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Executive Summary

Forest monitoring plays a central role in the context of global warming mitigation and in
the assessment of forest resources. To meet these challenges, significant efforts have been
made by scientists to develop new feasible remote sensing techniques for the retrieval of
forest parameters. However, much work remains to be done in this area, in particular
in establishing global assessments of forest biomass. In this context, this Ph.D. Thesis,
for which the research was primarily carried out at the earth observation department
of the Friedrich-Schiller University (FSU) of Jena, presents a complete methodology for
estimating growing stock volume (GSV') in temperate forested areas using a fusion ap-
proach based on synthetic-aperture radar (SAR) satellite imagery. The investigations
which were performed focused on the Thuringian Forest, which is located in Central Ger-
many and is well known for its low mountain range temperate regions which are mostly
covered by Norway spruces. The satellite data used are composed of an extensive set of L-
band (ALOS PALSAR) and X-band (TerraSAR-X, TanDEM-X, Cosmo-SkyMed) images,
which were acquired in various sensor configurations (acquisition modes, polarisations,
incidence angles). The available ground data consists of a forest inventory delivered by
the local forest offices. The latter includes forest parameters such as stand height, basal
area, diameter at breast height (DBH), GSV or tree species composition. Weather mea-
surements and a LIDAR DEM complete the datasets. The research has been divided into
five main topics, namely the examination of the topographic effects, the investigation of
the scattering mechanisms, the highlighting of the decorrelation mechanisms, the deriva-
tion of forest GSV and the fusion of SAR information. The topography analysis showed
that rough terrain affects the backscatter intensity and interferometric coherence. This
was mainly explained by the changing apparent volume of the canopies with various as-
pect and slope angles. The examination of the scattering and decorrelation mechanisms
pointed out the different effects of various weather conditions and forest structures on the
backscattering coefficient and interferometric coherence. Together with the topography,
these effects generally limited the sensitivity of the SAR signal to GSV. The best cor-
relations were obtained with ALOS PALSAR (R? = 0.61) and TanDEM-X (R? = 0.72)
interferometric coherences. These datasets were therefore chosen for the retrieval of GSV
in the Thuringian Forest. Two estimation approaches were implemented, namely regres-
sion and k-nearest neighbour (k-NN), both of which relied on the forest inventory. The
regression led to an root-mean-square error (RMSE) in the range of 100 — 200 m?® ha=?.
The non-parametric k-NN method improved the accuracy obtained by a regression of
approximately 50m?®ha~!. However, these results were not sufficiently accurate to en-
visage any applications in forestry or climate modelling. As a final achievement of this
thesis, a methodology for combining the SAR information was developed. Considering
the large number of images available and the various data sources, the conceived fusion
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involved the efficient integration of different biophysical products into a final GSV map.
Emphasis was placed on the improvement of the accuracy of the map as well as on its
temporal and spatial transferability. The biophysical products of the GSV map involved
G SV, species and forest location information. Owing to the limited number of time-series
PALSAR coherences and the availability of only monotemporal TanDEM-X coherences,
multitemporal combinations of GSV were ignored. Thus, the fusion approach applied to
the datasets of the Thuringian Forest led to a GSV map having an estimation accuracy
which was the best RMSE obtained from each single acquisition. Assuming that there
are sufficient and adequate remote sensing data, the proposed fusion approach may in-
crease the biomass maps accuracy, its spatial extension and its updated frequency. These
characteristics are essential for the future derivation of accurate, global and robust forest
biomass maps.
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Zusammenfassung

Waldiiberwachung spielt eine zentrale Rolle fiir Klimaschutz und die Beurteilung beste-
hender Waldressourcen. Um diesen Aufgaben gerecht zu werden widmen sich umfassende
wissenschaftlicher Anstrengungen der Entwicklung neuer Fernerkundungsverfahren fiir die
Abschétzung von Waldparametern. In diesem Kontext zeigt die vorliegende Doktorar-
beit, die hauptséchlich bei der Abteilung Fernerkundung der Friedrich-Schiller-Universtét
(FSU) Jena durchgefithrt wurde, eine vollstandige Methodik fiir die Abschéitzung des
Holzvorrates (GSV') in geméBiigten Waldgebieten auf. Die Methodik stiitzt sich auf einen
Fusionsansatz, der auf Synthetic-Aperture Radar (SAR) Satellitenbilder basiert. Die
durchgefiihrten Untersuchungen fokussierten sich auf den zentral in Deutschland gelege-
nen Thiiringer Wald. Dieser ist fiir seine hiigeligen Regionen bekannt und gréfitenteils von
norwegischen Fichten bedeckt. Die in dieser Arbeit verwendeten Satellitendaten beste-
hen aus einer umfangreichen Reihe von L-Band- (ALOS PALSAR) und X-Band-Bildern
(TerraSAR-X, TanDEM-X, Cosmo-SkyMed), die in verschiedenen Sensorkonfigurationen
(Aufnahmemodi, Polarisation, Einfallswinkel) aufgenommen wurden. Die verfiigharen
Referenzdaten stammen aus einer Forstinventur, die von den lokalen Forstdmtern zur
Verfiigung gestellt wurde. Diese beinhaltet Waldparameter wie Bestandshohe, Grund-
fliche, Brusthohendurchmesser (DBH), GSV oder Baumarten. Wettermessungen und
ein LIDAR DGM vervollstandigen die Datensétze. Die Forschung wurde in fiinf Hauptthe-
men unterteilt, ndmlich die Analyse der topographischen Effekten, die Untersuchung der
Streuungsmechanismen, die Hervorhebung der Dekorrelationsmechanismen, die Ableitung
von Wald GSV und die Fusion von SAR-~Informationen. Die Topographie-Analyse zeigt,
dass unwegsames Geldnde die Riickstreuintensitit und interferometrische Kohérenz beein-
flusst. Die Erklarung dafiir ist vor allem in der Verdnderung des scheinbaren Volumens der
Baumkronen bei verschiedenen Aspekt- und Neigungswinkel zu finden. Die Untersuchung
der Streuungs- und Dekorrelationsmechanismen wies auf die unterschiedliche Wirkung
von verschiedenen Wetterbedingungen und Waldstrukturen auf den Riickstreuungskoef-
fizient und interferometrischen Kohérenz hin. Zusammen mit der Topographie begren-
zen diese Effekte die Sensitivitit des SAR-Signals auf GSV. Die besten Korrelationen
wurden bei der Anwendung von interferometrischen Kohédrenzen von ALOS PALSAR
(R?* = 0.61) und TanDEM-X (R? = 0.72) erhalten. Daher wurden diese Datensiitze
fiir die Ableitung von GSV im Thiiringer Wald ausgew#hlt. Zwei Abschétzungsver-
fahren, die sich beide auf die Forstinventur stiitzen, wurden implementiert, ndmlich Re-
gression und k-Nearest-Neighbor-Algorithmus (k-NN). Die Regression fithrte zu einem
mittleren quadratischen Fehler (RMSE) im Bereich von 100 — 200 m® ha™'. Die nicht-
parametrische k-NN-Methode verbesserte die aus der Regression erhaltene Genauigkeit
um etwa 50m®ha~!. Allerdings waren diese Ergebnisse nicht ausreichend genau, um
Anwendungen in der Forstwirtschaft oder Klimamodellierung in Betracht ziehen zu kon-



xii ZUSAMMENFASSUNG

nen. Als letzte Errungenschaft dieser Dissertation wurde eine Methodik fiir die Kom-
bination der SAR-Informationen entwickelt. In Anbetracht der grofien Anzahl der ver-
fiigharen Bilder und der verschiedenen Datenquellen, schlieft die entworfene Fusion eine
effiziente Integration von verschiedenen biophysikalischen Produkten in einer abschlieSen-
den GSV-Karte ein. Der Schwerpunkt lag einerseits auf der Verbesserung der Genauigkeit
und andererseits auf der zeitlichen und rdumlichen Ubertragbarkeit der Karte. Die bio-
physikalischen Produkte der GSV-Karte bestehen aus GSV-, Baumarten- und Wald-
/Nicht-Wald-Informationen. Aufgrund der begrenzten Anzahl von PALSAR-Kohérenzen
Zeitreihen und der Verfiigbarkeit von nur monotemporal TanDEM-X-Kohérenzen, wur-
den multitemporale Kombinationen von GSV ignoriert. So fithrte der fiir die Datensétze
des Thiiringer Waldes angewendete Fusionsansatz zu einer GSV-Karte mit einer Ab-
schitzungsgenauigkeit, welche jeweils den besten erhaltene RMSE von jeder einzelnen
Aufnahme zeigte. Unter der Annahme, dass es ausreichende und angemessene Fernerkun-
dungsdaten gibt, konnte der vorgeschlagene Fusionsansatz sowohl die Genauigkeit der
Biomassekarten als auch ihre rdumliche Ausdehnung und ihre aktualisierte Frequenz er-
hohen. Diese Eigenschaften sind wesentlich fiir die zukiinftige Ableitung von genauen,
umfassenden und robusten Waldbiomassekarten.
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Chapter 1

Introduction

This study aims to estimate the growing stock volume (GSV') in temperate forest regions
using a fusion approach based on synthetic-aperture radar (SAR) satellite imagery. This
introductory chapter will present the general elements associated with this work in three
different sections. The first section will briefly relate the context of the thesis. In particu-
lar; this section will provide the key issues and their potential solutions obtained by using
SAR satellite systems. The second section will introduce the background of this work
by discussing three topics: (1) briefly characterising the temperate forests and the global
carbon cycle, (2) providing a broad overview of specifications and technical characteris-
tics of the satellites addressed in this thesis and (3) briefly describing the objectives and
the different entities and institutions involved in the project radar and optical satellite
data for ENVIronment and LAND use applications (ENVILAND2) which is linked to this
work. In the final section of this chapter, the structure of the thesis is presented.

1.1 Context

Temperate forests hold several vital functions for humans and the biosphere. They are a
large terrestrial carbon sink, which is important for maintaining the global carbon cycle.
They also play an important role in the economic sustainable development of industrialised
and developing countries. For example, they supply fuel, food, fibre, building materials
and medicinal plants, which constitute some of the main sources of basic human needs. In
addition to being a substantial carbon sink and having a high commercial timber value,
temperate forests are also known as complex ecosystems which are essential for wildlife
habitats and for the maintenance of biological diversity at local, national and international
levels.

For several centuries, owing to deforestation by humans for timber industry and con-
struction activities, forests in the Northern temperate zones have suffered significant losses.
Nowadays, tree planting, landscape restoration and natural expansion of conifers and de-
ciduous trees reduced the net loss of the temperate forest regions worldwide. However,
these environments are currently urbanised, so naturally occurring temperate forests re-
main in a few regions globally.

With reference to global warming, recent reports from the Intergovernmental Panel on
Climate Change (IPCC) showed a significant increase in the Earth’s surface temperature in
the past decades (Solomon et al., 2007). It has been agreed that this general trend is highly
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correlated to the concentration of carbon dioxide (COsz) released into the tropospheric
atmosphere by human activities. Industry, traffic and exhaustive agriculture activities
have been shown to be the primary sources of anthropogenic greenhouse gases. However,
forests degradation and deforestations have also been shown to be responsible for the
significant increase in CO4y concentration in the atmosphere.

In the present context, to mitigate global warming, governments have been urged under
the Kyoto protocol to significantly reduce their emissions. To do so, a system of emission
rights has been defined for the regulation of carbon into the atmosphere. However, an
important issue which affects the establishment of this new system is the quantification
of the pool of carbon on a national scale. In fact, owing to the rapid forest changes and
their high spatial extension, ground-based measurements are often limited to expensive,
inaccurate and long-term forest cover updates.

With the development of remote sensing techniques over the last decade, there is a great
desire to use SAR satellite systems in order to overcome these limitations. Spaceborne
systems have the ability to cover large regions at a reasonable cost. Moreover, SAR
microwave signals can interact with plants’ structures, allowing the potential retrieval of
different biophysical forest parameters, and the SAR sensors are operational at night and
in bad weather conditions. Therefore, SAR remote sensing systems have the ability to
produce reliable and up-to-date temperate forest biomass maps, which may be used to
not only implement carbon-emission trading but also improve the predictions of climatic
models and support activities of the forest industry.

1.2 Background

1.2.1 Temperate forests and the global carbon cycle

Temperate forests cover 13% of the Earth’s land surfaces (FAO, 2010) and span five conti-
nents in large discontinuous blocs. They extend beyond the tropic of Cancer in the North
and the tropic of Capricorn in the South, and are by far one of the most extensive forest
groups worldwide. As the latitude increases, the temperate forests gradually disappear,
giving way to the boreal forest and the polar regions.

The distribution of temperate forests is far from being even. They principally appear
in the Northern Hemisphere, forming a continuous belt across North America, Europe and
Asia. The presence of temperate forests is also noticed in some regions of the Southern
Hemisphere. Small pockets particularly appear in South America, Australia and New
Zealand. Despite the widespread extension of temperate forests globally and the wide
variety of trees in these forests which differ from region to region, temperate biomes
are commonly classified in three different families: (1) conifers, which are also widely
represented in boreal (Northern) forests; (2) broad-leaved deciduous forests, which are
typically from central Europe, North-East America and East Asia and (3) the denominated
broad-leaved evergreen forests, which currently appear in only a few regions worldwide
such as the North-West regions along the US coast and Canada, the South-East region of
Australia and the South of New Zealand. The distribution of the trees over the temperate
regions primarily relies on abiotic factors such as the soil conditions, air temperature and
frequency of precipitation. These factors are closely linked to the climate types of the
regions which are characterised by well-defined seasons in temperate areas.
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Temperate forest
|

Figure 1.1: Temperate forests worldwide. Adapted from (Pravettoni, 2009).

The actual state of the temperate forests results from several thousands of years of
existence, during which time they have provided land and natural resources for differ-
ent civilisations. Historically, after the last glaciation (15,000 years BP), the temperate
forests spread all over the Northern Hemisphere and cover more than 80% of the Earth’s
land area in this period (Reich and Frelich, 2002). However, with the advent of agri-
culture, temperate forests have been increasingly felled to clear lands for farming and
to subsequently meet the increasing demand of wood for heating, construction materials
and paper industry materials. The currently on-going reforestation process was started in
the eighteenth century and aimed to reach a peak at the end of the nineteenth and early
twentieth centuries (Nabuurs et al., 2007b). As a result, the existing temperate forests
consist of mostly secondary forests, aged and often monospecies plantations (Nabuurs
et al., 2007b).

Temperate forests belong to the terrestrial ecosystems which constitute one of the
reservoirs of the carbon cycle. Referring to the global carbon cycle, the terrestrial ecosys-
tems represent a total storage of about 2190 Gt C of carbon, with approximately 610 Gt C
stored in vegetation and 1580 Gt C present in soils and organic matter. About two-thirds
of the forests’ carbon is thus stored in the soils. With the vegetation photosynthesis pro-
cess, the terrestrial ecosystems are also characterised by a net land-to-atmosphere flux of
about 121 Gt Cyear~!. This flux is neutralised by the respiration of vegetation and soils,
which together release about 60 Gt C year™! into the atmosphere. Although the scientific
community appears to agree with the existing carbon reservoirs and flux, the accuracy
of the aforementioned quantities remain very approximate. The approximations of these
values were essential owing to the complex interactions between the different carbon pools,
the large heterogeneity of different biomes and the recent action of humans on land use
and land management (Houghton, 2007).

The current carbon stocks reported for temperate, boreal and tropical forests are
estimated to be 11946 Gt C, 272423 Gt C and 471493 Gt C, respectively (Table 1.1). The
amounts of carbon stored in boreal and tropical forests are thus much higher than that in
temperate forest ecosystems. This difference is mainly explained by the climatic conditions
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Table 1.1: Comparisons of carbon stocks and sinks for different forest ecosystems (Pan et al.,
2011).

Designation C Stock (PgC) C Sink (PgCyear—1!)

2007 1990-1999  2000-2007

Temperate 119+6 0.67£0.08 0.78 £0.09
Boreal 272 £23 0.50 £0.08 0.50 £0.08
Tropical 471 £ 93 1.33+£0.35 1.02+0.47
Total 861 £ 66 2.50+£0.36 2.30£0.49

of these ecosystems. In the case of tropical forests, the humidity enhances the growing
conditions, allowing the rapid development of vegetation. In the case of boreal forests,
the frozen temperatures reduce the rate of the organic matter decomposition, allowing
the high accumulation of matter and carbon in the soils. Therefore, the carbon storage is
mostly located in the above ground biomass (AGB) of tropical forests and in the soils of
boreal forests. In the case of temperate forests, modest carbon levels are located in both
soils and plants. With reference to the carbon sinks, the total averaged annual change of
the forest ecosystems reaches for the period 2000 — 2007 about 2.3 Gt C year~* (Table 1.1).
With the sequestration of 0.78 Gt Cyear~!, temperate forests comprise the second most
influential carbon sink, after tropical forests. In addition, within the last two decades,
the carbon sinks in temperate forests have increased, while the uptake from tropical
forests has declined. This difference is primarily owing to human activities. As mentioned
above, regarding the temperate forests, reforestation and afforestation programmes have
been developed over the past few decades and centuries, especially in China and the US.
However, for tropical forests, the last few decades have consisted mainly of deforestations,
thereby converting forests into sources of carbon.

1.2.2 SAR satellite missions

As part of this thesis, four recent SAR spaceborne systems were investigated, namely
ALOS PALSAR, TerraSAR-X (TSX), TanDEM-X (TDX) and Cosmo-SkyMed (CSK).
Table 1.2 briefly summarises the characteristics of these satellites. Additional character-
istics are provided in JAXA 2012, Eineder et al. 2009, Fritz et al. 2012 and ASI 2007.
The satellite system Advanced Land Observing Satellite (ALOS) was launched on
24" January 2006 by the Japan Aerospace Exploration Agency (JAXA). This spacecraft
has three main instruments onboard, which include the Phased Array L-band Synthetic-
Aperture Radar (PALSAR) sensor. The PALSAR sensor was designed to follow a sun-
synchronous orbit, with a 46-day repeated cycle at an altitude of 691km. The active
system uses an L-band frequency (23.5cm, 1.27 GHz) and integrates an off-nadir pointing
function which permits it to aim between 18° and 55°. The sensor allows four different
operation modes: fine beam, scanSAR (SC), Direct downlink and polarimetric (PLR).
Data acquired in fine beam (high resolution) can be measured over a 55 km x 65 km frame
and delivered in either single polarisation (FBS, HH or VV) or dual polarisations (FBD,
HH/HV or VV/VH). The SC mode offers a larger swath width (250km), but at the cost
of lowering the spatial resolution (100m). For reduced spatial resolution capabilities, a
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Table 1.2: Principal characteristics of ALOS PALSAR, TSX, TDX and CSK instruments.

Designation ALOS PALSAR TerraSAR-X TanDEM-X  Cosmo-SkyMed
Space Agency JAXA DLR DLR ASI
Nbr. of instruments 1 1 1 4
Launch date 241 January 2006 15" June 2007 21 June 2010 8" June 2007
Band name L-band X-band X-band X-band
Frequency (GHz) 1.27 9.65 9.65 9.6
Bandwidth (MHz) 14-28 150-300 150-300 400
Orbit geometry sun- sun- sun- sun-
synchronous synchronous synchronous synchronous
Orbit altitude (km) 691.6 514.0 514.0 619.6
Orbit inclination (°) 98.16 97.44 97.44 97.86
Orbit period (min) 98.7 94.92 94.92 97.2
Revisit time (day) 46 11 11 1

direct downlink mode allows the direct transmission of data to the X-band ground stations.
Finally, the PLR mode offers a complete polarisation scheme (HH/HV/VV /VH) for 30 m
range resolution on a 30 km swath. The bandwidth of the sensor varies with the acquisition
modes. In general, the bandwidth is 28 MHz in FBS mode and 14 MHz in the FBD, PLR
and SC modes. On Thursday, April 21 2011, at 22:30 GMT, owing to a power generation
anomaly, the three observation instruments onboard ALOS were automatically shut down
to a power-saving mode. On the next day, ALOS "Daichi’ was declared to be lost.

TSX belongs to the new generation of high-resolution satellites which are capable
of measuring spatial resolutions up to 1m. Initiated by the close cooperation between
the German Ministry of Education and Science (BMBF), the German Aerospace Centre
(DLR) and the Astrium GmbH., the instrument was successfully launched on June 15,
2007 and was operational seven months later. This satellite was conceived for scientific
and commercial utilisation, and the SAR sensor consists of an active phased array X-band
system operating at 9.65 GHz (3.1 ¢cm) with nominal and maximal range bandwidths at
150 MHz and 300 MHz, respectively. The spacecraft follows a sun-synchronous orbit with
a nominal orbit height at the equator of 514 km. Its orbital velocity approaches 7.6 kms™1,
resulting in about 15 orbits per day and a revisit time of 11 days. TSX was designed for
four different imaging modes: High-resolution Spotlight (HS), SpotLight (SL), StripMap
(SM) and SC. In summary, the two spotlight modes (HS and SL) are very similar and
provide the highest geometrical resolution (up to 1 m resolution). The difference between
these two modes is the scene coverage and the spatial resolution. In SL, the azimuth scene
coverage increases (azimuth range: 10km x 10km) and the geometric azimuth resolution
reduces (2m); in HS mode, a high spatial resolution (1m) is possible, but the observed
area diminishes (azimuth range: 5km x 10km). The SM and SC modes are designed
for imaging large areas. The SM mode acquires data by scanning the ground with a
continuous sequence of pulses, allowing an acquisition length ranging from 30 km up to
1650 km. The SC mode is similar to the SM mode, but with a much larger swath (100 km).

Since 215" June 2010, TSX has been in tandem formation with a second X-band satel-
lite launched by the DLR named TDX. TDX is almost the exact replica of TSX and was
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built for interferometric applications, with the primary goal being to derive a global high-
resolution digital elevation model (DEM) within a period of three years. In addition to
this primary objective, the twin formation of TSX and TDX provides experimental inter-
ferometric modes such as the bistatic, alternating bistatic and monostatic modes. These
experimental modes may be used with different techniques allowed by TSX/TDX, such as
Along-Track Interferometry (ATI), Cross-Track Interferometry (CTI), polarimetric SAR
interferometry (PollnSAR) and digital beamforming (DBF) (Huber and Krieger, 2009).

The CSK mission introduced by the Italian Ministry of Research and Ministry of De-
fence, which was conducted by the Italian Space Agency (ASI), was designed to provide
support for military and civilian activities. CSK consists of a constellation of four satellites
launched between 8" June 2007 and 5" November 2010, and orbits a sun-synchronous
polar orbit with a nominal altitude of 619 km. The full constellation has been operational
since the launch of the fourth satellite. Each satellite is composed of an X-band radar
sensor with a centre frequency of 9.6 GHz and a maximum bandwidth of 400 MHz. The
sensors provide three acquisition modes, namely SL, SM Himage, SM pingpong and SC
wide/huge modes. The SM modes consist of a trade-off between SL and SC modes, which
allow either high spatial resolution or large swath coverage. Therefore, the SM Himage
mode can provide data in single polarisation with a frame of 40 km x 40 km and with both
ground range and azimuth spatial resolution of 3m each. One of the main characteris-
tics of CSK lies in its interferometric capabilities. The ASI proposes two interferometric
modes, namely the Tandem-like and the Tandem interferometry. The Tandem-like mode
provides multitemporal acquisitions, while the Tandem interferometry mode allows spe-
cific interferometric configurations for producing digital elevation models. Considering
there is only one CSK satellite, the revisit time in a routine configuration (no urgencies)
is approximately 16 days. Taking into account the tandem-like mode of three satellites,
and by phasing one of the satellite’s orbital position at 67.5° with one of the two other
satellites, inteferometric data with a 1 day repeat-pass can be provided. With the full con-
stellation and the same phasing orbital configuration, two consecutive acquisitions with a
revisit time of 1day can be ordered.

1.2.3 ENVILAND2

The work performed in this thesis has been part of the ENVILAND2 project. ENVI-
LAND2 was the result of collaboration between several institutions, which aimed at de-
veloping robust and (semi-) automated methods for the generation of landcover products
such as land use classification, change detection, urban mapping and biomass mapping
(see Ackermann et al. 2012b and Ackermann et al. 2012a). To achieve this objective, one
focal point was the synergetic use of radar and multispectral remote sensing data.

Among the different partners of ENVILAND2, the Jena-Optronik GmbH company
managed and generally coordinated the project, while the Universities of Bonn (Zentrum
fiir Fernerkundung Landoberfliche der an der Universitdt Bonn - ZBS), Ilmenau (Zen-
trum fiir Bild-und Signalverarbeitung eV Ilmenau - ZFL) and Jena (Friedrich-Schiller-
Universitit Jena - FSU) developed the approaches and algorithms. Furthermore, part of
the funding of ENVILAND?2 was contributed by the DLR.

ENVILAND2 constituted a continuation of ENVILANDI, which demonstrated the
feasibility of producing landcover products based on the combination of radar and optical
remote sensing information. ENVILANDI1 began in October 2004 and ended in December
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Figure 1.2: ENVILAND?2 logo (Ackermann et al., 2012b).

2007, while ENVILAND?2 was in operation between October 2008 and September 2011
with a special extension to March 2012.

Because the DLR was a co-founder of ENVILAND2, the project involved the primary
use of recent German remote sensing systems such as TSX and RapidEye (RE). In ad-
dition to these satellites, other types of instruments such as ALOS PALSAR, ENVISAT
ASAR, SPOT5 and Kompsat2 were considered to extend the research field of the synergy
between radar and optical systems. The final work of ENVILAND?2 involved implement-
ing new developed or adapted algorithms into software which aimed to provide, within
the framework of the future GMES European programme, some important tools useful
for commissioning and exploiting the upcoming sentinel satellites.

1.3 Structure of the thesis

This thesis is composed of six principal chapters. The first chapter introduced the general
context and background of the thesis. Based on these introductory elements, the second
chapter presents a detailed review of the literature to highlight the important findings
using SAR remote sensing for temperate forests. This review will serve as a foundation
for discussing the open issues and scopes of the thesis. Chapter 3 describes the theoretical
background related to SAR and forestry. This chapter provides some definitions and
enables the understanding of the different techniques and concepts treated in this work.
To achieve the objectives defined in Chapter 2, a specific test site was selected and earth
observation (EO) data were acquired. Chapter 4 provides a description of the test site
and also includes the material and methods used in this work. The focal point of this
thesis is Chapter 5, which presents and discusses the results of this work. Finally, the
last chapter concludes the thesis by summarising the main findings and proposing some
perspectives for future studies.
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Chapter 2

Literature review

Over the past ten years, the number of research activities in the field of radar remote
sensing has increased considerably. To identify the main findings regarding SAR and
forestry, a comprehensive review of the literature was conducted focusing on different
SAR techniques and fusion of SAR information. Then, on the basis of the literature
findings, the current issues in this regard were identified and the scope of this thesis was
defined.

This chapter presents the literature review for this thesis and its objectives. The
first section focuses on the remote sensing of temperate forests using SAR technology.
This section particularly reviews the SAR backscatter intensity and SAR interferometry
(InSAR), SAR polarimetry (PolSAR), polarimetric SAR interferometry (PollnSAR) and
SAR tomography techniques. The second section deals with the methods applied for the
fusion of SAR information from temperate forests. In this respect, the various approaches
to combining SAR information are reviewed. The main objective of the present thesis
is the estimation of GSV in temperate forests using SAR satellite imagery. The litera-
ture review focuses on temperate forests. However, some reports on boreal or tropical
forests are also discussed to a lesser extent because these studies were also relevant to the
assessment of SAR sensitivity in temperate forests. The reports on landcover or forest
mapping are not always mentioned, and the fusion section reviews studies which focus on
SAR information. After describing the literature findings, the last section of this chap-
ter discusses the current issues identified from this literature review and introduces the
objectives of this thesis.

2.1 SAR remote sensing of forests

2.1.1 SAR intensity

Radar remote sensing of forest biomass has been a domain of research since the early days
of civilian imaging radar in the 1960s and the launch of the first SAR satellite Seasat in
the 1970s (Leckie and Ranson, 1998). The research activities in radar systems for forestry
applications are attributed to the fact that radar microwaves are unaffected by weather
conditions (Ulaby, 1981, Imhoff et al., 1986, Sanden, 1997) and solar illumination and are
sensitive to the structure of the canopies (Imhoff et al., 1986). These capabilities together
with the widespread use of and continuous surveys provided by spaceborne platforms
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make radar systems one of the primary domains of research in remote sensing for the
estimation of forest biomass over a wide range of regions (Bergen et al., 1997).

SAR parameters

Initially, investigations of radar imagery focused on gaining an understanding of the
physical interactions between radar microwaves and forest canopies (Henderson and Lewis,
1998). In particular, the microwave backscatter at different radar frequencies was con-
sidered. The examinations of conifer or broad-leaved forests mainly led to the same
conclusions, i.e., there was a significant correlation between forest biomass and backscat-
ter (R? = 0.80 — 0.90) at low radar frequencies (L-band, P-band) and poor correlation
(R? = 0.1 — 0.30) with high-frequency systems (X-band, C-band) (Le Toan et al., 1992,
Beaudoin et al., 1994, Rauste et al., 1994, Kasischke et al., 1995). Some researchers
such as Imhoff 1995b or Le Toan et al. 1992 analysed the relevant scattering mechanisms
occurring at different frequencies and pointed out the limitations of different active sys-
tems. They showed that shorter wavelengths such as X-band and C-band are primarily
scattered in forests by small components, typically foliage, twigs and branches of upper
canopies. On the other hand, they indicated that the longer wavelengths (L-band and
P-band) penetrate the canopy and are scattered by large elements such as branches and
trunks, which constitute a major part of biomass. The analysis of P-band data presented
a good correlation (R? = 0.90) between radar backscatter intensity and the main forest
properties, including trunk biomass, age, basal area, diameter at breast height (DBH)
and height (Le Toan et al., 1992, Mougin et al., 1999, Sandberg et al., 2011). Despite
the improved correlation between low radar frequency and forest biomass, several studies
showed that low biomass levels are also well correlated to short radar microwaves. This
observation was highlighted in (Wang et al., 1998, da C.F. Yanasse et al., 1997) among
other studies, both of which concentrated on the correlation of C-band data to forest
biomass and demonstrated the potential of this frequency band in the retrieval of biomass
in early successional stages. With the penetration of short wavelengths being limited to
the upper part of forest canopies, Hoekman (Hoekman and Varekamp, 2001) also showed
the potential of these wavelengths in the estimation of other forest biophysical parameters
such as the forest canopy cover. In a tropical forest, it was possible to use the C-band to
identify deforested areas as well as primary and secondary forests. Also, with respect to
canopy cover, Natale (Natale et al., 2012) recently proposed a prospective study for future
S-band missions, which involve the comparison of S-band and X-band data over a temper-
ate forest. The researchers highlighted the higher performance of the S-band compared
with the X-band in monitoring the canopy cover. Because longer wavelengths provide a
better correlation between forest biomass and radar microwaves, some researchers have
examined very high frequency (VHF) radar systems. For example, experiments employ-
ing the CARABAS VHF system have shown promising results (Fransson et al., 2000,
Israelsson et al., 1997, Walter, 1997). However, according to Goriachkin (Goriachkin and
Klovsky, 1999), the exploitation of longer wavelengths such as P-band and VHF from
space introduces new major technical difficulties (i.e. interference with other microwave
sources, absorption of signals in the ionosphere), which limit the capabilities of a potential
P-band or VHF future spaceborne sensor.

While investigating radar frequencies, researchers also noted the potential of using
different microwave polarisations. For example, Le Toan et al. 1992, Dobson et al. 1992,
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Sader and Wu 1987 and Hussin et al. 1991 found that cross-polarisations (e.g. HV or VH
polarisation) are more sensitive to forest canopies than like-polarisations (e.g. HH or VV
polarisation). To support these observations, Beaudoin et al. 1994 developed a theoretical
model for P-band backscatter. This study showed that cross-polarisation (R? = 0.90) is
better correlated to forest biomass than like-polarisation (R? = 0.75 — 0.85). Moreover,
the study demonstrated that HV backscatter is weakly sensitive to terrain conditions (soil
moisture, roughness or local slopes) and HH polarisation is mostly returned as multiple
trunk-ground interactions. Other researchers confirmed high direct surface scattering
in HH or VV polarisation, especially under wet weather conditions (Ranson and Sun,
2000, Balzter et al., 2002, Santoro et al., 2006). By comparing like-polarisations, many
researchers have noticed dissimilarities between HH and VV. It was generally observed
that HH polarisation presents higher backscatter than VV polarisation. This difference
was related to several phenomena such as dihedrals (Dobson et al., 1992, Watanabe et al.,
2006) or canopy absorption (van Zyl, 1993, Santoro et al., 2009).

Because SAR remote sensing systems operate in the side-looking direction, scientists
investigated the influence of varying look angles on backscatter intensity. With the help
of simulations, researchers showed that backscatter generally decreases with increasing
incidence angle (Sun et al., 1991, Westman and Paris, 1987, Engheta and Elachi, 1982).
This trend could be verified using airborne and spaceborne SAR experiments (Magagi and
Bernier, 2002, Moghaddam and Saatchi, 1993, Alasalmi et al., 1998, Rauste, 1990, Ardila
et al., 2010), which particularly highlight the importance of forest structure (i.e. density,
canopy height, and branching structure) (Beaudoin et al., 1994, Imhoff et al., 2000) and
ground layer characteristics (i.e. surface roughness and moisture) (Ardila et al., 2010,
Westman and Paris, 1987). In forested areas, it was especially noted that ground inter-
actions were higher at steep incidence (0 = 20° — 30°) angles, while canopy interactions
were greater at shallow incidence angles (6 = 40° — 50°) (Magagi and Bernier, 2002,
Rauste, 1990, Sun et al., 1991, Westman and Paris, 1987). On the basis of the consid-
ered frequency and polarisation, this observation suggested an increase in trunk—ground
dihedrals with steep incidence angles (Rauste, 1990, Sun et al., 1991, Westman and Paris,
1987, Moghaddam and Saatchi, 1993) and better sensitivity of SAR to biomass with the
use of large incidence angles (Beaudoin et al., 1994).

From an analysis of the relationship between SAR backscatter intensity and biomass,
it was found that the intensity generally increased with increasing biomass until it reached
a saturation level (Le Toan et al., 1992, Kasischke et al., 1995, ITmhoff, 1995b). The sat-
uration of the SAR signal constitutes an important issue in the field of forest biomass
estimation using radar data (Kasischke et al., 1997, Imhoff, 1995a). Many previous stud-
ies attempted to define the saturation level and understand the different parameters con-
tributing to the same (see Table 2.1). The values were reported either in tha™! for dry
biomass or m®ha™! for stem volume (see Chapter 3 for the unit conversion).

As a rule, it was found that the saturation level increased at lower frequencies (e.g. L
and P-band) (Fransson and Israelsson, 1999, Imhoff, 1995b). Experimental analyses using
the airborne NASA /JPL AIRSAR system over temperate and tropical forests indicated a
saturation at 20, 40 and 100 t ha=! for C-, L- and P-bands, respectively (Imhoff, 1995b).
Other studies agreed on the limit of 10m3ha~! to 160m®ha~! in C-band, 65m?3ha~! to
60m?ha~! in L-band and 160 m®ha~! to 700m3ha~! at P-band frequencies (see Table
2.1). In P-band, cases with no saturation were also reported (Rauste et al., 1994, Ranson
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Table 2.1: Saturation levels reported in literature for SAR backscatter intensity. When necessary,
the density factor of 1.6 was considered to convert tha=' to m®ha~!.

Biome Frequency Saturation limit Researchers(s)
(m®h™)
Temperate C 10-160 Imhoff 1995b, Rauste et al. 1994, Ranson and
Guoqing 1994, Wang et al. 1994
L 65-160 Dobson et al. 1992, He et al. 2012, Imhoff 1995b,
Rauste et al. 1994
P >160-700 Dobson et al. 1992, Imhoff 1995b, Rauste et al.
1994, Ranson and Guoqing 1994
VHF >900 Melon et al. 2001
Boreal C 64 Fransson and Israelsson 1999
L 143 Fransson and Israelsson 1999
VHF >550-625 Fransson et al. 2000, Imhoff 1995a, Smith and
Ulander 2000
Tropical C 30 Imhoff 1995a
L 65-160 de Araujo et al. 1999, Imhoff 1995a, Luckman
1997, Rignot et al. 1997
P >160 Imhoff 1995a

and Guoqing, 1994). The relative rapid saturation obtained at high frequency (small
wavelength) was attributed to the large amount of foliage, twigs and small branches at
the top of canopies, which considerably attenuated the signal. On the other hand, the
saturation observed in L-band was primarily related to the smaller number of scatterers
(large branches and trunk), which attenuated the EM microwaves to a lesser extent when
compared with high-frequency systems (Le Toan et al., 1992). Consequently, by comparing
the frequencies, it was finally noted that VHF sensors (Fransson et al., 2000, Melon
et al., 2001, Smith and Ulander, 2000) were the SAR systems which were affected to a
lesser extent by the saturation effect. In addition to the SAR frequency, the saturation
point was investigated with various polarisations and incidence angles. For example,
Watanabe et al. 2006 found that cross-polarised backscatter delays the saturation point to
higher biomass level compared to like-polarisations, and Lu 2006 observed that a shallow
incidence angle increased the saturation level, especially in low-frequency systems. It was
shown that radar sensor configurations determined the biomass saturation level. However,
as the forest structure influences the scattering mechanisms occurring in forests, numerous
studies have also shown that the saturation level is site-dependent (Lu, 2006).

The analysis of forest texture has been extensively investigated using optical remote
sensing systems (Woodcock and Strahler, 1987, Sarker and Nichol, 2011, Kayitakire et al.,
2006). With the development of high-resolution SAR sensors over the past decade, esti-
mation of forest parameters using textures has attracted considerable research attention
(Fukuda, 2008, Wang et al., 2006). The most popular textural information refers to the
gray level co-occurrence matrix (GLCM) defined by Haralick during the 1970s (Haralick
et al., 1973). The publications dealing with the GLCM and forests mainly focused on
tropical forests (Luckman et al., 1994, 1997, Oliver, 2000), and, in particular, two studies
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demonstrated the potential of the Haralick parameters in improving the estimation of
biomass in the tropics (Kuplich et al., 2005, Sarker et al., 2012). GLCM textures were
also distinguished in boreal and temperate biomes for land classifications (Ulaby et al.,
1986, Kurosu et al., 1999, Kurvonen and Hallikainen, 1999) and retrieval of forest pa-
rameters (Weishampel et al., 1994, Champion et al., 2008) such as biomass (Champion
et al., 2011, Kurvonen and Hallikainen, 1999). One important issue in the examination
of texture is the different scales of forest spatial patterns (Barros2008). To deal with the
multiscalar textural property of a forest, researchers considered the concept of lacunarity
(’gapiness’ in Latin). This approach was initially described by Mandelbrot in 1983 and
was subsequently further developed by Allain and Cloitre using the gliding box algorithm
(Allain and Cloitre, 1991, Plotnick et al., 1996). Lacunarity was investigated by a few
studies which estimated forest parameters. However, only one of them was directly re-
lated to SAR imagery and temperate forests (Sun and Ranson, 1998). The remaining
studies mostly dealt with optical sensors and tropical forests (Malhi and Roman-Cuesta,
2008, Peralta and Mather, 2000, Weishampel et al., 2001) or SAR sensors and landscape
analysis (Plotnick et al., 1993, Hoechstetter et al., 2011, Henebry and Kux, 1995, Kux
and Henebry, 1994, Mcintyre and Wiens, 2000). In addition to the GLCM and lacunarity
texture approaches, other methods were developed for investigating spatial patterns. A
non-exhaustive list can be found in Kandaswamy et al. 2005 or Sarker and Nichol 2011.

Forest properties

Realizing forest biomass estimation from SAR remote sensing systems requires thor-
ough knowledge of radar principles and a very deep understanding of the forests and their
environment. In this framework, many researchers sought to comprehend forest structural
properties and their relationship with SAR backscatter (Beaudoin et al., 1994, Imhoff,
1995a, Mougin et al., 1999, Kasischke et al., 1997, Ferrazzoli and Guerriero, 1995). Con-
sidering forest structure, researchers often distinguished between three different classes,
namely horizontal, vertical and branching structures (Spies, 1998, Ferris and Humpbhrey,
1999). The horizontal structure mostly referred to the basal area or stem density, the
vertical structure concerned forest height or understory and the branching structure was
denoted by the size, shape or orientation of the branches and leaves at the canopy level
(Kasischke and Christensen, 1990, Wang et al., 1993, Mcdonald and Ulaby, 1993).

First, with reference to the branching structure, to understand the complex relation-
ship between radar backscatter and structural parameters of canopies, theoretical and
semi-empirical models were developed. For example, Yueh et al. 1992 introduced a branch-
ing model which describes the backscatter of a soybean plant with its internal structure
and the resulting clustering effects. This model was further used for modelling forest
backscatter by combining it with the radiative transfer (RT) theory (Beaudoin et al.,
1994, Hsu et al., 1994). In another example, Ferrazzoli and Guerriero 1995 focused on a
physical model which relates geometrical tree properties such as the size of branches and
their orientation with the backscattering coefficient. In this case, (1) deciduous leaves
were represented by discs, (2) coniferous needles by thin cylinders and (3) branches and
trunks by large cylinders. In general, the modelling of canopy structures confirmed the as-
sumptions that tree morphological parameters have a significant impact on radar response
(Mougin et al., 1993, Neumann et al., 2012).

As for the horizontal structure, researchers reported a significant contribution of the
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basal area and forest density parameters to the backscatter intensity (Brolly and Wood-
house, 2012, Woodhouse, 2006). For example, Dobson et al. 1995 observed that for equal
biomass levels, there were clear variations between the backscatter responses of large,
sparse forests and dense, young forests. More recently, Brolly and Woodhouse 2012 rep-
resented the forest as a collection of cylinders, which was therefore named 'matchsticks’.
Using the matchstick modelling approach, the researchers demonstrated that backscatter
is not only sensitive to the quantity of biomass but also to the density and distribution
of trees. On the basis of these findings, Woodhouse 2006 showed that backscatter in-
tensity should increase until it reached an apparent saturation point, and then decrease
with increasing quantities of biomass after the saturation level. These results, which were
based on macroecology considerations, should provide further explanations regarding the
unusual observations conducted by Rauste et al. 1994 in a conifer forest in Germany or
by Ranson and Guoqing 1994 in a Northern mixed forest in Maine. They also highlight
the differences between natural and managed forests and the importance of considering
thinning and other forest-management activities in the implementation of a biomass-
estimation methodology (Champion et al., 1998, Kuplich et al., 2000, Le Toan et al.,
1992).

Among the vertical structural parameters of a temperate forest, forest height has been
the subject of numerous studies. The height attribute was investigated using mainly
InSAR or more advanced SAR techniques (discussed later in this section), although it
potentially affects forest backscatter. At low frequencies, the vegetation beneath the
forest canopy can be a source of considerable variability. However, this contribution has
been discussed by few studies (Chauhan et al., 1991, Pulliainen et al., 1994b, Silva and
Dias, 1996, Wang et al., 1998). For example, Wang et al. 1998 examined the backscatter
variations induced by changes in forest floor properties. These studies reported the non-
negligible contribution of the forest understory at the L-band frequency irrespective of
the use of HH or VV polarisation. They also noted a decline in forest floor backscatter
with increasing stem volume. At C-band frequencies, the same researchers showed that
the forest floor contribution was significant for only steep incidence angles. A few studies
have discussed the influence of forest understories on scattering mechanisms at the ground
level. In particular for L-band data, it has been assumed that trunk—ground and crown—
ground double bounces are significantly reduced owing to the attenuation of the canopy
and roughness of the forest understory (Pulliainen et al., 1999, Karam et al., 1992, Santoro
et al., 2006).

Forest environmental conditions

The environmental conditions in a forest affect radar backscatter and determine the
growth properties of trees. In this context, several studies were conducted to highlight the
effects of changing forest weather conditions on SAR backscatter intensity (Way et al.,
1990, Rignot et al., 1994, Pulliainen et al., 1996). Bergen et al. 1997 focused on the influ-
ence of rainy precipitations on forest backscatter intensity. They showed that the ampli-
tude of the signal generally increased with precipitation, especially at C-band frequencies,
when compared with the case at L-band frequencies. Other researchers concentrated on
soil humidity in forests. Wang et al. 1994 reported that at C-band frequencies, there was
an increase in backscatter with increasing soil humidity. Simulations conducted to inter-
pret these observations also showed that the increase in soil humidity for a biomass quan-
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tity extending between 40 t ha™! and 100t ha~! was mainly presented as surface scattering.
However, for a biomass quantity of greater than 130t ha™!, the effect of soil humidity was
found to be insignificant, and volume scattering from canopies was the main contribution
to the total backscatter. These variations in soil and vegetation humidity generally af-
fected the backscatter dynamic range and reduced its sensitivity to the biomass quantity
(Salas et al., 2002, Cartus et al., 2012). By considering winter radar measurements, some
researchers examined the impact of snow on forest SAR backscatter. Dry snow cover was
found to have an insignificant effect on C-band and L-band backscatter (Alasalmi et al.,
1998). However, with the melting of snow, the variations in the dielectric properties of the
snow led to an increase in the backscatter intensity (Santoro, 2003, Arslan et al., 2006)
and variations in the SAR signal at both C-band (Koskinen et al., 2010, Santoro et al.,
2011) and L-band (Santoro et al., 2006) frequencies. The consideration of snow cover over
forested areas at X-band frequencies is restricted to only a few studies. The first experi-
ment was conducted using the HUTSCAT scatterometer over a boreal forest (Hallikainen
et al., 1997). This study showed that ground backscatter contribution was dominant for
dry snow, while tree canopy backscatter was the most significant factor under wet-snow
or snow-free conditions.

The environmental conditions in both temperate and boreal forests change consider-
ably within seasons. During summer, water is present in the form of liquid; however,
during winter, the temperatures at high latitudes decrease leading to frozen conditions,
which produce observations different from the aforementioned ones. Thiel et al. 2009
recently reported contrasting results between winter and summer intensities at L-band
frequencies. They noted a decrease in backscatter during winter and showed that the
environmental conditions were much more stable during winter (Ni et al., 2011) when
compared with those during summer. The decrease in backscatter during winter was
found to be related to the dielectric properties of the forest floor and forest canopy (Rig-
not et al., 1994, Way et al., 1990). Santoro et al. 2011 investigated the sensitivity of
stem volume to radar backscatter at C-band frequencies. They pointed out that under
frozen conditions, the attenuation of microwaves in canopies decreased and the sensitivity
of SAR backscatter to biomass quantity improved because the C-band microwaves were
mostly sensitive to the trees’ main components (i.e. trunk and branches in the canopy).
The results reported by Santoro et al. 2006 showed that unfrozen conditions were most
suitable for estimating biomass quantity at L-band frequencies. This was explained by
the greater sensitivity of L-band microwaves to forest features (e.g. branches and stems)
with an unfrozen canopy.

In addition, while examining the temperature conditions in forested areas, researchers
often refer to a diurnal freezing/thaw cycle. According to Kimball et al. 2004, this cycle
appears in autumn or during spring, namely when the air temperatures alternate between
frozen and unfrozen conditions during night and day time, respectively. Under frozen
conditions, the dielectric constant of trees decreases; also, sapflow ceases and the water
content of the trees reduces. However, when the air temperature during day time again
rises above the freezing point, the dielectric constant increases, and with the reactivation
of sapflow, the water content of trees also increases (Way et al., 1990, Kidd and Scipal,
2003). As radar microwaves are sensitive to water, the diurnally changing water content
and dielectric constant of trees influence the radar backscatter intensity signal and may
have an impact on the estimation of biomass quantity. The effects of diurnal variations
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from the trunk and canopy water status on radar backscatter have been examined by
several studies (Way et al., 1990, Kidd and Scipal, 2003, Bartsch et al., 2006, Kimball
et al., 2004, Schmullius, 1997, Rignot and Way, 1991). Owing to the daily repetition
of the freeze/thaw effect, most of the researchers considered scatterometer evaluations
instead of SAR measurements. Scatterometers can provide high-resolution temporal data
when compared with those provided by SAR sensors. The results of these studies showed
a consistent relationship between backscatter intensity and freeze/thaw diurnal cycles.
However, it is noted that none of these studies presented the impact of the freeze-thaw
cycles with varying water content statuses on the estimation of biomass quantity.

Topography accounts for significant variations in forest radar backscatter (Beaudoin
et al., 1995, Holecz et al., 1995, Tanase et al., 2011, Park et al., 2012). These variations are
due to different phenomena such as modification of the ground illuminated area, change
in the incidence angle and modification of dominant scattering mechanisms. To deal with
these topographic issues, studies have proposed various approaches, which range from
simple cosine corrections (Hinse et al., 1988, Bayer et al., 1991, Leclerc et al., 2001, Rees
and Steel, 2001, Soja et al., 2010, Zhou et al., 2011) or images ratio to more rigorous
methods (Ranson and Saatchi, 1995, Ranson et al., 2001, Wever and Bodechtel, 1998)
based on the digital elevation model (DEM) (Small et al., 1997, Loew and Mauser, 2007).
The ground illumination area has the greatest impact on the backscatter intensity (Holecz
et al., 1995). To correct this effect, Ulander 1996 suggested a correction based on the
projection angle ¥ evaluated from the DEM. Small et al. 1997 introduced the possibility of
integrating the SAR scattering areas under DEM slope 'facets’. He further developed this
approach in 2004 (Small and Meier, 2004) and 2009 (Small et al., 2009) and summarised
it recently in 2011 (Small, 2011). This approach was tested and compared with the
projection-angle approach by Frey et al. 2013 and was reported to be very effective,
particularly in layover areas. The relationship between topographic variations and forest
canopies remain under investigation. The potential effects of an undulated terrain on the
nature of scattering mechanisms were reported in the 1990s (van Zyl, 1993, Israelsson
and Askne, 1993, Amar et al., 1993). For instance, van Zyl 1993 showed that ground-—
trunk double reflections are a major contribution at P-band frequencies. However, in the
presence of a slope gradient, the nature of the dominant scattering changed because of
the new angle formed between the vertical extended trunks and the surface local slope.
More recently, Castel et al. 2001b suggested a semi-empirical correction for L-band or
C-band frequencies, which takes the changing path length of the microwaves through the
canopy into account. The results showed that the correction for the canopy optical path
length improves the normalisation of the backscatter in hilly areas. SAR backscatter may
be affected in a different way by the abovementioned topographic effects. In fact, the
topography determines several abiotic factors such as solar radiation, water availability
or wind direction, which directly influence the growth conditions of a forest (Luckman,
1998, Williamson, 1975, Kellogg and Arber, 1981, Telewski, 1995, Watt et al., 2004) and
possibly lead to systematic trends in the backscatter intensity (Luckman, 1998). To
date, the relationship between forest backscatter and physiological effects related to the
topography of a forest have been barely discussed. In most cases, these effects have been
neglected by assuming that the forested areas are homogeneous.
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Modelling techniques

The modelling of biomass and the forest parameters related with SAR remote sensing
systems has been the subject of numerous studies over the past few decades. These
studies were based on different approaches (Saatchi et al., 2007, Martinez et al., 2000,
Arslan et al., 2000, Castel et al., 2002, Svoray and Shoshany, 2002).

Table 2.2: Summary of the main models and techniques for the backscatter.

Approach Model Researchers(s)
Empirical Linear Dobson et al. 1992, Hussin et al. 1991
regression Multiple linear Harrell et al. 1997, Luckman 1997, Ranson and Sun
1997
Non-linear Balzter et al. 2003b, Magnusson et al. 2007, Morel
et al. 2011, Tsolmon et al. 2002
Theoretical MIMICS (RT) Mcdonald et al. 1990, Ulaby et al. 1990
modeling Santa Barbara (RT) Wang et al. 1993, 1994
AMAP (RT) Castel et al. 2001a
MIT/CESBIO (RT) Hsu 1991
WBE (RT) Brolly and Woodhouse 2013, West et al. 1999, Wood-
house 2006

Branching (RT) Yueh et al. 1992
Full wave (DBA)  Angot et al. 2002, Bellez et al. 2009, Israelsson et al.
2000, Oh and Sarabandi 2002, Nguyen et al. 2006,

Ziade et al. 2008
Semi-empirical WCM (RT) Askne et al. 1995, 2003, Attema and Ulaby 1978, Car-
regression tus et al. 2012, Fransson and Israelsson 1999, Kur-
vonen and Hallikainen 1999, Martinez et al. 2000,
Pulliainen et al. 1994b, Richards 1990, Santoro et al.

2003a, 2004, 2010

Non- ANN Benediktsson and Sveinsson 1997, Del Frate and Soli-
parametric mini 2004, Kimes et al. 1997, Wang and Dong 1997
k-NNN Guo et al. 2011, Holopainen et al. 2009

The most common approach is empirical regression, which was mainly used to inves-
tigate the relationship between the SAR information (i.e. backscatter intensity) and the
ground-measured biophysical parameters (Le Toan et al., 1992). For the most part, the
studies which presented regression analyses dealt with nonlinear models as the biomass
quantity was found to be non-linearly related to backscatter (Balzter et al., 2003b, Mag-
nusson et al., 2007, Tsolmon et al., 2002, Morel et al., 2011). However, linear trends were
also reported between forest parameters and SAR backscatter, motivating the use of sim-
ple (Dobson et al., 1992, Hussin et al., 1991) and multiple (Harrell et al., 1997, Luckman,
1997, Ranson and Sun, 1997) linear regressions.

Another approach relied on the physics of scattering processes. This approach was es-
sentially considered for describing and understanding forest backscatter. Many scattering
models have been cited in previous studies and were essentially classified as RT and dis-
torted born approximation (DBA) approaches (Le Toan et al., 2002). The RT approach is
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based on energy conservation and relies only on incoherent modelling techniques. Of the
RT models, either the Michigan Microwave Canopy Scattering Model (MIMICS) (Ulaby
et al., 1990, Mcdonald et al., 1990), Santa Barbara microwave model (Wang et al., 1993,
1994) or the model proposed by Karam et al. 1992 may be cited. Each of these models
has specific characteristics such as continued multilayers (Ulaby et al., 1990), discontin-
ued multilayers (Sun et al., 1991, Mcdonald and Ulaby, 1993) or second-order scattering.
Although the aforementioned models were shown to validate the empirical observations
(Moghaddam and Saatchi, 1993, Imhoff, 1995a, Romshoo and Shimada, 2001), they only
briefly discussed the structural properties of trees’ canopies. In this respect, Hsu 1991
contributed with the MIT /CESBIO model structural effects by considering the branching
model (Yueh et al., 1992), Castel et al. 2001a introduced the AMAP model and Wood-
house 2006 and Brolly and Woodhouse 2013 presented a modelling approach based on
the coupling of the RT theory and a macroecological model (West et al., 1999). The
DBA approach was less popular than the RT approach. However, contrary to the RT
models, it has the advantage of dependence on electromagnetic waves, thus allowing the
coherent modelling of vegetation parameters (Le Toan et al., 2002). The radar modelling
of red pine proposed by Lang et al. 1994 and the modelling assessment of the coherent
effects for forest canopies given by Saatchi and McDonald 1997 provide two examples of
the DBA models. Owing to the great concern regarding the retrieval of biomass quantity
by low-frequency systems (Le Toan et al., 2012), and the limited ability of RT models
to account for multiple reflections, there has been renewed interest in improving DBA
models (Nguyen et al., 2006, Oh and Sarabandi, 2002, Bellez et al., 2009, Ziade et al.,
2008, Israelsson et al., 2000, Angot et al., 2002). For example, Bellez et al. 2009 applied
a coherent "full wave’ simulation of forested areas and successfully modelled the main for-
est scattering mechanisms, including multiple reflections, using the method of moments
(MoM).

Empirical models can be easily inversed, but they are also very site-dependent, while
physical models can provide accurate estimations but often require a large number of
unknown parameters (Martinez et al., 2000, Castel et al., 2002). To combine the benefits
of both these modelling approaches, a third approach applying semi-empirical models has
been the subject of discussions. The most common semi-empirical model is the water
cloud model (WCM), which was developed by Attema and Ulaby (Attema and Ulaby,
1978). This model is based on the RT theory and describes a forest as a single homoge-
nous layer comprising cloud droplets which attenuate the radar signal (Martinez et al.,
2000, Richards, 1990, Santoro et al., 2003a, 2004, Fransson and Israelsson, 1999, Kurvo-
nen and Hallikainen, 1999, Askne et al., 2003). The main strength of the WCM is its
simplicity, which allows a straightforward inversion of the model and prediction of forest
biomass quantity (Woodhouse, 2006). However, the WCM also presents some limits. For
example, it does not consider forest structures and high-order scattering such as dihedrals
(Cartus et al., 2012). In this regard, some studies have presented extended versions of the
WCM. For instance, Askne et al. 1995 modified the WCM by introducing a variable which
accounts for vertical and horizontal discontinuities (gaps). Pulliainen et al. 1994b replaced
the area-fill factor by GSV, which is more common in the field of forestry. Taking into
consideration the updated versions of the WCM, some recent studies such as Santoro et al.
2010 and Cartus et al. 2012 successfully applied the WCM to large-scale forest biomass
estimations. Besides the WCM model, some researchers proposed semi-empirical models
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which considered specific forest conditions. For example, Arslan et al. 2000 proposed a
backscattering model which incorporates forest stem volume and snow water equivalent,
while Kurvonen and Hallikainen 1999 implemented a semi-empirical model based on stem
volume and soil moisture.

Finally, non-parametric machine learning algorithms was applied by studies for the
estimation of a forest’s biophysical parameters. This approach employing algorithms
such as artificial neural networks (ANNs) and k-nearest neighbour (k-NN) have been
widely applied to landcover classifications and biomass estimations based on optical data
(Franco-Lopez et al., 2001, McRoberts et al., 2007, Baffetta et al., 2009, Tomppo, 2004,
Tomppo et al., 2008, 2009). The non-parametric processing techniques present a major
advantage when compared to the aforementioned approaches; they generally require no
prior knowledge about the data distribution (Mas and Flores, 2008, McRoberts et al.,
2007). Despite this advantage and the numerous investigations undertaken with optical
sensors, there are few studies employing such techniques for radar remote sensing in
the field of forestry. Several researchers have tested the retrieval of forest parameters
using ANNs (Del Frate and Solimini, 2004, Kimes et al., 1997, Wang and Dong, 1997,
Benediktsson and Sveinsson, 1997), while others have focused on the k-NN algorithm
using combined SAR and optical (Holmstrom and Fransson, 2003) or light detection and
ranging (LiDAR) data (Tian et al., 2012). To date, only two studies based on SAR data
(Holopainen et al., 2009, Guo et al., 2011) have involved the examination of k-NN for the
assessment of forest parameters.

Estimation accuracy

Taking into account the capability of SAR systems in retrieving biomass, several stud-
ies have shown the accuracy of the models. To do so, researchers generally applied the
root-mean-square error (RMSE) or the relative RMSE (rRMSE) for comparing differ-
ent test sites. The achieved accuracy depended primarily on the SAR system configu-
ration, the forest properties environmental conditions and the modelling technique. An
accuracy of approximately 20% was considered to be reasonable for envisaging the appli-
cation of SAR systems to forestry. The estimated RMSE differed between the studies.
Using the Japanese Earth resources satellite (JERS-1) L-band data, Santoro 2003 found
an TRMSE of 30% to 50% and 40% to 60% with and without multitemporal retrieval
in a boreal forest, respectively. The variations were attributed to weather conditions. In
this respect, Santoro showed that an accuracy of 20% to 25% can be achieved (Santoro
et al., 2003a, 2006) by considering dry and unfrozen conditions as well as a multitemporal
approach. Similar results were obtained by Sandberg et al. 2011, Magnusson et al. 2007
with ALOS PALSAR data. The best accuracy obtained with L-band backscatter was
reported by Cartus et al. 2012, who recently showed that an RMSE of 12.9tha™! can
be obtained with PALSAR data. At P-band and VHF-band frequencies, the ranges of
errors were 20% to 30% (40tha™! to 60tha™') (Soja et al., 2010, 2013, Sandberg et al.,
2011) and 15% to 20% (50 m® ha™! to 65m>ha™!) (Fransson et al., 2000, Smith and Ulan-
der, 2000, Folkesson et al., 2008), respectively. The higher relative accuracies given by
low-frequency sensors when compared with high-frequency sensors were mostly explained
by their subsequent saturation in high biomass ranges (Castel et al., 2002, Saatchi et al.,
2007).
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2.1.2 SAR interferometry

The potential of INSAR in retrieving forest parameters was introduced in the mid-1990s.
Mainly, two different topics were discussed, namely sensitivity of forest variables to inter-
ferometric coherence and derivation of interferometric forest height.

InSAR coherence

The first investigations referring to interferometric coherence were given by Zebker
and Villasenor, who observed temporal decorrelations over forested areas with an L-band
17-day repeat-pass Seasat sensor (Zebker and Villasenor, 1992). C-band phase correla-
tion properties were subsequently examined a few years later using the the first European
remote sensing satellite (ERS-1) 35 days repeat-pass data. In particular, Askne et al.
1997b highlighted the main decorrelation mechanisms, and Floury et al. 1996 and Beau-
doin et al. 1996 showed the relationship between coherence and forest biomass. The latter
two studies clearly depicted a decrease in coherence with an increase in stand age and
bole volume, respectively. This trend was also presented in different subsequent studies
(Smith et al., 1998, Santoro et al., 1999). Luckman 1997 and Luckman et al. 2000 were
among the first to compare ERS-1/2 tandem data (Smith et al., 1998, Koskinen et al.,
2001, Santoro et al., 2002) and L-band 44-day repeat-pass JERS-1 (Eriksson et al., 2002,
2003b, Cartus et al., 2005), respectively, using forest biomass. These studies depicted
a monotonic decrease in coherence with increasing vegetation cover and a stronger cor-
relation with coherence than with backscatter intensity. Subsequent studies on ERS-1/2
tandem and JERS-1 coherence confirmed the observed trends. Among these, some studies
examined the saturation level obtained with coherence (see Table 2.3). It was generally
observed that with C-band 1-day repeat-pass data, the coherence in some cases reached
a saturation between 100m?3ha~! and 400 m?® ha~!, while no saturation was observed in
other cases. For example, Castel et al. 2000 reported no saturation in a coniferous forest
in Southern France up to 400m?ha™!, while Santoro et al. 2002 reported a saturation at
350m3 ha~! for a hemiboreal forest located in Sweden. With regard to L-band systems, a
limited number of studies were performed. Eriksson et al. 2003b and Luckman et al. 2000
reported saturation levels at 100 m® ha=! to 130 m® ha=! and 150 m® ha=!, respectively, for
JERS-1 44 days repeat-pass system. More recently, Thiel and Schmullius 2012 reported
a saturation at around 100m?3ha~! for ALOS PALSAR 46-day repeat-pass system.

