigation tool.
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Summary

The advantages and current limitations of depth-sensing indentation (DSI) as a 

characterization  tool  for  polymer  materials  are  discussed  throughout  this 

thesis. It could be demonstrated that depth-sensing indentation studies of soft 

polymers are still  a challenging field which is up to now only in its infancy. 

Within  the  summarized  studies  a  base  for  the  reliable  characterization  of 

mainly  poly(2-oxazoline)  libraries  was  created.  This  included  a  careful 

verification  of  suitable  indentation  parameters,  a  cross-evaluation  of  the 

obtained  results  with  complementary  techniques,  i.e.,  Fourier-transform 

infrared  spectroscopy  (FTIR),  differential  scanning  calorimetry  (DSC), 

thermogravimetric analysis (TGA) and Raman spectroscopy, which ultimately 

allowed not only to determine the underlying intermolecular changes of the 

sample  system,  which  are  responsible  for  the  macroscopic  mechanical 

properties of the sample systems, but also verified the level of precision which 

can currently be obtained by DSI. 

Particular problems arise for soft sample systems due to the material behavior 

that  does  not  comply  with  the  typical  characteristics  of  hard  samples,  like 

metals or ceramics, for which DSI was originally used. Problems resulting from 

unexpected  material  behavior  have  been  discussed  in  the  context  of  this 

thesis. The application of DSI to soft polymers requires new analysis models to 

represent the specific material's properties of soft polymers. While metals or 

ceramics  behave  mostly  elastic-plastic,  polymers  frequently  show 

(visco-)elastic  behavior,  meaning they deform nonlinearly under the applied 

load. This material creep may significantly influence the measured properties, 

thus falsifying the obtained results. Furthermore, during contact, the material 

can create pile-up around the indenter tip. This leads to an underestimation of 

the contact area and, therefore, the calculated modulus is overestimated. 

In  Chapter  2  practical  solutions  for  the  investigation  of  soft  polymers  are 

provided. In particular the adjustment of the unloading cycle turned out to be 

sufficient  to  improve  the  data  integrity  significantly.  In  general  for  soft 
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polymers, a long hold segment and a high unloading rate are recommended. 

The long hold at the maximum load allows the material to equilibrate itself to 

the applied force and the quick unloading minimizes the effect of creep on the 

measurement.

The determined measurement protocol was applied in Chapter 3 to a polymer 

library  consisting of  poly(2-oxazoline)s  with  different  molecular  architecture. 

The aim of this study was to generate structure-property relationships which 

ultimately allow the tailor-made synthesis of polymer systems with predefined 

mechanical  signatures.  Different  aspects  which  influence  the  mechanical 

properties could be determined: The crystallinity, branching and the influence 

of adsorbed water molecules. The indentation measurements provided valuable 

information in addition to the thermal properties investigated by DSC and TGA, 

which  showed  a  linear  dependence  of  the  mechanical  properties  on  the 

distance of the individual polymer  Tg to room temperature. Furthermore, with 

the  help  of  temperature-dependent  FT-IR  spectroscopic  techniques,  the 

processes of crystallization and hydrogen-bonding could be followed. This study 

was performed on a systematically varied library, where only small quantities 

(~50 mg) of the individual samples were available. As the polymers could all be 

prepared similarly, the fabrication of a library of samples on a microscopy glass 

slide allowed a consecutive measurement in an automated run. This enabled a 

quick comparison of the samples and resulted in the extraction of structure-

property relationships.

