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Zusammenfassung 

Subduktion an Plattenrändern umfasst eine Vielzahl komplexer Prozesse. Zum 

Verständnis dieser Prozesse ist fundiertes Wissen über Materialparameter und 

kombinierte mechanische Effekte der Plattenbewegung nötig. Die 

Südamerikanische Subduktionszone zählt zu den interessantesten 

Subduktionszonen überhaupt. Das Abtauchen der ozeanischen Nazcaplatte unter 

die Südamerikaplatte führten zur Entstehung der Anden entlang der westlichen 

Plattengrenze Südamerikas. Es gibt Hinweise, dass die regionale Rheologie und 

die physikalischen Parameter wie Trench-Geometrie, Kopplung zwischen den 

Platten, Abtauchwinkel, Geschwindigkeit der überschiebenden Platte, etc., 

Einfluss auf die großräumige tektonische Deformation haben. 

In dieser Arbeit wurden 3D finite Elemente Modelle entwickelt, um die Rheologie 

der Südamerikanischen Subduktionszone zu untersuchen. Der Einfluss von 

kombinierten mechanischen Prozessen der Plattenbewegung und der 

Kopplungsintensität zwischen den Platten auf die Deformationen ist hier von 

besonderem Interesse. Zusätzlich werden Korrelationen zwischen Deformationen 

in der oberen Platte und physikalischen Parametern, z.B. kontinentale 

Krustenmächtigkeit, kontinentale Plattengeschwindigkeit, Abtauchwinkel, sowie 

schiefe Plattenkonvergenz, untersucht. Dazu werden unterschiedliche 

Reibungskoeffizienten in der Kopplungszone und unterschiedliche 

Randbedingungen angesetzt. 

Für die numerischen Tests werden zwei Segmente der südamerikanischen 

Subduktionszone mit unterschiedlicher Geometrie ausgewählt, die durch den 

Hangwinkel (α) und den mittleren Abtauchwinkel (β) charakterisiert sind. Das 

erste Modellierungsgebiet beschreibt die nördlichen Anden (20°S-25°S) mit  

α = 4.7° und dem steilen Abtauchwinkel β = 18.4° während das südliche 

Modellierungsgebiet die Anden im Bereich 36°S - 40°S mit α = 2.3° und dem 

flachen Abtauchwinkel β = 13.4° darstellt. Beide Modell-Varianten bestehen aus 

sechs homogenen Einheiten mit unterschiedlichen rheologischen Parametern. Die 

Kopplungszone zwischen den Platten reicht von ca. 10 km bis ca. 50 km Tiefe. 

Die Reibungszone hat deshalb eine Länge von 126 km für das nördliche Modell 

und 172 km für das südliche Modell. Die Modelle resultieren in Deformationen in 

der überschiebenden Platte für eine Modelllaufzeit von 500000 Jahren. Einerseits 
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ist diese Laufzeit kurz genug im Vergleich zum Prozess der Gebirgsbildung und 

andererseits ist sie lang genug um großräumige Deformationen zu modellieren. 

Die Sensitivitäts-Analyse für das nördliche Andenmodell zeigt, dass ein 

Reibungskoeffizient von µ = 0.14 in der Kopplungszone in 500000 Jahren eine 

Hebung von 103 m im Bereich des Altiplano-Plateaus verursacht, entsprechend 

einer Hebungsrate von 0.2 mm/yr für das Anden-Plateau. Dies stimmt gut mit 

geologisch bestimmten Hebungsraten für das Plateau überein. Weiterhin passt 

dieser Koeffizient gut zu anderen numerischen Abschätzungen. 

Unter Ansatz einer Zug-Geschwindigkeit (slab pull velocity) an der abtauchenden 

Platte tritt eine Hebung in der oberen Platte nur auf, wenn sich diese mit mehr als 

2 cm/yr in Trenchrichtung bewegt. Bei Geschwindigkeiten kleiner als 2 cm/yr 

überwiegt die Zugkraft der abtauchenden Platte und es kommt zu keiner Hebung 

in der oberen Platte. Eine Erhöhung des Reibungskoeffizienten in der 

Kopplungszone reduziert die Hebungsrate. 

Wird nur die Zugkraft (slab pull) angesetzt, tritt keine Hebung in der Oberplatte 

auf. Die Kombination aus slab pull Geschwindigkeit und Gravitation verursacht 

Subsidenz in der Oberplatte für alle Reibungskoeffizienten (µ = 0.1, 0.2, 0.5). Bei 

Vernachlässigung der Reibung  (µ = 0.0) zeigt das Modell eine geringere Hebung 

in Trench-Nähe, während höhere Reibung eine verstärkte Subsidenz bewirkt. 

Es ist eine Korrelation zwischen der Hebung und der Mächtigkeit der oberen 

Platte festzustellen, geringere Mächtigkeit führt zu stärkerer Hebung. Für das 

Modell mit dünner kontinentaler Kruste (40 km) führt beispielsweise ein 

Reibungskoeffizient zwischen 0.3 und 0.35 zu einer Hebungsrate von 0.2 mm/yr 

im Altiplano-Plateau. 

Der Abtauchwinkel der subduzierenden Platte spielt eine wichtige Rolle für die 

Deformationsraten in der Oberplatte. Im Vergleich mit dem nördlichen 

Andenmodell mit β = 18.4° zeigt das südliche Andenmodell mit β = 13.4° 

geringere Hebung im fore-arc jedoch stärkere Hebung im back-arc Bereich. Eine 

schief angesetzte Plattenbewegung der Nazcaplatte führt zu Subsidenz in der 

Oberplatte. 

Die Sensitivitäts-Analyse zeigt, dass die Randbedingungen die Mechanik der 

Kopplungszone steuern. Die Deformationen in der oberen Platte hängen stark von 

den gewählten Randbedingungen ab. Daher tragen die Ergebnisse dieser Arbeit 
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wesentlich zu einem besseren Verständnis der Komplexität der geodynamischen 

Prozesse in der Südamerikanischen Subduktionszone bei. Dies gilt ebenso für 

vereinfachte wie auch für auf realistischer Geometrie basierende Modelle. Die 

geometrischen Parameter (z.B. Abtauchwinkel, Alter der subduzierenden Platte, 

kontinentale Krustenmächtigkeit) haben starke Auswirkungen auf die 

Deformationen in der überschiebenden Platte. Daher sollten die Randbedingungen 

möglichst realistisch aus geologischen und geophysikalischen Methoden 

abgeleitet eingehen um damit das Verständnis der komplexen Prozesse in 

Subduktionszonen durch geodynamische Modellierungen weiterhin zu erhöhen. 
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Summary 

Subduction at plate margins is a complex process and its understanding requires a 

thorough knowledge of the material parameters and the mechanical effects of the 

plate movement. One of the most interesting subduction zone is the South 

American subduction zone which is formed due to the subduction of oceanic 

Nazca plate beneath the South American continental plate. This oceanic-

continental subduction results in the formation of the Andean mountain belts 

along the western margin of the South American plate. There are evidences of 

regional rheological control and the influence of physical parameters such as 

strength of coupled plate interface, overriding plate movement, and the slab dip on 

the first order tectonic deformation.  

In this project, 3D finite element modelling is carried out to test the rheology of 

the South American subduction zone by means of the commercial software 

package Abaqus. The combined mechanical effect of the plate movement and the 

strength of the coupled plate interface on the development of the overriding plate 

deformation are of primary interest. In addition, correlation between the 

overriding plate deformation and the physical parameters (thickness of the 

continental crust, continental drift velocity, convergence obliquity, and dip of 

subducting slab) are also tested. 

Two study areas, one from the Northern Andes (20°S-25°S) and another from the 

Southern Andes (36°S-40°S) having different geometric features are chosen. Both 

geometries are constrained with the average slope angle (α) and average slab dip 

angle (β). Both models contain six homogeneous units with different rheological 

parameters. A frictionally coupled zone is assigned between the subducting and 

the overriding plate with average updip and downdip limit of  

10 km and 50 km, respectively. The frictionally coupled zone is 126 km wide in 

the Northern Andean segment model and 172 km wide in the Southern Andean 

segment model. The strength of the frictionally coupled zone is assigned by 

applying different coefficients of friction. Subduction is simulated by applying 

velocity boundary conditions. The overriding plate deformation is calculated for 

the period of 500000 years. Though this time period is short as compared to the 

geological time span, but is sufficient to observe first order deformation pattern.  
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The sensitivity analysis of the Northern Andean model shows that the increase in 

strength of the frictionally coupled zone only amplifies the drag of the subducting 

plate and decreases the amount of uplift of the overriding plate. The coefficient of 

friction (µ = 0.14) produces the geological estimated uplift rate of 0.2 mm/yr for 

the Altiplano plateau region. The calculated coefficient of friction also fits well to 

the other numerical estimates for the Northern Andes.  

The combined mechanical effects of slab pull velocity and the gravity force create 

subsidence in the overriding plate for all coefficients of friction (µ = 0.1, 0.2, 0.5). 

The overriding plate subsidence increases with increase in coefficient of friction. 

In the case of frictionless plate interface (µ = 0.0), the model shows a little uplift 

only close to the trench. The oblique subduction of subducting plate leads to 

subsidence in the overriding plate for all coefficients of friction (µ = 0.0, 0.1, 0.2, 

0.5). 

The uplift in the overriding plate was generated when the trenchward overriding 

plate moves with the rate ≥ 2cm/yr. Trenchward overriding plate movement  

rate ≤  2 cm/yr does not overcome the dragging effect of the subducting plate and 

fails to generate overriding plate uplift.  

The uplift of the overriding plate is observed to be dependent on its crustal 

thickness. Decrease in the crustal thickness of the overriding plate implies 

increase in its uplift. The Northern Andean model with thin continental crust  

(40 km) requires a higher coefficient of friction (0.3<µ<0.35) to produce the 

geological estimated uplift rate of 0.2 mm/yr for the Altiplano plateau.  

The dip angle of the subducting slab is observed as an important parameter for 

controlling the overriding plate deformation pattern. The Southern Andean model 

with shallower dip angle (β = 13.4°) produces lower uplift in the fore-arc region 

but higher uplift in the back-arc region as compared to the Northern Andean 

model having a steep slab dip angle (β = 18.4°).  

The present study shows that the boundary conditions and the physical parameters 

regulate the mechanics of the frictionally coupled zone and in turn, the overriding 

plate deformation. Hence, the findings of this study will be helpful in further 

understanding of the complexity of geodynamic processes of the South American 

subduction zone based on realistic geometry as well as for the general subduction 

zone related investigations. The physical parameters such as thickness of the 
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continental crust and the slab dip have strong influence on the overriding plate 

deformation. These constraints should be derived in most realistic sense by using 

a multidisciplinary integrative approach using geological observations and 

geophysical studies in order to further increase the understanding of the complex 

processes of subduction zones by geodynamic modelling. 
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1 Introduction 

The Earth and its processes always has been a subject of curiosity for the human 

race. The Earth processes such as movement of plates, generation of earthquakes, 

formation of volcanoes, and building of mountains attract the researchers for a 

long time. The Earth consists of mainly 3 layers: lithosphere, mantle, and core. 

There are two types of lithosphere: 1) the oceanic lithosphere, which is associated 

with oceanic crust and exists in the ocean basins and 2) the continental 

lithosphere, which is associated with continental crust.  

In the theory of plate tectonics the lithosphere is divided into an interlocking 

network of blocks termed “plates”. These plates are considered to be internally 

rigid and their boundaries can be considered in three forms (Isacks et al., 1968). 

First are the oceanic ridges, which are characterized by diverging plates and also 

called as “constructive plate margins”. Secondly, the trenches are the boundaries 

where two plates are converging by the mechanism of the oceanic lithosphere of 

one of the plates being thrusted under the other and absorbed into the sub-

lithospheric mantle. They are also called as “destructive plate margins”; the third 

are the transform faults and are marked by tangential motions, in which adjacent 

plates in relative motion undergo neither destruction nor construction. The relative 

motion is usually parallel to the fault. They are also called as conservative plate 

margins (Kearey et al., 2008). 

Subduction is the process that takes place at the convergenent boundaries by 

which one tectonic plate moves under another tectonic plate and sinks into the 

mantle as the plates converge. Regions where this process occurs are known as 

subduction zones (Figure 1.1a). Subduction has a very important role in the 

recycling of the surface material by mixing it back to the deep Earth and 

introducing significant chemical variations back into the mantle (Christensen and 

Hofmann, 1994; Hofmann, 1997). Furthermore, it is also responsible for driving 

plate motions, mountain building, and the growth of new continental crust 

(Forsyth and Uyeda, 1975; Davidson and Arculus, 2006). In addition to playing 

the central role in the Earth tectonics, melt generation, and crustal surface (vertical 

and horizontal) deformations subduction zones profoundly impact on terrestrial 

life. Earthquakes and violent eruptions due to subduction zones cause widespread 

and unpredictable death and destruction. 
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Figure 1.1. a) Structure of subduction zone (after Stern, 2002). b) Types of subduction 

zone based on the age of the underthrusting lithosphere and the absolute motion of the 

overriding plate (after Uyeda and Kanomari, 1979; Stern, 2002). 
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Subduction is a complex dynamic process, which occurs over long time scale and 

to large depths and integrates small scale with large scale phenomena. Uyeda and 

Kanamori (1979) propose two major types of the subduction, the Mariana and the 

Chilean types. These types are defined by an extensional and a compressive 

tectonic regime within the overriding plate, respectively (Figure 1.1b). 

The subduction rate is measured in cm/yr, with the average rate of convergence 

being approximately 2 to 8 cm/yr (Defant, 1998). Some subduction zones extend 

from the Earth’s surface down to the 660 km transition zone. When the functional 

cycle of the subduction zone is spectacularly disrupted due to continental crust, it 

may result in the building of mountain ranges such as the “Andes” and the 

“Himalayas” (Allmendinger et al., 1997; O’Brien, 2001). Some subduction zones 

are long-lived such as the Andean subduction zone, which is over 100 million 

years old whereas others have just initiated such as the New Hebrides and 

Puysegur subduction zones (Pacific ocean, near Vanuatu and south Tasman Sea). 

The Andes are one of the largest active plate-boundary zones, forming a 

mountainous region which extends over 5000 km along the western margin of 

South America as a result of the subduction of the oceanic Nazca plate beneath 

the South American plate (Dewey and Bird, 1970; Pardo-Casas and Molnar, 

1987) (Figure 1.2). The Andes show substantial variation in the tectonic style and 

evolution along their length, as well as several major changes in trend. 

Allmendinger et al. (1997) proposed that uplift of the Andes began ca. 25 Myr ago 

due to concomitant accelerated convergence between the Nazca and the South 

American plates. Early theories of formation of the Andes propose that it may be 

due to crustal growth by magmatic processes, but other studies of structural 

shortening estimation and symmetric paleomagnetically evaluations which 

defined rotation on the northern and southern flanks of the Altiplano imply that 

the uplift of the Andes result from non-uniform crustal shortening, with maximum 

shortening and consequent thickening at the centre of the Andean orocline (Isacks, 

1988; Gregory-Wodzicki, 2000). 
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Figure 1.2. Map view of South American subduction zone. Black rectangles mark the 

investigation areas of this work, black arrows indicate the plate velocities (Somoza, 1998 

and Silver et al., 1998).  