The wide range of saturation levels reported in literature was explained by the sensi-
tivity of coherence to weather conditions and to the perpendicular baseline (Smith et al.,
1996, Pulliainen et al., 2003, Koskinen et al., 2001, Askne et al., 2003). In terms of
spatial baseline configurations, large perpendicular baselines were usually recommended
(Floury et al., 1996, Skinner et al., 2002). For example, Askne et al. 2003 and Santoro
et al. 2008 suggested a normal baseline in the range 100 m to 250 m to improve the GSV
retrieval accuracy with ERS-1/2. Although the recent SAR spaceborne platforms allow
the use of repeat pass and complete polarisation systems, a limited number of studies
have discussed forest coherence signatures at different polarisations. Wegmuller et al.
1996 briefly reported differences in coherence between like- and cross-polarisations. He
noted that with airborne SIR-C L-band data, coherence values for HH and VV were very
close, with a slightly higher coherence for HH. However, comparing HH and HV polarisa-
tions, the researcher noted an obviously lower coherence for cross-polarisation compared
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Table 2.3: Saturation levels reported in literature for SAR interferometric coherence. When
necessary, a density factor of 1.6 was considered to convert t ha=! to m3ha=!.

Biome InSAR  Saturation limit Researchers(s)
(m*h™)
Temperate ERS-1/2 >100-400 Cartus et al. 2005, Castel et al. 2000
Boreal ERS-1/2 >100-400 Askne and Santoro 2007, Fransson 2001,

Santoro et al. 2002, Smith et al. 1998, Wag-
ner et al. 2000, 2003

JERS-1 >100-130 Eriksson et al. 2003b

PALSAR 100 Thiel and Schmullius 2012
Tropical ERS-1/2 150 Luckman et al. 2000

JERS-1 150 Luckman et al. 2000

to co-polarisation. More recently, Tanase et al. 2010 compared ALOS PALSAR HV and
HH channels for different burn severity ranges. The coherence for HV polarisation was
also found to be generally lower than that for HH polarisation. These results were very
recently confirmed by Simard et al. 2012. The dependence of interferometric coherence
on incidence angle has been briefly discussed by Shimada et al. 2010. The study did
not report any significant variation in coherence with incidence angle. However, another
study reported that an incidence angle of greater than 45° should be chosen because at
this angle, spatial decorrelations due to layover and shadow over topographic areas are
limited (Bamler and Hartl, 1998).

Forest properties:

As for radar backscatter, it has been shown that a forest’s horizontal structure can
complicate the retrieval of biomass. As for interferometric coherence, the horizontal struc-
ture plays a significant role. It was reported that the forest structure may influence the
coherence to a greater extent than the forest type or composition (Santoro et al., 2005).
Although a few studies have noted the importance of the horizontal structure (Askne
et al., 1997b, Santoro et al., 2005, 2007) and included it in their modelling approaches
(Askne et al., 2003, Drezet and Quegan, 2006, Santoro et al., 2007), the assessment of its
effect on coherence is in its preliminary stages (De Zan et al., 2013).

Forest environmental conditions:

With respect to weather conditions, it was demonstrated that in boreal forests and
for ERS-1/2 tandem data, winter interferometric acquisitions were more stable than sum-
mer acquisitions (Askne and Santoro, 2007, Eriksson et al., 2002, Manninen et al., 2000,
Santoro et al., 2005, Thiel et al., 2009, Koskinen et al., 2001, Santoro et al., 2002, 2007).
As for L-band data, studies investigating JERS-1 interferometric coherence reported sim-
ilar results, namely more stable conditions with winter acquisitions. As an example, for
JERS-1 winter coherences, Eriksson et al. 2002 and Askne et al. 2003 showed a large
dynamic range and small standard deviations, which indicated promising results for the
estimation of GSV. Among the different weather parameters affecting coherence, wind
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was found to be significant (Dammert et al., 1995, Smith et al., 1996, Beaudoin et al.,
1996, Askne et al., 1997b, 2003); soil and canopy moisture (Drezet and Quegan, 2006, Luo
et al., 2000) in the presence of rain (Santoro et al., 2002, Pulliainen et al., 2003, Wagner
et al., 2003, Simard et al., 2012) or snow (Askne and Santoro, 2005, Pulliainen et al., 2003)
and temperature (Askne et al., 2003, Pulliainen et al., 2003), which modulates the forest
dielectric properties, were also found to affect coherence. On the basis of these parame-
ters, Santoro et al. 2007 defined stable conditions as acquisitions with 'no precipitation,
no freeze/thaw, with temperatures constantly being at least a few degrees below zero and
the presence of snow cover’ and ’optimal conditions’ as the additional presence of a mod-
erate breeze. Forest understories have been examined by a few studies such as Drezet and
Quegan 2006 or Neeff et al. 2005 and was modelled by Neumann et al. 2010. Although
forest understories contribute to interferometric phase decorrelation, this parameter re-
mains under investigation. Finally, the atmospheric conditions usually change between
two radar acquisitions. The presence of heavy precipitations during one of the acquisitions
was found to decrease interferometric coherence (Li et al., 2007). This observation was
shown to be particularly significant at high frequencies (i.e. X-band and C-band). Owing
to the temporal decorrelation induced by varying weather conditions, several researchers
(Smith et al., 1996, Eriksson et al., 2002, 2003b, 2008) suggested the use of small temporal
baselines or low-frequency systems. In addition to the normal baseline and weather con-
ditions, topography was found to affect the interferometric coherence and GSV retrieval
(Wegmuller and Werner, 1995, Cartus et al., 2005, Tanase et al., 2010, 2011). Two main
effects were distinguished, namely spatial decorrelation due to the non-overlapping frac-
tion of the range spectral band and volume decorrelation due to the varying path length
of the microwaves in canopies within different terrain slopes and aspects (Castel et al.,
2000, Lee and Liu, 2001). The first issue could be solved using common-band filtering
(Gatelli et al., 1994, Cartus et al., 2005, 2008, Santoro et al., 2007), while the second issue
has not yet been discussed in literature.

Modelling techniques:

For evaluating backscatter intensity as well, modelling of coherence was mainly clas-
sified as one of the three different approaches, namely empirical, semi-empirical and the-
oretical approaches. Table 2.4 summarises the principal publications referring to these
approaches.

Empirical regressions were applied to coherence in several studies. As an example,
Koskinen et al. 2001 and Smith et al. 1998 suggested the use of linear relationships to
describe ERS tandem coherence. Fransson evaluated ERS coherence using multiple linear
regressions (Fransson, 2001), Eriksson described L-band coherence with an exponential
relation (Santoro et al., 2003b, Eriksson et al., 2003b, 2005) and Wagner implemented
the SAR Imaging for Boreal Ecology and Radar Interferometry Applications (SIBERIA)
algorithm using ERS tandem coherence and JERS backscatter data (Wagner et al., 2003,
2000). Although empirical models had been successfully applied in these studies, they
were shown to be limited when interferometric pairs were acquired under various condi-
tions, namely with changing weather conditions and a different perpendicular baseline.
To deal with multi-seasonal and multi-baseline datasets, semi-empirical models needed to
be considered. In this respect, the retrieval of the stem volume using SAR interferometric
coherence has attracted considerable attention in literature, particularly by a small com-
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Table 2.4: Summary of the main models and techniques for the interferometric coherence.

Approach Model Researchers(s)
FEmpirical Linear Koskinen et al. 2001, Smith et al. 1998
regression Multiple linear Fransson 2001
Non-linear Santoro et al. 2003b, Eriksson et al. 2003b, 2005
SIBERIA Algorithm Drezet and Quegan 2006, Wagner et al. 2000, 2003
Theoretical COSMO Thirion et al. 2006
modelling
Semi-empirical IWCM (RT) Askne et al. 1995, 1997b, 2003, Askne and Santoro
regression 2005, 2007, 2009, Cartus et al. 2005, 2008, 2011,
Santoro et al. 1999, 2000, 2003a, 2005, 2006, 2007
HUT (RT) Engdahl et al. 2004, Koskinen et al. 2001, Pulli-

ainen et al. 2003

munity of researchers who developed the interferometric water cloud model (IWCM) (see
Askne et al. 1997b, 2003 and Santoro et al. 2002 for the complete description). The IWCM
is a semi-empirical model which was introduced by Askne in 1995 (Askne et al., 1995).
This two-layer model is an extension of the WCM and defines forest volume decorrela-
tion as the sum of ground and vegetation contributions. This model has been extensively
applied to C-band ERS-1/2 tandem data in different regions of the world such as Siberia
(Santoro et al., 2005, 2007, Cartus et al., 2008, 2011), Scandinavia (Askne et al., 2003,
Askne and Santoro, 2005, 2007, 2009, Santoro et al., 1999, 2000, 2003a, 2005) and North
China (Santoro et al., 2006, Cartus et al., 2008). The model was also tested in Europe over
the Thuringian Forest in order to evaluate the influence of topography on GSV estimation
(Cartus et al., 2005). With respect to physical modelling, scattering models for vegeta-
tion are well documented in literature. However, few studies have provided a theoretical
description of the relationship between interferometric phase and coherence with forest
canopies and underlining soils. Askne et al. 1997b and Treuhaft et al. 1996 highlighted
the relationship between interferometric phase and scatterings from vegetation canopies
and ground. Sarabandi and Lin 2000 presented a coherent scattering model based on
Monte Carlo simulations, which predicted the interferometric response of forests. Liu
et al. 2008 combined a tree growth model with a scattering model based on the RT2 the-
ory to simulate the interferometric coherence and to validate the main assumptions of the
IWCM model. With reference to this study, it was found that there was a good agreement
between the RT2 and IWCM models and confirmed that C-band data conformed to the
assumptions of the IWCM model. Finally, more recently, Thirion et al. (2006) presented
the COSMO coherent model, which was aimed at simulating complex radar images with
a view to provide a tool for interferometric as well as polarimetric applications.

Estimation accuracy

The interferometric coherence accuracies reported in the literature were mainly dis-
cussed for ERS-1/2 tandem acquisitions. The studies showed that coherence generally
provided an rRMSE of 20% to 30% (25m®ha~! to 60m®ha™'), which is significantly
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better than using the intensity information on average (Fransson, 2001, Askne and San-
toro, 2007, Santoro et al., 2005, 2007, Cartus et al., 2008, Smith et al., 1998). In extreme
cases, the rRM SFE could increase beyond 48% (Pulliainen et al., 2003) or even 60% (Askne
and Santoro, 2007) and could also fall below 5% (10m?ha™') (Askne et al., 2003). These
results highlight the instability of the coherence due to weather conditions and the influ-
ence of the SAR acquisition configuration (perpendicular baseline) and forest properties.
The L-band studies conducted by Eriksson showed that an r RMSE of 35% to 39% could
be achieved using a JERS-1 44 repeat-pass system.

InSAR forest height

In addition to using coherence to retrieve forest variables, estimation of tree height on
the basis of interferometric phase has attracted considerable attention. The concept of
extracting forest height using interferometric techniques was introduced by Hagberg et al.
1995, Wegmuller and Werner 1995, Rodriguez and Michel 1995, Ulander et al. 1995 and
Dammert et al. 1995. These studies have proven that InSAR is a useful tool for estimating
canopy height and forest biomass through allometric relations. Different approaches were
proposed in literature for the retrieval of forest height (Balzter, 2001, Balzter et al., 2007).
The most common approach was the evaluation of the difference between InSAR elevation
and a DEM. Kellndorfer et al. 2004 evaluated the feasibility of deriving vegetation canopy
height from the Shuttle Radar Topography Mission (SRTM) C-band, namely the DEM
derived in 2000 at C-band from the SRTM and National Elevation Dataset (NED), which
is a reference surface available in the U.S. On the basis of preliminary investigations from
Brown and Sarabandi 2003, Kellndorfer showed that it is possible to estimate the forest
height with an RMSFE of 1.1 m and 4.5 m, respecitvely, for two different test sites. More
recent studies have proposed additional methods by using SRTM C-band data (Brown
et al., 2010, Sexton et al., 2009, Kenyi et al., 2009) and have investigated the feasibility
of using SRTM X-band elevation data (Weydahl et al., 2007, Solberg et al., 2010, Walker
et al., 2007) to derive forest height. Owing to variation in the position of the scattering
phase center for different frequencies, the success of height retrieval was closely related to
the frequency systems. The investigations showed that high frequencies were more suitable
for estimating forest height because the scattering phase center was mostly located in the
upper part of the canopies (Yong et al., 2003, Balzter et al., 2003a, 2007). However, low-
frequency systems also appeared to have the potential to retrieve vegetation parameters
(Lei et al., 2012). In addition to SAR frequency, some studies pointed out the influence
of temporal decorrelation using repeat-pass systems. To limit the inaccuracies induced by
changing weather conditions, it was recommended that single-pass interferometric systems
be considered (Balzter et al., 2003a). With the availability of polarimetric interferometric
SAR sensors, new methods based on full polarimetry were considered for the estimation of
forest height. The literature review referring to these advanced techniques are discussed
later in this chapter.

2.1.3 SAR polarimetry

While the potential of polarimetry was demonstrated in the 1950s by studies on light
scattering (Fabelinskii, 1957), attention was directed toward radar polarimetric techniques
in the early 1980s with the deployment of the first radar polarimetric sensor.
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PolSAR parameters

The first investigations of radar polarimetric data over vegetation cover were performed
by Evans, 1986. The study highlighted the capability of full polarimetry to map forest
cover by retrieving the density and structure of canopies. With the increasing number of
sensors, which enable full polarimetric acquisitions (e.g. AIRSAR, PiSAR, E-SAR, SIR-C
C/X, ALOS PALSAR, and RADARSAT-2), the number of publications in this regard
exponentially increased in the subsequent years. These studies examined forest param-
eters using diverse techniques and polarimetric parameters. Some researchers directly
compared forest biophysical parameters with the amplitude signal of linear polarisations
(Herold et al., 2001, Balzter et al., 2002, Shimada et al., 2009). Other researchers explored
polarimetric ratios (Mougin et al., 1999, Proisy et al., 2000), polarimetric phase difference
(Ulaby and El-rayes, 1987, Proisy et al., 2000, Kwok et al., 1993, Shimada et al., 2009,
Ranson and Guoqing, 1994, Thiel et al., 2007) and polarimetric coherence (Proisy et al.,
2000). The outcomes mainly showed that polarimetric coherence decreased constantly
with increasing vegetation density. However, the correlation of polarimetric coherence
with biomass remained lower than the correlation shown by backscattering intensity with
biomass in HV polarisation.

Modelling techniques

There have been many expectations regarding the use of PolSAR in studies aimed at
enhancing the knowledge of the scattering mechanisms occurring in forested areas and
other landcovers. Various polarimetric decomposition techniques have been developed
in this regard. Most of these can be divided into two categories. The first one is re-
ferred to as coherent decomposition, e.g. Pauli, Krogager (SHD), Cameron and Hyunen
decompositions, while the second one is referred to as incoherent decomposition, e.g.
eigenvector-based, Freeman—-Durden and Yamaguchi decompositions. The eigenvector-
based decomposition was introduced by Cloude (Cloude, 1985) and was performed on
the popular Cloude—Pottier Entropy/Alpha unsupervised classification scheme (Cloude
and Pottier, 1997, Jong-Sen et al., 2004). Another renowned incoherent decomposition is
the Freeman-Durden model (FDD) (Freeman and Durden, 1998). In forested areas, this
model distinguishes between three main scattering mechanisms, namely volume scattering
from canopies, double bounces between ground and trunks and surface scattering from
the underlying ground surface. Canopy volume scattering was modelled as a cloud of uni-
formed distributed dipoles with a fixed volume component in the coherency matrix. This
provided potentially unrealistic negative values for the surface and double bounce scat-
tering components (Sato et al., 2012, Cui et al., 2012). The FDD model has been widely
used, and improvements have been proposed for the same by several studies (Freeman,
2007, Yamaguchi et al., 2005, 2006, Arii et al., 2011, Sato et al., 2012, Cui et al., 2012).
One significant contribution made by Yamaguchi, 2005 is the addition of a helix com-
ponent to the FDD model (Yamaguchi et al., 2005). This fourth scattering component
deals with targets which do not meet the reflection symmetry assumption of the FDD
model, such as forests or man-made structures. Yamaguchi et al. 2005 also improved the
model for forests by adding a vertically orientated volume scattering (Yamaguchi et al.,
2005). Another important contribution to the FDD model was provided by Arii et al.
2011 and van Zyl et al. 2011 and more recently by Sato et al. 2012 and Cui et al. 2012,
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who proposed different solutions to the negative-power issue.

Forest environmental conditions

A topographic correction which is specifically dedicated to polarimetric datasets has
been developed over the past decade. By performing topographic measurements from
polarimetric SAR data (Schuler and De Grandi, 1996, Schuler et al., 1998), Schuler high-
lighted that azimuth slopes need to be corrected and proposed a compensation method
based on the variations in the EM wave orientation angle (Schuler et al., 1999a). This
method was further investigated in subsequent studies (Lee et al., 2000a,b, 2004) and was
introduced as a de-orientation concept for the different target-decomposition algorithms
(Xu and Jin, 2005, An et al., 2010, Yamaguchi et al., 2011, Sugimoto et al., 2012, Lee
and Ainsworth, 2011). In addition to azimuth-slope corrections, a few studies focused on
the forest radar signal over a topographic terrain. For example, Park et al. 2012 under-
lined the scattering mechanisms, and Villard et al. 2012 proposed a new backscattering
coefficient for angular corrections of topography-induced scattering variations.

2.1.4 Polarimetric SAR interferometry

While researchers have been actively developing separate algorithms for polarimetry and
interferometry, over the past decade, there has been growing interest in coherently com-
bining these two techniques to create SAR systems which are able to retrieve the three-
dimensional structure of forest canopies. The joint use of polarimetry and interferometry
is referred to as polarimetric interferometric SAR (PolInSAR). These instruments are par-
ticularly attractive because they provide an increased number of independent observables
and, therefore, limit the complexity of the theoretical polarimetric models (Neumann
et al., 2010, Praks et al., 2012a). The application of PolInSAR was first reported by
Cloude and Papathanassiou 1997 and Cloude and Papathanassiou 1998, who suggested
a coherent optimisation approach for separating the phase centers of different scattering
mechanisms. These studies were further considered by Papathanassiou and Cloude 2001,
who derived the formulation of a generalised complex interferometric coherence.
PolInSAR has become an important application for ecology and forestry as it can
provide reliable estimates of forest height and biomass (Mette et al., 2002, Mette, 2007,
Hajnsek et al., 2009). Studies on PolInSAR focused on one parameter, namely forest
height, but other components such as canopy extinction and ground-to-volume scattering
ratio have also attracted considerable attention. The relationship between polarimetry
and interferometry in the estimation of canopy heights is based on the concept that phase
differences could be corrected using coherent wave scattering models (Cloude and Pap-
athanassiou, 2003). The best known PollInSAR model is the random volume over ground
(RVoG) model, which is widely used in the scientific community because of the good trade-
off between its physical description and model complexity (Cloude and Papathanassiou,
2003). RVoG was introduced by Treuhaft and Cloude 1999 and was further extended to
full polarimetry by Papathanassion et al. 2000. This two-layer model was also described
by Papathanassiou and Cloude 2001, who proposed an inversion algorithm and loci ge-
ometrical projection for plotting the complex coherence on an Argand diagram. The
inversion of the RVoG model was developed for PolInSAR data (Cloude and Papathanas-
siou, 2003). However, single-pol interferometric data were also considered under certain
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conditions, such as use of an external DEM, fixing of a forest extinction coefficient value
and removal of the ground scattering contribution, which can be neglected at high SAR
frequencies (Praks et al., 2007a,b, 2012a, Hajnsek et al., 2009, Garestier et al., 2008).

Several studies have demonstrated PolInSAR height estimation over temperate and
boreal forests (Papathanassiou and Cloude, 2001, Kugler et al., 2006, Mette, 2007, Wood-
house et al., 2003, Garestier et al., 2008, Praks et al., 2007b). For example, Papathanassiou
and Cloude 2001 used an L-band 10-min repeat-pass airborne system to show that it is
possible to retrieve the forest height with a standard deviation of approximately 2.5m.
The RVoG model was assessed at different frequencies. Although a few publications re-
ported P-band investigations (Garestier et al., 2008, 2009, Lee et al., 2009), most of the
analyses concerned X-, C- and L-band frequencies (Kugler et al., 2006, 2007, Praks et al.,
2007a, Mette and Papathanassiou, 2004, Hajnsek et al., 2009). These studies showed that
the accuracy of the inversed PolInSAR height depends on several factors. Among these
factors, (1) forest height, (2) density and coefficient of extinction, (3) soil moisture, (4)
terrain topography and (5) SAR frequency and temporal baseline have been discussed in
literature (Hajnsek et al., 2009, Praks et al., 2012a, Lavalle, 2009, Le Toan et al., 2012,
Kugler et al., 2006). In repeat-pass PolInSAR systems, the temporal baseline consisted
of one of the most limiting components (Lee et al., 2010, Neumann et al., 2010, 2012).
The change in weather conditions or vegetation properties between two PolSAR acqui-
sitions induces temporal decorrelation; thus, the forest height is overestimated and the
phase deviation is increased, which affects the accuracy of height retrieval (Lee et al.,
2009, Li and Guo, 2012). To circumvent this issue, some studies have discussed the use
of multi-baseline acquisitions (Lee et al., 2010, Neumann et al., 2010, 2012) or a combi-
nation of RVoG with a temporal decorrelation model (Papathanassiou and Cloude, 2003,
Li and Guo, 2012, Lavalle et al., 2012). Although these methods improved the accuracy
of the height estimates, they did not completely remove the temporal effect. In this con-
text, the use of single-pass PolInSAR systems, such as the recently launched spaceborne
TSX/TDX or future TanDEM-L systems, should be very promising (Kugler et al., 2010,
Torano Caicoya et al., 2012, Praks, 2012).

2.1.5 SAR tomography

An extended approach to PolInSAR involves polarimetric SAR tomography. Introduced
by Reigber et al. 2000 during the early millennium, this approach relies on the coherent
combination of multi-baseline InSAR acquisitions and allows the localisation of scattering
contributions along the vertical direction of the targets (Tebaldini and Rocca, 2012). To-
mography considerably extends the capabilities of SAR for the extraction of forest vertical
structure information (Reigber, 2001) and estimation of forest parameters such as biomass
(Dinh et al., 2012a). The studies related to SAR tomography are very recent and are fo-
cused on ameliorating the processing algorithms (Frey et al., 2007, Cloude, 2006, 2007,
Lombardini, 2005, Tebaldini and Rocca, 2009, Tebaldini et al., 2010, Zhang et al., 2012).
However, the past three years have also seen a growing number of publications on the
analysis of tomographic SAR data in forested areas (Frey and Meier, 2010, Tebaldini and
Rocca, 2009, Tebaldini et al., 2010, Tebaldini and Rocca, 2012). For example, Tebaldini
et al. 2010 and Tebaldini and Rocca 2012 compared the scattering contributions for P-
band and L-band SAR tomography in a boreal forest. These studies reported a relatively
uniform scattering distribution in L-band and a significant ground-level contribution in
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P-band in co-polar channels as well as HV polarisation. Frey and Meier 2010 reported
similar results by investigating P-band and L-band datasets in a temperate forest. Dinh
et al. 2012a evaluated the potential of tomographic SAR signals to retrieve biomass at a
P-band frequency in a tropical forest and obtained the best sensitivity for a vegetation
layer located above height of 30 & 10 m and biomass quantities in the range 250t ha™!
and 450tha~! at a specific test site. These studies and future studies regarding tomog-
raphy will be essential for the planned TanDEM-L, DESDynl and BIOMASS spaceborne
missions.

2.2 Fusion of SAR information

With the number of SAR techniques and datasets having increased over the past few years,
there is a need to improve the estimation of forest parameters such as biomass by merging
different sources of SAR information. The combination of SAR information in multiple
ways was conceived. First, with reference to the different SAR techniques, a combination
of two sensors for evaluating interferometric phase as well as the integration of polarimetry
and interferometry in PolInSAR could be considered as fusion techniques. Therefore,
publications describing InSAR, PolSAR, PolInSAR or Tomography approaches were seen
in some cases as fusion approaches (Lavalle, 2009). Then, researchers showed a variety of
possible combinations by integrating different frequencies, polarisations, incidence angles
or temporal acquisitions in a single fusion approach by using different SAR acquisition
parameters. Finally, the approaches were combined in different ways such as using simple
ratios, Bayesian rules, neural networks, multiple linear regressions or physical models.
The combination of various SAR acquisition parameters and the use of different fusion
approaches provide the ability of improving the retrieval of forest variables. While the
number of reports on SAR techniques is relatively large, the number of studies dealing
with the fusion potential of SAR parameters remains limited. One of the most cited fu-
sion methods involved combining multi-temporal datasets. In this regard, the researchers
proposed diverse approaches such as merging (Goodenough et al., 2005), weighting (San-
toro et al., 2003a, 2008, 2011, Askne et al., 2003, Askne and Santoro, 2007) and linear
combination (Quegan et al., 2000, Quegan, 2001, Bruzzone et al., 2004, Gineste, 1999)
of multi-temporal data. A combination of different SAR frequencies has been proven to
increase saturation levels and reduce uncertainties in biomass estimates. For example,
Englhart et al. 2011 recently demonstrated that combining X-band and L-band SAR data
over a tropical forest using multi-regression models would increase the saturation level
from approximately 100tha~! to 300t ha~! and reduce the RMSE from approximately
110tha! to 79tha~t. The combination of different polarisations has been presented in
a few studies, and it has been generally shown that the use of a polarisation ratio such
as HH/HV improved the estimation of forest biophysical parameters (Wu, 1987, Sarker
et al., 2012, Mougin et al., 1999). No study has supposedly demonstrated the potential
integration of multi-angle or multi-pass direction SAR data. One major issue for retriev-
ing large scale biomass maps lies in the development of algorithms which are independent
of ground inventory data. To solve this problem, some researchers have combined SAR
and optical data (Santoro et al., 2010, 2011, Cartus et al., 2011, 2012). However, to date,
although some studies have proposed the combination of backscatter intensity and coher-
ence (Wagner et al., 2003, 2000), no study has reported the possibility of deriving GSV
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from only SAR information without considering reference data.

2.3 Open issues and Scope of the thesis

With respect to the literature review performed in sections 2.1 and 2.2, four different
topics were identified as important issues in forest biomass estimation from remote sens-
ing systems in temperate forests. The first issue is topography. Although it is known
that topography affects the SAR signal and corrections for sloping terrains have been
proposed, the effects of steep slopes in forests on the returned SAR signals remain under
investigation (Castel et al., 2001a, Luckman, 1998, Cartus et al., 2005, 2008, Castel et al.,
2000). The second issue is the forest’s horizontal structure, which directly refers to the
results reported by Woodhouse 2006 and Brolly and Woodhouse 2012. The researchers
introduced a new approach for the uncommon trend observed in several studies, namely
a decrease in backscatter intensity with increasing forest biomass quantity (Rauste et al.,
1994, Ranson and Guoqing, 1994, Dobson et al., 1995, Woodhouse, 2006). The third issue
is the GSV range. Most studies examining the relationship between GSV and SAR data
only considered forests with GSV values up to 400 m®ha~!. However, temperate forested
areas may show GSV values greater than 700 m® ha=!. With the aim of estimating forest
biomass wordwide, it is necessary to cover the different ranges of GSV and investigate the
related effects on remote sensing systems. After reviewing several sensors used in forestry
applications, Wulder et al. 2004 mentioned that ’the best sensor is often more than one
sensor’. In this regard, the last issue highlights the significant potential of combining SAR
information and the small number of studies published in this field. On the basis of the
four aforementioned issues, the following objectives were defined for this thesis:

e Highlight the scattering and decorrelation mechanisms occurring in temperate forests
with a topographic terrain;

e Examine potential effects related to forest horizontal structure and high GSV values;
e Determine the optimal SAR acquisition parameters for the estimation of forest GSV/;

e Estimate GSV from spaceborne remote sensing sensors using algorithms presented
in literature;

e Investigate and develop an integrated approach to deriving a GSV map from the
fusion of SAR information.

The above objectives were formulated to provide answers to the open issues and to
present novel scientific knowledge to the radar community. To limit the framework of
this thesis, the investigations focused on X-band and L-band spaceborne data (see the
SAR missions presented in Section 1.2). In addition, although PolSAR and PollnSAR
techniques may be explored, greater attention will be paid on backscatter intensity and
interferometric coherence data. Finally, as mentioned in Section 1.2, the examinations
performed in this thesis were incorporated into the ENVILAND?2 project and consequently
also involved investigations of optical remote sensing. Owing to time constraints, only
findings obtained from radar data are presented in this thesis.
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Chapter 3

Theory and techniques

To comprehend the various forest parameters and SAR techniques considered in this
thesis, the biophysical attributes of a forest and SAR theory have been reviewed in this
chapter. The first section introduces the important parameters and phenologies related to
a forest. In particular, biomass quantity, GSV and other related forest parameters, which
are essential for this study, are defined, and the influence of temperature, topography
and wind on forest growth is briefly described. The second section describes SAR remote
sensing systems. More specifically, the SAR fundamentals together with the InSAR, Pol-
SAR and PolInSAR techniques, which are applied in this thesis, have been reviewed from
the perspective of forestry. The final section focuses on the fusion of SAR information.
The analysis of the fusion methods employed in this thesis does not require any technical
background. However, the definitions of fusion and its synonyms, namely synergy, inte-
gration or combination, may be ambiguous. Therefore, the section on fusion presents the
definitions of fusion and terms which are closely related to it and briefly describes the
different fusion levels. For conciseness, this chapter provides only the main theoretical
background and formula required to understand this thesis. The reader is referred to
references for further details.

3.1 Forestry fundamentals

3.1.1 Forest biophysical parameters

On the basis of the domain of interest (e.g. ecology, bioenergy, forest-management), the
term forest biomass encompasses several components of a forest and can therefore have
different interpretations. For clarity, it is necessary to accurately define forest biomass
and GSV and describe their characteristics.

Many researchers have defined biomass or forest biomass (Young, 1980, Bonnor, 1985,
Levine, 1996, Kohl et al., 2006). For instance, Kéhl described biomass as 'the plant ma-
terial being produced by or resulting from photosynthesis’. A general and accepted defi-
nition of biomass has also been reported in FAO 2005. According to this report, biomass
is the total amount of 'organic material above and below the ground, both living and
dead’. In forested areas, organic material naturally refers to trees and their understories,
which are often represented by shrubs, saplings, epiphytes and other herbaceous plants.
The biomass in understories is generally low in natural forests (less than 3% to 5% of
mature forest biomass), while it can represent more than 30% of biomass of mature trees
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in secondary forests depending on the age of the forest and openness of canopies (Levine,
1996). According to FAO 2005, above- and below-ground biomass can be distinguished.
Above-ground forest biomass generally comprises leaves, twigs, branches, main bole and
tree barks (van Laar and Akga, 2007, Levine, 1996), while below-ground biomass includes
roots and the bottom part of stumps. Distinctions have also been drawn between living
and dead organic matter. With a particular vertical extension, the entire living matter in
forests is generally observed above the ground, while dead matter, which is composed of
fine litter and coarse woody debris such as standing dead trees and dead wood, is mostly
found above the ground on the forest floor and below the ground in an advanced state
of decomposition. Plants and trees are hygroscopic, which implies that the biomass of
living organic matter includes the weight of moisture. The water content can reach 80%
to 90% of the plants’ weight and may vary according to several parameters, such as tree
species composition, components of trees, tree size, location of growth and seasons as well
as time of the day (Kohl et al., 2006). In this regard, the study of biomass generally
specifies whether it is a dry or fresh biomass (West, 2009).

Wood is principally composed of carbon (C), hydrogen (H) and oxygen (O). These
elements combined form three major organic polymers, namely cellulose, hemicelluloses
and lignin. Of the organic compounds which constitute wood cell walls, carbon is the
dominant structural component. Researchers have reported that carbon constitutes 50%
of dry biomass (Ko6hl et al., 2006, Miller, 1999).

To estimate the amount of carbon or to enable comparisons between different forests,
it is required that biomass be measured over a unit area. In this regard, forest biomass
expressed in kilograms (kg) or tonnes (t) of dry weight is defined by the forest biomass
density, which is usually reported in tonnes per hectares (tha™') (Kohl et al., 2006).
Biomass is evaluated using two different methods, destructive and non-destructive sam-
pling. Destructive sampling involves estimation of the weight (mass) of vegetation. In
practice, each part of a tree needs to be felled, collected and dried in order to determine
the weight of each component and obtain the total dry weight of the assortments. This
method cannot be used for forest monitoring as it requires logging of the trees under mea-
surement. In the framework of realizing the implementation of forest inventories, methods
based on dendrometric tree measurements have been introduced as an alternative to the
destructive sampling approach. These techniques involve indirect measurement of biomass
by determining the stem volume of a forest. Stem volume can be converted to biomass
using the following relation:

B=GSV -p, (3.1)

where GSV is the growing stock volume and p the wood density. The wood density is
expressed in kgm™ or gem ™3, is species-specific and varies with growth conditions (i.e.
seasons) and the measured parts of the tree. Over the past few decades, wood density has
been widely studied, and estimates for most species can now be found in previous studies
(Penman et al., 2003). The values for the different species were usually approximated to
0.5gcm ™3 to 0.6 gem 3. However, wood densities of broadleaves were generally found to
be higher than those of conifers (Penman et al., 2003, Tolunay, 2011). GSV is a measure
commonly used by foresters for forest-management. It is expressed in m®ha~! and is

commonly referred to as bole volume, stem volume or growing stem volume. GSV can be
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defined as the tree stems for all living species per unit area, including the bark ignoring
branches or stumps (FAO, 2000, Santoro et al., 2011). According to FAO 2000, GSV
refers to trees with a diameter at breast height (DBH) of greater than 10 cm. However,
the fixed value of 10 cm may vary from country to country. Generally, for GSV estimation,
foresters consider a tree as a cylinder with the basal area as the base and the height of the
tree as the height of the cylinder. This approximation leads to the following allometric
equation

2
GSVireo = (;DBH> L (3.2)

where h is the tree height, DBH is the stem diameter at breast height (1.3m) and f,
is a form factor accounting for the shapes of different tree species. The tree height is the
distance between its top and base and is measured along a perpendicular dropped from
the top’ (van Laar and Akca, 2007). DBH is measured over the bark at a fixed distance
from the base. In general, the point of measurement is defined at a distance of 1.3m
above ground level, but this may vary with countries (Brack, 2000). The form factor is
expressed as the ratio of the actual stem volume to the volume of a reference cylinder
and has been evaluated for several species in previous studies (Gray, 1956, Zianis et al.,
2005). To retrieve the GSV for an entire forest, it is common to divide the forest into
patches, referred to as forest stands. A forest stand is defined as ’an aggregation of trees
occupying a specific area and sufficiently uniform in composition, age, arrangement and
condition so that this area is distinguishable from the forest in adjoining areas’ (Northcote
and Hartman, 2004). The GSV for a forest stand can be evaluated as follows:

1 2
GS‘/stand - thtrees/]T (ZDBH> fz7 (33)
= h,Gf,, (3.4)
with
1 2
G = NupeosT <2DBH> . (3.5)

The variable hy, is the arithmetic mean height (m), G is the basal area (m?ha™!)
and N is the number of trees per hectare. The stand-level height is expressed in a dif-
ferent manner depending on the condition of the stand. For even-aged stands, the mean
height (h) would be chosen, while for inhomogeneous stands (owing to the effects of thin-
ning and mortality), the maximum height (h109) would be preferred (van Laar and Akga,
2007, West, 2009). Height measurement is time consuming and more complicated than
DBH assessment. To improve the GSV determination process, foresters have developed
species-specific dendrometric equations for relating the trees’ DBH to their height. These
equations can be fitted by least-square minimisation to select the measured samples of
DBH-height pairs and further used to calculate hy or higy (see Section 4.2). The basal
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area of a stand is determined by the sum of all stems’ (over the bark) cross-sectional
areas, either at the breast height or at a specific height above the ground level. Ow-
ing to wind, slope steepness and other site-related factors, the stems of the trees often
have an elliptical form instead of a circular shape (see Section 3.1). In this case, the
quadratic mean of the stem diameter is more representative of the stand volume than
the simple arithmetic mean and is, therefore, chosen for the determination of the basal
area (Curtis and Marshall, 2000, West, 2009). The density parameter Ni s (treesha™!)
can be considered as either an absolute or relative value. Absolute density refers to the
number of trees in a specific area, while relative density is determined by comparing the
absolute density with a pre-established standard. Hence, by enabling comparisons of
forests at differing stages of development, relative density provides information about the
growth conditions and competition in a stand and is preferred for silvicultural practices
(planting, logging, thinning, etc.) (Bradley, 1963). With the need for standards in the
monitoring of forest stands, foresters have generalised the term relative density to imply
relative stocking (Arner et al., 2001). By definition, a full-stocked stand corresponds to
a theoretically optimal stem production under optimal growth conditions, while under-
and overstocked stands represent poor productivity with lower and higher site-occupancy
values, respectively, compared to a full-stocked stand (del Rio et al., 2001, Husch et al.,
2003). Harvesting or thinning activities, which aim to control the forest stands’ relative
stocking, modify the forest structure to an extent. The term forest structure defines the
arrangement of and relationship between tree components such as trunks, branches and
leaves (Press, 2013). It consists of attributes such as the type, size, shape and spatial
distribution of the forest (Spies, 1998, McElhinny et al., 2005, Pommerening, 2002). The
structure of natural forests is shaped by natural forces such as fire, wind and succes-
sion (Spies, 1998), while that of managed forests is mainly defined by forestry activities.
For economical purposes, foresters do not produce stem volumes in managed stands at
the same rate as in natural stands. Therefore, the structure of a managed forest differs
significantly from that of natural forests (Spies, 1998).

3.1.2 Forest phenologies

Temperate ecosystems are marked by four distinct seasons which introduce various annual
forest phenologies. Phenology refers to the study of organism—environment relationships
on the basis of the periodic environmental variations and the associated life cycle of
the organisms (Liang and Schwartz, 2009, Badeck et al., 2004). The most well-known
and visible seasonal phenomenon is senescence, which is observed in autumn, and its
occurrence is indicated by the leaf colour and leaf fall in many deciduous trees. Leaf fall
is usually facilitated by wind. However, in the absence of strong winds, it is observed that
the leaves remain on tree branches throughout winter until a new foliation develops in
spring. This phenomenon is commonly referred to as marcescence (Abadia et al., 1996,
Escudero and del Arco, 1987). The summer season consists of a vegetative period with a
peak in photosynthetic activity and tree development. In contrast, the winter season is
the dormancy period with limited cellular activities (Lapointe, 2001). The resting period
is essentially driven by a reduction in the photoperiod and a decrease in temperature. It
is particularly indicated by the cessation of sap flow and a decrease in water content. Sap
flow and water transport in the stem are usually interrupted in autumn or early winter
by embolism mechanisms. At this time, the temperature alternates above and below the
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freezing point, producing freeze-thaw cycles. The latter induces the formation of small gas
bubbles in the stem transport system (vessels), which obstruct sap transmissions (Granier,
1999, Cruiziat et al., 2002, Cochard et al., 2000, 2001). Freeze-thaw cycles, which occur in
autumn or early winter, are essential for preparing trees for the new vegetative period in
spring. Indeed, the alternate warm and frozen conditions modify the internal pressure of
trees and roots, facilitating the storage of nutrients in roots for winter and replenishment
of the sap flow through trees after winter (Mayr et al., 2003). However, embolism of the
vessels produced at the beginning of winter may prevent sap release in spring. In this
case, if the tree cannot recover the damaged vessels, its growth season may be considerably
shortened (Cochard et al., 2000, 2001). Owing to embolism mechanisms, conifers, which
comprise thinner xylem conduct structures compared to broadleaves, are found at higher
altitudes and latitudes (Lebourgeois, 2006).

Similar to the case of temperature variations, wind may be related to several forest
phenological aspects. One of these aspects is wind loading, which affects the morphology
of trees. With a recurrent wind blowing in one direction, mechanical deformations appear
on trunks. More specifically, the trunks tend to be elliptic, with their major axes being
parallel to the prevailing winds (Hewson et al., 1978, Bannan and Bindra, 1970, Telewski,
1995). In topographic areas, similar effects can be found. Indeed, owing to both the
orographic wind effect and the steep terrain, stems tend to be eccentric with the longest
diameter oriented in the same direction as the slopes (Williamson, 1975, Kellogg and
Arber, 1981). The consideration of wind and topography also determines the height of
trees. Indeed, with a constant wind load on the canopies, trees located on hilltops tend
to be more exposed to wind and are, therefore, found to be smaller than the trees located
at the bottom of the slopes (Wade and Hewson, 1979).

Topography involves not only the influence of wind but also several other climatic
properties which are directly related to forest phenologies. One of these properties is
the soil water content. Forests located at the top of hills or mountains are normally
observed to have limited growth compared to forests situated at the bottom of slopes.
This can be explained by the convex terrain formed at the hilltops, which is particularly
subject to soil water-deficient conditions compared to the concave terrain down the hills
or mountains resulting in water accumulation (Littell et al., 2008, Cornu, 1998, FAO,
2005). Solar radiation is another example of an environmental variable which varies with
topography and influences the growth of forests. Typically, slopes exposed to the South
present high illumination compared to those in the North, which mostly remain in the
shade. Therefore, a forest’s growth on south-facing slopes is more significant than that
on north-facing slopes (Ellis et al., 2011, Bonan and Shugart, 1989).

3.2 SAR remote sensing systems

3.2.1 SAR fundamentals
Electromagnetic wave theory

Fundamentally, remote sensing involves capturing and storing the energy of reflected
electromagnetic radiation. This radiation can be represented by two perpendicular vec-

tors, electric field (E£) and magnetic field (H). The mathematical description of electro-
magnetic waves in space and time is given by Maxwell’s equations.
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E=-=" .

V x 5 (3.6)
—~ = 0D

V-B=0, (3.8)

V-D=p. (3.9)

The above four equations describe the propagation of electromagnetic waves. The
components of these equations are electric field F, magnetic field H, electric flux density
D, magnetic flux density B, electric current den81ty J and electric charge density p. In
total Maxwell’s equations have twelve unknowns and constitute eight equations. It can
be assumed that the source terms (.J, p) are known, and the continuity law for current
and charge densities can be followed. Hence, the following relation is obtained:

~ 9p

V-J+ 4

5 = 0. (3.10)

Taking Relation (3.10) into consideration, there are only six independent Maxwell’s
equations for twelve variables. Thus, to obtain the complete system, six additional equa-
tions are required. They are given by the definition of the medium:

™
o)

D= (3.11)

B=uH . (3.12)

Here ¢ and p are the relative permittivity (dielectric constant) and permeability of
the medium, respectively. Equations (3.11) and (3.12) complete the system, which is
now solvable. At this stage, it is possible to obtain a simple electromagnetic wave in an
environment which does not interrupt its propagation. Assuming that J = p = 0 and the
presence of a linear medium (D = ¢F and B = pH),

—

E(7,t) = Egcos(k - T — wt + q) . (3.13)

Here k - E = 0 and k = wy/HE. Relation (3.13) represents a monochromatic electro-
magnetic plane wave propagating in vacuum and mathematically describes the wave by a
wave function which combines time ¢ and space 7. k is the wave vector and its norm || & ||
is the wave number This wave is deﬁned by the wavelength A\ = 2?”, the wave velocity
v=9% = f’ the period T}, = % (with f being the carrier frequency) and the
constant (g, which represents the 1n1t1al phase. The equation of the EM wave in Relation
(3.13) can also be described as a complex number, as shown in the following relation:
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—

E(7,t) = Agei(F-T—wtteo) — A oie — A(cos(p) +isin(y)) . (3.14)

The parameters Ay = Ey and ¢ = kz — wt 4 ¢y describe the amplitude and phase
of the signal, respectively. The intensity of the wave can be related to the amplitude as
I = A% With reference to Equation (3.14), electromagnetic radiation is characterised by
five important quantities:

e intensity I;

e wavelength \;
e polarisation P;
e phase ¢;

e direction of propagation C.

These parameters carry information related to the source of radiation as well as the
target under study. Therefore, the analysis of SAR signals in remote sensing mostly
involves the evaluation of these five fundamental parameters, which are discussed further
along the theoretical background provided in this section.

SAR systems
Fundamentals:

SAR systems are active sensors and are configured in lateral sight geometry; they are
generally mounted on airborne or spaceborne platforms. For the same sensor operating
from an aerial or spaceborne platform, important differences can be distinguished. First,
a SAR sensor which records measurements from an aircraft provides a smaller swath and
coverage area but has a higher spatial resolution compared to the same sensor records
measurements from space. Second, in terms of incidence angle, the illumination is more
uniform and precise for spaceborne platforms. Finally, a satellite is more stable than
an aircraft; thus, for measurements recorded by a spaceborne SAR system, only minor
corrections are required in trajectory and better position accuracy is provided.

The radio spectrum of SAR microwaves ranges between 2.5 mm and 10 m, correspond-
ing to the carrier frequency range of 120 GHz to 30 MHz, respectively (f = ¢/A). The most
common frequencies used in SAR remote sensing are X- (8§ GHz to 12 GHz), C- (4 GHz to
8 GHz) and L- (1 GHz to 2 GHz) bands. Some experiments also consider S-band (2 GHz
to 4 GHz), P-band (225 MHz to 390 MHz) and VHF (30 MHz to 300 MHz) sensors. The
advantage of using microwave-spectrum regions is the smaller influence of atmospheric
vapours, especially at low frequencies. However, electromagnetic waves at P- and VHF
bands are affected by dispersed ionosphere particles (Snoeij et al., 2001). Therefore, use
of such frequencies on spaceborne platforms is generally avoided.

The principles of SAR were originally derived from the real aperture radar (RAR) and
radio detection and ranging (RADAR) instruments. These sensors consist of a transmitter,
a receiver, an antenna and an electronic system to process and store data. As the platform
moves, the transmitter generates short pulses with a certain pulse repetition frequency
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(PRF), and the receiver detects the returned signal. The surface illuminated by a single
pulse describes a footprint which extends in two directions, namely range and azimuth.
The former is orthogonal to the direction of motion of the aircraft (or spacecraft), while
the latter is parallel to the platform flying direction.

Geometry — spatial resolutions:

The principles of SAR are based on measurement of distance between the sensor and
the features present in a scene. The range direction is commonly referred to as slant-
range geometry. The slant range is projected onto the ground range on the basis of the
incidence angle. The incidence angle is defined as the angle between the direction of the
propagation of the waves and the normal to the surface (Woodhouse, 2005). With the
definition of the incidence angle, the depression angle may also be defined. This angle
is given between an horizontal plane and the line of sight of the radar. The depression
angle differs from the incidence angle in that it does not take into account for the effects
of Earth curvature. On the basis of these characteristics, the ground range resolution can
be calculated as follows (Massonnet and Souyris, 2008):

P ———
2sin(0)

(3.15)

Here c is the speed of light (¢ = 3 x 108 ms™!), 7 is the pulse duration (us) and 6 is
the incidence angle (°). The factor 2 indicates the length of the pulse travelling to the
target and back to the sensor. The pulse duration is approximately the reciprocal of the
bandwidth. The sine of the incidence angle is used to project the slant-range resolution
onto the ground-range resolution. Relation (3.15) shows that the ground-range resolution
is proportional to the length of the pulses. Indeed, the shorter the pulse length, the
finer the range resolution. Hence, to improve the range resolution, radar pulses should
be as short as possible. However, a small pulse length implies less energy being returned
to the sensor, thus limiting the detection of the signal. To overcome this problem, an
electronic approach known as ’chirping’ is used. As a result, the pulse length increases,
thus improving the range resolution.

The azimuth resolution describes the ability of an imaging radar system to separate
two closely spaced scatterers in the direction parallel to the motion vector of the sensor
(Woodhouse, 2005). In RAR systems, the azimuth resolution is technically low, particu-
larly owing to the size of the antenna. To overcome this issue, the SAR technique, which
considers the forward motion of the radar and synthesises the received pulse sequences,
was developed. This technique, which takes the Doppler effect into consideration, syn-
thetically increases the size of the antenna, thus improving the azimuth resolution. SAR
azimuth resolution can be derived as follows (Massonnet and Souyris, 2008):

L

b2 g (3.16)

As shown in Equation(3.16), the SAR slant-range resolution is only related to antenna
length L (m). This implies that theoretically, the spatial resolution of a SAR image in
the azimuth direction at different altitudes would be the same. Moreover, in contrast to
RAR systems, the slant-range distance does not influence the SAR azimuth resolution.
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Signal information — phase and amplitude:

As described in Equation (3.14), a SAR signal contains two important pieces of in-
formation, namely magnitude (also referred to amplitude) and phase. The phase can be
geometrically expressed by the two-way path distance between the sensor and the target
plus some perturbations elements. Its relationship can be expresses as follows:

4
Y= _(T)R + Pscatterer + Pdelay - (317)

Here R represents the slant-range distance, @geatter indicates the scattering effects in-
troduced by the target and ey refers to perturbations induced by the medium between
the radar and the target, such as atmospheric or ionospheric effects. The magnitude of
phase is indicated by the energy returned from a target. This quantity is provided by the
fundamental radar Equation (Massonnet and Souyris, 2008)

P-Gyo- A

P =
(4m)? - R*

(3.18)

The radar equation measures the proportion of transmitted energy scattered back
from a target. P, and P; are the received and transmitted powers, respectively; R is the
slant-range distance separating the target from the emitter, A, is the effective area of the
antenna, Gy is the gain of the antenna characterizing the antenna sensitivity pattern and
o is the radar cross-section. The parameters of the radar equation depend on the sensor
configuration and imaging geometry, with the exception of o, which also characterises the
effects of the terrain on the radar signal.

The parameter o is used to evaluate signals from point targets. However, in the context
of radar EO, the targets are often distributed areas. In this case, the radar cross-section is

replaced by a normalised parameter called backscatter coefficient (Massonnet and Souyris,
2008)

o) = — . (3.19)

The radar backscatter coefficient determines the fraction of electromagnetic radiation
reflected back to the radar for a specific cell resolution. It is a unitless quantity, but for
ease of interpretation, it is usually expressed in decibels (dB). The backscatter coefficient
considers several terrain characteristics such as geometry, surface roughness and moisture
content, as well as radar system parameters such as wavelength, polarisation and incidence
angle. The backscatter coefficient is usually in the range —30dB to 5dB.

Speckle:

The illumination of an area made of many scattering targets implies possible interfer-
ence between the electromagnetic waves, which may be either constructive or destructive.
Constructive interference results in high-intensity return signals, while destructive inter-
ference yields weak return signals. This intrinsic SAR effect is commonly called speckle
and produces ’salt and pepper’ noise, which degrades the image quality. To quantify
noise, a theoretical noise value derived from the radar equation for a given SAR system
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has been defined. This value refers to the signal-to-noise ratio (SNR), which can be
derived as follows (Kim, 2009):

E_ P,-G.-G.-\-0y-c-T7-PRF 0o
N (473 -R3-k-Ty-NF-B-Liw-4-V,-sin(0 —a) NESZ’

(3.20)

where

(4m)° - R® k- Ty NF - W - Ly - 4- Vs - sin(0) — o)

NESZ =
P -Gy -Gy-\--c-T7-PRF

(3.21)

As shown in Equation (3.21), SNR is the ratio of signal power to noise power. The
higher the SNR, the better the performance of a SAR system. An SNR value of 1
signifies that the signal is equal to the noise; in other words, the signal comprises only
noise. By considering SNR = 1, the noise-equivalent sigma zero (NESZ) for a given
system (Kim, 2009) can be derived. According to Equation (3.21), NESZ is evaluated
in particular from the bandwidth W, the Boltzmann constant k, the equivalent noise
temperature Tj, the total losses L., the SAR platform flight speed V;, the system noise
figure N F' and the antenna gain at the receiver G,. NESZ indicates the sensitivity of a
system to areas of low radar backscatter. The evaluation of NESZ in Relation (3.21) is
valid for a monostatic system. In the case of a bistatic system, the reader is referred to
Fiedler et al. 2002.

To reduce speckle, spatial, frequency and temporal filters can be used. One common
way of reducing noise and improving the estimates of backscatter intensity is to inco-
herently evaluate the average intensity of a collection of L pixels. This process is called
multi-looking, and it generates an L-look intensity image. Owing to the incoherent na-
ture of the process, phase information is lost after multi-looking. Additionally, the spatial
resolution of an L-look image is reduced by a factor L. For a homogenous area, the multi-
looked-intensity image can be modelled using a gamma distribution (Oliver and Quegan,
2004)

P(I) = F(lL)(f;)LJL—le—? . (3.22)

Here I' is the gamma function, L is the number of looks, I is the estimated intensity
and o is the backscatter coefficient. With an increasing number of looks, the multi-looked
intensity distribution tends to normality. The performance of multi-looking and the filters
used can be evaluated using equivalent number of looks (ENL). In this respect, two
approaches can be conceived, namely theoretical (Massonnet and Souyris, 2008, Marino,
2012) and statistical (Oliver and Quegan, 2004)

ENL, = %%Lal,rz\fs, (3.23)
mean2
ENL, = (3.24)

variance
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Here p, and ¢, are the azimuth pixel spacing and spatial resolution, respectively, p,
and J, are the slant range pixel spacing and spatial resolution, respectively, L, and L,
are the range and azimuth multi-looking factors, respectively, and Ny is the number of
samples. The theoretical ENL ENL; corresponds to the ideal case and represents the
maximum number of independent looks for a given SAR configuration, considering the
applied processing scheme (multi-looking, spatial filtering, etc.). The statistical ENL relies
on the MoM and assumes homogenous areas as well as a normal distribution. In this case,
the higher the variance, the lower the F N Lg and the noisier the data. A comparison of
ENL; and EN Ly generally leads to dissimilar quantities, which is explained by the large
amount of noise in the data (see Section 4.3).

SAR parameters:

SAR images are described by three important components: frequency, incidence angle
and polarisation. As introduced previously, the SAR carrier frequency defines the size of
the wavelengths. To understand the relationship between the frequency and the target
under study, it can be considered that the radar sees objects whose sizes are greater than
or equal to the SAR wavelength. In this case, L-band (23.5cm) and P-band (65cm)
systems are sensitive to the trunk and large branches of the trees, while X-band (3.1 cm)
and C-band (5.6 cm) microwaves essentially scatter from the leaves, needles and small
branches of the canopies. The penetration of high-frequency systems is limited to the top
layer of the forest, while low-frequency systems are able to penetrate into the canopies
and interact with the ground. The incidence angle, which was defined by Equation (3.15),
usually varies across the range direction of the radar image. While these variations may
be significant in aerial data, they are not significant in spaceborne images. When dealing
with hilly or mountainous areas, the local incidence angle is more appropriate than the
actual incidence angle. Indeed, in contrast to the incidence angle which leads to the
approximation (curvature of the Earth) that a terrain is a flat area, the local incidence
angle considers the local surface normal, which includes information about the rugged
terrain. The polarisation parameter is determined by the SAR systems’ capability of
transmitting and receiving microwaves in different polarisation planes. In general, four
polarisations are distinguished: HH, VV, HV and VH. These linear polarisations provide
information necessary for the discrimination of scattering mechanisms of targets. Their
study, which referred to as PolSAR techniques, is considered to be a research domain.
Further details on polarisations and their related techniques are given in Subsection 3.2.3.

Geometrical distortions:

The particular side-looking geometry of SAR systems and their slant-range distance
measurements induce geometrical distortions. Three different effects are observed: fore-
shortening, layover and shadowing. The first two phenomena occur when the microwaves
reach the summit of a high target (hill, mountain) before (layover) or after (foreshort-
ening) touching its base. Both induce bright features and compressions in SAR images,
especially at steep incidence angles. As for optical remote systems, the shadowing ef-
fect occurs when some surfaces cannot be illuminated. This particularly appears for the
backslopes of topographic areas.
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SAR scattering from forests

Forests may be schematically characterised by a ground surface with vertically ex-
tending complex objects represented by the stems and crowns of trees. Measuring radar
backscatter in these areas requires the consideration of several scattering pathways.

Trunk Ground -
(crown)  trunk  Ground Canopy
—ground  (crown)

Figure 3.1: Scattering pathways in forested areas.

One first possible path is reaching the crown and scattering within this layer (1).
Direct canopy (branches, trunk) contributions can be obtained from this path. A second
potential path is given by the penetration of microwaves through the canopy, via either
spaces resulting from canopy openness or direct penetration into tree components, which
is enabled by the microwaves’ penetration capabilities. In this case, if the microwaves
interact with the ground and return directly to the sensor through the canopy (2), a
direct ground contribution can be considered. If the microwaves are reflected twice (on the
ground and on a tree component (trunk, crown) (3) or vice-versa (4)), a double-reflection
contribution can be considered. The scattering pathways of the various microwaves and
the consequent contributions of the crown, ground or multiple ground-tree/tree-ground
reflections are generally summarised by three important scattering mechanisms, namely
surface, volume and double bounce. The relative strength and dominance of one of these
scattering mechanisms depend on several factors, including the SAR configuration, forest
properties and environmental weather conditions (see Chapter 2 in literature review).

Surface scattering:

Surface scattering in forests is dependent mainly on the properties of the ground be-
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neath the canopy. The latter includes two important factors which affect the strength
of the backscattering coefficient, namely the roughness and the dielectric constant. The
roughness is characterised by the Raleigh criterion

A

TR (3.25)

hsmooth <

Here the surface height variation hgyeon 1S associated with the radar wavelength A and
the local incidence angle 6;. According to Relation (3.25), the smoothness of the surface
is directly proportional to the wavelength and inversely proportional to local incidence
angles. Thus, the surface smoothness or roughness is essentially related to the radar
configuration. In terms of backscatter intensity, in the case of a smooth surface, the
returned energy is focused with coherent specular reflections onto a narrow beam away
from the sensor. In such a configuration, the strenght of the backscattered signal is
relatively small. In the case of a rough surface, the redistributed energy is characterised
by diffuse scattering, also known as incoherent scattering. In this case, the strength of
the measured signal is important.

The relative dependence of roughness on wavelength given in the Rayleigh criterion
follows the fundamentals of optical scattering. The theory of optical scattering developed
by Lord Rayleigh and Gustav Mie states that scattering mechanisms occurring at a given
incident wavelength are equivalent to those at another wavelength if the sizes of the
target remain proportional. If the wavelengths are different, three scattering regions can
be proposed. One is defined as Rayleigh scattering, another as optical scattering, and the
last one as Mie scattering. On the assumption that there is a perfectly smooth spherical
particle of radius a, the first scattering region was specified by a target at least ten times
larger than the wavelength (2ra >> X). The second region was denoted by a target at
least ten times smaller than the wavelength (2ra << X). The Mie scattering region was
between these two extremes (0.1 < 2wa < 10A).

Specular reflections which apply to smooth surfaces are described by Fresnel equations.
Fresnel showed that the propagation of EM waves at the interface of two idealised stratified
media involves two main components, namely reflection and transmission. His equations
provide the magnitudes of the reflected and transmitted radiations as functions of the
incidence angle and dielectric constant (relative permittivity) of the transmitting medium

cos(6)) — /e — sin(6,)?
Ryn = peos(®) . ) , (3.26)

pcos(6h) + /e — sin(6;)?

Byy — e cos(6) — m' (3.27)
e cos(6)) + m

Here Rypy and Ryy are the reflection coefficients for the HH and VV polarisations,
respectively, € is the dielectric constant of the transmitting medium, p is the permeability
of the medium, and 6, is the local incidence angle of the incoming waves. The Fresnel
coefficient is a complex quantity (e, = & — i€”). The real and imaginary parts of the
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dielectric constant describe the relative permittivity and absorption of energy, respectively.
For natural surfaces, the influence of magnetic fields on the scattering medium can be
neglected because they are usually not considered to be ferromagnetic. In this case, u
can be made equal to one. The coefficients for HH and VV polarisations are separated
because their reflections show varying incidence angles. The general tendency of both
polarisations suggests that reflection coefficients increase with incidence angle. However,
in the case of VV polarisation, the reflection first decreases until it reaches a minimum.
This minimum corresponds to the angle for which the transmitted wave is completely
absorbed by the dielectric medium. It is referred to as Brewster angle.

The surface reflections under rough terrain conditions can be described by Lamber-
tian scattering. Such conditions produce an isotropic (in all directions) diffusion of the
scattering waves. In terms of backscatter, three different regions of incidence angle is
distinguished. The first region refers with shallow incidence angles to the specular zone.
The second region at mid-range denotes the flat zone. The last region depicts with large
incidence angles the grazing zone (Massonnet and Souyris, 2008). Compared to smooth
surfaces, backscattering decreases with increasing incidence angle. Also, the dependence
of backscatter on incidence angle decreases in this case. Another important feature of
surface roughness is the particular resonant scattering produced when the terrain rough-
ness presents periodic patterns. In contrast to the case of specular reflection from smooth
surfaces, which focuses the returned pulses on a single direction, this specific effect known
as Bragg scattering coherently adds the EM waves in various directions.

Volume scattering:

The description of surface scattering showed that at the boundary of two media, a
fraction of the incoming radiation is reflected and another fraction is transmitted through
the medium. In the latter case, the radiation interacts with the bulk material. Assuming
the medium to be a random layer of scatterers, these interactions are commonly referred
to as volume diffusion or volume scattering. Volume scattering is the effect of multiple
scatterings occurring within a layer formed by various elementary scatterers of different
sizes, shapes, orientations and dielectric properties. In forested areas, these elements are
essentially represented by foliage and twigs, as well as by small and large branches of a
canopy.

Two particular effects can be introduced with volume scattering. The first one is
referred to as signal extinction. When radar microwaves travel through a volume medium,
a fraction of the radiation is scattered and absorbed each time a dielectric scatterer is
encountered. This phenomenon attenuates the signal and decreases the backscattered
intensity. Volume extinction may be indirectly related to the vertical extension (i.e. depth)
of the volume and to the size of the radar wavelengths. The second effect which is closely
related to volume scattering consists of depolarisation of the EM waves. This phenomenon
involves rotation of the polarisation vector with curved scatterers such as discs or cylinders.
The rotation is induced by the specific angle formed between the incident waves and the
main axis of the oriented scatterers. If the angle extends between 0° and 90°, the EM
wave is depolarised (Woodhouse, 2005).