However, as demonstrated in Chapter 4 it turned out that reliable quantitative 

mechanical  data  can  only  be  obtained  on  optimized  material  systems  –  a 

prerequisite which is  hardly  achievable,  in particular in  semi-industrial  high-

throughput experimentation, where the preparation of the individual samples 

cannot  be  adapted  each  time.  In  this  particular  case  only  a  qualitative 

correlation of the mechanical properties is possible. Therefore, an additional 

standardized preparation routine is highly advised for larger sample batches. 
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As shown in Chapter 4, creep and pile-up influences may falsify the obtained 

values  by  one  order  of  magnitude  and  should  therefore  be  avoided  where 

possible. However, it could be demonstrated that DSI can be implemented in 

the  high-throughput  workflow  as  a  primary  evaluation  tool  which  provides 

clearly  the  qualitative  trends  of  the  mechanical  properties  and  even  small 

changes  can  be  tracked.  These  possibilities  are  frequently  sufficient  during 

industrial quality control applications.

Additionally, it was demonstrated in Chapter 4 that DSI can also be used to 

investigate  time-dependent  processes,  like  UV-induced  crosslinking.  A 

polystyrene / polybutadiene (PS/PB) copolymer system with varying amounts of 

crosslinking  agent  was  used  to  investigate  this  process  by  a  stepwise 

irradiation/measurement  cycle.  It  was  shown  that  the  optimum  amount  of 

crosslinker  is  approximately  10  wt.%  of  the  crosslinkable  PB  amount.  The 

crosslinking starts after around 3 hours of irradiation and is completed after 

about 7 to 8 hours for sample films with a thickness of approximately 200 µm. 

Here, DSI was the main investigation tool for following this process. The results 

were  confirmed by Raman spectroscopy which  showed the  decrease of  the 

corresponding  C=C  bands  from  the  PB  block  which  are  consumed  during 

crosslinking.

The presented studies clearly show that DSI on soft sample systems inherently 

suffers  from non-ideal  sample  behavior  and  future  work  has  to  focus  on  a 

better understanding of these influences. A standardized application of DSI will 

certainly  rely  on  an  implementation  of  refined  models  to  extract  the 

mechanical properties. Nonetheless, it can be expected that DSI will gain more 

importance as can be clearly seen also in the large research interest which is 

strongly accelerating during the last years. In particular the possibility to obtain 

quantitative material parameters in a local fashion with micrometer resolution, 

the small sample area and amount of material which is required as well as the 

ease and speed of data acquisition make DSI a promising tool for materials 

research.
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Zusammenfassung

Die  Vorteile  und  gegenwärtigen  Limitierungen  von  Nanoindentations-
messungen  als  Werkzeug  für  die  Polymeranalyse  werden  in  dieser  Arbeit 
diskutiert.  Es  konnte gezeigt  werden,  dass  Nanoindentationsstudien an sehr 
weichen Polymeren ein herausforderndes Forschungsgebiet darstellen, welches 
immer noch in  den Kinderschuhen steckt.  Mit  den hier  zusammengefassten 
Studien  wurde  eine  solide  Basis  für  die  weitere  Erforschung  von  Poly-2-
oxazolinen  gelegt.  Dies  umfasst  eine  vorsichtige  Validierung  der 
Messparameter,  einen  Vergleich  der  Ergebnisse  mit  komplementären 
Techniken,  wie  z.  B.  Fourier-Transformations  Infrarotspektroskopie  (FTIR), 
Differentialthermoanalyse  (DSC),  Thermogravimetrie  (TGA)  und  Raman 
Spektroskopie,  erlaubt  schließlich  nicht  nur  die  Bestimmung  von 
intermolekularen Änderungen innerhalb des betrachteten Probensystems, die 
letztendlich für  die makroskopischen mechanischen Eigenschaften der Probe 
verantwortlich  sind,  sondern  zeigt  weiterhin  die  derzeitige  Genauigkeit  von 
Nanoindentationsmessungen.