Most researchers propose that crustal shortening due to the convergence between 

the subducting Nazca plate and the overriding South American plate is the major 

cause for the Andean uplift (Dewey and Bird, 1970; Isacks, 1988; Sheffels, 1990; 

Baby et al., 1992a; Dewey and Lamb, 1992; Allmendinger et al., 1997; Liu et al., 

2002; Sobolev et al., 2006). The GPS (Global positioning system) data over the 

Central Andes also show 30-40 mm/yr crustal shortening across the Andes 
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(Leffler et al., 1997; Norabuena et al., 1998; Norabuena et al., 1999; Kendrick et 

al., 2001). The seismic data as well as the geological data also show crustal 

shortening concentrated in the sub-Andean thrust belt at a much lower rate 

(Suarez et al., 1983; Sheffels, 1990; Schmitz, 1994). Klotz et al. (2006) use 

Global positioning system and observed that the earthquake cycle dominates the 

contemporary surface deformation of the Central and Southern Andes. 

Liu et al. (2002) showed the relationship between instantaneous crustal motion 

reflected by the GPS data and long-term crustal shortening in geological records 

using a simple viscoelastic-plastic model. They simulated the spatial distribution 

of the Andean crustal shortening in a 3D finite element model. They showed 

nearly uniform short-term velocity gradients across the Andes, consistent with the 

GPS data, and concentrated long-term crustal shortening in the sub-Andean thrust 

zone, consistent with the geological observations. Gravitational collapse in the 

high Andes is shown to be consistent with modern earthquake mechanisms, and 

the change of topographic loading along the Andes may explain the along-strike 

variation of extension directions indicated by seismic data. They explored the 

effects of the boundary conditions and basal shear in the model for possible 

causes of the reported changes in the orientation of crustal extension through the 

late Cenozoic. 

Sobolev et al. (2006) examined the factors which control the intensity of the 

tectonic shortening by using the coupled thermo-mechanical numerical modelling 

technique and they inferred that the fast and accelerating westward drift of the 

South American plate as the most important factor. Further, they proposed that the 

crustal structure of the overriding plate and shear coupling at the plates interface 

are also important factors.  

In addition, they also demonstrated an important role of the processes such as 

lithospheric delamination triggered by the gabbro-eclogite transformation in the 

thickened continental lower crust, and mechanical failure of the sediment cover at 

the shield margin which leads to mechanical weakening of the overriding plate 

during tectonic shortening. 

Some authors also propose that there is a relationship between rising of a large 

mountain range and climate change. The mountains act as a barrier to the 

atmospheric circulation and affect the upper atmosphere flow patterns; which in 

turn affect the patterns of the precipitation and seasonal heating. It may lead to 
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climate change and thus, increases the rate of chemical weathering (Ruddiman 

and Kutzbach, 1989; Raymo and Ruddiman, 1992; Broccoli and Manabe, 1997; 

Lamb and Davis, 2003). 

There is a causal link between the rise of a large mountain range and climate 

change. In Central South America, climate controlled sediment starvation might 

cause high shear stress which in turn supports the high Andes formation (Lamb 

and Davis, 2003). The marked global cooling trend observed since the Eocene 

might be due the mountain building (Raymo and Ruddiman, 1992). 

The mechanism of the subduction process can only be understood by using a 

multidisciplinary integrative approach using geological observations, geophysical 

studies with chemical fingerprinting of materials recycled in the subduction 

system, and studies of subduction dynamics in space and time. Cattin et al. (1997) 

studied the effect of long term coupling in the subduction zones on fore-arc 

topography using a 2D finite element model. They assumed that the traction 

arising from the friction is one of the stresses acting on topography. Further, they 

proposed that the intrinsic coefficient of friction for the small rock samples may 

be high (µ~0.6–0.8); however the effective coefficient of friction less than 0.2 

produces the consistent topography of the fore-arc region of Northern Chile. 

In another study, Hassani et al. (1997) used a 2D finite element modelling 

approach to model the subduction of the oceanic lithospheric plate beneath the 

continental lithosphere. They showed that both the stress system in the plates and 

the surface topography are strongly dependent on the density contrast between 

lithosphere and asthenosphere (∆ρ = ρL - ρA) and the coefficient of friction along 

the subduction plane. Extension and back arc rifting corresponds to a positive 

density contrast and a low coefficient of friction, while negative ∆ρ values and/or 

high friction leads to a compressional regime. They also proposed that the 

coexistence of trench-arc compression and back-arc tension is only possible for a 

coefficient of friction lower than 0.1.  

On the basis of paleotopography estimates from the upper crustal deformation, 

marine facies, geochemistry of volcanic rocks, climate from fossil floras, erosion 

rates, erosion surfaces, fission-track ages, and rates of terrigenous flux, Gregory-

Wodzicki (2000) estimated the geological uplift rates and suggested the uplift rate 

for Central Andes up to 0.1 mm/yr in the early and middle Miocene, increasing to 



Introduction   

 

7 

0.2–0.3 mm/yr in the Miocene to present. Most of the uplift represents surface 

uplift as the Altiplano has experienced little erosion since the Miocene. 

Variations such as surface plates velocities and buoyancy of the subducting 

lithosphere are likely to occur during the evolution of the subduction zone. Buiter 

et al. (2001) estimated the vertical surface displacements at the convergent plate 

margins resulting from such imposed variations. They developed the 2D 

numerical model in which the lithospheric plates have an effective elastic 

thickness as well as the subducting plate is driven by its negative buoyancy and a 

velocity at its surface side boundary. They found that a decrease in the buoyancy 

of the subducting material leads to a depression of the plate margins and increase 

in subducting material buoyancy leads to uplift of the plate margins. In addition, 

they showed that an increase in friction along the subduction fault deepens the 

overriding plate margin. They concluded that vertical surface displacements 

during ongoing subduction may reach a magnitude of a few kilometres on the 

overriding and subducting plate margins. 

Commonly, the role of a trenchward moving continental plate for the growth of 

topography is neglected in both modelling and field studies. Instead, forces 

exerted by the down going plate on the continental plate as well as inter plate 

coupling are thought to be responsible for the deformation of the upper plate 

(Jordan et al., 1983; Bott et al., 1989; Dewey and Lamb, 1992; Shemenda, 1993; 

Willett et al., 1993; Gephart, 1994; Stern, 2002; Lamb and Davis, 2003). Hampel 

and Pfiffner (2006) presented 2D finite element models and analysed the role of 

the trenchward motion of the upper plate and inter plate coupling in the 

development of topography at the convergent margins. They demonstrated that 

trenchward motion of the continental plate plays a key role for the development of 

mountain belts at convergent margins.  

The deformation patterns of the fore-arc wedges along the Chilean convergent 

margin vary significantly, despite having similar plate kinematic conditions 

(Hoffman-Rothe et al., 2006). Kellner (2007) carried out the analysis of the fore-

arc deformation on two regions of the Chilean convergent margin at 20°S-24°S 

and 37°S-42°S. She examined the influence of different rheological approaches 

and varying physical properties of the fore-arc to identify and constrain the 

parameters controlling the difference in surface deformation between the two 

regions. She demonstrated that a small slab dip, a high coefficient of basal 
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friction, a high obliquity of convergence, and a high Young’s modulus favour 

localisation of deformation in the fore-arc wedge.  

In another study, Babeyko and Sobolev (2008) analysed stresses in the subducting 

plate using the high resolution 2D thermo-mechanical model with realistic 

viscoelastic-plastic rheology. They demonstrated that the unbending stress is the 

dominant stress at 50-100 km depth for the shallow dipping overridden slabs.  

The Chilean Andes extend north-south for about 3000 km over the subducting 

Nazca plate, and show evidences of local rheological controls on first order 

tectonic features. Gerbault et al. (2009) tested rheological parameters of the 

subduction zone using numerical models with slab pull and upper plate 

convergence and calculate the development of stress and strain over a time period 

of 4 Myr. They studied the effects of subduction interface strength, arc and fore-

arc crust rheology, and arc temperature on the development of superficial near 

surface faulting as well as viscous shear zones in the mantle. They showed that 

the deformation geometries are controlled by the intersection of the subduction 

interface with continental rheological heterogeneities. They also concluded that 

upper plate weakness and interface strength have an impact on the upper plate 

shortening and trench advance.  

The absolute plate motions are considered to be a key factor for the upper plate 

behaviour, the slab geometry, and the trench migration (Jarrard, 1986; McCaffrey, 

1994; Lallemand et al., 2005; Heuret et al., 2007). The subducting plate, 

overriding plate, and mantle have a combined effect on the active convergent 

margins shape. Van Dinther et al. (2010) developed a viscoelastic mechanical 

finite element model in which the subducting plate, overriding plate, and the 

mantle interact dynamically. When a slab interacted solely with the mantle flow, it 

showed that local non-induced mantle flow influences slab geometry and 

kinematics. Further, they showed that the trenchward moving overriding plate 

indents the slab and thereby enforces trench retreat and decreases the slab dip.  

Bonnardot et al. (2008) developed a 3D mechanical numerical model and 

analysed the impact of the plate boundary geometry parameters (such as the inter-

plate friction and the lithosphere–asthenosphere density contrast) on the 

deformation of the upper plate. They observed that oceanward convexity causes 

an accumulation of the subducted material beneath the upper plate and induces an 

important uplift of the convex area. On the contrary, the material escapes from an 
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oceanward concavity and provokes subsidence in the fore-arc zone. These 

processes induce preferential zones of weakness in the overriding plate and 

provide explanations for some local stress regime variations along convergent 

margins. 

Gibert et al. (2012) studied the relationship between the subduction kinematics, 

overriding plate deformation, and the evolution of slab geometry using a 2D finite 

element numerical model. They observed two different styles of the subduction 

that depend on the overriding plate velocity vop: If vop > 0, the slab lies forward on 

the 660 km discontinuity (style 1), and if vop≤ 0, the slab lies backward on the 

discontinuity (style 2). 

Some authors also developed density models showing the mass distributions in 

the South American subduction zone (Strunk, 1990; Kirchner et al., 1996; 

Kösters, 1998; Tassara et al., 2006; Tašárová, 2007; Prezzi et al., 2009; Tassara 

and Echaurren, 2012).  

Tassara et al. (2006) developed a density model (T06) by forward modelling the 

Bouguer gravity anomaly under the constraints of published geophysical data. 

This provides a continental-scale representation of the internal structure of the 

South American plate. Various researchers used this model for a number of 

quantitative approaches (Mamani et al., 2008; Pérez-Gussinyé et al., 2008; 

Melnick et al., 2009; Farías et al. 2010; Zeumann, 2013).  

Further, Tassara and Echaurren (2012) presented an upgraded version of the 3D 

density model of the Nazca Slab and Andean margin with increased along-strike 

resolution of the model as compared to T06.  

Recently, Zeumann (2013) also developed a 3D finite element model for the 

Andean subduction zone. She used the T06 density model as the structural basis 

for the dynamic modelling. She showed a subsidence rate of -5 to -9 mm/yr in the 

offshore fore-arc in the northern part but an uplift rate of 2 to 4 mm/yr for the 

southern fore-arc region. Further, she found that the whole model has 

compressional (negative values) east-west strain, except an area in the centre of 

the model within the fore-arc region. She observed highest compression in the 

Precordillera and Western Cordillera (arc region) and higher compressional strain 

in the southern part (-0.006) as compared to the northern part (-0.005). She 

assumed that it might be due to the trench geometry. 
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The direct relation between the subduction process and the devastating 

earthquakes and active volcanism emphasise a social need for a better 

understanding of the subduction process. Previous studies have augmented our 

understanding of the different aspects of the subduction processes and the 

combined mechanical links between the subducting plate, mantle flow, and the 

surface deformation. The subduction process plays a very important role in the 

geodynamical and geochemical phenomena that shape our Earth. However, past 

research has made it very clear that several fundamental questions still remain 

unanswered. The most important are embedded in the lack of a common 

behaviour of global subduction zones (Uyeda and Kanamori, 1979). 

The Andean mountains are the consequence of the subduction of the oceanic 

Nazca plate. Despite of uniform convergence of the Nazca plate, the Andean 

orogen along its length displays a significant distinction in structure, volcanism, 

subducting slab geometry, deep lithospheric structure, and geological history 

(Jordan et al., 1983; Isacks, 1988; Cahill and Isacks, 1992; Yáñez and Cembrano, 

2004; Tassara, 2005; Hoffmann-Rothe et al., 2006).  

The Nazca-South America plate interface is considered to be highly coupled as 

compared to other subduction zones such as Marianas and it is highly prone to 

some of the largest earthquakes on Earth (Scholz and Campos, 1995; Conrad et 

al., 2004). It has been suggested that plate coupling, or the level of long term 

shear stress along the plate interface depends on several parameters such as 

subduction velocity, slab dip, and the amount of trench sediments (Jarrad, 1986; 

Kanamori, 1986; Ruff, 1989; Scholz, 1990; Scholz and Champos, 1995; Wang 

and Suyehiro, 1999; Lamb and Davis, 2003; Yáñez and Cembrano, 2004). There 

are also evidences of variation in along-strike plate coupling along the Andean 

margin (Yáñez and Cembrano, 2004; Hoffmann-Rothe et al., 2006).  

The degree of the plate coupling gives a measure of interaction between the 

subducting and overriding plates and is still not well understood. Its determination 

assists in the identification of earthquake prone regions of the subduction zone. 

Therefore, it is necessary to identify and understand the plate coupling process for 

the mitigation of earthquake hazards. 

The mechanical behaviour of the geometry as well as of the material can be 

studied by using continuum mechanics approach adapted in Finite Element 

Method (FEM). FEM simulation produces reliable results and has a strong 
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theoretical foundation. The commercial software Abaqus applies the finite 

element method approach and is also well accepted in geoscientific communities 

to model subduction related processes (Hetzel and Hampel, 2005; Hergert and 

Heidbach, 2006; Ellis et al., 2006; Gassmöller, 2011; Köther et al., 2012; 

Zeumann et al., 2013).  

In the present work, the 3D finite element modelling is carried out for better 

understanding of the rheological parameters affecting the deformation of the 

overriding plate for the Andean subduction zone. Two regions having different 

subducting slab geometries are chosen. One area from the Northern Andes  

(20°S-25°S) with 18.4° as slab dip angle and a second area from the Southern 

Andes (36°S-40°S) with 13.4° as the slab dip angle. The physical parameters such 

as frictionally coupled plate movement, thickness of continental crust, and 

magnitude of the overriding velocity are considered for analysis. In addition, the 

behaviour of oblique subduction is also considered. To examine the effect of 

temperature on the overriding plate deformation, a thermo-mechanical model is 

also simulated. 

This work is carried out within the project IMOSAGA (Integrated Modelling Of 

Satellite and Airborne Gravity data of Active plate margins), the extension of 

NOGAPSGRAV (NOvel Geophysical And Petrological applications of new-

generation Satellite-derived GRAVity data with a focus on hazardous and frontier 

regions). These projects are one part of the priority program "Mass transport and 

mass distribution in the system Earth" (SPP1257) of the German Research 

Foundation (DFG) and are carried out in the cooperation with the university of 

Kiel and TU Munich. 
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2 The South American subduction zone 

2.1 Tectonic setting 

The Andes are tectonically segmented mountain range extending along the 

western margin of the South American plate. The geological characteristics of the 

Andean orogen vary significantly along and across the strike. Many studies relate 

these differences to the type and role of the subducting slab in particular along 

strike variations in slab dip, slab age, and convergence obliquity (Jordan et al., 

1983; Lavenu and Cembrano, 1999; Gutscher et al., 2000; Stern, 2002; Lamb and 

Davis, 2003; Yáñez and Cembrano, 2004, Hoffmann-Rothe et al., 2006; Kellner, 

2007). The wide-slab of the South American subduction zone implies the curved 

geometry of the trench and the mountain building (Schellart et al., 2007).  The 

Nazca plate subducts at an angle of about 5°–10° beneath the South American 

plate between 2°S–15°S and 28°S–33.5°S and forms “flat-slab’’ zones. The 

steeply dipping zones between 15°S to 28°S correspond to the areas of the young 

volcanism and are termed as ‘‘steep-slab’’ zones (Gregory-Wodzicki, 2000). 