The discrete elements composing a volume each generally comprise a specific orien-
tation. However, considering all elements as a whole, it can be assumed that they are
randomly oriented and distributed. In this case, radiation is scattered in all directions,
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and volume scattering shows no or only weak dependence on the incidence angle. This
effect is an important feature of volume scattering. Another important property is the ef-
fect of the dielectric constant. A forest canopy can be represented as an infinite horizontal
layer comprising distributed water droplets in suspension, each of which expresses the di-
electric discontinuities given by the various dielectric constants of the canopy components.
The greater the number of droplets, the greater the absorption of the EM waves and the
extinction of the signal. This concept may be useful for modelling a forest canopy and
is the basic idea of the WCM (Attema and Ulaby, 1978). With reference to the WCM,
volume scattering can be formulated as follows (Mette, 2007):

hy —20ext 2
Ovol = Nb/o Oyeg(2)exXp (coswg) dz. (3.28)

Volume backscatter oy, is the sum of the individual scatterers along the forest layer
height hy, including the density of scatterers N}, (scatterers m~2), the extinction coefficient
(vezr and the radar cross-section of the vegetation oyeg.

Double bounce scattering:

Double bounces occur when two conducting surfaces are locally orthogonal. This spe-
cific configuration creates the so-called ’dihedral’ corner reflector, which scatters the EM
waves back toward the sensor with two 45-deg specular reflections. In forests, dihedrals
are typically produced by trunks growing perpendicular to a flat terrain. However, this
specific configuration is non-existent in sloping terrains, as the trees generally maintain
vertical extensions, even with the inclination of the ground. The implication of double
reflections is an increase in the energy of the signal returned to the transmitter, thus re-
sulting in an increase in backscatter intensity. The effect of double bounce scattering also
generally creates a phase shift between HH and VV polarisations of half the wavelength
(m radians). This shift explains why the polarimetric phase difference between HH and
VV polarisations is usually used for studying double reflections.

3.2.2 SAR interferometry

The EM phase of a single SAR acquisition does not provide any useful information.
However, with the application of InSAR, when two SAR acquisitions are obtained for the
same area, this situation changes.

SAR interferometric techniques rely on the acquisition of two SAR images measured by
repeat- or single-passes (see Figure 3.2). Repeat-pass acquisitions refer to interferometric
data acquired at two different epochs, while single-pass acquisitions describe a pair of
images measured simultaneously. For interferometric acquisitions, both approaches may
use one or two sensors having the same instruments and may be operated in equivalent
configurations. The position of the SAR sensors may be slightly shifted between the first
and second acquisitions; this introduces a distance known as the baseline. The baseline
is generally split into two components, namely perpendicular B, (or normal B,) and
parallel B). Referring to the equation of the phase in Relation (3.17), the phase difference
between two different measurements can be described by a simple differentiation
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Figure 3.2: SAR interferometric configuration.
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The first component refers to the path length difference Ry— Ry, which also corresponds
to the parallel baseline. The second element refers to variations due to the position of
the targets. In this case, the slightly different look angle between the interferometric
images changes the speckle patterns, thus introducing noise. The third term is related
to the potentially varying conditions (atmosphere, ionosphere) lying between the sensors
and the targets. Considering two pixels on an image, the phase difference can be further
developed as follows (Askne, 2003, Santoro, 2003):

47
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The first component is the difference in slant-range distances between the first and
second acquisitions. This difference is influenced by the curvature of the Earth, which
can be easily compensated for by flat Earth removal. For the different locations on the
images, the second term includes a measure of the altitude variation Az. Thus, the
phase difference is proportional to the terrain elevation. In this respect, it should be
noted that the elevation refers to the scattering phase center. For example, in the case
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of forests, the latter may be found inside the canopy instead of at the top of the canopy
and may, therefore, not coincide with the forest height. The third element indicates
the potential displacements of the terrain or coherent movements of the surface. The
fourth component indicates phase differences due to varying atmospheric and ionospheric
conditions (phase delays), and the two last terms (A@yise and n - 27) indicate phase
noise contribution and a factor n of 27 electromagnetic waves cycles, which is essential for
unwrapping the interferometric phase and deriving physical parameters. Further details
of the interferometric phase can be found in (Hansson, 2001).

Coherence

As mentioned previously, the SAR signal can be described as a complex number.
Assuming a SAR image g = Aexp(—j¢), the phase difference is obtained by considering
the product of the first image g; with the conjugate of the second image g». This operation
results in a complex image called interferogram, which represents a phase component
given by the phase difference (Equation (3.30)) and a magnitude component given by
the product of the SAR amplitudes. In practice, an interferogram is computed from the
average of all samples within a defined window. The calculation involves normalizing the
expected value of the interferogram by the expectation of each SAR product separately.
It results in a complex quantity, which includes the interferometric phase and a measure
of noise which is provided by the degree of correlation between the two acquisitions. The
latter quantity is referred to as interferometric coherence and is described by the following
relation:

E{g195} .
VE{ g2} E{ |9 ")

v = |y| el = (3.31)

Here 7 is the complex coherence, |7y| is the interferometric coherence (also called co-
herence or coherence magnitude), ¢ is the interferometric phase and E{} is the expected
value. The interferometric coherence ranges between 0 and 1 and describes total decorre-
lation when approaching 0. To compute the expected value, a maximum likelihood (ML)
estimator is usually considered. In this case, the coherence magnitude of Equation (3.31)
is expressed as follows:
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The added exponential term exp(—j¢;) in Equation (3.32) corresponds to the topo-
graphic phase. As the name suggests, it takes corrections for topography into account.
This term may be derived from a DEM or may be directly estimated from the interfero-
gram. It was shown that the ML estimation was biased, in particular for low coherence
and/or small estimation windows. The bias can be calculated as follows:
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1P

O~ =
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Relation (3.33) is referred to as Cramér-Rao bound approximation. L denotes the
number of independent looks and ~ the coherence. To minimize the bias of low coherence
values, the number of looks must be sufficiently large. Similar to Equation (3.33), the
standard deviation of the phase can be calculated as follows:

O' f—
¢ ]

(3.33)

According to Equation (3.34), the phase accuracy improves when the coherence or
number of looks increases.

Decorrelation factors

The degree of coherence can be decomposed into six important contributions, each
expressing a decorrelation source

Y= ’yproc *YSNR * Vaz * /Yrg * Yvol * ’Ytemp . (335)

The first decorrelation factor is related to the interferometric processor, which includes
errors due to co-registration, resampling, interpolation, data quantisation, etc. Modern
SAR processors allow accurate computations, and, therefore, this term can be neglected.
The second decorrelation factor refers to noise in the SAR backscatter signal. Several
noise contributions (such as thermal noise) affect SAR systems. This decorrelation can
be accounted for with the following equation:

1 1
JI+SNRN/14 SNR,E LTHSNR

YSNR = (3.36)

where SN R; and SN Ry refer to the SN R computed for the first and second interfer-
ometric acquisitions, respectively. In the case where the interferometric acquisitions are
performed with the same or an equivalent sensor (i.e. TSX and TDX), a common SN R
value can be assumed and a simplified calculation of the ysnyg can be envisaged.

The aforementioned first two decorrelation quantities depend solely on the sensor and
processing characteristics. As for the third and fourth components, namely 7,, and 7,4, the
decorrelations can be expressed in terms of sensor characteristics and target properties.
For the azimuth Doppler and range spectra, the contributions 7,, and 7,4 refer to frequency
shifts induced by a non-overlapping spectrum between the two SAR images. This effect
is produced by the different positions of the sensor during the two interferometric SAR
acquisitions, which cause differences in the antenna squint angle and incidence angle. The
non-overlapping spectra can be well-compensated by applying common band filtering.
However, this technique, which is also known as wavenumber shift filtering, only applies
to surface scattering, and its performance may decrease with the inclination of the terrain,
in particular with azimuth slopes.
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Figure 3.3: Relation between frequency shifts and terrain slopes for ALOS PALSAR system with
0 = 39°. Positive slopes refer to slopes facing away from the radar. Negative slopes correspond
to slopes facing radar.

The range frequency shift is linked to the spatial configuration of the interferometric
acquisitions, and the relation between this parameter and the normal baseline can be
expressed by (Gatelli et al., 1994)

cB,

Afr= Artan(f — a)

(3.37)

Equation (3.37) presents the range frequency shift Af, as a function of the normal
baseline B,. It can be seen that as the baseline increases, the frequency shift also in-
creases. However, there is a limit for which the perpendicular baseline produces complete
decorrelation in the signal (Lee and Liu, 2001)

A
Vspatial = 1— ‘M/f . (338)

According to Equation (3.38), this limit appears where the frequency shift A f, equals
the radar bandwidth W and is known (in terms of baseline) as critical baseline. Conse-
quently, the critical baseline can be inferred from Equation (3.37) as follows:

W RAtan (0 — «)

C

‘(Bcritical” =1-

, (3.39)

where )\ is the wavelength, W is the bandwidth, R is the slant-range distance, 6 is the
incidence angle and « is the topographic slope defined positive for slopes facing away from
the sensor (Hansson, 2001). The critical baseline given in Equation (3.39) may also be
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explained with reference to speckle. Indeed, by increasing the normal baseline, the speckle
patterns become more distinct between the two acquisitions. Thus, the normal baseline
for which the variation in speckle patterns produces a complete decorrelation corresponds
to the critical baseline. In Equation (3.37), the variable « refers to the local slope. The
sloping terrain affects the frequency shift and induces spatial decorrelation (see Figure 3.3).
The slopes facing the radar induce the greatest decorrelation. When the local slopes are
close to the incidence angle, the blind-angle region, which exhibits complete decorrelation,
appears (Cloude, 2009). From this point, the increase in the local slope facing the radar
decreases the spectral shift, but a layover configuration arises and decorrelates the signal.
On the backslopes, the frequency shift is reduced with terrain inclination, thus enhancing
the spatial correlation. However, the loss of the signal due to the non-common spectra
reoccurs in the shadow regions. The frequency shift (and therefore the decorrelation)
becomes more prominent on a sloping terrain with the increase in normal baseline. Also,
as discussed with Equation (3.15), the bandwidth determines the range resolution. In this
respect, by reducing the overlapping spectra of the two acquisitions, the frequency shift
reduces the spatial resolution.

The coherence term +,, indicates the baseline decorrelations for surface scattering. The
consideration of vertically extended distributed targets such as forests introduces another
baseline decorrelation contribution known as volume decorrelation ~,,. In this case, as
in Equation (3.28) for volume scattering, the volume decorrelation can be expressed as a
function of height
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where
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Volume decorrelation 7, is the normalised complex coherent sum of all backscat-
ter echoes oy, along the canopy height hy. It is determined from the normal baseline
component B, and radar wavelength A\, both of which partly define the interferometric
wavenumber k, given after range spectral filtering. The parameter k, represents the sen-
sitivity of the interferometric system and may be related to the height of ambuigity h.
which is defined as the elevation difference corresponding to a 27 difference of the in-
terferometric phase (see Equation (3.41)). The scattering model describing the vertical
distribution of the effective scatterers oye.(2) depends on the extent of penetration of the
waves into vegetation and may take different forms. The most common relationship is pro-
vided by the RVoG model. This is described within the context of the PolInSAR theory
discussed later in this chapter. The speckle patterns discussed with the critical base-
line (Equation (3.39)) represented surface scattering. Similar to this case, the vertically
distributed scatterers can be visualised as producing a vertical speckle (Papathanassiou,
2011). This speckle also changes with different perpendicular baselines, which signifies
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that the volume decorrelation is also related to the normal baseline. In this respect, an
increase in the perpendicular baseline causes an increase in the volume decorrelation.
Similar to spectral-shift decorrelation, volume decorrelation represents a case of spatial
decorrelation.

The last decorrelation factor is temporal decorrelation. This contribution involves
physical changes between the first and second acquisitions, which may occur in repeat-pass
acquisitions. For example, temporal changes are influenced by the dielectric properties of
the target, weather conditions occurring during acquisitions or stability of the scatterers.
The temporal effects may be found to be more pronounced in high-frequency systems
and for long temporal baselines. However, these statements may not always be true as
temporal decorrelation is the result of many physical processes.

3.2.3 SAR polarimetry

As mentioned earlier in this section, polarisation is an important wave parameter investi-
gated in SAR remote sensing. The polarisation of an EM wave denotes the orientation of
the electric field intensity. This orientation is determined by the direction of the waves’
propagation plane. In this respect, referring to Equation (3.13), the EM wave can be
decomposed into three components in a Cartesian coordinate system, each referring to a
propagation plane

E(z,t) = Eog cos(wt — kz + 0,) € 5 + Eoy cos(wt — kz +0,) €, , (3.42)

where Ey, (resp. Ey,) and d, (resp. J,) are the amplitude and the phase components of
the EM wave. The latter are described by the Jones vector defined later in this subsection.
In Equation (3.42), the wave propagates along the z-axis with electric fields components
€, and €, oriented on planes x and y, respectively. In this case, €, and €, are orthogonal.
The phase of the wave is described by 0, and ¢, and the state of the polarised wave can
be calculated using the relative phase shift 6 = 0, — 9.

The trajectory of an EM wave is known to be helical. To more conveniently characterise
this particular trajectory and the polarisation state, different representations of the waves
were proposed. Omne of them deals with the wave polarisation within an ellipse. The
considered ellipse is characterised by two angles, namely ellipticity and orientation. The
ellipticity angle y is the ratio between the minor (axis b) and major (axis a) semi-axes
of the ellipse. The orientation angle 1 is the inclination angle of the major axis. The
ellipticity x varies between —7/4 and 7/4, while ¢ varies between —m/2 and —m/2.

The polarisation ellipse takes different forms according to x and . The most common
shapes are linear and circular polarisations. The former represents the ellipse as a line
(x = 0), while the latter describes the ellipse as a circle (y = —7/4 or x = 7/4). In
addition to the polarisation ellipse or the use of the wave parameters EFy,, Fy, and 0, the
polarisation state can be represented with the Stokes vector

11 [IEL +|E
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Figure 3.4: Polarisation ellipse.

Here I corresponds to the total intensity, () is the difference between the vertical and
horizontal intensities and U and V are the phases, with % denoting the complex conjugate
operation, and R and C' are the real and imaginary parts of the electric fields, respectively.
All parameters in Equation (3.43) are real and depict the same physical dimensions. Also,
three of these parameters are independent, which results for completely polarised waves
in to the following expression:

PP=Q*+U*+ V2. (3.44)

Considering the set of parameters defined within Equation (3.43) and Figure 3.4, the
Stokes vector can be rewritten as follows:

1 az + a§ 1
Q] a; —a | cos 2 cos 2y
I= |~ 2a,a, cos(Ag)| ! sin 2tpcos2y | (3.45)
Vv 2a,a, sin(Ag) sin 2

Equation (3.45) shows that the polarisation state can be described on a sphere of
radius / with 2y and 2v¢ representing the latitude and longitude, respectively. This
representation is commonly known as the Poincaré sphere.

In the past, only non-coherent radar systems were available. With the development of
coherent radar systems, a new mathematical expression was established for considering
amplitude and phase. This characterisation is performed by the so-called Jones vector,
which can be inferred from Equation (3.42)
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E(0) = ﬁgzj@] - (3.4

As discussed earlier in this chapter, the transmitted EM waves are scattered back
from the targets and are recorder by the receiver. In polarimetry, a SAR transmitter
emits linear EM waves with horizontal or vertical polarisations, and the receiver records
the waves with either horizontal or vertical polarisation. These different polarisations
produce various interactions with the targets, which can be coherently measured and
interpreted. These interactions are synthetised under a 2 X 2 complex scattering matrix,
which describes how the scatterers modify the incident electric field vector

B =[] B = G [ )| (3.47

R |Svv Svu| |E!

Here matrix [S] is the complex scattering matrix (also known as Sinclair matrix)
and the electric fields £ and EF represent the Jones vectors of the transmitted and
received fields, respectively. The scattering matrix denotes the relationship between the
polarisation states of these two electric fields. R involves the slant-range distance. It is
factored in the coefficient R~! and in the exponential term exp(ikR), which are referring
to the attenuation and delay of the wave induced by the distance separating the target and
the antenna. The "HH’, "VV’, "THV’ and "VH’ polarisations refer to horizontal transmission
and reception, vertical transmission and reception, horizontal transmission and vertical
reception and vertical transmission and horizontal reception, respectively.

In most conditions of SAR remote sensing operating in the backscatter mode, reci-
procity can be assumed. In such cases, Syg = Spv, and the scattering matrix is reduced
to only three scattering components. Also, SAR systems deal mainly with far-field zones,
as the distance between the sensor and the target is proportionally longer than the size of
the studied areas. In this case, the scattering described by the matrix in Equation (3.47)
is assumed to be valid only for far-field conditions.

In radar, waves are transmitted and received in the propagation plane, which refers to
the direction of the antenna. To provide standards and define the coordinate systems for
the propagation directions of waves, two IEEE conventions were created, namely forward
scatter alignment (FSA) and back scatter alignment (BSA). In the case of the FSA norm,
the coordinate system ’follows’ the wave propagation direction. Taking into account the
Cartesian coordinate system introduced earlier in this subsection, the z-axis direction is
positive for both transmitted and scattered waves. In the case of the BSA standard, the
coordinate system 'follows’ only the incident waves. The z-axis direction of the coordinate
system is positive for the incident and negative for the backscattered waves.

It is possible to rewrite the radar cross-section by considering the scattering matrix
for polarised waves

Opg = 47 Syq|* . (3.48)

The backscatter cross-section o, for any arbitrary combination of transmitted p and
received  polarisations is obtained from the square of the magnitude of the scattering
matrix.
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The designation of completely polarised waves was used from the definition of the
Stokes vector in Relation (3.44). In the ideal case, waves are completely polarised, which
means that they are independent of time and spatial position. However, this is rarely the
case, and thus, the difference between the term 'completely polarised waves’ and from
partially or quasi-polarised waves, which refer to time- and space-varying EM waves, is
clarified. The partially polarised waves introduce second-order statistical terms known as
covariance and coherency matrices.

Assuming reciprocity (Syg = Spv) (Borgeaud et al., 1987), the covariance matrix can
generally be written as a 3 x 3 complex Hermitian (self-adjoint) matrix. Its formulation
is given by the expected value of the product of the scattering vector Z:)L with its complex
conjugate ki

€] = (Fu- T,

(Suul*)  V2(SuuSiy)  (SunSiv)
= [V2(SuvSim)  (ISmvl*)  V2(SuvSiv) | - (3.49)
(SvvSim)  V2(SwSi)  (1Swl?)

where

— T
kL=[Sm Swv Svu Sw]| . (3.50)

The scattering vector EL indicates the lexicographic representation of the polarimetric
data. The () of the covariance components denotes ensemble averaging, which involves
loss of spatial resolution.

As an alternative to Relation (3.49), the coherency matrix based on the Pauli vectori-
sation Ep can be calculated. With respect to the covariance matrix, assuming that the
reciprocity theorem holds, the coherency matrix can be represented by a 3 x 3 Hermitian
matrix, which is determined by the expected value of the product of the scattering vector
kp with its complex conjugate kp

<\SHH + SVV\2> ((Sun + Svv)(Sur — Svv)™) 2((Suu + Svv)Shv)

1
= 5 [{(Sur — Svv)(Sun + Svv)") <|SHH - 5vv|2> 2((Sun — Svv)Shv)

2<SHV(SHH + SVV)*> 2<SHV(SHH - SVV)*> 4<|SHV|2>

(3.51)
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where

1
V2

The covariance [C] and coherency [T] matrices present the same information. How-
ever, [T] is arranged such that the terms of the matrix represent elementary scattering
mechanisms which can be physically interpreted. Therefore, this matrix is usually pre-
ferred over the covariance matrix. The choice of studying the [C] and [T] matrices at the
expense of the scattering matrix [S] depends on the nature of the targets. In the case of
distributed targets such as forests, [C| and [T] matrices are examined, while for coherent
(pure) targets such as man-made dihedrals, the scattering matrix is considered.

— T
kp == |Sun+Svw Sun—Svv 25av| . (3.52)

Yamaguchi decomposition

As introduced in Chapter 2, the Yamaguchi decomposition algorithm is an incoherent
decomposition technique. 'Incoherent’ stands for non-deterministic or distributed targets
and ’decomposition’ refers to the separation of the SAR signal into a sum of elementary
scattering from which physical interpretations can be drawn.

The Yamaguchi decomposition is an extension of the Durden—Freeman decomposition
algorithm, which is dedicated to forested areas. Its general idea is based on the assump-
tion that the coherency matrix can be described as a combination of individual matrices,
each representing distinct physical scattering mechanisms. While Durden-Freeman de-
composition deals with a three-component model, the algorithm proposed by Yamaguchi
adds a new component which takes the cases where reflection symmetry does not hold
into account. Equation (3.53) presents Yamaguchi decomposition:

ezl = £ 4/[7]

utace T 1T D+ [T + £l Dy - 359

1 50 lal* a 0

= fo|B 1B Of+fa|a 1 0
0 0 0 0 0 0

s 200 0 0 0

+2510 1 0l +=10 1 45
Y00 01 0 +j 1

Here the coherency submatrices represent the surface, double bounce, volume and
helix scattering mechanisms, and the corresponding expansion coefficients fs, fq, fv and
fe are to be determined; also, the parameters a and S are to be defined using the Fresnel
reflection coefficients. It should be noted that Yamaguchi decomposition may be similarly
described in terms of covariance matrices. This section focuses on the decomposition of
the coherency matrix.

The parameters of the decomposed coherency matrices represent the physical proper-
ties of the forest. As introduced above, the principal contribution made by Yamaguchi
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involved assuming the non-symmetry of certain targets. For this, the use of the VV to HH
cross-sectional ratio was suggested to determine which canopy model was to be applied.
The conditions were defined as follows:

(|[7] >dip°le:i 155 ? 8 . for10 log( 2>) ~2dB | (3.54)
o300y o8 *)

(] >““p°1‘4‘:1 (2) ? 8 , for —2dB < 10 log(<‘ ) 2dB,  (3.55)
vol 4 00 1 <
dipole 1 15 -5 0 <|SVV|2>

<HT} >v01 == —05 g g . for 10 log (<!SHH!2>) >2dB . (3.56)

In the case where the ratio falls within £2dB, the canopy is assumed to be a cloud
of uniformly distributed dipoles. Assuming the reflection azimuthal symmetry of the for-
est canopy, (|[T])42" becomes diagonal (Equation (3.55)). When the ratio falls below

—2dB, a horizontally structured canopy is conceived (Equation (3.54)), and when the

ratio is greater than 2dB, a vertically oriented canopy is considered (Equation 3.56). In

these conditions, reflection symmetry can be assumed; the components (|[T32]|)2*' and

(I[To1] )% are also defined in the (|[T]])3P" matrices (Richards, 2009). With refer-
ence to Equation (3.53), if the case of a uniformly distributed cloud of dipoles applies,
the relation represents a four-component decomposition. If the dipoles are horizontally
or vertically oriented, the equation becomes a three-component decomposition. For uni-
formly distributed dipoles, five equations with six unknowns («, 53, fs, fq4, fv and f.) can

be derived:

Po=f (14187, (3.57)
Py=fa(1+]af), (3.58)
P, = f, = 4Ty — 2P, = 8 (|Suv[*) - 2P, (3.59)
Pe = fo =23 (Sfy (Sun — Sv))! (3.60)
P, = P+ Py+ Po+ Po = {|Sunl* + 2 |Suv[* + |Sw[*) - (3.61)

Here P,, Py, P, and P, describe the scattering powers for surface, double bounce,
volume and helix components, respectively, and F; is the total power, which represents the
span of the polarimetric data. According to Relation (3.60), P. can be directly calculated
from the measurable quantities Syy, Suy and Syv. P, can then be derived from Syv
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and P.. At this stage, three equations remain with four unknowns («, g, fs, fa). After
making assumptions regarding the dominant scattering between surface or double bounce
scatterers and a few mathematical manipulations, the two power components, namely Py
and P, can be inferred.

As mentioned in Chapter 2, the use of FDD decomposition showed negative powers in
vegetated areas, which is physically inconsistent. This problem is related to the definition
of volume scattering, which may lead to an overestimation of the volume component
and, therefore, to an underestimation of the remaining components, namely surface and
double bounce scattering, under certain conditions. To deal with this issue, Yamaguchi’s
solution involved the use of an amplitude ratio, as discussed above, to choose between
three different canopy models. This solution reduced the nonnegative power effect, but
did not remove it completely.

Azimuth-slope correction

The polarimetric orientation of EM waves is affected under topographic conditions by
the slopes facing the azimuthal direction of the radar. This effect can be compensated for
by rotating the polarimetric matrices (scattering matrix, coherency matrix, etc.) along
the line-of-sight by the negative value of the induced azimuth slopes. This correction
requires the calculation of the orientation angle (OA), which is geometrically related to
the sloping terrain and to the radar look angle

W

tanf = . 3.62
a —tany cos ¢ + sin ¢ (362)

The parameter 6 represents the OA, tan w is the azimuth slope, tan ~ is the slope in
the ground range direction and ¢ is the radar look angle. In practice, several methods can
be used to derive the OA. One of the most common approaches is the circular polarisation
method. By defining the left-left and right-right circular polarisation responses, the OA
can be directly extracted from the scattering-matrix components

_ 4y vy = et [ 4R0SH — Svv)Shy)) -
o= A B 4 [t (_<|SHH - va|2> + 4<|SHV|2>) " ] | 0
and
2 iftv<mw/4,
= {V—?T/Q, if v> /4. (3:64)

Here v describes the OA derived from the polarimetric radar data and R characterises
the real part of the complex quantities. The condition expressing the replacement of 7
by v — /2 for v > 7/4 takes the case of negative-OA into account. Similar to phase
unwrapping for interferometry, a factor 7 is considered in Equation (3.63) to match the
OA to the azimuth slopes, thus allowing the extraction of physical information. Once
the OA is derived, it can be applied to the polarimetric matrices. The rotation of the
scattering matrix is performed as follows:
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[sen].,., = [Rs)] [$] [Rs]" (3.6

corr

where

| cosn  sinn
[RSO?)} o [— sinm cosn} '

Here [S(n)]corr is the scattering matrix compensated for the azimuth slopes. It can
be used to calculate the covariance or coherency matrices, as shown in Equations (3.49)
and (3.51), respectively. The coherency matrix may also be directly corrected using the
following relations:

[r0].,,, = [Fr@] [7] [Rat)]" (3660

corr

where

1 0 0
{RT(U)] = |0 cos2n sin2py
0 —sin2n cos2n

All terms of the compensated coherency matrix [T'(n)]cor are modified, except (| Sy + Svyv|).
The T1; component is roll invariant. Comparison of the [T'] matrix before and after cor-
rections showed that the volume scattering power consistently decreases, while the double
bounce component increased. These observations are further confirmed with the appli-
cation of the Yamaguchi decomposition to the compensated coherency matrix. A similar
rotational transformation can be applied to the covariance matrix.

3.2.4 Polarimetric SAR Interferometry

Subsections 3.2.2 and 3.2.3 described the theory of InNSAR and PolSAR, respectively. By
combining both techniques, it is possible to rewrite the coherence defined in Equation
(3.31) as a function of polarisation. The formulation becomes (Richards, 2009)

(@7 2] )

e T

, (3.67)

where
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((S1aE + S1vv) (S5 + S5vv)) ((S1aE + S1vv) (S55H — Svv)) 2 ((SirE + S1vv) Soay)
1
= 5 | (St = S1vv) (S3um + Szvv)) ((Strm = S1vv) (S3um — S3vv)) 2 ((Stem = S1vv) Sy
2 (S1nv (Soam + Savv)) 2 (S1av (S5um — S5vv)) 4 (S1avSenv™)

(3.68)

Here 7, is the complex polarimetric interferometric coherence, T, and T, are the co-
herency matrices of the two interferometric acquisitions, w; and w, are unitary filter vec-
tors representing different polarisation combinations from the target vectors, respectively,
(2 is the new joint image complex coherency matrix and k 1 and kg are Pauli-scattering
vectors for the first and second image pairs, respectively. Complex polarimetric inter-
ferometric coherence is a generalisation of polarimetric data on the basis of the complex
InSAR coherence. It contains phase and amplitude information. The phase denotes the
phase difference between the first and second interferometric acquisitions in addition to
variations related to polarisation differences. The amplitude is used to measure the cor-
relation between the two interferometric images. Similar to the InSAR system described
earlier in this section, the maximum amplitude of interferometric phase correlation is
unity, and the decorrelation factors described in Equation (3.35) apply to the complex
polarimetric interferometric coherence.

The complex polarimetric interferometric coherence v, can be plotted on an Argand
diagram with the coherence magnitude described by the radius and the phase by the angle
starting counter-clockwise from the positive real axis (see Figure 3.5).

The range of the complex polarimetric interferometric coherence function v, can be
displayed as the loci obtained for all polarisations. It refers to loci representation and
denotes a specific area known as the coherence region. The size and shape of the region
are determined by the nature of the scattering processes. In the case of forests, the phase
angles of the canopy and the ground differ significantly. This characteristic provides
information on the location of the scattering phase centers. If the microwaves partially
reach the ground, the signal is mixed by ground and crown returns, leading to significant
phase variations (i.e. increase of phase angle). In such conditions, the coherence region
stretches over the Argand diagram and generally takes an elliptical form. If the canopy
completely attenuates the signal or is completely transparent to the microwaves, the
variations in the phase angle reduce, and the coherence region shrinks to a single point.
Generally, suitable complex coherence regions are found near the circumference of the
plot, where the coherence is high. In such optimal conditions, on the basis of the loci
coherence, two extreme points can be identified in the coherence elliptical region, one
assimilated to the ground and the other considered at the top of the trees. With further
mathematical considerations, this configuration enables a straightforward derivation of
the forest height.

Equation (3.40) represents the volume decorrelation for an interferometric SAR system.
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)

Figure 3.5: Loci representation of the complex polarimetric interferometric coherence (Cloude,
2009).

In the case of PolInSAR systems, the RVoG model describes the joint polarimetric and
interferometric information. This model connects complex polarimetric interferometric
coherence with the forest height, canopy extinction, ground reflection and topographic
phase. Its principal concept involves balancing the contribution of two different layers,
one referring to the ground and the other to the forest canopy. The RVoG model ignores
double bounces and other higher-order scattering mechanisms. Equation (3.69) introduces
the RVoG model

%01 + M(w)

L+ M(w) (3:69)

Am (W) = exp(igy)

Ym (W) represents complex coherence as a function of polarisation, with 4y, being
the complex coherence of the random homogenous volume, M (w) the ground-to-volume
amplitude ratio and ¢, the ground interferometric phase. M is the only parameter which
is polarisation-dependent and describes the relative contribution of the ground over the
canopy and vice-versa. It is further formulated as follows:

M(@) = ") o (—%Vh) . (3.70)

my (W)

Here the parameter mg is the scattering contribution from the ground, my is the
direct volume scattering from the canopy, h is the volume height, o, is the mean extinction
coefficient and 6 is the incidence angle. The ratio mg(w)/my(w) is the ground-to-volume
amplitude ratio m(w). The variable o, denotes the density and the dielectric constant
of the scatterers present in the volume, and it is not affected by the polarisations of the
waves.
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The volume decorrelation 4y, given in Equation (3.69) can be further developed into

the following relation:
h 2
/0 Vexp <cozzg) ) exp(ir,z)dz
/ hve 20v2 dz |
X
o P cos(0)

Here k,, which is the vertical wavenumber, was defined in Equation (3.41). The com-
plex coherence 7, is a complex quantity. As suggested by its relation, volume decorre-
lation increases with increasing volume height as well as with decreasing mean extinction
coefficient. The RVoG model given in Equation (3.69) can be represented in the complex
plane of the Argand diagram as a straight line. In practice, by fitting the RVoG model
over optimum coherences, this line would be drawn through the major axis of the loci
coherence ellipse. This characteristic is used as an inversion scheme to retrieve the for-
est height, ground topography or canopy extinction parameters defined within the RVoG
model.

(3.71)
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3.3 Sensors fusion

3.3.1 Definitions of fusion

The concept of data fusion appeared in the early years of remote sensing. However, the
exact definition had only been discussed at the end of the 1990s. A definition for fusion be-
came necessary because the interpretations and descriptions of fusion differed considerably
between researchers. Indeed, each researcher interpreted this term differently according
to his/her own research interests. For instance, Hall 1992 suggested that 'Multisensor
data fusion seeks to combine data from multiple sensors to perform inferences that may
not be possible from a single sensor alone’. Pohl and van Genderen 1994 and Pohl and
Van Genderen 1998 proposed image fusion as a 'combination of two or more different
images to form a new image by using a certain algorithm’. Mangolini 1994 defined fusion
as a 'set of methods, tools and means using data coming from various sources of different
nature, in order to increase the quality (in a broad sense) of the requested information’.
While these definitions were accurate, they either lacked information or placed excessive
emphasis on a specific issue. Therefore, Wald 1998 suggested a general definition which
appeared to be universally accepted by the scientific community. Wald 1998 expressed
‘data fusion’ as ’a formal framework in which are expressed means and tools for the al-
liance of data originating from different sources, in order to obtain information of greater
quality’. In addition to the term ’fusion’; studies have addressed SAR information fu-
sion commonly in relation to other close terms for fusion’ such as 'merge’, ’combination’,
'synergy’, 'integration’. The two former terms were defined by Wald 1998 as ’any process
that implies a mathematical operation performed on at least two sets of information’. He
emphasised that merging is broader than fusion, and combination can be considered in an
even broader sense than the terms 'merge’ and ’fusion’. Wald 1998 also mentioned that
merging and combination denote certain 'operations’, while fusion designates a ’frame-
work’. Synergy was not clearly defined with regard to remote sensing. With reference to
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the Oxford Dictionary, Cracknell 1998 inferred his own definition as "the utilisation of two
or more data sources together in order to extract more environmental information from
their combination than one could extract from the separate data sources individually’.
Integration’, which is also closely related to fusion, was defined by the Canada Centre
for Remote Sensing (CCRS, 2008) as 'the combining or merging of data from multiple
sources in an effort to extract better and/or more information’.

3.3.2 Fusion levels

Fusion methods involve a wide range of existing fusion techniques, which can be considered
at different levels of fusion (Gamba and Chanussot, 2008, Pohl and Van Genderen, 1998).

Fusion levels

Signal Product
Pixel Feature Model

Figure 3.6: General fusion processing levels.

At one extreme, there is signal-level fusion, which concerns mainly data pre-processing.
Then, pixel-level fusion appears. In such cases, a pixel-based approach combining two
images with raw information can be realised. The arithmetic combinations, Brovey trans-
formation or intensity—hue-saturation (IHS) transformation methods are typical examples
of pixel-level fusion. The third level refers to segmented data. In this case, decision trees
or quad-trees are often cited. The fourth fusion level is a combination of different models,
including statistical and physical models. At the other extreme of the signal level, the final
level is the fusion of the products derived from the data. The fusion processes generally
involve one fusion level; however, a combination of techniques belonging to different levels
may also be realised.
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Chapter 4

Test site, data and methods

To fulfill the objectives of this study, the Thuringian Forest, located at the centre of
Germany, was selected for the experimental processes. In addition, various datasets were
collected and pre-processed, and methods were developed for the elaboration of this study.
This chapter intends to provide a detailed description of these different steps. The first
section introduces the selected test site. In particular, information on the Thuringian
Forest and some of the relevant characteristics of the dominant tree species composition
is provided. The site and species descriptions provide a good basis for interpreting the
results presented in Chapter 5. The second section introduces the available data used in
this study. The ground reference data, SAR acquisitions and ancillary data are described.
The data delivered by different institutions required several pre-processing steps to become
comparable. In this respect, the third section focuses on the various pre-processing tech-
niques applied in this study. Pre-processing data comprised the forest inventory, regions
of interest (ROIs), weather and SAR data. Finally, the last section focuses on the main
components of the methodologies developed for this study. In particular, the procedures
applied to the exploration of the data are briefly discussed. The processing approaches
related to data modelling with non-parametric and parametric models are highlighted,
and the proposed data fusion approach is described.

4.1 Test site

4.1.1 Thuringian Forest

The Thuringian Forest covers an area of approximately 520.000 ha in the state of Thuringia
and is divided into four categories of owners, namely 'Staatswald’ (41%), "Privatwald’
(41%), *Korperschaftswald’ (16%) and 'Treuhandwald’ (2%) (Reinholz, 2011). Usually,
the Thuringian Forest also refers to the 50-km-wide belt of forested areas which extend
from the northwest to southeast direction (50°18’N-51°00’N and 10°00’E-11°20’E) in the
South of Thuringia. Figure 4.1 provides an overview of the location of the Thuringian
Forest in Germany.

The overall area of the forest belt is estimated to be approximately 5500 km?, seventy
five percent of which is forested. The remaining portion consists of arable and pasture
land, but agriculture has relatively low economic importance. From a geological point of
view, the Thuringian Forest is the point of convergence of two subduction plaques, namely
the Saxo-Thuringian upper plate and the Rheno-Hercynian lower plate. Consequently, the
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Figure 4.1: Location of Thuringia and Thuringian Forest in Germany.

South Region is essentially characterised by hilly terrain, ranging from 300m to 800 m
above sea level (ASL) for the most part, while the North Region represents mainly the
Thuringian Plateau with altitudes in the range 150 m to 400 m. The steepest slope gra-
dients do not generally exceed 35°, and the highest point, namely the Great Beerberg, is
982m ASL (an overview of the Thuringian topography is provided in Appendix A.1). The
Thuringian Forest is managed and exploited to meet the requirements of the timber in-
dustry. Thus, the forest is generally not allowed to naturally regenerate itself and consists
primarily of pure homogeneous stands with Norway Spruce (Picea abies) (44%), Euro-
pean Beech (Fagus sylvatica) (21%) or Scots Pines (Pinus sylvestris) (15%) tree species
composition (Reinholz, 2011). Because its intended purpose is production of timber and
pulpwood, diverse logging activities are conducted in the forest, which entails the forest
in a large range of G.SV, in some cases reaching more than 700 m?3ha~!. With respect to
the climate of the Thuringian Forest, the region experiences cool weather and frequent
rainfall (see the climatic diagrams in Appendix A.1). During winter, snowfall is abundant,
while in summer, there are local weather variations depending on the topography of the
area, exposure to the sun and degree of exposure to wind. The topography determines
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the climate of the Thuringian Forest. When the prevailing southwesterly winds reach the
topographic areas, they are transported to high altitudes; the winds then accumulate in
the cloudy regions to the South of Thuringia and cause rainy showers, while in the North
(and particularly on the Thuringian Plateau), the weather conditions remain warm and
dry. On 18™ and 19" January 2007, a violent storm (Kyrill) passed over the Thuringian
Forest, partially or completely damaging a large number of forest stands. The volume of
fallen timber was estimated to be 2.5 million m?, and the damaged area was estimated
to be approximately 11.000 ha, which represents more than 2% of the forest (Reinholz,
2011). The latter were delineated and digitalised into a geoinformatic system.

4.1.2 Tree species description

As mentioned above, the Thuringian Forest consists mainly of three tree species, namely
the Norway Spruce, European Beech and Scots Pine. Figure A.7 in Appendix A.1 depicts
a picture of each of these species.

Norway Spruces are referred to as evergreen trees. They are categorised as strong soft
wood and are economically valuable. Owing to their high market value, they are well-
distributed over the temperate zone, especially in the European Alps, Scandinavia and
North America, where plantation of this species is common. In the Thuringian Forest,
spruces are grown in general as pure stands. Their foliage composition consists of needles
that are 1cm to 2cm long, and their pyramidal crowns usually present a narrow conical
form which limits resistance to the wind. However, strong wind conditions can easily
damage the stands of the spruces owing to shallow roots of the trees. At a tree level, the
branches are orthogonally connected to the trunk which leads for spruces to a dominant
horizontal branching structure. While growing, new generation of branches take place on
the upper part of the tree and dead branches usually remain along the trunk under the
canopy. In addition to being shade tolerant, spruces may grow in acidic soil conditions.
However, they require good soil properties in terms of nutrient and water supply, and
both preconditions are generally well-satisfied in the Thuringian Forest. The production
of a litter with high concentration of manganese is typical in spruce forests, especially for
mature stands. This high manganese concentration generally prevents the regrowth of
spruces as well as other species. Thus, the forest floor and understory of the spruce forest
stands generally exhibits little ground vegetation. As a result of the topographic terrain,
the Thuringian region is regularly covered by snow during winter. The accumulation of
snow on spruce branches increases the load on them which must be released before the
tree branches break. To release the intercepted snow, spruces have adapted strategies
using the shapes of their branches; instead of a straight and rigid 'plate’ form, the spruce
branches are deflected in ’brush’ or ’comb’ form with pendulous distributions of needles.
Consequently, a high diversity of spruce-branching structures can be observed in the
Thuringian Forest. Spruce has a greater resistance to low temperatures than beech. Its
metabolic activities such as photosynthesis reduce during winter, especially when the air
temperature falls near or below 0°C. In the Thuringian Forest, these conditions are
particularly met in January.

The European Beech, which is categorised as a hardwood, is a deciduous broad-leaved
tree. As the name suggests, although it can be found in temperate regions such as Asia,
North America or New Zealand, it is a species native to Europe and is, consequently,
commonly observed in European countries. A beech requires high humidity and can grow
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in both acidic and basic soil conditions as long as the soil provides good drainage. This last
specificity explains the reason for beeches in the Thuringian Forest being mostly observed
on sloped areas instead of the bottom of a valley, which would be frequently waterlogged.
The European Beech shows a radial branching structure with branches directed mainly
towards the sky at 45° to 90°. They present dense foliage at maturation, with leaves
having sizes of 5c¢m to 15cm and breadths of about 4cm to 10cm and a wide network
of roots. Owing to its efficient use of light, this beech is normally shade tolerant, but
its dense foliage and root networks usually prevent the growth of an understory in beech
forest stands. As mentioned above, beeches are deciduous trees; they are characterised by
the senescence phenomenon in autumn and marcescence during winter until foliation in
the new spring season. The senescence phenomenon in beeches also marks the beginning
of their dormancy period which causes a reduction in all photosynthetic activities.

Similar to spruces, Scots Pines are known as evergreen conifers. Owing to their easy
adaptation to different soils and conversion into products with high economical value, they
are the most widely distributed pines in the world. Their habitat extends from Europe to
Asia (including boreal forests) and North of America. A comparison of Scots Pines and
Norway Spruce shows that young pines have the same conical shape as young spruces, but
mature pines present flat- or round-topped branches and an open and spreading crown,
unlike spruces which retain the conical form even after maturation. Scots Pines are also
characterised by high intolerance to shade in comparison to spruces, limiting their growth
in understories. Therefore, pine forest stands in the Thuringian Forest consist mainly of
a unique pine canopy layer.

4.2 Data

4.2.1 Thuringian Forest Inventory
Forest inventory description

The reference data used in this study is the forest inventory provided by the "Thiiringer
Landesanstalt fiir Wald, Jagd und Fischerei’ (TLWJF'), which is the institution responsible
for forest-management in Thuringia. The provided inventory played a key role in this
study, as it served as a reference for the observations conducted using remote sensing
systems. The inventory of the Thuringian Forest comprised 57.840 polygons, representing
forest stands, in the vector format, which included different forest attributes. The data
were based on the 'Deutsches Hauptdreiecksnetz Zone 4° (DHDN 4) (i.e. Postdam) datum
and was referred to as the Gauss—Kriiger projection. Table A.1 in Appendix A.3 depicts
a sample of the main parameters.

To organise and supervise the different forest-management approaches for the entire
Thuringian Forest, TLWJF established different forest divisions. As shown in Table A.1,
the largest division is the 'Forstamt’ (FOA), followed by "Eigentumsart’ (ETF), 'Revier’
(REV), ’Abteilung’ (ABT), 'Unterabteilung’ (UABT) and "Teilflache’ (T'F'L). Each vec-
tor polygon of the forest inventory represents the smallest established forest division,
namely the TLF. The latter can be assimilated into a forest stand but is not always as it
appeared to hold different species or uneven-aged forests in some cases. In other words,
the TFL can be considered as a forest stand, but certain precautions must be taken. This
detail was considered in the preparation of the ground data (Section 4.3). In addition
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to forest divisions, Table A.1 in Appendix A.3 depicts the main available forest parame-
ters evaluated for this study. Among the forest attributes, the stand area (AREA), tree
heights (HOHE), DBH (BHD), Age (ALT), dominant species percentage (BAAN),
relative stocking (V' G), tree species composition (HBA_S), number of understory layers
(BEART) and growing stock volume (GSV') (HAVOR_GES) are included in the avail-
able forest inventory. The acquisition specificities of these parameters and derivation of
the GSV are described below. It should be noted that the GSV investigated with SAR
data was referenced in this study to the provided HAVOR_GES attribute.

The earliest measured stands implemented in the forest inventory date back to 1%
January 1989. The forest stands were measured annually during summers and were im-
plemented into a geographic information system (GIS) during winters. It should be noted
that the forest inventory comprised a large number of stands, and thus, updating all stand
measurements in a single year was difficult. Therefore, the measurements of the stands
were operated by regions. For instance, the stands at the centre of the Thuringian Forest
were evaluated in 2009, while the stands to the South of the forest were evaluated in 2002.
Using this procedure, a complete update of the forest stands with new measurements was
achieved every 10years. To keep the entire forest inventory updated each year, the mea-
surements based on logging data and growth models were updated annually. The latter
process was executed using the Datenspeicher Wald 2 (DSW2) software.

As mentioned in Section 4.1, the Thuringian Forest is owned by several entities, such
as the government, societies, private individuals and other particular owners. It may be
mentioned that TLWJF undertook the responsibility of forest management only in the
forest stands owned by the German authority. Therefore, the forests controlled by the
government were regularly updated, and the corresponding data were much more reliable
than the forests belonging to private individuals or other owners. Owing to data policies,
the forest inventory delivered by the TLWJF consisted of only ’Staatswald’, i.e. forest
stands owned by the German government.

In addition to the forest inventory, information about Kyrill-damaged areas (see Sec-
tion 4.1) was collected and provided in the form of a vector map.

Forest inventory acquisition specificities

The TLWJF institution defined measurement methodologies for the foresters for op-
eration in the forest stands. The procedure followed on the terrain was as follows. The
forester first located a forest stand and selected the number and size of circular plots to
be measured in that stand. The plots represent the samples of the stand. Their number
and size depend on the homogeneity of the stand and visibility in the stand. Visibility
plays an important role, as for each tree, the forester needs to observe several parameters
from the central location of the plot. For example, owing to its dense branches, a young
regenerating stand provides reduced visibility, thus leading to the necessity of increasing
the number of plots and also reducing their size. Generally, two or three plots with radii
of 25m to 30m are subjectively chosen for intermediate sizes (1ha to 2ha) and relative
homogenous stands. The number and size of plots are required to be such that a surface
of approximately 0.25ha and 1ha is covered for young and mature stands, respectively.
After reaching a given plot, the forester located and marked the plot centre and delim-
itated the trees out of the circular plot. Distance measurements were performed with a
laser Vertex hypsometer instrument.
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The DBH and height are mainly required to evaluate the GSV in a stand (see Section
3). In the Thuringian Forest inventory, the DBH parameter was derived from the basal
area. The method used by the foresters in the Thuringian Forest is based on the Bitterlich
approach, in reference to Walter Bitterlich who developed it. It involves the use of a gauge
having a known width; this gauge is held at a fixed distance from the eye. The forester
turned around from the centre of the plot and counted each tree which appeared wider
(at breast height) than the width of the gauge. If a tree appeared to be wider, it was
considered as 'in” and counted as '1’. If a tree appeared to have exactly the same width
as that of the gauge, it was then counted as ’/2". Trees appearing to be smaller than the
gauge width were ignored. The total count was multiplied by the 'factor’ of the gauge
in order to obtain the basal area per hectare (see Equation (3.5)) and determine the
quadratic mean diameter of the plots. This method was used because it is fast to set up
and meets the accuracy required for forestry activities. To retrieve the stand height, the
foresters selected 15 to 20 trees in a plot and measured their height. The selection usually
included at best the smallest and largest diameter trees. The height mensurations were
performed with a clinometer, which enabled rapid and accurate height measurements. In
a further stage, the trees’ heights were plotted against their respective DBH values for
regression analysis and in order to compute the height curve, from which the mid-height
of the plot can be subsequently obtained. Once the DBH and mid-height were known
for the different plots, the average plot values for each parameter were computed, and the
GSV was evaluated using the allometric relation provided in Equation (3.3).

In addition to the stand surface, basal area, DB H and height, which are the parameters
used for deriving the stand GSV, the Thuringian Forest inventory possess considerable
additional information relevant to gaining an understanding of the stands in the forest.
The age, relative stocking, tree species composition, tree species fraction, acquisition date
and vertical-layer structuration of the stands were all terrain-observed attributes, which
had been registered by foresters. This information was directly inscribed in a working
protocol, which was served at the office for the implementation of the data on a GIS
system.

As mentioned above, the foresters’ field campaigns for data acquisition were conducted
during the vegetative period. Subsequently, foresters started the digitalisation task for
the delineation of the forest stand. Vectorisation involved correcting or adding the limits
of the stands. Several additional bits of information such as aerial digital images and
terrestrial GPS measurements were used. The aerial photos were analysed before the field
surveys were performed so that the potential new stand boundaries were easily validated
and/or adjusted.

Forest inventory accuracy

The forest inventory GSV value accuracy was estimated for approximately 20% of the
measured GSV (Chamara, 2009), and the georeferencing accuracy of the stands was up
to 10m (Chamara, 2009). The inaccuracies in the GSV values were essentially sources of
basal area measurements. Indeed, the Bitterlich method mainly depends on the subjective
appreciation of the forester and can therefore lead to over- or underestimation of the
basal area. Other errors contributing to the 20% error in the GSV were related to post-
treatment procedures. For example, while the forest height was measured at mid-height,
the DSW2 software in this study was based on the top height for actualizing the stands
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parameters. Further information about the errors of the forest inventory is provided in
(Grassmann, 2012).

4.2.2 Satellite data

The spaceborne data for this study were collected by L-band systems with ALOS PALSAR
and X-band systems with TSX, TDX and CSK. Table 4.1 briefly summarises the available
radar data used in this study.

Table 4.1: Summary of SAR spaceborne acquisitions.

Beam . Incidence Nbr. of
Sensor  Frequency Polarisation
mode angle scenes
PALSAR  L-band FBS HH 39° 51
PALSAR  L-band FBD HH/HV 39° 60
PALSAR  L-band PLR HH/HV/VH/VV 24° 13
TSX X-band HS HH, VV, HH/VV 20°-50° 41
TSX X-band SL HH, VV, HH/VV 20°-50° 9
TSX X-band SM  HH/HV, HH/VV, VV/VH  20°-50° 18
CSK X-band SM HH 20°-50° 26
TDX X-band SM HH 38° 4
Total 222

As seen in Table 4.1, 222 radar acquisitions were available for the investigations. It
should be noted that the datasets covered different regions of the test site. Among avail-
able acquisitions, time-series data were requested. A visual representation of the data
frames over the test site and a temporal representation of the data are provided in Ap-
pendix A.2.

The time-series acquisitions pertained to vegetation—phenology investigations and were
also used for the application of interferometric techniques. Table 4.2 summarises the
available data, which could be used for the study of InSAR in the Thuringian Forest.

Table 4.2 indicates that six different acquisition configurations were available for exam-
ining the interferometric phase. These configurations included 46 days repeat-pass L-band
frequency with PALSAR sensor as well as single-pass, 1 day and 11 days repeat-pass X-
band frequency configurations with TDX, CSK, and TSX instruments, respectively. The
perpendicular baseline ranges for PALSAR were between 11 m and 3874 m, while for TSX,
CSK and TDX the normal baseline ranges were between 2m and 296 m. When the per-
pendicular baselines were compared with the critical baselines, it was observed that the
L-band baselines consisted of more than 10% of the critical baseline, reaching up to 50%
with the normal baseline measured at 3874 m in the FBD configuration. In contrast to
the L-band, the X-band baselines remained below 10% of the critical baseline. It should
also be noted that owing to the varying incidence angles, the critical baselines for TSX
and CSK were in the range 3km to 9km and 2km to 9km, respectively. The different
datasets summarised in Tables 4.1 and 4.2 are further described below, and a detailed
representation of the geometrical and temporal baselines for the available interferometric
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Table 4.2: Summary of interferometric SAR spaceborne acquisitions.

Beam .. Incidence  Temporal Normal Critical Nbr. of

Sensor Polarisation . . . .
mode angle baseline baseline baseline  pairs

(°) (days) (m) (km) (-)
PALSAR FBS HH 39° 46 days 11-1706 15.7 12
PALSAR FBD HH/HV 39° 46 days 67-3874 7.8 24
PALSAR PLR HH/HV/VH/VV 24° 46 days 359-362 3.7 2
TSX HS HH, VV 20°-50° 11 days 28-209  3.1-8.8 10
CSK SM HH 20°-50° 1 day 2-296 1.8-8.6 13
TDX SM HH 38° single-pass 259 7.9 4
Total 65

acquisitions is provided in Appendix A.2.

ALOS PALSAR scenes

Following an acquisition strategy elaborated before the launch of the satellite, the
L-band ALOS PALSAR sensor has been systematically acquiring images spanning the
Thuringian Forest. The data were acquired between 2006 and 2009 in three different
operation modes, namely FBS, FBD and PLR. The three modes were operated during
the ascending pass. During this study, 51 FBS, 60 FBD and 13 PLR scenes had been
provided by the Japan Aerospace Exploration Agency (JAXA). FBS data were acquired
during winter in HH polarisation at an incidence angle of about 39°, while FBD data
were measured during summer in HH and HV polarisations with an incidence angle of
approximately 39°. It should be noted that FBS data acquired at an incidence angle of
about 47° were also collected by ALOS PALSAR. However, this data was declared by
JAXA to be unusable because of ambiguities in the range direction (ESA, 2007). This
piece of data was not considered in this study and was not accounted for in Tables 4.1 and
4.2. Given the consistent acquisition plan elaborated by JAXA, FBS and FBD footprints
consisted of eight equivalent frames distributed over the test site in a 2lines x 4 columns
configuration (see Appendix A.2). Each frame, which is 65km wide and 55km long,
covered a part of the test site and overlapped in the longitude direction of about 30 km
(see Appendix A.2). The PLR scenes were acquired during spring at an incidence angle
of about 24° with full polarisation (i.e. HH, VV, HV and VH). The footprints with length
and size of 25km and 65 km, respectively, were distinguished in 5 different frames (see
Appendix A.2). ALOS PALSAR images were ordered pre-processed to level 1.1 in the
single look complex (SLC) format. The bandwidths of the data were 14, 28 and 14 MHz
for FBD, FBS and PLR modes, respectively.

TerraSAR-X scenes

TSX acquisitions were performed over the Thuringian Forest spanning two different
years, namely 2009 and 2010. The TSX dataset consisted of 41 HS, 9 SL and 18 SM
scenes acquired in different passes and look angle configurations. Because the TSX is
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capable of measuring a spatial resolution of up to 1 m, emphasis was placed on the HS
mode with dual polarisation. This configuration allowed investigations of different po-
larisations at extremely high spatial resolutions. It should be noted that the HS mode
allowed acquisitions only for HH and VV polarisations, while the SM mode permitted
cross-polarisation acquisitions. The TSX satellite was developped for both scientific and
commercial utilisation. The performed acquisition orders were in some cases cancelled
owing to order conflicts with users having a higher priority. Consequently, the acquisition
plan was updated during the survey period with a consideration of the cancelled orders
and the availability of limited relative orbits. The positions of the T'SX frames were chosen
on the basis of the objectives of this study. The coverage of the dominant species, recent
forest stands and wide spatial extension over the test site (see TSX frames in Appendix
A.2) were given primary importance. Furthermore, to analyze the phenological character-
istics of the forest, time-series acquisitions were performed. TSX datasets were ordered
in the SLC format at processed level 1A with precise orbit computation and bandwidth
of 150 MHz.

Cosmo-SkyMed scenes

CSK acquisitions were undertaken over the selected test site. With the benefit of the
CSK constellation system (see Section 1.2), 26 datasets representing 13 interferometric
pairs with a 1-day repeat-pass were ordered. The data were acquired in HH polarisation
with the Himage Ping Pong SM mode. The acquisitions were performed between 2010 and
2011. The scenes were delivered for various incidence angle and pass direction configura-
tions. The frame centre of the acquisitions was defined near Schmiedefeld am Rennsteig
in the Thuringian Forest (see Appendix A.2). With a footprint of 30 km x 30 km, this
location was shown to have a large amount of spruces, beeches and pines in the same
frame. CSK interferometric data were delivered in SLC format at level 1A — SCSB and
with a bandwidth of 72 MHz.

TanDEM-X scenes

With the recent launch of TDX, interferometric acquisitions using both TDX and
TSX in a single pass were possible. Thus, when TDX acquisitions are mentioned below,
if not explicitly mentioned, they refer to TSX and TDX interferometric pairs. Four
interferometric acquisitions were undertaken with TDX over the Thuringian test site.
The acquisitions consisted of four scenes measured successively on 30" August 2011 with
an incidence angle of approximately 38° in the ascending pass and bistatic mode. The
first frame was located in the South of the Thuringian Forest, while the last frame was
acquired from the North of the site. TDX acquisitions were ordered in the SM mode, HH
polarisation and with a bandwidth of 150 MHz. The interferometric data were delivered
in level 1A in the SLC format.

4.2.3 Ancillary data

To support processing and analysis of the satellite data, some auxiliary datasets have been
ordered. The Landesamt fiir Vermessung und Geoinformation (TLVermGEO) delivered
LiDAR ground/non ground Earth points data which were acquired during an Airborne
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Laser scanning campaign operated in 2003 and 2004. Several series of the Airborne Laser
Terrain Mappers (ALTM) instrument were used for the surveys. With a flight altitude of
1000m, the density of the points ranged between 0.69 ptsm—2 and 1.09 pts m~2, leading
to a grid sample dimension (GSD) approaching 1 m. The precision of the footprints was
50cm for flat areas. The acquisition of laser points permitted to derive a 5-m digital
elevation model (DEM) and digital surface model (DSM) over the entire test site. In
addition to LiDAR data, the TLVermGEO delivered digital orthophotos, which were
acquired between 2007 and 2008. The data consisted of RGB images covering regions
with an area of 2km? x 2km? with a spatial resolution of 20 cm. The orthophotos were
used at a further stage for collecting ROIs over different landcovers. Five landcover classes
were established, namely crop, forest, open area, urban and water (see Section 4.3). As
mentioned in Section 4, the topography of the Thuringian Forest played a significant role
in recording the weather conditions in the test site. Thus, several hydrological studies were
conducted in the region, and many weather stations were distributed all over the site. In
the framework of this study, approximately 200 weather stations were used to obtain
information about the weather conditions in different parts of the test site. The weather
stations consisted of individual or climate (i.e. including several measured parameters)
stations, which measured precipitation, air temperature, wind speed, sunshine duration,
air relative humidity, snow depth and equivalent snow water. The acquired weather
data had the same time interval range as that of the satellite data (2006 —2012) and was
obtained at a daily and hourly frequency. The delivered weather data was operated by the
'‘Deutscher Wetterdienst’ (DWD) and was in the form of .xml files. Further information
regarding the weather data is provided in Section 4.3. To assess the quality of the forest
inventory and obtain a better insight into the forest, forest campaigns were undertaken.
Totally, 21 selected forest stands were measured and 20 other selected stands were visited
for ground-level observations. Each measured and visited stand was documented using
both photographs and GPS measurements. The measurements included specific forest
height and DBH for computing the GSV values. The results of the measured stands are
provided in Section 4.3.

4.3 Data pre-processing

4.3.1 Forest stands

The pre-processing of the forest stands involved three topics: selection of reliable stands,
preliminary investigations of the available biophysical parameters and assessment of the
forest inventory quality. These different elements are discussed in the present subsection.

Selection of reliable forest stands

The forest inventory was created by foresters for forest-management and industrial
activities. To fulfil the aims of this study, it was necessary to perform pre-processing on
the inventory. The steps and criteria applied for processing the forest inventory data are
summarised below:

e Projection conversion and datum transformation;

e Kyrill-damaged areas;
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Stands erosion (25m);

Acquisition date > 1.01.2000;

GSV > 750m3ha;

Single canopy layer (BEART = 1).
e Forest division (BESTAND = 1).

First, the inventory was converted from Potsdam datum and Gauss-Kriiger projection
to UTM 32 (North) projection, which is based on the WGS84 ellipsoid. Then, the stands
intersecting with the Kyrill-damaged areas were removed using the digitalised damage
map delivered by the foresters. A comparison of the stands with the available digital
orthophotos showed that the damaged areas appeared to affect not only the underlying
stand but also the surrounding ones (Figure 4.2), justifying the choice of an intersect
function for this process. Owing to the spatial inaccuracy of the forest inventory, the
border of the stands may not correspond to the real forest stand limits, leading to potential
artefacts when comparing the stands with the satellite data. After overlapping the forest
stands with the satellite images and additional data sources (i.e. digital orthophotos),
it was established that 25-m erosion of the stand border should be sufficient to avoid
this effect. It should be noted that 25m correspond to 1 pixel for the least-processed
spatial resolution of the available satellite datasets (PALSAR FBD and PLR data). It
should also be noted that selection of 50-m erosion would have substantially limited the
number of available stands. The forester commenced recording measurements in 1989.
Although updates of the old measurements using growing models and logging data could
be performed (see Section 4.2), it was preferable to limit the investigations to the forest
stands measured after the year 2000. Consequently, forest stands acquired before the
millennium were removed from the forest inventory. This criterion limited the number
of potential errors associated with the stands acquired much earlier than the satellite
data. The forest inventory contained non-systematic errors introduced particularly during
the digitalisation of the forest measurements. As a consequence, stands with a GSV
lying outside the range 0m3ha~! to 750m?®ha~! were considered to be unrealistic and
were, therefore, removed from the inventory. Some forest stands included GSV values
of 0m®ha~!. These stands referred to forested areas which effectively contained forests
but were not measured because the DBH of the trees was below 7cm. Forest stands
with GSV = 0 were removed from the selection, as no information about these forests
were available. With respect to the BEART attribute, most of the forest stands in the
Thuringian Forest were found to present no tree undergrowth, but a few stands clearly
depicted two or more canopy layers. To avoid the mixing of the radar signal from the
primary canopy with that of the understory, stands with multiple layers were removed
from the selection of stands. As mentioned above, the smallest established forest division
refers to the TF L, which may not always be assimiled into a forest stand. To remove
potential uneven-aged forests, forest stands with BESTAND = 1 were selected.