Indentationsmessungen  an  weichen  Polymeren  stellen  eine  besondere 
Herausforderung dar, da deren Verhalten nicht dem Schema harter Materialien, 
wie z. B. Metallen oder keramischen Werkstoffen, folgt, für die diese Methode 
ursprünglich  entwickelt  wurde.  Einige  Probleme die  aus  unvorhergesehenen 
Materialeigenschaften  resultieren  werden  in  dieser  Arbeit  diskutiert.  Die 
standardisierte  Anwendung  von  Nanoindentations-messungen  in  der 
Polymeranalytik erfordert neue Analysemodelle, die das tatsächliche Verhalten 
der  Materialien  beschreiben.  Während  Metalle  und  Keramiken  elastisch-
plastische  verformt  werden,  zeigen  Polymere  häufig  visco-elastisches 
Verhalten,  was  bedeutet,  dass  ihre  Verformung  unter  Druck  nicht  linear 
verläuft. Dieses Verhalten kann die gemessenen Eigenschaften in hohem Maße 
beeinflussen und die  Messergebnisse  somit  verfälschen.  Des  Weiteren  kann 
sich  die  Polymeroberfläche  im  Kontakt  mit  der  Indenterspitze  nach  Außen 
wölben, was eine größere Kontaktfläche gegenüber der Kalibration zur Folge 
hat. Die führt wiederum zu einem verfälschten Wert für den E-Modul.

In Kapitel 2 werden praktische Lösungen für die angesprochenen Probleme bei 
Indentationsmessungen  an  Polymeren  vorgestellt.  Die  Anpassung  des 
Rückzugssegmentes  der  Messung  hat  sich  als  besonders  geeignet 
herausgestellt, um Meßfehler zu minimieren. Im allgemeinen wird für weiche 
Materialien ein Indentationsmuster mit langer Halteperiode bei maximaler Kraft 
und einer hohen Rückzugsrate der Spitze empfohlen. Die lange Halteperiode 
erlaubt es dem Werkstoff, sich der aufgebrachten Kraft anzupassen und der 
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schnelle Rückzug der Spitze minimiert zusätzlich den Effekt des Kriechens des 
Materials.

Das entwickelte Meßprotokoll wurde in Kapitel 3 an einer Probenbibliothek von 
Poly-2-oxazolinen  mit  unterschiedlichen  molekularen  Strukturen  angewandt. 
Das Ziel dieser Studien war es, Struktur-Eigenschafts-Beziehungen ableiten zu 
können,  was  es  zukünftig  erlauben  soll,  Polymere  mit  maßgeschneiderten 
mechanischen Eigenschaften herzustellen. Verschiedene Aspekte mit Einfluss 
auf die mechanischen Eigenschaften konnten identifiziert werden: Kristallinität, 
Verzweigungsgrad  und  die  Anlagerung  von  Wassermolekülen.  Die 
Indentationsmessungen lieferten zusätzlich zu den thermischen Eigenschaften, 
die  mittels  DSC und  TGA bestimmt  wurden,  wertvolle  Informationen.  Diese 
zeigten einen linearen Zusammenhang zwischen mechanischen Eigenschaften 
und  der  jeweiligen  Glasübergangstemperatur.  Des  Weiteren  konnte  mit 
temperaturabhängigen FT-IR Messungen die Kristallisation sowie der Einfluss 
von  Wasserstoffbrückenbindungen  verfolgt  und  aufgezeigt  werden.  Diese 
Studie  wurde  an  einer  Probenbibliothek  mit  systematischer  Variation  der 
Seitenkettenlänge durchgeführt, für die nur sehr geringe Mengen an Material 
(jeweils ca. 50 mg) zur Verfügung standen. Da die Probenpräparation für alle 
Polymere ähnlich erfolgen konnte, war es möglich, alle Proben automatisiert zu 
messen. Dies ermöglichte einen schnellen Vergleich der Proben untereinander 
und die Extraktion von Struktur-Eigenschaftsbeziehungen.