There is also variation along the strike in the fore-arc wedge geometry and it 

depends on the slab dip angle (β) and the margin slope angle (α) (Hoffmann-

Rothe et al., 2006). 

It has been suggested that differences in the coupling zone strength from north to 

south are related to the sedimentary fill in the trench (Lamb and Davies, 2003). 

Further, Hoffmann-Rothe et al. (2006) found decrease in the effective coefficient 

of the inter-face friction by 16% towards the south. Bangs and Cande (1997) also 

suggested that the thickness of the sedimentary fill in the trench is more than  

1.5 km and less than 0.5 km to the south and north of the Juan Fernandez Ridge, 

respectively.  

Some studies propose that the cenozoic tectonic shortening of the South American 

plate over the subducting Nazca plate forms the second largest plateau on the 

Earth (Isacks, 1988; Allmendinger and Gubbels, 1996; Allmendinger et al., 1997; 

Lamb et al., 1997; Kley and Monaldi, 1998; Giese et al., 1999; Liu et al., 2002; 

Sobolev et al., 2006). The magnitude and the timing for the shortening vary 

significantly along the strike. The back-arc shortening in the Central Andes at 

21°S started almost 50 Myr ago (Oncken et al., 2006). In contrast, the trench-

normal compression in the Southern Andes accumulated less than 20 km of 
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crustal shortening and in the Early Pliocene shortening even stopped (Kley et al., 

1999; Folguera et al., 2002). One of the possible reasons for decreasing the upper 

plate shortening in the Southern Andes is the reduction in the sedimentary fill in 

the trench towards the south (Dewey and Lamb, 1992; Klotz et al., 2001; Brooks 

et al., 2003). Sobolev et al. (2006) also suggested that the fast and accelerating 

westward drift of the South American plate is the most important factor for 

controlling the intensity of the South American plate shortening. Other studies 

propose that the degree of coupling of the overriding and the subducting plate or 

the relative motion of the trench and overriding plate is responsible for high 

topography of the Andes (Russo and Silver, 1996; Gutscher et al., 2000; Lamb 

and Davies, 2003; Hampel and Pfiffner, 2006; Oncken et al., 2006).  

2.1.1 Northern/Central Andes  

The Nazca plate subducts at a dip angle of 25°-35° below the South American 

continental plate between the 18°S-28°S and creates the Andean orogen 

(Barazangi and Isacks, 1976). The orogen between 18°S-22°S is approximately 

700 km wide and has a ca. 70-75 km thick crust (ANCORP Working Group, 

1999, 2003). The orogen is further subdivided into three different structural units 

as the fore-arc, volcanic-arc, and the back-arc. Because of continuous subduction 

for the last 200 Myr, the fore-arc is further subdivided into distinct geological 

units with varying topography (Coastal Cordillera of 1000-3000 m elevation; 

longitudinal Central depression, and a Precordillera of elevation of 2000-4000 m). 

Then further to the east is the Western Cordillera having an active zone of 

stratovolcanoes with elevations of more than 6000 m. Adjacent to this, is the 

Altiplano, with 3700 m as an average topography. East of the Altiplano, is the 

Eastern Cordillera. Then further east of the Eastern Cordillera, are the Sub-

Andean ranges dominated by an active fold-and-thrust belt with a width of 150-

200 km and elevations of less than 500 m (Figure 2.1a) (Gerbault et al., 2009). 

The present active magmatic arc is located about 200 km away from the trench 

and above 100 km from the Wadati-Benioff zone (Cahill and Isacks, 1992; 

ANCORP Working Group, 1999). 

The Atacama Fault  Zone (AFZ, Figure 2.1b)  more than 100 km long between the 

20°S-30°S is the excellent trench-parallel structure of the northern Chilean 

Coastal Cordillera and is formed in the Jurassic as a left-lateral, intra-arc fault 

(Scheuber and González, 1999; Gonzáles et al., 2003; Riquelme et al., 2003; 
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Cembrano et al., 2005). Since the Miocene, the AFZ has not been active as a 

major strike-slip system but, Dewey and Lamb (1992) estimated less than  

1 mm/yr of dextral strike-slip since the Pliocene. 

The Precordilleran Fault System (PFS, Figure 2.1b) is formed as an intra-arc 

trench parallel structure in the Paleogene magmatic arc migrating towards east 

since the late Ecocene (Reutter et al., 1991). The PFS has been reactivated many 

times in the fore-arc with mainly sinistral strike-slip displacements (Reutter et al., 

1996). Due to the Precordillera uplift in the Neogene, the PFS changed its 

displacement direction to the normal and dextral slip of the order of several 

hundred meters.  

 

Figure 2.1. Geological map of South American subduction zone. a) Major geological 

units (after Gregory-Wodzicki, 2000). The red rectangle is the investigation area of this 

work. b) Major fault system of the South American plate (after Hoffmann-Rothe et al., 

2006). Dark shading marks topography ≥ 2000 m elevation. Pairs of solid arrows denote 

the modern strike-slip fault direction, hollow arrows represents the past senses of slip. 

Triangles denote Holocene volcanoes. LOFZ: Liquiñe-Ofqui fault zone; AFZ: Atacama 

Fault Zone; PFS: Precordilleran Fault System.  
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From the 2D flexural analysis, Tassara (2005) showed that the fore-arc region has 

maximum rigidities between the 15°S-23°S and these decrease gradually towards 

the south and sharply towards the plateau. The main orogen (elevations higher 

than 3000 m) is very weak along the entire Central Andes.  

Variation in the wind pattern along the strike controls the precipitation 

distribution along the Chilean margin (Campetella and Vera, 2002). The upper 

plate denudation is responsible for sediment thickness within the trench and it 

strongly depends on the precipitation. 

2.1.2 Southern Andes 

As compared to the Central Andean segment, the mean height of the southern 

Andes is less than 2000 m south of 33°S. The width of the orogen is ~300 km  

(E-W) and the crustal thickness below the magmatic arc is about 35-40 km (Bohm 

et al., 2002; Lüth et al., 2003).  

The continental morphotectonics of the southern Andean segment is divided into 

three units (Cordillera, longitudinal depression, and main Cordillera). The fore-arc 

is composed of the Coastal platform, Coastal Cordillera and the Central Valley 

(longitudinal valley). The Coastal platform has shelf deposits of the late 

Creteceous to Quaternary marine and minor continental deposits (Pineda, 1986). 

The Coastal Cordillera is a narrow belt with 10-100 km width. Its height varies 

from N-S with 1500 m at the Nahuelbuta (38°S) and few hundred meters at the 

Valvida region (40°S-41°S). The Central Valley contains about 2 km of the 

Pliocene and Quaternary sediments, unconformably overlying the late Oligocene 

to Miocene volcano-sedimentary basin (Muñoz et al., 2000; Jordan et al., 2001). 

It extends from 36°S-39°S and from 40°S-42°S.  

The Principal Cordillera coincides with the axis of the Jurassic magmatic arc and 

has occupied a relatively stationary position (Mpodozis and Ramos, 1989). The 

mean elevation of the Principal Cordillera is decreased from ~2700 m (36°) to 

~1000 m (42°S). The subduction related voluminous magmatism is related to the 

Principal Cordillera from Jurassic to recent (López-Escobar, 1984; Hildreth and 

Moorbath, 1988; Lucassen et al., 2004; North Patagonian Batholith south of 40°S, 

Pankhurst et al., 1999). 

The Liquiñe-Ofqui fault zone (LOFZ) as major geological fault is present between 

37.5°S-47.5°S and runs parallel to the Southern Volcanic Arc. It is about 1100 km 
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long having maximum width of 100 m (Hervé, 1976; Cembrano et al., 1996, 

2000; Vietor and Echtler, 2006). It is a dextral intra-arc transforms fault and runs 

from the Liquiñe hot springs in the north to the Ofqui Isthmus in the south, where 

the Antarctic plate meets the Nazca plate and the South American plate at Chile 

Triple Junction. 

2.2 Available data 

2.2.1 Seismic velocity model 

In 1996, a 400 km east-west seismic reflection profile named ANCORP (Andean 

Continental Research Project) was accomplished at 21°S as a combined reflection 

and refraction observations (Figure 2.2). It started at the Chilean coast, moves 

eastwards and terminates in Bolivia. The ANCORP profile and integrated 

geophysical experiments observe the subduction of the Nazca plate under the 

South American plate. The onshore reflection and wide-angle line continued 

previously acquired offshore reflection data from CINCA’95 project. Together 

these data result in a seismic transect from the Pacific Ocean to the Brazilian 

craton with a length of more than 800 km. 

 

Figure 2.2. Velocity model along ANCORP transects (21°S) extended by offshore 

velocity observation of CINCA’95 experiments (ANCORP Working Group, 2003). 

Figure 2.2 shows that 
pv  velocity of the fore-arc region (71°W–69°W) increases 

down to 50-55 km depth from 3.6 km/s to ~7 km/s. 

The ISSA 2000 (Integrated Seismological experiment in the Southern Andes) 

experiments comprised of a seismic refraction profile along 39°S (Figure 2.3) that 
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recorded chemical shots fired in both the Pacific Ocean and in the Chilean Main 

Cordillera. ISSA 2000 wide angle data result in a 2D crustal velocity model 

having three main features. 

• The uppermost 20 km of the crust show the lateral heterogeneity with 

average velocity of approxmately 6.1 km/s in the fore-arc and 

approximately 6.4 km/s in the magmatic arc. Beneath the magmatic arc the 

upper crust is roughly 10 km thick and the lower crust is characterized by 

a high velocity of about 6.8 km/s at shallow depth. In contrast, the 

thickness of the upper crust in the fore-arc is 15 km and shows lower 

velocities of 
pv

 
= 6.5-6.6 km/s at its base.  

• The oceanic moho was observed by a seismic refraction profile at 

approximately 55 km depth beneath the Coastal Cordillera. 

• Between the lower continental crust and the subducting oceanic crust a 

wedge shaped structure occurs beneath the fore-arc. The upper eastern part 

of this layer can be attributed to the continental mantle which is supposed 

to be deeper than 40 km under the arc. In the upper western part the P-

wave velocity is considerably lower than that usually recorded for typical 

mantle. 

 

Figure 2.3. Velocity model at 39°S obtained by the ISSA 2000 experiment (Lüth et al., 

2003). The gray circular patches indicate locations of good electrical (GC) conductors 

according to Brasse and Soyer (2001). Black dots indicate the earthquake hypocenters 

located from the ISSA 2000 passive seismological experiment (Bohm et al., 2002). 
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2.2.2 Uplift estimation 

The work from Lamb and Hooke (1997) and Gregory-Wodzicki (2000) allow 

constraints to be placed on the timing and the rate of uplift in different 

morphotectonic provinces in the Central Andes (15°S-18°S). Gregory-Wodzicki 

(2000) used the estimation of crustal shortening and landscape development in the 

Western Cordillera, Altiplano, and Eastern Cordillera through the late Cenozoic 

and suggested that the subdomain of the Central Andes reached no more than half 

of its present height by 18–25 Myr ago. On the basis of paleoelevation estimates 

from the crustal shortening and the Chucal and Jakokkota floras,  

Gregory-Wodzicki (2000) suggested that the Altiplano reached about 25%–30% 

of its modern elevation in the early Miocene and had reached 50% by 10 Myr ago.  

The paleobotanical evidences of central Andes imply a surface uplift of  

2300–3400 m from Miocene to present. The estimation from Gregory-Wodzicki 

(2000) suggests uplift rates up to 0.1 mm/yr in the early and middle Miocene, 

increasing to 0.2–0.3 mm/yr in the Miocene to present (Table 2.1). Because the 

Altiplano has experienced little erosion since the Miocene, we can assume that 

most of the uplift represents surface uplift. 

Table 2.1. Uplift estimation (after Gregory-Wodzicki 2000) 

Area Time period Rate (mm/yr) 

Altiplano (19-25) to 60 Myr 0.02-0.03 

Altiplano 11 to (19-25) Myr 0-0.1 

Altiplano Present to 11Myr 0.2-0.3 

Eastern Cordillera, Central 

Andes 

(14-21) to 10 Myr 0-0.4 

Eastern Cordillera, Central 

Andes 

Present to 10 Myr 0.2-0.3 

Eastern Cordillera, Northern 

Andes 

(4-5) to (11-16) Myr 0.03-0.05 

Eastern Cordillera, Northern 

Andes 

2.7 ± 0.6 to (4-5) Myr 0.6-3.0 

Eastern Cordillera, Northern 

Andes 

Present to 2.7 ± 0.6 Myr 0 
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3 Basic Theories 

3.1 Continuum mechanics and Rheology  

Rheology is a branch of Physics which includes the study of flow of materials. 

The rheological behaviour such as elastic, plastic, and viscoelastic are present in 

the nature. The nature of deformation depends on the material rheology and the 

stresses applied on it. A material is considered as fluid independently of its atomic 

structure when it flows under constant stresses. Its fluidity depends on external 

conditions e.g. temperature, pressure, and duration of loading (Ranalli, 1995). 

Understanding of rheology plays an important role for studying the deformation 

and flow related to geophysical and geodynamical processes. Undoubtly, the 

mechanical and thermal processes included in these Earth processes can not be 

resolved without recognition to rheology. 

There are two major approaches for studying rheology. First is the continuum-

mechanics (macroscopic) and second is the discrete-mechanics (microscopic). 

Continuum mechanics deals with the analysis of the kinematics and mechanical 

behaviour of materials modelled as a continuous body. Continuum mechanics 

describes the properties of the materials without formal reference to the atomic 

processes, which governs the behaviour (Ranalli, 1995). The description of Earth 

materials like rocks as a continuum allows us to investigate many aspect of their 

rheology. So continuum mechanics approach is an essential tool and can lift us to 

the long way in the study of geophysical and geodynamic processes. 

Stress tensor 

Stress is the intensity of internal forces acting between particles of a body across 

imaginary internal surfaces. 

The state of stress at a point is defined as totality of all stress vectors 
n

T  at that 

point and gives this relation as shown in equation 3.1a (Chen and Han, 2007) 

n
n

A
TT

A

F
==

∆→∆ 0
lim  (n = 1, 2, 3 for 3D) (3.1a) 

where A∆
 
is the surface area passing through a point with a unit vector n normal 

to the area A∆  and 
nF is the resultant force due to the action across the area A∆  

of the material. The nine quantities required to define the three stress vectors (
1

T , 



Basic Theories   

 

20 

2

T , 
3

T ) called the components of stress tensor and can be represented by 33×  

matrix form as in equation 3.1b 
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ij     (3.1b) 

where 11σ , 22σ , 33σ  are the normal components of stress, 12σ , 13σ , 23σ  are shear 

components of the stress. In general the stress vector 
i

T  is associated with 

coordinate plane X1, X2, X3 and can be written as in equation 3.1c 

jij

i

eT σ=    (i, j = 1,2,3)   (3.1c) 

where σ
ij
 is the j-th component of stress vector 

i

T acting on an area element (at 

point) whose normal is in the direction of the positive Xi–axis. Because the stress 

tensor is symmetric, so the components of the stress vector acting on an arbitrary 

plane n at a given point in terms of the component of stress tensor ijσ  at that point 

can be written as in equation 3.1d 

jji

n

i nT σ=    (n, i, j = 1,2,3)   (3.1d) 

Equations of equilibrium 

A three-dimensional continuum shows balance of stresses with the following 

system of equations 3.2a-c (Ranalli, 1995) 
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where ρ  denotes the density of the material. After applying gravity ( g ) load in 

the vertical direction pointing upwards, the components of body force become 

021 == XX , gX −=3 , then equation (3.2c) changes to equation (3.2d). 
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This system of differential equations describes the response of a continuum due to 

applied boundary conditions and can be solved numerically. 