In addition to the selected stand parameters defined above, it was necessary to consider
two final criteria, one referring to the homogeneity of the stands and another to the
processed spatial resolution of the radar data. The criteria needed to be considered with
a tradeoff between the number of available stands and the quality of the stands. Taking



112 Chapter 4 : Test site, data and methods

Figure 4.2: Visualisation of Kyrill-damaged areas with (a) a digital orthophoto (red areas)
and (b) a corresponding ground level picture. The forest stands’ borders are overlaid on the
orthophoto in blue and yellow for spruce and beech tree species compositions, respectively. The
orthophoto was acquired on the 28" April 2008 after the passage of Kyrill. The damaged area
is located nearby Frauenwald (50° 36.233’N, 10° 52.900’E).

into account that each species presented a different number of stands and each scene
covered a different part of the forest inventory and the radar datasets were processed at
different spatial resolutions, several forest inventories with different limited stand sizes
and homogeneity parameters were created. Table 4.3 presents the different processed
inventories and their related criteria.

Table 4.3: Definition of the stand size (AREA), dominant species percentage (BAAN) and
relative stocking (V' G) parameters for the three species and different remote sensing datasets
investigated in this study.

Sensor — Processed Tree Stand ~ Dominant species Relative
Beam mode spatial species size percentage stocking

resolution composition (ARFEA) (BAAN) (V@G)

(m) (ha) (-)

TSX, CSK, TDX 10 Spruce 0.5 0.8 0.8-1.3
Beech, Pine 0.25 0.4 0.4-1.3

PALSAR FBS 12.5 Spruce 1 0.8 0.6-1.3
Beech, Pine 0.5 0.4 0.4-1.3

PALSAR FBD, PLR 25 Spruce 2 0.8 0.6-1.3
Beech, Pine 1 0.4 0.4-1.3

As shown in Table 4.3, the parameters used for representing the quality of the stands
were minimum stand size, dominant species percentage (BAAN) and relative stocking
(V@). These two parameters were considered to determine the homogeneity of the stands.

To determine the size of the stands, the forest inventory and satellite data were com-
pared by extracting the pixels given within the stands (see Section 4.4). To improve the



4.3 Data pre-processing 113

radar statistics derived from the stands, it is generally recommended to work with large
forest stands, especially when the spatial resolution of the radar data is low. The size of
the forest inventory stands ranges between 0.1 ha and 35 ha, with majority of the stands
having an area below 5ha. Thus, selecting forest stands larger than 5ha would seriously
limit the number of available stands. As shown in Table 4.3, the SAR datasets were pre-
processed at 10, 12.5 and 25 m for the X-band sensors TSX, TDX and CSK, the L-band
PALSAR FBS data and the L-band PALSAR FBD and PLR data, respectively. On the
basis of the size of the stand and the radar pre-processed spatial resolutions, in the case
of spruce, the minimum stand sizes of 0.5, 1 and 2 ha were set for spatial resolutions of
10, 12.5 and 25 m, respectively, and for beech and pine 0.25, 0.5 and 1 ha for spatial
resolutions of 10, 12.5 and 25 m pre-processed, respectively. These sizes corresponded
to at least 30 pixels for spruce stands and 15 pixels for beech and pine stands and thus
led to a good tradeoff between the reliability of the statistics and the available number of
stands. It should be noted that the number of pixels was separately considered for spruce,
beech and pine because the number of stands varied between the species. In particular,
a greater number of spruce stands were available compared to beech and pine. It should
also be noted that the stand size did not refer to the original size of the stands but to
the buffered size, as the buffered stands were used for the comparison between the forest
parameters and satellite data.

Considering the BAAN, this attribute required selection of values close to 1. Indeed,
a BAAN of 1 would indicate a single tree species composition within a stand, while a
BAAN of 0.5 would indicate the occupation of half of the stand by secondary species. As
shown in Table 4.3, the BAAN was fixed to 0.8 for spruce species, while it was 0.4 for
beech and pine species. As for the minimum stand size parameter, the values assigned to
spruce were different from those assigned to beech and pine in order to obtain an adequate
number of stands while maintaining the reliability of the stands.

With reference to the relative stocking parameter, this parameter may be used to
control the relative distribution of the trees in a stand. For a full stocked forest (VG = 1),
the stands are per definition (see Section 3.1) at their optimal GSV capacity, indicating
that the stands’ conditions are optimal for tree growth. Thus, in this case, it can be
assumed that the spaces between the trees would tend to be equal and the forest would
be homogenously distributed. However, for an understocked forest (VG < 1), the optimal
capacity of the stands in terms of GSV is not achieved, suggesting that the stands’
conditions can be potentially improved. Thus, it is assumed that the number of trees
present in the stand can be increased in this case, or the distribution of the trees is not
optimal. Therefore, to improve the reliability of the stands, it is recommended to choose
a relative stocking close to the fully stocked conditions, i.e. VG close to 1. As described
in Table 4.3, the relative stocking parameter was limited to the range 0.6 to 1.3 for spruce
and 0.4 to 1.3 for beech and pines. The relative stocking was more relaxed for European
Beech and Scots Pines as compared to spruce so that a greater number of these stands
could be included in the analysis. It should be noted that the inventory corresponding
to the spatial resolution of 10 m showed a large number of stands compared to the other
inventories. In the latter case, the relative stocking of spruce was chosen to be between
0.8 and 1.3.

After the application of the different criteria, the number of forest stands initially
available was considerably reduced. At this stage, to preserve the characteristics of the
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Thuringian Forest, it is important to ensure that the statistics, especially the relative GSV
distribution of the initial inventory, were not altered. Figure 4.3 depicts the percentage of
available stands as a function of GSV for the composition of three tree species investigated
in this study.
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Figure 4.3: Comparison of the GSV distribution between the delivered forest inventory and the
different processed inventories for spruce, beech and pine species. Solid dotted curve depicts
the original inventory, dotted curve represents the stands selected for the remote sensing data
processed at a spatial resolution of 25 m, dashed curve represents the stands selected for a 12.5-m
resolution and solid curve the stands selected for a 10-m spatial resolution.

Figure 4.3 suggests the large range of GSV, especially for spruce and beech with
values up to 750 m® ha=!, compared to pine, which has values in the range 0m?3ha=! to
400 m® ha~!. Comparing the G'SV ranges from the Thuringian Forest with the ones from
other forests both in and outside Europe, they are uncommonly large (Pulliainen et al.,
1996). This large range may be explained by the optimal growing conditions found in the
Thuringian Forest as well as by the management practices followed in Germany. With the
comparison of the selected and the overall available stands for each species, the selected
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stands appear to have a distribution equivalent to that of the stands of the original forest
inventory (solid dotted curves). The shape of the curves appears to follow a normal
distribution with a slight break around 150 m?®ha~!, which showed a relative decrease in
the number of stands. The mean values were approximatively 350, 350 and 300 m?ha™!
for spruce, beech and pine, respectively, which correspond to values of mature stands.
For all species, the percentage of young forest being regrown (0m?ha™! to 100 m®ha™1)
appeared to be lower than the proportion of mature stands (100 m®ha™" to 400 m® ha™').
However, the number of stands with low GSV remained sufficient for the investigations.

Biophysical properties of the Thuringian Forest

As described in Section 3, the derivation of GSV from field measurements follows an
allometric relation which includes forest height and basal area. This relation primarily
depends on the characteristic of the tree species. Thus, it may be significant to estab-
lish a comparison among these biophysical parameters and among each species on the
basis of these parameters. Figure 4.4 depicts the relationship between the different forest
biophysical parameters of the Thuringian Forest.

In Figure 4.4, it was observed that the parameters are generally well-correlated. Plot
(a) shows that the forest height and forest age are exponentially increasing. Comparing
the different species present in this plot, it is also observed that beech becomes older
and higher than spruce and pine. However, as shown by the yellow cloud relative to the
blue and red clouds of points, in the first 50 years, compared to the other two conifers,
beech requires more time to grow. In considering plot (b) from Figure 4.4, the increase
in GSV becomes limited at around 75years for the three species under investigation.
In other words, the species attain their mature height and DBH after around 75 years.
From plot (c), it was observed that the basal area depicts a logarithmic relation with
GSV. The species on plot (¢) must be compared with those on plot (d). Indeed, the
basal area and height show clearly opposing trends when compared with GSV for the
different species. The basal area of pine and beech rapidly increases in the first stages
of development (GSV < 100 m® ha™!). The basal area of spruce increases at a moderate
rate compared to the two other species. In terms of height, the composition of the three
tree species depicts equivalent growth rates in the initial stages of developpment. After
reaching 100 m® ha=!, spruce gains a larger basal area compared to beech; however, the
increase in the basal area of spruce is offset by a decrease in height compared to beech.
Thus, while beech gains in volume, its density (i.e. basal area) decreases and its height
increases. Conversely, while spruce gains in volume, its height decreases and its density
increases. As a consequence, mature beeches and spruces present different structures.
Section 5.2 shows that this information is key to interpreting the radar signal.

Although the basal area provides information about the density of the trees in a stand,
it may be easier to interpret the density parameter of the stand. Stand density (N),
expressed in trees/ha, was not available in the forest inventory, but it could be calculated
using the basal area and DBH. The density was then plotted against GSV', as shown in
Figure 4.5.

Figure 4.5 shows that the density generally decreases with GSV. The highest den-
sity is mainly shown for beech and pine with more than 2000 trees ha™=!, while the lowest
density is essentially depicted by beech with less than 250 treesha™. Assuming a uni-
form distribution of the trees on the stand, 2000 trees ha=! and 500 trees ha™! would be
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Figure 4.4: Comparisons of the Thuringian Forest biophysical parameters for different compo-
sitions of tree species with (a) forest height vs. forest age, (b) forest GSV vs. forest age, (c)
forest GSV vs. forest basal area and (d) forest GSV vs. forest height. The spruce, beech and
pine tree species compositions are depicted in blue, yellow and red, respectively.

equivalent to the respective distances of 2.2m and 6.3 m between each tree. In the range
400m?® ha! to 600 m® ha™! (mature stands), beech shows a smaller density than spruce.

The physiology of a forest may be significantly influenced by the topography of the
terrain (see Chapter 3 and Section 4.1). In this context, the parameters of the forest
stands of the Thuringian Forest were analysed with the rough terrain of the site. For
this purpose, polar plots displaying the GSV on the radius, the aspect of the terrain
on the circumference and slope classes represented by different colours were computed.
Figure A.18 in Appendix A.6 depicts the polar plots created for (a) spruce, (b) beech and
(c) pine species. On comparing the polar plots, it is generally observed that pines are
located mainly on flat areas, while spruce and particularly beech are mostly present on
hilly terrain. As introduced in Section 4.1, the beech species require well-drained soils,
which is why they are predominately found on topographic areas. Also, the pine plot
indicates that pines growing over sloped areas are located mainly at orientations ranging
from 60° to 330°. This indicates the lower tolerance of pines to the shaded areas described
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Figure 4.5: Comparison of forest GSV with stem density. Spruce, beech and pine tree species
compositions are depicted in blue, yellow and red, respectively.

in Section 4.1. Polar plots were also obtained using forest height, basal area and other
forest parameters, but no specific phenomena could be observed.

As introduced in Chapter 3, both topography and wind modify the cross-sectional
shape of the tree trunks. To investigate wind loading and slope effects on the eccentricity
of trunks, the D BH parameter of trees should be retrieved with two orthogonal measures,
one parallel and another perpendicular to the prevailing wind and slope orientation. Un-
fortunately, such information was not retrieved and was also not available in the forest
inventory.

Quality assessment of GSV in forest inventory

After selecting the stands on the basis of the criteria defined earlier in this subsection,
comparisons with orthophotos were established. The comparisons were performed for
three parameters, forest height, basal area and forest homogeneity. The observations
showed first that the inventory border of forest stands appropriately delimited the stands.
The comparison results showed that the observed homogeneity almost completely agreed
with the BAAN parameter provided in the forest inventory. However, forest height and
basal area were different from the forest inventory; this difference amounted to 40% in
some cases. Although orthophotos provided reliable observations of the forest, it should be
noted that these observations remain subjective. Moreover, the acquisition time between
the orthophotos and the forest stands differed in some cases, ranging from 1 to 5 years.
Therefore, although the comparisons provided a good first indication about the quality of
the forest inventory, caution should be taken while considering these results.

To obtain a better evaluation of the forest inventory quality, forest campaigns with
external measurements were organised. Two types of campaigns were performed. One
campaign concentrated on gaining an understanding of the Thuringian Forest, especially
young regenerative forests, and the other campaign focused on measurements of the forest
stands.

The first campaign involved a two-day visit of 20 forest stands. Appendix A.3 describes
a list of the visited stands. The study involved gaining an insight into the forest by iden-
tifying and documenting relevant characteristics of young regenerative forest stands. The



118 Chapter 4 : Test site, data and methods

observations essentially provided two sets of information. First, the young forest stands
in particular presented extremely dense forests, and in such conditions, light penetration
was significantly reduced. Second, the forest floor of the young forests consisted mainly of
bare soils with dispersion of dead woods, which was due to the forest density and reduced
penetration of light as well as species-specific tolerances to shadow and soil conditions.
Finally, on comparing the species, it was noted that the branches of spruces were directed
orthogonally towards the trunk, while the beeches’ branches were directed mainly towards
the sky at 45° to 90°. It was also noted that dead branches were clearly present along
spruces’ trunks, as opposed to the case of pines and beeches.

The project which aimed to evaluate forest stands involved three different campaigns,
which were performed in 2009, 2010 and 2011. These campaigns were organised in col-
laboration with the Fachhochschule Erfurt (FHE) and constituted a Bachelor Thesis in
the field of forestry and ecosystems management (Grassmann, 2012). The measurements
involved determining the GSV for the selected forest stands. For this purpose, the proce-
dure described in Section 4.2 was followed considering a few modifications. The differences
concerned essentially the DBH and basal area determinations. In the case of the forest
campaign, DBH was measured for each tree inside the delimited plot by taking samples
using a calliper, and the basal area was then calculated from the DBH measurements.
In contrast, the foresters measured the basal area using the Bitterlich method introduced
in Section 4.2 and calculated the DBH parameter. The calliper method was chosen for
the campaigns, as it was more accurate than the Bitterlich method. Once the required
forest parameters were measured, post-treatments were performed, particularly by com-
puting GSV using the BWIN pro v.6.3 software. The resulting GSV measurements are
summarised and compared to two different forest inventories, namely one with (DSW2)
and the other without (DSW1) actualisation of the forest stands. Figure 4.6 depicts the
different GSV values as scatterplots with (a) GSVpswi vs. GSVpswa, (b) GSVpswi vs.
GS‘/Campaign and (C) GSVDSW2 V8. GS‘/campaign-
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Figure 4.6: Comparisons of forest stands’ GSV values among the provided forest inventory ex-
cluding actualisation of the stands (GSVpgsw1), that includes updates on the stands (GSVpsw2)
and measurements undertaken in forest campaigns (GSVeampaign). The actualisation of the
stands with DSW2 included corrections using growing models and logging data.

On comparing the GSV values for the two provided forest inventories in Figure 4.6
(a), it is observed that with a few exceptions, the GSV values from the updated forest
inventory are slightly higher than those from the non-actualised inventory. However, the
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difference remains insignificant. Plots (b) and (c) in Figure 4.6 indicate that the GSV
values measured during the campaigns are approximately 100 m® ha~! higher than those
provided by the inventories. This difference is significant. The fact that most of the GSV
values in the campaigns are higher than those in the inventories may indicate a systematic
error. This error may be related to the slightly different methods used for obtaining the
GSV of the forest stands. It should be noted that the measurements of the stands for
the campaigns and inventories were undertaken at various epochs and for various species
of trees (see Appendix A.3). Therefore, some points on the scatterplots in Figure 4.6 are
expected to be dispersed.

According to the conclusions in Grassmann 2012, the relevant differences shown in
Figure 4.6 (b) and (c) between the campaigns and G'SV inventories may have been re-
lated to the inclusion of several inaccuracies in the measurements. In particular, the forest
campaign performed in 2010 excluded the slope inclination for the correction of the height
measurements on a hilly terrain and evaluation of the surface of the plots. These param-
eters were assessed during post-treatments with a local DEM and by considering the size
and homogeneity of the stands, respectively. Moreover, as mentioned in Section 4.2, forest
reference heights were based on the top stand heights obtained from the DSW2 software,
while foresters measured the mid-height. Further details are provided in Grassmann 2012.

4.3.2 Regions of interest (ROIs)

As introduced in Section 4.2, on the basis of digital orthophoto observations, ROIs of
several landcover classes were collected in a database. The landcover information was
required in this study to investigate the identification of forested areas and compare
the radar signals obtained from forests and land classes, such as open areas. Overall,
five different landcovers were selected, crop, forest, open area (grass), urban and water.
The five selected landcovers were distributed throughout the test site. Crops were mostly
located on the Thuringian Plateau, while forests were found mainly in the South, where the
topographic areas covered Thuringia. Open areas were characterised by grasslands such
as meadows. Urban regions consisted of small villages in the South and cities in the North
of the site such as Erfurt, [llmenau, Jena and Weimar. Finally, the class water essentially
described the supply of drinking water and electricity by artificial lakes to the Thuringian
region. It should be noted that the forest class was not based on orthophoto observations
but on the pre-processed forest inventory, as the latter data provided information about
forests. An overview of the selected ROIs is given in Appendix A.4.

4.3.3 Weather data

The weather data acquired in the Thuringian Forest was delivered for each weather param-
eter in the form of XML files with measurements given for every station. The objective of
weather data pre-processing was to be able to compare the satellite data with the weather
conditions occurring at the time of the SAR acquisitions. For this purpose, the J2k module
developed on the Jena Adaptable Modelling System (JAMS) software at the University
of Jena as well as implemented IDL scripts was used. The procedure included several
processing steps leading to the regionalisation of weather data over the entire Thuringian
state. The regionalisation process consisted of a simple inverse distance weight (IDW)
kriging, which considered a DEM (SRTM) to correct the regionalisation of the weather
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parameters with the topography. To provide boundary conditions to the regionalisation
process, an area larger than Thuringia was considered. Also, regionalisation was processed
at a pixel size of 90m. Considering the distances between the weather stations and the
spatial resolution of SRTM, this spatial resolution was optimal in terms of the processing
time and accuracy of the regionalisation.

After regionalizing the weather data, statistics such as mean and standard deviation
could be extracted from the forest stands for each satellite acquisition. The statistics were
then stored in a database, which could be used for the investigations. The weather con-
ditions may influence the radar signal at different temporal scales. For example, wind is
a variable which may change every few hours, while precipitation is a variable which may
affect soil moisture conditions for several days. Thus, to analyse and consider weather
effects at different temporal scales, for each satellite acquisition, weather data obtained
from 4 hourly and 4 daily measurements were to be processed. Also, the weather measure-
ments of the daily weather stations were performed every day at 7.30 a.m. Because the
satellite data were acquired at different times each day, the last day of the 4-day weather
measurements was selected to be as close as possible to the satellite acquisition time. In
these terms, ALOS PALSAR was programmed for all ascending acquisitions to survey
over the Thuringian Forest at 9.30 p.m. on a specific day (d). The period considered for
the weather measurement then included the two days before satellite acquisition (d — 2)
until one day after satellite acquisition (d + 1). Moreover, the ascending acquisitions of
TSX were performed at around 6 a.m. Thus, in this case, the chosen period was 3 days
before satellite acquisition (d —3) up to the day of acquisition (d). This approach helps in
obtaining the weather data which are as close as possible to the actual weather conditions
for each satellite acquisition.

A summarised version of the processed weather database is provided in Appendix A.5.

4.3.4 SAR data pre-processing

Radar information such as backscatter intensity, SAR polarisation and interferometric
coherence were investigated in this study. As given below, the pre-processing of these
different data is described. An evaluation of the noise level on the processed datasets is
provided.

Backscattering intensity

As introduced in Section 4.2, the different spaceborne datasets were delivered in the
SLC format. To extract the backscatter intensity from the SLC data and make the radar
data comparable with each other and with the forest inventory, several steps were required.
These different steps conducted with the GAMMA software are presented below and are
depicted as a processing flowchart in Appendix A.7.

Calibration of the data was first processed using the calibration constant provided by
the different space agencies. In the case of ALOS PALSAR, the updated calibration con-
stants were considered for computing the calibration of the different PALSAR acquisition
modes (Shimada et al., 2009). In addition to calibration, the radiometry of the data was
converted from beta nought (%) to sigma nought (¢%) projection using the sine of the
incidence angle. Multi-looked intensities were then generated by applying multi-looking
factors. The latter were selected on the basis of the final spatial resolution to be achieved
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and the imaging SAR configuration (i.e. incidence angle, range and azimuth resolution).
The objectives of multi-looking are as follows: sufficiently reduce speckles while preserving
an adequate spatial resolution and get as close as possible to the defined final range and
azimuth spatial resolution for the geocoding process (see below). Appendix A.7 provides
a summary of the multi-looking factors used for the different datasets. It should be noted
that the range of multi-looking factors were calculated with a sin(f)~! component, which
enabled the consideration of the geometric projection from the slant to the ground range
with the SAR incidence angle 6. The final spatial resolution was defined on the basis
of the intrinsic SAR systems’ spatial resolutions. PALSAR FBD and PLR modes were
processed at 25 m, PALSAR FBS mode at 12.5m and TSX, TDX and CSK acquisitions
at 10m. Geocoding was finally executed using a lookup table and a simulated SAR image
generated from the available LIDAR 5m DEM and SAR geometry. The lookup table was
refined by generating a cross-correlation analysis between the SAR and the simulated SAR,
image (Wegmuller, 1998). After reaching sub-pixel accuracy, the refined lookup table was
used for geometric transformation and resampling of the SAR image to the DEM geom-
etry. The resampling was based on bilinear interpolation. The geocoding process, which
uses a simulated SAR image, is a fully automatic approach. To control the accuracy of
the process, the geocoding range and azimuth offsets were examined, and the standard
deviations of the range and azimuth were verified.

As mentioned in Section 4.1, the forested areas in the Thuringian Forest were located
mainly on hilly regions. Because SAR data encounter radiometric and geometric dis-
tortions with high topographic variations, some radiometric and geometric corrections,
including a DEM, were required. A normalisation process was considered by applying
corrections for the local incidence angle and the ground scattering area. Equation (4.1)
exposes the different parameters involved in the topographic normalisation process (Ulan-

der, 1996, Castel et al., 2001Db)
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Equation (4.1) describes the relative dependence of the backscattering coefficient v° on
several topography-related parameters. The cosine of the local incidence angle 6, corrects
the radiometry for local slopes and converts the data from sigma nought (¢°) to gamma
nought (1°), and the cosine of the incidence angle of reference 0 scales the data to the mid
swath incidence angle. The terms Ag,; and Agope represented a normalisation factor which
corrected for slopes towards or away from the radar (Ulander, 1996). The exponential
parameter n reflected the potential varying scattering contribution of the investigated
targets over hilly areas. In the case of bare surfaces, the n coefficient would take the
value 1. However, when considering a volume medium such as a forest canopy, the terrain
slope would modify the path length of the radar microwaves through the canopy, which
requires the consideration of a specific n coefficient value which would depend on the
environmental conditions as well as on the properties of the canopy.

Castel et al. 2001b suggested an approach for deriving the exponent n. The approach
involved relating the n coefficient as a function of the SAR acquisition geometry and
the optical depth of the canopy on the basis of RT equations and WCM. The relation is
described as follows:
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7= K. H, . (4.3)

The parameters a, b and ¢ are empirical variables derived for different SAR config-
urations. They depend on the SAR acquisition parameters (i.e. wavelength) and local
geometry. The optical path length 7 is derived from the product of the canopy coefficient
of extinction K, and the canopy crown height H.. These two biophysical parameters may
in turn be related to other variables. In particular, H. may depend on the local slope
and the tree height, while K, can be related to the tree structure and the environmental
weather conditions occurring during acquisition.

Although the computation of n may be performed directly from Equation (4.2), infor-
mation about the canopy, such as height and extinction coefficient, were required. These
data were not available in the Thuringian Forest inventory; thus, another approach for
the derivation of the n parameter was considered. The approach involved testing different
n coefficients by evaluating the coefficient of variation (C'V = o/u) of the amplitude until
its minimum was obtained. The n coefficient corresponding to the minimum C'V' could
then be successfully applied to the correction of the radar data.

As the final step of the topographic corrections, the areas presenting geometrical dis-
tortions (layover, foreshortening and shadows) were masked because these areas did not
possess valuable information.

Polarimetry

The two specific computations performed with polarimetric data were decomposition
of scattering mechanisms and azimuth-slope correction. The former was performed us-
ing the Yamaguchi decomposition algorithm presented in Chapter 3. Assuming a volume
filled with dipoles, this decomposition approach was designed for forest targets and should
therefore be suitable for the investigations conducted in this study. Azimuth-slope correc-
tion was performed with the method proposed by Lee et al. (see Chapter 3). The OA was
estimated from the polarimetric data using the circular polarisation technique. This ap-
proach was chosen because it showed a straightforward relationship with the investigated
data, and its effectiveness was demonstrated in several studies (Lee et al., 2004). The de-
composition of the scattering mechanisms and azimuth-slope corrections was performed
using the PolSARpro software (Pottier et al., 2009).

Interferometric coherence

The radar data presented in Section 4.2 included interferometric acquisitions. In this
regard, the interferometric coherence was examined in this study. The process of the
interferometric phase magnitude was performed with the GAMMA software using two
main sequences:
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1. SLC data co-registration

2. InSAR processing

The first step consisted of perfectly registering the two SLC images together. For this
purpose, a processing scheme using a lookup table was established. The lookup table
linked the geometries of the two SLC images and included offset corrections computed
from a DEM. Thus, the offsets due to the topography could be incorporated into the SLC
data registration. Similar to the geocoding of the SAR intensities, calibrated and multi-
looked images (MLIs) were first computed. The lookup table could be then generated
between the MLIs and refined using cross-correlation analysis between the two SAR im-
ages in a further stage. The refined lookup table could be finally applied to resample the
slave SLC image to the master one. Although the lookup table was refined and included
corrections for topography, some inaccuracies due to the DEM, orbit state vectors and
geocoding still remained. Therefore, a further refinement step consisting of estimating
the offsets between the master SLC image and the resampled SLC image was also con-
ducted. This co-registration processing methodology led to a variation which ranged from
0.05 to 0.1 subpixels, which represented a shift ranging between 50 cm and 1m for the
data processed at a spatial resolution of 10m. This very high accuracy was necessary for
reducing the spatial decorrelation from the end coherence magnitude product (Hansson,
2001, Massonnet and Souyris, 2008). The standard deviation constitutes an average value
encompassing the total offsets. The offsets may be large at some locations and low in other
locations of the images. Thus, although the standard deviations of the offsets are good
indicators of the general accuracy, caution must be paid while interpreting these values.
The second stage of the phase coherence magnitude computation included three steps.
The first one involved calculating the geometrical baselines between the two satellite ac-
quisitions. The estimations of the parallel and perpendicular baselines were performed
using the orbit states vector. The orbits of ALOS PALSAR, TSX, CSK and TDX were
sufficiently accurate for use in the calculation of the geometrical baseline. Once the base-
line was computed, an interferogram based on the co-registered SLC data was computed.
Additionally, a simulated (unflattened) interferogram was derived from the available Li-
DAR DEM. The simulated interferogram could then be subtracted from the interferogram
generated from the co-registered SLC images, thus resulting in a differential interferogram
that considers the topography-induced phase variations. The interferometric acquisitions
were performed with two measurements taken at slightly different angles, thus leading to
spatial decorrelation (see Chapter 3). To deal with this phenomenon, a common band
filtering approach, applied for the range and azimuth directions, was used prior to the
generation of the interferogram (Gatelli et al., 1994). It should be noted that the latter
corrections were performed adaptively using topographic information. At this stage of the
process, the differential interferogram presented residual systematic fringes resulting from
errors in the orbital state vectors. The spatial baseline was thus recalculated on the basis
of the differential interferogram fringes and was used to compute a new simulated interfer-
ogram. The latter could finally be subtracted from the differential interferogram to create
a differential interferogram free of topography-induced phase variations and systematic
errors. In the last stage of the InNSAR processing, the magnitude of the interferometric
phase was estimated. The calculation was performed using an adaptive window which
was adjusted to the local degree of coherence (Wegmuller, 1998). More specifically, the
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window size of the estimator was enlarged over low coherence values and reduced over
high coherence values. In the case of PALSAR data, the window was set to 3 x 3 and 5 x5
(range and azimuth) for the minimum and maximum sizes, respectively. For TSX, TDX
and CSK data, the window sizes were fixed to 3 x 3 and 7 x 7. In addition to the window
size, texture information derived from the SAR intensity was used to improve the estima-
tion of the coherence. The texture was computed with the C'V, allowing the distinction
between small inhomogeneous (high texture) and large homogenous (low texture) areas.
The texture could be used together with the estimator window size, constraining small
windows over small texturised areas. By referring to the window sizes, the choice of a
maximum size of 5 x 5 pixels for PALSAR and 7 x 7 for the X-band datasets was made in
order to not only achieve a good estimate of the coherence but also consider a sufficient
number of samples for limiting the coherence bias (see Section 3.2).

Noise evaluation

SAR systems are affected by speckle and several other noise sources such as thermal
noise. To avoid misinterpretation of the results, it is necessary to quantify noise. A
broad evaluation of the noise was performed in this study for the backscatter intensity
and interferometric coherence. For this, the SNR was considered. The equations for the
SNR calculations were introduced in Section 3.2. Moreover, as described in Section 3.2,
the ENL was used to evaluate the signals’ accuracy.

The SN R and ENL values were computed for the pre-processed SAR datasets showing
different acquisition configurations. The SN R was based on the NESZ provided by the
different space agencies in sigma nought projection (refer to JAXA 2012, Eineder et al.
2009, Fritz et al. 2012 and ASI 2007). Thus, to compare the signal of the pre-processed
datasets with the N ESZ, the pre-processing procedure described in Equation (3.21) was
applied to the provided NESZ values. The SN R computation led to SN R images with
NESZ values converted in gamma nought projection and included topographic correc-
tions based on the local incidence angle and pixel area.

The ENL values were computed using two different approaches. The first approach,
which was named for the purpose of this study, EN L, included statistics inferred from
the data (see Equation (3.24)). It should be recalled that this calculation assumed uniform
distributed areas and a normal distribution (Oliver and Quegan, 2004). SAR data usually
do not assume a Gaussian distribution, and some of the targets considered, such as crops,
may not fit the uniformity assumption, as they represent different growing stages. How-
ever, N L still provided a good way of comparing the signal accuracy between classes and
radar datasets. A varying number of pixels may influence the statistical ENL estimation.
Hence, to provide comparable E'N Ly values between classes and SAR datasets, a general
fixed number of 50 pixels per stand or ROIs were considered in this study for evaluating
the number of independent looks. Also, the number of available ROIs varied from class
to class. For instance, water or urban ROIs had a smaller number of ROIs than crops,
forests or open areas. When possible, a number of 100 ROIs were used for calculating the
ENL. When the number of ROIs available was smaller, the E'N Ly estimation accuracy
should be reduced. The second ENL calculation approach, referred to as ENL;, was a
purely theoretical approach. In this case, as presented in Equation (3.23), the principle
involved dividing the initial radar pixel spacing by the spatial resolution provided by the
space agencies and then multiplying it with the multi-looking factors and the number of
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pixels used during pre-processing of the data. The EN L, values may be considered as a
reference for the evaluation with N Lg of the accuracy of the radar signals.

In theory, the noise should be equivalent for different targets covering an image. How-
ever, the various scattering mechanisms often lead to great variations between the targets.
To analyse the noise level, 2D scatterplots with the SINR (dB) of the backscatter and in-
terferometric coherence (-) on the abscissa and ordinate, respectively, were obtained. The
investigations were focused on the selected ROIs showed in Appendix A.4. Figure 4.7
presents an illustration of the computed scatterplot for PALSAR FBD HH and TDX SM
HH data acquired on 10*" June/26'" July 2010 and on 30" August 2010, respectively. In
addition to SN R values, the theoretical curve (red function) based on Equation (3.23) is
displayed on the graphs to support the interpretations.
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Figure 4.7: SN R noise vs. interferometric coherence with (a) ALOS PALSAR FBD HH 39° Asc.
B, = 363m (frame FBD3) and (b) TDX SM HH 38° Asc. B, = 258 m (frame TDX3) data. The
PALSAR and TDX interferometric acquisitions were acquired on 10" June/ 26t July 2010 and
on 30" August 2010, respectively. The red curve describes the theoretical noise decorrelation
(vsnr)- The SN R values were calculated with the first acquisitions of the interferometric pairs.
The landcovers represent crops (yellow), forest (green), open areas (brown), urban (red) and
water (blue).

The scatterplots in Figure 4.7 indicate that the noise level varies significantly between
the different landcovers. The noise also appears to differ between sensors. On further
examination, it is observed that for PALSAR data, the noise is the greatest for water
(SNR = —5dB to 0dB) and then for crops and open areas (SNR = 0dB to 10dB)
followed by forest and urban areas (SNR = 10dB to 20dB). In contrast to PALSAR,
TDX depicted a high level of noise for water (SNR = 0dB to 5dB) and then for crops,
open areas and forest (SNR = 10dB to 15dB) followed by urban areas (SNR = 15dB
to 20dB). With reference to these observations, the noise level for PALSAR and TDX is
negligible for forests. This result may be explained by the high power caused by volume
scattering in the forested areas. In terms of decorrelation, according to the modelled SN R
(red curve), the noise decorrelation for forests is also of minor importance in PALSAR and
TDX configurations. However, with respect to the difference between the measured and
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the modelled coherence, for PALSAR and TDX, PALSAR, which has a larger difference,
appears to be significantly affected by other decorrelation sources such as temporal or
volume decorrelations. These elements will be addressed in more detail in Sections 5.1
and 5.3.

As mentioned above, general noise evaluation was performed on the overall available
sensor and acquisition configurations. Table 4.4 summarises the average SN R and E'N Ly
values for the forest class as well as the EN L, values calculated for the available sensor
configurations. The average computations were performed over 100 spruce stands with 50
pixels selected for each stands.

Table 4.4: Noise evaluation for spruce forest stands with EN Lg, EN Ly, SN R and ygn r measures
for different acquisition configurations. The EN Lg and SN R values were calculated with the first
acquisitions of the interferometric pairs. For the vgny g values marked by '+’ no interferometric
data were available, and therefore, they were processed with the SN R of one image instead of
two.

Beam Incidence

Sensor mode Polarisation angle ENLy, ENL, SNR ~snNRr
() (-) ) @dB) ()
PALSAR FBS HH 39 1279 16 11.9 0.93
PALSAR FBD HH 39 1320 30 11.9 0.94
PALSAR FBD HV 39 1320 24 6 0.79
PALSAR PLR HH 24 722 22 11.1 0.91
TSX HS (single-pol) HH 23 862 12 149 097
TSX HS (single-pol) HH 48 3505 22 10.9  0.93*
TSX HS (single-pol) HH 37 2052 20 5.2 0.76
TSX HS (dual-pol) HH 37 2052 24 6.1 0.77
TSX HS (dual-pol) \AY 37 2052 21 6.1 0.77
TSX SL (dual-pol) HH 41 2949 24 11.4  0.93*
TSX SM (dual-pol) HH 37 3073 19 14 0.91*
TSX SM (dual-pol) HV 37 3073 22 7.2 0.84*
CSK HS HH 20 353 3 0.17 0.52
CSK HS HH 37 1266 17 0.8 0.53
CSK HS HH 50 2012 33 0.13 0.52
TDX SM (dual-pol) HH 38 257 19 11.4 0.93

The ENL values in Table 4.4 indicate that the EN Lg and E'N L values are significantly
different. The EN L; value ranges between 250 and 4000, while EN Ly extends between
3 and 30. As compared to the theoretical ideal ENL values, the EN L inferred from the
statistics are pessimistic. However, comparing FN L; and EN Ly for the various incidence
angles, it is clearly observed that both follow the same trend, namely a high ENL for large
incidence angles and a low ENL for steep angles. Then, with respect to the SN R values, it
is generally seen that with an SN R ranging mainly between 5 dB and 15 dB, forests present
an acceptable noise level. The decorrelation due to noise also appeared to be sufficient,
especially for PALSAR HH data, which depicted a ysyg value of above 0.9. Among these
observations, one exception could be mentioned, namely CSK, which appeared to present
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a lot of noise with a SNR for large or steep incidence angle configurations remaining
below 1dB. In the latter case, the NESZ value of —19dB provided by ASI (ASI, 2007)
appeared to be slightly high and may have not been suitable for CSK sensor configurations.
Then, on comparing the polarisations, it is observed that HH polarisation data was less
noisy than HV data. In L-band and X-band systems, the SN R values were found to be
approximately 6 dB lower for HV than those for HH. Like-polarisations generally presented
higher power than cross-polarisations, which explains why higher noise was found with
the HV channel. Finally, on observing various incidence angles, it was expected that there
would be a greater noise with a steep incidence angle, especially due to the greater returns
occurring in such configuration. However, in this case, the SN R evaluation did not show
any such trend.

4.4 Methodology

4.4.1 Data exploration

As presented in Section 4.2, a large number of SAR and reference data are available.
To automate the investigations, an IDL data exploration routine was developed. This
comprised first the initialisation and input-data preparation. The inputs consisted of the
reference polygons shapefile (forest inventory, ROIs), a raster copy of the shapefile and
the satellite data to be investigated. The raster copy was converted beforehand from
the shapefile and contains the polygons ID values. The raster copy was used here to
establish the link between the shapefile and satellite data. This raster, also called the
raster 1D, needed to be processed at the same spatial resolution as the input satellite
data. Each set of input data was then read, and the process of extracting satellite data
pixels included in each reference polygon could be started. Statistics such as the polygon
mean or number of pixel values were implemented to summarise the information. Four
additional optional processes were also developed: (1) requesting specific criteria such as
the tree species, tree height or a defined slope inclination, (2) modelling the observations,
(3) plotting the data and (4) saving the plots and statistics. For the comparison of
the satellite data with each other and with the reference data (forest inventory, ROIs),
particular attention was paid to the following elements. First, it was verified whether
the scenes were overlapping and their spatial resolutions corresponded with each other.
Then, subsetting of the common area of the datasets was performed so that each scene
had the same area. Additionally, geometrical distortions for radar systems are specific to
the radar acquisition configurations. Thus, the nodata information over each considered
scene was commonly masked. Finally, with respect to the parameter under investigation,
it was verified that the remaining parameters presented equivalent configurations, namely
same incidence angle, polarisation, spatial resolution, frequency, etc.

4.4.2 Parametric modelling

Parametric regression modelling is one of the techniques applied in this study to esti-
mate GSV. The modelling approach was distinguished into four different topics, namely
selection, training, inversion and testing of the models. Before describing each of these
processes, a general overview of the different processing steps can be presented. Figure
4.8 depicts a flowchart describing the performed modelling phases.
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Figure 4.8: Flowchart describing the parametric modelling process.

As illustrated in this figure, parametric modelling included two sets of data, the forest
inventory serving as a reference and the satellite data from which the GSV could be
estimated. The entire modelling process was repeated using bootstrapping techniques so
that the estimations became statistically more reliable. Overall, only 10 bootstraps were
considered, as it appeared to be a good tradeoff between computation time and statistics
reliability. It should be noted that the training and testing stands random selection
described later in this subsection was repeated for each bootstrap so that configurations
of different stands may be used for the estimation of modelling accuracy. The different
steps of the modelling process, shown in Figure 4.8, are detailed below.

Model selection

In Section 5.3, by studying the relation between the available radar data and GSV, it
could be shown that in the Thuringian Forest, interferometric coherence decreased with
increasing GSV. More specifically, it could be shown that in some cases, this negative
relationship was linear, and in other cases, it exponentially decreased with GSV'. In this
context, simple linear and nonlinear regression models were defined for the estimation
of GSV. For the nonlinear models, the exponential function already used by Eriksson
et al. 2003b was chosen for the purpose of this study. The linear and nonlinear models
considered for the parametric modelling of this study are provided in Equations (4.4) and
(4.5), respectively:

WGSV)=A-GSV + B, (4.4)

Y(GSV) = A- BV 4 . (4.5)

Both models described coherence v as a function of GSV'. The linear model (Equation
(4.4)) comprised two unknown parameters (i.e. A, B), while the nonlinear model (Equa-
tion (4.5)) held three different unknowns (i.e. A, B, C). In the case of the linear relation,
A denoted the slope of the function and B represented the y-intercept. A and B could be
interpreted as the decreasing rate and the dynamic range of the line, respectively. In the
case of the nonlinear model, A and B depicted the dynamic range and the decreasing rate
of coherence, respectively. The remaining parameter, C', indicated the coherence offset.
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Equations (4.4) and (4.5) are empirical relations. In this study, the choice of empirical
functions instead of semi- or physical functions was motivated by different reasons. First,
the Thuringian Forest, as shown in the scattering and decorrelation mechanisms analysis
(Sections 5.2 and 5.3), presents specific structural characteristics such as large GSV ranges
and very dense canopies. In this case, the application of a semi-empirical model such as
the IWCM would imply modifications of the model, which is beyond the scope of this
study. Second, the sensitivity of coherence and intensity to GSV was shown to be rather
limited, particularly with the backscatter intensity. Thus, as a good starting point for
future studies, the application of empirical models may provide a first approximation of
the retrieval accuracy.

Model training

The training of the two models presented above was performed by least-squares min-
imisation using the forest stands as a reference from the available forest inventory. The
stands were randomly selected and set into different groups so that both, training and
testing of the models could be executed. The following three groups were considered:

e 40% training;
e 30% testing — model selection;

e 30% testing — final accuracy.

The first 40% of the stands were dedicated to the training process. This percentage was
chosen to be higher relative to the other ones in order to guarantee (with sufficient forest
stands) a reliable estimation of the model parameters. The second and third fractions
of stands referred to the testing of the model. These two fractions each accounted for
30% of the overall stands. Two different sets of testing stands were defined to take into
consideration the evaluation of the most suitable model between the abovementioned
models. Thus, the 30% testing set was allocated to the selection of the model, while the
final 30% of the stands were dedicated to the final accuracy calculation of the selected
model. For each of the three sets of data, the stands were randomly selected using uniform
distribution. Also, for the selection of the model, the same training and testing stands
were considered so that the accuracy could be estimated on the basis of the configurations
of the same datasets.

The good fit of a model depends on the model itself, the number of available training
stands and their repartition over the GSV range. In the case under study, the number of
stands and their repartition varied significantly from one scene to another; the statistics
were not always consistent. In this context, an iteration process was performed, which
enabled reaching at least 300 stands for each acquisition. The iterations were based on
the parameters which describe the homogeneity of the stands (BAAN, VG) (see Section
4.3). When the number of available stands was not sufficient, the VG was first relaxed,
after which the same was followed for BAAN. This procedure implied that for the scenes
covered by few stands, the quality of the selected stands would decrease because with the
relaxing of VG and BAAN, the stands would tend to be more heterogeneous. The choice
of N = 300 stands was shown to be a good tradeoff between the available number of stands
for the different datasets (N = 120, N9 = 90, Niwg ™ = 90) and the quality of the
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stands. The issue regarding obtaining sufficient forest stands for the modelling process was
partly resolved by fixing the number of stands. For the Thuringian Forest, the proportion
of stands in the high GSV range was larger than that in the low GSV range (see Section
4.3). Thus, the problem related to small number of available stands in the low GSV
range remained for some of the acquisitions. The solution to this problem would be to
control the stand quality for the low and high GSV ranges using BAAN and VG criteria
differently. This idea was not implemented, as the forest structure between mature and
young forests would have been modified and supervision of the forest parameters would
have been limited.

Although the most reliable stands were selected for the training and testing of the
model (see Section 4.3), outliers were still observed during the training process. By
comparing the outlier stands with orthophotos and Google Earth images in addition to
weather data, they were mainly identified as logged or potentially Kyrill-damaged forest
stands which were not updated in the actual forest inventory or changing local weather
conditions. To remove these outliers, a bootstrap process was performed. More specifi-
cally, it involved systematic removal of forest stands lying above and below 20 from the
model and repeating this process until all the stands ranging outside the 20 interval could
be discarded from the training process (Santoro et al., 2011).

Model inversion

After estimation of the model parameters with the training process, model inversion
was performed. The inversed functions were expressed for the linear (Equation (4.6)) and
nonlinear (Equation (4.7)) functions in the following form:

S fy—B
Gsv ===, (4.6)
| ~v—C

The estimated GSV (GSV) was calculated from Equations (4.6) and (4.7) as a function
of the interferometric coherence and the estimated parameters. Accordingly, a pixel-based
G SV image may be derived for each available coherence image. However, the model was
suitable for the range of coherence values for which it was fitted. Outside this range,
the retrieved GSV should theoretically not make any sense. Thus, on the basis of the
approach used in Santoro et al. 2011, some conditions were considered for the coherence
pixel values lying outside the minimum and maximum value of the regression curve. The
defined conditions can be summarised as follows:

0, if ¥ > max (Ymodel) + 20,

N 0, if max (Ymodel) < ¥ < Max (Vmodel) + 20 ,
max(GSV), if min (Ymodel) — 20 < v < Min (Vmodel) 5
max(GSV), ify < min (Ymoeqel) — 20 .

(4.8)

The idea of the above conditions is fixing the unrealistic GSV values. For the case
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where the coherence lies above the maximum of the modelled coherence plus two standard
deviations (condition 1), GSV was set as zero, which is the minimum possible value.
Theoretically, nodata value should be defined for this range of values because it should
correspond to the outliers range. However, zero was preferred because as shown in Section
5.3, the very high coherence observed in forested areas is physically attributed to the
high stability of the very young regenerative trees. Similar to the above condition, the
G SV for the coherence values ranging between the maximum modelled coherence and the
maximum modelled coherence plus two standard deviations were fixed to zero (condition
2). In the case where the coherence lies between the minimum modelled coherence and
the minimum modelled coherence minus two standard deviations, the GSV was set to the
maximum stand GSV value (condition 3), as it is the theoretically modelled maximum
value. Finally, when coherence values were shown to be lower than the minimum of the
modelled coherence minus two standard deviations, as in the case for condition 1, the
GSV was set to the maximum modelled GSV (condition 4) instead of nodata, as the
coherences in such ranges referred mainly to large forests canopies showing considerable
instability and/or volume decorrelation.

Model testing

The determinant part of the modelling procedure concerned the testing of the models.
As presented above, two different testing sets were defined for this process: one for the
selection and the other for the final accuracy assessment of the model. To perform both
processes, several statistics such as the RMSFE, mean absolute error (M AE), bias and
coefficient of determination (R?) were computed (see Appendix C.1). The RMSE relied
on the difference for stand ¢ between the estimated GSV, and the ground measured
GSV;. This difference, which constituted the error, was squared and averaged for the
N available forest testing stands. Finally, the root of this given amount was considered
in order to obtain the RMSE. It should be noted that in some studies (Santoro et al.,
2002), the sampling error was removed in the RMSE computation. In the case of the
Thuringian Forest, the sampling error intrinsic to the field measurements was shown to be
approximately 20% of the measured GSV (see Section 4.2). If this error is removed from
the RMSFE calculation, RM SE would not be representative of the overall error, namely
the radar and ground-measurement errors. Therefore, in this study, the sampling error
was considered in the final RMSFE estimation.

The statistics computation using the first testing dataset (30%) was performed for the
two models and each interferometric dataset. For each coherence scene, the best model
was selected on the basis of the derived RMSE. After selecting the model, the same
statistics were then recomputed using the selected model and the independent testing set
of stands (30%) which provided the final accuracy of the GSV estimation.

4.4.3 Non-parametric modelling

For comparison with the abovementioned regression modelling method, a second technique
was tested in this study for estimating forest GSV. This technique referred to the non-
parametric k-nearest neighbour (k-NN) algorithm. The k-NN approach is described below
in two different steps, training and testing.
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Model training

E-NN is a data-driven approach used for retrieval of GSV and is based solely on
information provided by the forest inventory. The basic principle of the k-NN method is
assuming that forest stands with similar forest characteristics should hold similar spectral
properties. Accordingly, each pixel of a satellite image is assigned a specific GSV value
according to its spectral signature.

The simplest case of the k-NN operator is £ = 1, which signifies that only the first
nearest forest stand is used for determining the estimated GSV. To improve the estima-
tion, it is possible to consider multiple & numbers. In such a case, a weighting of the k
nearest forest stands selected would be required. The important relationships in the k-NN
approach are shown below:

k
GSV, =S w, , GSV; (4.9)
i=1
1
ds.
Wpop = p”i : (4.10)
j=1 f’]”p

According to Equation (4.9), GS V, was calculated by multiplying the inventory GSV;
for the forest stand 7 with ponderation factor w,, ,. The ponderation factor calculation is
described in Equation (4.10). It includes the spectral distance d between the pixel p to
estimate and the pixel p; for forest stand 7 as well as exponent value s. The exponents s =
0, 1 or 2 were considered for the mean, inverse and inverse-square distance, respectively. Of
the common existing spectral distances, this study evaluated the Fuclidean, Mahalanobis
and Manhattan distances. The following equations provide the relations corresponding to
these distances

DEuclidian = \/(P - Pr>T (P - Pr) ) (411)
DMahalanobis - \/(P - Pr>T [M_l} (P - Pr) ) (412)
DManhattan:|P1_Pr1|+|P1_Pr2|+---+|P1_Prn| . (413)

In the aforementioned relations, the multivariate vector P is the spectral value of
the pixel to be estimated (target), while P, is the spectral value of the pixels averaged
for the forest stand being referenced. In the case of processing n multichannels, P and
P, would be holding the dimension 1 x n. The Mahalanobis distance differs from the
Euclidean distance by considering a covariance matrix M which may consider the potential
correlation between different channels when several datasets are used. In the specific
case where M equals the identity matrix, the Mahalanobis distance would reduce to the
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Euclidean distance. The Manhattan distance consists of the sum of the absolute difference
between the target and reference spectral values.

Model testing

Similar to the regression modelling technique presented in Subsection 4.4.2, the eval-
uation of the GSV estimation using the k-NN algorithm was based on statistics such
as RMSE and bias. However, instead of selecting a specific percentage of the available
forest stands, the overall stands were used in this case for the training as well as testing
of the model. In this study, the applied evaluation method, known as the leave-one out
cross-validation (LOOCV) technique, involved the removal of one forest stand from the
reference dataset for use in the testing (i.e. evaluation) process, while the rest of the
stands were considered for the training (i.e. estimation) process. This sequence was re-
peated for each forest stand such as when each of them was used once as a testing dataset.
Although this method was computationally intensive, it provided for the k-NN method
a good estimate of the GSV accuracy without requiring any specific subdivisions of the
datasets.

4.4.4 Fusion approach

This subsection describes the fusion approach developed in this study for the creation
of a forest GSV map. As it may be conceived, the processing of a GSV map not only
involves estimating the GSV but may also involve the identification of forested areas and
separation of tree species because such information is required for delivering forest and
species-specific GSV maps. The modelling of the interferometric coherence presented
in Subsections 4.4.2 and 4.4.3 allowed the derivation of GSV quantities for the available
remote sensing data. However, the issues related to identifying forested areas and separat-
ing tree species were not treated in this study. In this context, two topics were examined
for the fusion methodology: one related to the derivation of forest/non-forest as well as
tree species composition masks and the second dedicated to the fusion of the derived
biophysical products. A brief introduction to the selected fusion approach and the moti-
vation behind the chosen approach is provided below. Then, the strategy for separating
forest /non-forest and different tree species composition is presented. Finally, a detailed
description of the fusion methodology leading to the end product GSV map is given.
As shown in Section 3.3, the terminologies 'fusion’, 'merge’, ’combination’, ’synergy’ and
‘integration’ are closely related. Thus, these terms simply refer to the combination of
data.

Approach and motivation

According to the theory presented in Section 2.2, remote sensing data can be combined
with many different approaches. In the framework of this study, it was decided to focus
the combination of the SAR information on derived high level products such as forest /non-
forest masks, tree species masks or GSV images. The main idea was to process a GSV map
which could be derived from different sources of data constituting an efficient combination
of the available datasets. Data combination refers not only to the fusion of the GSV
information but also to the inclusion of forest and tree species information.
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The suggested fusion approach introduced above involved the comination of several
secondary products in a single GSV map. Different reasons motivated the conception
of such an approach. First, the techniques used to retrieve forest parameters recently
reached maturity. Thus, the fusion of various biophysical products may now be envisaged
for deriving updated national and global GSV maps. Second, the development of new
SAR sensors has significantly increased over the past few decades, and a large amount of
data is actually available. This large amount of data constitutes a prominent source of
information, which may contribute to the derivation of forest parameters. In this regard,
the availability of different datasets may increase the accuracy of the GSV maps as well
as their spatial extension and updated frequency. Third, by proposing the combination of
established products, the proposed approach can provide considerable flexibility. Indeed,
the combined products may not only be derived from one single technique but from
several techniques such as a GSV map estimated from the regression and k-NN modelling
methods described earlier in this section. Finally, most of the fusion approaches reported
in literature until now depended on two or three different datasets, limiting the forestry
applications to the availability of these datasets (see Section 2.1). With the proposed
approach, the ingestion in the computation of various acquisitions measured by several
sensors and acquisition modes is proposed. In terms of usability, this approach would
enable new perspectives for the user, such as the possibility of refining the GSV map
specifically to some defined objectives. In this sense, the proposed approach would be
user-oriented.

Mask establishment and accuracy assessment

As mentioned in the introduction to this subsection, a forest GSV map intends to
show not only the GSV of the forested areas but also the GSV specific to the different
species composing the forested areas. Thus, to create a GSV map, it is necessary to
know the location of the forested areas and the different species. In this regard, before
working on the combination of the remote sensing data, the derivation of thresholds for the
forest and species classes was performed. The developed methodology involved extracting
the numerical values from different landcovers and species on a scene and deriving the
threshold values as well as statistics for the separation of the classes on the basis of
bimodal frequency-histogram analyses.

In the present study, the classes crop, forest, open area, urban and water for the dif-
ferent landcovers and spruce, beech and pine for the composition of different species were
considered. The information on landcovers was based on the defined ROIs (see Section
4.2), while the species information was established from the forest inventory. In the case
of landcovers, the objective was to extract the forest class from the other classes. Thus,
in this case, the histogram analyses always referred to the forest class with one of the
other classes. In the case of species composition, the goal was to distinguish between the
species under study. The frequency histogram analyses were performed by considering
the normalised difference between two functions, with each function representing a differ-
ent class. Equation (4.14) describes the analytical function used to extract the classes’
thresholds

Hyo(z) = — 1@ 9@ (4.14)

max(f(z))  max(g(z))
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In Equation (4.14), Hyom(x) represents the normalised difference between the his-
togram of the first class f(x) and the second class g(z), where the function Hom () is
set to zero, as the two functions f(x) and g(z) intersect. The numerical x-value at this
point of intersection corresponds to the threshold value. To automatically determine this
position, a process based on the principle of the bisection method was performed. The
extraction of a class usually requires the calculation of two thresholds. The first threshold
would correspond to the abovementioned point of intersection, while the second threshold
is found either at the extremity of the histogram representation or at a second intersection
point, depending on the potential separation of the classes. It should be noted that an
optimal definition of the number of bins may improve the derivation of the threshold. In
the present case, n = 100 bins was chosen. This is a good tradeoff between the histogram
smoothness and the number of pixels used in each histogram. In addition, to derive the
position of the thresholds more accurately, a smoothing function was used. It should
also be noted that the thresholds were computed for each available dataset. To obtain
a consistent threshold value for each SAR configuration, the average of thresholds was
evaluated. In terms of radar configurations, parameters such as incidence angle, polarisa-
tion, frequency and perpendicular baseline or acquisition period were distinguished. The
configurations showing a deficient number of pixels were not considered in the calculation
of the average values.

The histogram analysis chosen for identifying forests and classifying forest species is
close to the Bayesian ML classification approach. In the present case, the histogram was
directly used, while in the Baysian method, probability distribution functions (PDFs) are
considered. Although the method based on the raw histogram is hardly transferable to
a different test site, this simple method was preferred for the following reasons. First,
the statistical distributions were initially unknown, particularly after applying ratios (see
fusion process below) from the different SAR datasets. Second, forest and species mapping
were not the main objective of this thesis. Finally, classifications obtained from the
histogram analysis are more accurate than those obtained by assuming PDFs.

In addition to deriving the thresholds, information about the separability of the classes
is required to evaluate the potential of extracting only one signal. For this purpose,
normalised cross-correlation analyses were performed, thus enabling the quantification of
the correlation between two classes. Equations (4.15) and (4.16) present the calculation
of the cross-correlation and the normalised cross-correlation, respectively,

Ry = [ :O F(@)g(x +h) de, (4.15)
_ R
Ruceu() = (s (4.16)

In Equation (4.15), R(h) represents the cross-correlation coefficient calculated as a
function of the lag h. The cross-correlation indicates the correlation of the functions
f(z) and g(z) at different lags h. When h = 0, the correlation coefficient indicates the
separability of the two functions f(z) and g(z) at their initial position. The higher the
correlation, the less separable the two functions, i.e. the two classes. Cross-correlation at
lag h = 0 represents the Pearson’s correlation coefficient r. Although this coefficient is
the information of interest in the present case, its calculation by cross-correlation is more
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appropriate as cross-correlation is widely used in signal processing. Similar to thresholds,
consistent values of the correlation coefficient were obtained by averaging the coefficients
for each equivalent radar configuration. Configurations showing an insufficient number of
pixels were also not considered.

Fusion process

Having introduced the fusion approach and the methodology for identifying forested
areas and separating the tree species, the fusion processing scheme leading to the final
GSV map may now be described. The fusion approach was split into four different steps:
inputs, initialisation, core processing and end products generation. Each of these steps
was distinguished by subprocesses. Figure 4.9 provides an overview of the latter processes.

Inputs Initialisation Core . End
processing products
O Q O @)
Setting Temporal
— SAR data parameters | merging - GSV map
— GSV data Tiling - Bands rationing - Forest/non-forest map
— Thresholds — Thresholding - Species map
| Separability L Synergy process Validation products
coefficients

Figure 4.9: Flowchart describing the fusion process.

As depicted in Figure 4.9, the first steps involved the determination of input data
and initialisation of the process. Then, core procesing included temporal merging and
ratio fusion processes, threshodling computations and synergy processes. Finally, the
end products were obtained by masking and mosaicking of the tiled products. The entire
processing steps were performed at the pixel level and implemented in an IDL routine. The
IDL routine allowed the automatic processing of the proposed fusion approach. The end
products were GSV, forest/non-forest and species maps, each of which was represented
on a corresponding accuracy flag map. Further details of the fusion processing scheme
introduced in Figure 4.9 are presented below.

Inputs:

To compute the GSV-map product, the developed algorithm required a minimum of
two different datasets. First, it required a GSV image containing the estimated GSV of
a forest type or a specific forest species for an entire scene. In the present study, this
information would be directly provided by the regression and k-NN modelling techniques
described in Subsections 4.4.2 and 4.4.3, respectively. Then, it required a backscatter
intensity or interferometric coherence image to establish forest/non-forest and species
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masks with the thresholds derived from the histogram analysis presented above. The
intensity and coherence information may be pre-processed on the basis of the techniques
described in Section 4.3.

Initialisation:

With the developed algorithm, a few parameters which can be set by the user were
proposed. One of them is the desired spatial resolution of the final products. It should
be noted that all processing steps are performed for all datasets at the same defined
resolution. If the remote sensing data have a lower spatial resolution than the user-
defined data, the data would be downsampled; on the other hand, if the spatial resolution
of the remote sensing data was higher, the data would be oversampled. Another parameter
proposed to the user is the size of the processed tiles. This size should be defined on the
basis of the computer memory and CPU capacity. The last parameter is the specification
of the minimum accuracy to be processed. This parameter allows the user to select the
accuracy to be achieved for a certain product. For the forest/non-forest and species
masks, the accuracy is given as a score (see Equation (4.18)), while for the GSV map,
it is provided as an RMSFE value. The dataset which does not enable the attainment
of the specified accuracy would not be considered when processing the final product and
would be flagged in the validation products as no information. An example is presented
in Section 5.5.

The tiling process or block operation considered the overall data provided in the input
by the user. It was performed for two main reasons. First, the ingestion of hundred or
more datasets requires high-memory-capacity computing systems. To solve the memory-
capacity problem, the datasets are computed in tiles, which are saved in a temporary
folder. Another reason for applying tile processing is the simplification of the masking
process. The size of the tiles is known and is the same for all data, thus facilitating the
overlaying of the data and masking processes.

Core processing:

As suggested by its name, core processing is a relevant step in the proposed fusion
approach. To properly understand the processes involved, an illustration of the main
processes is provided in Figure 4.10. It should be noted that core processing involved
two distinct methods of data combination, fusion and synergy. These two terms are
distinguished below. This step was performed iteratively over each tile, and the results
could be saved in temporary folders.

As suggested in Figure 4.10 (a), a fusion process was envisaged for multitemporal data.
The fusion approach involved merging of the multitemporal datasets when such data con-
figuration was available. Multitemporal averaging was performed on the backscatter in-
tensity and interferometric coherence, which were used for the establishment of forest /non-
forest and species masks. The temporal aggregation of the data enabled reduction of the
intrinsic noise of the backscatter intensity and improvement of the interferometric coher-
ence estimates. The fusion processes were performed at the tile level. When the available
data presented band-rationing capabilities, a simple ratio between two selected channels
was considered (Figure 4.10 (b)). Band rationing was performed by referring to the results
of the histogram analysis described in Section 5.5. Similar to the multitemporal merging
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Figure 4.10: Main processing steps in the fusion approach. The illustrated processes are: tem-
poral merging fusion (a) ratio fusion (b) and synergy (c).
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process, band rationing enabled noise reduction, and this procedure was performed at the
tile level. After performing the above fusion stages, the processing of the masks was con-
ducted using the thresholds and correlation values established in the histogram analysis.
Equation (4.17) describes the thresholding process:

Gii = 17 fOI'fZ‘jZTh, (4 17)
" 0, for fz'j <Ty. '

Here g;; is the masked image, f;; the SAR intensity or coherence image and ij the
corresponding radiometric pixel location. Pixels with values greater than or equal to
the defined threshold T, are assigned the value 1. The remaining pixels are assigned
the value 0. The threshold and correlation values were stored in a database for each
investigated radar dataset. Computing tile by tile, the algorithm searched for the available
radar backscatter intensity and interferometric coherence data and computed the masks
and correlation images using the stored threshold and coefficient of correlation values,
respectively. At the end of the process, the masks consisted of pixel-based data with a
digital value of DN =1 for forest or the species composition of interest and DN = 0 for
the non-forested areas or for the tree species which needed to be masked.