Wie Kapitel 4 jedoch zeigt, ist es nur möglich quantitative mechanische Daten 
zu sammeln, wenn ein optimiertes Probensystem zur Verfügung steht. Dies ist 
im allgemeinen nur unter hohem Aufwand zu erreichen und limitiert daher die 
Anwendung der Methode für  (semi-)industrielle  Hochdurchsatzanwendungen. 
Im  gezeigten  Beispiel  war  nur  ein  qualitativer  Vergleich  der  mechanischen 
Eigenschaften  möglich.  Daher  ist  ein  zusätzlicher,  standardisierter 
Präparationsschritt für größere Proben-mengen unabdingbar.

Zudem konnte gezeigt  werden,  das  die Messergebnisse durch Kriechen und 
Adhäsion  sogar  um eine  Zehnerpotenz  verfälscht  werden  können.  Trotzdem 
lassen  sich  Nanoindentationsmessungen  leicht  in  ein  Hochdurchsatzschema 
integrieren und bilden sowohl die mechanischen Trends als auch sehr kleine 
Variationen innerhalb der Probenbibliothek korrekt ab. Diese Möglichkeit sollte 
meist  schon  ausreichend  für  die  Anwendung  in  der  industriellen 
Qualitätskontrolle sein.

Zusätzlich  konnte  in  Kapitel  4  gezeigt  werden,  dass  Nanoindenations-
messungen ebenso verwendet werden können, um zeitabhängige Prozesse, wie 
z.  B.  die  UV-induzierte  Quervernetzung von Polymeren,  zu  untersuchen.  Ein 
Copolymersystem aus Polystyrol und Polybutadien mit variierendem Anteil an 

37



Vernetzungsreagenz  wurde  für  diese  Studie  verwendet.  Die  Proben  wurden 
zyklisch wechselweise belichtet und gemessen. Es konnte gezeigt werden, dass 
die optimale Menge an Vernetzungsreagenz bei etwa 10 Gewichtsprozent liegt, 
bezogen auf  den Anteil  an Polybutadien.  Die  Vernetzung startet  nach ca.  3 
Stunden Belichtungszeit und wird nach 7 bis 8 Stunden vervollständigt bei den 
gemessenen Probenfilmen von ca. 200 µm Dicke. Nanoindentation diente hier 
als  hauptsächliche  Charakterisierungsmethode  um den  Prozess  anhand  der 
Änderung  der  mechanischen  Eigenschaften  zu  verfolgen.  Die  Ergebnisse 
wurden mit Hilfe der Ramanspektroskopie bestätigt. Diese Messungen zeigten 
die  Verringerung  der  Intensität  der  C=C  Doppelbindung  des  Polybutadien-
Blocks,  welche  im  Verlauf  der  Vernetzung  zu  Einfachbindungen  reduziert 
werden.

Die  präsentierten  Studien  zeigen  klar,  dass  Nanoindentationsmessungen an 
sehr  weichen Proben durch Abweichungen vom idealen Verhalten erschwert 
werden,  und  dass  weitere  Studien  für  ein  besseres  Verständnis  dieser 
Abweichungen  nötig  sind.  Eine  zukünftige  standardisierte  Anwendung  der 
Nanoindentation  wird  wahrscheinlich  auf  neuen Modellen  zur  Extraktion  der 
mechanischen Eigenschaften basieren. Trotz alledem ist zu erwarten, dass der 
Nanoindentationstechnik  künftig  eine  größere  Rolle  bei  der  Messung  von 
mechanischen  Eigenschaften  zukommt,  was  auch  dem  stark  wachsenden 
Forschungsinteresse  in  den  letzten  Jahren  geschuldet  ist.  Von  besonderem 
Interesse  ist  hier  die  Möglichkeit,  quantitativ  die  Materialeigenschaften  mit 
einer  lokalen Auflösung im Mikrometerbereich  bestimmen zu können,  sowie 
allgemein  die  geringe  Menge  an  benötigtem  Probenmaterial  und  die 
Möglichkeit zur Automatisierung der Messung. All diese Eigenschaften machen 
die  Nanoindentationstechnik  zu  einem  wertvollen  und  vielversprechenden 
Werkzeug für die Materialforschung.
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