3.2 Rheological classes 

The rheological behaviour of the materials depends on the level of applied 

stresses. Materials can be divided into different rheological classes based on their 

nature of deformational response with respect to the stresses. 

3.2.1 Elastic rheology 

The crystalline materials (like rocks) at low pressure and temperature show elastic 

behaviour. Elasticity has wide application in the geodynamics. The upper 

lithosphere can be considered as elastic for loads of duration of the order of 

hundred to millions of years. Furthermore, the whole Earth behaves elastically 

with imperfections for loads of short duration (Ranalli, 1995). The behaviour of 

elastic material is shown in Figure 3.1a. The rheological properties of elasticity 

have the following characteristics:  

• Instantaneous deformation upon application of load. 

• Instantaneous and total recovery upon removal of load. 

• Linear proportionality between stress and strain.  

 

Figure 3.1. The rheological response of an elastic and a plastic body: (a) Linear 

correlation between the stress (σ) and strain (ε) in an elastic body. Arrows denotes the 

loading/unloading path. (b) Relation between stress (σ) and strain (ε) in a plastic body. 

Material behaves elastically below the yield stress ( Yσ ) and then deform in a ductile 

manner having constant stress with increasing strain. α = friction angle (after Kellner, 

2007). 
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The theoretical models for perfect elasticity follow the generalized Hooke’s law, 

which assumes that the components of stress at any point within the elastic 

medium are homogeneous linear functions of components of strain and can be 

written in the form of equation 3.3 (Ranalli, 1995) 

klijklij C εσ =  (i,j,k,l = 1,2,3)  (3.3) 

where ijklC  represents elastic parameters. Since ijσ  and klε  are symmetric tensors 

therefore, have only six components. Thus maximum 36 elastic parameters are 

independent. For isotropic materials, in which elastic behaviour does not depend 

on direction and these parameters reduce to 2. So Hooke’s law takes the form of 

equation 3.4 

ijijkkij µεδλεσ 2+=       (3.4) 

where ijδ is the Kronecker delta, λ and µ and are two elastic parameters termed 

as Lamé’s constants. Young’s modulus ( E ) and Poisson’s ratio (ν ) can be 

calculated with the equation 3.5 

( )
µλ

µλµ

+

+
=

23
E   

( )µλ

λ
ν

+
=

2
   (3.5) 

3.2.2 Plastic rheology 

The plastic material behaviour is shown in Figure 3.1b. Materials with plastic 

rheology have the following characteristics: 

• The linear elastic behaviour applies only below critical stress (elastic limit) 

of the material. 

• Above the elastic limit deformation is at first non-linear and when the 

deviatoric stress reaches a value Yσ  termed the yield stress, the material 

fails. 

• Failure can result either in discontinuous deformation (fracture) when 

material shows loss of stability along an approximately well defined 

structure surface, or in irrecoverable continuous deformation (plastic flow) 

when the material yields without any apparent loss of continuity. 
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3.2.3 General yield criteria 

The yield criterion defines the elastic limits of a material under combined states of 

stress. In general the elastic limit or yield stress is a function of the state of stress 

ijσ  and, the yield condition can generally be expressed as in equation 3.6 (Chen 

and Han, 2007) 

( ) 0...........,.........,, 21 =KKf ijσ     (3.6) 

where 1K , 2K , …… are material constants, which are determined 

experimentally. Since the stress state at a point is characterised by the principal 

stresses. So the general yield condition (equation 3.6) becomes equation 3.7 

( ) 0,.........,,,, 21321 =KKf σσσ     (3.7) 

For hydrostatic pressure dependent material such as rocks yielding conditions 

equation 3.7 changes to equation 3.8 

( ) 0,.........,,,, 21321 =KKJJIf     (3.8) 

where 321 ,, JJI  are the first, second and third stress invariant, respectively. 

3.2.4 Mohr-Coulomb criterion 

The Mohr criterion is based on the assumption that the maximum shear stress is 

the only decisive measure of the impending failure. This criterion considers the 

limiting shear stress τ in a plane to be a function of the normal stress σ in the same 

plane at a point and can be written as in equation 3.9 

( )στ f=        (3.9) 

where ( )σf  is the experimentally determined yield function. Figure 3.2 shows 

the graphical representation of the Mohr-Coulomb criterion. Equation 3.9 means 

that failure of material occurs if the radius of the largest principal circle is tangent 

to the envelop curve ( )σf . The Mohr criterion allows declining the effect of mean 

stress or the hydrostatic stress. The simplest form of Mohr’s envelop ( )σf  is a 

straight line, as illustrated in Figure 3.2. The equation for the straight line envelop 

is known as Coulomb’s equation and it is represented as in equation 3.10 

φστ tan−= c       (3.10) 
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In equation 3.10, c  is the cohesion and φ  is the angle of internal friction; both are 

the material constants. τ and σ  are the shear and normal stress, respectively, 

acting on the plane where failure occurs. According to this criterion the larger the 

pressure –σ, the higher is the shear that material can sustain. In Figure 3.2, the 

large Mohr circle with its centre ( ) 







+ 0,

2

1
31 σσ and radius ( )31

2

1
σσ −  gives 

equation 3.11 

φ
σσ

τ cos
2

31 −
=  and φ

σσσσ
σ sin

22

3131 −
+

+
=    (3.11) 

Using equation 3.11 in equation 3.10, the Mohr-Coulomb criterion (equation 3.10) 

changes to equation 3.12 (Chen and Han, 2007) 

( ) ( ) φφ
σσ

σσφσσ tansin
22

1
cos

2

1 31

3131 






 −
++−=− c     

for 321 σσσ ≥≥         (3.12) 

Rearranging terms of equation 3.12 gives equation 3.13 

1
cos2

sin1

cos2

sin1
31 =

−
−

+

φ

φ
σ

φ

φ
σ

cc
     (3.13) 

The strength of a Mohr-Coulomb material in the uniaxial compression and uniaxial 

tension, respectively be given as in equation 3.14 

φ

φ

sin1

cos2
'

−
=

c
f c    and  

φ

φ

sin1

cos2
'

+
=

c
f t    (3.14) 

Then the Mohr-Coulomb criterion reduces to equation 3.15 

1
''

31 =−
ct ff

σσ
   for  321 σσσ ≥≥    (3.15) 
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Figure 3.2. Mohr-Coulomb criterion: (a) The Coulomb friction over a plane with shear 

and normal stress τ and –σ, respectively (after Piaras Kelly, 2012). (b) Mohr-Coulomb 

failure criterion: with straight line as a failure envelope (after Chen and Han, 2007). 

3.2.5 Plastic Flow 

If plastic material satisfies equation 3.6, then it flows plastically and satisfies the 

following equation 3.16 

  
ij

p

ij

g
dd

σ
λε

∂

∂
=       (3.16) 

where g  is the plastic potential function and λd  is a positive scalar factor of 

proportionality, which is non zero only when plastic deformation occurs. For the 

special case when the yield function coincides with the plastic potential function, 

gf = , then equation 3.16 becomes equation 3.17 

ij

p

ij

f
dd

σ
λε

∂
=       (3.17) 

equation 3.17 is called ‘‘associated flow rule’’ because plastic flow is associated 

with yield criterion. While the associated plasticity can be applied successfully on 

the metals, whereas it is less applicable to the Earth materials such as rocks. For 

Earth materials the most appropriate form of plasticity is non-associated plasticity, 

in which the yield function is not associated with the plastic potential function and 

satisfies the condition gf ≠ . 
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3.3 Finite Element Method/Analysis (FEM/FEA) 

The finite element method (FEM) is a numerical technique based on discretization 

of a continuous space for finding approximate solutions of Partial Differential 

Equations (PDE) and their systems. Initial hypothetical assumptions are made, 

resulting in an approximation of realistic problems. The FEM analysis needs 

approximations of the geometry as compared to the analytical method. The 

accuracy of a FEM solution depends on the assumptions chosen in the geometry 

design, physical laws, boundary conditions, and load required to define the state 

of the elements. The flexibility of FEM permits a field simulation including 

precise geometries, isotropic or anisotropic material with any material laws, 

heterogeneous rheological layering, time-dependent solutions, contact, and 

Coulomb friction criteria between different units of geometry. Furthermore, the 

FEM has also a solid theoretical foundation which makes this method more 

reliable and in many cases makes it possible to mathematically analyse and 

estimate the error in the approximate finite element solution. Thus, FEM is an 

appropriate tool for modelling the realistic Earth deformation processes.  

The Finite Element Analysis (FEA) was first developed in 1943 by R. Courant 

(http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/widas/histo

ry.html). FEA consists of a material model in which specific conditions were 

applied and their effects were analysed. There are two common ways of FEA: 2D 

analysis, and 3D analysis. 2D analysis conserves simplicity and allows the 

analysis to be run on any computer but it tends to yield less accurate results as 

compared to real situations. However in 3D analysis, the process is complex and 

produces more realistic results but it requires a specific computing system. In this 

study, analysis of surface deformation associated with the South American 

subduction zone was performed with a commercial finite element system 

‘Abaqus’ (Abaqus Analysis User’s Manual, 2010). 

3.3.1 Finite Element Method  

Pre-processing  

A finite element analysis on a software system requires the following information 

for pre-processing: 

• Locations of nodes on geometry. 

• Elements and their type for connecting nodes. 
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• Properties of material used for analysis. 

• Elements and nodes sets for applying initial conditions, boundary 

conditions, and load. 

• Contact Formulation. 

• Type of analysis. 

Solution process 

• After pre-processing, the finite element solution is processed by solving a 

set of simultaneous algebraic equations 3.18 

[K] {u} = {F}       (3.18) 

where u is the displacement vector, [ ]nuuuu ,,........., 21= , F is the loading 

vector, [ ]nFFFF ,........,, 21=  and K is nn ×  matrix called stiffness matrix. 

The force is usually known, displacement is unknown and stiffness 

describes the characteristic properties of the elements. The order of the 

stiffness matrix is the same as the total number of directions in which 

motion is possible. 

• Parameters such as strain and stress at the elements are calculated by 

solving the system of equations (equation 3.18) having unknown 

quantities at the nodes (e.g., displacements). 

3.3.2 Abaqus implementation of FEM 

Abaqus is appropriate software for finite element analysis (Abaqus Analysis 

User’s Manual, 2010). Abaqus is designed to solve problems ranging from 

relatively simple linear analyses to the most challenging nonlinear simulations. 

Abaqus consists of three main analysis products: Abaqus/Standard, 

Abaqus/Explicit, and Abaqus/CFD. In this project, Abaqus/Standard is used for 

modelling and analysis of surface deformation associated with the South 

American subduction zone. Abaqus/Standard is a general-purpose analysis 

product that helps to solve a wide range of linear and nonlinear problems 

involving the static and quasi-static mechanical problems. Abaqus /CAE or 

Complete Abaqus Environment is used for both modelling and analysis of 

mechanical components and assemblies and to visualizing the FEA results. 

Abaqus contains an extensive library of elements having both linear and quadratic 



Basic Theories   

 

28 

geometric order, which can model virtually any geometry. The Abaqus material 

library provides a comprehensive coverage of linear and nonlinear as well as 

isotropic and anisotropic material properties. Abaqus provides linear elasticity, 

viscoelasticity, Drucker-Prager plasticity, and Mohr-Coulomb plasticity to the 

materials. It is possible to apply associated and non-associated plasticity. 

Abaqus/Standard provides a variety of methods to specify initial conditions (e.g. 

initial stress field due to gravity), boundary conditions (e.g. displacements, 

velocities), loads (e.g. gravity, pressure), and predefined fields for various 

analysis types. A complete Abaqus analysis usually consists of three distinct 

stages: pre-processing, simulation, and post-processing as shown in Figure 3.3. 

These three stages are linked together by files.  

 

Figure 3.3. Flow chart showing the different stages of complete Abaqus analysis and all 

the three stages are linked to one another by files (after Abaqus Analysis User’s 

Manual, 2010). 

The availability of a wide range of rheologies and the ability to handle the three 

dimensional complexities makes Abaqus popular among the geoscientific 

community (Hetzel and Hampel, 2005; Hergert and Heidbach, 2006; Ellis et al., 

2006; Gassmöller, 2011; Köther et al., 2012; Zeumann et al., 2013).  

Contact formulation  

The contact between two bodies can be defined in Abaqus by using the contact 

pairs approach. In the present work, the surface based contact pairs approach was 
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applied. Every contact pair is assigned a contact formulation with interaction 

property. In Abaqus/Standard when a contact pair has two surfaces; they are not 

allowed to include the identical nodes. Abaqus applies master-slave definition on 

the surface-based contact pairs and in this the master surface can penetrate the 

slave surface but reverse is not allowed. The selection of slave and master 

surfaces is the choice of the user. To avoid solution convergence problems, it is 

suggested to choose the finer meshed surface as a slave surface and the coarse 

meshed surface as a master surface (Abaqus Analysis User’s Manual, 2010). 

Coulomb friction model 

The interaction between contact pairs is assigned by defining a contact property 

model to the contacting pairs. In this project, the Coulomb friction model was 

selected to create friction between the frictionally coupled part of the model, and 

the rest of the contact pairs have frictionless contact properties. The Coulomb 

friction model relates the maximum allowable frictional (shear) stress across the 

interface to the contact pressure between the contacting bodies by defining the 

value of friction coefficient at the interface. In the Coulomb friction model, two 

contacting surfaces can carry shear stresses up to a certain magnitude across their 

interface before they start sliding relative to one another; this state is known as 

‘sticking’. The Coulomb friction model defines this critical shear stress( critτ ) at 

which sliding of the surfaces starts as a fraction of the contact pressure (p) 

between the surfaces as in equation 3.19 (Abaqus Analysis User’s Manual, 2010) 

pcrit µτ =       (3.19) 

where µ  denotes the friction coefficient. The stick/slip calculations determine 

when a point passes from sticking to slipping or from slipping to sticking. For a 

three dimensional simulation, there are two orthogonal components of shear 

stress, 1τ  and 2τ , along the interface between the two bodies. These components 

act in the slip directions of the contact surfaces. Abaqus combines the two shear 

stress components into an “equivalent shear stress (
_

τ )” for the stick/slip 

calculations, where 2

2

2

1

_

τττ += . The stick/slip calculations define a surface 

shown in Figure 3.4 (for a two-dimensional representation) in the contact 

pressure–shear stress space along which a point passes from sticking to slipping. 
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In the 3D case, sliding of the surface starts when the shear stress reaches the 

equivalent shear stress (
_

τ ) value. 

 

Figure 3.4. Stick/slip regions for the basic Coulomb friction model in the contact 

pressure-equivalent shear stress space; the shaded region denotes the sticking region 

where no slip occurs (Abaqus Analysis User’s Manual, 2010). 

The Mohr-Coulomb yield criterion 

The Mohr-Coulomb criterion assumes that yield occurs when the shear stress on 

any point in a material reaches a value that depends linearly on the normal stress 

in the same plane. The Mohr-Coulomb model is based on plotting Mohr's circle 

for states of stress at yield in the plane of the maximum and minimum principal 

stresses. The yield line is the line that touches these Mohr's circles as represent in 

Figure 3.5 (Abaqus Analysis User’s manual, 2010). 
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Figure 3.5. The Mohr-Coulomb yield model for Abaqus: c is the material cohesion; φ  is 

the friction angle (Abaqus Analysis User’s manual, 2010). 