As indicated in Figure 4.10 (c), the synergy process considered the masks and GSV
images. In the case of the forest/non-forest and tree species masks a pixel-based process
that involved selecting pixels with the minimum correlation value (good separability) was
employed for synergy. Pixel selection was performed iteratively over all pixel locations
using two for loops. This approach was performed for all tiles (7),,,) and repeated for
each class in order to create distinct masks for each landcover class and tree species
composition. At the end of the process, the landcover masks were combined to obtain two
final masks: one containing only forested areas and the other only the species of interest.
One consequence of the aforementioned synergy process is that the accuracy of the masks
may vary spatially in accordance with the available input datasets. Thus, to inform the
user of the varying spatial accuracies, correlation images corresponding to the selected
minimum correlations were processed. Additionally, to simplify the interpretation of the
correlation images, the correlation values were converted into a score, which is defined as
follows:

S(Ruorm(0)) = (1 = | Ry (0)]) - 100. (4.18)

The score S was calculated as a function of the cross-correlation Ryom(h) at lag h = 0.
A high score indicates good separability, while a low score indicates poor separability.
GSV images were combined on the basis of the principle of synergy, but in this case,
minimum RMSFE was the criterion for pixel selection. The outcomes of this process
provided each GSV image tile with potentially the best estimates of GSV'. Similar to the
synergy of the masks, to keep track of the accuracy of the GSV images, the RM SE values
were also selected with their corresponding G SV in order to create correlation flag images
for the masks, which are RM SFE flag images in this case. The fusion processes shown in
Figure 4.10 correspond to the definition of fusion given in Section 3.3. However, synergy
in the abovementioned context differs from its theoretical definition. In this respect, it
is convenient to emphases the principal difference between the two terms. In fusion,
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information content from multiple images is merged to obtain a fused image. Therefore,
at least two images are required for this purpose. In synergy, information in the output
data is obtained by the selection of the optimal data sources. In this situation, two images
are required, but they are not necessarily overlaid. Thus, the fusion process may provide
information of ‘greater quality’, while the synergy process does not necessarily improve
the quality of information.

End products:

T

End product
Forest/non forest map
Tree species map
GSV map

Tam
v

X

Figure 4.11: End products obtained with the developped fusion approach.

After the completion of the synergy process, the masks were applied to the GSV-
combined information in order to create tiled products. Finaly, the tiled products were
mosaicked to obtain the end products (Figure 4.11).
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Chapter 5

Results

The main purpose of this study is the estimation of forest GSV using a combination of
SAR data. To achieve this objective, several processing stages were defined. On selecting
a test site located in a hilly area, the first step involved investigating the variations in
the SAR signal with respect to topography. With the available datasets, the second and
third steps referred to the examination of the scattering and decorrelation mechanisms,
respectively, which occur in the Thuringian Forest. On the basis of these investigations,
the fourth step involved SAR-data modelling and GSV estimation. Finally, the last phase
involved production of a GSV map with focus on the potential fusion of the SAR data.

The results of these different steps are presented in this chapter. The first section
introduces the effects of topography. In particular, visual observations and scatterplots
of the backscatter intensity and interferometric coherence are presented. The second sec-
tion describes the investigation of the scattering mechanisms. Simple visualisations as
well as description of the signatures of the SAR parameters and their sensitivity to GSV
are provided in this section. The third section highlights the results of examination of
the decorrelation mechanisms. Visualisations of coherence, characterisations of the signa-
tures of the INSAR parameters and sensitivity of the coherence to GSV are described in
this section. In addition, owing to the availability of PolInSAR data, some results corre-
sponding to loci coherence are discussed. In the fourth section, the modelling results are
presented with the results of the parametric and non-parametric approaches introduced in
Section 4.4. The last section of this chapter presents the results of the SAR data fusion.
With a view to providing a GSV map product for the Thuringian Forest, the first subsec-
tion describes the histogram analysis performed for the derivation of a forest/non-forest
and species map. Then, the second subsection suggests some radar data configurations
for retrieving forest parameters. Finally, the last subsection illustrates examples of the
products derived by applying the fusion approach and present the validation results.

For the sake of clarity and to limit the size of this document, only selected examples
are presented for the first three sections. Appendix B can be referred to for the plots and
figures for further results. It should be noted that the satellite data only covered some
parts of the test site. To locate the data over the site and facilitate an understanding of
the results, the acquisition frames are summarised in Appendix A.2. When necessary, the
reader may refer to this Appendix regarding the spatial coverage of the examined dataset.
Finally, for the last section, although fusion and synergy were referred in the developed
fusion methodology (Section 4.4) to different processes, both involve a combination of



142 Chapter 5 : Results

the data (see Section 3.3). For the sake of clarity, if not explicitly mentioned, the terms
fusion’, 'merge’, 'combination’, 'synergy’ and ’integration’ in the last section indicate the
combination of the data.

5.1 Topography analysis

5.1.1 Visual observations

Scattering mechanisms

The investigated SAR data were visualised in order to distinguish potential trends in
the topography. Figure 5.1 depicts visualisations of the forested areas around the Schon-
brunn Lake (see Appendix A.1). In the first row, ALOS PALSAR (a) HH and (b) HV
as well as TSX (¢) HH and (d) HV non-normalised intensities are depicted. The corre-
sponding normalised data which were processed according to Equation (4.1) are shown
in the second row. It should be noted that the grey values were stretched between each
set of the normalised and non-normalised data in order to enable interpretations of topo-
graphic normalisation. In addition, it should be recalled that the SAR acquisitions were
performed in the ascending pass with right looking and at a direction of approximately
350°.

Figure 5.1: Visualisation of topographic effects on the backscatter intensity before (first row) and
after (second row) topographic normalisation. The SAR data are composed of ALOS PALSAR
FBD 39° Asc. (a), (e) HH and (b), (f) HV (frame FBD7) as well as TSX SM 37° Asc. (c), (g)
HH and (d), (h) HV backscatter intensity (frame SM6). The PALSAR and TSX scenes were
acquired on 10" June 2010 and 1% September 2010, respectively. The forested areas are located
around the Schonbrunn Lake (see the aerial photography in Appendix A.1).
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The topography is distinct in the non-normalised SAR data (first row) in Figure 5.1,
particularly with the bright areas facing the SAR sensors. These bright regions are at-
tributed to the layover effect and the larger energy received by the radar on slopes facing
the sensor compared to back slopes. Further discussions about this observation are given
in Subsection 5.1.2. From the normalised and non-normalised data, it is observed that the
topographic-normalisation approach performed well. However, small topographic varia-
tions appear to remain in the normalised data. These variations are particularly well-
observed for L-band and X-band HV polarisation, which depict brighter grey values on
the slopes facing away from the radar rather than on slopes facing the SAR spaceborne
platform. This observation is discussed by examining the scattering mechanisms in Sub-
section 5.1.2.

Interferometric coherence

Similar to backscatter intensity, the interferometric coherence was examined over to-
pographic areas. As shown later in Subsection 5.1.3, PALSAR, CSK and TSX were sig-
nificantly affected by temporal decorrelations, which generally masked the topographic ef-
fects. In the case of TDX, the single-pass interferometric acquisitions were not affected by
temporal decorrelations and enabled clear observations of the topographic trends. Thus,
TDX was chosen here for the visualisation of topographic variations in the interferometric
coherence. Figure 5.2 presents the TDX coherence over the same region as that shown
in Figure 5.1. The coherence (a) before and (b) after the application of slope adaptive
common band filtering is depicted. It should be noted that for comparison purposes,
both images were stretched using the same statistics. In addition, it should be recalled
that TDX acquisitions were performed in the ascending pass with right looking and at an
orientation of approximately 350°.

In Figure 5.2 (a), it can be observed that the coherence image clearly shows darker
grey values, i.e. lower phase correlation, for slopes facing the radar (negative slopes)
compared to slopes facing away from the radar (positive slopes). This result may be
explained by two dominant spatial decorrelation mechanisms, namely spectral-shift and
volume decorrelation. Spectral-shift decorrelation appears because of the slight difference
in the incidence angle of the two interferometric acquisitions. Owing to their geometry, the
negative slopes would increase the spectral-shift, thus increasing the spatial decorrelation
(see Section 3.2). Volume decorrelation in X-band may be greater for canopies located on
slopes facing the radar compared to canopies facing away from the spaceborne platform. In
such configurations, the steep local incidence angle enhances the penetration of microwaves
into the forest and therefore increases returns from the canopy. It should be noted that
the spectral-shift spatial decorrelation may be corrected by filtering the common signal,
as introduced in Sections 3.2 and 4.3. However, volume decorrelation cannot be corrected
with such filters and may require other techniques such as the RVoG model, which is
discussed at the end of Subsection 5.1.3. in comparing the coherence images shown in
Figure 5.2 (a) with and (b) without slope adaptive common band filtering, it can be seen
that the coherence generally increases after applying filtering corrections. However, as
shown in Figure 5.2 (b), topographic variations continue to occur in the filtered InNSAR
data. These observations are subject to further examination and are further addressed in
Subsection 5.1.3.
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Figure 5.2: Visualisation of topographic effects on interferometric coherence before (a) and after
(b) slope adaptive common band filtering. The InSAR data are composed of TDX SM 38° HH
Asc. B, = 258m coherence (frame TDX3) acquired on 30" August 2011. The forested areas
are located around the Schénbrunn Lake (see the aerial photography in Appendix A.1).

5.1.2 Topography and scattering mechanisms

Scattering mechanisms

Topography may be described using two parameters, inclination and orientation of the
terrain. These two parameters were investigated together with the SAR backscattering
intensity. The first examinations were performed by comparing the variations in the signal
with the orientation of the slopes for normalised and non-normalised data. This was
illustrated by polarplot representations. The slope orientations, which ranged between 0°
and 360°, were intuitively depicted on the circumference of the plot, while the backscatter
intensity, with 0dB as the maximum amplitude at the centre of the plot, was depicted
on the polarplot radius. To facilitate the apprehension of the potential symmetries in
azimuth and range directions, the azimuth direction of the sensor was aligned with the
vertical axis of the plot. The representation of the slope gradients was performed using
three different classes: one ranging between 0° and 10°, second between 10° and 20°
and the last one over 20°. Figure 5.3 illustrates an example of polarplots derived from
ALOS PALSAR FBD and PLR data over spruce forest stands. It should be noted that
geometrical distortions such as layover, foreshortening and shadowing were masked in the
investigated data. This process led to missing information, especially for negative steep
slopes (blue points) measured by PLR data, which were acquired with a steep incidence
angle (see intensity analysis Section 5.2). FBD HH, HV and PLR VV data are shown
together for this example in order to provide information about both VV polarisation
(PLR data) and limited geometrical distortion effect for HH and HV datasets (FBD data).
For the interpretations, it is important to note the different incidence angles between PLR
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(21°) and FBD (39°) data. Additionally, both datasets were acquired in the ascending
direction. The plots (a), (¢) and (e) depict the non-normalised backscatter intensities,
and the graphs (b), (d) and (f) illustrate the corresponding normalised amplitudes.

Figure 5.3 indicates that the PALSAR data before normalisation depict significant
variations, while these variations are significantly reduced after normalisation. Then, by
viewing only the non-normalised plots and considering the right-looking acquisition mode
of the sensor, it can be seen that the signal’s amplitude increases for negative slopes, while
it decreases for positive slopes. Furthermore, comparing the different polarisations, with
the highest peaks reaching 0dB for slopes facing the radar, this phenomenon appears to
be more significant in HH and VV polarisations than in the HV channel. The higher
backscatter intensity for negative slopes relative to positive slopes can be explained using
two different phenomena. The first and most significant one involves varying the pixel
sizes on the basis of the gradient and orientation of the slopes. This effect is compensated
for on the normalised data by the pixel area factor introduced in Equation (4.1). The sec-
ond phenomenon is related to backscattering properties, which increase backscatter with
incoming incident waves aligning orthogonal to the terrain surface, according to Fresnel
formulas (Equations (3.26) and (3.27)). This effect is corrected in the normalised data by
considering a local incidence angle. Finally, in addition to slopes in the range direction,
slopes in the sensor flight direction, namely azimuth slopes, may also be examined. The
observations of the polarplots depicting non-normalised data (left column plots) show that
the signal on azimuth forested slopes attains the same level of intensity as that in flat
forested areas represented by pink crosses. Thus, in this case, the azimuth slopes may be
interpreted by the radar signal as virtually flat forested areas.

The comparison of the PALSAR intensity before and after topographic normalisation
in Figure 5.3 clearly showed improvements in the pixel area and local incidence angle.
However, as suggested by the visualisations in Subsection 5.1.1, a more detailed exami-
nation of the corrected data using scatterplots showed that systematic variations in the
signal with topography remained. Figure 5.4 depicts an illustration of the obtained scat-
terplots. The aspect angle (/) is presented on the abscissa and the amplitude on the
ordinate. For the sake of clarity, the aspect angle was set between —180° and 180° and
the azimuth direction at 0°. Therefore, the negative slopes (facing the radar) would be
depicted between —180° and 0°, while the positive slopes (facing away from the radar)
would be depicted between 0° and 180°. Similar to the case of polarplots, the three slope
classes are described using the same three colours pink, yellow and blue for 0°-10°, 10°—
20° and above 20°, respectively. This example is based on the same datasets as those used
for Figure 5.3, namely PALSAR FBD (a) HH and (b) HV 39° and (c¢) PALSAR PLR VV
21°.

Figure 5.4 indicates that the variations in the backscatter intensity with slopes and
orientations remain in the normalised PALSAR data. These variations appear to be
generally polarisation-dependent, but the different graphs indicate a common trend for
HH, HV and VV polarisations. The latter is characterised by a clear decrease in amplitude
for all polarisations on the azimuth slopes oriented in the moving direction of the radar
(8 = —90° to 90°). This specific amplitude reduction may be difficult to interpret because
it appears only on azimuth slopes exposed in the flying direction of the radar (asymmetry
of the signal for azimuth slopes). A possible reason for this general decrease is the different
growth conditions of the trees owing to the different slope expositions (see Section 3.1).
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Figure 5.3: Topographic effects on backscatter intensity before (left column) and after (right
column) topographic normalisation. The graphs consist of polarplots with the aspect angle on
the circumference and the backscatter intensity (7°) on the radius of the plots. The sensor
orientation is aligned at 0° on the ordinate. The classes represent the inclination of three slopes,
namely below 10° (pink), between 10° and 20° (yellow) and above 20° (blue). The SAR data
are composed of ALOS PALSAR FBD 39° Asc. (a) HH and (b) HV (frame FBD7) as well as
(c) ALOS PALSAR PLR 21° Asc. VV (frame PLR3) backscatter intensity. The PALSAR FBD
and PLR scenes were acquired on 10" June 2010 and 12" April 2009, respectively. The forested
areas represent Norway Spruce.
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Figure 5.4: Topographic effects on the normalised backscatter intensity. The scatterplots depict
the aspect angle on the abscissa between —180° and 180°, with azimuth slopes centred at 0°
and backscatter intensity (") on the ordinate. Negative slopes are described between —180°
and 0° and positive slopes between 0° and 180°. The classes represent the inclination of three
slopes, namely below 10° (pink), between 10° and 20° (yellow) and above 20° (blue). The SAR
data are composed of ALOS PALSAR FBD 39° Asc. (a) HH and (b) HV (frame FBD7) as well
as (c) ALOS PALSAR PLR 21° Asc. VV (frame PLR3) backscatter intensity. The PALSAR
FBD and PLR scenes were acquired on 10™" June 2010 and 12" April 2009, respectively. The
forested areas represent Norway Spruce.
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Factors such as water stress, light availability, wind and topography influence the growing
conditions. The latter two factors lead especially to eccentric stem cross-sections which
may influence the backscatter intensity. This result should be examined in more detail in
subsequent studies.

The orientations outside the aforementioned range, namely from —180° to —90° and
90° to 180°, depict polarisation-dependent phenomena. These orientations can be analysed
separately for each polarisation. First, considering HH polarisation in Figure 5.4 (a), it can
be observed that the amplitude of the signal for forests located on flat areas is relatively
constant (pink crosses). It can also be seen that the HH amplitude over hilly terrains does
not exceed the amplitude measured over flat areas, except at two different orientations
which show two intensity peaks, namely those around 150° and —135°. These maxima may
be related to double bounce scattering. Assuming the penetration of the canopy in L-band
frequency, the tree trunks act as corner reflectors under certain conditions. In the case
of the flat area, the dihedral cannot be highlighted because the forest conditions remain
constant. However, in the case of the sloping terrain, the two aforementioned orientations
may provide conditions which produce dihedrals. For these conditions, it should be noted
that while the ground is inclined, the trees maintain their vertical extension because they
usually grow in the vertical direction. Consequently, the trunk and the ground surface
in sloping terrains are not perpendicular to each other; the angle between the trunk and
ground is between 90° and 180° for slopes facing the radar and between 0° and 90° for
slopes facing away from the radar. This physical difference between flat and sloping
terrains and in particular the specific oblique angle formed between the trunk and the
inclined surface may explain the position of the two peaks observed in Figure 5.4 (a). In
addition to the above FBD and PLR HH polarisation observations, PALSAR FBS HH
data were also investigated with aspect and slope angles in order to compare the effect
of topography between frozen and non-frozen conditions. The frozen conditions given
by FBS acquisitions undertaken under temperatures below 0°C showed equivalent but
more amplified signal variations when compared to the non-frozen conditions. This result
may be explained by the greater penetration of microwaves when the canopy and ground
conditions reach the freezing point. Thus, returns from the ground level are enhanced, and
dihedrals for the positive and negatives slopes oriented at 150° and —130°, respectively,
are amplified.

Observing the HV polarisation in Figure 5.4 (b), it is found that the trends exhibited
by this channel are close to HH polarisation. In fact, maximum intensities are shown
around 135° and —135°, which can be referred to as dihedrals (similar to HH polarisation).
However, in contrast to HH polarisation, the intensity of the steep slopes in HV between
90° and 180° and between —90° and —180° appeared to generally remain relatively higher
than the flat terrain intensity. The latter range corresponds mainly to the positive-range
slopes as well as azimuth slopes oriented in the direction opposite to the sensor’s flight
direction. Typically, the maximum amplitude in HV polarisation should be observed
exactly on slopes facing away from the radar (8 = +90°). The path length travelled by
the microwaves in the canopies is the longest for forests located on positive-range slopes.
The volume viewed by the radar increases, thus increasing the HV backscatter intensity.
With respect to the decrease in the intensity described above, this surprising result is
attributed to the physical variations (e.g. stem cross-section) in the forest with different
slope expositions.
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Finally, the VV polarisation shown in Figure 5.4 (c) indicates a different trend for the
HH and HV channels. In the present case, the intensity is maximum only for slopes facing
the radar (§ = —45° to —135°). In theory, microwaves in VV polarisation are extremely
sensitive to the terrain surface, especially in Bragg-scattering conditions. Considering
that the vertically polarised waves penetrate the forest canopies with a slope facing the
radar, it can be conceived that the response of the terrain surface to VV polarisation
should increase in such conditions. Thus, the observations made in Figure 5.4 (¢) appear
to be realistic.

Analogous to the PALSAR backscatter intensity, TSX, TDX and CSK, amplitudes
were investigated. Examinations using X-band sensors showed results which were gener-
ally equivalent to the L-band results presented above. A few divergences were observed,
especially with VV polarisation, because of the opaque canopy seen at the X-band fre-
quency. In this case, the intensity fluctuations were found to be similar to those cor-
responding to HH polarisation. Some further processed results for the X-band sensors
are provided in Appendix B.1. In addition to the spruce species, beech forests were in-
vestigated. The results for beech were found to be similar to those for spruce (refer to
Appendix B.1). It should be noted that pines were not considered for this analysis. As
discussed in Section 4.3 and showed in Figure A.6, Appendix A.1, this species was located
mainly in flat areas.

Optical crown depth

The analysis described above highlighted the various contributions of forest canopies
to the radar signal when dealing with rough terrain conditions. In particular, it showed
the importance of considering forest canopies in the topographic-normalisation approach.
As introduced in Equation (4.2), the correction of backscatter intensity for forest canopies
over a sloping terrain may be optimised using an exponential term n. The n exponent
may take into account the cases where the terrain is covered by vertically distributed
targets.

The estimation of the n-coefficient was performed in accordance with the empirical ap-
proach described in Section 4.3.4. The results showed some improvements of the normali-
sation of the signal over the sloping terrain. However, the improvements were insignificant
and mainly concerned positive slopes ranging between 80° and 150°. The reason is that in
the case of positive slopes, microwaves are mainly returned from the canopies in the form
of volume scattering, while in the case of negative slopes, ground-level contributions such
as surface and double bounce scattering may be predominant contributors to the signal.
Because Castel’s approach was based on the WCM, its assumptions only consider the
forest canopy, and potential returns from the ground level are neglected. Thus, volume
contributions can be corrected well, but surface and dihedrals appearing for slopes facing
the radar can be hardly normalised. Owing to the insignificant improvements obtained by
using the n-coefficient and the non-physical approach used to estimate the n-value, n = 1
was set for the normalisation, and the original amplitude variations related to topography
were maintained. It should be noted that the application of the n-coefficient may also
further alter the signal rather than improving it. Forest canopy parameters such as the
coefficient of extinction may vary within the forest, particularly under various growth or
weather conditions. Thus, the application of the n-coefficient may introduce new sources
of errors when it is not considered individually for each forest stand.
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5.1.3 Topography and decorrelation mechanisms

Decorrelation mechanisms

The investigations of the coherence over topographic areas showed two opposing trends,
which are discussed in Figure 5.6. To support the interpretations, before presenting these
results, the main decorrelation mechanisms in forested areas can be recalled in brief. Ac-
cording to Equation (3.35), the decorrelation components which may be considered for
the interpretations are mainly noise, temporal, volume and spectral-shift decorrelations.
Decorrelation due to thermal noise was presented in Section 4.3, and for the investigated
sensors, it was found to be insignificant in forested areas (see Figure 4.7 and Table 4.4).
Temporal decorrelation may be related to the revisit time of the repeat-pass systems and
their carrier frequency. PALSAR and CSK may be subject to temporal decorrelation,
while TDX is free of temporal decorrelation because interferometric acquisition for TDX
is performed in a single-pass. Two important parameters are significant with respect
to volume decorrelation: canopy crown height and canopy extinction (Cloude and Pap-
athanassiou, 2003). In hilly areas, the projected crown height varies with slope gradient
and orientation, leading to different optical paths through the canopy and eventually dif-
ferent volume decorrelations. In this regard, a slope facing the radar presents a shorter
optical path, i.e. less volume decorrelation, than a slope facing away from the sensor.
The canopy extinction involves crown structural properties and environmental conditions
such as air temperature. The greater are the elements composing the canopy, the greater
is the extinction. The air temperature influences the dielectric permittivity of the trees
and thus affects the canopies’ extinction properties. Typically, frozen conditions tend to
decrease the trees’ dielectric constant, thereby increasing the transparency of the canopy
to SAR microwaves. Spectral-shift decorrelation, which was introduced in the theory Sec-
tion 3.2 with range (y) and azimuth (7,,) frequency shift components, is related mainly
to the hilly terrain and the slightly varying incidence angle between the two acquisitions
comprising the interferometric pairs. The processing of interferometric coherence involved
spectral-shift corrections using slope-adaptive common band filtering. However, the fil-
tering may not completely remove spectral-shift spatial decorrelation, especially for steep
slopes facing the radar (see Section 3.2). Thus, as shown in the visualisations in Subsec-
tion 5.1.1, spectral-shift decorrelation due to the topography may remain. To estimate the
contribution of spectral-shift decorrelation, a theoretical analysis of the loss of coherence
due to spectral-shift decorrelation, based on Equation (3.38), may be performed. For each
interferometric configuration studied in Figure 5.6, Figure 5.5 presents spatial correlation
as a function of slope gradient.

Comparing the slopes facing the radar (negative values) and those away from the radar
(positive values), it can be generally seen that the spectral-shift decorrelation is significant
in the first situation, while it is negligible in the second case. On examination of negative
slopes for the PALSAR FBS sensor, it is observed that spectral-shift decorrelation begins
to be determinant at slopes inclined at —25° and is maximal at about —38°. In fact, the
latter angle coincides with the radar incidence angle. For CSK 30°, CSK 50° and TDX 38°,
spectral-shift decorrelation becomes significant on slopes inclined at approximately —25°,
—49° and —35°, respectively. As discussed in Section 4.1, most slopes in the Thuringian
Forest generally lie between 0° and 35°. Thus, in the case of CSK 30° and PALSAR FBS
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Figure 5.5: Modelling of spectral-shift decorrelation as a function of terrain slope (°). The
functions describe four different acquisition configurations, namely TDX SM 38° B, = 258 m
(blue), CSK SM Himage 30° B, = 185m (yellow), CSK SM Himage 50° B,, = 59m (brown)
and ALOS PALSAR FBS 39° B, = 475m (red).

39° interferometric configurations to a lesser extent, spectral-shift decorrelation needs to
be considered in the evaluation of coherence over steep slopes facing the radar.

As introduced in Section 3.2, it should be noted that spectral-shift decorrelation may
not only be expressed from a spectral perspective but also from a geometrical point of
view. In this regard, it should be first noted that according to Equation (3.37), the
spectral-shift is intrinsically related to the perpendicular baseline. Proportionally, the
greater the perpendicular baseline, the greater the spectral shift and therefore the spatial
decorrelation. This relationship recalls the definition of the critical baseline given in
Equation (3.39). The influence of the perpendicular baseline may be observed in Figure 5.5
using the blind angle, i.e. where slopes totally decorrelate the signal. In fact, an increase
in the normal baseline expands the blind angle. The blind angles in Figure 5.5 show that
they remain narrow for all sensors. The reason is that the available sensor configurations
showed relatively small perpendicular baselines compared to their respective systems’
critical baselines (see Section 4.2). Also, in terms of geometry, it can be noted that
negative slopes occurring above the blind angle refer to layovers, while positive slopes
with an angle greater than the sensor depression angle corresponds to shadow areas.
In this respect, as shown in Figure 5.5, spatial decorrelation due to shadowing has less
importance.

After recalling the various decorrelation mechanisms, the observations made from the
available interferometric data can be presented. PALSAR, CSK and TDX coherence
were examined using scatterplots, with the terrain aspect angle processed on the abscissa
and the interferometric coherence on the ordinate. To facilitate the interpretations, the
target direction of the sensor (azimuth direction) was set at 0°, and the aspect angle
was processed between —180° and 0° and between 0° and 180° for negative and positive
slopes, respectively. The same three slope classes, namely 0°-10°, 10°-20° and above
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20° were indicated in pine, yellow and blue, respectively. In general, owing to temporal
decorrelation, the investigated interferometric data did not show any clear trend. However,
specific configurations presented some tendencies, which appeared to highlight different
decorrelation mechanisms. Figure 5.6 presents some examples of these results with (a)
CSK 30°, (b) TDX 38°, (c) CSK 50° and (d) ALOS PALSAR 39° coherences all measured
in HH polarisation in the right-looking ascending mode and with an orientation of about
350°. It should be noted that the coherence data was corrected for the spectral shift
(slope adaptive common band filtering). It should also be noted that the forest stands
comprised only of spruce species, as the number of forest stands for beech and pine were
limited for this kind of analysis. Finally, it may be remarked that coherence bias should
be insignificant as the high resolution of sensors provided a sufficient number of samples.

Two different trends should be noted from the scatterplots in Figure 5.6. The first
one can be seen on the graphs (a) and (b) which depict steep slopes (blue) with a clear
drop in the interferometric phase coherence between —160° and 0°, while between 0° and
180°, the coherence appears to be relatively constant. The second trend can be observed
on plots (¢) and (d) which present an increase in coherence between —180° and —60° for
steep terrain and a decrease in coherence between 0° and 180°.

In the case of plot (a), the decrease in coherence between —160° and 0° is considered to
be mainly caused by the spectral-shift spatial decorrelation because the slopes concerned
by the loss of coherence are above 20°, and reviewing the decorrelation mechanisms, it
is observed that slopes above 25° for CSK 30° are subject to spectral-shift decorrelation.
Owing to the temporal decorrelation occurring with X-band 1-day repeat-pass acquisi-
tions, the coherence of CSK on plot (a) is also distinct, with a significant dispersion. In
plot (b) of Figure 5.6, the clear decrease in the coherence between —160° and 0° is not
due to spectral-shift decorrelation but volume decorrelation, according to the analysis
made from Figure 5.5. However, this result should be considered carefully because with
steep slopes facing the radar, it is still expected to have some spectral-shift decorrela-
tion contributions. This is particularly the case in forested areas as the scatterers are
mostly unstable, which usually leads to uncorrelated signals and reduced performances
of the spectral-shift filter. To better interpret the decrease in coherence for TDX nega-
tive slopes, the coherence in forested areas was compared with that in open areas on the
basis of the same slope gradient and orientation (see Appendix B.1). Although slopes in
the case of open areas were limited to 20°, the signal was relatively constant with the
different orientations particularly for an aspect angle range of —160° to —60°. Thus, the
decrease in coherence observed in Figure 5.6 (b) for forests over slopes facing the SAR
sensor may actually be caused by the contribution of volume decorrelation. Similar to
plots (a) and (b), plot (c¢) depicts X-band phase coherence measurements. However, the
observations are clearly different in this case. This can be explained by the variation of
the air temperature. In the acquisition shown in the graph (c), the air temperature re-
mained below —2.5°C, which produced frozen conditions on the canopies and the ground.
In such a situation, the opacity of the forest canopies decreases and in turn enhances the
contribution of returns from the ground for slopes facing the radar (5 = —160° to 0°).
It should be noted that the acquisition was measured at an incidence angle of about 50°
and with a perpendicular baseline of 59m. Therefore, the spatial decorrelation due to
spectral shift and layover was not significant in such a configuration (see Figure 5.5). Tt
should also be noted that the dispersion of the data is extremely high. This significant
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Figure 5.6: Topographic effects on interferometric coherence corrected for spectral shift (adaptive
slope common band filtering). The scatterplots depict the aspect angle on the abscissa between
—180° and 180° with the azimuth slopes centred at 0° and the interferometric coherence (vy)
on the ordinate. Negative slopes are described for the range of —180° to 0° and positive slopes
between 0° and 180°. The classes represent the inclinations of the three slopes, namely below
10° (pink), between 10° and 20° (yellow) and above 20° (blue). The InSAR data are composed
of (a) CSK SM Himage HH 30° Asc. B, = 185m (frame CSK1), (b) TDX SM HH 38° Asc.
B, = 258m (frame TDX3), (¢) CSK SM Himage HH 50° Asc. B, = 59m (frame CSK1)
and (d) ALOS PALSAR FBS HH 39° Asc. B, = 475m (frame FBS7) coherence acquired on
2274 /230 March 2011, 30" August 2011, 19" /20" February 2011 and 4" March/19 April 2008,
respectively. The forested areas represent Norway Spruce.
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variation can be explained by temporal decorrelation as well as the high versatility of the
temperature and forest conditions (i.e. snow). The PALSAR coherence depicted in plot
(d) presented results similar to those depicted by the CSK coherence acquisition shown in
graph (c). Under equivalent temperature conditions, PALSAR microwaves transmitted in
L-band frequency are prone to better penetration through the canopy than CSK X-band
microwaves. Hence, as shown in Figure 5.6 (d), the contribution from the ground increases
the coherency of the signal for slopes facing the radar in L-band configuration. The slight
decrease in coherence in the range 0° to 100° (facing away from the radar) may be inter-
preted as volume decorrelation. It should be noted that the description of spectral-shift
shown in Figure 5.5 indicated potential spectral-shift decorrelations over negative slopes
for the PALSAR FBS configuration. However, while the coherence obtained from this
configuration decreases with spectral-shift decorrelation, the measured coherence in Fig-
ure 5.6 depicted an increase in coherence for the slopes facing the radar. Thus, it can be
assumed that spatial decorrelation due to spectral-shift was of minor importance in this
case of PALSAR configuration.

The decrease in the coherence of TDX observed in Figure 5.6 (b) is potentially ex-
pressing volume decorrelation. Thus, the decrease in coherence could be used to estimate
parameters such as microwave penetration depth in the canopy. Below, a broad evaluation
of the penetration using the RVoG model is shown. The RVoG model was evaluated using
the equations described in Section 3.2 and the interferometric parameters of the TDX
acquisition. The interferometric coherence could be modelled as a function of vertical
height reflectivity. Figure 5.7 presents the obtained results and summarises the param-
eters applied to the modelling. The volume height is depicted on the abscissa and the
volume decorrelation on the ordinate. It should be noted that for the given modelling
scenario, the ground to volume ratio was chosen to be near zero (m¢/my = 0.1). It is fair
to assume that the ground contribution is insignificant in X-band frequency and with un-
frozen conditions. Thus, the model in the given scenario comprises only a single scattering
random volume layer, namely the forest canopy. It should also be noted that according
to the noise evaluation undertaken in Section 4.3, TDX noise decorrelation should reach
approximately ysyr = 0.9. This factor was deduced in the RVoG model by multiplying
it with the modelled volume decorrelation.

The different curves presented in Figure 5.7 express coherence as a function of vol-
ume height for various extinction coefficients o. These coefficients are usually forest- and
species-specific; they were unknown for Norway Spruces in the Thuringian Forest. Thus, o
was relaxed in the model to a range of values between 0m~! and 2m~!. The lowest func-
tions describe low extinction coefficients, while the top functions depict high extinction
coefficients. By observing the curves in Figure 5.7, it is noted that coherence decreases
with volume height until a height of about 6.5m is attained. Assuming for this example
a coefficient of exctinction of 0.05m™?, the volume height corresponding to a coherence of
0.2 is hy = 5.5m. After projecting this height in slant range with the cosine of local inci-
dence angle (6) = 13°), a volume height hy of approximately 5.4 m is obtained. This value
would correspond to the penetration through the canopy layer for the specific configura-
tion shown in Figure 5.6 (b), namely TDX coherence acquisition at 38° incidencen angle
and with slopes facing the sensor. It should be noted that the presented RVoG modelling
only assumed volume decorrelation with noise decorrelation correction. The decrease in
coherence observed in Figure 5.7 may also potentially include the remaining spectral-shift
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Figure 5.7: Modelled volume decorrelation as a function of volume height for various extinction
coefficients . The curves refer to the RVoG model with TDX SM 13° B, = 258 m configuration.
In the present case, the local incidence angle () is considered.

correlation, as discussed beforehand in Figure 5.6. Thus, the vertical height derived in
this example should only be considered to be the first approximation of the penetration
depth. It may also be noted that the forest should also satisfy the principal assumption of
the model, i.e. the canopy can be considered as a random volume. Comprising the trunk
and branches, the spruce canopies may not fit this assumption, particularly because the
branches present a systematic horizontal orientation (refer to Section 4.1).

5.1.4 Summary

The influence of topography on the X-band and L-band backscatter intensity and interfer-
ometric coherence over forested areas was investigated in this section. Visual comparisons
of the amplitude and phase coherence both with and without topographic corrections was
first performed. Then, a more detailed examination was undertaken using polarplots and
scatterplots.

For backscatter intensity, topographic normalisation including the pixel area and local
incidence angle performed well. However, fluctuations were still observed. The fluctua-
tions were found to be related to specific scattering mechanisms depending on the SAR
systems’ polarisation. In particular, VV polarisation in L-band enhanced surface scatter-
ing for negative (facing the radar) slopes, while HV polarisation presented for the same
system enhanced volume contribution in mostly positive (facing away from the radar)
slopes. Unexpected effects such as asymmetries in the azimuth direction were also ob-
served, which were not clearly understood. It was suggested that various tree physiologies
with different slope expositions may have affected the scattering mechanisms and may
therefore have explained the asymmetric azimuth observations. In this respect, it would
be interesting to examine the degree of trunks eccentricities due to slopes and wind and
investigate the overall contribution of this effect to the backscatter intensity in future
studies. Results in X-band were similar to those of the L-band sensor, except for VV
polarisation, which did not depict any surface scattering owing to the high frequency. To
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reduce the effect of topography in forested areas, a correction based on the optical crown
depth coefficient n was also tested. Because the application of an n-value different from 1
resulted only in minor improvements, n = 1 was set for normalisation and to consequently
maintain the original amplitude variations associated with topography.

The InSAR coherence was studied using PALSAR L-band 46-day and CSK X-band
1-day repeat-pass systems as well as a TDX X-band single pass instrument. Among the
available interferometric data, four coherence pairs were selected to illustrate different
decorrelation contributions. With CSK 30° under unfrozen conditions, it was first ob-
served that coherence decreased with negative slopes. This observation was explained by
the spatial decorrelation induced by the spectral shift between the two interferometric
acquisitions. With the same SAR system with a 50° incidence angle under frozen con-
ditions, it was then observed that on this occasion, a decrease in coherence occurred for
positive slopes and an increase in coherence was observed for negative slopes. This result
could be explained by the frozen conditions of the ground and canopy, which increased
the penetration of the microwaves, thus increasing the volume decorrelation for positive
slopes and surface contribution for negative slopes. Under unfrozen conditions, the ALOS
PALSAR observations presented similar results because the low frequency of the L-band
system may penetrate the forest and is sensitive to the volume of the canopies. Thus, the
negative slopes indicated that the microwaves reached the ground, thus suggesting high co-
herence, while positive slopes indicated that the microwaves returned from canopies, thus
enhancing volume decorrelation. Finally, a significant decrease in the coherence for slopes
facing the radar could be highlighted in the case of the TDX 38° InSAR system configura-
tion. This decrease in coherence was found to be related mainly to volume decorrelation
because temporal decorrelation did not affect the TDX system, spatial decorrelation due
to spectral shift was found of minor importance and open areas over steep negative slopes
depicted high coherence.

In summary, the correction of radar amplitude signals over hilly forested areas is com-
plex and requires deep understanding of the different interacting parameters. To com-
pletely understand the problem, simulations using different scenarios may be envisaged.
This topic, which was recently addressed in Villard et al. 2010, is beyond the scope of
this study and is required to be examined in future studies. Spatial, volume and temporal
decorrelations could be distinguished for interferometric coherence. Although spectral-
shift deccorelation was corrected with a slope adaptive common band filter, spectral-shift
decorrelation appeared to remain in the data, especially in steep sloping areas. Therefore,
the results presented in this study, such as the characterisation of volume decorrelation
for TDX negative steep slopes, should be carefully considered. Temporal decorrelation

was found to be significant with the two repeat-pass systems investigated in this study,
namely CSK and ALOS PALSAR.

5.2 Scattering mechanisms analysis

5.2.1 Visual observations

Before proceeding with an in-depth analysis of the backscatter intensity, it may be useful
to visualise some of the available intensity data. In Figure 5.8, an example of (b) TDX
and (c) PALSAR amplitude is presented together with (a) a RE scene for comparison



5.2 Scattering mechanisms analysis 157

purposes. The area covered is the Schonbrunn Lake region introduced in Section 5.1
and Appendix A.1. For this example, the forest inventory data is superimposed on the
different images in order to highlight the information corresponding to the forested areas.
In the case of TDX, the inventory depicts the Norway Spruce and European Beech species
in blue and yellow, respectively. For the PALSAR image, three different ranges of GSV
were displayed, namely 0 — 200, 200 — 400 and 400 — 700 m3ha~! in yellow, blue and red,
respectively.
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Figure 5.8: Visualisation of backscatter intensity (7°) scaled in dB for (b) TDX SM HH 38°
Asc. (frame TDX3) and (c¢) ALOS PALSAR FBD HH 39° Asc. (frame FBD7) data. The
PALSAR and TDX scenes were acquired on 10*" June 2010 and 30*" August 2011, respectively.
A RE optical image (RGB) acquired on 13*" June 2009 is provided in (a) for comparison among
different landcovers. Tree species compositions and GSV information obtained from the forest
inventory are overlaid onto TDX and PALSAR images, respectively. Spruces are depicted in blue
and beeches in yellow. The GSV are presented in blue, yellow and red for the ranges 0 — 200,
200 — 400 and 400 — 750 m3ha~!, respectively. The coordinates are provided in the reference
system UTM zone 32.

Before describing the radar images, the elements observed over the selected area in
the optical RE scene may be listed (Figure 5.8 (a)). Referring to the general landcover
types, it is observed that the forests surround a lake at the centre right of the area. The
lake is shown in the RE scene with white patches. The patches represent the reflection
of clouds on smooth water. On the upper left side of the image, a small village known as
Frauenwald appears, which is depicted in white owing to the high reflectance of asphalt
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and other man-made surfaces. Some open areas close to the village are shown in light
green, indicating large reflection of the grass in the visible (more particularly in the green)
spectrum.

Now, considering the SAR images (Figure 5.8 (b) and (c)), on comparing the bound-
aries of the forest inventory vector data and different areas in the radar images, such
as forests surrounding the lake, it is noted that the forest stands are in good agreement
with the forest borders observed in the satellite images. On closer examination of the
TDX image in Figure 5.8 (b), it can be observed that there is a net contrast between the
Norway Spruce and European Beech. In particular, beech appears brighter than spruce
in the image, reflecting its higher intensity. By focusing on the different landcovers shown
in the scene, it is observed that open areas display the same grey tone as the Norway
Spruce. The scatterers of these two different areas appear to have similar characteristics
in X-band. Water, which reflects the microwaves in a specular manner, shows the lowest
intensity, while the highest amplitudes appear to occur in urban areas, where double re-
flections are dominant. The PALSAR images indicate that the forest appears to be bright
in comparison to other land surfaces. The forest expresses the high intensities inferred
from the forest canopies in L-band. In comparison to TDX HH polarisation, the PALSAR
HH scene illustrates that the distinction between the Norway Spruce and European Beech
is limited in L-band. Moreover, considering the G'SV ranges depicted by the inventory
data, it is observed that the differentiation of different biomass levels using the PALSAR
amplitude does not appear to be possible. This topic has been one of the main points
of focus of the scattering mechanisms investigation and is presented in more detail later
in this section. In addition to forested areas, it can be observed that the signal is weak
over open areas as well as over water. In both cases, the roughness level appears to be
insignificant compared to the L-band wavelengths, thus allowing specular reflections of
the electromagnetic waves. In contrast to open areas and water, the urban zone shows
bright pixels suggesting a high backscatter produced mainly by double reflections.

5.2.2 SAR parameter signatures

Multitemporal

A multitemporal analysis provides a good overview of the investigated signals and
allows the first global examination of potential phenologies. In this study, this analysis was
chosen to introduce some of the factors affecting the radar backscatter over the Thuringian
Forest. First, the time-series observations for the X-band systems are presented. Then,
the results of the L-band temporal analysis are presented. It should be noted that the

results shown below represent one frame per dataset, which can be viewed in Appendix
A2.

X-band:

TSX and CSK were configured in order to acquire time-series datasets (see Section 4.2).
Figure 5.9 depicts the latter data with the acquisition date on the abscissa, backscatter
intensity on the left ordinate and weather information on the right ordinate.

In the example shown in Figure 5.9 (a), the TSX time-series were acquired in the HS
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Figure 5.9: Time-series analysis with (a) TSX HS HH 37° Asc. (frame HS1) and (b) CSK SM
Himage HH 50° Asc. (frame CSK1) backscatter intensity (7). HH polarisation is represented
by a continuous line, while VV polarisation is shown by a detached line. Beech, spruce and pine
are shown in yellow, green and red, respectively. Weather information is depicted in dark blue,
bright blue, red and grey histograms for daily precipitation (pq), hourly precipitation (py,), daily
air temperature (tq) and daily wind (wgq), respectively. Here (a) represents data obtained by
processing 40 spruce and 99 beech stands and (b) represents data obtained by processing 1545
spruce, 314 beech and 136 pine stands.
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mode with HH and VV polarisations, ascending direction and at an incidence angle of 37°.
The time window of the acquisitions extends from August 2009 to November 2009, and the
frame location is given in the Schmiedefeld region (see frame HS1), which consists mainly
of spruce and beech species. The TSX temporal graph indicates that the amplitudes in
HH and VV polarisations are comparable for both spruce and beech species. The average
intensities of the signals for the two species are about —5.5dB and —7.0dB. The error bars
show +0.7 and +0.9dB for spruce and beech, respectively. According to these observed
amplitudes, the separation between these two species may be envisaged. Similar results
are obtained by Ortiz et al. 2012. The higher backscatter for beech compared to spruce
results mainly from the difference in the structural foliage characteristics of these species.
In particular, the sizes of the leaves and needles as well as the gaps produced by the foliage
of the two species play an important role in X-band. From this perspective, if the foliage
composition and structure are important, there should also be some seasonal variations,
particularly during leaf fall. On examining spruce and beech signals over different months,
it is observed that the separation between the two species slightly improves during the
leaf-off season (October-November) in comparison to the case during the leaf-on season
(June-September). However, the signal intensity of beech decreases during the leaf-on
season, while it was expected to increase with the apparition of the leaves. This consistent
decrease in backscatter may be explained by the higher absorption of radar microwaves
by the leaves. Difference in species characteristics is not the only cause of the variations
shown by the different acquisition dates. In fact, they can also be explained by external
factors such as weather conditions. A comparison of spruce and beech amplitude signals
with the processed weather data indicates some relations. In particular, the precipitation
histograms appear to follow the amplitude curves, particularly on 6" October 2009, which
shows a pick of intensity agreeing with the 30-mm and especially the 5-mm precipitation
which occurred 4 days (dark blue histogram) and 4 hours (light blue histogram) before
the given acquisition, respectively. This observation agrees well with the results of other
studies (see Chapter 2).

Figure 5.9 (b) depicts the temporal datasets processed for CSK. These were acquired
between September 2010 and July 2011 in the SM Himage mode, ascending pass, HH po-
larisation and at an incidence angle of 50°. Owing to the large extension (40 km x 40 km)
of CSK’s frame and its location centred in the Frauenwald region (see frame CSK1, Ap-
pendix A.2), the three dominant species of the site, i.e. spruce, beech and pine, were
covered. It should be noted that CSK was principally acquired to investigate X-band
short temporal baseline interferometric coherence (see Section 5.3 coherence analysis).
Hence, CSK acquisitions depicted in Figure 5.9 (b) consists of image pairs with a 1-day
repeat-pass. The CSK temporal plot indicates amplitudes of about 1.5dB, which are
lower than the TSX backscatter amplitude. In addition, the separation between spruce
and beech at an amplitude difference of approximately 2dB to 2.5 dB appears to be more
pronounced in the case of CSK. The reasons for this difference can be explained not only
by the different incidence angles but also the different acquisition time selected for the
two sensors. Some discussions on these topics are given later in this subsection by the de-
scription of the incidence angle and pass direction results. The red curve representing the
amplitude of pine agrees well with the green signal corresponding to spruce. However, it
should be noted that a standard deviation of 0.5 dB for pine is clearly smaller than that for
spruce. This difference may be explained by the smaller number of pine stands available
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(n = 136) in comparison to spruce stands (n = 1545). Similar to TSX time-series obser-
vations, the separation between beech and conifer species is enhanced during the leaf-off
period (October—April) in comparison to the leaf-on period (June-September). However,
no relationship between backscatter intensity and precipitation was observed. Also, the
CSK scenes acquired under frozen conditions (19" February 2011 and 20*® February 2011)
did not highlight any obvious amplitude variation.

L-band:

A large amount of overlying PALSAR acquisitions provided a good basis for L-band
frequency multitemporal analysis. Figure 5.10 depicts an example of the multitemporal
PALSAR (a) HH and (b) HV dataset processed in the same manner as the TSX and CSK
time-series presented previously.

PALSAR HH data shown in Figure 5.10 (a) were acquired between 13" November 2006
and 9" January 2011 in the FBD and FBS modes with an ascending-pass direction and
at an incidence angle of 39°. The FBD acquisitions were measured during the vegetative
period, while the FBS ones were captured during winter when the metabolisms of plants
and trees are mostly constant. To observe the backscatter signal over a large number of
acquisitions, the overlay of two different frames was considered (frames 7 and 8 defined
in Appendix A.2). By observing the curves in Figure 5.10 (a), some general remarks
can be made. First, in contrast to the X-band sensors TSX and CSK, spruce and pine
show higher absolute amplitudes than beech for the PALSAR L-band instrument. More
precisely, a difference of 1dB to 1.5dB separates the average signals of beech and the
two conifers taken together. Also, a comparison of pine and spruce suggests that the
absolute amplitudes of these species are extremely close. However, pines still show a
slightly (~0.3dB) lower intensity compared to spruce. The standard deviation of the
three species indicates a spread extending between 0.5dB and 1.5dB, with the smallest
dispersion values for the conifers. The size of conifer branches may generally better
correspond to the size of the L-band microwaves than the broadleaves branches, which
explains why the energy returned from conifers is higher than that returned by beech.
However, it should be noted that many other factors need to be considered in order to
understand the observed amplitude differences between the species. The interaction of
radar microwaves may differ with the canopy properties of the species (i.e. size, shape,
orientation, dielectric constant of the branches) as well as structures of the trees (i.e.
density, understorey). The microwaves may also penetrate more deeply into beech forests
than into spruce or pine canopies, thus increasing the ground contribution of beech and
decreasing backscatter. To clarify these observations, other results need to be introduced.
Hence, further discussions concerning these results are given later in this chapter (see
Subsection 5.2.3). As mentioned previously, the PALSAR time-series data include not only
FBD but also FBS acquisitions, which enables comparisons between winter and summer
acquisitions. The FBS measurements in Figure 5.10 indicate a significant decrease in the
intensity during winter. This decrease, which exceeds 4dB at its highest (3*¢ January
2009), appears to be closely related to the temperature depicted by the red histograms.
In fact, when the temperature reaches the freezing point, the dielectric constant (relative
permittivity) of the trees reduces, and all their metabolic activities (e.g. sap flow) are
terminated (see Section 3.1), thus enabling better penetration of the microwaves through
the canopy under such conditions and a higher contribution from the ground, which
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Figure 5.10: Time-series analysis with (a) ALOS PALSAR FBD FBS 39° Asc. HH (frames
FBD7,8 and FBS7,8) and (b) ALOS PALSAR FBD 39° Asc. HV (frames FBD7,8) backscatter
intensity (7°). Beech, spruce and pine are in yellow, green and red, respectively. Weather
information is depicted by dark blue, bright blue, red and grey histograms for daily precipitation
(pa), hourly precipitation (py), daily air temperature (tq) and daily wind (wq), respectively. Here
(a) represents data obtained from 590 spruce, 29 beech and 30 pine stands and (b) represents
data obtained from 616 spruce, 31 beech and 30 pine stands.
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generally conducts in L-band to poor backscatter intensity. It should be noted that the
backscatter intensities of spruce, beech and pine are significantly closer for acquisitions
performed under frozen conditions than for those performed under non-frozen conditions.
This observation supports the interpretations which suggest that the microwaves penetrate
through the canopy and reach the ground. However, it should be noted that snow generally
covers the Thuringian Forest during winter, and this may have affected the backscatter
intensity. It should also be noted that this result agrees well with the findings of other
authors (see Section 2.1). A comparison of the precipitations or wind to backscatter
intensity indicated no significant trends.

The PALSAR HV multitemporal data are presented in Figure 5.10 (b). These data
were acquired with the FBD HH data shown in Figure 5.10 (a) simultaneously. Therefore,
the acquisition configurations and selected frame remain the same as those for the FBD
HH dataset. PALSAR HV time-series data acquisition started on 1% July 2007 and
ended on 26" July 2010. The graph indicates that in terms of backscatter intensity, the
average HV signal amplitudes for spruce, pine and beech are —13.2dB, —13.4dB and
—14.0dB, respectively. These backscatter amplitudes are relatively 5dB lower than the
ones described for HH polarisation. Also, a comparison of the backscatters of the species
indicates that similar to HH returns, spruce and pine show higher amplitudes than that
of beech. In this case, the difference between the average signal amplitudes of beech
and the two conifers taken together is only 0.5dB to 1dB. Spruce and pine also depict
different backscattering coefficients. However, in contrast to HH polarisation, it can be
observed that on this occasion, pine’s amplitude remains 0.3dB higher than the spruce
backscatter amplitude. Finally, the dispersion shows that the largest spread is given by
beech (£1.5dB), followed by spruce (£0.6 dB) and pine (£0.5dB). With respect to the
HH results presented in Figure 5.10 (a), the observations made in Figure 5.10 (b) cannot
be explained unless several components are considered. This is described and further
discussed during the comparison of the PALSAR sensor and GSV (Subsection 5.2.3).
Comparing the weather data with the different acquisitions, no specific trends could be
found. As mentioned above, for HH polarisation, the L-band frequencies appear to be less
sensitive to precipitation events than the X-band frequencies.

Multifrequency

ALOS PALSAR and TSX instruments transmit microwaves at different frequencies.
In this regard, several investigations were performed in order to compare their respective
signals. Figure 5.11 depicts 2D scatterplots with L-band and X-band measurements on
the abscissa and ordinate, respectively. The L-band and X-band data shown in Figure
5.11 were performed in the ascending mode, HH polarisation and at an incidence angle
ranging between 32° and 39°. It should be noted that the acquisition dates between each
compared dataset were selected to be as close as possible and from the same season so
that no phenological phenomena affected the examinations.

The scatterplots indicate that broadleaves can be well-separated from conifers. A
virtual oblique line may be traced between the clouds of points representing these two
tree categories. This observation suggests that the ratio L-band/X-band may be useful
for separating broadleaves and conifers. In terms of amplitude, it can be observed that
the clouds of points for the three species are generally shifted above the 1:1 line. In other
words, the backscatter intensity over the Thuringian Forest is generally higher at X-band
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Figure 5.11: Frequency analysis with ALOS PALSAR FBD HH 39° Asc. (frames SM1-3 and
SM6,7) vs. TSX SM HH 32°-38° Asc. (frames SM1-3 and SM6,7) backscatter intensity (7°).
Blue, yellow and red indicate spruce, beech and pine, respectively.

frequencies than at L-band frequencies. This result may be explained by the structural
composition of the canopies and more specifically by the number and size of the scatterers.
Considering that X-band scatterers mainly return from twigs and small branches while
L-band scatterers mostly return from large branches, the X-band microwaves may have
proportionally more scatterers than the L-band electromagnetic waves. It should be noted
that the scatterplot ’(c) 24sep09 vs. 01sepl0’ is an exception to this observation. In fact,
clouds of points of spruce and pine are shown to be slightly below the 1:1 line. On
comparing this plot with the first one (a) 07sep09-01sepl10’, it can be observed that the
L-band acquisition dates are different, while the X-band dates are the same. Consequently,
the apparition of spruce and pine stands below the 1:1 line is explained by the variation
in PALSAR measurements. The reasons for this amplitude difference (Ay° &~ 1dB) in
L-band data could not be clearly identified. The weather conditions with no hourly and
less than 4-mm daily precipitation appear to be insignificant. Intuitively, the canopies’
structure cannot be related to this particular observation because all the three tree species
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show a 1-dB amplitude shift, and the consideration of the same stands between subplots
(a) and (c) revealed equivalent results.

Similar to Figure 5.11, Figure 5.12 presents the scatterplots processed for the HV
polarisation. It should be noted that the selected acquisition dates are the same as those
chosen for the HH polarisation in Figure 5.11.
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Figure 5.12: Frequency analysis with ALOS PALSAR FBD HV 39° Asc. (frames FBD4,6,7) vs.
TSX SM HV 32°-38° Asc. (frames SM1-3 and SM6,7) backscatter intensity (7°). Blue, yellow
and red indicate spruce, beech and pine, respectively.

Similar to the HH polarisation in Figure 5.11, comparing the Figure 5.12 amplitudes for
the X-band and L-band systems, the forest backscatter intensity for the HV polarisation
appears to be higher in X-band than in L-band frequency. The subplot (c¢) 24sep09 vs.
01sep10, where the strength of the backscatter is higher in L-band than in X-band again,
appears as an exception. The explanations given above for HH polarisation should be
applicable to the case of HV polarisation. In contrast to HH, the enhanced separation
of the conifers and broadleaves using an X-band/L-band ratio does not appear to be
possible with HV polarisation anymore. Indeed, neither X-band nor L-band systems in
HV allow a clear separation of the investigated tree species. These observations suggest
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that scatterers such as needles, leaves and branches possess similar characteristics in terms
of structural composition. Finally, the clouds of points in the subplots of Figure 5.12
indicate that positively oriented ellipse regions at approximately 45° can be conceived.
The orientation of the ellipses indicates the tendency that the forest backscatter increasing
in X-band causes an increase in backscatter in L-band and vice versa. In this respect,
a parallel can be drawn between the amounts of vegetation considering HV polarisation.
A higher volume of small twigs and small branches at the top of the canopy indicates a
proportionally higher volume of branches inside the canopy.

Multi-angle

As presented in Sections 3.2 and 5.1, radar acquisitions with varying incidence angles
may show different scattering mechanisms. Hence, the radiometry of the SAR data may
be affected. In this framework, the various incidence angle configurations of the available
TSX, CSK and ALOS PALSAR data were analysed. In particular, whisker boxplots were
used to observe potential amplitude variations associated with the different incidence
angles. It should be noted that according to the investigations performed in Section 5.1,
the analysis performed here focused on flat or moderate slope areas. In fact, as it was
presented in Section 5.1, the topography introduced amplitude variations, which appeared
to be related to not only the radar scattering mechanisms but also the physiology of the
forest. Hence, to distinguish the scattering mechanisms related to the incidence angle from
the steep terrain effects, sloping criteria were defined for the incidence angle analysis. It
should also be noted that when possible (i.e. when the number of available ROIs was
sufficient), the investigations focused on open areas as well as spruce, beech and pine
forest stands. The open areas were considered to reveal potentially different scattering
mechanisms occurring in non-forested areas relative to forested areas. For the sake of
synthesis, only the results of the forested regions are presented below focusing on spruce
stands. The reader is referred to Appendix B.2 to refer to further processed graphs.

X-band:

Figure 5.13 depicts the boxplots computed for the TSX HH polarisation data over
spruce stands. All the depicted data were acquired in the ascending mode. Each boxplot
represents one radar acquisition for which the incidence angle and acquisition date are
described on the primary and secondary abscissae, respectively. It should be noted that
for the sake of clarity, three different incidence angle ranges, namely 20°-30°, 30°-40°
and 40°-50°, are considered on the primary abscissa. The backscatter intensity in dB
and weather information, such as daily and hourly precipitations in mm, are represented
on the primary and secondary ordinates, respectively. According to the methodology
presented in Section 4.4, the intersecting area of the investigated TSX scenes was selected
and the common nodata values were masked so that the same forest stands could be
compared for the different acquisitions. Additionally, as mentioned above, forest stands
with limited topography were selected. In the case of TSX, owing to the small size of the
HS frames, the number of forest stands was limited. Thus, only slopes below 10° were
selected. It should be noted that the incidence angle considered here is the one measured
at the mid-swath of the SAR data. It should also be noted that the number of beech and
pine stands was not sufficient to compute reliable statistics. Therefore, these classes were
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not investigated in this study.
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Figure 5.13: Incidence angle analysis with TSX HS HH 23°-48° Asc. backscatter intensity
(7°) (frame HS1). The boxplots represent spruce species with the sample minimum, lower
quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather information is
depicted in bright blue and dark blue for daily precipitation (pq) and hourly precipitation (py,),
respectively. A slope of < 10° was selected, leading to 11 remaining spruce forest stands.

The boxplots in Figure 5.13 indicate that the amplitude decreases with increasing
incidence angle. More specifically, the median of the first two acquisitions lies at around
—4dB with an incidence angle of 23°, while that of the other acquisitions fluctuates
between —7dB and —8dB and —9dB and —9.5dB at incidence angles of 37° and 48°,
respectively. According to theoretical models for forest backscatter (see Section 2.1), the
total backscatter of the forest should decrease with increasing incidence angle. This trend
is mainly explained by the high surface scattering contribution occurring at steep angles
and the relatively lower contribution of the volume at large incidence angles. Thus, it is
not surprising to see an intense backscatter at 23° and lower amplitude signals at 37° and
48°. However, the variation between 23° and 37° is very significant (~3 dB). No particular
reasons could explain this large difference. As reported by some authors (Rauste, 1990,
Sun et al., 1991, Westman and Paris, 1987, Moghaddam and Saatchi, 1993), in addition to
volume, double bounces may increase under large incidence angle acquisition conditions.
In the present case, the contributions of double bounce do not appear to be significant in
the large incidence angle configuration because the amplitude shown by the acquisitions
performed at an incidence angle of 48° remain low compared to the other incidence angles.
This can be justified by the frequency used by TSX. Indeed, at X-band frequencies and
in such large incidence angle configurations, the canopy is not sufficiently transparent to
allow electromagnetic waves backscattered from the ground level. As mentioned earlier,
precipitations may increase the backscatter intensity. The consideration of precipitations
in Figure 5.13 did not show any clear trend with the backscatter intensity. However, it
was noticed that in comparison to dry weather conditions, the dynamic range increased
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when hourly precipitations occurred.

Similar to Figure 5.13 for TSX, Figure 5.14 depicts the boxplots processed over spruce
stands for CSK HH polarisation. The configuration is the same as TSX, except that CSK
acquisitions were performed during night at 5 a.m. UTC, while the plots for TSX represent
daily measurements with images acquired at 5 p.m. UTC. For comparison purposes,
the boxplots computed over open areas, beech stands and pine stands are provided in
Appendix B.2.
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Figure 5.14: Incidence angle analysis with CSK SM Himage HH 20°-50° Asc. backscatter inten-
sity (7°) (frame CSK1). The boxplots represent spruce species with the sample minimum, lower
quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather information is
depicted in bright blue and dark blue for daily (pq) and hourly (py) precipitations, respectively.
A slope of < 5° was selected, leading to 165 remaining spruce forest stands.

In contrast to the boxplots illustrating TSX in Figure 5.13, the graphs depicted in
Figure 5.14 for CSK do not present any clear trend of the backscatter intensity with the
incidence angle. However, it should be noted that the dynamic ranges appear larger in
the case of CSK, suggesting that water droplets referring to the typical early morning
humidity have affected the CSK data. It should also be noted that the CSK dimensions
of SM Himage scenes are 40 km x 45 km, while those of TSX HS images are 10 km x 5 km,
which implies that the number of stands available is much higher for CSK than that for
TSX. In addition, the incidence angle variation in the range direction within the scenes
is also larger for CSK (Afcsk = +4°) than that for TSX (Afrsx = £2°).