The Mohr-Coulomb model is defined by equation 3.20 

φστ tan−= c       (3.20) 

where σ  is negative in compression and positive for extension. The Mohr's 

circle gives equations 3.21 and 3.22  

φτ coss=       (3.21) 

φσσ sin+= m      (3.22) 

Substituting for τ  and σ , multiplying both sides by φcos , and reducing, the 

Mohr-Coulomb model can be written as equation 3.23 

0cossin =−+ φφσ ms      (3.23) 

where ( )31
2

1
σσ −=s , is half of the difference between the maximum 

principal stress ( 1σ ) and the minimum principal stress ( 3σ ) and is therefore, the 

maximum shear stress 

( )31
2

1
σσσ +=m      (3.24) 

Equation 3.24, is the average of the maximum and minimum principal stresses, 

and φ  is the friction angle. For general states of stress the model is more 

conveniently written in terms of three stress invariants as in equation 3.25 

(Abaqus Analysis User’s Manual, 2010) 
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0tan =−−= cpqRF mc φ     (3.25) 

where  

( ) φ
ππ

φ
φ tan

3
cos

3

1

3
sin

cos3

1
, 








+Θ+








+Θ=ΘmcR  

φ  is the slope of the Mohr-Coulomb yield surface in the p– qRmc  stress plane in 

Figure 3.6a, which is commonly referred to as the friction angle of the material. 

c is the cohesion of the material; and Θ  is the deviatoric polar angle defined as  

( )
3

3cos 







=Θ

q

r        (3.25a) 

and  

( )σtracep
3

1
−=   is the equivalent pressure stress  (3.25b) 

where 

321)( σσσσ ++=trace  

( )S:S
2

3
=q   is the Mises equivalent stress   (3.25c) 

3

1

2

9








= S:S.Sr   is the third invariant of deviatoric stress (3.25d) 

and  

IσS p+=    is the deviatoric stress   (3.25e) 

where σ and I  are the stress and identity tensor, respectively. The friction angle φ  

controls the shape of the yield surface in the deviatoric plane as shown in Figure 

3.6b. The friction angle range is °<≤° 900 φ . In the case of °= 0φ  the Mohr-

Coulomb model reduces to the pressure-independent Tresca model with a 

perfectly hexagonal deviatoric section. In the case of °= 90φ  the Mohr-Coulomb 

model reduces to the “tension cut-off” Rankine model with a triangular deviatoric 

section. 
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Figure 3.6. Mohr-Coulomb and tension cutoff surfaces. a) In meridional plane. b) In 

deviatoric plane (Abaqus Analysis User’s Manual, 2010). 
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4 Results  

4.1 The 3D Finite Element Model 

This section presents the model geometry, the discretization of continuum 

geometry, used initial conditions, boundary conditions, and applied load to the 

models. The deformation of the overriding plate of the South American 

subduction zone, as a result from the applied initial conditions, load and boundary 

conditions to the models are presented in the next section. Two sets of model 

geometries are chosen named as ‘Northern segment model’ and ‘Southern 

segment model’ to carry out the present project. Both models are different in their 

geometric features. The slab dip and topographic slope angles are different for 

both models, which are chosen from Hoffmann-Rothe et al. (2006). The 

geometries of the Northern segment model and Southern segment model 

correspond to the Northern Andes (20°S-25°S) and the Southern Andes  

(36°S-40°S). Geometries of both models are highly simplified in order to 

understand the control of geometry and homogenous rheological layering on the 

deformation pattern of the overriding plate. 

4.1.1 Initial assumptions  

The following assumptions are considered as the most important: 

• The generalised geometry reflects the first order feature of the geological 

units. 

• The spherical shape of the Earth is ignored. 

• The rheological properties are assigned in the form of homogeneous 

layering. 

4.1.2 Model Geometry 

Figure 4.1 presents the geometry of the models. The depth extent (along Y-axis) 

for both models is taken to be 300 km. East-West expansion (along X-axis) is 

1500 km and 2000 km for Northern and Southern segment model, respectively. 

The subducting slab is longer to reach the depth of 300 km in the Southern 

segment model (with shallower dip angle). Both models have 1000 km expansion 

in North-South (along Z-axis) direction. The large expansion is chosen in order to 

minimize the boundary effects. Both models consist of four different parts 

representing four different units: 
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• Oceanic lithosphere 

a) Oceanic crust (OC)  

b) Oceanic mantle (OM) 

• Continental lithosphere 

a) Continental upper crust (CUC)  

b) Continental lower crust (CLC)  

c) Continental mantle (CM)  

• Oceanic asthenosphere (OA) 

• Continental asthenosphere (CA) 

All these units are assembled in the commercial finite element software Abaqus 

(Abaqus User’s Manual, 2010) and assigned contact interaction properties 

(friction or frictionless). In both models, there is a frictionally coupled zone at the 

interface between the overriding plate and the subducting plate and shown by the 

red line in Figure 4.1c. All other units of the models have frictionless contact 

interaction.  

Stein and Stein (1992) showed that limiting oceanic lithospheric plate thickness is 

the crucial parameter in determining the best fit to the thermal observations. 

Fowler (2005) compared thermal parameters for the oceanic lithosphere and 

suggest 1095 ±  km as the thickness of the oceanic lithospheric plate for the 

‘‘Global depth and heat flow model 1’’ (GDH1) (see also Stein and Stein, 1992). 

The thickness of the oceanic lithosphere in the present study is based on the 

“GDH1” model having a depth of 105 km for the Northern segment model and  

85 km for the Southern segment model, as the oceanic lithosphere of the Southern 

Andes is younger than of the Northern Andes. The thickness of the crust of the 

oceanic lithosphere is 10 km for both models. The thickness of the continental 

upper crust is 15 km and is 45 km for continental lower crust. The mantle region 

below the continental crust has a thickness of 90 km. 

Hoffmann-Rothe et al. (2006) estimated the geometry of the fore-arc wedge 

between the trench line and the 50 km depth contour of the slab with the averaged 

slab dip angle and the averaged slope angle for the South American subduction 

zone with the assumption that the fore-arc crust has constant internal strength.  
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Figure 4.1. Initial geometry of the model: light green: oceanic crust; orange: oceanic 

mantle; dark blue: upper continental crust; greenish blue: lower continental crust; purple: 

continental mantle and dark green: asthenosphere. a) The Northern segment model. b) 

The Southern segment model. c) The fore-arc geometry constrained by averaged slope 

angle (α) and averaged slab dip angle (β). The red line represents the frictionally coupled 

zone between subducting and overriding plate. dup and ddown are the updip and downdip 

limits of the frictionally coupled zone, respectively. Depth extend of the model is along 

the Y-axis, length expansion is along the X-axis, and width expansion is along the Z-axis. 
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Further, they considered the interaction force between the overriding and 

subducting plates as the potential factor controlling the deformation of the  

fore-arc of the South American subduction zone. The interaction force depends 

directly on the geometry of the subducting slab. Therefore, the geometries of 

models are constrained by the averaged slab dip angle (β) and averaged 

topography slope angle (α) as shown in Figure 4.1c. The dip of the slab is 

assumed to be a constant and taken as 18.4° for the Northern segment model and 

13.4° for the Southern segment model. In the models, the topography of the 

wedges is simplified using averaged topography for the Northern and Southern 

segment and is taken 4.7° and 2.3° for the northern and southern segments, 

respectively. 

4.1.3 Discretization/meshing of geometry 

The model geometries were discretized or meshed into continuum linear 3D 

tetrahedron elements (named as C3D4 in Abaqus). The average mesh resolution 

for asthenosphere is 70 km and the average size of elements for oceanic 

lithosphere is 10 km. As the slab dip angle for the Southern segment model is 

shallower than for the Northern segment model, which in turn gives a shallower 

fore-arc in the Southern segment model as compared to the Northern segment 

model and therefore was meshed with smaller size tetrahedron elements. The 

average size of elements for the continental lithosphere is 20 km and 15 km for 

the Northern and Southern segment model, respectively. Figure 4.2 shows the 

meshed geometry of the models. 
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Figure 4.2. The discretized geometries with 3D linear tetrahedron elements for both 

models: a) The Northern segment model: Total number of elements = 535989. b) The 

Southern segment model: Total number of elements = 627177.  

4.1.4 Contact sliding 

After meshing, every contact surface was assigned a contact interaction property 

(friction or frictionless sliding). The Altiplano-Puna Plateau was created as a 

consequence of tectonic shortening which occurred in the Central Andes during 

the Cenozoic (Isacks, 1988; Allmendinger and Gubbels, 1996; Allmendinger et 

al., 1997; Lamb et al., 1997; Kley and Monaldi, 1998; Giese et al., 1999). Lamb 

and Davis (2003) argued that the aridization of the global climate decreased the 

sedimentary fill in the trench and lead to increase in plate coupling in the late 

Cenozoic. For investigating the effect of varying plate coupling on the upper plate 

deformation, a frictionally coupled zone between the overriding plate and the 

subducting plate was developed in the models as shown in Figure 4.3 and the red 
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line representing the frictionally coupled zone between the subducting and the 

overriding plate. All other contact interfaces have frictionless sliding. Both 

models have the identical contact properties. 

 

Figure 4.3. 2D view of the model showing applied contact interactions: the red line 

represents the frictionally coupled zone between the subducting and the overriding plates. 

dup and ddown are the updip and downdip limits of the frictionally coupled zone and taken 

as average value of 10 km and 50 km, respectively. The purple dotted line denotes the 

frictionless contact interaction. 

The interface coupling was explained by the distribution of asperities (the locked 

zones that resist the motion between two plates, where the inter-seismic strain 

accumulates and results in a release of high seismic moment at the time of 

rupture) on the plate interface (Kanamori, 1986; Pacheco et al., 1993; Scholz, 

1998; Lay and Schwartz, 2004). Ruff and Kanamori (1983) related directly the 

maximum earthquake size to the asperity distribution on the fault plane and also 

suggested that all subduction zones are noticeably uncoupled below 40 km depth. 

The coupling force (shear force) at the coupled plate interface is the main factor 

affecting the plate coupling (asperities) differences at different subduction zones. 

The coupling force (F0) resulting from the shear stresses over a frictionally 

coupled plate interface in a subduction zone is given by equation 4.1 (Wang and 

He, 1999). 

( ) gddWF ρµ 21

'

0
2

1
+=     (4.1) 

where 'µ  is the coefficient of friction, W  is the downdip width of the coupled 

zone, 1d  and 2d  are the depths of its updip and downdip ends, respectively, ρ  is 

the density and g  is acceleration due to gravity. Equation 4.1 shows that the shear 
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force at a coupled interface depends on the width of the frictionally coupled part 

of the interface (W ), depth of updip ( 1d ) and downdip ( 2d ) ends of coupled zone 

and to the effective coefficient of friction ( 'µ ).  

After Wang and Suyehiro (1999) the downdip limit of the seismogenic zone can 

be taken for the depth extent of the frictionally coupled zone. On the basis of 

inter-plate thrust earthquakes (M > 6), Tichelaar and Ruff (1991) estimated the 

seismic coupling depth as 48–53 km in the southern region of 28°S, while the 

northern domain of this latitude has 36–41 km as the maximum coupling depth. 

The GPS observations from Klotz et al. (2001) suggested a non uniform coupling 

depth pattern along-strike of the South American subduction zone, and this 

coupling depth is about 33 km in the north of 30°S, while south of 35°S the 

coupling depth reaches nearly 50 km. Temperature has a control on the 

frictionally coupled zone. The updip transition from stable to stick-slip sliding 

occurs at about 100°C i.e. depth of about 2 to 10 km; while the downdip transition 

from stick-slip to stable sliding on the plate interface takes place at 350°C 

(Oleskevich et al., 1999). In the old oceanic crust subduction, temperature of 

350°C on the thrust interface often reaches below the depth of 50-60 km, which is 

too deep, since thrust earthquakes are not observed at those depths. For this case 

Tichelaar and Ruff (1991, 1993) and Oleskevich et al. (1999) suggested that the 

stable-sliding appears at the depth where the subducting slab meets the fore-arc 

continental Moho at an average depth of 35-50 km.  

In addition to the updip and downdip limits of the frictionally coupled interface, 

the coefficient of friction at the plate interface also plays an important role in 

deforming the overriding plate. Sobolev et al. (2006) argued that the shear 

coupling at the plate interface controls the intensity of tectonic shortening in the 

Andean Orogeny and suggested 0.05 and 0.015 as the friction coefficients for 

Central and Southern Andes, respectively. Their Central Andean finite element 

model with a friction coefficient of µ > 0.10 resulted in slab break-off and 

termination of subduction. Kellner (2007) suggested a coefficient of friction of 0.4 

and 0.33 for the northern and southern segment, respectively. 

For establishing a frictional contact (asperities) between the overriding and 

subducting plate average values for updip ( 1d = 10 km) and downdip ( 2d = 50 km) 

of the frictionally coupled zone were taken for models, giving the downdip width 
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of frictionally coupled (seismogenic) zone as 126 km for Northern segment model 

and 172 km for Southern segment model. 

4.1.5 The Boundary conditions and applied load 

As results of finite element analysis depend on the chosen boundary conditions, it 

becomes important to select the appropriate boundary conditions for simulating 

the behaviour of the American subduction zone to get realistic results. 

For accomplishing this purpose, the whole simulation was divided into two static 

steps. The static response of the uniformly distributed gravity load in the model 

was calculated in step 1. In this step the bottom of the models was allowed only to 

move in the horizontal direction (X) with restriction in the other two directions. 

The vertical boundaries of the models were able to move only in vertical direction 

(Y) (Figure 4.4). The initial stress field needed for establishing the equilibrium in 

the model was calculated from the step 1 and results are presented in the next 

section 4.2. 

In step 2, the velocity boundary conditions were applied to the models and were 

specific for individual cases. Some models had run with only slab pull velocity as 

boundary condition and some models had run with simulatneous slab pull and 

continental drift velocities. The reference model had run with ridge push velocity, 

slab pull velocity, and continental drift velocity as boundary conditions. The 

bottom of the asthenospheric unit (both oceanic and continental asthenosphere) of 

the model had the same boundary conditions as described in step 1 and the 

vertical boundaries of the asthenospheric part of the models were fixed in all 

directions in all cases of step 2. The bottom of the oceanic lithosphere was 

allowed to move horizontally and vertically (X and Y directions) and movement 

in third direction was fixed for this step. The left side of the oceanic lithosphere 

was allowed to move only in horizontal direction. The right side of the model 

(continental lithosphere) was allowed to move in horizontal direction only in 

cases where continental drift velocity was applied and for the rest of the cases the 

right side of the model was fixed in all directions. The applied velocity boundary 

conditions and gravity load for both steps are shown in Figure 4.4. Both models 

have identical boundary conditions and loads. 
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Figure 4.4. Section of the model showing the applied boundary conditions and loads for 

the reference model: whole simulation is divided into two steps having different boundary 

conditions. Blue denotes the boundary condition representing movement in X-direction. 

Purple denotes the boundary conditions showing movement in Y-direction. Brown marks 

the boundary condition representing movement in both X and Y-directions. Dark green 

denotes the fixed boundary condition in all directions. The black arrows represent the 

velocity boundary condition and the brown arrow represents the uniformly distributed 

gravity load. The red line shows the frictionally coupled zone and the dotted purple line 

denotes frictionless contact interaction. OA, oceanic asthenosphere; OM, oceanic mantle; 

OC, oceanic crust; CUC, continental upper crust; CLC, continental lower crust; CM, 

continental mantle; CA, continental asthenosphere. 

4.1.6 Rheological parameters  

Sobolev and Babeyko (2005) and Sobolev et al. (2006) presented the large-scale 

thermo-mechanical numerical model for the Central Andes with realistic 

viscoelastic-plastic rheology. Babeyko and Sobolev (2008) presented a zoom-in of 

the large-scale model of Sobolev et al. (2006) and showed the stress distribution 

in the viscoelasto-plastic subducting slab. 

The elasto-plastic rheological parameters for both models were taken from 

Babeyko and Sobolev (2008). The rheological parameters used in the models are 

given in Table 4.1. The identical geological units of the different models have the 

same material properties. 
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Table 4.1 Material parameters used for both models (Babeyko and Sobolev, 2008) 

Model unit Density 

[kg/m
3
] 

Bulk 

modulus 

[GPa] 

Young’s 

modulus 

[GPa] 

Poission’s 

ratio 

Friction 

angle 

[°] 

Continental 

upper crust 

 

2750 55 82.5 0.25 20 

Continental 

lower crust 

 

2950 63 94.5 0.25 20 

Continental 

mantle 

 

3300 122 183 0.25 10 

Oceanic crust 

 

3000 63 94.5 0.25 20 

Oceanic mantle 

 

3280 122 183 0.25 10 

Asthenosphere 

(both oceanic & 

continental) 

3300 122 183 0.25 10 

 

4.2 Vertical Deformation  

The main characteristic of the South American continental deformation is its 

remarkable variation in geological history and tectonic evolution. It is generally 

thought that the physical parameters such as overriding plate motion, slab width, 

and slab age have influence on the formation of Andes (Somoza, 1998; Hampel 

and Pfiffner, 2006; Iaffaldano et al., 2006; Schellart et al., 2007). The sediment 

thickness at the trench has relations with the overriding plate deformation by 

affecting the strength of coupling at the plate interface (Lamb and Davis, 2003). 

In addition, temperature and pressure also have a great importance in changing the 

deformation pattern of the South American continental plate. The aim of this 

study is to find the correlation between these parameters and the overriding plate 

deformation. 

The applied plate movements and the strength of the frictionally coupled zone 

have combined mechanical effects on the deformation of the South American 

continental plate. To understand the underlying mechanism, different values for 

the coefficient of friction at the frictionally coupled zone between the subducting 

and the overriding plates were assigned to both the models and different boundary 

conditions for plate movement as shown in Table 4.2. 
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Table 4.2 Different boundary conditions applied to the models 

Model Applied boundary conditions 

Model I (Reference model) Slab pull, slab push and overriding plate velocity 

Model II Slab pull and overriding plate velocity 

Model III Only slab pull velocity 

 

The slab pull velocity was applied at the bottom of the oceanic lithosphere and the 

slab push velocity was applied at the left end of oceanic lithosphere towards the 

trench. The overriding plate velocity was applied at the right end of the 

continental lithosphere towards the trench (Figure 4.4).  

The coefficients of friction (µ) = 0.1, 0.2, and 0.5 were considered for all models 

in this study, which are in agreement with the previous estimates (Byerlee, 1978; 

Peacock, 1996; Hassani et al., 1997; Cattin et al., 1997; Scholz, 1990; Tichelaar 

and Ruff, 1993; Kellner, 2007). In addition, the frictionless (µ = 0.0) plate 

interface was also considered to observe the effect of plate movement. The other 

parameters such as running time, rheology, and geometry were identical for all 

models unless specified. The plate movements were applied to impose the 

deformation in the overriding plate for 500000 years. 

The movement rate for the subducting plate had been taken as 5 cm/yr and  

3 cm/yr for the overriding plate for all models (Somoza, 1998; Silver et al., 1998; 

Sobolev et al., 2006) and was applied as kinematic boundary condition as 

described in Table 4.2. The applied velocity at the bottom of the oceanic 

lithosphere was divided in horizontal and vertical components (Table 4.3). 

Table 4.3 Velocity components applied to the model 

Slab dip angle (β) νx [cm/yr] νy [cm/yr] 

18.4° 4.79 1.58 

13.4° 4.88 1.17 

 

The results are presented graphically for the two points on the overriding plate; at 

200 km and at 400 km east of the trench. The point at 400 km east of the trench 

lies in between the 350 km and 450 km east of the trench corresponding to the 
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Altiplano plateau position. For the comparative study the point at 200 km east of 

the trench is chosen that corresponds to the magmatic arc. The colour coding in 

the legend for pictures and in the graphs is the same throughout the study. The 

results are assessed by evaluating the deformation rate of the overriding plate with 

the geological uplift rate for Altiplano plateau. In the legend for the vertical 

displacement, negative value represents vertical displacement in downward 

direction (subsidence) and a positive value represents vertical displacement in 

upward direction (uplift). 

4.2.1 Model I: Reference model 

In this model, the boundary conditions as described in Table 4.2 were applied to 

achieve the estimated uplift rate of 0.2 mm/yr (Gregory-Wodzicki, 2000) for the 

Altiplano plateau region. It was observed that the uplift rate of the overriding plate 

was decreased with increase in the coefficient of friction at both points 200 km 

and 400 km east of the trench. Further, the uplift rate was higher at a point 200 km 

as compared to 400 km east of the trench for the same coefficient of friction 

(Figure 4.6).  

The combined mechanical effect of the described boundary conditions and applied 

gravity load at coefficient of friction (µ = 0.14) created an uplift of approximately 

103 m in 500000 years in the Altiplano plateau region. The uplift is shown in 

Figure 4.5a as a black point at a distance of approximately 400 km east of the 

trench. 

The deformation of the overriding plate showed inverse relation with the 

coefficient of friction. It is shown in Figure 4.5b. 
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Figure 4.5. Maximum vertical displacements of the overriding plate when slab pull, slab 

push, and overriding plate velocities are applied simultaneously: a) For the coefficient of 

friction (µ = 0.14) at the frictionally coupled zone. The black point represents the 

Altiplano region and is positioned at approximately 400 km east of the trench. b) 

Maximum vertical displacement at a point 400 km east of the trench as a function of 

inter-plate friction. The black dashed line represents the amount of uplift after 500000 

years that is equivalent to the estimated geological uplift rate of 0.2 mm/yr for the 

Altiplano plateau by Gregory-Wodzicki (2000).  
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Figure 4.6. The deformation rate: a) At point 200 km east of the trench. b) At point 400 

east of the trench.  

4.2.2 Model II: Simultaneous slab pull and overriding velocities  

When the overriding plate moved towards the trench, uplift was created in it at 

both points (200 km and 400 km east of the trench). The uplift rate was found to 

depend on the coefficient of friction. The maximum overriding plate uplift was 

observed for no friction (µ = 0.0) as shown in Figure 4.7a. When coefficients of 

friction (µ = 0.1, 0.2, 0.5) were applied, the uplift rate was decreased with an 

increase in coefficient of friction at both points (200 and 400 km east of the 

trench) as shown in Figure 4.7b-d. Further, vertical displacement was calculated 

for both points at different coefficients of friction. At point 400 km east of the 

trench the model without friction (µ = 0.0) created an uplift of only 23 m in 

500000 years as shown in Figure 4.8. Uplift was observed at point 200 km east of 

the trench in the models with friction (µ = 0.0, 0.1, 0.2).  
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Figure 4.7. Maximum vertical displacements of the overriding plate when slab pull and 

overriding plate velocities are applied simultaneously: a) Without friction (µ  = 0.0); b) 

with coefficient of friction (µ  = 0.1); c) with coefficient of friction (µ  = 0.2); d) with 

coefficient of friction (µ  = 0.5); e) The deformation rate for the point 200 km east of the 

trench; f) The deformation rate for the point 400 km east of the trench.  
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Figure 4.8. Maximum vertical displacement of the overriding plate as a function of  

inter-plate friction coefficient. 

4.2.3 Model III: Slab pull velocity only 

The combined effect of slab pull velocity and the gravity force created subsidence 

in the overriding plate for all coefficients of friction (µ = 0.1, 0.2, 0.5) except the 

coefficient of friction (µ = 0.0). The model without friction (µ = 0.0) generated a 

small uplift region close to the trench up to a distance of approximately 20 km 

east of the trench as shown in Figure 4.9.  

Figure 4.9e shows the development of vertical deformation at point 400 km east 

of the trench on the overriding plate with time for different coefficient of friction. 

For the case of zero friction (µ = 0.0), the subsidence rate in the overriding plate 

was least and an increase in friction (µ = 0.1, 0.2, 0.5) enhanced the subsidence 

rate of the overriding plate.  
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Figure 4.9. Maximum vertical displacement of the overriding plate when only slab pull 

velocity is applied: a) Without friction (µ  = 0.0); b) with coefficient of friction (µ  = 0.1); 

c) with coefficient of friction (µ  = 0.2); d) with coefficient of friction (µ  = 0.5); e) The 

deformation rate for the red point is visible in the model at point of 400 km east of the 

trench. 
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4.2.4 Effect of the thickness of the continental crust 

To study the effect of the thickness of the continental crust on the overriding plate 

deformation, the thickness of the continental crust was reduced to approximately 

40 km. The same boundary conditions as described for model II with reduced 

continental crust were applied. Further, the vertical displacement of model II was 

compared with the vertical displacement of this case and higher uplift was 

observed as compared to Model II (Figure 4.10). Models without friction  

(µ = 0.0), having thin continental crust showed an uplift of approximately 425 m 

in 500000 years at point 400 km east of the trench with an uplift rate of 0.9 mm/yr 

for the Altiplano plateau region. It is too high as compared to the geological 

estimated uplift rate suggested by Gregory-Wodzicki (2000). The trend of 

decrease in the overriding plate uplift with the increase in inter-plate friction 

coefficient is the same as discussed in section 4.2.2.  

 

Figure 4.10. Maximum vertical displacement of the overriding plate (at a point lies on the 

Altiplano plateau region i.e. at 400 km east of the trench) as a function of inter-plate 

friction coefficient: The horizontal dashed line represents the geologically estimated 

uplift of 100 m for 500000 years for the Altiplano plateau, which corresponds to the uplift 

rate of 0.2 mm/yr for the Altiplano plateau (Gregory-Wodzicki, 2000). 

In the model with a 40 km thick continental crust (thin crust), the inter-plate 

friction coefficient between 0.3 and 0.35 (i.e. 0.3<µ<0.35) can produce an uplift 
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rate of 0.2 mm/yr, comparable to geologically estimated uplift rate by  

Gregory-Wodzicki (2000) for the Andean plateau region. 

4.2.5 Effect of varying continental drift velocity 

To analyse the effect of continental drift velocity on overriding plate uplift, a 

varying spectrum of overriding velocities towards the trench was applied. 

Boundary conditions are the same as for Model II. No uplift was observed for the 

velocities of 1 cm/yr and 2 cm/yr; however there was uplift generation for 

velocity of 3 cm/yr for all coefficients of friction (Figure 4.11). 

 

Figure 4.11. Maximum vertical displacement of the overriding plate as a function of 

inter- plate friction coefficient for different trench-ward continental drift velocities. 

4.2.6 Effect of oblique convergence 

Convergence between the subducting plate and the continental plate was 

simulated with a convergence angle (γ) of 20° (Kellner, 2007). The oceanic plate 

was moved with an oblique velocity of 5 cm/yr and the continental plate was 

moved with a straight velocity of 3 cm/yr towards the trench. The different 

coefficients of friction (µ = 0.0, 0.1, 0.2, 0.5) were assigned at the frictionally 

coupled zone between the subducting and the overriding plate. 
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The model showed subsidence in the overriding plate at both points for 

coefficients of friction (µ = 0.0, 0.1, 0.2, 0.5) except a very small uplift for no 

friction (µ = 0.0) at point 200 km east of the trench (Figure 4.12). 

 

Figure 4.12. Development of vertical displacement of the overriding plate when the 

oblique convergence velocity of 20° angle is applied to the subducting plate for different 

coefficients of friction at the coupled plate interface: a) Without friction (µ  = 0.0); b) with 

coefficient of friction (µ  = 0.1); c) with coefficient of friction (µ  = 0.2); d) with 

coefficient of friction (µ  = 0.5). The red points lie at a distance of 200 km and 400 km 

east of the trench.  

4.2.7 Effect of slab dip 

To study the effect of slab dip angle, a Southern segment model with the 

shallower dip angle of β = 13.4° was designed in contrary to the Northern segment 

model which had a dip angle of β = 18.4°. In this model, the oceanic plate with 

downward velocity (slab pull) of 5 cm/yr and the continental plate with straight 

velocity of 3 cm/yr were moved towards the trench. The different coefficients of 

friction were assigned as described previously. Figure 4.13 shows the 

development of vertical displacement with time for the point at 200 km and  

400 km east of the trench. The uplift rate was lower as compared to model II with 

the dip angle of β = 18.4°. 
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Figure 4.13. Deformation rate: a) At point 200 km east of the trench. b) At point 400 km 

east of the trench. 

When the overriding plate deformation was compared for different slab dip angles 

(β = 13.4°; 18.4°), the shallower subducting plate with the dip angle of β = 13.4°, 

resulted in lower overriding plate deformation as compared to the dip angle of  

β = 18.4° (Figure 4.14). 

 

Figure 4.14. Comparison of vertical deformation as a function of inter-plate friction 

coefficient for different slab dip angles (β) at point 200 km east of trench. 
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5 Discussion and conclusion 

The Earth processes such as movement of plates, generation of earthquakes, 

formation of volcanoes, and the mountains building are very important factors 

which affect the human life deeply. These processes also affect the thermal 

structure of the mantle, substantial surface (vertical and horizontal) deformations, 

and seismic energy release. Therefore, these processes play an important role in 

the geodynamical, geochemical, and geological phenomena that shape our Earth 

and attract the Earth Science community. 

One of the most interesting Earth processes is subduction.  It is the process that 

takes place at convergent boundaries by which one tectonic plate moves under 

another tectonic plate and sinks into the mantle as the plates converge. Subduction 

plays a important role in the recycling of the surface material by mixing it back to 

the deep Earth and introducing significant chemical variation back into the mantle 

(Christensen and Hofmann, 1994; Hofmann, 1997). Furthermore, it is also 

responsible for driving plate motions, mountain building, and the growth of new 

continental crust (Forsyth and Uyeda, 1975; Davidson and Arculus, 2006). When 

the functional cycle of the subduction zone is spectacularly disrupted due to 

continental crust, it may result in a mountain range building such as the Andes 

and the Himalayas (Allmendinger et al., 1997; O’Brien, 2001). 

The Andes are one of the largest active plate-boundary zones, forming a 

mountainous region which extends over 5000 km along the western margin of 

South America as a result of the subduction of the oceanic Nazca plate beneath 

the South American plate (Dewey and Bird, 1970; Pardo-Casas and Molnar, 

1987).  

Most geophysicist propose that crustal shortening due to the convergence between 

the subducting Nazca plate and the overriding South American plate, is the major 

cause for the Andean uplift (Dewey and Bird, 1970; Isacks, 1988; Sheffels, 1990; 

Baby et al., 1992a; Dewey and Lamb, 1992; Allmendinger et al., 1997; Liu et al., 

2002; Oncken et al., 2006; Sobolev et al., 2006). 

Many researchers propose that the coupling strength at the plate interface between 

the Nazca and the South American plates or the motion of overriding plate plays a 

crucial role in the generation and maintenance of the deformation of the upper 

plate (Russo and Silver, 1996; Gutscher et al., 2000; Lamb and Davies, 2003; 
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Hampel and Pfiffner, 2006; Oncken et al., 2006). The coupling strength causes 

shear stress which in turn supports the high Andes formation (Lamb and Davis, 

2003). To assess the role of the overriding plate and the effect of the interaction 

between the subducting and the overriding plate, the two crucial parameters are 

analysed: a) plate coupling strength defined by the inter-plate friction coefficient, 

and b) role of the overriding plate movement.  