L-band:

Considering the current ALOS PALSAR data, the incidence angle was investigated by
comparing PLR and FBD acquisitions, which were measured in the ascending direction
at about 22° and 34°, respectively. The large amount of available PALSAR data allowed
many observations, including those of spruce, beech and pine forest stands, as well as open
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areas. Figure 5.15 illustrates the processed boxplots for the backscatter in HH polarisation
over spruce forest stands.
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Figure 5.15: Incidence angle analysis with ALOS PALSAR FBD HH 39° Asc. and PLR HH
22° Asc. backscatter intensity (7°) (frames FBD7,8 and PLR3). The boxplots represent spruce
species with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and
sample maximum. Weather information is depicted in bright blue and dark blue for daily (pq)
and hourly (py,) precipitations, respectively. A slope of < 5° was selected, leading to 85 remaining
spruce forest stands.

The tendency of the L-band frequency system seemed to be opposite to that of the
X-band frequency system. In fact, as shown in Figure 5.15, the backscatter intensity
slightly (~0.5dB) increased with increasing incidence angle. The descriptive statistics
show the median to be slightly above —8dB for PLR data (# = 22°) and slightly under
—7dB for FBD acquisitions (6 = 39°). As mentioned earlier, the theoretical models
in previous studies describing forest backscatter with varying incidence angles showed
decreasing intensity with increasing incidence angles (see Section 2.1). Therefore, the
obtained observations contradict the reported models. To understand this contradictory
result, beech forest, pine stands and open areas were examined in addition to the analysis
of spruce in Figure 5.15. Figure 5.16 depicts the boxplots generated for PALSAR data
over beech forest stands in (a) HH and (b) HV polarisations. Owing to the location of
the beech stands in mainly topographic areas, slopes below 10° were selected, ensuring a
sufficient number of stands while removing areas with high topography.

As shown in Figure 5.16, the observation of the backscatter intensity for different
incidence angles over beech forest stands confirmed the results addressed above for spruce,
but on this occasion, the observed difference in amplitude between steep and shallow
incidence angles appeared to be more significant. In fact, the beech backscatter amplitude
in Figure 5.16 (a) varies by about 2dB between 22° and 34°, while the spruce amplitude
in Figure 5.15 varies by only 0.5dB in the same incidence angle range. Carrying along
the investigations, the HV polarisation presented for beech has the same trends as those
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Figure 5.16: Incidence angle analysis with (a) ALOS PALSAR FBD HH Asc. and PLR HH Asc.
as well as with (b) ALOS PALSAR FBD HV Asc. and PLR HV Asc. backscatter intensity (y")
(frames FBD2 and PLR1). The boxplots represent beech species with the sample minimum,
lower quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather informa-
tion is depicted in bright blue and dark blue for daily precipitation (pq) and hourly precipitation
(pn), respectively. A slope of < 10° was selected, leading to 49 remaining beech forest stands.
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presented by HH with a more pronounced difference between steep and shallow incidence
angles. The observations for pine and open areas revealed that the results obtained for
pines were equivalent to those obtained for spruce, namely an increase in the backscatter
for higher incidence angles; however, in the case of open areas, the signal in HH and HV
appeared to be relatively constant with the incidence angle (see Appendix B.2).

With reference to these observations, it appears difficult to clearly explain the forest
scattering mechanisms occurring at various incidence angles. In a typical situation, surface
scattering should be dominant at a steep incidence angle (22°), volume scattering at large
incidence angles (6 > 39°) and the backscatter intensity should decrease with increasing
incidence angle. In the present case, the backscatter increases with increasing incidence
angle. Thus, it is presumed that at L-band frequencies, the Thuringian Forest does not
fit the theoretical models shown in the literature for forest backscatter (see Chapter 2).
At this stage of the investigations, only assumptions can be addressed. For instance,
it may be assumed that dihedrals enhance the backscatter at large incidence angles. It
may also be assumed that several forest properties such as canopy extinction or forest
horizontal structure may have affected the signal in different ways for various incidence
angles. Considering the more marked variation in intensity for beech compared to spruce
or pine, it may be assumed that beech presents a greater penetration of the microwaves
in comparison to conifers; thus decreasing the backscatter intensity with greater ground
contribution for steep incidence angles and increasing the backscatter with more apparent
volume for large incidence angles. With reference to forest structure, these results may be
explained by the differences in height and basal area between the conifers (spruce and pine)
and beech. By comparing the species in Section 4.3, mature beech were characterised by
low density (i.e. basal area) and large height, while mature conifers showed high density
and small height (see Figure 4.4). Finally, the slightly more pronounced variation in HV
compared to HH may be explained in a similar manner. HV may highlight a larger volume
than HH for a large incidence angle and present a smaller sensitivity to ground reflections
at steep angles. Some of these elements require a more in-depth examination, which is
presented later in this section.

So far, the discussions about the incidence angle focused on the radiometry of the
SAR data. However, as introduced in Sections 3.2 and 5.1, in addition to radiometry, the
side-looking acquisition of radar data may also affect the geometry of the images. In this
regard, a visualisation of the SAR data with different incidence angles was performed. In
Figure 5.17, the backscatter intensity images for PALSAR (a) PLR HH and (b) FBD HH
data are depicted. The first image was acquired on 12" April 2009 in the PLR mode at
an incidence angle of 22°, while the second one was acquired on the 10" June 2010 in the
FBD mode. Both images were measured in the ascending pass direction and were linearly
stretched between —20dB and 0dB to enable comparisons.

In the PALSAR PLR data (6 = 22°) shown in Figure 5.17 (a), geometric distortions
such as layover and foreshortening can be well distinguished in bright stretched areas near
the Leibis-Lichte lake. However, in the case of the FBD data (6 = 39°) (Figure 5.17 (b)),
these effects are greatly reduced owing to a shallower incidence angle.

Multipolarisation

An additional characteristic of the SAR systems is their ability to simultaneously
acquire images in different polarisations. In this respect, the present section focuses on the
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Figure 5.17: Comparison of layover and foreshortening between (a) ALOS PALSAR PLR HH
22° Asc. (frame PLR3) and (b) ALOS PALSAR FBD HH 39° Asc. backscatter intensity (7°)
(frame FBD7). The PALSAR PLR and FBD scenes were acquired on 12" April 2009 and 10"
June 2010, respectively. Linear stretching was applied between —20 dB and 0 dB for comparison
purposes. The area covered is the Leibis-Lichte Lake region.

comparison of the different polarisations measured in the dualpol or quadpol acquisition
mode. The discussions first concentrate on the X-band sensors and then shifts to the
acquisitions performed with the L-band instruments.

X-band:

The TSX system performed several acquisitions in dual polarisation (dualpol) over
the Thuringian test site. The acquisitions were measured in the HHVV, HHHV and
VVVH polarisation modes (see Section 4.2). Figure 5.18 first compares the HHVV mode
by representing the data in 2D scatterplots with HH polarisation on the abscissa and
VV polarisation on the ordinate. The data shown in this figure were measured in the
descending pass and at a large incidence angle in the range 40°-50°. Further results for
the other pass directions and incidence angle ranges are provided in Appendix B.2. It
should also be noted that the tree species compositions spruce (blue), beech (yellow) and
pine (red) were considered for the polarisation analysis. However, they were not always
available together in the same frame, which explains the apparition of only one or two
species on each plot.

The scatterplots in Figure 5.18 show that the clouds of points approximately follow the
1:1 line, indicating that the amplitude for HH and VV polarisations is rather comparable.
Upon closer examination, it is observed that there is a positive (i.e. plots (a) (k) or (1)) and
in some other cases negative (i.e. plots (c), (d), (e), (f), or (j)) difference of 0.5 dB between
the HH and VV backscatter intensity for the tree species under investigation. Comparing
the available radar acquisitions, these amplitude differences appeared to be independent of
the acquisition dates (Figure 5.18) and radar acquisition configurations (refer to Appendix
B.2) because both positive and negative differences were observed for several epochs and
acquisition parameters. A single frame of the HS data showed a positive (i.e. plots (a), (b))
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Figure 5.18: Polarisation analysis with (a)-(d), (k), (1) TSX HS HH 40°-50° Desc. vs. TSX HS
VV 40°-50° Desc. backscatter intensity (7") (frames HS1-3 and HS5) as well as with (e)-(j)
TSX SL HH 40°-50° Desc. vs. TSX SL VV 40°-50° Desc. backscatter intensity (7°) (frames
SL1-6). Blue, yellow and red represent spruce, beech and pine, respectively.

and a slightly negative (i.e. plot (¢)) amplitude difference. This suggests that the 0.5dB
variation is also not related to the structure of the forest. Distinguishing the scatterplots
for spruce, beech and pine by blue, yellow and red, respectively, it can be observed that
the conifers can be separated to broadleaves. Indeed, spruce and pine amplitudes extend
between approximately —8 dB and —10 dB, while beech’s intensity ranges between —6 dB
and —8dB. As discussed above during the description of the time-series datasets, the
foliage composition and branching structures of the investigated species differ, especially
between the broadleaf and the two considered conifers. At X-band frequencies, these
differences result in an increase of approximately 2dB for beech compared to spruce and
pine. It should be noted that in some cases, such as on the scatterplot (a) or (f), spruce
and beech separation is limited because in the first case, the amplitude of beech decreases
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to —9dB, while in the second case spruce’s amplitude increases to —7 dB. This variation in
intensity for beech in the first case and spruce in the second may be related to the structure
of the forest. Indeed, as described in Section 2.1, in terms of structure, the forest may
vary locally from one location to another depending on the defined logging strategies. The
forest structure may also be determined by the environmental conditions of the forest such
as slope exposition or groundwater availability. In this regard, there may be diverse forest
structures which may explain why the dynamic range shown by spruce and beech in the
plots (a) and (f), respectively, is higher. Additionally, owing to the different microwave
absorption or reflection capabilities of the canopies, the various complex permittivity
values given for the three different tree species in different periods of the year may produce
variability in the signal, thus contributing to the observed variability.

After examining HHVV polarisations, the HH linear polarisation can be compared to the
HV channel in order to interpret the differences in scattering mechanisms for the like- and
cross-polarisations. Figure 5.19 depicts the scatterplots computed over spruce, beech and
pine forests with HH channel on the abscissa and HV polarisation on the ordinate. The
presented plots refer to the TSX SM data acquired at incidence angles of 30°~40° in the
descending pass direction. Further results of X-band cross-polarisation comparisons are
provided in Appendix B.2.
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Figure 5.19: Polarisation analysis with TSX SM HH 30°-40° Desc. vs. TSX SM HV 30°-40°
Desc. backscatter intensity (7°) (frames SM1,2 and SM5-7). Blue, yellow and red represent
spruce, beech and pine, respectively.

An overview of the plots in Figure 5.19 shows the difference in the trends between
HH and HV polarisations. As depicted on plots (b) and (d)—(h), broadleaves may be
distinguished from conifers with HH but not with HV. The like-polarisation results were
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already discussed during the interpretation of Figure 5.18. It may be observed that
comparing the HH amplitudes of the plots in this figure with the ones in Figure 5.19,
the intensity shown by Figure 5.19 is generally 1dB to 2dB higher. This is explained by
the steeper incidence angle configuration used for the data presented in Figure 5.19. The
cross-polarisation results suggest that conifers and broadleaves have the same physical
behaviour because the amplitudes shown by the three species are generally located within
the same range of —12dB to —14dB. In fact, both conifer and broadleaf canopies are
composed of twigs and small branches, which may be assimilated into small thin cylinders.
These cylinders contribute to the same amount of depolarisation of the X-band EM waves
for conifers and broadleaves and explain why the backscatter signal cannot be separated
for these two classes in such a polarisation configuration (Ferrazzoli and Guerriero, 1995).

Although a general tendency could be observed, it should be noted that some excep-
tions to the above discussed plots were noticed. Graph (a) was processed on the same
forested areas as plot (b), and scatterplot (c) represents the same forest stands as plot (d).
For conifers, plots (a) and (c) clearly show an amplitude shift of 2dB in HV polarisation.
Indeed, the HV backscatter intensity ranges between —14 dB and —16dB in plots (a) and
(c), while the intensity extends between —12dB and 14 dB in plots (b) and (d). Neither
the weather conditions nor structure of the forest could explain these differences because
the precipitations were low and the same forest stands were selected on plots (a) and (b)
as well as on graphs (c) and (d).

L-band:

As introduced in Section 4.2, ALOS PALSAR acquired full polarimetric radar data
over the Thuringian Forest. The data acquired in the four linear polarisations (HH, VV,
HV, VH) are compared below. Figure 5.20 depicts the processed scatterplots with the
backscatter intensity in HH and HV polarisations on the abscissa and ordinate, respec-
tively. The scatterplots show the PALSAR FBD data acquired on frame FBD3, as defined
in Appendix A.2. Here this frame was selected as an example because it provides sufficient
forest stands for the three principal tree species compositions, i.e. spruce (blue), beech
(yellow) and pine (red). Further scatterplots for the PALSAR FBD frames are provided
in Appendix B.2.

The plots in Figure 5.20 indicate that there are generally two distinct clouds of points,
one representing broadleaves with beech and the other representing conifers with spruce
and pines. The average absolute amplitude of beech is —9dB to —14dB for HH and
HV polarisations, respectively, while the combined average of pine and spruce is about
—7dB and —13dB for HH and HV channels, respectively. With regard to the dynamic
range on the abscissa, namely HH polarisation, beech extends between —8 dB and —12 dB,
while the combined range of spruce and pine is approximately from —6dB to —8dB. The
dynamic range on the ordinate, namely HV polarisation, indicates that the amplitude of
beech varies between —12dB and —16 dB, while that of spruce and pine combined varies
between —11dB and —15dB. Thus, the dynamic ranges are larger for beech than that
for spruce and pine and in HV polarisation than in HH polarisation. With respect to the
above mentioned amplitude values, the separation of broadleaves and conifers in L-band
is more suitable with HH than with HV.

Considering the PALSAR PLR data, it is possible to compare the two copolarisations,
namely HH and VV channels. Figure 5.21 depicts the processed scatterplots on the
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Figure 5.20: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°
Asc. backscatter intensity (7°) (frame FBD3). Blue, yellow and red represent spruce, beech and
pine, respectively.

abscissa and ordinate with the amplitudes in HH and VV polarisations, respectively. The
number of spruce (blue), beech (yellow) and pine (red) forest stands each was dominant
on a specific PLR frame. Thus, the backscatter intensity for each tree species composition
was presented separately in Figure 5.21. In all cases, slopes below 5° were selected. Also,
owing to full polarimetry, the backscatter intensity was compensated for azimuth slopes
(see Sections 3.2 and 4.3).

For the three tree species, the comparison of HH and VV polarisations in Figure 5.21
clearly shows that HH presents a higher amplitude than VV. This observation may be
explained by three different phenomena. First, the attenuation of the VV signal in the
forest canopy is higher than that for the HH component. The scatterers comprising the
canopy include the trunk, which is mainly vertically distributed, leading to a greater
absorption of the vertically transmitted waves. Second, for the waves which potentially
reach the ground, the ground-trunk or trunk-ground double reflections are higher in HH
than in VV. In fact, the magnitude of the Fresnel coefficients always remains higher for HH
than for VV (Cloude, 2009). Owing to the higher attenuation of the vertically polarised
waves in the canopy, the VV double reflections are also intrinsically reduced relative to
HH. Finally, the lower VV amplitude relative to the HH backscatter may be explained
by the Brewster angle effect (see Section 3.2). The vertically polarised incident waves
transmitted at this specific angle tend to be absorbed by the ground, thus resulting in
such a situation for a minor fraction of energy scattered back towards the radar.

The plots depicted in Figure 5.21 were selected mainly for their large number of forest
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Figure 5.21: Polarisation analysis with PALSAR PLR HH 22° Asc. vs. PALSAR PLR VV Asc.
22° backscatter intensity (7°) (frames PLR1-3). Blue, yellow and red represent spruce, beech
and pine, respectively.

stands. The reader is referred to Appendix B.2 for the consideration of the remaining
L-band HH vs. VV plots. Also, the scatterplots comparing HH and HV polarisations
with PLR datasets were not considered here because the results of the comparison were
similar to those presented in Figure 5.20. Comparisons of cross-polarisations were also
not depicted because the results of HV polarisation were equivalent to those of VH (see
Section 3.2.3).

Pass direction

As presented in Section 4.2, TSX and CSK scenes were acquired in both descending
and ascending modes. The descending-pass scenes were measured at different times of
day. For TSX, the ascending and descending passes were measured at around 5 p.m.
and 5 a.m. UTC, respectively, while for CSK, the ascending and descending passes were
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acquired at around 5 a.m. and 5 p.m. UTC, respectively. The different pass directions
were compared in order to detect possible systematic variations. Figure 5.22 depicts
2D scatterplots with early morning (5 a.m. UTC) and late afternoon (5 p.m. UTC)
acquisitions on the abscissa and ordinate, respectively. The depicted plots present TSX
SM data measured at an incidence angle of around 35°. The air humidity information
summing 4 daily measurements is given in the different subplots and is noted as hq; and hgo
for the early morning (abscissa) and late afternoon (ordinate) acquisitions, respectively.
When possible, the three dominant species, namely spruce (blue), beech (yellow) and
pine (red), from the test site were considered. It should be noted that only forest stands
with a slope below 5° were considered for spruce and pine species. In fact, owing to
the topography, the positive and negative slopes are not equivalent for a right-looking
ascending or descending pass direction. Beech species were mostly located on topographic
areas. In the latter case, to maintain a sufficient number of available stands while limiting
the effect of a steep terrain, slopes below 10° were selected. The discussions below describe
the TSX data.

As presented in Figure 5.22; the backscatter signal is slightly unequal in the ascend-
ing and descending passes. More precisely, a difference of about 0.5dB to —1dB and
0.5dB to 2dB separate the descending and ascending backscatter intensity for conifers
and beech, respectively. This difference appears to be inconstant because on plots (a)—(c),
the clouds of points are below the 1:1 line, and on plots (d)—(f), they appear above it.
The air humidity shown by hq; and hgs values does not appear to explain these results;
for instance, on plots (a) and (b), a similar trend of backscatter intensity is observed, and
plot (a) shows high humidity onnly in the morning, while plot (b) shows high humidity
in the morning and in the afternoon. In fact, the analysis of the pass direction expected
to show systematic variations owing to the dew effect, which occurs early in the morning
and increases the backscatter intensity owing to the apparition of condensed water par-
ticles on the branches of trees. Thus, owing to the dew effect, the backscatter intensity
should have always been higher in the morning acquisitions. However, other dominant
factors such as the difference between the radar observations of the forest structure in the
ascending and descending modes and different weather conditions during the acquisitions
may have masked this effect. Therefore, it is not possible to highlight any trend, and it
remains difficult to draw any clear conclusion.

5.2.3 Sensitivity of radar backscatter intensity to forest GSV

After comparing the different SAR acquisition configurations, a closer examination of the
relationship between the SAR parameters and forest properties was performed. The in-
vestigations were conducted by first comparing the SAR parameters with general forest
attributes such as stand height or DBH and then analyzing the relationship between
the SAR signal and GSV. The GSV synthesises the different stand attributes together
through an allometric equation (see Section 3.1 theory). With GSV being the primary
parameter used by foresters and considering the relatively high correlation between the
forest attributes and GSV (see Section 4.3), the following discussions describe the rela-
tionship between GSV and SAR signal intensity.

As discussed in Section 2.1, many studies have examined the relationship between
radar backscatter and GSV or biomass. Most of the results presented in these studies
showed high sensitivity to GSV levels in cross-polarisation and when using low-frequency
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Figure 5.22: Pass direction analysis with TSX SM HH 32°-39° Desc. vs. TSX SM HH 32°-39°
Asc. backscatter intensity (7°) (frames SM1-3 and SM6,7). Blue, yellow and red represent
spruce, beech and pine, respectively. Slopes of < 5° were selected for spruce and pine and slopes
of < 10° were chosen for beech.

radar systems (i.e. L-band, P-band). According to these results, some investigations were
performed to determine whether similar observations could be obtained in the Thuringian
Forest. Surprisingly, the obtained results were shown to be different from the ones pre-
sented in previous studies. In this context, deeper analyses were conducted to clarify the
unexpected results. The following discussions focus on these investigations. First, the
results of the PALSAR backscatter intensity for the different species are presented. Then,
some comparisons considering parameters such as stem density and weather conditions
are made. Finally, further analyzes based on polarimetric decompositions are described.

Species comparisons

One of the main objectives of this thesis is to study the relationship between backscat-
ter intensity and GSV and highlight the scattering mechanisms occurring in the Thuringian
Forest. In this framework, the backscatter for the different tree species compositions was
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compared with GSV. Figure 5.23 depicts an example of the scatterplot obtained by
plotting the PALSAR backscatter intensity on the ordinate vs. GSV on the abscissa for
spruce, beech and pine. It should be noted that to limit the topographic effects discussed
in Section 5.1, slopes below 5° were selected for spruce, beech and pines stands. The scat-
terplots presented in Figure 5.23 are derived from a PALSAR FBD scene acquired on 19"
September 2007 at an incidence angle of 39°. It is noteworthy that in this example, the
range of GSV did not fully cover the first 100m® ha=!. This range is specifically discussed
later in this subsection. The results presented in these graphs are representative of the
investigations performed on the entire PALSAR FBD datasets, which include different
acquisition dates as well as different acquisition frames. Please refer to Appendix B.2 for
further scatterplots.
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Figure 5.23: GSV sensitivity analysis with ALOS PALSAR FBD 39° Asc. (a) HH and (b) HV
backscatter intensity (7°) (frame FBD2). The PALSAR scene was acquired on 19" September
2007. Blue, yellow and red represent spruce, beech and pine, respectively. Slopes of < 5° were
selected for spruce, beech and pine.

The plots in Figure 5.23 indicate three different elements. First, the sensitivity of
spruce, pine and beech backscatter to GSV appears to be extremely poor. Second, the
theoretical increase in backscatter intensity with GSV cannot be observed. Finally, the
trends given by the tree species composition appear to differ. These first observations de-
serve some attention because they differ from those which were found in previous studies.
Upon closer examination, particularly for the R? values, the highest sensitivity is shown
by spruce in HV polarisation with R? = 0.26, followed by pine with R? = 0.16 also in
HV polarisation and beech with B2 = 0.11 in HH polarisation. Although the r-square is
low, the minor correlation is shown to be rather positive for beech and negative for spruce
(refer also to Appendix B.2). The correlation concerning pines was also shown to be
negative, but this was not always the case, especially in HH polarisation. Comparing the
polarisations, it should be noted that spruce presented slightly higher sensitivity to GSV
in HV than in HH polarisation. Conversely, the sensitivity of beech appeared to be higher
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in HH than that in HV polarisation. However, these correlations remained very low. In
terms of backscatter intensity, first considering the GSV range 0m*ha' to 200 m? ha™!
in the scatterplots from Figure 5.23, it is observed that there is a difference of about
2.5dB and 2.0dB in HH and HV polarisations between spruce and beech, respectively.
Then, at higher GSV levels (GSV > 200m?®ha~!), the amplitude difference in the low
G SV range appears to decrease until it reaches about 1.5dB in HH and less than 1dB in
HYV. This is observed on most of the scatterplots given in Appendix B.2. Considering the
dispersion of the data for each species, the intensity varies within approximately 1dB to
1.5dB over different GSV ranges. This variation is fairly acceptable for a radar system.
In addition to HH and HV polarisations, the VV and VH intensities obtained using the
PALSAR PLR data could be plotted against GSV. In these cases, low correlations were
also obtained and similar trends could be observed. It should be noted that the azimuth-
slope correction performed on PLR data did not show any significant improvement in the
correlations.

Temperature

Following the above description of Figure 5.23, further investigations were performed
in order to find some complementary information which may help to understand the
obtained results. The focus lay on the analyses of the weather conditions, particularly
air temperature, because the multitemporal plots in Subsection 5.2.2 indicated a drop in
the amplitude under frozen conditions. Similar to Figure 5.23, scatterplots comparing
backscatter intensity and GSV were processed using the PALSAR FBS data acquired
during winter and spring. Figure 5.24 depicts the results obtained for four FBS scenes,
which were all acquired at different air temperatures. The four images were measured with
an incidence angle of 39°, and in all cases, only forest stands with slopes below 5° were
selected. Also, the overlapping area of the four acquisition frames was processed so that
the same stands could be compared from one acquisition to another. Figure 5.24 consists
of an example showing the influence of air temperature on the radar signal. Further FBS
acquisitions processed with their respective measured air temperature are referenced in
Appendix B.2.

As shown in Figure 5.24, the amplitude decreases when the air temperature decreases,
particularly when the air temperature reaches negative values. This is observed on the
subplots presented in Appendix B.2. As mentioned during the interpretation of the time-
series data, this decrease in amplitude may be explained by the reduced sap flow during
the forest dormancy period (see Section 3.1) and the decrease in the relative permittivity
(dielectric constant) of the canopy and ground owing to the frozen forest and ground
conditions, respectively. In other words, the forest canopies should be more transparent
to radar microwaves when the air temperature reaches the freezing point.

Comparing the absolute intensity values for the different tree species between the frozen
(first subplots column) and non-frozen (last subplots column) acquisitions, the conifers
appeared to be affected by the temperature to a greater extent than the broadleaves. In
fact, in the example shown in Figure 5.24, the backscatter intensity drops by about 2dB
for conifers and about 1dB for the broadleaves represented by beech. Furthermore, young
regenerative trees in the range 0m?®ha~! to 200m?ha~! appear to be affected by the de-
crease in temperature first. Then, under frozen weather conditions with air temperatures
below —5°C, mature trees represented by a GSV of greater than 400m?3ha~! are also
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Figure 5.24: GSV sensitivity analysis for different air temperatures with ALOS PALSAR FBS
HH 39° Asc. backscatter intensity (7°) (frame FBS3). Blue, yellow and red represent spruce,
beech and pine, respectively. Slopes < 5° were selected for spruce, beech and pine.

significantly affected by the temperatures below 0°C and resulting frozen conditions.

Upon distinguishing between the different tree species, subplots (a)—(d) indicate that
the relationship of spruce with GSV changes from a rather negative trend under non-
frozen conditions to a positive trend under frozen conditions. More specifically, there is
a larger amplitude variation for young spruces relative to mature spruces between non-
frozen and frozen conditions. Thus, assuming that the ground-level signal is relatively
weak (minor double bounce contributions) compared to the forest signal, this observation
may suggest that in non-frozen weather conditions, there is greater penetration of the
L-band microwaves through mature spruce canopies compared to the young regenerative
spruce canopies, while under frozen conditions, this tendency is the opposite, i.e. greater
penetration for young spruces compared to mature spruces. It should be noted that pen-
etration refers not only to the penetration via the holes resulting from canopy openness
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but also via tree components (see the scattering pathways in Section 3.2). In Figure 5.24,
comparing the different acquisitions for beech (subplots (e)—(h)), it should be noted that
the positive correlation is slightly more pronounced under frozen conditions compared to
that under non-frozen conditions. Thus, with the same weak ground-level signal assump-
tion as that made above for spruces, it can be deduced that under non-frozen conditions,
the radar microwaves penetrate to a greater extent through young beech canopies than
through mature beeches, and the penetration difference is more significant under frozen
conditions. In extremely frozen conditions (subplot (h)), the backscatter signal for both
young and mature beech species is equivalent. This observation suggests that under these
conditions, the scatterers returning from the ground are dominant for both young and
mature beech forests. Finally, in Figure 5.24, comparing the frozen and non-frozen condi-
tions for the pine signal (subplots (i)—(1)), it is observed that the overall intensity decreases
from —7dB to —9.5dB for young regenerative pines as well as mature pines. Also, similar
to the other species, the air temperature first affects young regenerative pines (subplot
(k)) and then mature pines under frozen states (subplot (1). In such weather conditions,
the ground signal appears to be dominant, as GSV and backscatter intensity depict no
correlation.

Summarizing the effect of temperature on forest backscatter, it can be deduced that
young and mature trees react differently to the transition of air temperature; in particular,
young regenerative forests tend to be affected by frozen conditions before mature forests.
Additionally, the different tree species, each presenting specific dielectric properties, also
show their own sensitivity to temperature changes. It should be recalled that snow occurs
during winter in the Thuringian Forest. The snow might have contributed to an increase
in the dispersion of the signal, especially when it melted, but it did not appear to be a
determinant factor for the observations made in Figure 5.24.

Horizontal structure

As presented in the literature review of this thesis, many studies have examined the
relationship between biomass or GSV and radar backscatter intensity. Most of these
studies concerned forested areas with low GSV, typically ranging between 0m?ha™!
and 200m®ha~!. In comparison to other temperate forests in Europe and around the
world, the Thuringian Forest possesses large volumes of wood per hectare, with more
than 600 m®ha~! in some cases. Thus, the Thuringian Forest may show different struc-
tural characteristics in comparison to other forests. The abovementioned investigations
examined the relationship between the principal species composition of the test site and
GSV. However, as noted on the investigated plots, the full range of GSV was not cov-
ered, especially between 0m3ha~! and 100m3ha~!, as it was not possible to obtain a
large number of stands for all the species together in a unique scene. In this context,
the radar data presenting a particularly large number of stands in the low GSV range
were selected and further investigated. Figure 5.25 shows two plots which illustrate the
obtained results. The graphs consist of a 2D scatterplot, with GSV depicted on the ab-
scissa and PALSAR backscatter intensity on the ordinate. The two plots represent the
same spruce stands and radar acquisition, but plot (a) depicts different classes of stem
density (N), while plot (b) describes different classes of relative stocking (VG). These two
parameters are described below. The FBS data acquired in spring at temperatures above
the freezing point were used because the number of spruce stands available was higher in
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this mode than in FBD. Also, similar to previous investigations, only spruce forest stands
with slopes below 5° were selected to reduce the topographic effects.
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Figure 5.25: GSV sensitivity analysis for different spruce (a) stem densities (N) and (b) relative
stocking (VG) with ALOS PALSAR FBS HH 39° Asc. backscatter intensity (7°) (frame FBST7).
The PALSAR scene was acquired on 19" April 2008. The density classes in (a) comprise
N < 500, 500 < N < 1500 and N > 1500 treesha™! in orange, green and purple, respectively.
The relative stocking classes in (b) distinguish VG < 0.8 and 0.8 < VG < 1.2 in orange and
green respectively. Slopes of < 5° were also selected.

Observing the cloud of points in Figure 5.25 without considering the classes, it is seen
that the backscatter intensity for spruce can be split into two different groups. The first
one can be delimited between 0 m?® ha! and 200m? ha~!. The second one may be observed
between 200 m?®ha~! and 600m3 ha=!.

In the first case, the backscatter appears to increase with GSSV until a saturation
point is reached at around 100 m?®ha~!. This tendency corroborates with the commonly
accepted idea that radar backscatter increases with increasing biomass and the saturation
levels, as reported in the literature (see Section 2.1). However, it should be noted that
this trend could not be clearly observed on all acquisitions which presented a sufficient
number of young regenerative spruce stands. The reason is that backscatter intensity
depends not only on the amount of vegetation but also on the structure of vegetation
(i.e. the forest). In terms of stem density (plot (a), Figure 5.25), the young spruces
consisted mainly of dense forests with more than 500 treesha™! (green and purple points).
Thus, the few young regenerative spruces of the Thuringian Forest with sparse stands may
explain why the increase in backscatter with GSV is not clearly shown in all acquisitions,
particularly in the acquisitions represented by a frame with less forest stands than those
in frame FBS7. In addition to stem density, the relative stocking parameter also affects
the observed backscatter amplitudes (plot (b), Figure 5.25). In fact, the full stocked forest
stands involve a better repartition of the trees over the stands relative to understocked
stands, implying that for understocked stands, the radar backscatter decreases, which is
caused by the higher contribution of the ground surface to the signal in this case. In
Figure 5.25, relative stocking with the understocked class depicted in purple explains why
the amplitude is found to be less than —7dB for some of the stands between 0 m?ha™!
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and 100 m3 ha™!.

Then, the second cloud of points ranging between 200 m®ha~! and 600 m® ha™! indi-
cates that the radar signal for this range extends between —6dB and —8dB. On the
assumption that the radar signal is saturated, one of the reasons for this large variation
is the forest structure. Indeed, considering the density and relative stocking classes de-
scribed in Figure 5.25, it can be seen that the purple points presented in graph (a) and
(b) are slightly shifted by 0.5dB to 1dB relative to the green points. In fact, while the
young spruces have a higher volume, they compete with each other, and upon maturity,
this leads to only a few spruces remaining with more free space between them. In terms of
structure, these mature spruces are sparse and understocked, which certainly enhances the
penetration of the L-band radar microwaves through the canopy and the reflected signal
from the ground, thus explaining why their backscatter intensity is generally lower than
young or mature dense spruces. Focusing now only on the green points depicted in both
graphs, it is observed that after the saturation point at about —6.5dB at 100 m?®ha~?!, the
signal remains approximately constant at this amplitude, even when the GSV increases.
In this case, in terms of (horizontal) structure, the forest conditions may not have been
altered relative to young regenerative spruces, thus leading to a relatively constant radar
signal.

1

More specifically, the relationship between GSV with radar backscatter may be linked
to a combination of two properties, namely amount and structure of vegetation. The
amount of vegetation may be described by GSV, while the horizontal structure compo-
nent may be given by relative stocking and stem density. Both these parameters should
affect the amount of ground seen by the radar. The above observations showed that a high
backscatter generally involved fully stocked or overstocked and relatively dense stands,
while a low backscatter generally implied understocked and relatively sparse stands. How-
ever, it was still difficult to determine which of these two parameters, namely GSV or
structure of the trees, was the most significant in the total radar backscatter signal.

To provide a visual impression of the above results, Table 5.1 presents several spruce
forest stands which were depicted in Figure 5.25 at a particularly low or high intensity.
According to the above discussions, these stands were assigned to different classes includ-
ing a combination of young or mature, understocked or fully stocked and sparse or dense
spruce stands. Overall, four different types of forest structure were distinguished.

Briefly, the first two forest types shown in Table 5.1 depict young spruces with a
distribution of sparse and dense trees, respectively. The next two types present two mature
forest structures, one including sparse and another dense spruce forests. Comparing the
orthophotos with the PALSAR backscatter intensity, it is observed that the dense forests
show rather bright pixels, indicating that the intensity in these cases is relatively high.
In fact, in both cases, the average stand intensity is —6.2 & 1.4 dB. Unlike the dense
forests, the sparse forests show low intensity or very low intensity in the case of the young
sparse forest. In fact, the amplitude reaches —9dB in the latter case. These observations
corroborate well with the observations made in Figure 5.25. It should be noted that
owing to forest-management activities, young regenerative sparse spruces (i.e. case 1)
were uncommon in the Thuringian Forest. Thus, few stands with such low backscatter
were depicted in the different data under investigation. Also, it can be seen that the
inventory do not always match to the observations performed on the orthophotos. In this
exemple, the orthophoto for the designation 'young understocked sparse’ (Figure 5.25 (a))
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Table 5.1: Visualisation of the types of forest structure with ALOS PALSAR FBS HH 39° Asc.
backscatter intensity (7°) (frame FBS7). The PALSAR scene was acquired on 19" April 2008.
Digital orthophotos (RGB) are provided for comparison with the radar data. Stands’ borders
are delimited with red lines over the images and statistics related to each stand are provided
in the last column of the table. VG denotes relative stocking and N density attributes. The
stands consist of spruce tree species.

PALSAR HH

Designation Orthophotos backscatter

GSV =21m3ha~!

Young VG=1.0
Understocked N = 1975 treesha™!
Sparse ©w=-92dB

o= =+1.4dB
GSV = 107m?ha~!
Young VG =09
Full stocked N = 1241 treesha™!
Dense uw=—6.2dB
o= =+1.4dB
GSV = 250m3ha~!
Mature VG =0.6
Understocked N = 264 treesha™!
Sparse w=-—77dB
o= =+1.4dB
GSV =337m3ha!
Mature VG=1.0
Full stocked N = 875 treesha™!
Dense uw=—6.2dB

oc==+14dB
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clearly show an undestocked forest while the inventory reported full-stocked forest with
VG =1

The results presented in Figure 5.25 and visualised in Table 5.1 were discussed in a few
studies (see Section 2.1). For instance, Rauste et al. 1994 identified that spruce species
from the Black Forest (Germany) showed an increase in backscatter up to a GSV level of
100m3 ha=! to 150 m? ha=! followed by a decrease in backscatter. However, the author did
not explain this observation. Some first explanations were given recently by Woodhouse
2006 and Brolly and Woodhouse 2012. In Brolly and Woodhouse 2012, the forest was
represented as a ‘matchstick’, namely a collection of identical cylinders with no canopy.
Removing the random volume scattering aspect of the forest, the authors showed that
the relationship between radar backscattering signal with biomass is not only due to the
volume contribution but also to the forest structure.

Double bounce—Polarimetry

The results presented above illustrate the importance of the horizontal structure of
the Thuringian Forest in studying the relationship between G.SV and radar backscatter
intensity. In particular, it was shown that the penetration of the L-band microwaves was
enhanced in cases where the forest was sparser. In such circumstances, the radiations
generally reach the ground surface and scatters specularly away from the radar sensor,
thus leading to a reduced measured signal. However, the path followed by the waves
may differ from this original scheme. In fact, under specific conditions, the radar elec-
tromagnetic waves are reflected on the ground surface and may then be reflected again
off the tree trunks and vice versa. This phenomenon, which was described in Section 3.2
and mentioned above, is commonly known as double bounce or double reflection. The
various scattering contributions were investigated in this study using polarimetry tech-
niques. Coherent decomposition of the backscatter was performed on the basis of the
Yamaguchi algorithm. The decomposition led to the separation of the signal into three
different scattering mechanisms, namely surface, volume, and double bounce. Figure 5.26
depicts an example of the results obtained for spruce, beech and pine using PALSAR PLR
data. The figure shows subplots with scattering power on the ordinate and GSV on the
abscissa. The subplots were sorted by columns with surface, volume and double bounce
on the first, second and third columns, respectively, and by lines with spruce, beech and
pine species on the first, second and third lines, respectively. Forest stands with slopes
below 5° were selected for all the cases. Also, the three decompositions were corrected
for azimuth slopes. For the sake of clarity, the subplots depicted only one species and
scattering mechanism.

Before interpreting the plots given in Figure 5.26, it may be recalled that the PLR
data was measured at a steep incidence angle (§ = 22°). This implies that the results
presented in Figure 5.26 may not be directly comparable to the ones shown above, as FBD
data was acquired with an incidence angle of 39°, and the scattering mechanisms with
varying incidence angles may not be comparable (see incidence angle analysis in Subsec-
tion 5.2.2). First, observing the relative power of the three scattering mechanisms for each
species in Figure 5.26, it is noted that the surface dominates (Ps = 0.2—0.5), then volume
(P, = 0.1 — 0.3) and finally double bounce (Py = 0.1 — 0.2). Thereafter, comparing the
power between the different species, it is observed that pine and particularly spruce exhibit
greater surface scattering power (P = 0.4 — 0.5) than beech (P, = 0.2). According to the
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Figure 5.26: GSV sensitivity analysis for different scattering mechanisms with ALOS PALSAR
PLR HH 22° Asc. power (frames PLR1,3). On the basis of the Yamaguchi target decomposition
algorithm, the power was decomposed in the surface (Ps), volume (P,) and double bounce (Py)
P, P, and P4 are shown as blue, green and red, respectively. The
tree species spruce, beech and pine are depicted in the first, second and third subplot lines,
respectively. Slopes of < 5° were selected for the three tree species compositions. Azimuth-slope

scattering mechanism.
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L-band frequency and steep incidence angle of the PALSAR PLR data, the high power for
surface scattering relative to volume scattering may be conceivable. However, the greater
surface contribution for spruce and pine relative to beech would signify greater penetra-
tion for spruce and pine compared to beech and would therefore contradict the results
shown above in this section. These results can be interpreted in two different manners.
Either the physical model is not suitable for the conifers or broadleaves of the Thuringian
Forest, or higher surface scattering occurs for spruce and pine compared to beech. The
Yamaguchi decomposition is a physically based scattering model which assumes oriented
dipoles scatterers. On the basis of the VV/HH amplitude ratio, the orientation of the
dipoles in the model is defined as random, horizontal or vertical (see Section 3.2). In the
case of the Thuringian Forest, the VV/HH amplitude ratios of spruce, beech and pine
were between —2dB and 0dB (see Figure 5.21), signifying that the Thuringian Forest
canopy principally consisted of randomly oriented dipoles. However, this assumption may
not be suitable for the Thuringian Forest at L-band frequency, especially for spruce and
pine, which essentially show horizontally structured branches along the trunk (see Section
4.1 and the study performed by Neumann et al. 2012). To gain an insight into the model
conformity, the Yamaguchi decomposition was investigated on different landcovers such
as forest, crop, urban and open areas, i.e. ROIs defined in Section 4.3.
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Figure 5.27: Comparison of surface (P), volume (P,) and double bounce (Py) scattering mech-
anisms in various landcovers. The scattering mechanisms were decomposed on the basis of
Yamaguchi target decomposition algorithm.

An examination of the decomposed signal showed a surface scattering of about 0.2 for
crop and open areas. It is the highest power between surface, volume and double bounce.
Thus, comparing the surface scattering power between forested and open areas in Figure
5.27, the surface scattering for forests were found to be greater than that for open area.
This result is not realistic and shows that the assumptions made in the Yamaguchi model
do not fit the Thuringian Forest and is therefore not applicable in this case. Assuming that
the model is correct, the high surface scattering for spruce relative to beech may suggest
that the forest canopy is scattering in the optical regime with scatterers of about 10 times
the size of the wavelength (see Section 3.2). In other words, the forest canopy would be
seen by the radar as a surface. In fact, this behaviour would be hard to envisage as the
dominant scatterers in such a situation would require a size of at least 10 x 0.23 = 2.3 m,
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which is not conceivable for a forest. Thus, the results of the Yamaguchi decomposition
must be carefully considered because (1) the incidence angle of the PLR data differs from
the FBD data and (2) the model may not have been suitable for the different species
structures of the Thuringian Forest. The obtained results should be examined in more
detail in subsequent studies.

5.2.4 Summary

The scattering mechanisms occurring in the Thuringian Forest were investigated using
X-band and L-band radar data. After initial visualisation, comparisons of several radar
parameters were established, including time-series, frequency, incidence angle, polarisa-
tion and pass direction. In the second step, some examinations regarding the relationship
between radar backscatter and GSV were performed. The visual observations and in-
vestigations of the various parameters showed that conifer and broadleaves tree species
present different signal magnitudes, thus allowing their discrimination. To this end, the
leaf-off period, co-pol ratio X-band/L-band, positive temperature and large incidence an-
gle appeared to be optimal. However, the separation of conifer species such as spruce
and pine appeared to be limited using only radar backscatter intensity. The relationship
between backscatter intensity and GSV was found to be poor for the three investigated
species, even with L-band data. In addition, the trends depicted by the different species
were shown to be different. In fact, the spruce backscatter signal tends to decrease, while
that of beech tends to increase with increasing GSV. To understand the poor correlation
and these different trends, further investigations were performed. Winter scenes were
first considered because the temperature was shown to decrease the L-band SAR signal
under frozen conditions in the time-series analysis. Comparing the backscatter inten-
sity with GSV/, it was observed that young regenerative forests responded to the frozen
ground and canopy conditions resulting from the temperature decreasing to subzero val-
ues earlier than mature forests. The drop in the amplitude was also found to be species
specific. From these observations, it was suggested that the penetration is more limited for
spruce and pine compared to beech species and for young regenerative forests compared
to mature forests. After studying the effect of temperature on backscatter intensity, the
horizontal structure of the forest was examined. To this end, stem density and relative
stocking parameters were selected in order to distinguish various stands’ structures. The
results for sparse and understocked spruce forests showed that the backscatter intensity
increased with increasing G:SV between 0 m®ha=! and 100m3 ha~!, which corresponded
to the saturation point. Above this level, the backscatter decreased, particularly owing to
the open canopy and the greater contribution of the ground. In the case of dense and fully
stocked spruce forests, the amplitude remained relatively constant for the entire range of
GSV. Owing to the management practices performed in the Thuringian Forest, the forest
mainly consisted of dense stands. Thus, with reference to this particular forest structure,
the obtained results supported the idea derived from the temperature analysis that in the
Thuringian Forest the penetration for young spruce is generally more limited than the
penetration for mature spruce forests. Benefiting from the ALOS PALSAR polarimetric
datasets, PolSAR techniques were used to gain an insight into the scattering mechanisms
occurring in the Thuringian Forest. After applying azimuth-slope corrections, Yamaguchi
decomposition was performed. The results obtained from the polarimetric decomposition
denoted the difficulty involved in understanding the scattering mechanisms that occur in
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the Thuringian Forest. In fact, the dominant contribution of surface scattering compared
to double bounce and volume was first observed for the three investigated species. This
result was explained by the steep incidence angle of the PLR data. Then, the surface
scattering was found to be higher for spruce and pine compared to beech, suggesting less
penetration for the broadleaves than for the conifers. As this result had not been ex-
pected, two possible interpretations were proposed: (1) the model is not suitable for the
Thuringian Forest or (2) the model fits the forest and surface scattering occurs, which
suggests that the forest canopy components are large enough to be seen by the radar as
a surface. The first interpretation appeared to be more reasonable than the second one
because comparisons of surface scattering between forested and open areas showed higher
surface scattering contributions in the case of forested areas, and at L-band frequencies,
for the canopy to act as a surface, it must contain scatterers which are at least 2.3m
long and large, which is also not realistic. Therefore, although it could not be fully con-
firmed, the different investigations led to the conclusion that the penetration through the
Thuringian Forest canopies was more limited for dense forests compared to sparse forest
and more so for spruce and pine relative to beech. To gain a better understanding of the
scattering mechanisms, especially penetration in the forest, further analyses such as the
use of phase information are expected to be useful (see Section 5.3). Texture parameters
such as Haralick parameters (Haralick et al., 1973, Champion et al., 2011) or lacunarity
(Allain and Cloitre, 1991, Sun and Ranson, 1998) may also bring additional information,
especially concerning forest stand density. Finally, for the scatterers returning from the
ground, the possible effects related to the understory and soil moisture were assumed to
be of minor importance (see Section 4.1) and were therefore neglected.

5.3 Interferometric phase and coherence analysis

5.3.1 Visual observations

Similar to the backscatter intensity presented in the last section, a simple visualisation of
the interferometric data provides a rich source of information. In Figure 5.28, the inter-
ferometric coherence for TDX, CSK, TSX and PALSAR are compared using an optical
image.

Some general comments can be made regarding the images depicted in Figure 5.28.
First, the microwave frequencies appear to play an important role. Comparing the L-
band coherence from PALSAR with the X-band coherences from TDX, TSX and CSK, it
is observed that even with a repeat pass of 46 days, the level of coherence for PALSAR
remains relatively high compared to that for TDX, which is acquired in a single pass.
In other words, phase is better correlated for low-frequency systems (L-band, P-band)
than that in the case of high frequency instruments (X-band, C-band). This observation
corroborates the InSAR theory presented in Section 3.2. Second, examining the repeat-
passes of the X-band coherences, it is observed that the coherence increases when the time
between the first and second acquisitions is reduced. In this respect, as expected, TDX
shows the highest coherence with a single-pass acquisition, while TSX shows the lowest
coherence with an 11-day repeat-pass.

Examining additional details regarding the different landcovers, it is observed that
urban areas show very high coherence and are easily differentiated from other landcovers
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Figure 5.28: Visualisation of interferometric coherence () for (b) TDX SM HH 38° Asc. B, =
258 m, (¢) CSK SM Himage HH 50° Asc. B, = 296m, (d) TSX HS HH 23° Asc. B, = 209 m
and (e) ALOS PALSAR FBD HH 39° Asc. B, = 379m InSAR data (frames TDX3, CSK1,
HS1 and FBD7). The TDX, CSK, TSX and PALSAR interferometric scenes were acquired on
30" August 2011, 30*" /315 October 2010, 5 /16" July 2009 and 7*" September /23" October
2009, respectively. A RE optical image (RGB) acquired on 13™ June 2009 is provided in (a)
for comparison of the different landcovers. The coherence images are overlaid by tree species
compositions obtained from the forest inventory. Spruce and beech are depicted in red and
yellow, respectively. The coordinates are provided in the reference system UTM zone 32.
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in the case of TSX and PALSAR. This indicates good stability of the scatterers in these
areas. Open areas (grass) can also be easily distinguished with coherence in TDX and
particularly in the CSK interferometric data, where the contrast between open areas and
forest is pronounced. The high contrast between forests and open areas in CSK coherence
reveal unstable scatterers such as leaves, needles, twigs and small branches of the trees,
which are very sensitive to weather variations, particularly wind and precipitations. For
the forests, when comparing the compositions of beech and spruce in the TDX data,
the coherence for the broadleaves appears to be higher than that for the conifers, while
the opposite is observed in the PALSAR interferometric data. For these two sensors, an
intraspecies comparison depicts variations in coherence. These observations may reflect
some different decorrelation mechanisms associated with the different canopy structures
and development stages of the trees as well as the topographic effects described in Section
5.1. Some further analyses in this regard are presented in Subsection 5.3.3.

5.3.2 InSAR parameter signatures

Although some of the coherence properties of the test site could be introduced by a
simple visualisation of the interferometric data in Figure 5.28, factors such as weather
conditions or the acquisition configuration of the sensor need to be considered for an
optimal interpretation of interferometric coherence. These factors are discussed in further
detail in this subsection.

Comparison of interferometric systems

To compare the magnitude of phase coherence derived from the different interferomet-
ric configurations in this study, diagrams including simple whisker boxplots and weather
information were produced. Similar to the multi-angle backscatter analysis in Section 5.2,
the boxplots were performed with the 25" and 75" percentile, each representing the lower
and upper quartiles of the data. Indications of the median and the smallest and largest
observations were also computed. Figures 5.29 and 5.30 present the plots for two different
landcover surfaces, namely (a) open areas and (b) forested areas. Owing to the high num-
ber of available spruce stands over each acquisition relative to the other species, spruce
was selected for representing the forested areas. Open areas are expected to highlight
temporal decorrelation mechanisms, while in addition to the temporal component, spruce
areas are expected to indicate the contribution of volume decorrelation caused by the
vertical extension of the canopies. The different sensors and the perpendicular baseline of
each interferometric acquisition are depicted on the primary (bottom) abscissa, and the
respective acquisition dates are shown on the secondary (top) abscissa. For better read-
ability, the acquisition dates refer only to the first acquisition of the coherence pairs. The
interferometric coherence and weather information are displayed on the primary (left) and
secondary (right) ordinates, respectively. The weather parameters shown on the graphs
reflect the amount of precipitation and wind speed 4 days and 4 hours before the radar
acquisitions, respectively (see Section 4.3). The plots are sorted by increasing the base-
line so that the potential influence of this parameter may be considered. Also, to limit
spatial decorrelation due to topography (see Section 5.1), open areas and spruce stands
with slopes below 5° were selected. Finally, for the interpretations, the compared data
may represent different frames, i.e. potentially different forest stands, and for the X-band
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sensors, the acquisitions may also depict various incidence angles.

First, by examining the boxplots of the different sensors on the diagram for open areas
(plot (a) from Figure 5.29), it is generally observed that with an 11-day repeat-pass,
the signal is mostly decorrelated for TSX. Coherence values generally remain below 0.2,
except for one specific interferometric acquisition (28 October 2009) where coherence
reaches 0.4. In this case, few daily precipitations (pq = 4mm) and small hourly wind
speeds (w, = 4ms™!) were measured for both radar images. This precipitation and
wind speed did not appear to be sufficiently significant to affect the coherence of the
phase. The boxplots given for CSK on an open area show that with a 1-day temporal
baseline, the dispersion of the interferometric coherence generally increases to 0.6 in some
cases. However, the temporal decorrelation for CSK appears to still be significant, and
in addition to TSX, the coherence of CSK pairs with values below 0.2 can be observed.
Generally, it is remarked that pairs with high coherences (7 = 0.5 —0.6) such as 19" /20"
February 2011, 22°4/23™ March 2011 and 30 /315* October 2010 showed low values of
daily precipitations (pq < 11 mm) and wind speed (wq < 4.8 mm). The acquisition pair of
22/ 23" March 2011 represented daily precipitations (pa1 = 7.3mm, pgp = 11.0mm) but
no hourly precipitations (pn; = 0.0mm, pyy = 0.0mm). In other words, precipitations
occurred during the 4 last days before this radar acquisition, but no precipitations were
measured during the 4 last hours, which explains why the coherence remains to be as
high as the data recorded on 19" February 2011. The CSK interferometric acquisitions
showing low coherences (v = 0.2) were all affected by consequent daily and in some cases,
hourly precipitations (315 August 2010, 2°¢ June 2010, 28" November 2010). For the
TDX interferometric acquisition, the coherence is very high, with the median around 0.81,
and the dispersion together with the 1% and 3" quantiles ranging between 0.80 and 0.83 is
extremely small. As for single-pass data, the comparison of TDX coherence with TSX and
CSK coherence highlights the temporal decorrelation occurring in repeat-pass systems.
The PALSAR data in Figure 5.30 (a) show that the L-band 46-day repeat-pass coherence
over open areas generally ranges between 0.2 and 0.4, with some maximas reaching 0.7.
The relationship of the weather data with L-band coherence was less evident than that
with X-band coherence. In fact, high precipitations or winds did not always appear to
induce decorrelation. A comparison of summer (FBD) and winter (FBS) acquisitions
also did not show any significant trend. The boxplots processed for the FBS and PLR
acquisitions are provided in Appendix B.3.
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Figure 5.29: Comparisons of interferometric coherence () between (a) open areas and (b)
forested areas with TSX HS HH 23°-48° Asc., CSK SM Himage HH 20°-50° Asc./Desc. and
TDX SM HH 38° Asc. (frames HS1, CSK1 and SM3). The boxplots represent spruce with the
sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum.
Weather information is depicted in bright blue, dark blue, bright grey and dark grey for daily
precipitations acquisition 1 (pq1), daily precipitations acquisition 2 (pq2), hourly wind acquisition
1 (wp1) and hourly wind acquisition 2 (wy2), respectively. Slopes of < 5° were selected to limit
topographic effects.
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The boxplots processed for spruce stands (plots (b) from Figure 5.29) indicate that
for the TSX interferometric scenes, the signal is totally decorrelated, even for the scene
acquired on 28" October 2009, where the weather conditions were shown to be favorable
to less temporal decorrelation over open areas. A comparison of the CSK and TDX forest
boxplots with the ones presented for open areas in Figure 5.29 (a) and (b), respectively,
indicates a decrease in coherence for the spruce stands. The decreased coherence appears
to be more significant for CSK (Ay = 0.2 — 0.4) than for TDX (Ay = 0.1). In fact,
as TDX interferometric pairs are measured in single pass and the topographic effects are
potentially removed with slope selection, volume decorrelation is the only contribution to
the TDX decorrelation mechanisms, while CSK acquisitions with a 1-day repeat-pass show
volume decorrelation as well as temporal decorrelation. If volume decorrelation occurs at
X-band frequency, a decrease in InSAR coherence should be observed with an increase in
perpendicular baseline. However, in the present case, the temporal decorrelation in TSX
and CSK appeared to be too significant to highlight the sensitivity of forest canopies to
normal baselines. Considering PALSAR boxplots in Figure 5.30 (b), higher variations can
be observed relative to the boxplots given for open area in Figure 5.30 (a). These varia-
tions are not easily interpreted from the FBD interferometric acquisitions. A significant
decorrelation can be observed after a normal baseline of 3251 m. In fact, this distance
represents about 40% of the critical baseline, which is generally sufficient for high decorre-
lation of the signal. In contrast to the X-band sensors, PALSAR coherence over forested
areas in several cases (i.e. 24" May 2010, 12" May 2010, 15* July 2007, 16'" August 2007)
appeared to be higher than that over open areas. In particular, the coherence for forest
appeared to be higher than that for open area during summer acquisitions (FBD) with a
low perpendicular baseline (B, < 300m). Three reasons mainly explain this observation.
First, the scattering properties of open areas may have been affected to a greater extent
by weather conditions such as rainy precipitations than forested areas. This could be the
case if the soils were water-logged or show high humidity in one of the acquisition pairs.
Thus, high soil moisture tends to decrease the coherence for open areas. Second, with a
smaller perpendicular baseline, volume decorrelation tends to be more limited for forests.
Thus, a small normal baseline preserves high coherence for forested areas. Third, the
noise depicted by forest is negligible compared to open areas (see Section 4.3). Thus, the
coherence for open areas is affected to a greater extent by noise decorrelation than forests.

Although it is not always convenient to determine the relation between weather in-
formation and interferometric coherence, especially at L-band frequency, a single InSAR
coherence scene may locally capture some meteorological phenomena, such as extreme
rainfall. In Figure 5.31, PALSAR interferometric coherence is shown with a precipitation
map. This latter represents the summation of precipitations over 4 days occurring before
the acquisition undertaken on 23 July 2009.

A dark stripe corresponding to low coherence can be easily distinguished in Figure
5.31. This coherence scene is the result of two radar acquisitions taken on 23" July 2009
and 7" September 2009. Investigations showed that the high decorrelation is a source
of temporal decorrelation which referred to a convective precipitation event that occured
during the first acquisition on 23 July 2009. Indeed, this date corresponds to a specific
configuration of cold front air masses over Europe, which led to violent storms and hail
precipitations. According to the processed weather data, the weather stations measured
precipitations of more than 40 mm during the 4 days before this date in the North of the
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Figure 5.31: Effects of precipitations on interferometric coherence () measured by ALOS PAL-
SAR FBD HH 39° Asc. B, = 620 m InSAR data (frames FBD3,7). The PALSAR interferometric
scenes were acquired on 23" July/ 7" September 2009. The precipitation map represents the
summation of 4 days’ precipitations occurring before the radar acquisition on 23" July 2009.
The acquisition frames are depicted in yellow and the transect discussed in Figure 5.32 in red.

Thuringian Forest, while in comparison, only 20 mm precipitations were measured in the
South during the same period. Also, only on 23" July 2009, about 20 mm of precipitation
was measured in the North and 10mm in the South (see also the climatic diagrams in
Appendix A.1). In contrast to the first radar acquisition, only 2mm to 3 mm precipitations
were measured for the 4 days before the second radar acquisition. To gain a deeper insight
into the given coherence and precipitation values, a 2D transect was drawn (see Figure
5.31), and the underlying data values were plotted in the form of a histogram. Figure
5.32 depicts the histogram with azimuth values on the abscissa, interferometric coherence
on the primary (left) ordinate and precipitations on the secondary (right) ordinate. The
transect values represent the averaged values of the data in the range direction.

As shown in Figure 5.32, the rain/hail precipitations gradually decreased from about
40 mm to approximately 26 mm, while the PALSAR interferometric coherence increased
from 0.2 to 0.35. Some maximas and minimas can be distinguished in the coherence
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Figure 5.32: Effects of precipitations on interferometric coherence () measured by ALOS PAL-
SAR FBD HH 39° Asc. B, = 620m InSAR data (frames FBD3,7). The PALSAR interferometric
scene was acquired on 23' July and 7" September 2009. The digital numbers represent the
values from the transect depicted in Figure 5.32.

signal. These extremes are mostly explained by regions showing high coherence such as
urban areas and low coherence such as forested areas or topographic areas facing away
from the radar (see Section 5.1).

Multipolarisation

The analyses of the different interferometric datasets presented above focused on HH
polarisation, as most of the available radar data were acquired in this polarisation. How-
ever, TSX and PALSAR also provided other polarisations such as cross-polarisation HV
for the PALSAR FBD mode.

HH and HV polarisations from PALSAR datasets were examined in order to describe
the potentially different decorrelation mechanisms occurring in these two configurations.
Owing to the significant temporal decorrelation shown by TSX, the coherence of this sensor
for different polarisations was not investigated. Comparisons of PALSAR polarisations
over the forested areas are presented in Figure 5.33. The figure depicts several scatterplots
with PALSAR HH coherence on the abscissa and PALSAR HV InSAR coherence on the
ordinate. The main outcomes were shown to be similar for the three investigated species.
Thus, only spruce species were selected for the illustration. The scatterplots processed for
the other species are provided in Appendix B.3. Also, only interferometric acquisitions
from frame FBD3 were selected because this frame (see Appendix A.1) covered most of
the spruce forest stands. The plots for the remaining acquisition frames are also provided
in Appendix B.3. Finally, areas with steep slopes (slope of > 5°) were removed in this
analysis, as they were shown to decorrelate the radar signal (see Section 5.1).

The plots shown in Figure 5.33 (a) compare the HH and HV components of PALSAR
coherence. It is observed that these components are slightly different. In fact, referring
to the 1:1 line, the clouds of points have the same orientation as that of the line with



200

Chapter 5 : Results

(a) FBD8 (b) FBD4 (c) FBD6 (d) FBD2
5 16aug07/010ct07 . 16aug07/01oct07 . 06may08/21jun08 . 06may08/21jun08
B, =348 m B, =352m B, = 3251 m B, = 3285m
T 05 05| 05 05|
N -+ ¥
4
0.0 ' 0.0 : 0.0 ' 0.0 :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
(e) FBD7 (f) FBD3 (g) FBD8 (h) FBD4
. 07sep09/230ct09 . 07sep09/230ct09 0 12may10/27jun10 g 12may10/27jun10
B,=378m B,=381m B, =102 m B,=102m
T 05 05| 05 05|
e + +4
0.0 : 0.0 ' 0.0 ' 0.0 '
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
y HH y HH y HH y HH
+ Spruce — 1:1line

Figure 5.33: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. interferometric coherence (v) (frames FBD2-4 and FBD6-8). Blue points represent
Norway Spruce forest stands. Slopes of < 5° were selected to limit topographic effects.

a little eccentricity towards the right, which indicates a slightly higher coherence for the
HH component. The difference between HH and HV is about 0.1. This observation
suggests that the microwaves see different targets, and the phase center is at a different
position for the two polarisations. More specifically, the phase center for the HH and HV
components should both be located in the canopy with a slight difference for HH, which
should be prone to less extinction than HV polarisation. The plots in Figure 5.33 (c)
and (d) referring to 6™ May /215" June 2008 depict a few outlier points. These outliers
were found to be related to felled stands which were not updated in the inventory or very
young regenerative stands.

In addition to HH and HV polarisations shown in Figure 5.33, the VV components
were investigated using the PALSAR PLR data. Figure 5.34 depicts the scatterplots
comparing the HH and VV polarisations.