To achieve the estimated uplift rate of 0.2 mm/yr (Gregory-Wodzicki, 2000) for 

the Altiplano plateau region, the boundary conditions as described in Table 4.2 

were applied to the reference model. The combined mechanical effect of the 

described boundary conditions and applied gravity load at a coefficient of friction 

µ = 0.14 produce an uplift of approximately 103 m in 500000 years at point  

400 km east of the trench. This gives an uplift rate of 0.2 mm/yr for the Altiplano 

region. 

Cattin et al. (1997) studied the effect of long term coupling on the fore-arc 

topography for three subduction zones: northern Chile, northern Japan, and Tonga 

by using a 2D finite element model with specific geometry and kinematic 

boundary conditions. They assumed that traction arising from friction is one of the 

stresses acting on topography. They propose that while the intrinsic coefficient of 

friction for small rock samples is high (µ~0.6-0.8), however the friction 

coefficient larger than 0.2 is inconsistent with the observed topography of the 

fore-arc region. In the present study also, the proposed uplift rate of the Altiplano 

region is found consistent with the coefficient of friction (µ = 0.14), which is < 0.2 

and is in good agreement with Cattin et al. (1997). 

In another study, the coexistence of trench-arc compression and back-arc tension 

is only possible for a coefficient of friction lower than 0.1 (Hassani et al., 1997). 

Further, Kellner (2007) proposed that the preferred coefficients of basal friction 

(µb, north = 0.4, µb, south = 0.33) for the Chilean subduction zone. However, it is 

higher compared to the present findings and it might be due to the differences 

between the chosen rheology and the model geometry. Sobolev et al. (2006) used 

coupled thermo-mechanical 2D models and showed that the thicker continental 

crust with the friction coefficient (µ=0.05) at the Nazca-South American plate 

interface imitates the crustal structure and evolution of the high Central Andes. 

However, the thinner continental crust with a lower friction coefficient  

(µ < 0.015) results in less shortening in the South American plate, replicating the 
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situation of the crustal structure and evolution of the Southern Andes. The 

discrepancies might be due to model set up; as they used thermo-mechanical 2D 

models as compared to this study and further, they employed a realistic 

temperature-and stress-dependent visco-elastic rheology. 

When different coefficients of friction were applied, it was observed that the 

amount of uplift of the overriding plate at both points 200 km and 400 km east of 

the trench was decreased with increase in the coefficient of friction. This inverse 

relation between the overriding plate uplift (vertical displacement) and the  

inter-plate friction was also observed by Van Dinther et al. (2010) (Figure 5.1). 

 

Figure 5.1. Decrease in the maximum topography of overriding plate as a function of 

inter-plate friction: a) From the present study: run time 500000 yr. b) Red dashed curve: 

from the model of Van Dinther et al., (2010): run time is 3.16 Myr. Solid dark blue curve: 

from the present study. Because the run time of the present study is shorter as compared 

to the run time of Van Dinther et al., (2010), the decreasing trend of the present study 

becomes nearly horizontal when it is fit to the Van Dinther et al., (2010) graph-scale.  

Effect of the trenchward overriding plate movement 

To analyse the effect of the trenchward overriding plate movement in the 3D 

geometry, the slab pull velocity and the trenchward overriding velocity were 

applied to the oceanic plate and overriding plate, respectively (see section 4.2.2). 

With a stable (fix) overriding plate, no uplift was observed in the overriding plate. 

However, the uplift was generated with the trenchward overriding plate 

movement and it was found that increase in the friction causes decrease in uplift 

rate as the upper plate subsides by the drag of the subducting plate. Further, it was 

observed that higher friction only amplifies the drag and increases the amount of 

subsidence in the overriding plate. This phenomenon was also observed in 
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previous studies with 2D modelling approaches (Hampel and Pfiffner, 2006; Van 

Dinther et al., 2010). 

Hampel and Pfiffner (2006) proposed that the trenchward moving overriding plate 

is a key factor for the development of mountain belts at the convergent margins. 

They showed that the subduction of the oceanic plate in the absence of an upper 

plate trenchward motion even with high inter-plate coupling does not support the 

Andean type uplift. Friction along the plate interface supports the high topography 

only, if the upper plate is moving towards the trench.  

Buiter et al. (2001) showed that an increase in friction along the subduction fault 

deepens the overriding plate margin. This concept of basal friction was 

extrapolated to subduction inter-plate friction and was shown to control upper 

plate state of stress and deformation, with elasto-plastic plates  

(Hassani et al., 1997; Buiter et al., 2001; Hampel and Pfiffner, 2006).  

Sobolev et al. (2006) suggested that the fast and accelerating westward drift of the 

South American plate is the most important factor for controlling the intensity of 

shortening in the South American plate by using a coupled thermo-mechanical 

numerical model. Van Dinther et al. (2010) developed a viscoelastic 2D finite 

element model with dynamically interaction of the subducting plate, the 

overriding plate, and the mantle to analyse the role of the overriding plate on the 

subduction zone kinematics, morphology, and the stress state. They showed that 

the trenchward moving overriding plate enforces trench retreat by decreasing the 

slab dip. They also showed that the trenchward movement of the overriding plate 

stimulates its over thrusting onto the slab and permits mountain building within 

the overriding plate. Further, they suggest that frictional resistance only dragged 

down the overriding plate as it is increasing, thereby resist the growth of 

overriding plate topography. Present finding is also in good support to the 

previous studies and it implies the key role of the overriding plate in the 

topography generation.  

Effect of slab pull 

The combined effect of slab pull velocity and the gravity force create subsidence 

in the overriding plate for all coefficients of friction (µ = 0.1, 0.2, 0.5) except 

coefficient of friction (µ = 0.0). The model without friction (µ = 0.0) generated a 
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small uplift region close to the trench up to a distance of approximately 20 km 

east of the trench as shown in Figure 4.9 (see section 4.2.3).  

For the case of no friction (µ = 0.0), the subsidence rate in the overriding plate 

was least and an increase in friction (µ = 0.1, 0.2, 0.5) enhanced the subsidence 

rate of the overriding plate. Hampel and Pfiffner (2006) also showed that the slab 

pull only creates subsidence in the overriding plate even with the high coupling 

strength. Van Dinther et al. (2010) also found the same effect of the slab pull in 

combination with interface friction. 

Effect of the thickness of continental crust 

To study the effect of the thickness of the continental crust on the overriding plate 

deformation, the thickness of the continental crust was reduced to approximately 

40 km. When keeping the same boundary conditions with reduced continental 

crustal thickness, a higher uplift was observed as compared to the model with a 

continental crustal thickness of 60 km (see section 4.2.4). It implies the relation 

between the overriding plate uplift and its thickness. There might be two factors 

for this: 1) the gravity force and 2) the rheological change.  

There is a direct relationship between the gravitational acceleration and the 

downward weight force ( F ) experienced by the object (continental crust) and can 

be given by the equation 5.1 

    maF =      (5.1) 

where m  is the mass of continental crust and a  is the acceleration due to gravity 

taken as 8.9== ga  m/s
2 

for both models. A decrease in the thickness of the 

continental crust implies decrease in its mass and thus implies decrease in the 

downward weight force experienced by the continental crust, which in turn 

produces more uplift in the thinner continental crust than the thick continental 

crust. 

Decrease in the continental crustal thickness leads to an increase in the underlying 

mantle thickness. The Young’s modulus describes the stiffness of the material and 

has inverse relation with material deformation. This implies less deformation 

below the lower continental crust, which might in turn produce higher uplift in the 

thinner continental crust as compared to the thicker continental crust. 
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The model with a thin continental crust and without friction (µ = 0.0), showed an 

uplift rate of 0.9 mm/yr for the Altiplano plateau region. It is too high as 

compared to the geological uplift rate estimated by Gregory-Wodzicki (2000). 

However, the model with a thin continental crust and assuming the inter-plate 

friction coefficient between 0.3 and 0.35 (i.e. 0.3<µ<0.35) produced an uplift rate 

of 0.2 mm/yr, comparable to geological estimation for the Andean plateau region. 

This range of the friction coefficient is higher than the suggested range for friction 

coefficients by other authors (Cattin et al., 1997; Sobolev et al., 2006).  

Combined effect of slab dip angle and gravity 

To study the effect of slap dip angle, a model with the dip angle of β = 13.4° was 

designed in contrary to model II which had a dip angle of β = 18.4° and it was 

found that the uplift rate was lower with the dip angle of β = 13.4° as compared to 

the dip angle of β = 18.4° at point 200 km east of the trench (fore-arc region). But 

at point 400 km east of the trench (back-arc region), we have a higher uplift rate 

for the dip angle of β = 13.4° (Figure 5.2). Buiter et al. (2001) also found that a 

decrease (increase) in buoyancy of the subducting material leads to a deepening 

(uplift) of the plate margins. This implies that the deformation in the Southern 

Andes is more concentrated in the back-arc segment. 

 

Figure 5.2. Comparison of maximum vertical displacement as a function of plate interface 

friction for different slab dip angles (β). a) At 200 km east of the trench. b) At 400 km 

east of the trench. 
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Another effect of the slab dip angle (β = 18.4°) was also observed during the 

initial model run. A pattern of linear subsidence in the overriding plate was 

observed for the initial 25000 years irrespective of the plate interface coupling 

strength (Figure 5.3a). This linear subsidence pattern is more in the middle of the 

overriding plate. This implies the bending of the overriding plate in a concave 

upwards shape. Thereby is a sign of flexure in the overriding plate. In contrast, 

this effect is not present in the model with a shallow dip angle (β = 13.4°)  

(Figure 5.3b). There is no pattern of subsidence during the initial time span of the 

subduction of the slab with dip angle of β = 13.4°. It implies that slab with 

shallow dip provides sufficient support to the overriding plate and resists flexure 

in the overriding plate whereas, the slab with steep dip does not provide sufficient 

support to the overriding plate and the overriding plate subsidised under its own 

weight. This linear subsidence pattern was also observed in another study (using a 

slab dip angle of β ~ 30°; Zeumann, 2013). It might be due to the combined effect 

of the slab dip angle and the gravity force.  

 

Figure 5.3. The deformation rate: a) Slab dip angle (β) = 18.4°. b) Slab dip angle  

(β) = 13.4°. 

To check the role of gravity on the flexure, the reference model was run without 

gravity load and no flexure was observed in the overriding plate (Figure 5.4). 

Further, the uplift in the overriding plate starts developing from the beginning of 
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the time frame and produces uplift of over 3500 m in 500000 years (i.e. 7 mm/yr). 

It is very high as compared to the estimated uplift rate and it shows that the 

gravity also resists the uplift of the Andes.  

 

 

Figure 5.4. The deformation rate when gravity was ignored. The uplift rate is very high as 

compared to the geological estimated uplift rate for a point at 400 km east of the trench.    

Comparison with GPS observations 

The trench-normal velocity at point 400 km (1-2 mm/yr) east of the trench is also 

in agreement with the GPS derived trench-normal velocity (Figure 5.5; 

Hoffmann-Rothe et al., 2006). 
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Figure 5.5. Comparision with observed GPS data. a) Trench normal component of 

velocity for reference model with coefficient of friction µ = 0.14. b) Observed trench 

normal velocity for northern segment (20°S-30°S) from various GPS data. Grey triangles 

at the bottom give the projected positions of volcanoes active in the Holocene. Grey 

vertical bars indicate the position of margin parallel strike-slip fault systems (after 

Hoffmann-Rothe et al., 2006). The red circle marks the velocity for the chosen point at 

400 km east of the trench. 

Thermo-mechanical model (Model IV) 

The processes of the lithosphere (e.g. subduction) as well as of the asthenosphere 

are controled by the heat derived from the Earth’s interior. In the Earth heat 

moves by conduction, convection, advection, and radiation (Fowler, 2005). 

Conduction is the transfer of heat through a material by interaction within the 

material. In convection, heat transfer occurs through the molecules from one 

location to another within the material. Within the Earth, heat moves 

predominantly by conduction through the lithosphere (both oceanic and 

continental). In most of the mantle as well as through the liquid outer core, heat is 

generally thought to be transferred by convection. Advection is a special form of 
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convection, when a hot region is uplifted by the tectonic regime or by erosion and 

isostatic rebound, advected heat is physically lifted up with rocks. Radiation 

involves direct transfer of heat by electromagnetic radiation e.g. from Sun or an 

electric bar heater etc. (Fowler, 2005).  

Fowler (2005) suggested a “plate model” for establishing the temperature 

distribution in the oceanic lithosphere and was used in the present study. In the 

plate model, the oceanic lithosphere is considered to have a constant depth. 

Temperature at the base of the oceanic lithosphere is considered to have the same 

constant value as the temperature at the vertical ridge axis. The top surface of the 

lithosphere is considered to have a temperature of 0°. The thermal parameters in 

the present study are taken from Fowler (2005). 

A temperature of 1450°C at the base of oceanic lithosphere is assigned for 

establishing the temperature distribution in the Northern segment model. Top 

surface of the lithosphere is considered to have a temperature of 0°C (Fowler, 

2005). In addition, at a depth of 105 km of the continental lithosphere the 

temperature of 1450°C was also applied. The density distribution in the 

continental mantle (CM) increases linearly with the depth. In addition to the 

thermal boundary conditions discussed above the applied mechanical boundary 

conditions for this model are the same as discussed in Table 4.2 (for Model II; see 

section 4.2.2).  

Figure 5.6 shows that the density distribution of CM has strong influence on the 

deformation of the overriding plate. Model IV produces higher overriding plate 

uplift as compared to Model II (with constant density distribution in CM). The 

trend of decreasing uplift with increase in the coefficient of friction in Model IV is 

also not sharp like in Model II. It seems that the density distribution of CM affects 

the coupling strength of the frictionally coupled zone. Increase in the density of 

CM with depth decreases the downward drag of the subducting plate which in 

turn, creates higher overriding plate uplift in Model IV than Model II. 
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Figure 5.6 Comparison of maximum vertical displacement as a function of inter-plate 

friction coefficients. 

The main results and conclusion from this study can be summarised as: 

• The coefficient of friction (µ = 0.14) at the frictionally coupled zone 

causes approximately 103 m of uplift in 500000 years at the Altiplano 

plateau region, which is in good agreement with the geological estimated 

uplift rate of 0.2 mm/yr (Gregory-Wodzicki, 2000) for the Altiplano 

plateau in the Central Andes. The value is also in a good agreement with 

the estimation of Cattin et al. (1997).  

• The inverse relationship between the strength of the frictionally coupled 

zone and the overriding plate uplift was observed. This relation is also 

observed by Van Dinther et al. (2010). 

• When the subduction takes place with only slab pull velocity, no uplift 

was generated, not even with a high coefficient of friction at the 

frictionally coupled zone. Increase in the coupling strength of frictionally 

coupled zone increases the downward drag of the subducting plate and 

leads to increase in overriding plate subsidence. This effect of slab pull 

was also observed by Hampel and Pfiffner (2006). It implies that the 

hypothesis relating the high overriding plate topography with the high 

value of inter plate friction does not hold good in every condition.   

• The thickness of the continental crust also has influence on the continental 

uplift and is inversely related to its uplift. Decrease in the thickness of the 
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overriding plate implies increase in its uplift. The model with thin 

continental crust (40 km) and the inter plate coefficient of friction between 

0.3 and 0.35 (i.e. 0.3<µ<0.35) produces geological estimated uplift rate of 

0.2 mm/yr for the Altiplano plateau.  