As shown in the subplots of Figure 5.34, the InNSAR coherence appeared to be well
aligned on the 1:1 line. This observation suggested that the coherences are equivalent in
the two like-polarisations. As with FBD coherence in Figure 5.33, the outliers showing
high HH and VV coherences were related to young regenerative trees. The few outliers
showing relatively high HH (y > 0.4) but low VV (v < 0.3) coherence were shown to be
mature stands. No particular reason could explain the deviation of the coherence of these
stands from the overall trend.
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Figure 5.34: Polarisation analysis with PALSAR PLR HH 22° Asc. vs. PALSAR PLR VV
22° Asc. interferometric coherence () (frames PLR1,2). Blue points represent Norway Spruce
forest stands. Slopes of < 5° were selected in order to limit topographic effects.

5.3.3 Sensitivity of InNSAR coherence to forest GSV

Several studies have shown that interferometric coherence is closely related to forest
biomass (see Section 2.1). In this framework, after analyzing the parameters which poten-
tially influence phase coherence, some investigations were performed in order to underline
the potential of coherence for estimating forest biomass in the Thuringian Forest. Similar
to the case of backscatter intensity presented in Section 5.2, GSV was the main parameter
of interest for these investigations.

Perpendicular baseline

The first analysis involved the examination of the relationship between phase coherence
and GSV together with perpendicular baseline. In this regard, simple scatterplots, each
of which represents one interferometric acquisition, were processed and sorted by the
increasing normal baseline. Figures 5.35 and 5.36 depict the scatterplots processed for
the CSK and PALSAR data, respectively, with GSV on the abscissa and interferometric
coherence on the ordinate. For the sake of clarity, the plots show only Norway Spruce,
as this species was well represented over all datasets. According to the results described
in the last subsection and Section 5.1, precipitations as well as steep slopes may affect
the interferometric coherence. To limit the potential influence of these effects as much as
possible, only interferometric acquisitions with daily (pq) and hourly (py,) precipitations
below 25mm and 1mm, respectively, were selected in addition to forested stands with
slopes below 5°. It should also be noted that for a better comparison between the different
spatial baseline configurations, in the case of PALSAR sensor (Figure 5.36), only the FBD
data were selected, and in the case of CSK sensor (Figure 5.35), only acquisitions measured
in the ascending mode at an incidence angle of 49.7° were retained. The reader is referred
to Appendix B.3 for the plots processed for the overall acquisitions.

The CSK data in Figure 5.35 indicate that interferometric coherence is slightly sensi-
tive to GSV in some of the acquisition configurations. Indeed, some of the scatterplots
depict a linear or exponential decrease in coherence with an increase in GSV. However,
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Figure 5.35: GSV sensitivity analysis for different perpendicular baselines with CSK SM Himage
HH 50° Asc. interferometric coherence () (frame CSK1). Blue points represent Norway Spruce.
Slopes of < 5° were selected to limit topographic effects.

the relationship between the different acquisitions with their repsective baseline config-
urations appeared to remain unclear, as some acquisitions with low baseline (i.e. B, =
1m) depicted a better R? than the ones with a higher baseline (i.e. B, = 25m, B, =
196 m). The weather may play a significant role in the mentioned scenario. For example,
considering the acquistion pair 13% /14" July 2011 where the correlation is null, it is ob-
served that very few hourly (h; = 0.0mm, hy = 0.3mm) but many daily precipitations
(pa1 = 13.1mm, pge = 24.6 mm) were registered. The daily precipitations affected the
radar acquisitions, thus affecting the interferometric coherence. The highest coefficient
of determination (R? = 0.51) is shown for the interferometric pair measured on 30" /315t
October 2010, which was acquired with a normal baseline of 296 m. This baseline was the
largest available baseline for the CSK interferometric dataset (see Appendix A.2). Further
interpretations of the relation coherence vs. GSV are discussed below with the analysis
of PALSAR coherence results.

The PALSAR FBD interferometric acquisitions in Figure 5.36 are sorted by increas-
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Figure 5.36: GSV sensitivity analysis for different perpendicular baselines with ALOS PALSAR
FBD HH 39° Asc. interferometric coherence () (frames FBD1-8). Blue points represent Norway
Spruce. Slopes of < 5° were selected to limit topographic effects.
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ing normal baseline. Interferometric pairs showing twice the number of acquisition dates
were measured on the same day over different frames. The plots indicate that similar to
the case of CSK, PALSAR coherence may be related to GSV with a negative linear or
exponential relationship. Additionally, the plots show that the sensitivity of coherence
to GSV increases with increasing normal baselines until a spatial baseline distance is
attained, after which the signal is totally decorrelated. These observations may require
some physical explanations. In fact, the negative coherence trends are governed by two
main decorrelation mechanisms, namely temporal and volume decorrelations. Temporal
decorrelation may be characterised by the stability of the trees. In the case of young
regenerative forests, owing to their rigid structure, in windy conditions, the trees tend to
show high stability and therefore relatively high coherence, while in the case of mature
forests, under the same weather conditions, the trees tend to depict oscillations and there-
fore relatively low coherence owing to their high vertical extension. Following the above
discussions on comparison of open areas with forests in Figure 5.30, the higher PALSAR
coherence for forest compared to open area may be even more pronounced when con-
sidering young spruce forests such as that in Figure 5.36. This result may suggest that
the scatterers for young spruces are consistently more stable than that for open area.
The volume decorrelation may be related to the different volumes shown by young and
mature forests. Larger and higher tree canopies exhibit greater volume causing greater
volume decorrelation. Volume decorrelation may also be closely related to the perpendic-
ular baseline of the interferometric system configuration. Briefly, the increasing baseline
results in a greater difference in the incidence angle between the two radar acquisitions.
This difference may also be directly related to the path of the microwaves taken into the
forest canopy. The greater the angle, the greater is the probability that the microwaves
follow a different path into the canopy, covering a larger part of the volume. Thus, the
greater the normal baseline, the greater the sensitivity of the microwaves to the volume
of the canopy. However, as observed above, the perpendicular baseline can be limited.
According to the theoretical critical baseline of 7.8 km calculated for the PALSAR FBD
data in Section 4.2 and the measured normal baseline of 3251 m for the PALSAR acquisi-
tion 6" May/21%¢ June 2008 for FBDG6, about 40% of the critical baseline is sufficient to
significantly decorrelate the signal. Upon observation of the R? statistics, it is noted that
the best correlations are shown for the large normal baselines (B, = 300m to 3251 m),
while low correlations are depicted for the small baselines (B, = 0m to 300m). These
results are explained by the higher sensitivity of large baseline interferometric systems to
the volume of the canopies. The highest R? coefficients shown in Figure 5.36 reach 0.64
for the acquisition 2"¢ September/18" October 2007 on frame FBD3 and 0.69 for 215
August /6™ October 2007 on frame FBD5.

Species comparisons

Till now, the InSAR coherence investigations have focused on Norway Spruce because
this species was dominant in the different datasets. In addition to spruce, it may be
interesting to investigate the other main species of the test site (beech and pine), as they
show specific characteristics and may exhibit particular decorrelation mechanisms. In
this context, spruce, beech and pine were compared and their relationship with GSV
was analysed. Figure 5.37 presents three different scatterplots representing (a) CSK,
(b) TDX and (c) PALSAR interferometric acquisitions, respectively. The plots of CSK
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and PALSAR were constructed on the basis of their perpendicular baselines, which were
shown to be the most optimal ones from the available datasets in Figures 5.35 and 5.36,
respectively. GSV is shown on the scatterplots on the abscissa and the phase coherence
on the ordinate. For each plot, comparisons are drawn for spruce, beech and pine. For
each species in the different plots, a specific slope criterion was defined in order to prevent
the effects of topography. In this respect, spruce, beech and pine forest stands with slopes
below 5°, 10° and 5°, respectively, were selected. These thresholds consisted of a good
compromise between the influence of topography and the remaining number of stands.
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Figure 5.37: GSV sensitivity analysis for tree species composition with (a) CSK SM Himage
HH 50° Asc. B, = 296m, (b) TDX SM HH 38° Asc. B, = 258 m and (c) ALOS PALSAR FBD
HH 39° Asc. B, = 393 m interferometric coherence () (frames CSK1, TDX3 and FBD3). The
CSK, TDX and PALSAR interferometric scenes were acquired on 30" /315 October 2010, 30"
August 2011, 274 September/ 18 October 2007, respectively. The tree species spruce, beech
and pine are shown as blue, yellow and red, respectively. Slopes of < 5° were selected in order
to limit topographic effects.

The species comparison for the CSK 1-day repeat-pass in Figure 5.37 (a) indicates that
the coherence of spruce is higher than that of beech in the range 0 m3ha=! to 300 m?3 ha~!.
Above 300m®ha~!, the coherence appears to be equivalent for the different tree species
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compositions. The higher coherence shown by spruce can be explained by the different
foliage compositions, namely needles for spruce and leaves for beech. Branches composed
of leaves are generally well exposed to wind, while branches structured by needles are
normally more stable in windy conditions. In other words, temporal decorrelation is more
pronounced in broadleaves than in conifer forested areas. The plots depicting pine stands
are difficult to interpret because a lack of stands appears in the first 200m3ha=!. The
given relationship for spruce and beech appears to follow a nonlinear law expressed in this
case by an exponential function. The coefficients of determination suggest that spruce
and beech have the same correlation with R? = 0.51. However, the saturation appears
to occur at different levels, namely around 100 m*ha~! and 250m3ha~! for beech and
spruce, respectively. Considering the TDX single-pass acquisition in Figure 5.37 (b), it
can be observed for the three investigated species compositions that the level of coherence
is much higher than that for the CSK interferometric configuration. The range of TDX
coherence values does not differ from the one introduced for spruce in Figure 5.29. For the
three species, the interferometric coherence decreases linearly with an increase in GSV'. It
is also observed that the X-band single-pass coherence does not reach saturation. The best
correlation is shown by spruce, followed by beech and then pine, with R? values of 0.72,
0.29 and 0.26, respectively. To date, the high R? for GSV of spruce and TDX coherence
is the best result obtained in the present study. The low R? for pine is explained by the
large dispersion of the data, especially around 300 m® ha™!. The last scatterplot in Figure
5.37 illustrates the relationship between L-band PALSAR interferometric coherence and
G SV for the three investigated species. The level of coherence appears to clearly differ for
the three species with spruce showing the highest coherence, followed by pine and finally
beech. As mentioned above, beech is more sensitive to temporal decorrelation owing to
the structure of its branches and the composition of its foliage. In the case of spruce
and pine, other explanations must be given for understanding the observed difference
of 0.1 — 0.2 in amplitude phase coherence. In fact, although they are both conifers, the
branching arrangements of spruces are different from those of pines. Schematically, spruces
can be considered as conical structures, while pines can be considered as trapezoidal
structures (see Section test site 4.1 and Appendix A.1). The latter is clearly less consistent
and is therefore less aerodynamic than the conical shape exhibited by spruces. In other
words, the branching structure of spruce enables increased stability and particularly better
resistance to windy conditions. The correlation results obtained for PALSAR coherence
are R? = 0.61, 0.24 and 0.44 for spruce, beech and pine, respectively. The saturation point
appeared at around 200m®ha~! for the three different species but varied significantly
according to the perpendicular baseline. Thus, the observed values are only an indication
and may considerably change from one interferometric acquisition to another.
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5.3.4 Loci coherence

Canopy penetration and ground visibility were discussed in sections 5.1 and 5.2. In
particular, it is shown that the penetration of L-band microwaves in the Thuringian Forest
canopies increases in specific conditions such as the presence of steep slopes facing the
SAR platform or steep incidence angles of the SAR measurements. According to Section
3.2, another indicator which may provide additional information about the penetration
of microwaves is the variation in the interferometric phase. Phase variations may be
investigated using polarimetric interferometric SAR systems by combining phase difference
resulting from various polarisations and two interferometric acquisitions. The greater the
phase variation, the greater is the vertical distance among scattering mechanisms returning
from the forest.

ALOS PALSAR performed two PolInSAR acquisitions over the Thuringian Forest.
In this framework, the ground visibility through the forest canopies of the Thuringian
test site could be further studied using PolInSAR techniques. To investigate the ground
contribution from the SAR signal, loci coherence representations were considered. The loci
coherence was depicted as a region on a unitary complex diagram. The region represents
the analysis results for complex coherences computed for all polarizations on the basis of
a single averaging window (see Equation (3.67) in Section 3.2). In this regard, selection
of one pixel corresponding to a specific area was undertaken for each loci diagram and a
smoothing window of 7 x 7 pixels was used for the estimation of coherency matrices.

A key point in the investigation of the phase is the magnitude of coherence. Accord-
ing to Equation (3.34) in Section 3.2, the decrease in coherence increases the standard
deviation of the phase. Unfortunately, in addition to the volume decorrelation for mature
forests discussed above, the investigated PALSAR PLR data appeared to be affected by
significant temporal decorrelation, which may have been related to the particularly high
precipitation that occurred before and during the two interferometric acquisitions (d; =
18.9mm, dy = 17.3mm). Thus, in most cases, the observed coherence ranged between 0.1
and 0.5, which is not high enough to allow reliable interpretations of the phase. Although
the analysis of the loci diagrams was limited, the presence of two plots with a coherence
higher than 0.5 could be considered for the analysis. These plots referred to open areas
and young dense spruce forests. Illustrations of the performed loci plots for open areas
and young dense spruce forest are given in Figure 5.38 (a), (c) and (b), (d), respectively.
The two plots per class represent two different selected pixels. The pixels in flat areas
were chosen in order to limit the effects of topography. The reader is referred to Appendix
B.3 for information regarding the remaining processed loci coherence plots.

The four examples presented in Figure 5.38 were chosen to illustrate the various results
found from the loci coherence plots. In the case of open areas, it is expected that there
are minor phase variations with high coherence. With a coherence higher than or equal
to 0.5, the phase difference variation A¢ was found to be generally smaller than 7/6.
However, as shown with the phase angle of about 7/3 in Figure 5.38 (c), this was not
always the case. As regards young spruce forests, assuming that the open area and the
ground beneath the canopy depict similar scattering characteristics, it is expected that
with high coherence, there would be a phase variation of at least 7/6. The phase variation
for a coherence value greater than 0.5 was found to be larger (as in (b)), but it was also
smaller than 7/6. According to these observations, although some data with moderate
coherence could be depicted, it appeared that with the given PolInSAR dataset, it was
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() (d)

Figure 5.38: Loci coherence analysis for (a), (c) open area and (b), (d) young dense spruce with
ALOS PALSAR PLR 22° Asc. B,, = 359 m complex interferometric coherence (7) (frame PLR2).
The PALSAR polarimetric interferometric scene was acquired on 14" March/19*" April 2009.
Each point describes the complex coherence for one polarisation state. The height of ambiguity
(ha) is approximately 90 m

difficult to draw any clear conclusion about the relative canopy penetration using loci
coherence.

5.3.5 Summary

This section examines the decorrelation mechanisms which occur in the Thuringian For-
est. For this, the TDX single-pass interferometric system as well as the CSK, TSX and
ALOS PALSAR repeat-pass systems were considered with temporal baselines of 1, 11
and 46 days, respectively. Simple visualisation comparisons of interferometric coherence
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were first performed. They highlighted the various temporal and potential spatial decor-
relations which occurred over the forested areas and for other landcovers in the different
interferometric configurations. After visualizing the data, several quantitative analyses of
the parameters potentially affecting phase coherence were undertaken. Comparisons of
boxplots processed over open areas highlighted the large temporal decorrelation occurring
in X-band 1-day, 11-day and L-band 46-day repeat-pass systems. Also, considering the
boxplots performed over forested areas, a decrease in coherence for all the investigated
interferometric systems could be observed. This variation was explained by temporal and
volume decorrelation, which is intrinsically related to the forest canopies. Among the
different weather parameters affecting the InNSAR coherence, precipitation was shown to
be an important variable. An obvious example could be presented with apparition on one
of the ALOS PALSAR interferometric acquisitions of a locally marked drop in coherence,
which was referred to a heavy storm event, including convective precipitations. The inves-
tigations focused on acquisitions measured with HH polarisation. However, some analyses
were also undertaken for comparing HH with HV and VV polarisations. As expected, the
amplitude of the phase coherence for HV was slightly lower than that for the copolari-
sations and was equal in the HH and VV polarisations. Hence, the HH component was
considered for the remaining investigations. One of the objectives of this section was to
evaluate the potential of interferometric coherence in the estimation of forest biomass.
Scatterplots comparing interferometric coherence and GSV for the ALOS PALSAR sys-
tem were developed for Norway Spruce forest stands. The sensitivity of coherence to the
volume of the trees was first shown to increase with increasing perpendicular baseline
until the signal is completely decorrelated for the acquisitions where the normal baseline
exceeds the critical baseline by around 40%. Then, comparing interferometric coherence
to GSV for the different species and sensors for CSK and PALSAR systems, it was found
that the coherence of spruces was the highest, followed by those of pines and beeches.
This difference was mainly explained by the different branching structures and foliage
compositions of the trees. The relationship between the InSAR coherence of the CSK
and PALSAR sensors and GSV was shown to follow an exponential law, with saturation
levels for the CSK sensor appearing at around 100 m® ha=! and 250 m® ha™! for beech and
spruce, respectively, and at around 200 m?® ha=! in the case of the PALSAR sensor for the
three investigated species compositions. However, these saturation points varied widely,
especially with the variation in perpendicular baseline. The sensitivity of the TDX coher-
ence to GSV was shown to be surprisingly high with a negative linear relationship without
any saturation till 600 m*ha~!. With a R? of 0.72 for spruce, TDX exhibited the best
correlation compared to other sensors and species. The penetration of microwaves could
not be completely clarified in Section 5.2 with the analysis of the backscatter intensity
and polarimetric decompositions of the signal. Therefore, further investigations focusing
on the phase center location were undertaken in this section. For this, loci coherence
diagrams based on the PALSAR PLR PolInSAR data were considered. Unfortunately,
owing to high temporal decorrelation and the resulting low coherence of the PALSAR
data, it was not possible to draw any conclusions based on these diagrams.



210 Chapter 5 : Results

5.4 Forest GSV estimation

5.4.1 Parametric modelling

The results of the empirical regression modelling are presented in this subsection. Three
different topics are considered, namely training of the models, models’ inversions and test-
ing and error investigations. According to the results pertaining to backscatter intensity
and interferometric coherence presented in Sections 5.2 and 5.3, respectively, ALOS PAL-
SAR and TDX interferometric coherence in HH polarisation constituted the most suitable
datasets for retrieving GSV in the Thuringian Forest. In addition, only spruce appeared
to show satisfactory correlations. In this framework, the focus for the parametric mod-
elling of the Thuringian Forest GSV was performed on the basis of ALOS PALSAR and
TDX InSAR HH coherence as well as on the composition of spruce. As introduced in
Section 4.4 and described in Section 5.3, according to the SAR sensor and acquisition
configuration, the relationship between PALSAR interferometric coherence and GSV ap-
peared to be both linear and nonlinear. Assuming no a priori information on the suitable
models, a methodology (Section 4.4) was adopted for modelling the available coherence
data using linear and nonlinear models, and the model showing the lowest RMSE was
selected. For this, the forest stands were subdivided into three datasets, namely a training
set for retrieving GSV, a testing set for evaluating and choosing the suitable model and
a testing set for estimating the final accuracy with the selected model. The number of
stands from the inventory described in Section 4.3 and used in sections 5.1, 5.2 and 5.3
was too limited for obtaining a reliable number of stands for the three classes. Thus, for
the purpose of regression modelling, a forest inventory based on the criteria defined in
Section 4.3 was considered with a different definition of the tree species mixity (BAAN)
and relative stocking (V' G) parameters. Further information can be found in Section 4.4.

Model training

The training of the models was undertaken using the methodology described in Section
4.4. This approach involved selection of a training dataset as well as an iteration process
for removing potential outliers. For PALSAR HH coherence, Figure 5.39 illustrates the
model fitted with standard deviations (2¢). In the given example, the fit corresponded to
the third iteration. The PALSAR scene was acquired on frame FBD1 on 21%° August /6™
October 2007.

As observed in Figure 5.39, the nonlinear model appeared to fit the coherence trend
well. However, the spread of the data suggests that for a given coherence value, the GSV
values were rather widely dispersed, indicating that the estimations would not be accu-
rate. This observation was particularly noted for spruces with a GSV above 200 m?® ha™!,
namely mature spruce stands, which did not show any significant decrease in coherence
with increasing GSV. The difference in coherence dispersion between young and mature
spruces may be explained by several reasons, such as the saturation of the signal, the
various structures of the forest discussed in Section 5.2 or the bias intrinsic to the coher-
ence. In the latter case, referring to the description of Relation (3.33) in Section 3.2, the
bias increases with decreasing coherence. In other words, for a lower coherence, the bias
is higher, and therefore, according to the coherence trend with GSV in Figure 5.39, the
dispersion of the mature spruces’ coherence is greater.
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Figure 5.39: Training process with a nonlinear model fitted to PALSAR FBD HH 39° Asc.
(frame FBD1) interferometric coherence. The PALSAR interferometric data was acquired on
215¢ August /6™ October 2007. Coherence was measured over spruce forest stands (blue points).
Standard deviations (20) are depicted by dashed lines. The fit corresponds to the third iteration.

The above fitting operation allowed the estimation of the model variables. Table
5.2 presents an example of the estimated parameters A, B and C' derived for spruce
forest stands with the PALSAR FBD HH and TDX SM HH coherence acquisitions. The
acquisitions with a value provided for parameter C' referred to the data processed with
a nonlinear model. The remaining acquisitions, where only parameters A and B were
provided, referred to a linear model. As described in the methodology in Section 4.4,
the choice of a linear or nonlinear function was based on the RM SFE computed from the
30% testing stands allocated for model selection. In the given example, for the sake of
conciseness, the parameters directly referred to the selected models.

Table 5.2 indicates that most of the models used for the processing of the final accuracy
were linear, indicating that the coherence trends were more linear than nonlinear. As for
the estimated parameters, A and B representing the dynamic range of nonlinear and
linear models, respectively, showed that coherence reached approximately 0.5 and 0.77 in
the best case. The decreasing rate expressed by the parameters A and B for the linear
and nonlinear models, respectively, was negative and very small, as expected. Finally, the
phase coherence offset values described by parameter C' for the nonlinear model did not
exceed 0.26.

Model inversion and Testing

As described in Section 4.4, after estimating the regression parameters, inversion of
the models was performed to retrieve GSV images from the coherence scenes. On the
basis of the GSV images and forest stands belonging to the testing datasets, descriptive
statistics were then computed. Table 5.3 describes the statistics derived for spruce forests
stands over the PALSAR FBD HH and TDX SM HH coherence data. The given statistics
were computed using the testing set of stands dedicated to the evaluation of the final
accuracy.
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Table 5.2: Estimated parameters for PALSAR FBD HH 39° Asc. (frames FBD1-4 and 6-8)
and TDX SM HH 38° Asc. (frame TDX3) coherence data. Three parameters were considered
for the nonlinear models and two parameters for the linear models. The parameters for spruce
forest stands were derived.

Frame Acquisition dates Model A B C

FBD1 21aug07-06oct07 mnon-linear 0.52 -0.00943 0.20
FBD1 23may08-08jul08 linear -0.00001 0.16 -
FBD2 06may08-21jun08 linear 0.00000 0.18 -
FBD2 12mayl0-27junl0 linear -0.00036 0.46 -
FBD3  02sep07-18oct07 linear -0.00050 0.57 -
FBD3 07sept09-230ct09 linear -0.00074 0.83 -
FBD3  10jun10-26jull0 linear -0.00055 0.50 -
FBD3  23jul09-07sept09 non-linear 0.27 -0.00727 0.13
FBD4  01jul07-16aug07 linear -0.00022 0.55 -
FBD4 16aug07-0loct07 linear -0.00066 0.65 -
FBD4  18may08-03jul08 linear 0.00002 0.12 -
FBD4  24may10-09jull0 linear -0.00022 0.46 -
FBD6 06may08-21jun08 linear -0.00011 0.38 -
FBD6 12may10-27junl0 linear -0.00003 0.17 -
FBD7  02sep07-180ct07 linear -0.00056 0.66 -
FBD7 07sept09-230ct09 linear -0.00052 0.71 -
FBD7  10jun10-26jul10 linear -0.00043 0.42 -
FBD7  23jul09-07sept09 linear -0.00077 0.57 -
FBD8  01jul07-16aug07 linear -0.00024 0.63 -
FBD8 16aug07-0loct07 non-linear 0.51 -0.00275 0.26
FBD8  18may08-03jul08 linear 0.00000 0.12 -
FBD8  24may10-09jull0 linear -0.00023 0.55 -
TDX3 30augll linear -0.00047 0.77 -

From Table 5.3, it is first observed that the estimated RM SE for the different interfer-
ometric acquisitions ranges between 100 m?® ha™! and 220 m3 ha~!. This error is markedly
high with respect to the overall range of GSV (0m3ha™! to 700 m®ha™'), and thus, this
accuracy is not sufficient for achieving the objectives of forestry and climatic modelling
(see Section 2.1). The PALSAR data in Table 5.3 indicates that the highest accuracy was
RMSE = 112m?ha~!, which was obtained with the coherence acquired on frame FBD3
on 7™ September /23 October 2009. The lowest accuracy was RMSE = 218 m3ha™1,
which was measured on frame FBD4 on 18" May/8th July 2008. The difference in the
retrieval accuracies of the investigated acquisitions may be explained by several factors.
Among these factors, the perpendicular baseline was shown to be significant. By com-
paring the statistics with the perpendicular baselines, it was observed that the normal
baselines ranging between 300 m and 700 m depicted an RMSE of less than 150 m? ha™!
and a bias of less than 20m?®ha~!, while the remaining acquisitions comprised RMSE
and bias values above 150 m?ha~! and 20m3ha~!, respectively. However, some excep-
tions could be observed where high hourly precipitations appeared to have affected the
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Table 5.3: Statistics for modelling with parametric regressions of PALSAR FBD HH 39° Asc.
(frames FBD1-4 and 6-8) and TDX SM HH 38° Asc. (frame TDX3) coherence in the Thuringian
Forest. Three statistics were retained, namely R? for training, RM SE and bias. Modelling was
performed over spruce forest stands.

Frame Acquisition dates Baseline  py; Dh2 thraining RMSE Bias
(m) (mm) (mm) (m*ha=!) (m*ha~!)

FBD1 2laug07-060ct07 321 0.9 0.0 0.73 158 -9
FBD1 23may08-08jul08  -3790 0.0 1.1 0.01 162 28
FBD2 06may08-21jun08  -3285 0.0 0.0 0.01 217 31
FBD2 12may10-27junl0 102 0.0 0.0 0.52 170 -18
FBD3  02sep07-18oct07 393 0.0 0.1 0.50 142 2
FBD3  07sept09-230ct09 381 0.0 0.0 0.53 112 5
FBD3  10junl0-26jull0 363 0.0 5.0 0.61 119 20
FBD3  23jul09-07sept09 621 14.3 0.0 0.69 157 32
FBD4  01jul07-16aug07 290 0.0 0.2 0.17 201 8
FBD4 16aug07-0loct07 352 0.2 0.0 0.53 138 15
FBD4 18may08-03jul08  -3874 0.0 5.0 0.01 218 79
FBD4  24may10-09jull0 67 0.0 0.0 0.22 206 26
FBD6 06may08-21jun08 3251 0.0 0.0 0.04 189 37
FBD6 12mayl10-27junl0 102 0.0 0.0 0.13 201 19
FBD7  02sep07-18oct07 388 0.0 0.0 0.73 121 18
FBD7  07sept09-230ct09 378 0.0 0.0 0.69 117 7
FBD7  10junl0-26jull0 363 0.0 12.8 0.68 132 -28
FBD7  23jul09-07sept09 619 5.1 0.0 0.73 162 -22
FBD8  01jul07-16aug07 290 0.0 0.7 0.17 185 22
FBD8 16aug07-0loct07 -348 0.7 0.0 0.27 175 4
FBD8 18may08-03jul08  -3852 0.0 9.5 0.01 192 43
FBDS8  24may10-09jull0 67 0.0 0.0 0.21 177 -10
TDX3 30augll 258 0.0 0.0 0.53 183 -17

accuracy, such as 10" June/26™ July 2010 and 23 July/7®® September 2009 acquisi-
tions, which showed a bias of —28 m®ha™! and 32m?ha™!, respectively. The descriptive
statistics for the estimated GSV from the PALSAR FBS and PLR coherence data were
also processed and are provided in Appendix B.4.

Concerning TDX, the RM S E was found to be high. Some discussions about this result
are provided later in this section during the examination of topography error contribution.

In addition to the statistics presented above, it is useful for visually comparing the
measured ground and SAR estimated GSV on a scatterplot. In this respect, a qualitative
assessment of the estimation based on 2D scatterplots with measured GSV on the abscissa
and estimated GSV on the ordinate was performed. Figure 5.40 depicts two illustrations
of the processed scatterplots with PALSAR coherences acquired on (a) 7 September /234
October 2009 and (b) 23" July/7" September 2009. Both coherence acquisitions were
measured over frame FBD7. To better interpret the plots, a 1:1 line and two dashed lines
representing the inventory accuracy (o = £20%) were overlaid.
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Figure 5.40: Testing process visualisation for two PALSAR FBD HH 39° Asc. (frame FBDT)
coherence data. Inventory GSV is given on abscissa and coherence estimated GSV on ordinate.
The PALSAR interferometric data were acquired on (a) 7" September/23™ October 2009 and
(b) 23' July /7" September 2009. The coherences were measured over spruce forest stands. A
1:1 line and two dashed lines representing the inventory accuracy (o = +20%) are overlaid for
the interpretations.

Figure 5.40 (a) shows that although there were some variations, the cloud of points
extended in the same direction as the 1:1 line. This indicated that the selected model
was suitable for examining the relationship between GSV and interferometric coherence.
Then, comparing the dispersion of the points with the different GSV reference values,
it was observed that the dispersion for mature stands was higher than that for young
regenerative stands. This is explained by the same reasons as those presented in relation
to Figure 5.39. Then, considering the plot in Figure 5.40 (b), it was observed that the
points were misaligned with the 1:1 line. In particular, the points referring to low GSV
on the reference inventory data were retrieved as high estimated GSV'. In fact, the acqui-
sition shown in plot (b) corresponded to the coherence measured during the convective
precipitation event, introduced in Section 5.3. In this case, the high coherence, which is
usually observed for young spruces, decreased owing to precipitations and was interpreted
by the model as high GSV. Consequently, the retrieved RMSE for the acquisition in
Figure 5.40 (b) was larger than the RMSE for the acquisition depicted in plot (a).

Investigation of sources of errors

The RMSE for ALOS PALSAR and TDX coherences in Table 5.3 was found to be
abnormally high when compared with other studies (see Section 2.1). This high error may
be due to several factors, which were further investigated in this study. Equation (5.1)
summarises the potential error contributions

€ = Etopo + Einventory + E€model 1 Eradar 1 Eweather - (51)
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Section 5.1 showed that the coherence signal varied with topography. Thus, the first
factor to be mentioned is the sloping terrain of the Thuringian Forest test site. In addi-
tion to the topography, the forest inventory used here as a reference for the training and
testing processes may also have included potential errors. In this respect, the comparison
shown in Section 4.3 between the GSV measured during the project field campaigns and
the GSV provided in the forest inventory showed large variations, which should not be
neglected. These errors may have contributed to the fluctuation in the signal, result-
ing in inaccurate GSV retrieval. Also, the processing scheme and parametric regression
method used for the modelling might not have been adapted or might have required some
improvements. Finally, as mentioned above, the error might have increased because of
the weather conditions or the radar configuration, such as an inappropriate perpendicular
baseline.

The results of error sources investigations are presented below. First, distinctions
between the estimations with and without slopes are described. Then, the comparison
between the coherence-retrieved GSV and the GSV measurements obtained from the
forest inventory and forest campaigns are discussed. Finally, elements related to the
processing of spatial resolution of the data are given. For assessing the modelling method
used in this section, the results of another approach based on non-parametric modelling
are presented in Subsection 5.4.2 (k-NN).

Topography error contribution.:

The topography was considered by performing the modelling of PALSAR FBD HH
and TDX SM HH coherence in forested areas with limited topography. Slopes below 10°
and 5° were selected for PALSAR and TDX, respectively, in order to keep the number of
stands consistent and preserve the quality of the stands. Figure 5.41 presents a histogram
which compares the RM SE of the PALSAR and TDX data. The different acquisitions are
depicted on the abscissa and the RM SFE on the ordinate. The data processed without the
slope criteria are shown in green, while the coherences modelled with the consideration
of limited slopes are depicted in blue. For better readability, the acquisition dates given
on the secondary abscissa refer only to the first acquisition of the coherence pairs. Also,
some of the available acquisitions did not provide a sufficient number of stands for the
selection of limited slopes. The latter data were not considered in Figure 5.3.

In Figure 5.41, the comparison of RMSE between stands with slopes below 10° and
without slope selection shows clear differences. The acquisitions measured under frames
FBDG6-8 generally showed that the RM SE for modelling with limited slopes is lower than
that for modelling without any slope criterion. However, the opposite was observed for
frames FBD1-4. In the latter cases, the RMSFE values for GSV estimated over forest
stands with limited slopes were generally higher than that for stands without any limited
gradient. These observations suggested that another factor potentially more influential
than topography may have affected the modelling process with the selection of slopes.
This factor was found to be related to the number of available stands and the quality
of the stands. In the case of PALSAR acquisitions acquired on frames FBD1-4, the
number of available stands was generally limited compared to the number of stands for
the acquisitions measured on frames FBD6-8. As mentioned above and in Section 4.4,
the developed retrieval methodology consisted of fixing a minimum number of 300 stands
per acquisition by adjusting the quality of the forest stands, with the dominant species
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Figure 5.41: Comparison of statistics between G.SV estimated with topography and with limited
topography for PALSAR FBD HH (frames FBD1-4 and FBD6-8) and TDX SM HH 38° Asc
(frame TDX3). The modelling was performed over spruce forest stands. The comparison is
based on RMSE.

percentage in a stand (BAAN) and relative stocking (VG) parameters. Consequently,
on the basis of the available number of stands and the retrieval approach employed,
the reliability of the stands for the scenes from frames FBD1-4 was drastically reduced
compared to those from frames FBD6-8. Referring to these observations, it may be
concluded that in the case of frames FBD6-8, the stands were reliable and the selection
of slopes below 10° improved the estimation accuracy when compared to the no-slope
selection. However, in the case of frames FBD1-4, the potential improvements with
reduced topography were masked by the poor-quality stands. Therefore, the selection of
slopes below 10° increased the RM SFE for the data acquired over these frames instead of
decreasing it.

With regard to TDX, Section 5.1 showed that the topography significantly affected
the TDX coherence, particularly for high slopes facing the sensor. As shown in Figure
5.41, the consideration of slopes below 5° considerably improved the modelling accuracy.
Indeed, the RMSE decreased from 183m3ha~! in hilly terrains to 109 m3ha~! without
any topography. In the case of TDX, the frame of the data extended over the numerous
spruce stands of the Thuringian Forest (see Appendix A.1). Thus, a large number of
stands were available, and therefore, the quality of the stands was not affected.

In summary, the observations made in relation to Figure 5.41 indicated a tradeoff
between the quality of stands and topography. On the basis of the modelling results, the
quality of stands appeared to be as significant as topography.

Forest inventory error contribution:

The GSV of the reference provided by the forest inventory was evaluated in Section 4.3
using the GSV values measured within the undertaken forest campaigns. At this stage, the
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GSV estimated from coherence may also be compared with the available measurement
results of the forest campaigns. For this, histograms based on the GSV of the forest
inventory, forest campaigns and coherence regression were established for the selected
forest stands. The comparison of the estimated GSV with the campaign measurements
did not present any particular trend. The histograms are provided in Appendix B.4.

In addition to the analysis of the histograms, spatial variations and potential system-
atic errors of the estimated coherence G'SV were investigated by computing stand-wise
difference maps which illustrate the differences between the forest inventory and coher-
ence estimated GSV. The difference maps showed that GSV estimation was not always
uniform over the coherence scenes but did not show any obvious systematic errors. The
variations in GSV for the stand-wise difference maps may have been related to differ-
ent factors such as topography or local winds, which affect the interferometric coherence.
Other factors such as the time difference between the reference (inventory) and the SAR
estimated GSV may have also contributed to the variations, but this was not believed to
be significant.

Spatial resolution error contribution:

It is possible to address the question of an optimal processing spatial resolution because
the choice of spatial resolution may affect not only the computation speed but also the
GSV retrieval accuracy. Considering the effect on accuracy, despite the forest stands
buffer of 25 m performed during pre-processing (Section 4.3), downsampling the coherence
scenes to a lower spatial resolution till a certain point may result in a lower precision of the
border of the forest stands within the images, thus resulting in more errors in estimation
owing to the admittance of a larger number of non-forest or other forest scatterers in the
stands.

In this context, the processed spatial resolution was investigated for the modelling
approach defined in Section 4.4. In particular, the GSV estimation process was repeated
for different spatial resolutions for the selected PALSAR coherence datasets. Each process
involved a minimum stand size of 5 ha. At the end of the processing, the retrieved accuracy
was compared to the spatial resolution. The results showed that starting from a spatial
resolution of 50m, the RMSE tends to increase with greater pixel sizes (see Appendix
B.4). This increase may confirm the border effect of the stands, which was introduced
above. However, it started only after 50 m and did not appear to significantly affect the
RMSE. Thus, the spatial resolution may not be an important contributor of the errors
presented in Equation (5.1).

5.4.2 Non-parametric modelling

Non-parametric modelling was performed using the k-NN approach. The k-NN technique
was essentially tested in this study to compare the results of the regression method pre-
sented above with a different and potentially more accurate modelling technique. For
this, three different topics were treated: selection of optimal £-NN modelling parame-
ters, testing of the model with descriptive statistics and visualisation of the £-NN and
regression-estimated GSV images. These topics are discussed in this section. The study
conducted in the Thuringian Forest applying k-NN modelling consisted of a master thesis
supervised within the framework of this doctoral thesis. The results presented in this
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subsection refer to some of the findings cited in the master thesis. For a comprehensive
overview of the k-NN approach adopted for the Thuringian Forest, the reader is referred to
the master thesis study Zhu 2012. The comparison of the models was limited to PALSAR
acquisitions and spruce species.

Evaluation of £-NN parameters

As described in the methodology section (Section 4.4), the k-NN approach includes
several parameters which need to be defined. Among these parameters, the k numbers and
weighting functions were investigated in order to determine the optimal configuration for
PALSAR coherence. The different configurations were compared using the RMSFE and
bias metrics for £ numbers ranging from 1 and 20. The RM SE and bias were calculated
using the LOOCV method mentioned in Section 4.4. The first examinations were per-
formed by comparing the various weighting functions using single PALSAR coherences.
The Mahalanobis and Manhattan distances differ from the Euclidean distance only when
two or more channels are used for k-NN processing. Because the principal objective of
this subsection was to compare the retrieved GSV obtained with regressions and single
coherence images (Subsection 5.4.1), the Mahalanobis and Manhattan distances were not
considered in the following investigations. Also, to process the k-NN model, the for-
est inventory described in Section 4.3 was used. The number of stands was sufficient for
achieving the purpose of this study. Figure 5.42 depicts an example of the obtained results
with the RMSE and bias processed for a k£ number between 1 and 20. The k£ numbers are
displayed on the abscissa, while the accuracy metrics are shown on the ordinate (RMSE
on the primary ordinate and Bias on the secondary ordinate). The Euclidean distance
was combined to three weighting functions: mean, inversed and inverse-square distance
functions. The PALSAR coherence scene was acquired on frame FBD7 (Appendix A.1)
on 2™ September/18™ October 2007.

First, the behaviour of the curves in green indicates that the error rapidly decreases
with increasing £ number until it reaches a sufficient number of nearest stands for obtaining
reliable accuracy. This tendency, which is typically observed with the prediction of k-NN
errors (Franco-Lopez et al., 2001, Baffetta et al., 2009), is explained by the increased
number of forest stands. However, as shown by the curves in red, the increase in the
number of nearest neighbours also increases the bias. This result can be explained by
the greater number of data involved in the k-NN processing; this typically increases the
standard deviation, resulting in increased bias, as shown in several studies (Franco-Lopez
et al., 2001, Chung et al., 2009). Then, a comparison of the curves of the weighting
functions in different color tones indicate that the mean weighting function depicted the
best accuracy in terms of RMSE. However, considering the RMSE range, it should be
noted that the differences between the three weighting functions remained insignificant.
Finally, on a more close observation of the RM SE and k numbers for the different curves,
the variations in accuracy appeared to stabilise after reaching about 15 nearest neighbours.
This observation agreed with other findings, which reported a stability point between k =
10 and 15 (Kajisa et al., 2008, Franco-Lopez et al., 2001). On the basis of this result
and the abovementioned outcomes, the overall available PALSAR coherence scenes of the
Thuringian test site was processed with a Euclidean distance, a mean weighting function
and a k number corresponding to 15 nearest neighbours (k = 15).
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Figure 5.42: Comparisons of k-NN modelling parameters with RMSE and bias statistics. One
PALSAR FBD HH 39° Asc. (frame FBD7) coherence scene and k numbers between 1 and 20 were
considered for the illustration. The PALSAR scene was obtained on 2"? September /18" October
2007. The statistics were derived for spruce forest stands. The different curves are distinguished
in green for the RMSFE and in red for the Bias. The curves represent with different color
tones the Euclidean distance combined to mean, inversed and inverse-square distance weighting
functions.

Model testing

The available interferometric PALSAR datasets were processed with the abovemen-
tioned k-NN configuration and compared to the regression modelling accuracy in Table
5.3. Table 5.4 depicts the k-NN statistics derived for the same PALSAR acquisitions
shown in Table 5.3. For a better comparison of the k-NN and regression statistics, the
acquisitions were sorted with the same order.

First, the k-NN accuracy results in Table 5.4 indicate that the RM SE generally ranged
between 80m3ha~! and 150 m®ha~!. Thus, compared to the results of the regression
method described in Subsection 5.4.1, the k-NN approach was approximately 50 m? ha™!
more accurate than the regression approach. Fehrmann and Kleinn 2007 and Fehrmann
et al. 2008 also compared the two approaches and reported the same general observations.
He mainly explained the higher k-NN accuracy compared to the regression technique on
the basis of the ability of the k-NN algorithm to be more flexible when representing local
trends. Although it achieves better accuracy than the regression approach, the RMSFE
obtained with the £-NN algorithm still remained unsatisfactory for the applications dis-
cussed in the introduction of this thesis. Then, comparing the perpendicular baseline
to the RMSE, it could be observed that the best accuracy was achieved with normal
baselines ranging between 300 m and 700 m. The same result was shown in Table 5.3
for the regression method. Finally, a comparison of the precipitations to the RMSFE
indicated that the interferometric acquisitions which presented high precipitations or dry
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Table 5.4: Statistics for modelling with k-NN algorithm of PALSAR FBD HH 39° Asc. coherence
in the Thuringian Forest performed over spruce forest stands. Two statistics were retained:
RMSE and bias.

Frame Acquisition dates Baseline  ppg Pho RMSE Bias
(m) (mm) (mm) (m*ha=!) (m3hal!)

FBD1 2laug07-060ct07 321 0.9 0.0 100 -6
FBD1  23may08-08jul08 -3790 0.0 1.1 144 -5
FBD2 06may08-21jun08  -3285 0.0 0.0 135 -12
FBD2 12may10-27junl0 102 0.0 0.0 119 -2
FBD3  02sep07-18oct07 393 0.0 0.1 92 -1
FBD3  07sept09-230ct09 381 0.0 0.0 88 -9
FBD3  10junl10-26jull0 363 0.0 5.0 96 -5
FBD3  23jul09-07sept09 621 14.3 0.0 94 -2
FBD4  01jul07-16aug07 290 0.0 0.2 120 1
FBD4  16aug07-0loct07 352 0.2 0.0 84 -1
FBD4  18may08-03jul08 -3874 0.0 5.0 135 -4
FBD4  24may10-09jul10 67 0.0 0.0 130 0
FBD6 06may08-21jun08 3251 0.0 0.0 119 2
FBD6 12may10-27junl0 102 0.0 0.0 113 -3
FBD7  02sep07-18oct07 388 0.0 0.0 89 -6
FBD7 07sept09-230ct09 378 0.0 0.0 88 -9
FBD7  10jun10-26jull0 363 0.0 12.8 96 -5
FBD7  23jul09-07sept09 619 5.1 0.0 94 -2
FBD8  01jul07-16aug07 290 0.0 0.7 113 -3
FBD8 16aug07-01loct07 -348 0.7 0.0 107 -6
FBD8  18may08-03jul08 -3852 0.0 9.5 120 2
FBD8  24may10-09jull0 67 0.0 0.0 115 -6

conditions as well as equivalent normal baselines (i.e. 10" June/26" July 2010 and 24
September/18" October 2007, frame FBD7) depicted close RMSE values. This result
suggested that the k-NN method might have been affected by precipitations to a lesser
extent than the regression technique. As mentioned above, this observation may be ex-
plained by the capability of the £-NN algorithm to exploit the local variations.

In processing, the use of an extremely small number of stands may affect the estima-
tion accuracy. Investigations in Zhu 2012 showed that using 100 stands would lead to
insignificant changes in accuracy, and 500 forest stands would be optimal. In the given
case, the number of stands for the forest inventory described in Section 4.3 ranged from
105 (frame FBD1) to 2012 (frame FBD7). These numbers were adequate for this study.

Visual comparisons of .-NIN and regression-estimated GSV images

In addition to the comparison of the statistics in Table 5.4, it is useful to visualise the
estimated GSV retrieved from the k-NN and regression methods. In this framework, the
G SV images retrieved with the k-NN algorithm were computed and examined with the
G SV images based on the regression approach. Figure 5.43 depicts the resulting images
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for comparisons with (a) the &-NN GSV image, (b) the regression-based GSV image, (c)
the forest inventory and (d) a digital orthophoto. The GSV images were retrieved from a
PALSAR FBD HH coherence acquired on 7" September /23 October 2009. The covered
area is the Goldisthal Region, which is denoted by its upper reservoir facility. It should
be noted that the GSV images in (a), (b) and (c) were masked using a forest mask and
a spruce mask, which were both established within the framework of Section 5.5.
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(d)

Figure 5.43: Visual comparison of GSV images established from (a) k-NN and (b) regres-
sion modelling techniques, (c¢) GSV image derived from the forest inventory and (d) digital
orthophoto provided for comparison purposes. The forested areas are located around the Gold-
isthal upper reservoir facility.

By comparing the (a) A-NN and (b) regression GSV images in Figure 5.43, it is
observed that the image derived using the k-NN algorithm is brighter than the image
processed with the regression technique. This difference is explained by a property of the
k-NN method. With the weighting of the k£ nearest forest stands, the algorithm tends
to be more accurate towards the mean of the total GSV, while it tends to overestimate
the low GSV and underestimate the high GSV. Thus, in most cases, the GSV values
shown in Figure 5.43 (a) were around 350m®ha™!, which represented the mean of the
GSV values. This particularity of k-NN was also reported by several authors (Kajisa
et al., 2008, Holmgren et al., 2000). Then, comparing the GSV images with the forest
inventory in Figure 5.43 (c), it was observed that the general GSV patterns were not very
well reproduced, except where low GSV values were estimated (brown colours). Given
the topography of the area shown in Figure 5.43 (d), and the related effects on coherence
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described in Section 5.1, these results appeared to be realistic.

5.4.3 Summary

This chapter focused on the modelling of SAR interferometric coherence. Two different
modelling approaches were discussed: parametric and non-parametric. Parametric mod-
elling consisted of empirical regressions performed for spruce using ALOS PALSAR and
TDX coherences. Simple linear and nonlinear fits were computed for each interferometric
scene. The fits were based on training and testing sets of spruce stands. The model
showing the lowest RMSE was considered for the estimation of the final accuracy, which
was calculated on the basis of a separate testing set of stands. The results showed that
for almost all acquisitions, the linear model presented a lower RMSE than the nonlin-
ear model. Therefore, the final RMSFE estimations were based on linear models in most
cases. The final RMSE values ranged from 100 m®ha=! to 220m®ha~!. This achieved
accuracy was clearly not sufficient for applications such as forestry management or climate
modelling. To understand the potential sources of errors, the topography, forest inventory
and processing approach were investigated. These examinations indicated that modelling
accuracy is affected by topography, especially for TDX coherence. The investigations also
highlighted the importance of selecting reliable forest stands from the perspective of homo-
geneity. The non-parametric technique was based on the £-NN method and was focused
on the ALOS PALSAR data and spruce species. It was tested for comparison with the
regression approach. The k-NN algorithm was processed using different £ numbers and
weighting functions in order to select the optimal parameters. On the basis of the analysis
of the parameters, the Euclidean distance metric with a mean weighting function and a k
number of 15 were shown to be suitable for this study and were considered for the mod-
elling of the available coherence datasets. The results obtained from the £-NN algorithm
showed a 50 m?ha~! improvement in the RMSE compared to the regression approach.
However, this improvement was still not sufficient for envisaging any application in the
field of forestry or climate-change modelling.

5.5 Fusion of SAR information

5.5.1 Extraction of forested areas and species separation

As mentioned in Section 4.4, to separate forested areas from other landcover classes and
differentiate between the different tree species in the Thuringian Forest, the derivation
of thresholds based on histogram analysis was proposed. In addition to establishing
thresholds between the classes, a cross-correlation analysis for quantifying the separation
quality of the classes was suggested. Illustrations of the histogram analysis are provided
below. Figure 5.44 depicts one plot showing normalised frequency histograms (a) and two
associated plots representing the normalised difference (b) and cross-correlation between
forest and other classes (¢). The graphs in plots (b) and (c) refer to Equations (4.14) and
(4.16), respectively.

As shown in Figure 5.44 (a), crop, open area and water classes can be easily distin-
guished from the forest class using the PALSAR HV backscatter intensity. However, the
urban class cannot be separated from the forest class using this sensor configuration. The
normalised difference histogram in Figure 5.44 (b) derived from the normalised frequency
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Figure 5.44: Histogram analysis for separation of forest from other landcover classes; (a) shows
the normalised frequency histogram, while (b) and (c) depict the associated normalised difference
and cross-correlation functions, respectively. Normalised difference is used to determine the
thresholds between forest and other landcover classes. Cross-correlation provides a separability
quantification for assessing the quality of separation between the classes. This histogram analysis
was performed with ALOS PALSAR FBD HH 39° Asc. backscatter intensity (frame FBD7).
The data were acquired on 24 September 2007.

histogram in (a) depicts the same information in a different way so that thresholds may
be derived. The thresholds separating other landcovers from forested areas can be found
at locations where their corresponding functions are equal to zero, i.e. at approximately
—10dB, —11dB and —13dB for crop, open are and water, respectively. The correspond-
ing reliability of separation between other landcovers from forest is shown in Figure 5.44
(c). At a lag h =0dB, the correlation is less than 0.2 for open area, open area and water,
while it reaches approximatively 1.0 for urban. The high correlation between urban and
forest suggests that these classes are not separable, while the low correlation between
forest and other classes indicates that they can be easily separated from forest. For com-



224 Chapter 5 : Results

putational optimisation, cross-correlation was performed using Fourier transformation.
Therefore, the functions of the cross-correlation analysis were periodic and indicated a
return to their initial state at R(0).

On the basis of the histogram analysis, the thresholds of the classes were derived and
the separability between the classes was quantified for the available radar datasets by
using correlations. This process considered information on not only backscatter intensity
but also interferometric coherence. Of the different processed histograms, two particular
configurations required attention. The first one concerned the distinction of the forest
class from other landcover classes using the ratio of L-band HV intensity to X-band HH 1
day coherence. The second one, which was introduced in Section 5.2 within the frequency
analysis, involved the separation of tree species using the ratio of L-band HH intensity
to X-band HH intensity. These two configurations are illustrated in Figure 5.45, which
depicts (a)—(d) the normalised occurrence histograms processed independently for each
configuration and (e)—(f) the fusion of the data using the abovementioned ratios.

The plots depicting landcover classes in Figure 5.45 (a) and (c) suggest that crop,
open area, urban and water had relatively similar configurations, while forest showed
contrasting trends between PALSAR intensity and CSK coherence. Therefore, the ratio
is high for forest and low for the rest of the classes, as depicted in Figure 5.45 (e). Similarly,
the discrimination between conifers, i.e. spruces and pines, and broadleaves, i.e. beeches,
can be improved using the ratio of PALSAR HH intensity (Figure 5.45 (b)) to CSK HH
intensity (Figure 5.45 (d)), as the classes depict two diametrically opposite situations
within these two datasets. The obtained ratio is depicted in Figure 5.45 (f).

5.5.2 Suggested data configurations

On the basis of the fusion methodology described in Section 4.4, three different prod-
ucts were processed within the developed approach: forest/non-forest map, species map
and GSV map. As mentioned in Section 4.4, the quality of these products intrinsically
depended on the provided dataset. Accordingly, with respect to the investigations per-
formed for the backscatter intensity (Section 5.2), interferometric coherence (Section 5.3),
G SV modelling (Section 5.4.1) and the above histogram analysis, the most suitable data
configuration can be identified. This point is treated in this subsection.

To summarise the data configurations qualitatively, Tables 5.5, 5.7 and 5.8 illustrate
the general results of this thesis in three categories: recommended configuration, minimal
configuration and non-recommended configuration. The recommended configuration rep-
resents situations where the data yield a score (see Equation (4.18)) higher than 80 for
landcover and species maps and GSV is retrieved with an RM SE of less than 20 m® ha™!
for GSV maps. In this case, the reliability of the forest/non-forest map or species map
is relatively high, and the GSV map is relatively accurate with reference to the foresters’
requirements (see Section 2.1). The minimal configuration would designate a score of
50 — 80 and an RMSE of 20m?ha~! to 100m3ha~!. In this case, the reliability of the
masking products and the accuracy of the GSV image are acceptable. Finally, the non-
recommended configuration refers to the investigated datasets which show scores lower
than 50 for the masks and an RMSE of greater than 100m3ha~! for the GSV esti-
mates. In this case, the products are neither reliable nor accurate. The datasets were
assigned to the three established configurations according to the findings obtained from
the Thuringian test site. It should be noted that the corresponding results obtained from
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Figure 5.45: Histogram analysis for (a), (c) and (e) depicting separation of forest from other
landcover classes and (b), (d) and (f) depicting discrimination among tree species compositions.
(a) was computed with ALOS PALSAR FBD HV 39° Asc. backscatter intensity (frame FBD7),
(c) with CSK SM Himage HH 37° Asc. B, = 83m interferometric coherence (frame CSK1)
and (e) with the ratio between the latter two datasets. (b) was processed with ALOS PALSAR
FBD HH 39° Asc. backscatter intensity (frame FBDT), (d) with CSK SM Himage HH 37° Asc.
backscatter intensity (frame CSK1) and (e) with the ratio between the latter two datasets. The
PALSAR and CSK intensity data were acquired on 2°¢ September 2007 and 2°¢ June 2010,
respectively, and CSK coherence data on 2" /3™ June 2010.
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another test site may be different, particularly for another forest type. For each suggested

category, the data configurations were sorted in the decreasing order of importance.
First, the data configurations established from the histogram analysis for the forest /non-

forest map are presented. Tables 5.5 and 5.6 describe the three suggested configurations.

Table 5.5: Data configuration suggestions for processing a forest/non-forest map. The consid-
ered landcover classes are crop, open area and forest. The suggestions were derived from the
investigations performed in the Thuringian Forest. The data configurations are sorted in the
decreasing order of importance.

Configuration Forest discrimination to
Crops Open areas
Recommended 7% L HV 7% L HV
(S > 80) 7° L HH /v X HH 1d 7° L HH
~ X HH single-pass ~ X HH single-pass
7° L HH
Minimal 7° L HH leaf-off / v X HH 1d ~" L HH frozen / v X HH 1d
(50 < S < 80) 7" L HH frozen 7" L HH frozen
~% L HH leaf-off ~% L HH leaf-off
7 LHH /+4" X HH VV
Not recommended ~ X HH 1d v X HH 1d
(S < 50) +* X HH VV HV VH 7* X HH VV HV VH

Tables 5.5 and 5.6 indicate a general trend. Forest is differentiated from other land-
covers on the basis of backscatter intensity. Some exceptions are observed for the urban
class which may be distinguished from forest on the basis of interferometric coherence.
However, the coherence depicted less stable and therefore less consistent results than the
backscatter intensity. A more detailed observation in Table 5.5 shows that L-band infor-
mation appears to be the most suitable for separating crop and open area from forest.
The integration of X-band 1 day (d) coherence information (and to a lesser extent X-band
HH VV backscatter intensity) in a ratio with L-band measures may also be envisaged in
order to improve the classifications. The most recommended configurations for separating
crop and open area from forest would be to use the L.-band HV backscatter intensity. This
result makes sense, as the scattering mechanisms for crops and open areas with surface
returns are different from forest scatterings, which are mostly multiple volume reflections.
Considering the urban class in Table 5.6, the summarised results show that the X-band
HH 1d coherence is expected to provide the best discrimination of this class from forest.
The ratio of L-band HV backscatter intensity to X-band HH or VV intensity may also
provide satisfactory classification results. These two configurations having scores higher
than 80 are recommended for the separation of forest from urban. These results may
be conceived because urban areas generally depict higher coherence and greater double
bounce scatterings than those shown by forests. Finally, water may be easily distinguished
from forest on the basis of L-band or X-band backscatter intensity (see Table 5.6). The
water class is represented in the Thuringian Forest mainly by calm artificial lakes. Hence,
from the visualisations in Figure 5.2.1 in Section 5.2, the microwave reflections are mostly
specular, leading to poor-amplitude signals returning to the sensor compared to those



5.5 Fusion of SAR information 227

Table 5.6: Data configuration suggestions for processing a forest/non-forest map. The con-
sidered landcover classes are urban, water and forest. The suggestions were derived from the
investigations performed in the Thuringian Forest. The data configurations are sorted in the
decreasing order of importance.

Configuration Forest discrimination to
Urban Water
Recommended v X HH 1d v* X HH VV HV VH
(S > 80) WY LHV /4" X HH VV v L HH HV
v X HH single-pass
~% L HH leaf-off
+° L HH frozen
Minimal v L HH 46d B, < 300 m -
(50 < S < 80) ~ L HH 46d B, > 300 m

Y LHH /A" X HH VV

v L HV 46d B, < 300 m

~v L HH 46d leaf-off

v L HV 46d B, > 300 m

~v X HH single-pass
Not recommended ~° L HH leaf-off / v X HH or VV 1d -
(S < 50) 7% L HH leaf-off / 4 X HH or VV

+° X HH

+° L HV

~% L HH frozen

X VV

~° L HH

+* X HV VH

from forests, thus allowing forests to be easily distinguished from water.

The results shown in Tables 5.5 and 5.6 should be analysed with a few additional
remarks. First, the given data recommendations were based on the investigations of
a large number of data. The results which did not encounter a sufficient number of
ROIs or remote sensing data in an equivalent configuration were not considered. Data
configurations which also showed high instability, such as coherence, were also rejected
from the proposed configurations. Then, some data configurations were deliberately not
provided, such as the v L-band HH 46d in the crop class or the 4° L-band HV /vy X-
band HH 1d ratio. For the sake of clarity, data configurations which did not improve the
discrimination of the other classes from forest were excluded. In the case of the v L-band
HH 46d for the crop class, the 4° L-band HH showed better classification results than
those obtained from the corresponding coherence. Thus, the processing of the coherence
would not be necessary here. In the case of v° L-band HV /y X-band HH 1d, the use of v
X-band HH 1d would proportionally include more misclassifications as compared to the
scenario considering only the L-band HV intensity. Thus, the processing of such a ratio
would also not be necessary. In other words, provision of all potential data combinations is
logically unnecessary, and only the ones which are capable of improving the classification
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were considered. Finally, it is observed that in some cases, details on the normal baseline
or incidence angle are given for the configurations shown in Tables 5.5 and 5.6. In the
absence of these details, no significant changes were observed in these parameters. Also,
the 7 L-band HH, L-band HH leaf-off and 7° L-band HH frozen configurations were
differentiated. These data configurations represented the acquisitions made by PALSAR
in the FBD and FBS modes. The " L-band HH, L-band HH leaf-off and 4" L-band
HH frozen refer to the vegetative period, winter acquisitions with leaf-off and winter
acquisitions with leaf-off and frozen conditions, respectively.

Then, after describing the configurations for the derivation of a forest/non-forest map
product, Table 5.7 presents the configurations related to the computation of a tree species
map product.

Table 5.7: Data configuration suggestions for processing a tree species composition map. The
considered tree species are spruce, beech and pine. The suggestions were derived from the
investigations performed in the Thuringian Forest. The data configurations are sorted in the
decreasing order of importance.

Configuration Tree species composition
Spruce vs. Beech Pine vs. Beech
Recommended - -
(S > 80)
Minimal 7°LHH /+° X HH VV leaf-off -
(50 < S < 80) WY LHV /4" X HH VV

WY LHV /4 X HH VV
Not recommended ~" L HH leaf-off / v X HH VV ~° L HH / 4 X HH VV leaf-off

(S < 50) 7" X HH VV leaf-off 7Y LHV /4" X HH VV
7" X HH VV 7° L HH leaf-off / v X HH VV
7% L HH 7" X HH VV
7° L HH leaf-off 7° L HH
7 L HV 7 L HV
+° L HH frozen +° L HH frozen
v* X HV VH +? L HH leaf-off
+* X HV VH

As shown in Table 5.7, according to the defined data configurations, it can be generally
established using the investigated radar information that the separation between the tree
species is limited. In the case of discrimination of spruce from beech, the 4° L-band HH/ 4°
X-band HH or VV leaf-off ratio appeared to be the most conclusive; however, the score in
this configuration did not exceed 80. Although similar to spruces, pines bear conifers, the
separation between beech and pine is very limited. The best score was computed with the
7° L-band HH/~° X-band HH or VV leaf-off ratio; however, it did not exceed 50. Finally,
the differentiation of spruce from pine was found to be impossible with the available radar
datasets. The best score in this regard was shown with coherence information, suggesting
that although both spruce and pine are conifers, they present distinct canopy structures.
This result was introduced and discussed in Section 5.3. The specific remarks made above
for Tables 5.5 and 5.6 are also applicable here to the separation between the three tree
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species.

Finally, the GSV map products are discussed by referring to the investigations de-
scribed in Section 5.4. Table 5.8 lists the data according for the three established config-
urations.

Table 5.8: Data configuration suggestions for processing a GSV map. Two modelling techniques
were considered, namely a regression method and the k-nearest neighbour (k-NN) algorithm.
The suggestions resulted from the investigations performed in the Thuringian Forest and with
spruce species. The data configurations are sorted in the decreasing order of importance.

Configuration GSV retrieval
Regressions k-NN
Recommended - -
(RMSE < 50m3ha~1)
Minimal - v L HH 46d B, > 300 m
(50 < RMSE < 100m?ha™1)
Not recommended v L HH 46d B, > 300m p, < 5mm ~ L HH 46d B, < 300m
(RMSE > 100m?ha™1) v L HH 46d B, > 300m pj, > 5mm

v L HH 46d B, < 300m p, < 5mm
v L HH 46d B, < 300m py, > 5mm
~v X HH Single-pass

As shown in Table 5.8, no data fits the recommended or minimal configuration. In
fact, the accuracy obtained from the parametric modelling process in Section 5.4 did
not fall below 100 m3ha~!; this means that only non-recommended configurations can be
processed for the Thuringian Forest using regressions. In the case of the k-NN modelling
approach, RM SE between 50m?3ha~! and 100 m?3 ha~! was achieved with L-band 46 days
HH coherence and normal baselines greater than 300 m. This result indicated a minimal
configuration.

5.5.3 Product examples and validation

This subsection presents product examples which were derived from the fusion approach
described in Section 5.4. Noting that the recommended data configuration introduced
above may be available only partially, it would be interesting to examine the appearance
of the products in the absence of the suitable datasets. The first part of this subsection
focuses on product examples which were processed with the recommended as well as
minimal or non-recommended configurations. The second part of this subsection focuses
on product examples derived mainly from all available datasets, thus consisting of the
potentially best products obtained from the Thuringian Forest. It may be recalled that
the terms synergy and fusion, which were defined in Section 3.3, designate two different
ways of processing data. With respect to the methodology described in Section 4.4, these
two terms refer to the combination of data.

To illustrate the outcomes of the fusion algorithm when the input data included mini-
mal or non-recommended configurations, a forest /non-forest map was processed with three
partially overlapping scenes. The three scenes included a single acquisition of PALSAR
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HV intensity, PALSAR HH coherence and CSK HH coherence. Figure 5.46 (a) depicts
the forest/non-forest map. Additionally, the ’score’ maps providing the accuracy of the
established forest/non-forest map are presented in Figure 5.46 (b), (c), (d) and (e) for
crop, open area, urban and water, respectively.

Before interpreting the different products, it needs to be noted that some pink areas
appear on the validation products. According to the defined legend, these regions do not
provide any information. In fact, as described in Section 4.4, the minimum score to be
achieved can be defined. In the given example, a score of 30 was defined for the fusion
process. Thus, all areas with a score lower than this fixed value are depicted in pink in
order to show that the separation of forest from the given landcover class over this region
was too inaccurate for it to be considered in the final product.

Figure 5.46 (a) shows that the derived forest/non-forest map varies significantly accord-
ing to the provided input data. In Figure 5.46 (c), the open areas are barely differentiated
from forest by PALSAR HH coherence. This information is shown by the pink area. In
Figure 5.46 (b), the PALSAR HH coherence also shows a lower score (bright grey) com-
pared to the PALSAR HV intensity (dark grey area) for the crop class, thus indicating
that the PALSAR HH coherence is less reliable than the PALSAR HYV intensity for the
separation of crop from forest. In Figure 5.46 (e), water was relatively well separated
(dark grey) from forest using the different datasets, except for CSK coherence, which is
depicted in pink (no information). In summary, the scores shown by the products depicted
in Figure 5.46 indicate the reliable areas of the forest/non-forest map. According to the
products, the most reliable area is located at the centre of the forest/non-forest map,
where the available datasets intersect. To an extent, this result reflects the established
data configurations presented in Tables 5.6 and 5.6.

Similar to the forest/non-forest map presented above in Figure 5.46, an example of
a species map was processed using the same data configuration, with the exception of
the PALSAR and CSK intensity scenes, which were provided in HH polarisation for this
example. Figure 5.47 (a) depicts the derived species map, and Figure 5.47 (b) shows its
accuracy in terms of the score.

As shown in Figure 5.47 (a), spruce and beech are distinguished. In fact, the estab-
lished algorithm does not include pines because their separation from the other species
was extremely limited (see Section 5.2 and Table 5.7). The accuracy map in Figure 5.47
(b) indicates that the score varies geographically. When the PALSAR HH and CSK HH
intensities are available, the score is highest, while when only PALSAR HH intensity is
available, the score is relatively low. Similar to the forest map described in Figure 5.46,
the minimum accuracy here was fixed at 30. According to this configuration, PALSAR
and CSK coherences having a score lower than 30 were not considered in the computation
of the species map and were processed as no information’ (pink) on the validation map.
Upon a closer look to the tree species map in Figure 5.47 (a), the product appears to be
noisy, especially where the ratio L-band HH/X-band HH intensity is not available. This
observation shows that the use of mono-temporal datasets is not reliable.

The product examples provided above illustrated the fusion approach for the case
where the available radar data were limited. The forest/non-forest, species and GSV
products were also processed with the numerous available datasets of the Thuringian
Forest. The species and GSV maps derived using the large number of datasets given in
the Thuringian test site are presented below.
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Figure 5.46: Illustration of (a) a forest/non-forest map processed with a single acquisition of
PALSAR FBD HV 39° Asc. intensity, PALSAR FBD HH 39° Asc. B, = 363m coherence
and CSK SM Himage HH 20° Asc. B, = 61m coherence data (frames FBD6,7 and CSK1).
The scenes were acquired on 215 June 2008, 10" June/26'"" July 2010 and 31 August/1°*
September 2010 for PALSAR intensity, PALSAR coherence and CSK coherence, respectively.
The additional maps (b), (¢), (d) and (e), respectively represent the scores for crop, open area,
urban and water, which are provided to the user to spatially quantify the accuracy of the

forest /non-forest map.



232 Chapter 5 : Results

CSK HH coherence
CSK HH intensity

Tt Species map
PALSAR HH intensity—ﬁ;—.; e — PALSAR HH coherence [ |Non-Forest
%%‘%3 I Spruce
S [Beech
)
N
0 25 50 km A
I S E—

Flag map (Score)

| |INodata

[ |No accuracy
[ ]o-25

[ 125-50
50 - 75

I 75 - 100

(b)

Figure 5.47: Tllustration of (a) a species map processed with a single acquisition of PALSAR
FBD HH 39° Asc. intensity, PALSAR FBD HH 39° Asc. B, = 363m coherence, CSK SM
Himage HH 20° Asc. intensity and CSK SM Himage HH 20° Asc. B, = 61 m coherence data
(frames FBD6,7 and CSK1). The scenes were acquired on 215 June 2008, 10'" June/26'® July
2010, 315 August/1%" September 2010 and 31%% August 2010 for PALSAR intensity, PALSAR
coherence, CSK intensity and CSK coherence, respectively. The additional map (b) represents
a score provided to the user for spatially quantifying the accuracy (score) of the species map.

Figure 5.48 presents the (a) species and (b) GSV maps processed for Thuringia. In
addition, the species provided by the forest inventory and the RMSE map derived to
evaluate the GSV map are depicted in (c) and (d), respectively. A number of 460 in-
tensity and 35 coherence scenes acquired under various configurations were used for the
processing of the species map. In addition to these datasets, 35 GSV images derived from
the regression modelling shown in Section 5.3 were considered for the processing of the
GSV map. The SAR-derived maps were processed at a spatial resolution of 25m. In
other words, the X-band datasets and the PALSAR FBS data pre-processed at 10 m and
12.5m, respectively, were downsampled to 25 m. Downsampling was performed using the
pixel aggregation method. Also, the GSV map product presented in Figure 5.48 (b) only
represented spruce. Spruce depicted the highest sensitivity to coherence and was therefore
the only species chosen for the modelling described in Section 5.4. Because spruce was
the only species considered for the GSV map, beech was masked using the species map
presented in Figure 5.47 (a). However, pine was not masked because its separation from
spruce was not possible. The investigations is this thesis showed that the leaf-off period
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is more suitable than the leaf-on period for separating broadleaves and conifers (see Table
5.7). Due to time constraint, this characteristic was not taken into account for the prod-
ucts depicted in Figure 5.48. Finally, to process the forest/non-forest information, the
distinction between images acquired before and after the Kyrill storm was not considered.
In fact, it was chosen to keep a maximum datasets available for the processing of the end
products.

A comparison between the processed species map in Figure 5.48 (a) and the one re-
sulting from the forest inventory (Figure (c)) shows that the forest coverage differs. As
mentioned in Section 4.2, information concerning private forested areas could not be de-
livered for political reasons. However, the missing information on the forest inventory may
still be displayed using remote sensing data. Comparing the species’ extension between
Figure 5.48 (a) and (c), it is observed that the dominant spruces and beeches in the South
and North regions, respectively, can be easily distinguished on the processed species map
(Figure 5.48 (a)). In Figure 5.48 (b), similar to the species map shown in Figure 5.48 (a),
the spruce forests of the Thuringia are easily recognizable with their Northwest to South-
cast extension. The accuracy (RMSE) map given in Figure 5.48 (d) indicates that the
RM SE generally ranges between 100 m? ha™! and 200 m?® ha~!, as expected from the mod-
elling results from Section 5.4 summarised in Table 5.8. The lower accuracy of the GSV
map in the West and Southeast than that in other regions is indicated in dark orange. In
terms of the spatial baseline and weather conditions, the acquired configurations of the
PALSAR coherence scenes were not optimal for these parts of the site, which explains
the decreased accuracy in these regions. According to the fusion algorithm described in
Section 4.4, the GSV map in Figure 5.48 (b) represents, the GSV estimates having the
lowest RMSE among the overlaying GSV images. In the case of multitemporal GSV
images, instead of considering the GSV values with the lowest RMSFE, the available mul-
titemporal GSV images could have been merged. This process was not considered in the
proposed fusion approach because such an operation would have improved the quality of
the GSV estimates only if a large number of multitemporal datasets were available (see
Santoro et al. 2011) and if the configuration of most of these datasets was optimal, i.e.
with a large baseline and no particular precipitations (see Section 5.3). In the case of
the Thuringian Forest, these conditions were not met; hence, the averaged GSV images
would have decreased the quality of the estimates instead of improving it.

The above visualisations present a general overview of the products but do not enable
the local assessment of their quality. To provide a critical perspective of the generated
products, specific areas were selected and compared with some reference data. Figure 5.9
illustrates some of the selected areas for the species and GSV products. The different
columns of Figure 5.9 show these areas in a digital orthophoto, together with the SAR
species product, inventory species information, the SAR GSV product and inventory
G SV information.

The first area was chosen in the Schonbrunn Lake region, as presented in Sections 5.1
and 5.2, as this area presented numerous spruce and beech stands as well as a sloping
terrain. A comparison of Figures 5.9 (a)—(c) with the SAR species map, the orthophoto
and the inventory information indicates that spruces and beeches are well distinguished.
Hence, the combined ratio of the L-band and X-band information appeared to work effi-
ciently, which is consistent with the SAR data available for this region (see Appendix A.1)
and the data configurations presented in Table 5.7. The aerial views shown on orthophoto
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Figure 5.48: Illustration of (a) processed SAR species map, (c) inventory species map, (b)
processed SAR GSV map and (d) its corresponding RM SE accuracy map. The processed SAR
species map was based on the following datasets: 220 PALSAR FBD intensity; 47 PALSAR
FBS intensity; 39 PALSAR PLR intensity; 19 PALSAR coherence; 24 CSK intensity; 12 CSK
coherence; 8 TDX intensity; 4 TDX coherence; and 122 TSX intensity. In addition to these
datasets, the processed G.SV map included 35 GSV images derived from the regression modelling
shown in Section 5.4. The species and G.SV maps were processed at a spatial resolution of 25 m.
The GSV map product represented only spruce, as the modelling was based on spruce. Beech
was masked using the species map depicted in (a). Pine was not masked as it was not possible
to separate it from spruce.
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were acquired during the leaf-off (April) and leaf-on (May) seasons, which explains why
in Figure 5.9 (a) the image present a separation and beeches are mostly depicted in brown
soil and branches. The GSV map in Figure 5.9 (d) indicates that the general patterns
between the SAR GSV spruce map and the forest inventory appeared to match only
for young spruces shown in brown. These observations are similar to the ones depicted
in Subsection 5.4.2. Finally, comparing the forest/non-forest regions in the species map
(Figure 5.9 (b)) with the orthophoto and inventory map, it is observed that the forested
areas agreed well with the reference data.

The second area was selected to illustrate some misclassifications in the case of the
species product or inaccuracies in the GSV product observed at forests edges adjacent to
an open area facing the radar system.

With regards first to the species map in Figure 5.9 (g), these specific conditions enhanced
the SAR backscatter intensity with double reflections and contributed to the assignment of
beech instead of spruce. Further investigations on forest edges showed that the dihedrals
were mostly noticed at X-band frequencies and at this frequency, their intensity extended
in the same range as that of beech (—8dB to 0dB). Consequently, as the X-band data
covered the given area and were used for the separation of spruce from beech in the
present case (according to Table 5.7), the spruce forest edges were classified as beech.
Also, X-band interferometric data were available for the area shown in Figure 5.9 (e).
However, the scatterers of forest edges facing the radar presented low coherence, and
therefore, the misclassified beeches could not be masked by coherence. SAR acquisitions
are performed in ascending and descending mode. A potential solution for solving the
edges miss-classifications would be to distinguish in the developped fusion approach the
different acquisition passes. With reference to urban landcover, it should be noted that
the high intensity owing to forest-edge dihedrals is also close to the intensity shown by
urban areas. This landcover could be optimally masked by X-band or L-band coherence.
In addition to double bounces at forest edges facing the radar, the edges facing away from
the radar produced a shadow. However, the shadow was not problematic in the present
case because its backscatter intensity was close to the intensity of the water landcover
class, which could be easily masked using the available satellite information (see Table
5.8, recommended data).

Observing then the GSV map in Figure 5.9 (i), it can be seen that the forest edges
classified as beech were masked, as the GSV map was modelled only for spruces. In
fact, if beech GSV values were modelled with coherence, the decorrelated edges would
have been depicted in dark green, suggesting high GSV values. This is explained by the
parametric models used in Section 5.4 which would have interpreted the low coherence
of the edges as areas presenting significant vegetation. Disregarding the aforementioned
artefacts, it is observed that as for the first selected area (Figure 5.9 (a)—(e)), the species
classification apparently agree well with the reference information and GSV values seemed
to match to the inventory data only for young spruces.

The third example of the selected area focused on a specific artefact which was observed
for the different products. As depicted in Figure 5.9 (1) and (n), some lines representing
non-forested areas are visible. Comparing the area with the orthophoto or inventory
data, these lines clearly appear as a non-physical effect. Some examinations showed that
this effect was represented only by the resampled data, such as X-band datasets and
PALSAR FBS data. Indeed, the resampling of these datasets to 25 m, suggested merging
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of the data contained in the border pixels of the images with nodata values, leading to
misclassifications of the forests. This problem might be solved in future with an improved
resampling method. In contrast to the first two examples, in the third example, the
general patterns of the SAR species and GSV maps did not agree with the reference
data. This was explained by the limited SAR data available in this given area.

Quantitative results based on error matrices may be presented after visual assessments
of the species and GSV SAR products. Two confusion matrices were created: one referring
to the forest/non-forest classification and the other referring to the separation between
spruce and beech. Table 5.10 describes the two confusion matrices which refer to the data
presented above.

Table 5.10: Accuracy matrices for the processed (a) forest/non-forest and (b) species map prod-

ucts of Thuringia.

Reference data

g Non-forest Forest

E Non-forest 78446 64584

Z Forest 62983 473961

o

Overall classification Accuracy: 81%
(a)
Reference data
Non-forest Spruce Beech

g Non-forest 93945 38912 16354
E Spruce 89340 360217 26196
f Beech 11820 14177 29013
@)

Spruce vs. Beech classification Accuracy: 78%
Overall classification Accuracy: 71%

(b)

Before interpreting the matrices, several points should be made. First, the confusion
matrices were computed on a pixel basis using the inventory information as reference.
Then, a specific area was selected in the center of the site. Indeed, as shown in Figure
5.47, the inventory data did not cover private forests; this would have led to an increase
in omission and commission errors if considered in the error matrix, therefore leading to
grossly inaccurate results. Finally, spruce and beech were two important species of the
test site. However, other species such as pine, fir and oak were also present. To eliminate



238 Chapter 5 : Results

this potential bias from the accuracy results, the remaining species were masked on both
SAR and inventory species maps.

The error matrix for the forest classification shown in Table 5.10 (a) indicates that
more than three-quarters of the forests were well classified. With regard to the available
data covering the test site and the recommended datasets presented in Tables 5.5 and 5.6,
this accuracy appears to be reasonable. As mentioned above, radar acquisitions measured
before and after the Kyrill storm were considered for the computation of the forest/non-
forest map. By taking this event into account in the selection of the radar data, the
accuracy should be improved. With regard to the species classification, an accuracy of
78% was achieved. This accuracy is fairly acceptable. However, as mentioned above, leaf-
off and leaf-on periods for X-band data were not distinguished in this example. In this
framework, some improvements may be performed by taking into account this vegetation
phenology.

5.5.4 Summary

This section presents the results of the fusion approach developed in this study. Af-
ter briefly presenting the performed histogram analysis, which enabled the extraction
of forested areas and separation between tree species, the suggested data configurations
for fusion processing were discussed and examples based on different data configurations
were proposed. The data configurations were split into three categories: recommended,
minimal and non-recommended configurations. On the basis of the histogram analy-
sis, the recommended configurations for identifying forested areas referred to the L-band
backscatter intensity because at this frequency, the differences between the scattering
mechanisms of forested areas and other landcovers are significant. In addition to ampli-
tude information, the interferometric coherence was shown to properly separate forested
areas from wurban areas, especially at X-band frequencies and with a 1-day repeat-pass.
The discrimination between the tree species was found to be limited. According to the
suggested data configuration, only a minimal configuration could be proposed by con-
sidering the ratio of L-band intensity to X-band HH intensity. This ratio only showed
satisfactory results for the separation of conifers from broadleaves. The differentiation
between the two conifers spruce and pine was not possible. On the basis of the different
data configurations, product examples processed with an established fusion metholodogy
were proposed. The first example highlighted the case in which the recommended data
configurations were not available. In this case, it was shown that when dealing with vari-
ous datasets having different extensions, the key is to keep track of the map quality. This
issue was resolved by proposing quality-flag maps, which enabled the effective evaluation
of the established products. The second example illustrated the case in which numerous
and various datasets could be used. The GSV, forest and species maps for this example
consisted of the end products processed for the Thuringian test site. To validate these
end products, qualitative and quantitative examinations were performed. The qualitative
assessment relied on the comparison between the species and GSV maps with reference
data from three selected areas. Generally, the comparisons showed that the patterns de-
picted by the species map were similar to those shown by the reference data. In the case
of the GSV image, only young spruces were shown to match the inventory data. Some
artefacts could be also highlighted. One of these artefacts was found to be related to
forest edges which enhanced the backscatter intensity with dihedrals and decreased the



5.5 Fusion of SAR information 239

coherence due to the particular forest scatterers. Another artefact could be associated
with processing issues. Quantative product evaluation was performed using error matrices
in order to assess the quality of the forest/non-forest and species classifications. As for
forest identification, approximatively 81% of the pixels were successfully classified, while
as for the species map, about 71% of the pixels were successfully classified. These results
appeared to agree with the previous visual observations. The quantitative evaluation of
the GSV product refers to the processed RMSE flag. In the given example, due to the
limited number of multitemporal PALSAR coherence data acquired under optimal condi-
tions (i.e. large baseline, dry conditions), it was chosen to not perform any merging fusion
of the estimated GSV images. Therefore, the final accuracy of the GSV map performed
for the Thuringian Forest corresponds to the statistics presented in section 5.4. In future
studies, the presented fusion algorithm may be tested with a large number of temporal
GSV datasets. Furthermore, the merging fusion and synergy process proposed in this
thesis may be improved by considering weighting functions such as the one presented
in Santoro et al. 2011. The fusion approach demonstrated in this chapter shows that
the combination of different datasets is promising for improving the mapping of forest
biomass. This approach allows extending the spatial extension of the forest products,
their updated frequency and potentially their accuracy. The fusion algorithm presented
for the Thuringian Forest may be applicable at a national and global scale.
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Chapter 6

Conclusions

The present thesis involved estimating the GSV throughout a temperate forest using
the fusion of SAR information. After briefly introducing the thesis and reviewing the
literature and theory related to SAR and forests’ GSV retrieval, this document presented
details on the test site, available data, and results of the investigations. To conclude this
thesis, a summary of the results was prepared and perspectives for future studies were
defined. In this chapter, the first section summarises the main outcomes of the thesis and
the second section provides the outlook for future investigations.

6.1 Principal outcomes of the thesis

The research undertaken in this thesis focused on the Thuringian Forest, in the centre of
Germany. The main characteristics of the forest are a marked topography, large range
of GSV and pre-dominance of three different tree species, namely Norway spruce, Eu-
ropean Beech and Scots Pines. The SAR instruments considered for the investigations
consisted of four different sensors, namely ALOS PALSAR, TSX, CSK and TDX. These
spaceborne platforms allowed the acquisition of an extensive set of SAR data measured
in various sensor configurations (frequencies, polarisations, incidence angles). In addition
to the satellite data, ancillary datasets such as a forest inventory, a LiDAR DEM, dig-
ital orthophotos and weather information were collected to support the processing and
validation works. To enable the comparison of these different pieces of information, the
SAR and ancillary datasets were pre-processed to high-level products. To this end, recent
methods for calibration, geocoding, co-registration and topographic normalisation were
used. The pre-processing of SAR data included the backscatter intensity as well as the
interferometric coherence, polarimetric decompositions and loci coherence.

With respect to the investigations of the data, attention was first given to the topog-
raphy of the test site. The effects of slopes on the backscatter intensity and the coherence
were examined. It may be shown that topography leads to significant variations of the
signal, even when modern topographic corrections were applied to the data. The topo-
graphic variations were found to be related to forests’ specific scattering and decorrelation
mechanisms which occur over sloped terrain. However, the examinations did not allow
for a complete understanding of the ongoing phenomena.

After presenting the effects of topography, an in-depth analysis of the scattering mech-
anisms was performed. In this regard, time-series, frequency, incidence angle, polarisation
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and pass direction analyses were carried out. The results of these investigations mainly
demonstrated that radar data have the potential to separate conifers from broadleaves.
In particular, leaf-off period, a co-pol backscatter intensity ratio X-band/L-band, positive
temperature and large incidence angle appeared to be optimal. However, the separation
of two conifer species such as spruce and pines was shown to be limited. In addition to the
comparison of the different radar parameters, the sensitivity of the radar backscatter to
GSV was examined. The correlation between the SAR amplitude signal and forest GSV
was found to be poor for the three investigated tree species (Rgpmce =0.26, R%, . = 0.16
and R34, = 0.11), even by using L-band frequency data. Further analyses based on
air temperature, forest structure and scattering intensity decomposed into surface, vol-
ume and double bounce contributions were undertaken in order to understand this poor
correlation. It was found that the high range of GSV and the horizontal structure of
the forest played a determining role on the amplitude signal. In particular, because the
Thuringian Forest is managed for commercial purposes, young forest stands appeared to
be pre-dominantly very dense, increasing the backscatter intensity and leading to an early
saturation of the signal (G:SVsatuwation < 100m3ha™t).

After examining the scattering mechanisms, the decorrelation mechanisms which are
due to interferometric coherence were investigated. Comparisons of Whisker boxplots with
TSX, CSK, TDX and ALOS PALSAR interferometric systems between open and forested
areas showed a significant contribution of temporal decorrelation in X-band frequency
with 1 day and 11 days repeat-pass. Using these sensors, the volume decorrelation could
also be demonstrated, especially at L-band frequency with ALOS PALSAR. Among the
different abiotic factors controlling the decorrelation mechanisms, the weather conditions
with precipitations appeared to have the most significant effect. As for the backscatter
intensity, the interferometric coherence sensitivity to GSV was measured. A decreasing
trend with increasing coherence was found for the three investigated tree species. Com-
paring different normal baselines with PALSAR FBD data, it was shown that the increase
in the spatial baseline improved the sensitivity of interferometric coherence to GSV. How-
ever, total decorrelation of the signal and consequently poor sensitivity were found with
the normal baseline exceeding B, = 3.3km, which corresponded to approximately 40%
of the PALSAR FBD critical baseline. Surprisingly, a comparison of the available SAR
sensors showed that the best correlation was obtained for TDX, followed by PALSAR and
CSK with Ripx = 0.72, R2s15ar = 0.61 and R%q = 0.51, respectively. TDX coherence
exhibited a linear negative relationship without the presence of any particular saturation
point up to 600 m?/ha. In contrast to TDX, CSK and PALSAR presented various non-
linear and linear negative relations and a defined saturation point. The saturation in the
optimal configuration (i.e. large normal baselines, little precipitations) occurred for CSK
around 100m?ha~! and 200 m?® ha™! for beech and spruce, respectively, and for PALSAR
around 200m?/ha for the three species composition. The level of saturation was found
to be highly dependent on the perpendicular baseline, and therefore varied significantly
within the different interferometric acquisitions. Comparing the three investigated species,
the highest coherence and best correlations were generally observed for Norway Spruce,
followed by pine and beech. This difference between species was explained mainly by the
dissimilar canopy structure and foliage composition of the trees.

Based on the investigation results of the scattering and decorrelation mechanisms, a
modelling process for the retrieval of GSV was established using PALSAR and TDX inter-
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ferometric coherence as the main source of information. The modelling was based on two
different techniques: parametric and non-parametric. The parametric modelling technique
involved simple regressions and was split into different steps, including model selection,
training, inversion and testing. The achieved RMSFE for ALOS PALSAR ranged from
100m3ha=! to 200m?®ha~! according to the interferometric acquisition configurations.
This accuracy was clearly not sufficient for applications such as forestry management or
climate modelling. To understand the large error, further investigations based on the
topography of the site, forest inventory and processing approach were performed. It was
found that the topographic variations significantly increased the error, in particular for
TDX. It was also shown that the selection of reliable forest stands in terms of homogeneity
was relevant. The non-parametric technique was based on the k-nearest neighbour (k-NN)
and was conducted for comparisons with the regression approach. Optimal parameters
in terms of & number, distance metrics and weights were investigated for PALSAR co-
herence. Based on a leave-one-out cross-validation technique, the RM SE was computed
at stand level for the available data. The achieved accuracy with the k-NN approach
was improved by about 50m?3ha~! compared with the parametric technique. However,
the estimates were still not sufficiently accurate for envisaging applications in the field of
forestry or climate change research.

The final focus of this work was to develop a fusion methodology allowing the deriva-
tion of GSV from different SAR information. With regards to the results of the data
investigations and the available data, the combination approach was focused on the es-
tablished products, such as a GSV or a forest /non-forest map. By combining the different
datasets, this study aimed at obtain the final GSV map from different sources of data in
order to achieve an efficient combination of the available datasets. The objectives of this
approach were to increase the accuracy of the GSV map, its spatial extension and the
updated frequency. Such an approach was envisaged because of the numerous datasets
and sensors which have become available in recent years. The developed fusion approach
included the derivation of forest/non-forest and species masks. The latter were based
on preliminary histogram analyses which allowed the automatic derivation of classes’
thresholds and separability values. The histogram investigations led to the suggestion of
different data configurations, namely a not recommended, a minimal and a recommended
configuration. Among the recommended configurations for separating forest from other
landcovers, the consideration of L-band HV intensity and X-band 1-day coherence was
shown to be the optimal solution. The L-band frequency was useful primarily to separate
forests from crops and open areas, whereas the X-band coherence was suitable mainly for
discriminating between forested and wurban areas. Concerning the differentiation of tree
species, the ratio of the X-band/IL-band HH intensity was generally shown to be the most
efficient dataset, in particular for the discrimination of broad-leaves from conifers. How-
ever, according to the defined configurations, spruce and beech separation was limited to
minimal configurations, while the distinctions between pine and beech and that between
spruce and pine were limited to non-recommended configurations. The processing of for-
est GSV maps within the developed fusion algorithm was performed with two additional
products, namely a forest/non-forest map and a species map. Each of these products
was delivered with an accuracy flag map so that the quality of the products could be
tracked. Accounting that the optimal data configuration may be only partially available
or completely unavailable, examples of products computed with limited amount of data
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were first presented. These examples highlighted the usefulness of the quality flags accom-
panying the products. To illustrate the cases where numerous and various datasets could
be used, the large quantities of data for the Thuringian Forest were computed using the
developed fusion algorithm to generate a GSV, species and forest/non-forest map. The
latter consisted of the end products for the Thuringian Forest. The assessment of these
three end products was performed qualitatively using visual comparisons with reference
data. In addition, quantitive evaluations based on error matrices were performed for the
species and forest/non-forest maps. Quantative assessments for GSV estimates were not
considered for the potential improvement of the GSV accuracy, as consistent multitem-
poral data were required, and in this study, such datasets were not available. In this case,
the quantitative assessment of the GSV product with the RMSE flag directly indicated
the accuracy obtained with the regression modelling approach. The qualitative evalua-
tion showed that the SAR derived species map and the reference data depicted similar
patterns. In the case of the GSV estimates, young forests appeared to better match the
inventory than did mature forests. The visual observations also showed that the products
contained some artefacts. One could be related to the forest edges, while another could
be explained by processing issues. The quantitative validation work established approxi-
matively 81% and 71% of well-classified pixels for the forest/non-forest and species maps,
respectively. These accuracies appeared to match with the previous visualisations.

6.2 Perspectives for future studies

Based on the findings of this work, some perspectives regarding future studies were drawn.
These perspectives were addressed by a central question which aims to determine how the
G SV estimation could be improved in test sites such as the Thuringian Forest.
According to the results of this thesis, one major issue affecting the Thuringian Forest
is the topography of the site. For forested areas, the analyses of the topography with the
radar backscatter intensity and interferometric coherence in Section 5.1 clearly showed
systematic variations of the SAR signal with the slopes’ orientations. These variations
could not be fully explained and will require further investigations. In this respect, it
is suggested to differentiate between the influence of slopes on the physiology of trees
from the influence of slopes on SAR microwaves. In the case of the tree physiology,
observations made during the field campaigns clearly showed, for example, various trunk
shapes and heights which were related to wind and topography. With respect to the
SAR microwave interactions in topographic forested areas, physical modelling should be
considered to understand the different scattering and decorrelation mechanisms. Some
works have been presented in the domain of the scattering contributions such as in Amar
et al. 1993 or more recently, in Villard et al. 2010 with the MIPERS model. In the case
of the interferometric coherence, some studies introduced spectral-shifts compensations
(Santoro et al., 2007, Lee and Liu, 2001), but it appears that no study was performed
to correct the volume decorrelation induced by slopes. The SAR signal returning from
forests in topographic areas is relatively complex and will require further studies to enable
the accurate estimation of GSV in topographic regions. The topographic correction will
have to be specific to the SAR system configurations (frequency, polarisation, incidence
angle) as well as to the forest characteristics (biome, species, structure). In addition to
providing an understanding of the physics of the forest and the SAR microwaves, the
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processing of topographic normalisation may be improved. Recent papers proposed new
correction methods for improving the radar signal in hilly areas. For example, Small 2011
and Frey et al. 2013 worked on the geometric distortions of SAR images, and suggested
to improve the calculation of the pixel area based on the integration of DEM pixels using
small triangular surface patches. This correction was not applied in this thesis, and may
be considered for future studies.

In addition to the topography, another challenging issue of the Thuringian test site
was the large range of GSV (up to 750m?ha~!) and the horizontal structure of the
forest, which contribute to the early saturation of the SAR amplitude signal (see Section
5.2). To address this problem and obtain accurate estimations of GSV, different solutions
may be envisaged. A first solution would involve retrieving information about the forest
distribution and incorporate it in a semi-empirical model. The forest distribution may
be better understood by performing theoretical modelling, such as in Woodhouse 2006 or
Brolly and Woodhouse 2012, or by deriving texture parameters. Computation of Haralick
parameters and lacunarity were respectively shown, for instance in Kuplich et al. 2005
and Su and Krummel 1996, to be potential methods for the estimation of forests density.
A second solution would rely on allometric relations and the interferometric height. TDX
interferometric acquisitions were mainly used in this thesis to estimate the interferometric
phase coherence. However, some preliminary studies (which are not discussed in this
document) showed that it may be possible to retrieve forest stand heights using TDX
data (see Appendix D). Forest height is one of the most relevant parameters for estimating
GSV and would therefore warrant further investigations. A study undertaken by Rauste
et al. 1994 showed that for a forest in Freiburg, Germany, P-band SAR backscatter data
did not saturate, even for GSV above 700 m® ha™! (Rauste et al., 1994). The Freiburg test
site depicted almost equivalent characteristics to those of the Thuringian Forest, which
suggest that similar results should be found with P-band frequency in the test site of this
thesis. The consideration of P-band data for the estimation of GSV in the Thuringian
Forest would be an asset, especially because of the high GSV range of the forest. At the
time of writing this thesis, P-band frequency was not available on spaceborne platforms
and no aerial data was available for the Thuringian Forest. However, the BIOMASS
P-band mission was selected by the European Space Agency (ESA) 7" Earth Explorer
Opportunity Mission and should be launched in 2019 for the retrieval of biomass across
the whole globe (Le Toan et al., 2012).

The investigation of the scattering mechanisms in Section 5.2 denoted the difficulty
involved in understanding the microwave interactions which occur in the Thuringian For-
est. In particular, it was shown that some of the actual models discussed in the literature
such as the Yamaguchi decomposition or the WCM were not suitable for this forest. In
this context, it may be necessary to rethink the modelling approaches for the conditions
given in the Thuringian Forest. Typical forest scattering models discretise the forest into
one or two layers (see Section 2.1), the first layer representing the ground and the second
layer representing a random homogenous volume. Certain species such as Norway Spruce
may not have a random volume, but an oriented volume, as the branches are oriented con-
centrically along the stems and in equivalent directions. To gain a better understanding
of the scattering mechanisms in the forest and the estimation of GSV, further analyses
such as the use of PolSAR or PolInSAR data with a suitable temporal baseline may be
envisaged. For example, the assumption of a random volume instead of oriented volume
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may be investigated using the RVoG model.

The outcomes of this thesis summarised in Tables 5.5, 5.7 and 5.8 in Section 5.5 showed
that the use of a single sensor and acquisition mode was generally limited to the production
of accurate and reliable forest GSV maps. In this regard, a final option for improving
the GSV in the Thuringian Forest would be to combine the available information. The
combination of SAR information was actually the main topic of Section 5.5. A fusion
algorithm was conceived with certain flexibility, in the sense that it consisted of a core
process which could be easily updated with new functionalities and datasets or which could
also be replaced with improved methodologies. The main elements of the algorithm were
implemented in IDL routines, which together formed a whole processing chain. Regarding
the established fusion algorithm, some suggestions can be made for future works. First,
new sensors, in particular optical sensors, may be integrated into the existing datasets.
For example, the introduction within the framework of the ENVILAND2 project (see
Section 1.2) of RE information in the fusion algorithm showed significant improvements
regarding the separation of the tree species. The consideration of three or more species will
require a few adaptations of the established fusion algorithm. In particular, the process
used to retrieve the classes’ thresholds will need to be revised and the GSV will have to
be retrieved for each specific species, implying the need to fit GSV models to each of the
investigated tree species. Second, as described in Section 5.5, the multitemporal merging
of GSV data was not envisaged in the algorithm because of the limited amount of available
multitemporal coherence data used for deriving the GSV images and the limited number
of coherence images which were optimally acquired, namely with a large baseline and no
precipitations. Hence, for the case under study, the fusion process did not improve the
accuracy of the GSV estimates. In this regard, to increase the accuracy of GSV retrieval,
a large number of multitemporal coherence images acquired under optimal conditions may
be investigated. Also, considerations of the GSV according to criteria such as weather
information, forest stands relative stocking or percentage of dominant tree species may be
conceived. A multitemporal approach, such as the one presented in Santoro et al. 2011,
may also be implemented within the proposed fusion algorithm. Third, disregarding
the GSV accuracy, a major drawback of the proposed fusion approach is the supervised
fashion of the algorithm. Indeed, the masking process part of the fusion approach required
knowledge about landcover classes in addition to the modelling approach which required
stands of reference for estimating GSV. To improve the transferability of the fusion
approach, the extraction of a fully automatic training site would be required. It should
be noted that this topic was studied in the framework of the ENVILAND2 project.

In conclusion, to derive a GSV map, this thesis has performed an in-depth analysis of
several topics. The investigations confirmed some of the results established in the litera-
ture and provided new knowledge for future scientific studies focusing on the estimation
of forest GSV. These new outcomes will serve as a foundation for the development of
more accurate and above all more robust retrieval algorithms. Finally, while there remains
much work for the realisation of accurate, global and fully automatic estimates of GSV/,
this thesis showed that the remote sensing techniques are promising for the operational
mapping of forest GSV'.
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Figure A.1: Overview of the Thuringian topography.
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Figure A.7: Illustration of (a) Norway Spruce, (b) Scots Pine, (c) European Beech in summer
(leaf-on) and (c¢) European Beech in winter (leaf-off).
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Figure A.8: The Schonbrunn Lake region during Autumn season.
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Figure A.9: Satellite frames locations of the available PALSAR data.
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Figure A.10: Satellite frames locations of the available TDX data.
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Figure A.11: Satellite frames locations of the available CSK data.
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Figure A.12: Satellite frames locations of the available TSX SM data.
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Figure A.13: Satellite frames locations of the available TSX SL data.
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Figure A.14: Satellite frames locations of the available TSX HS data.
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A.3 Forest inventory and forest campaign data

Table A.1: Simplified sample of the Thuringian Forest inventory.
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Table A.2: Forest campaign measured stands.

# Stands ID Species DSW 1 (Inventory) DSW 2 (Inventory) Campaign
Date GSV Date GSV Date GSV
(year) (m*ha=!) (year) (m?ha~!) (year) (m3ha™!)

1 3482122427 Spruce 2009 386 2010 408 2009 485
2 34,5,2,1234,a,1 Beech 2009 414 2010 540 2009 653
3 34S,11474,a,11 Pine 2009 177 2010 283 2009 388
4 21,5,7,714,a,2 Spruce 2006 117 2010 122 2010 169
5 21,5,12,1230,a,5 Spruce 2006 51 2010 37 2010 233
6 21,8,12,1205,a,1 Beech 2006 218 2010 242 2010 298
7 34,8,4,1008,a,1 Beech 2009 360 2010 431 2010 557
8 34,5,4,1016,a,5 Beech 2009 240 2010 75 2010 72
9 34,5,4,1016,a,6 Beech - - 2010 343 2010 320
10  34,5,4,1009,a,2 Beech 2009 438 2010 370 2010 597
11  34,S,4,1015,a,2 Beech 2009 521 2010 299 2010 536
12 16,8,6,65,a,12  Spruce 2008 114 2010 135 2011 263
13 16,5,6,73,a,1 Spruce 2008 121 2010 138 2011 276
14 16,8,7,105b,2  Spruce 2008 108 2010 111 2011 250
15 16,5,7,127,a,10  Spruce 2008 88 2010 87 2011 249
16 34,5,8,777,a,7 Spruce 2009 542 2010 535 2011 504
17 34,5,5,1061,a,2  Spruce 2009 132 2010 103 2011 273
18  34,8.8,774,a,5  Spruce 2009 431 2010 462 2011 567
19  218,7,718,a,1  Beech 2006 378 2010 393 2011 454
20 21,5,12,1231,a,2 Beech 2006 310 2010 326 2011 372

21  34,8.8,747.a,3  Beech 2009 457 2010 457 2011 534
22 28,8.4,607,a,7  Beech - ; 2010 1 2011 112
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A.4 ROIs overview
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Figure A.17: Overview of the selected ROlIs.
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A.5

Weather data sample

Table A.3: Simplified sample of the weather data measured 4 days before the radar acquisitions.

Sensor  Beam Acquisition Track / Frame T° Precip. Humid. Wind

mode date Beam speed

(°C)  (mm) (%)  (ms™h)
PALSAR FBD 01.10.2007 21:31 638 1000 9.1 68.0 92.9 4.9
PALSAR FBD 01.10.2007 21:31 638 1010  10.7 81.5 88.4 5.2
PALSAR FBD 24.06.2009 21:37 640 1000 11.6 5.6 88.1 3.6
PALSAR FBD 24.06.2009 21:37 640 1010 13.3 4.7 81.4 2.8
PALSAR FBD 06.07.2009 21:33 638 1000 169  18.7 79.2 3.0
PALSAR FBD 06.07.2009 21:33 638 1010 182 127 75.0 3.0
PALSAR FBD 23.07.2009 21:35 639 1000  17.1 32.7 78.4 4.6
PALSAR FBD 23.07.2009 21:35 639 1010  17.8  43.5 77.3 4.7
PALSAR FBD 24.09.2009 21:37 640 1000 12.5 1.8 86.4 5.0
PALSAR FBD 24.09.2009 21:37 640 1010  12.7 2.0 87.5 4.9
PALSAR FBS 01.01.2008 21:30 638 1000 -1.5 5.7 93.5 3.4
PALSAR FBS 02.04.2008 21:29 638 1000 5.7 20.3 81.7 3.9
PALSAR FBS 03.01.2009 21:31 638 1000  -5.8  10.0 90.8 3.0
PALSAR FBS 06.01.2010 21:33 638 1010 -9.0 0.4 89.6 2.2
PALSAR FBS 08.04.2010 21:31 638 1000 7.7 0.1 61.7 3.4

Table A.4: Simplified sample of the weather data measured 4 hours before the radar acquisitions.

Sensor  Beam Acquisition Track / Frame T°  Precip. Humid. Wind

mode date Beam speed

(°C)  (mm) (%)  (ms™!)
PALSAR FBD 01.10.2007 21:31 638 1000 11.8 0.0 85.8 2.4
PALSAR FBD 01.10.2007 21:31 638 1010  12.6 0.0 85.6 2.4
PALSAR FBD 24.06.2009 21:37 640 1000  14.8 0.0 85.5 3.8
PALSAR FBD 24.06.2009 21:37 640 1010  15.8 0.0 77.2 3.2
PALSAR FBD 06.07.2009 21:33 638 1000  15.2 6.4 89.8 2.5
PALSAR FBD 06.07.2009 21:33 638 1010  16.6 5.4 85.5 2.4
PALSAR FBD 23.07.2009 21:35 639 1000  16.1 4.8 92.1 5.5
PALSAR FBD 23.07.2009 21:35 639 1010 164 9.1 90.2 5.4
PALSAR FBD 24.09.2009 21:37 640 1000 9.7 0.0 95.8 3.5
PALSAR FBD 24.09.2009 21:37 640 1010 9.5 0.1 97.5 2.8
PALSAR FBS 01.01.2008 21:30 638 1000  -2.8 0.1 94.9 1.7
PALSAR FBS 02.04.2008 21:29 638 1000 2.9 2.8 93.9 4.7
PALSAR FBS 03.01.2009 21:31 638 1000 -6.4 0.0 84.3 3.7
PALSAR FBS 06.01.2010 21:33 638 1010 -11.0 0.0 88.1 2.7
PALSAR FBS 08.04.2010 21:31 638 1000 8.6 0.0 78.0 4.1
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A.6 Topographic effects on GSV

Radius: GSV (m%/ha)
Perimeter: Aspect (°)

Slope<10°
10°<Slope<20°
4 Slope>20°

Figure A.18: Topographic effects on GSV for (a) spruce, (b) beech and (c) pine tree species
composition. The graphs consist of polarplots with the aspect angle (°) on the circumference
and GSV (m®ha~!) on the radius of the plots. The classes represent the inclinations of three
slopes, namely below 10° (blue), between 10° and 20° (yellow) and above 20° (red).
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A.7 SAR pre-processing specificities

Inputs
SLC DEM
Calibration !
SLC
calibrated
Multi-looking !
MLI
calibrated
Geocoding
MLI . Simulated
geocoded SAR
Topographic
normalisation : .
MLI Pixel area / local
normalised incidence angle

Figure A.19: Simplified flowchart for the SAR backscatter pre-processing.
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Figure A.20: Simplified flowchart for the InSAR coherence pre-processing.
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Table A.5: Multi-looking factors used for pre-processing and spatial resolutions defined for
data analysis. The different multi-looking factors shown by TSX are explained by the varying
incidence angle of the acquisitions. In the case of PALSAR, a few datasets were processed
with the multi-looking factors shown in brackets. The difference between these factors with the
original ones was unsignificant. Therefore, the datasets concerned by the multi-looking factors
shown in brackets were not re-processed.

Beam

Sensor L, L, Oa Or
mode

(m)  (m)

PALSAR FBS 4(3) 2(1) 125 125
PALSAR FBD 8 2(1) 25 25
PALSAR PLR 1 7 25 25
TSX SM 5-7 3-4 10 10
TSX SL 7-8 3-4 10 10

TSX HS (Single-pol)  4-5 6-8 10 10
TSX  HS (Dualpol) 10-11 48 10 10
CSK SM 5 ) 10 10
TDX SM 7 6 10 10
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B.1 Topography analysis
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Figure B.1: Topographic effects on the normalised backscatter intensity. The scatterplots depict
the aspect angle on the abscissa between —180° and 180°, with azimuth slopes centred at 0°
and backscatter intensity (") on the ordinate. Negative slopes are described between —180°
and 0° and positive slopes between 0° and 180°. The classes represent the inclination of three
slopes, namely below 10° (pink), between 10° and 20° (yellow) and above 20° (blue). The SAR
data are composed of TSX SM 38° Asc. (a) HH and (b) HV (frame SM6) as well as TSX SM
36° Desc. (c¢) VV and (d) VH (frame SMb5) backscatter intensity. The TSX SM scenes were
acquired on 1%% Setpember 2010 and 29*" July 2009, respectively. The forested areas represent
Norway Spruce.
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Figure B.2: Topographic effects on the normalised backscatter intensity. The scatterplots depict
the aspect angle on the abscissa between —180° and 180°, with azimuth slopes centred at 0° and
backscatter intensity (7°) on the ordinate. Negative slopes are described between —180° and 0°
and positive slopes between 0° and 180°. The classes represent the inclination of three slopes,
namely below 10° (pink), between 10° and 20° (yellow) and above 20° (blue). The SAR data
are composed of TSX SM 38° Asc. (a) HH and (b) HV (frame SM6) backscatter intensity. The
TSX SM scenes were acquired on 15! Setpember 2010. The forested areas represent European
Beech.
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Figure B.3: Topographic effects on interferometric coherence corrected for spectral shift (adap-
tive slope common band filtering). The scatterplots depict the aspect angle on the abscissa
between —180° and 180° with the azimuth slopes centred at 0° and the interferometric coher-
ence () on the ordinate. Negative slopes are described for the range of —180° to 0° and positive
slopes between 0° and 180°. The classes represent the inclinations of the two slopes, namely
below 10° (pink) and between 10° and 20° (yellow). The InSAR data is TDX SM HH 38° Asc.
B, =258 m (frame TDX3) coherence acquired on 30" August 2011. The points represent open
areas.



308 Chapter B : Results

B.2 Scattering mechanisms analysis

B.2.1 Incidence angle
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Figure B.4: Incidence angle analysis with ALOS PALSAR FBD HV 39° Asc. and PLR HV
22° Asc. backscatter intensity (7°) (frames FBD7-8, PLR3). The boxplots represent spruce
species with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and
sample maximum. Weather information is depicted in bright blue and dark blue for daily (pq)
and hourly (py) precipitations, respectively. A slope of < 5° was selected to limit topographic
effects.
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Figure B.5: Incidence angle analysis with CSK SM Himage HH 20°-50° Asc. backscatter inten-
sity (7°) (frame CSK1). The boxplots represent beech species with the sample minimum, lower
quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather information is
depicted in bright blue and dark blue for daily (pq) and hourly (py) precipitations, respectively.
A slope of < 5° was selected to limit topographic effects.
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Figure B.6: Incidence angle analysis with CSK SM Himage HH 20°-50° Asc. backscatter inten-
sity (7°) (frame CSK1). The boxplots represent pine species with the sample minimum, lower
quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather information is
depicted in bright blue and dark blue for daily (pq) and hourly (py) precipitations, respectively.
A slope of < 5° was selected to limit topographic effects.
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Figure B.7: Incidence angle analysis with ALOS PALSAR FBD HV 39° Asc. and PLR HV
22° Asc. backscatter intensity (7") (frames FBD7, PLR3). The boxplots represent pine species
with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and sample
maximum. Weather information is depicted in bright blue and dark blue for daily (pq) and hourly
(pn) precipitations, respectively. A slope of < 5° was selected to limit topographic effects.
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Figure B.8: Incidence angle analysis with ALOS PALSAR FBD HV 39° Asc. and PLR HV
22° Asc. backscatter intensity (7°) (frames FBD7, PLR3). The boxplots represent pine species
with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and sample
maximum. Weather information is depicted in bright blue and dark blue for daily (pq) and hourly
(pn) precipitations, respectively. A slope of < 5° was selected to limit topographic effects.
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Figure B.9: Incidence angle analysis with TSX HS HH 23°-48° Asc. backscatter intensity (y°)
(frame HS1). The boxplots represent open areas with the sample minimum, lower quartile (Q1),
median (Q2), upper quartile (Q3) and sample maximum. Weather information is depicted in
bright blue and dark blue for daily precipitation (pq) and hourly precipitation (py), respectively.
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Figure B.10: Incidence angle analysis with CSK SM Himage HH 20°-50° Asc. backscatter

intensity (7°) (frame CSK1). The boxplots represent open areas with the sample minimum, lower
quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather information is
depicted in bright blue and dark blue for daily (pq) and hourly (py) precipitations, respectively.
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Figure B.11: Incidence angle analysis with ALOS PALSAR FBD HV 39° Asc. and PLR HV
22° Asc. backscatter intensity (7") (frames FBD7-8, PLR3). The boxplots represent open areas
with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and sample
maximum. Weather information is depicted in bright blue and dark blue for daily (pq) and
hourly (py) precipitations, respectively.
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Figure B.12: Incidence angle analysis with ALOS PALSAR FBD HV 39° Asc. and PLR HV
22° Asc. backscatter intensity (7°) (frames FBD7-8, PLR3). The boxplots represent open areas
with the sample minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and sample
maximum. Weather information is depicted in bright blue and dark blue for daily (pq) and
hourly (py) precipitations, respectively.
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B.2.2 Polarisation
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Figure B.13: Polarisation analysis with TSX HS HH 30°—40° Asc. vs. TSX HS VV 30°-40°
Asc. backscatter intensity (7°) (frames HS1,3). Blue, yellow and red represent spruce, beech
and pine, respectively.
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Figure B.14: Polarisation analysis with TSX HS HH 40°-50° Asc. vs. TSX HS VV 40°-50°
Asc. backscatter intensity (7°) (frames HS1-4). Blue, yellow and red represent spruce, beech
and pine, respectively.
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Figure B.15: Polarisation analysis with TSX HS HH 30°-40° Desc. vs. TSX HS VV 30°-40°
Desc. backscatter intensity (7°) (frames HS1,3,5). Blue, yellow and red represent spruce, beech
and pine, respectively.
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Figure B.16: Polarisation analysis with TSX SM HH 30°—40° Asc. vs. TSX SM HV 30°-40°

Asc.

spruce, beech and pine, respectively.
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Figure B.17: Polarisation analysis with TSX SM VV 30°-40° Desc. vs. TSX SM VH 30°-40°
Desc. backscatter intensity (7°) (frames SM3,5,6). Blue, yellow and red represent spruce, beech

and pine, respectively.
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Figure B.18: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. backscatter intensity (7°) (frame FBD4). Yellow and red represent beech and pine,
respectively.
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Figure B.19: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°
Asc. backscatter intensity (7°) (frame FBD7). Blue, yellow and red represent spruce, beech and
pine, respectively.
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Figure B.20: Polarisation analysis with PALSAR PLR HH 22° Asc. vs. PALSAR PLR HV Asc.
22° backscatter intensity (7°) (frames PLR1-5). Blue, yellow and red represent spruce, beech
and pine, respectively.
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Figure B.21: Polarisation analysis with PALSAR PLR HH 22° Asc. vs. PALSAR PLR VV Asc.
22° backscatter intensity (7°) (frames PLR1-5). Blue, yellow and red represent spruce, beech
and pine, respectively.
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B.2.3 GSV sensitivity
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Figure B.22: GSV sensitivity analysis with ALOS PALSAR FBD
intensity (7") (frame FBDT7). The forested areas represent Norway
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Figure B.23: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. backscatter
intensity (7°) (frame FBD4). The forested areas represent European Beech. Slopes < 5° were
selected to limit topographic effects.
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Figure B.24: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. backscatter
intensity (7°) (frame FBD4). The forested areas represent Scots Pine. Slopes < 5° were selected
to limit topographic effects.

a) FBS7 b) FBS7 c) FBS7 d) FBS7
02mar07 04mar08 15jan07 18jan08
-3 [ R*=0.00 -3 [ R*=0.00

)

=)

T

T

T2 A2

0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600

e) FBS7 f) FBS7 g) FBS7 h) FBS7
19apr08 20jan09 23jan10 25apr10
-3 [ R?=0.00 1 -3 [R?=0.00 1 -3 [R?=0.00
—26° =-6.3° =12.4°
= -thﬂ 6°Cr, | - t,=-6.3°C - o] !

9 [ -9
“a 27 1 127 + 127
O 200 400 600 O 200 400 600 O 200 400 600 O 200 400 600
GSV (m*/ha) GSV (m*/ha) GSV (m°/ha) GSV (m*/ha)
| + Spruce — Regressions |

Figure B.25: GSV sensitivity analysis for different air temperatures with ALOS PALSAR FBS
HH 39° Asc. backscatter intensity (7°) (frame FBS7). The forested areas represent Norway
Spruce. Slopes < 5° were selected to limit topographic effects.
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Figure B.26: GSV sensitivity analysis for different air temperatures with ALOS PALSAR FBS
HH 39° Asc. backscatter intensity (7°) (frame FBS4). The forested areas represent European
Beech. Slopes < 5° were selected to limit topographic effects.
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Figure B.27: GSV sensitivity analysis for different air temperatures with ALOS PALSAR FBS
HH 39° Asc. backscatter intensity (7°) (frame FBSS8). The forested areas represent Scots Pine.
Slopes < 5° were selected to limit topographic effects.
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B.3 Interferometric phase and coherence analysis

B.3.1 Comparison of interferometric systems
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Figure B.28: Comparisons of interferometric coherence () between (a) forested areas and (b)
open areas with PALSAR FBS HH 39° Asc. (frames FBS1,3 and FBS5-7) and PALSAR PLR
HH 21° Asc. (frames PLR1,2) coherence. The boxplots represent spruce with the sample min-
imum, lower quartile (Q1), median (Q2), upper quartile (Q3) and sample maximum. Weather
information is depicted in bright blue, dark blue, bright grey and dark grey for daily precip-
itations acquisition 1 (pq1), daily precipitations acquisition 2 (pg2), hourly wind acquisition 1
(wp1) and hourly wind acquisition 2 (wpe), respectively. Slopes of < 5° were selected to limit
topographic effects.
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Figure B.29: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°
Asc. interferometric coherence () (frames FBD4 and FBD6-8). Blue points represent Norway
Spruce forest stands. Slopes of < 5° were selected to limit topographic effects.
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Figure B.30: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. interferometric coherence (y) (frames FBD1-3 and FBD5,6). Blue points represent
Norway Spruce forest stands. Slopes of < 5° were selected to limit topographic effects.
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Figure B.31: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. interferometric coherence (y) (frames FBD4 and FBD6-8). Yellow points represent
FEuropean Beech forest stands. Slopes of < 10° were selected to limit topographic effects.
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Figure B.32: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. interferometric coherence () (frames FBD1-3 and FBD5,6). Yellow points represent
European Beech forest stands. Slopes of < 10° were selected to limit topographic effects.
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Figure B.33: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV
39° Asc. interferometric coherence () (frames FBD4 and FBD6-8). Red points represent Scots
Pine forest stands. Slopes of < 10° were selected to limit topographic effects.
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Figure B.34: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°
Asc. interferometric coherence () (frames FBD1-3 and FBD5,6). Red points represent Scots
Pine forest stands. Slopes of < 10° were selected to limit topographic effects.
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Figure B.35: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°
Asc. interferometric coherence () (frames FBD4 and FBD6-8). Green points represent open

areas.
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Figure B.36: Polarisation analysis with PALSAR FBD HH 39° Asc. vs. PALSAR FBD HV 39°

Asc. interferometric coherence () (frames FBD1-3 and FBD5,6). Green points represent open
areas.



B.3 Interferometric phase and coherence analysis 331

B.3.3 GSV sensitivity
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Figure B.37: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. interferometric
coherence () (frames FBD1-8). Blue points represent Norway Spruce. Slopes of < 5° were
selected to limit topographic effects.
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Figure B.38: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. interferometric
coherence () (frames FBD1-7). Yellow points represent European beech. Slopes of < 10° were
selected to limit topographic effects.
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Figure B.39: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. interferometric
coherence (7) (frames FBD1,2 and FBD5,6). Yellow points represent European beech. Slopes
of < 10° were selected to limit topographic effects.
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Figure B.40: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. interferometric
coherence () (frames FBD2-8). Red points represent Scots Pine. Slopes of < 10° were selected
to limit topographic effects.
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Figure B.41: GSV sensitivity analysis with ALOS PALSAR FBD HH 39° Asc. interferometric
coherence (y) (frames FBD1-4 and FBDG6,7). Red points represent Scots Pine. Slopes of < 10°
were selected to limit topographic effects.
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Figure B.42: GSV sensitivity analysis with ALOS PALSAR FBS HH 39° Asc. interferometric
coherence () (frames FBS1,3 and FBS5-7). Blue points represent Norway Spruce. Slopes of

< 5° were selected to limit topographic effects.
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Figure B.43: GSV sensitivity analysis with ALOS PALSAR FBS HH 39° Asc. interferometric
coherence () (frames FBS1,3 and FBS5-7). Yellow points represent European beech. Slopes
of < 10° were selected to limit topographic effects.
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Figure B.44: GSV sensitivity analysis with ALOS PALSAR FBS HH 39° Asc. interferometric
coherence () (frames FBS1,3 and FBS5-7). Red points represent Scots Pine. Slopes of < 10°
were selected to limit topographic effects.
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Figure B.45: GSV sensitivity analysis with ALOS PALSAR PLR HH 39° Asc. interferometric

coherence () (frames PLR1,2). Blue points represent Norway Spruce. Slopes of < 5° were
selected to limit topographic effects.
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Figure B.46: GSV sensitivity analysis with ALOS PALSAR PLR HH 39° Asc. interferometric

coherence (y) (frames PLR1,2). Yellow points represent European beech. Slopes of < 10° were
selected to limit topographic effects.
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B.3.4 LOCI coherence

() (d)

Figure B.47: Loci coherence analysis for (a), (b) mature dense and (c), (d) mature sparse
spruce forest with ALOS PALSAR PLR 22° Asc. B, = 359m complex interferometric coher-
ence (7) (frame PLR2). The PALSAR polarimetric interferometric scene was acquired on 14"
March /19" April 2009. Each point describes the complex coherence for one polarisation state.
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() (d)

Figure B.48: Loci coherence analysis for (a), (b) young dense and (c), (d) young sparse spruce for-
est with ALOS PALSAR PLR 22° Asc. By, = 359 m complex interferometric coherence (7) (frame
PLR2). The PALSAR polarimetric interferometric scene was acquired on 14" March/19*" April
2009. Each point describes the complex coherence for one polarisation state.
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() (d)

Figure B.49: Loci coherence analysis for (a), (b) mature dense beech forest and (c), (d) open area
with ALOS PALSAR PLR 22° Asc. B, = 359m complex interferometric coherence (7) (frame
PLR2). The PALSAR polarimetric interferometric scene was acquired on 14" March/19*" April
2009. Each point describes the complex coherence for one polarisation state.
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B.4 Forest GSV estimation

Table B.1: Statistics for modelling with parametric regressions of PALSAR FBS HH 39° Asc.
(frames FBS1,3 and FBS5-7) and PALSAR PLR HH 21° Asc. (frame PLR1,2) coherence in
the Thuringian Forest. Three statistics were retained, namely R? for training, RM SE and bias
Modelling was performed over spruce forest stands.

Frame Acquisition dates Baseline  py; Dh2 Rfraining RMSE Bias
(m) (mm) (mm) (m*ha=t) (m*ha=!)

FBS1  21feb08-07apr08 562 0.4 0.1 0.01 246 39
FBS1  26feb10-13aprl0 309 1.1 0.0 0.22 207 43
FBS3 15jan07-02mar07 1698 0.0 0.0 0.14 101 32
FBS3 04mar08-18jan08 -710 3.5 0.1 0.72 183 5
FBS3  19apr08-04mar08 477 0.1 0.5 0.01 146 46
FBS5  21feb08-07apr08 554 0.4 0.2 0.10 284 -7
FBS5  26feb10-13aprl0 301 1.1 0.0 0.22 210 13
FBS6  04nov07-20dec07 11 0.0 0.0 - - -
FBS6  20dec07-04feb08 830 0.0 0.0 - - -
FBS7  15jan07-02mar07  -1706 0.0 0.0 0.80 126 -6
FBS7  04mar08-18jan08 -706 4.8 0.0 0.45 163 11
FBS7 19apr08-04mar08 475 0.0 1.2 0.29 187 31
PLR1 14mar09-29apr09 362 15.1 147 0.23 195 6

PLR2 14mar09-29apr09 359 18.9 17.3 0.28 184 13
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Figure B.50: Comparison of the estimated GSV (regression approach) with GSV measured

during forest campaigns and provided in the forest inventory. The estimated GSV is based on
the average of ALOS PALSAR FBD 39° Asc. HH coherences (v) available on frame FBD7.
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Figure B.51: Influence of the radar spatial resolution on the GSV estimation accuracy (RMSE).
The analysis is based on ALOS PALSAR FBS 39° Asc. HH (frames FBS7) coherence (). The
interferometric acquisition was performed on 2"4 March 2007/ 15" January 2007.
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C.1 Statistics formulas

1N
RMSE = J NZ (5 — i)
1
1N
MAE = =S |4 — v,
NZIHy vil

1 N

Bias = N 21: (9 — yi)
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Figure D.1: Visualisation of the TanDEM-X derived interferometric height. The forested areas
are located around Gorsdorf.
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