• The overriding plate uplift is generated when the trenchward overriding 

plate moves with the rate ≥  2 cm/yr. Trenchward movement of overriding 

plate with the rate ≤ 2 cm/yr fails to generate uplift in it. This trend was 

also observed in the subduction modelling of Hampel and Pfiffner (2006) 

and Van Dinther et al. (2010). 

• The obliquely subducting plate with an obliquity (γ = 20°) creates 

subsidence in the overriding plate for all coefficients of friction (µ = 0.0, 

0.1, 0.2, 0.5). 

• The dip of the subducting slab plays an important role in controlling the 

overriding plate deformation. The uplift in the fore-arc region is lower in 

the Southern segment model (β = 13.4°) than in the Northern segment 

model (β = 18.4°). In contrast the uplift in the back-arc region is higher in 

the Southern segment model as compared to the Northern segment model.  

• Increase in density with depth in the Continental mantle intensifies the 

overriding plate uplift by reducing the downward drag of the subducting 

plate and creates higher overriding plate uplift.  

The present study shows that the boundary conditions and the physical parameters 

(thickness of the continental crust, continental drift velocity, convergence 

obliquity, and dip of subducting slab) regulate the mechanics of the frictionally 

coupled zone and in turn, the overriding plate deformation. The Southern Andean 

model with a shallower dip angle (β = 13.4°) produces lower uplift in the fore-arc 

region but higher uplift in the back-arc region as compared to the Northern 

Andean model having a steep slab dip angle (β = 18.4°). The difference in the 

geometry of slab can be one possible reason for the differences between the 

topography of the Northern and the Southern Andes.  

In conclusion, the trenchward movement of the overriding plate is the parameter 

that creates high topography of the Andes on the South American continental 

plate, while the strength of frictionally coupled zone, slab dip, and the thickness of 

the overriding plate are the parameters that quantify its topography.  
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Hence, the findings of this study will be helpful in further understanding of the 

complexity of geodynamic processes of the South American subduction zone 

based on realistic geometry as well as for the general subduction zone related 

investigations. The physical parameters such as thickness of the continental crust 

and the slab dip have strong influence on the overriding plate deformation. These 

constraints should be derived in the most realistic sense by using a 

multidisciplinary integrative approach using geological observations and 

geophysical studies in order to further increase the understanding of the complex 

processes of subduction zone by geodynamic modelling. 
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Appendix 

Abaqus file used for running reference model. 

*Heading 

** Job name: Fric_1_plastic_N_5E5yrs_C_O_velocity Model name: Model-1 

** Generated by: Abaqus/CAE 6.10-EF1 

*Preprint, echo=NO, model=NO, history=NO, contact=YES 

** 

** PARTS 

** 

*Part, name=Asth 

*Element, type=C3D4 

*Nset, nset=Asth_left 

*Elset, elset=Asth_left 

*Nset, nset=Asth_bottom 

*Elset, elset=Asth_bottom 

*Nset, nset=Asth, generate 

*Elset, elset=Asth, generate 

*Nset, nset=Asth_front 

*Elset, elset=Asth_front 

*Nset, nset=Asth_back 

*Elset, elset=Asth_back 

*Nset, nset=Asth_upper_spring 

*Nset, nset=Asth_bottom_OC_line 

*Nset, nset=Asth_node_spring, generate 

*Surface, type=ELEMENT, name=Asth_OC 

*Surface, type=ELEMENT, name=Asth_OC_e 



   

 

ii

** Section: Asth 

*Solid Section, elset=Asth, material=Asth 

, 

*End Part 

** 

*Part, name=CC 

*Element, type=C3D4 

*Nset, nset=CC_right 

*Elset, elset=CC_right 

*Nset, nset=CC_upper_crust 

*Elset, elset=CC_upper_crust, generate 

*Nset, nset=CC_lower_crust 

*Elset, elset=CC_lower_crust, generate 

*Nset, nset=CC_mantle 

*Elset, elset=CC_mantle, generate 

*Nset, nset=CC_front 

*Elset, elset=CC_front 

*Nset, nset=CC_back 

*Elset, elset=CC_back 

*Nset, nset=CC_node_spring, generate 

*Nset, nset=CC_right_mid_nodes 

*Surface, type=ELEMENT, name=Locked 

*Surface, type=ELEMENT, name=Updip 

*Surface, type=ELEMENT, name=Downdip 

*Surface, type=ELEMENT, name=CC_MW 

*Surface, type=ELEMENT, name=CC_MW_e 

*Surface, type=ELEMENT, name=UPdip_e 



   

 

iii 

*Surface, type=ELEMENT, name=Locked_e 

*Surface, type=ELEMENT, name=Downdip_e 

*Surface, type=ELEMENT, name=CC_MW_e_master 

** Section: CC_mantle 

*Solid Section, elset=CC_mantle, material=CC_mantle 

, 

** Section: CC_lower 

*Solid Section, elset=CC_lower_crust, material=CC_lower 

, 

** Section: CC_upper 

*Solid Section, elset=CC_upper_crust, material=CC_upper 

, 

*End Part 

**   

*Part, name=MW 

*Element, type=C3D4 

*Nset, nset=MW_right 

*Nset, nset=MW_right 

*Nset, nset=MW_bottom 

*Elset, elset=MW_bottom 

*Nset, nset=MW, generate 

*Elset, elset=MW, generate 

*Nset, nset=MW-front 

*Elset, elset=MW-front 

*Nset, nset=MW_back 

*Elset, elset=MW_back 

*Nset, nset=MW_CC_spring 



   

 

iv 

*Nset, nset=MW_slope_spring 

*Nset, nset=MW_bottom_OC_line 

*Nset, nset=MW_OC_spring 

*Nset, nset=MW_node_spring, generate 

*Surface, type=ELEMENT, name=MW_OC 

*Surface, type=ELEMENT, name=MW_OC_e 

*Surface, type=ELEMENT, name=MW_CC_e 

** Section: Asth 

*Solid Section, elset=MW, material=Asth 

,*End Part 

**   

*Part, name=OC 

*Element, type=C3D4 

*Nset, nset=OC_left 

*Nset, nset=OC_left 

*Elset, elset=OC_left 

*Nset, nset=OC_bottom 

*Elset, elset=OC_bottom 

*Nset, nset=Oceanic_crust 

*Elset, elset=Oceanic_crust, generate 

*Nset, nset=Oceanic_mantle 

*Elset, elset=Oceanic_mantle 

*Nset, nset=OC_front 

*Elset, elset=OC_front 

*Nset, nset=OC_back 

*Elset, elset=OC_back 

*Nset, nset=OC_MW_bottom_edge_X 



   

 

v 

*Nset, nset=OC_Asth_bottom_edge_X 

*Nset, nset=OC_bottom_edge_mid_nodes 

*Nset, nset=OC_MW_edge_line 

*Nset, nset=OC_Asth_edge_line 

*Nset, nset=OC_node_spring, generate 

*Nset, nset=OC_bottom_mid_nodes 

*Nset, nset=OC_left_mid_nodes 

*Surface, type=ELEMENT, name=OC_Asth 

*Surface, type=ELEMENT, name=OC_CC_MW_master 

*Surface, type=ELEMENT, name=OC_Asth_e 

*Surface, type=ELEMENT, name=OC_CC_MW_e 

*Surface, type=ELEMENT, name=OC_Asth_e_upper 

*Surface, type=ELEMENT, name=OC_asth_e_slope 

*Surface, type=ELEMENT, name=OC_MW_e_slope 

** Section: Oceanic_mantle 

*Solid Section, elset=Oceanic_mantle, material=Oceanic_mantle 

, 

*Solid Section, elset=Oceanic_crust, material=Oceanic_crust 

, 

*End Part 

**   

**   

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Asth-1, part=Asth 



   

 

vi 

*End Instance 

**  

*Instance, name=CC-1, part=CC 

*End Instance 

**   

*Instance, name=MW-1, part=MW 

*End Instance 

**  

*Instance, name=OC-1, part=OC 

*End Instance 

**   

*Nset, nset=Back, instance=Asth-1 

*Nset, nset=Back, instance=CC-1 

*Nset, nset=Back, instance=OC-1 

*Nset, nset=Back, instance=MW-1 

*Elset, elset=Back, instance=Asth-1 

*Elset, elset=Back, instance=CC-1 

*Elset, elset=Back, instance=OC-1 

*Elset, elset=Back, instance=MW-1 

*Nset, nset=Front, instance=Asth-1 

*Nset, nset=Front, instance=CC-1 

*Nset, nset=Front, instance=OC-1 

*Nset, nset=Front, instance=MW-1 

*Elset, elset=Front, instance=Asth-1 

*Elset, elset=Front, instance=CC-1 

*Elset, elset=Front, instance=OC-1 

*Elset, elset=Front, instance=MW-1 



   

 

vii 

*End Assembly 

**  

** MATERIALS 

** 

*Material, name=Asth 

*Density 

3300., 

*Elastic 

 1.83e+11, 0.25 

*Mohr Coulomb 

10.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 

*Material, name=CC_lower 

*Density 

2950., 

*Elastic 

 9.45e+10, 0.25 

*Mohr Coulomb 

20.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 

*Material, name=CC_mantle 

*Density 

3300., 



   

 

viii 

*Elastic 

 1.83e+11, 0.25 

*Mohr Coulomb 

10.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 

*Material, name=CC_upper 

*Density 

2750., 

*Elastic 

 8.25e+10, 0.25 

*Mohr Coulomb 

20.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 

*Material, name=Oceanic_crust 

*Density 

3000., 

*Elastic 

 9.45e+10, 0.25 

*Mohr Coulomb 

20.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 



   

 

ix 

*Material, name=Oceanic_mantle 

*Density 

3280., 

*Elastic 

 1.83e+11, 0.25 

*Mohr Coulomb 

10.,0. 

*Mohr Coulomb Hardening 

 4e+07,   0. 

 5e+09, 0.01 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=Friction 

1., 

*Friction, slip tolerance=0.005 

 0.14, 

*Surface Behavior, direct 

*Surface Interaction, name=No_friction 

1., 

*Friction, slip tolerance=0.005 

0., 

*Surface Behavior, direct 

*INITIAL CONDITIONS, TYPE=STRESS, UNBALANCED STRESS=STEP, 

INPUT=prestress_fric_0.14_plastic_N.inp 

**  

** BOUNDARY CONDITIONS 



   

 

x 

**  

** Name: Asth_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Asth-1.Asth_bottom, ENCASTRE 

** Name: Asth_left Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Asth-1.Asth_left, ENCASTRE 

** Name: Back Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Back, ENCASTRE 

** Name: CC_right Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

CC-1.CC_right, ENCASTRE 

** Name: Front Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Front, ENCASTRE 

** Name: MW_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

MW-1.MW_bottom, ENCASTRE 

** Name: MW_right Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

MW-1.MW_right, ENCASTRE 

** Name: OC_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

OC-1.OC_bottom, ENCASTRE 

** Name: OC_left Type: Symmetry/Antisymmetry/Encastre 

*Boundary 



   

 

xi 

OC-1.OC_left, ENCASTRE 

**  

** INTERACTIONS 

**  

** Interaction: Asth_OC 

*Contact Pair, interaction=No_friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

OC-1.OC_Asth_e, Asth-1.Asth_OC_e 

** Interaction: CC_MW 

*Contact Pair, interaction=No_friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

MW-1.MW_CC_e, CC-1.CC_MW_e_master 

** Interaction: Downdip 

*Contact Pair, interaction=No_friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

CC-1.Downdip_e, OC-1.OC_CC_MW_e 

** Interaction: Locked 

*Contact Pair, interaction=Friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

CC-1.Locked_e, OC-1.OC_CC_MW_e 

** Interaction: MW_OC 

*Contact Pair, interaction=No_friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

MW-1.MW_OC_e, OC-1.OC_CC_MW_e 

** Interaction: Updip 

*Contact Pair, interaction=No_friction, type=SURFACE TO SURFACE, 

tracking=STATE, adjust=2. 

CC-1.UPdip_e, OC-1.OC_CC_MW_e 



   

 

xii

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, unsymm=YES 

*Static 

1., 1., 1e-05, 1. 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Asth_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: Asth_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Asth-1.Asth_bottom, XASYMM 

** Name: Asth_left Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: Asth_left_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Asth-1.Asth_left, YASYMM 

** Name: Back Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: Back_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Back, YASYMM 

** Name: CC_right Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 



   

 

xiii 

** Name: CC_right_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

CC-1.CC_right, YASYMM 

** Name: Front Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: Front_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Front, YASYMM 

** Name: MW_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: MW_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

MW-1.MW_bottom, XASYMM 

** Name: MW_right Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: MW_right_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

MW-1.MW_right, YASYMM 

** Name: OC_bottom Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: OC_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

OC-1.OC_bottom, XASYMM 

** Name: OC_left Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: OC_left_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 
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OC-1.OC_left, YASYMM 

**  

** LOADS 

**  

** Name: Gravity   Type: Gravity 

*Dload 

, GRAV, 9.8, 0., -1., 0. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=1 

*Print, solve=NO 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

CF, COORD, RF, U, V 

*Element Output, directions=YES 

E, EE, ER, IE, LE, MISES, NE, PE, PEEQ, PEEQT, PEMAG, PRESSONLY, PS, 

S 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 
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*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Step-2 

**  

*Step, name=Step-2, nlgeom=YES, amplitude=RAMP, inc=1000, unsymm=YES 

*Visco, cetol=0.01 

1.575e+13, 1.575e+13, 1e-07, 1.575e+13 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Asth_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Asth-1.Asth_bottom, XASYMM 

** Name: Asth_left_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

**Name: Asth_left_velocity_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Asth-1.Asth_left, ENCASTRE 

** Name: Back_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Back, YASYMM 

** Name: CC_right_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: CC_right_velocity_3cm_yr Type: Velocity/Angular velocity 

*Boundary, op=NEW, type=VELOCITY 

CC-1.CC_right_mid_nodes, 1, 1, -9.52e-10 
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** Name: CC_right_velocity_movement Type: Symmetry/Antisymmetry/ 

Encastre 

*Boundary, op=NEW 

CC-1.CC_right, XASYMM 

** Name: Front_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

Front, YASYMM 

** Name: MW_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

MW-1.MW_bottom, XASYMM 

** Name: MW_right_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: MW_right_velocity_movement Type: Symmetry/Antisymmetry/ 

Encastre 

*Boundary, op=NEW 

MW-1.MW_right, ENCASTRE 

** Name: OC_bottom_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: OC_bottom_velocity_movement Type: Symmetry/Antisymmetry/ 

Encastre 

*Boundary, op=NEW 

OC-1.OC_bottom, ZSYMM 

** Name: OC_left_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: OC_left_velocity_movement Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

OC-1.OC_left, XASYMM 

** Name: Slab_push_velocity Type: Velocity/Angular velocity 
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*Boundary, op=NEW, type=VELOCITY 

OC-1.OC_left_mid_nodes, 1, 1, 1.59e-09 

** Name: Slab_pull_velocity Type: Velocity/Angular velocity 

*Boundary, op=NEW, type=VELOCITY 

OC-1.OC_bottom_mid_nodes, 1, 1, 1.51e-09 

OC-1.OC_bottom_mid_nodes, 2, 2, -5.02e-10 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

*Print, contact=YES, model change=YES, plasticity=YES, solve=YES 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, number interval=20 

*Node Output 

CF, COORD, RF, U, V 

*Element Output, directions=YES 

E, EE, ER, IE, LE, MISES, NE, PE, PEEQ, PEEQT, PEMAG, PRESSONLY, PS, 

S 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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